

City of New York

Department of Information Technology and Telecommunications

Application Development Management – Quality Assurance

Citywide Policy for Performance Testing of

Public-Facing Applications

Final 2.0 - PUBLIC

2/2/2016

ines

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 2
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Table of Contents
1.0 Overview ... 3

1.1 Introduction .. 3

1.2 Audience ... 3

1.3 Purpose ... 3

1.4 Scope ... 4

2.0 Policy ... 4

2.1 Policy Statement ... 4

2.2 Performance Testing Requirements ... 4

2.2.1 Required Performance Tests ... 4

2.2.2 Required Performance Standards ... 5

2.2.3 Required Activities for Performance Testing .. 5

2.2.4 Performance Testing Tools ... 5

2.3 Roles and Responsibilities ... 5

2.3.1 If DoITT Conducts Performance Testing ... 5

2.3.2 If the City Agency or Third Party Conducts Performance Testing ... 6

3.0 Authority ... 7

4.0 Ownership and Contact .. 7

5.0 Change History .. 7

6.0 Appendix A: Entry / Exit Criteria ... 8

7.0 Appendix B: Required Activities for Performance Testing .. 10

8.0 Appendix C: DoITT Performance Test Services Questionnaire ... 18

9.0 Appendix D: Performance Test Results Sample Sheet .. 19

10.0 Appendix E: Risks Addressed by Performance Test Types .. 20

11.0 Appendix F: Risk Types Addressed by Performance Tests .. 21

12.0 Appendix G: Glossary .. 23

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 3
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

1.0 Overview

1.1 Introduction

This document is based on information technology (IT) industry standards and best practices. It

has been developed to guide Citywide agencies in the performance testing of applications. The

primary tasks of application performance testing activities are to validate application stability

and scalability, and to collect relevant information to help stakeholders make informed

decisions related to the overall quality of the application being tested.

Performance testing also helps to identify bottlenecks in a system, establish a baseline for future

testing, and determine fulfillment of performance goals and requirements. In addition, analysis

of performance testing results can help to estimate the hardware and software configurations

required to support an application when it “GOES LIVE” to production. For these reasons,

performance testing is strongly recommended for all applications.

Specifically for any applications that face the public however, performance testing is

mandatory in all circumstances, including mobile applications serving multiple users through the

connection to server-based application infrastructure. Some of the reasons performance testing

is required include, but are not limited to:

 Poorly performing applications damage the City’s IT reputation, regardless of what team or

agency developed them.

 Public-facing applications may attract far greater public traffic than the intended user base,

which may cause unexpected load increases. This is especially the case when applications

are covered by the media through public announcements, news outlets, or other public

communications vehicles.

By providing definite standards for compliance, this document requires that this important part

of pre-deployment is performed consistently and reliably for all public-facing City applications.

1.2 Audience

The document is written for City agency project managers and quality assurance (QA) staff that

will be responsible for the performance testing of public-facing systems and applications before

deployment. It is intended both for City agency employees and for external contractors,

consultants, and business partners, including architects, system integrators, or technical leads

working at agencies.

1.3 Purpose

The purpose of this document is to define the policy and standards to be followed during

performance testing of all public-facing applications.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 4
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

1.4 Scope

a) The policies and standards in this document apply to all City agencies. An agency is defined
as an administrative unit of City government as designated in the New York City Charter, by
Executive Order or by Local Law.

b) The policies and standards in this document apply to all new or modified public-facing
systems and applications. This document can also be used as guidance for testing internal
applications, although such tests are not mandated by this policy.

2.0 Policy

2.1 Policy Statement

a) All Citywide public-facing applications, including mobile applications, must be subject to
performance testing that meets the requirements in this document (Section 2.2).

b) A City agency can use its own QA services, enlist a third party, or leverage DoITT QA services
to conduct performance testing. However, in every case, all performance testing for
Citywide public-facing applications must be approved by DoITT prior to deployment,
contingent on DoITT’s validation of the testing procedures and exit criteria. In any scenario,
the DoITT QA team is equipped to serve as a guiding resource toward meeting performance
testing requirements.

2.2 Performance Testing Requirements

2.2.1 Required Performance Tests

The expected load of an application is determined during the application’s business analysis
phase. Once that expected load is established, the following tests are mandatory for all public-
facing applications:

 Stress Test: A Stress Test is executed to determine if the application will perform sufficiently
if its load goes well above the expected maximum. It helps application administrators
determine the application’s robustness, availability, and error handling under heavy load
scenarios, such as in extreme load. It must be executed with at least 3 hours of steady state
run (with ramp up/ramp down time excluded) with an applied load of at least 120% of the
estimated expected load.

 Stability/Soak/Endurance Test: Soak Testing is usually done to determine if the application
can sustain the continuous expected load without performance getting degraded over time.
The applied load can be the same as with the stress test or lower, but must be at least equal
to the expected load. The test must run for at least 12 hours in a steady state.

 Note: For more technical detail, please refer to Appendix A for entry and exit criteria on
performance testing.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 5
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

The following test is not mandatory, but highly advisable:

 Breakpoint Test: The goal of the Breakpoint Test is to determine the maximum load the
system can support. It is usually done by gradually increasing load and it continues to run
until the system’s behavior reaches an unacceptable level (e.g. significant increase of
response time; CPU usage nears 100%, etc.). The Breakpoint Test is recommended to be run
prior to a Stress Test.

 Note: Performance testing is one of the several activities necessary to deploy an application.

Further resources and templates are available on the NYC Project site.

2.2.2 Required Performance Standards

DoITT standards for performance testing must be met according to the Entry and Exit Criteria

outlined in Appendix A.

If DoITT QA does not perform the testing itself, it must validate that the Exit Criteria have been

met in order to approve any testing conducted by a City agency or third party before the

application is deployed.

2.2.3 Required Activities for Performance Testing

Detailed descriptions and suggested guidelines for these activities can be found in Appendix B. If

DoITT QA does not perform the testing itself, it must review the testing scenarios and validate

that the required activities have been conducted by the City agency or third party doing the test

before the application is deployed.

2.2.4 Performance Testing Tools

DoITT maintains test infrastructure and test tools to conduct performance testing for agencies.

These resources are also available to agencies choosing to conduct their own testing. If an

agency chooses to use alternative tools, these tools are expected to include 1) monitoring and

reporting capabilities necessary to conduct the required performance testing activities; and 2)

capabilities to collect and report necessary data sufficient to decide if exit criteria are met as

outlined in Appendix A.

2.3 Roles and Responsibilities

2.3.1 If DoITT Conducts Performance Testing

Efficiencies are gained at both the agency and the City level by leveraging DoITT’s centralized QA

testing service. City agencies can leverage DoITT skillsets and existing licenses. Additionally, the

cost of tools, training, and testing environments can be mitigated.

DoITT: DoITT will conduct required performance tests through its testing services.

http://www.nyc.gov/html/nycproject/html/home/home.shtml

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 6
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

City Agency: Agencies can submit a request for these services directly to DoITT. The agency will

be required to complete a brief questionnaire such as found in Appendix C.

IMPORTANT: Because DoITT performance testing resources are limited, agencies should contact

DoITT six weeks before Go-Live to give DoITT’s QA team enough time to meet agency

requirements and expectations.

Agencies MUST NOT publicly commit to an application launch date until completion of the

performance testing and DoITT QA signoff.

2.3.2 If the City Agency or Third Party Conducts Performance Testing

These are the required responsibilities in the event a City agency decides to conduct its own

performance testing or uses a third party vendor.

DoITT: DoITT will review and approve performance testing as conducted by the City agency or

third party prior to deployment. DoITT remains on-hand with expertise, tools, and resources to

aid any City agency in its effort to conduct performance testing.

City agency: The City agency must first notify DoITT that it plans to conduct performance testing

on a public-facing application by contacting DoITT QA Services.

The City agency or hired third party must adhere to the required tests, activities, and standards

in this policy (section 2.2).

The following documentation must be submitted to DoITT six weeks before Go-Live so that it

can review and approve the application prior to deployment:

a) Brief description of application (or provide demo)

b) Description of application environment and infrastructure (infrastructure diagram is

sufficient)

c) Description of the test approach, expected load and test scenarios (test scenario should

follow guidelines in Appendix B), list of transactions to be measured for performance

d) Request for the DoITT performance testing access (if DoITT toolset is needed); OR a

description of the tools being used (name, license type, infrastructure description)

e) Performance test results provided in DoITT accepted format, sufficient to validate that the

application satisfies performance requirements. See Appendix D for sample sheet and

explanation.

If the required tests have been run, the required activities have been followed, and the test

results show that the application performance is satisfactory, DoITT QA will sign off. This

approval must be achieved before the application is deployed.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 7
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Engaging DoITT early and often for guidance and resources during the performance testing

process will reduce risk that the application will not receive DoITT QA signoff.

IMPORTANT: Agencies should submit performance test results and documentation to DoITT QA

six weeks before Go-Live to give DoITT’s to allow adequate time for review and potential retest.

Agencies MUST NOT publicly commit to an application launch date until completion of the

performance testing and DoITT QA signoff.

3.0 Authority

The New York City Department of Information Technology and Telecommunications (DoITT) was

established by Local Law 24 of 1995 as “New York City’s information technology and

telecommunications agency.”

Chapter 48 of the New York City Charter established the authority of DoITT by assigning powers

and duties “to plan, formulate, coordinate and advance information technology and

telecommunications policies for the city.”

Executive Order No.140 of 2010 directed DoITT to “be responsible for establishing and enforcing

Citywide IT policies and for ensuring that such policies are aligned with the City’s business needs

and investments, as well as the individual business needs of each agency.”

4.0 Ownership and Contact

This policy is owned by DoITT Application Development Management (ADM) Quality Assurance

team.

5.0 Change History

Version Change Highlights Date

1.0 Final Draft 6-11-12

1.1 Updated Appendix E - Deployment Readiness Checklist 8-14-12

1.2 Updated Entry 10: Deployment Package in Appendix E – Readiness Checklist 10-3-12

1.3 Reformatted and revised 7-1-13

1.4 Public version information added 6-25-14

2.0 Perf testing must be approved by DoITT but not mandated to be conducted by

DoITT

2-3-16

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 8
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

6.0 Appendix A: Entry / Exit Criteria

The following standards for performance testing entry and exit criteria must be met for all

public-facing applications. If DoITT is not conducting the test, it must confirm that exit criteria

have been satisfied prior to application deployment.

Entry Criteria

Performance testing is ready to begin when:

 The application must be near its final build with medium and high priority defects

addressed/fixed and at least one iteration of system test pass occurring during the script

execution process

 The Staging Environment has been configured

 The appropriate test tools have been set up and ready for test execution

 When DoITT services and tools are used, LoadRunner Controllers and Load Generators, or

Performance Center are validated and reserved

 The appropriate performance test scripts have been coded and reviewed

Exit Criteria

Exit criteria out of Performance Test are as follows:

 Execution of the following mandatory tests are fully completed (section 2.2.1):

o Stress Test

o Stability/Soak/Endurance Test

 System parameters measured during the tests are as follows:

o Peak CPU utilization is 65% or lower

o 40/60 distribution between load balancers

o Memory utilization should not exceed 80%

o No memory use build up during the test and immediately after

o No memory leak recognized after the test is completed

o Database is not exhausted during the test, no errors occur and it is functioning as

expected throughout all the time of the test execution

o Page response time under 3 seconds on average

o Page response time 90% under 5 seconds

o For pages based on forms, Web Services, or build with EMC Documentum:

 Response time under 30 seconds on average

 Response time 90% under 50 seconds on average

o Upload valid picture file type(about 2.92MB size) response time under 30 seconds

on average

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 9
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

o Upload valid picture file type(about 2.92MB size) response time 90% under 50

seconds on average

o All defects of priority 1 and 2 have been resolved

o DoITT QA Director and Business Project Managers approved the performance test

results

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 10
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

7.0 Appendix B: Required Activities for Performance Testing

The following activities are required when performance testing is done. The key to effectively

implementing these activities is applying them in the manner most valuable to each individual

project context.

Starting with knowledge of the project context, the QA team must begin identifying the test

environment and the performance acceptance criteria more or less in parallel. This is due to the

fact that all the remaining activities are affected by the information gathered in these first two

activities. Generally, the team will revisit these activities periodically as the team learns more

about the application, its users, its features, and any performance-related risks it might have.

Project Context

For performance testing to be successful, the testing itself must be relevant to the context of

the project. Without an understanding of the project context, performance testing risks focusing

on only those items that the performance tester or test team assumes to be important, as

opposed to those that truly are important to the business owner and other stakeholders. This

misapplication of focus frequently leads to wasted time, frustration, and conflicts.

The project context is therefore relevant to achieving project success. This may include, but is

not limited to:

 The overall vision or intent of the project

 The performance testing objectives

 The performance success criteria

 The development life cycle

 The project schedule

 The project budget

 The available tools and environments

 The skill set of the performance tester and the team

 The priority of detected performance concerns

 The business impact of deploying an application that performs poorly.

Defining the test scope

Performance testing tools and infrastructure can be used for the single user application on any

platform; however, the focus of this policy is performance testing of complex applications with

n-tier architecture serving multiple users simultaneously. When applications of this type

respond to users’ actions, the function and resource use of all application components and

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 11
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

infrastructure may vary depending on the number of users acting simultaneously. As a result of

that the response time may vary as well.

There are several infrastructure and application architecture components affecting user

experience for the n-tier multiuser application. These may include, but are not limited to the

following:

 User workstation, mobile device, or other server of the other application (for system-to-

system connection);

 Any type of network (internal or public, wired or wireless, etc.),

 Multiple ties of servers including web, application and database servers and load

balancers

This policy and DoITT QA performance testing services focus on measuring response time and

resource use as well as proper functioning of the server tier of the application architecture,

which applies mainly to load balancing. Any other application components (e.g. end user device

or network) are simulated by the performance test infrastructure and are not the subject of the

test.

To prepare the test, a tester creates and customizes a script that simulates the load provided by

end-user equipment, and then uses this script during test execution to generate the appropriate

amount of load. The load simulation can be based on the data recorded by specialized recording

tools or in some cases can be generated by creating custom code for the simulation.

To execute the server performance tests mentioned above, the process of applying the load

during the test does not depend on the computer or device where the load was originally

recorded. The load is applied from the computers called Load Generators, which are part of the

reusable performance testing infrastructure and is maintained by performance testing team.

Identify the Test Environment

The team must identify the test environment to completely understand the similarities and

differences between the test and production environments. Some critical factors to consider

are:

 Hardware

o Configurations

o Machine hardware (processor, RAM, etc.)

 Network

o Network architecture and end-user location

o Load-balancing implications

o Cluster and Domain Name System (DNS) configurations

 Tools

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 12
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

o Load-generation tool limitations

o Environmental impact of monitoring tools

 Software

o Other software installed or running in shared or virtual environments

o Software license constraints or differences

o Storage capacity and seed data volume

o Logging levels

 External factors

o Volume and type of additional traffic on the network

o Scheduled or batch processes, updates, or backups

o Interactions with other systems

Further guidelines when identifying the test environment include:

 Identify the amount and type of data the application must be seeded with to emulate real-
world conditions.

 Identify critical system components. Do any of the system components have known
performance concerns? Are there any integration points that are beyond the team’s control
for testing?

 Check the configuration of load balancers.

 Validate name resolution with DNS. This may account for significant latency when opening
database connections.

 Validate that firewalls, DNS, routing, and so on treat the generated load similarly to a load
that would typically be encountered in a production environment.

Identify Performance Acceptance Criteria

Classes of characteristics that frequently correlate to a user’s or stakeholder’s satisfaction

typically include:

 Response time. For example, the product catalog must be displayed in less than three
seconds.

 Throughput. For example, the system must support 25 payments per second.

 Resource utilization. For example, processor utilization is not more than 75 percent. Other
important resources that need to be considered for setting objectives are memory, disk
input/output (I/O), and network I/O.

 Consider the following when identifying performance acceptance:

 Business requirements

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 13
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

 User expectations

 Contractual obligations

 Regulatory compliance criteria and industry standards

 Service Level Agreements (SLAs)

 Resource utilization targets

 Various and diverse, realistic workload models

 The entire range of anticipated load conditions

Plan and Design the Test

Planning and designing performance tests involves identifying key usage scenarios, determining

appropriate variability across users, identifying and generating test data, and specifying the

metrics to be collected.

The team’s goal should be to create real-world simulations in order to provide reliable data that

will enable the agency to make informed business decisions. Real-world test designs will

significantly increase the relevancy and usefulness of results data.

Key usage scenarios for the application typically surface during the process of identifying the

desired performance characteristics. If this is not the case for the test project under evaluation,

the team will need to explicitly determine the usage scenarios that are the most valuable to

script. The team must consider the following when identifying key usage scenarios:

 Contractually obligated usage scenario(s)

 Usage scenario(s) implied or mandated by performance-testing goals and objectives

 Most common usage scenario(s)

 Business-critical usage scenario(s)

 Performance-intensive usage scenario(s)

 Usage scenario(s) of technical concern

 Usage scenario(s) of stakeholder concern

 High-visibility usage scenario(s)

The team must consider the following when planning and designing tests:

 Realistic test designs are sensitive to dependencies outside the control of the system, such
as humans, network activity, and other systems interacting with the application.

 Realistic test designs are based on what the team expects to find in real-world use, not
theories or projections.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 14
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

 Realistic test designs produce more credible results and thus enhance the value of
performance testing.

 Extrapolating performance results from unrealistic tests can create damaging inaccuracies as
the system scope increases and frequently leads to poor decisions.

Implement the Test Design

The details of creating an executable performance test are extremely tool-specific. Regardless of

the tool being using, creating a performance test typically involves scripting a single usage

scenario and then enhancing that scenario and combining it with other scenarios to ultimately

represent a complete workload model.

The biggest challenge involved in a performance-testing project is getting the first relatively

realistic test implemented with users generally being simulated in such a way that the

application under test cannot legitimately tell the difference between the simulated users and

real users.

The team must consider the following when implementing the test design:

 Ensure that test data feeds are implemented correctly. Test data feeds are data repositories

in the form of databases, text files, in-memory variables, or spreadsheets that are used to

simulate parameter replacement during a load test. For example, even if the application

database test repository contains the full production set, the load test might only need to

simulate a subset of products being bought by users due to a scenario involving, for

example, a new product or marketing campaign. Test data feeds may be a subset of

production data repositories.

 Ensure that application data feeds are implemented correctly in the database and other

application components. Application data feeds are data repositories, such as product or

order databases, that are consumed by the application being tested. The key user scenarios,

run by the load test scripts may consume a subset of this data.

 Ensure that validation of transactions is implemented correctly. Many transactions are

reported successful by the Web server, but they fail to complete correctly. Examples of

validation are, database entries inserted with correct number of rows, product information

being returned, correct content returned in html data to the clients etc.

 Ensure hidden fields or other special data are handled correctly. This refers to data returned

by Web server that needs to be resubmitted in subsequent request, like session IDs or

product ID that needs to be incremented before passing it to the next request.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 15
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Execute the Test

It makes sense that the process, flow, and technical details of test execution are extremely

dependent on the tools, environment, and project context. Even so, there are some fairly

universal tasks and considerations that need to be kept in mind when executing tests.

Test execution can be viewed as a combination of the following sub-tasks. The QA team must:

1. Coordinate test execution and monitoring with all appropriate members of the team.

2. Validate test configurations, and the state of the environments and data.

3. Begin test execution.

4. While the test is running, monitor and validate scripts, systems, and data.

5. Upon test completion, quickly review the results for obvious indications that the test was
flawed.

6. Archive the tests, test data, results, and other information necessary to repeat the test later
if needed.

7. Log start and end times, the name of the result data, and so on. This will allow the team to
identify data sequentially after the test is done.

As the team prepares to begin test execution, it is worth taking the time to double-check the

following items. The team must:

 Validate that the test environment matches the configuration that the team was expecting
and/or designed the test for.

 Ensure that both the test and the test environment are correctly configured for metrics
collection.

 Before running the real test, execute a quick smoke test to make sure that the test script
and remote performance counters are working correctly. In the context of performance
testing, a smoke test is designed to determine if the application can successfully perform all
of its operations under a normal load condition for a short time.

 Reset the system (unless the scenario calls for doing otherwise) and start a formal test
execution.

 Make sure that the test scripts’ execution represents the workload model the team wants to
simulate.

 Make sure that the test is configured to collect the key performance and business indicators
of interest at this time.

The team must consider the following when executing the test:

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 16
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

 Validate test executions for data updates, such as orders in the database that have been
completed.

 Validate if the load-test script is using the correct data values, such as product and order
identifiers, in order to realistically simulate the business scenario.

 If at all possible, execute every test three times. Note that the results of first-time tests can
be affected by loading Dynamic-Link Libraries (DLLs), populating server-side caches, or
initializing scripts and other resources required by the code under test. If the results of the
second and third iterations are not highly similar, then the test must be executed again. The
team must try to determine what factors account for the difference.

Analyze Results, Report, and Retest

Managers and stakeholders need more than just the results from various tests — they need

conclusions, as well as consolidated data that supports those conclusions. Technical team

members also need more than just results — they need analysis, comparisons, and details

behind how the results were obtained. Team members of all types get value from performance

results being shared more frequently.

Before results can be reported, the data must be analyzed. The team must consider the

following important points when analyzing the data returned by the performance test:

 Analyze the data both individually and as part of a collaborative, cross-functional technical
team.

 Analyze the captured data and compare the results against the metric’s acceptable or
expected level to determine whether the performance of the application being tested shows
a trend toward or away from the performance objectives.

 If the test fails, a diagnosis and tuning activity are generally warranted.

 If any bottlenecks are fixed, repeat the test to validate the fix.

 Performance-testing results will often enable the team to analyze components at a deep
level and correlate the information back to the real world with proper test design and usage
analysis.

 Performance test results should enable informed architecture and business decisions.

 Frequently, the analysis will reveal that, in order to completely understand the results of a
particular test, additional metrics will need to be captured during subsequent test-execution
cycles.

 Immediately share test results and make raw data available to the entire team.

 Talk to the consumers of the data to validate that the test achieved the desired results and
that the data means what the team thinks it means.

 Modify the test to get new, better, or different information if the results do not represent
what the test was defined to determine.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 17
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

 Use current results to set priorities for the next test.

 Collecting metrics frequently produces very large volumes of data. Although it is tempting to
reduce the amount of data, the team must always exercise caution when using data-
reduction techniques because valuable data can be lost.

Most reports fall into one of the following two categories:

 Technical Reports

o Description of the test, including workload model and test environment

o Easily digestible data with minimal pre-processing

o Access to the complete data set and test conditions

o Short statements of observations, concerns, questions, and requests for collaboration

 Stakeholder Reports

o Criteria to which the results relate

o Intuitive, visual representations of the most relevant data

o Brief verbal summaries of the chart or graph in terms of criteria

o Intuitive, visual representations of the workload model and test environment

o Access to associated technical reports, complete data sets, and test conditions

o Summaries of observations, concerns, and recommendations

Summary

Performance testing involves a set of common core activities that occur at different stages of

projects. Each activity has specific characteristics and tasks to be accomplished. These activities

have been found to be present — or at least to have been part of an active, risk-based decision

to omit one of the activities — in every deliberate and successful performance-testing project. It

is therefore important to understand each activity in detail and then apply the activities in a way

that best fits the project context.

In performing all of the required activities outlined above, and considering all of the suggested

guidelines, the testing agent ensures that performance testing of all new or modified public-

facing City applications will be consistently and reliably accomplished to high standards. As one

important part of pre-deployment QA testing, this helps to make certain that these applications

can “GO LIVE” with confidence.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 18
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

8.0 Appendix C: DoITT Performance Test Services
Questionnaire

Project Name:

Agency:

Service Requested:

Agency Project Manager/Contact(s):

Project URL:

Requested Start Date:

Requested Finish Date:

Request Description:

Staging Environment Ready:

Projected # of Users

Can a demo of the application be given?

Additional Information:

Security Accreditation completed:

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 19
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

9.0 Appendix D: Performance Test Results Sample Sheet

This template is an example of an acceptable form of Stress Test results (and can be adapted for other

test results as well). An Excel template can be found here:

Test Execution Date xx/xx/xxxx xx/xx/xxxx

Release xx xx

Execution Cycle Pass x Pass x

of Users xxx xxx

Servers

prtl-stg-web1 10-15% 10-15%

Test Execution Date xx/xx/xxxx xx/xx/xxxx

Release xx xx

Execution Cycle Pass x Pass x

of Users xxx xxx

Servers

prtl-stg-web1

Date Load Balance VM Build Up Memory

Leak

Database

Errors

Test Execution Date xx/xx/xxxx xx/xx/xxxx xx/xx/xxxx xx/xx/xxxx

Release xx xx xx xx

Execution Cycle Pass x Pass x Pass x Pass x

Build # xxx xxx xxx xxx

Logging Level ERROR ERROR ERROR ERROR

Of Vusers xxx xxx xxx xxx

Duration 3Hrs 3Hrs 3Hrs 3Hrs

Transaction Name Average 90 Percent Average 90 Percent

SCRIPT: Script1

Application_Script1a_step1

Application_Script1b_step2

Application_Script1c_step3

Application_Script1d_step4

Application_Script1e_step5

Application_Script1f_step6

SCRIPT: Script2

Application_Script2a_step1

Application_Script2b_step2

Application_Script2c_step3

Application_Script2d_step4

Application_Script2e_step5

Application_Script2f_step6

CPU Usage Report

Memory Usage Report

Stress Test Results - Transaction Response Times

Application: xxxx Release No: xxx Stress Test Results

7.26.2006 49.9%/50.1% No No No

Other Usage Report

Appendix D (sample
testing results) AppName_Rxxx_PerformanceTestResults_Staging.xlsx

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 20
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

10.0 Appendix E: Risks Addressed by Performance Test
Types

A full glossary of definitions is available in Appendix G.

Performance Test Type Risk(s) Addressed

Capacity Is system capacity meeting business volume under both normal and
peak load conditions?

Component Is this component meeting expectations?
 Is this component reasonably well optimized?
 Is the observed performance issue caused by this component?

Endurance (or Soak or

Stability Test)

 Will performance be consistent over time?
 Are there slowly growing problems that have not yet been detected?
 Is there external interference that was not accounted for?

Breakpoint How many users can the application handle before undesirable
behavior occurs when the application is subjected to a particular
workload?

 How much data can my database/file server handle?
 Are the network components adequate?

 Smoke Is this build/configuration ready for additional performance testing?
 What type of performance testing should I conduct next?
 Does this build exhibit better or worse performance than the last one?

Stress What happens if the production load exceeds the anticipated load?
 What kinds of failures should we plan for?
 What indicators should we look for in order to intervene prior to

failure?

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 21
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

11.0 Appendix F: Risk Types Addressed by Performance
Tests

Risks Performance test types

Capacity Component Endurance Breakpoint Smoke Stress

Speed-related risks

User satisfaction

X X

X

Synchronicity

X X X

X

Service Level Agreement (SLA)

violation
X X

Response time trend

X X X X

Configuration

X X X X

Consistency

X X X

Scalability-related risks

Capacity X X X X

Volume X X X X

SLA violation

X X

Optimization X X

Efficiency X X

Future growth X X

X

Resource consumption X X X X X X

Hardware / environment X X X X

X

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 22
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Risks Performance test types

Capacity Component Endurance Breakpoint Smoke Stress

Service Level Agreement (SLA)

violation
X X X X

Stability-related risks

Reliability

X X X

X

Robustness

X X X

X

Hardware / environment

X X

X

Failure mode

X X X

X

Slow leak

X X X

Service Level Agreement (SLA)

violation
X X X

X

Recovery

X

X

Data accuracy and security

X X X

X

Interfaces

X X X

X

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 23
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

12.0 Appendix G: Glossary

The glossary below includes DoITT abbreviations used in this document, performance testing

terminology, and terms with specific DoITT Enterprise Architecture definitions.

Term Definition

Capacity The capacity of a system is the total workload it can handle without violating predetermined key
performance acceptance criteria.

Capacity test A capacity test complements load testing by determining the server’s ultimate failure point,
whereas load testing monitors results at various levels of load and traffic patterns. Capacity testing
is performed in conjunction with capacity planning, which is used to plan for future growth, such as
an increased user base or increased volume of data. For example, to accommodate future loads, the
QA team needs to know how many additional resources (such as processor capacity, memory usage,
disk capacity, or network bandwidth) are necessary to support future usage levels. Capacity testing
helps to identify a scaling strategy in order to determine whether the application should scale up or
scale out.

Component test A component test is any performance test that targets an architectural component of the
application. Commonly tested components include servers, databases, networks, firewalls, and
storage devices.

DEV Application Development

Endurance test An endurance test (also referred to as soak or stability test) is a type of performance test focused on
determining or validating performance characteristics of the product under test when subjected to
workload models and load volumes anticipated during production operations over an extended
period of time. Endurance testing is a subset of load testing.

Guideline A guideline is a principle or rule to inform decisions and achieve rational outcomes. Guidelines
recommend the use of standards and procedures. While guidelines are not enforced, they are strong
recommendations.

Investigation Investigation is an activity based on collecting information related to the speed, scalability, and/or
stability characteristics of the product under test that may have value in determining or improving
product quality. Investigation is frequently employed to prove or disprove hypotheses regarding the
root cause of one or more observed performance issues.

IT Sec Ops IT Security Operations

Latency Latency is a measure of responsiveness that represents the time it takes to complete the execution
of a request. Latency may also represent the sum of several latencies or subtasks.

Metrics Metrics are measurements obtained by running performance tests as expressed on a commonly
understood scale. Some metrics commonly obtained through performance tests include processor
utilization over time and memory usage by load.

Performance Performance refers to information regarding the application’s response times, throughput, and
resource utilization levels.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 24
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Term Definition

Performance

budgets or

allocations

Performance budgets (or allocations) are constraints placed on developers regarding allowable
resource consumption for their component.

Performance

goals

Performance goals are the criteria that the team wants to meet before product release, although
these criteria may be negotiable under certain circumstances. For example, if a response time goal
of three seconds is set for a particular transaction but the actual response time is 3.3 seconds, it is
likely that the stakeholders will choose to release the application and defer performance tuning of
that transaction for a future release.

Performance

objectives

Performance objectives are usually specified in terms of response times, throughput (transactions
per second), and resource-utilization levels and typically focus on metrics that can be directly
related to user satisfaction.

Performance

requirements

Performance requirements are those criteria that are absolutely non-negotiable due to contractual
obligations, service level agreements (SLAs), or fixed business needs. Any performance criterion that
will not unquestionably lead to a decision to delay a release until the criterion passes is not
absolutely required ― and therefore, not a requirement.

Performance

targets

Performance targets are the desired values for the metrics identified for the project under a
particular set of conditions, usually specified in terms of response time, throughput, and resource-
utilization levels. Resource-utilization levels include the amount of processor capacity, memory, disk
I/O, and network I/O that the application consumes. Performance targets typically equate to project
goals.

Performance test A performance test is a technical investigation done to determine or validate the speed, scalability,
and/or stability characteristics of the product under test. Performance testing is the superset
containing all other subcategories of performance testing described in this chapter.

Performance

testing objectives

Performance testing objectives refer to data collected through the performance-testing process that
is anticipated to have value in determining or improving product quality. However, these objectives
are not necessarily quantitative or directly related to a performance requirement, goal, or stated
quality of service (QoS) specification.

Performance

thresholds

Performance thresholds are the maximum acceptable values for the metrics identified for the
project, usually specified in terms of response time, throughput (transactions per second), and
resource-utilization levels. Resource-utilization levels include the amount of processor capacity,
memory, disk I/O, and network I/O that the application consumes. Performance thresholds typically
equate to requirements.

PM Project Management

Policy A policy is a mandatory principle or rule to guide decisions and achieve rational outcomes. Policies
impose the use of standards and procedures. Policies are enforceable, and may require assertions of
compliance.

Procedure A procedure is a process: a series of actions or operations that are executed in the same manner in
order to obtain a specific result.

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 25
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Term Definition

Prod Support Production Support

QA Quality Assurance

Resource

utilization

Resource utilization is the cost of the project in terms of system resources. The primary resources
are processor, memory, disk I/O, and network I/O.

Response time Response time is a measure of how responsive an application or subsystem is to a client request.

Saturation Saturation refers to the point at which a resource has reached full utilization.

Scalability Scalability refers to an application’s ability to handle additional workload, without adversely
affecting performance, by adding resources such as processor, memory, and storage capacity.

Scenarios In the context of performance testing, a scenario is a sequence of steps in the application. A
scenario can represent a use case or a business function such as searching a product catalog, adding
an item to a shopping cart, or placing an order.

SCM Software Configuration Management

Smoke test A smoke test is the initial run of a performance test to see if the application can perform its
operations under a normal load.

Spike test A spike test is a type of performance test focused on determining or validating performance
characteristics of the product under test when subjected to workload models and load volumes that
repeatedly increase beyond anticipated production operations for short periods of time. Spike
testing is a subset of stress testing.

Stability In the context of performance testing, stability refers to the overall reliability, robustness, functional
and data integrity, availability, and/or consistency of responsiveness for the system under a variety
conditions.

Standard A standard is a formally documented statement that establishes uniform technical criteria, methods,
procedures, and/or practices.

Stress test A stress test is a type of performance test designed to evaluate an application’s behavior when it is
pushed beyond normal or peak load conditions. The goal of stress testing is to reveal application
bugs that surface only under high load conditions. These bugs can include such things as
synchronization issues, race conditions, and memory leaks. Stress testing enables the QA team to
identify the application’s weak points, and shows how the application behaves under extreme load
conditions.

Throughput Throughput is the number of units of work that can be handled per unit of time; for instance,
requests per second, calls per day, hits per second, reports per year, etc.

UAT User Acceptance Test

CITYWIDE POLICY

2/3/2016 Citywide Performance Testing Policy 26
Final 2.0 – PUBLIC – Use pursuant to City of New York Guidelines

Term Definition

Unit test In the context of performance testing, a unit test is any test that targets a module of code where
that module is any logical subset of the entire existing code base of the application, with a focus on
performance characteristics. Commonly tested modules include functions, procedures, routines,
objects, methods, and classes. Performance unit tests are frequently created and conducted by the
developer who wrote the module of code being tested.

Utilization In the context of performance testing, utilization is the percentage of time that a resource is busy
servicing user requests. The remaining percentage of time is considered idle time.

Validation test A validation test compares the speed, scalability, and/or stability characteristics of the product
under test against the expectations that have been set or presumed for that product.

Workload Workload is the stimulus applied to a system, application, or component to simulate a usage
pattern, in regard to concurrency and/or data inputs. The workload includes the total number of
users, concurrent active users, data volumes, and transaction volumes, along with the transaction
mix. For performance modeling, the QA team associates a workload with an individual scenario.

