NYC Waste Characterization Study
Final Report, Volume 1 PWCS and WCS Results

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS

GLOSSARY GL-1
1.1 INTRODUCTION. 1
1.2 BASIS FOR SAMPLING 3
1.2.1 PWCS 3
1.2.2 WCS Residential Study 3
1.2.3 WCS Street Basket Study3
1.3 NEW YORK CITY DEMOGRAPHICS 4
1.3.1 Maps of Study Area 5
1.4 IDENTIFYING "PURE" COLLECTION ROUTES 24
1.5 DETERMINING THE NUMBER OF SAMPLES 26
1.6 RESIDENTIAL WASTE SORTING 28
1.6.1 Overview of Material Sort Categories 28
1.7 WASTE GENERATION 30
1.8 SUMMARY RESULTS 35
1.8.1 Citywide Results at a Glance, PWCS and Annual WCS Results 35
1.8.2 Housing Density and Income Details 42
1.8.3 Diversion Rates and Capture Rates 58
2.1 INTRODUCTION 1
2.2 CITYWIDE RESULTS ACROSS SEASONS1
2.3 HOUSING DENSITY AND INCOME DETAILS 29
2.4 DETAILS ON DRINK CONTAINERS 90
3.1 INTRODUCTION 1
3.2 ADJUSTMENTS TO 2004/2005 FROM 1989/1990 MATERIAL CATEGORIES 2
3.3 SEASONAL COMPARISONS 2004/2005 TO 1989/1990 7
3.4 DETAILS ON RESULTS WITHOUT BULK 18
4.1 INTRODUCTION. 1
4.2 BOROUGHWIDE RESULTS AT A GLANCE, PWCS 1
4.3 BOROUGHWIDE RESULTS AT A GLANCE, WCS SEASONAL 17
4.4 BOROUGHWIDE RESULTS AT A GLANCE, WCS ANNUAL 78
4.5 DETAILS ON DRINK CONTAINERS BY BOROUGH 94
4.6 HISTORICAL COMPARISONS BY BOROUGH 104
5.1 INTRODUCTION. 1
5.2 DEDICATED STREET BASKET ROUTES1
5.3 STREET BASKET WASTE COMPOSITION 1
5.4 STREET BASKET ILLEGAL USE 5
5.5 STREET BASKET CONTAINER SORTS 8
6.1 INTRODUCTION 1
6.2 BULK ITEMS 1
6.3 DURABLE ITEMS 40

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

7.1 INTRODUCTION 1
7.2 MOISTURE AND PARTICULATE TESTING AND RESULTS 3
7.3 COMPARISON OF MOISTURE AND PARTICULATE TESTING - WCS AND THE 1989/1990 STUDY6
8.1 INTRODUCTION. 1
8.2 STATISTICAL RESULTS BY MATERIAL 1
8.3 ANALYSIS OF VARIABILITY - PWCS AND WCS 87
9 COMPARISON WITH OTHER JURISDICTIONS 1
9.1 INTRODUCTION 1
9.2 COMPARISON OF OTHER JURISDICTIONS: A SUMMARY 2
9.3 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE CITY OF LOS ANGELES 10
9.3.1 Introduction 10
9.3.2 Adjustments to the Studies and Study Results 14
9.3.3 Most Prevalent Materials 20
9.4 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE CITY OF PHILADELPHIA, PENNSYLVANIA 22
9.4.1 Introduction. 22
9.4.2 Adjustments to the Studies and Study Results 24
9.4.3 Most Prevalent Materials 30
9.5 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE CITY OF PHOENIX 32
9.5.1 Introduction. 32
9.5.2 Adjustments to the Studies and Study Results 34
9.5.3 Most Prevalent Materials 41
9.6 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE CITY OF SAN DIEGO 43
9.6.1 Introduction 43
9.6.2 Adjustments to the Studies and Study Results 46
9.6.3 Most Prevalent Materials 52
9.7 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE CITY OF SAN FRANCISCO 54
9.7.1 Introduction. 54
9.7.2 Adjustments to the Studies and Study Results 56
9.7.3 Most Prevalent Materials 62
9.8 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE CITY OF SEATTLE 64
9.8.1 Introduction 64
9.8.2 Adjustments to the Studies and Study Results 67
9.8.3 Most Prevalent Materials 77

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

9.9 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR ALAMEDA COUNTY, CALIFORNIA 80
9.9.1 Introduction. 80
9.9.2 Adjustments to the Studies and Study Results 83
9.9.3 Most Prevalent Materials 89
9.10 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE STATE OF PENNSYLVANIA 91
9.10.1 Introduction. 91
9.10.2 Adjustments to the Studies and Study Results 93
9.10.3 Most Prevalent Materials 99
9.11 CHARACTERIZATION OF MUNICIPAL SOLID WASTE FOR THE STATE OF GEORGIA 101
9.11.1 Introduction 101
9.11.2 Adjustments to the Studies and Study Results 103
9.11.3 Most Prevalent Materials 110
TABLES
1-1 Structure of PWCS and WCS §1 Page-2
1-2 Definition of Density and Income Strata §1 Page-4
1-3 Distribution of Census Tracts Among Density and Income Strata §1 Page-4
1-4 Distribution of Population Among Density and Income Strata §1 Page-4
1-5 Distribution of Housing Units Among Density and Income Strata §1 Page-5
1-6 Universe of Collection Routes From Which Random Selection Was Made §1 Page-25
1-7 Summary of Sample Weights §1 Page-26
1-8 Summary of Mass of Samples Sorted, PWCS and WCS §1 Page-26
1-9 Number of Samples Acquired § 1 Page-27
1-10 Overview of Material Sort Categories for New York City Waste Characterization Study §1 Page-29
1-11 Weekly Curbside Tonnages Collected During the PWCS and WCS §1 Page-31
1-12 Annual Generation Rates per Capita, PWCS and WCS §1 Page-32
1-13 Annual Generation Rates per Housing Unit, PWCS and WCS §1 Page-33
1-14 Weekly Generation Rates per Housing Unit, PWCS and WCS §1 Page-34
1-15 Citywide Results at a Glance, Preliminary Waste Characterization Study §1 Page-36
1-16 Citywide Results at a Glance, Annual Waste Characterization Study. §1 Page-39
1-17 Housing Density and Income Details, Annual Waste Characterization Study, Refuse §1 Page-43

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

TABLES
 (continued)

1-18 Housing Density and Income Details, Annual Waste Characterization Study, Paper §1 Page-46
1-19 Housing Density and Income Details, Annual Waste Characterization Study, MGP §1 Page-49

1-20	Housing Density and Income Details,
Annual Waste Characterization Study, Aggregated Recycling	
(Paper and MGP) ... §1 Page-52	

1-21 Housing Density and Income Details,
Annual Waste Characterization Study, Waste (Refuse and Recycling) §1 Page-55
1-22 Curbside Diversion Rates, PWCS and WCS §1 Page-59
1-23 Curbside Capture Rates, PWCS and WCS §1 Page-61
1-24 Citywide Results at a Glance, Fall 2004, Waste Characterization Study §2 Page-2
1-25 Citywide Results at a Glance, Winter 2005, Waste Characterization Study §2 Page-5
1-26 Citywide Results at a Glance, Spring 2005, Waste Characterization Study §2 Page-8
1-27 Citywide Results at a Glance, Summer 2005, Waste Characterization Study §2 Page-11
1-28 Citywide Results Across Seasons, Waste Characterization Study, Refuse §2 Page-14
1-29 Citywide Results Across Seasons, Waste Characterization Study, Paper. §2 Page-17
1-30 Citywide Results Across Seasons, Waste Characterization Study, MGP §2 Page-20
1-31 Citywide Results Across Seasons, Waste Characterization Study, Aggregated Recycling (Paper and MGP) §2 Page-23
1-32 Citywide Results Across Seasons, Waste Characterization Study, Waste (Refuse and Recycling) §2 Page-26
1-33 Housing Density and Income Details, Fall 2004, Waste Characterization Study, Refuse. §2 Page-30
1-34 Housing Density and Income Details, Fall 2004, Waste Characterization Study, Paper. §2 Page-33
1-35 Housing Density and Income Details, Fall 2004, Waste Characterization Study, MGP §2 Page-36

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES
(continued)
1-36 Housing Density and Income Details, Fall 2004, Waste Characterization Study, Aggregated Recycling (Paper and MGP) §2 Page-39
1-37 Housing Density and Income Details, Fall 2004, Waste Characterization Study, Waste (Refuse and Recycling) §2 Page-42
1-38 Housing Density and Income Details, Winter 2005, Waste Characterization Study, Refuse §2 Page-45
1-39 Housing Density and Income Details, Winter 2005, Waste Characterization Study, Paper. §2 Page-48
1-40 Housing Density and Income Details, Winter 2005, Waste Characterization Study, MGP §2 Page-511-41 Housing Density and Income Details, Winter 2005,Waste Characterization Study, Aggregated Recycling(Paper and MGP)§2 Page-54
1-42 Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling) §2 Page-57
1-43 Housing Density and Income Details, Spring 2005, Waste Characterization Study, Refuse §2 Page-60
1-44 Housing Density and Income Details, Spring 2005, Waste Characterization Study, Paper. §2 Page-63
1-45 Housing Density and Income Details, Spring 2005, Waste Characterization Study, MGP §2 Page-66
1-46 Housing Density and Income Details, Spring 2005,Waste Characterization Study, Aggregated Recycling(Paper and MGP)§2 Page-69
1-47 Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling) §2 Page-72
1-48 Housing Density and Income Details, Summer 2005, Waste Characterization Study, Refuse. §2 Page-75
1-49 Housing Density and Income Details, Summer 2005, Waste Characterization Study, Paper. §2 Page-78
1-50 Housing Density and Income Details, Summer 2005, Waste Characterization Study, MGP §2 Page-81

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES
(continued)
1-51 Housing Density and Income Details, Summer 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP) §2 Page-84
1-52 Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling) §2 Page-87
1-53 High Density/High Income Drink Container Counts and Sorts - Refuse §2 Page-92
1-54 High Density/Medium Income Drink Container Counts and Sorts - Refuse §2 Page-95
1-55 High Density/Low Income Drink Container Counts and Sorts - Refuse §2 Page-98
1-56 Medium Density/High Income Drink Container Counts and Sorts - Refuse §2 Page-101
1-57 Medium Density/Medium Income Drink Container Counts and Sorts - Refuse §2 Page-104
1-58 Medium Density/Low Income Drink Container Counts and Sorts - Refuse §2 Page-107
1-59 Low Density/High Income Drink Container Counts and Sorts - Refuse §2 Page-110
1-60 Low Density/Medium Income Drink Container Counts and Sorts - Refuse §2 Page-113
1-61 Citywide Drink Container Counts and Sorts - Refuse §2 Page-116
1-62 High Density/High Income Drink Container Counts and Sorts - MGP. §2 Page-119
1-63 High Density/Medium Income Drink Container Counts and Sorts - MGP. §2 Page-122
1-64 High Density/Low Income Drink Container Counts and Sorts - MGP. §2 Page-125
1-65 Medium Density/High Income Drink Container Counts and Sorts - MGP §2 Page-128
1-66 Medium Density/Medium Income Drink Container Counts and Sorts - MGP. §2 Page-131
1-67 Medium Density/Low Income Drink Container Counts and Sorts - MGP. §2 Page-134

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES (continued)

Low Density/High Income Drink Container
Counts and Sorts - MGP... §2 Page-137

1-69 Low Density/Medium Income Drink Container | Counts and Sorts - MGP... §2 Page-140 |
| :--- |

1-70 Citywide Drink Container Counts and Sorts - MGP.................................. §2 Page-143
1-71 High Density/High Income Drink Container
Counts and Sorts - Waste (Refuse and Recycling) §2 Page-146
High Density/Medium Income Drink Container
Counts and Sorts - Waste (Refuse and Recycling) §2 Page-149
1-73 High Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-152
1-74 Medium Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-155
1-75 Medium Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-158
1-76 Medium Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-161
1-77 Low Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-164
1-78 Low Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-167
1-79 Citywide Drink Container Counts and Sorts - Waste (Refuse and Recycling) §2 Page-170
1-80 Citywide Drink Container Sorts - Out of All Drink Containers §2 Page-173
1-81 Adjustments to PWCS 2004 Material Categories for Comparison with 1989/1990 Study §3 Page-3
1-82 Adjustments to WCS 2004/2005 Material Categories for Comparison with 1989/1990 Study §3 Page-5
1-83 Waste Composition, PWCS 2004 vs. Spring 1990 Residential Results Excluding Bulk §3 Page-8
1-84 Waste Composition, Fall 2004 vs. Fall 1989 Residential Results Excluding Bulk §3 Page-10
1-85 Waste Composition, Winter 2005 vs. Winter 1990 Residential Results Excluding Bulk §3 Page-12

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES
 (continued)

1-86 Waste Composition, Spring 2005 vs. Spring 1990 Residential Results Excluding Bulk §3 Page-14
1-87 Waste Composition, Summer 2005 vs. Summer 1989 Residential Results Excluding Bulk §3 Page-16
1-88 Preliminary Waste Characterization Study, Waste, Excluding Bulk Items §3 Page-19
1-89 Housing Density and Income Details, Fall 2004 Waste Characterization Study, Waste, (Refuse and Recycling) Excluding Bulk Items §3 Page-22
1-90 Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste, (Refuse and Recycling) Excluding Bulk Items §3 Page-25
1-91 Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste, (Refuse and Recycling) Excluding Bulk Items §3 Page-28
1-92 Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste, (Refuse and Recycling) Excluding Bulk Items §3 Page-31
1-93 Housing Density and Income Details, Annual, Waste Characterization Study, Waste, (Refuse and Recycling) Excluding Bulk Items §3 Page-34
1-94 Manhattan Results at a Glance, Preliminary Waste Characterization Study §4 Page-2
1-95 Bronx Results at a Glance, Preliminary Waste Characterization Study §4 Page-5
1-96 Brooklyn Results at a Glance, Preliminary Waste Characterization Study §4 Page-8
1-97 Queens Results at a Glance, Preliminary Waste Characterization Study §4 Page-11
1-98 Staten Island Results at a Glance, Preliminary Waste Characterization Study §4 Page-14
1-99 Manhattan Results at a Glance, Fall 2004 Waste Characterization Study §4 Page-18
1-100 Bronx Results at a Glance, Fall 2004 Waste Characterization Study §4 Page-21

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

TABLES
(continued)
1-101 Brooklyn Results at a Glance, Fall 2004 Waste Characterization Study §4 Page-24
1-102 Queens Results at a Glance, Fall 2004 Waste Characterization Study §4 Page-27
1-103 Staten Island Results at a Glance, Fall 2004 Waste Characterization Study §4 Page-30
1-104 Manhattan Results at a Glance, Winter 2005 Waste Characterization Study §4 Page-33
1-105 Bronx Results at a Glance, Winter 2005 Waste Characterization Study §4 Page-36
1-106 Brooklyn Results at a Glance, Winter 2005 Waste Characterization Study §4 Page-39
1-107 Queens Results at a Glance, Winter 2005 Waste Characterization Study §4 Page-42
1-108 Staten Island Results at a Glance, Winter 2005 Waste Characterization Study §4 Page-45
1-109 Manhattan Results at a Glance, Spring 2005 Waste Characterization Study §4 Page-48
1-110 Bronx Results at a Glance, Spring 2005 Waste Characterization Study §4 Page-51
1-111 Brooklyn Results at a Glance, Spring 2005 Waste Characterization Study §4 Page-54
1-112 Queens Results at a Glance, Spring 2005 Waste Characterization Study §4 Page-57
1-113 Staten Island Results at a Glance, Spring 2005 Waste Characterization Study §4 Page-60
1-114 Manhattan Results at a Glance, Summer 2005 Waste Characterization Study §4 Page-63
1-115 Bronx Results at a Glance, Summer 2005 Waste Characterization Study §4 Page-66
1-116 Brooklyn Results at a Glance, Summer 2005 Waste Characterization Study §4 Page-69
1-117 Queens Results at a Glance, Summer 2005 Waste Characterization Study §4 Page-72

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES(continued)
1-118 Staten Island Results at a Glance, Summer 2005 Waste Characterization Study. §4 Page-75
1-119 Manhattan Results at a Glance, Annual Waste Characterization Study §4 Page-79
1-120 Bronx Results at a Glance, Annual Waste Characterization Study §4 Page-82
1-121 Brooklyn Results at a Glance, Annual Waste Characterization Study §4 Page-85
1-122 Queens Results at a Glance, Annual Waste Characterization Study §4 Page-88
1-123 Staten Island Results at a Glance, Annual Waste Characterization Study §4 Page-91
1-124 Drink Containers Sorts and Counts by Borough - Refuse §4 Page-95
1-125 Drink Containers Sorts and Counts by Borough - MGP §4 Page-98
1-126 Drink Containers Sorts and Counts by Borough - Waste. §4 Page-101
1-127 Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residentials Results Excluding Bulk §4 Page-105
1-128 Manhattan, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residentials Results Excluding Bulk §4 Page-107
1-129 Bronx, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residentials Results Excluding Bulk §4 Page-109
1-130 Brooklyn, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residentials Results Excluding Bulk §4 Page-111
1-131 Queens, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residentials Results Excluding Bulk §4 Page-113
1-132 Staten Island, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residentials Results Excluding Bulk §4 Page-115
1-133 Citywide Results Across Seasons, Waste Characterization Study, Street Basket §5 Page-2
1-134 Street Basket Waste, Suspected Illegal Use Analysis. §5 Page-7
1-135 Citywide Drink Container Counts and Sorts, Street Basket §5 Page-9
1-136 Citywide Drink Container Sorts, Out of All Drink Containers §5 Page-12
1-137 Citywide Residential Bulk Item Summary, PWCS §6 Page-3
1-138 Citywide Residential Bulk Item Summary, Fall 2004, WCS §6 Page-4
1-139 Citywide Residential Bulk Item Summary, Winter 2005, WCS §6 Page-5

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES
(continued)
1-140 Citywide Residential Bulk Item Summary, Spring 2005, WCS §6 Page-6
1-141 Citywide Residential Bulk Item Summary, Summer, WCS §6 Page-7
1-142 Citywide Residential Bulk Item Summary, Annual, WCS §6 Page-8
1-143 Bulk Item List by Material Category, PWCS §6 Page-10
1-144 Bulk Item List by Material Category, Fall 2004, WCS §6 Page-13
1-145 Bulk Item List by Material Category, Winter 2005, WCS §6 Page-17
1-146 Bulk Item List by Material Category, Spring 2005, WCS §6 Page-25
1-147 Bulk Item List by Material Category, Summer 2005, WCS §6 Page-31
1-148 Citywide, Durables Summary, PWCS and WCS. §6 Page-41
1-149 Manhattan, Durables Summary, PWCS and WCS §6 Page-42
1-150 Bronx, Durables Summary, PWCS and WCS §6 Page-43
1-151 Brooklyn, Durables Summary, PWCS and WCS §6 Page-44
1-152 Queens, Durables Summary, PWCS and WCS §6 Page-45
1-153 Staten Island, Durables Summary, PWCS and WCS §6 Page-46
1-154 Citywide, Durables Detail, PWCS and WCS, Refuse §6 Page-48
1-155 Citywide, Durables Detail, PWCS and WCS, MGP. §6 Page-50
1-156 Citywide, Durables Detail, PWCS and WCS, Waste (Refuse and Recycling) §6 Page-52
1-157 Material Categories Tested for Moisture and Particulates, PWCS and WCS §7 Page-2
1-158 PWCS Moisture and Particulate Testing Results. §7 Page-4
1-159 WCS Moisture and Particulate Testing Results §7 Page-5
1-160 Number of Samples Tested for Moisture Content in the 1989/1990 Study and the WCS §7 Page-7
1-161 Materials Tested for Moisture Content in the 1989/1990 Study and the WCS §7 Page-7
1-162 Adjustments to Material Groups and Categories in the 1989/1990 Study and the WCS §7 Page-8
1-163 Comparison of Moisture Content between 1989/1990 Study and WCS Refuse. §7 Page-8
1-164 Statistical Results, PWCS, Refuse §8 Page-3
1-165 Statistical Results, PWCS, Paper §8 Page-6
1-166 Statistical Results, PWCS, MGP §8 Page-9

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES
 (continued)

Statistical Results, WCS Results Across Seasons,
Refuse, High Density/High Income... §8 Page-12
1-168 Statistical Results, WCS Results Across Seasons, Refuse, High Density/Medium Income §8 Page-15
1-169 Statistical Results, WCS Results Across Seasons, Refuse, High Density/Low Income §8 Page-18
1-170 Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/High Income §8 Page-21
1-171 Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Medium Income §8 Page-24
1-172 Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Low Income §8 Page-27
1-173 Statistical Results, WCS Results Across Seasons, Refuse, Low Density/High Income §8 Page-30
1-174 Statistical Results, WCS Results Across Seasons, Refuse, Low Density/Medium Income §8 Page-33
1-175 Statistical Results, WCS Results Across Seasons, Paper, High Density/High Income §8 Page-36
1-176 Statistical Results, WCS Results Across Seasons, Paper, High Density/Medium Income §8 Page-39
1-177 Statistical Results, WCS Results Across Seasons, Paper, High Density/Low Income §8 Page-42
1-178 Statistical Results, WCS Results Across Seasons, Paper, Medium Density/High Income §8 Page-45
1-179 Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Medium Income. §8 Page-48
1-180 Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Low Income §8 Page-51
1-181 Statistical Results, WCS Results Across Seasons, Paper, Low Density/High Income §8 Page-54
1-182 Statistical Results, WCS Results Across Seasons, Paper, Low Density/Medium Income §8 Page-57
1-183 Statistical Results, WCS Results Across Seasons, MGP, High Density/High Income §8 Page-60

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

TABLES
 (continued)

1-184	Statistical Results, WCS Results Across Seasons, MGP,
High Density/Medium Income .. §8 Page-63	

1-185 Statistical Results, WCS Results Across Seasons, MGP, High Density/Low Income §8 Page-66
1-186 Statistical Results, WCS Results Across Seasons, MGP, Medium Density/High Income §8 Page-69
1-187 Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Medium Income §8 Page-72
1-188 Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Low Income §8 Page-75
1-189 Statistical Results, WCS Results Across Seasons, MGP, Low Density/High Income §8 Page-78
1-190 Statistical Results, WCS Results Across Seasons, MGP, Low Density/Medium Income §8 Page-81
1-191 Statistical Results, WCS Results Across Seasons, Street Basket §8 Page-84
1-192 Analysis of Variability, PWCS, Refuse §8 Page-88
1-193 Analysis of Variability, WCS, Fall 2004, Refuse, High Density/High Income §8 Page-89
1-194 Analysis of Variability, WCS, Fall 2004, Refuse, High Density/Medium Income §8 Page-90
1-195 Analysis of Variability, WCS, Fall 2004, Refuse, High Density/Low Income §8 Page-91
1-196 Analysis of Variability, WCS, Fall 2004, Refuse, Medium Density/High Income §8 Page-92
1-197 Analysis of Variability, WCS, Fall 2004, Refuse, Medium Density/Medium Income §8 Page-93
1-198 Analysis of Variability, WCS, Fall 2004, Refuse, Medium Density/Low Income §8 Page-94
1-199 Analysis of Variability, WCS, Fall 2004, Refuse, Low Density/High Income §8 Page-95
1-200 Analysis of Variability, WCS, Fall 2004, Refuse, Low Density/Medium Income §8 Page-96
1-201 Analysis of Variability, WCS, Winter 2005, Refuse, High Density/High Income §8 Page-97

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

TABLES
(continued)
1-202 Analysis of Variability, WCS, Winter 2005, Refuse, High Density/Medium Income §8 Page-98
1-203 Analysis of Variability, WCS, Winter 2005, Refuse, High Density/Low Income §8 Page-99
1-204 Analysis of Variability, WCS, Winter 2005, Refuse, Medium Density/High Income §8 Page-100
1-205 Analysis of Variability, WCS, Winter 2005, Refuse, Medium Density/Medium Income §8 Page-101
1-206 Analysis of Variability, WCS, Winter 2005, Refuse, Medium Density/Low Income §8 Page-102
1-207 Analysis of Variability, WCS, Winter 2005, Refuse, Low Density/High Income §8 Page-103
1-208 Analysis of Variability, WCS, Winter 2005, Refuse, Low Density/Medium Income §8 Page-104
1-209 Analysis of Variability, WCS, Spring 2005, Refuse, High Density/High Income §8 Page-105
1-210 Analysis of Variability, WCS, Spring 2005, Refuse, High Density/Medium Income §8 Page-106
1-211 Analysis of Variability, WCS, Spring 2005, Refuse, High Density/Low Income §8 Page-107
1-212 Analysis of Variability, WCS, Spring 2005, Refuse, Medium Density/High Income §8 Page-108
1-213 Analysis of Variability, WCS, Spring 2005, Refuse, Medium Density/Medium Income §8 Page-109
1-214 Analysis of Variability, WCS, Spring 2005, Refuse, Medium Density/Low Income. §8 Page-110
1-215 Analysis of Variability, WCS, Spring 2005, Refuse, Low Density/High Income §8 Page-111
1-216 Analysis of Variability, WCS, Spring 2005, Refuse, Low Density/Medium Income §8 Page-112
1-217 Analysis of Variability, WCS, Summer 2005, Refuse, High Density/High Income §8 Page-113
1-218 Analysis of Variability, WCS, Summer 2005, Refuse, High Density/Medium Income §8 Page-114

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES(continued)
1-219 Analysis of Variability, WCS, Summer 2005, Refuse, High Density/Low Income §8 Page-115
1-220 Analysis of Variability, WCS, Summer 2005, Refuse, Medium Density/High Income §8 Page-116
1-221 Analysis of Variability, WCS, Summer 2005, Refuse, Medium Density/Medium Income. §8 Page-117
1-222 Analysis of Variability, WCS, Summer 2005, Refuse, Medium Density/Low Income §4 Page-118
1-223 Analysis of Variability, WCS, Summer 2005, Refuse, Low Density/High Income §8 Page-119
1-224 Analysis of Variability, WCS, Summer 2005, Refuse, Low Density/Medium Income §8 Page-120
1-225 Types of Residential Refuse Results Presented in Comparative Studies §9 Page-3
1-226A Comparison by Material Groups in Residential Refuse Results §9 Page-5
1-226B Comparison by Material Groups Seattle Recycling Study and the NYC WCS §9 Page-6
1-227A Summary Comparison - Prevalent Materials Refuse §9 Page-8
1-227B Summary Comparison - Prevalent Materials Recycling. §9 Page-9
1-228 Methodological Comparison of the NYC WCS and the Los Angeles Study §9 Page-12
1-229 Composition by Material Groups in the NYC WCS and the Los Angeles Study §9 Page-15
1-230 Material Categories in the NYC WCS and the Los Angeles Study. §9 Page-17
1-231 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Los Angeles Study §9 Page-21
1-232 Methodological Comparison of the NYC WCS and the Philadelphia Study §9 Page-23
1-233 Composition by Material Groups in the NYC WCS and the Philadelphia Study §9 Page-25
1-234 Material Categories in the NYC WCS and the Philadelphia Study. §9 Page-27
1-235 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Philadelphia Study §9 Page-31
1-236 Methodological Comparison of the NYC WCS and the Phoenix Study §9 Page-33
1-237 Composition by Material Groups in the NYC WCS and the Phoenix Study §9 Page-35

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS (continued)

TABLES
(continued)
1-238 Material Categories in the NYC WCS and the Phoenix Study §9 Page-37
1-239 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Phoenix Study §9 Page-42
1-240 Methodological Comparison of the NYC WCS and the San Diego Study §9 Page-44
1-241 Composition by Material Groups in the NYC WCS and the San Diego Study §9 Page-47
1-242 Material Categories in the NYC WCS and the San Diego Study §9 Page-49
1-243 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the San Diego Study §9 Page-53
1-244 Methodological Comparison of the NYC WCS and the San Francisco Study §9 Page-55
1-245 Composition by Material Groups in the NYC WCS and the San Francisco Study §9 Page-57
1-246 Material Categories in the NYC WCS and the San Francisco Study §9 Page-59
1-247 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the San Francisco Study §9 Page-63
1-248 Methodological Comparison of the NYC WCS and the Seattle Studies §9 Page-65
1-249A Composition by Material Groups in the NYC WCS and the Seattle Study Refuse §9 Page-68
1-249B Composition by Material Groups in the NYC WCS and the Seattle Study Recycling §9 Page-69
1-250A Material Categories in the NYC WCS and the Seattle Study Refuse. §9 Page-71
1-250B Material Categories in the NYC WCS and the Seattle Study Recycling. §9 Page-74
1-251A Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Seattle Study Refuse. §9 Page-78
1-251B Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Seattle Study Recycling §9 Page-79
1-252 Methodological Comparison of the NYC WCS and the Alameda Study §9 Page-81
1-253 Composition by Material Groups in the NYC WCS and the Alameda County Study §9 Page-84
1-254 Material Categories in the NYC WCS and the Alameda County Study §9 Page-86

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

TABLES
(continued)

1-255 Most Prevalent Materials in the Refuse Stream of the NYC WCS
and the Alameda County Study .. §9 Page-90
1-256 Methodological Comparison of the NYC WCS and $\begin{aligned} & \text { the Pennsylvania Study .. §9 Page-92 }\end{aligned}$
1-257 Composition by Material Groups in the NYC WCS
and the Pennsylvania Study .. §9 Page-94
1-258 Material Categories in the NYC WCS and the Pennsylvania Study §9 Page-96
1-259 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Pennsylvania Study
§9 Page-100
1-260 Methodological Comparison of the NYC WCS and $\begin{aligned} & \text { the Georgia Study ... §9 Page-102 }\end{aligned}$
1-261 Composition by Material Groups in the NYC WCS and
the Georgia Study ... §9 Page-104
1-262 Material Categories in the NYC WCS and the Georgia Study................... §9 Page-106
1-263 Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Georgia Study.
§9 Page-111

VOLUME 1 - PWCS AND WCS RESULTS TABLE OF CONTENTS
 (continued)

FIGURES

1-1A Color Map of Census Tracts by Housing Density §1 Page-6
1-1B Color Map of Census Tracts by Income §1 Page-7
1-1C Color Map of Census Tracts by Density/Income Strata §1 Page-8
1-2A Grayscale Map of Census Tracts by Housing Density - Manhattan §1 Page-9
1-2B Grayscale Map of Census Tracts by Housing Density - Bronx §1 Page-10
1-2C Grayscale Map of Census Tracts by Housing Density - Brooklyn §1 Page-11
1-2D Grayscale Map of Census Tracts by Housing Density - Queens §1 Page-12
1-2E Grayscale Map of Census Tracts by Housing Density - Staten Island §1 Page-13
1-3A Grayscale Map of Census Tracts by Income - Manhattan § 1 Page-14
1-3B Grayscale Map of Census Tracts by Income - Bronx § 1 Page-15
1-3C Grayscale Map of Census Tracts by Income - Brooklyn §1 Page-16
1-3D Grayscale Map of Census Tracts by Income - Queens §1 Page-17
1-3E Grayscale Map of Census Tracts by Income - Staten Island §1 Page-18
1-4A Grayscale Map of Census Tracts by Density/Income Strata - Manhattan §1 Page-19
1-4B Grayscale Map of Census Tracts by Density/Income Strata - Bronx §1 Page-20
1-4C Grayscale Map of Census Tracts by Density/Income Strata - Brooklyn. §1 Page-21
1-4D Grayscale Map of Census Tracts by Density/Income Strata - Queens §1 Page-22
1-4E Grayscale Map of Census Tracts by Density/Income Strata - Staten Island §1 Page-23

Glossary of Abbreviations and Definitions

The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
1989/1990 WCS	The waste characterization study conducted by the New York City Department of Sanitation in 1989 and 1990.
Absolute Variability	The variability from sampling unit to sampling unit, which is measured by the Standard Deviation.
Borough	The five political/geographic areas of New York City: Manhattan, Brooklyn, Bronx, Queens, and Staten Island.
Bulk Item	As defined for the NYC WCS, any item of waste that will not fit into a 96-gallon container.
BWPRR	Bureau of Waste Prevention, Reuse and Recycling
C\&D	An abbreviation of construction and demolition debris, a material group in the NYC WCS.
Capture Rate	The amount of materials set out for residential recycling collection as a percentage of designated recyclable materials in both recycling and refuse streams. This ratio measures how much of the targeted materials are actually being recycled, which is a measure of how successfully such materials are recycled.
Census Tracts	Census tracts are small, relatively permanent statistical subdivisions of a county. New York City includes 2,217 census tracts containing on average about 4,000 inhabitants.
City	New York City
Confidence Interval	A range within which the true Mean of the population is believed to lie with the given confidence level.
Confidence Level	The certainty with which the true Mean lies within the interval determined. For the NYC WCS, a 90 percent confidence level is used. A 90 percent confidence level is the industry standard for Waste Characterization Studies. Note that the use of a 90 percent level instead of a 95 percent level (the standard for scientific research) does not (a) affect the calculation of means, only the width of intervals around the means or (b) preclude the application of a 95 percent confidence level to results if such an analysis is of interest.
Contamination Rate	The percentage of material that is found in the containers set out for residential recycling collection that is not accepted in New York City's curbside recycling program.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.
$\left.\begin{array}{|l|l|}\hline \text { TERM } & \text { DEFINITION } \\ \hline \text { Correlation, negative } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A negative correlation occurs when one variable } \\ \text { increases and the other variable decreases. }\end{array} \\ \hline \text { Correlation, positive } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A positive correlation occurs when one variable } \\ \text { increases and the other variable also increases. }\end{array} \\ \hline \text { Count } & \text { The process of counting the individual items that were subsorted. }\end{array} \left\lvert\, \begin{array}{l}\text { Curbside Collection } \\ \hline \begin{array}{l}\text { The collection of residential refuse or recycling in bins or bags } \\ \text { set out in proximity to residences that generate these types of } \\ \text { waste. DSNY provides curbside refuse collection to all residents } \\ \text { two or three times per week and recycling curbside collection } \\ \text { once per week. }\end{array} \\ \hline \text { Density/Income Strata } \\ \hline \begin{array}{l}\text { Divisions of New York City's population based on median } \\ \text { housing density and median household income. }\end{array} \\ \hline \text { Deposit (containers) } \\ \begin{array}{l}\text { Beverage containers for which, under the New York State } \\ \text { Redeemable Container Law, the purchaser is required to pay a } \\ \text { deposit. The deposit may be redeemed when the empty } \\ \text { containers are returned to a retailer or authorized redemption } \\ \text { center. }\end{array} \\ \hline \text { District } \\ \text { Dual-bin Trucks }\end{array} \begin{array}{l}\text { The 59 areas within New York City used by the Department of } \\ \text { Sanitation to administer the City's waste management program. } \\ \text { These districts are co-terminus, or identical, to the 59 Community } \\ \text { Districts. }\end{array}\right.\right\}$

Glossary of Abbreviations and Definitions (continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Film (Plastic)	A category of flexible plastic materials used for packaging, trash bags and other applications, typically made of polyethylene or polypropylene.
HDPE	An abbreviation for high density polyethylene; a plastic denoted by a \#2 inside the chasing arrows recycling symbol.
HHW	An abbreviation for Household Hazardous Waste, one of the material groups in the NYC WCS.
H/H	An abbreviation for the high housing density and high income stratum.
H/L	An abbreviation for the high housing density and low income stratum.
H/M	An abbreviation for the high housing density and medium income stratum.
Illegally Disposed Street Basket Waste	Residential or commercial waste that is illegally disposed of in street baskets (e.g. home-use products, such as large detergent bottles, cereal boxes, or personal mail; construction materials, etc.).
L/H	An abbreviation for the low housing density and high income stratum.
L/M	An abbreviation for the low housing density and medium income stratum.
Late Week/Early Week	A criterion used in the PWCS based on the idea that the composition of the waste discarded during the latter part of a week differs significantly from the composition of waste discarded during the early part of a week.
LDPE	An abbreviation for low density polyethylene, a plastic denoted by \#4 inside the "chasing arrows" recycling symbol.
Lower Boundary	For a given material, the lowest average percentage of that material expected in the population consistent with the sample, at the confidence level specified.
M/H	An abbreviation for the medium housing density and high income stratum.
M/L	An abbreviation for the medium housing density and low income stratum.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
M/M	An abbreviation for the medium housing density and medium income stratum.
Material Categories	The classification of all materials in the waste stream into categories for sorting, weighing, and counting purposes. In the NYC WCS, 91 Material Categories were used to characterize the City's waste stream.
Material Groups	Groupings of material categories used to simplify or generalize results. The Material Groups used in the NYC WCS are: Paper, Plastic, Glass, Metal, Organics, Appliances/Electronics, Construction and Demolition Debris, Miscellaneous Inorganics, and Household Hazardous Waste.
Mean	The sum of the values of all observations divided by the number of observations, also known as average. In analyzing the composition of samples of waste, refuse, recycling, and the contents of street baskets, the best estimate of the true percentage of each material in the population is the Mean percentage of that material from all of the samples.
MGP	An abbreviation for Metal, Glass, and Plastic. One of the two streams of recycling collected by the DSNY consisting of plastic bottles and jugs; glass bottles and jars; metal cans and household objects; aluminum foil, trays and cans, and gable top beverage cartons. The other stream of recycling collected by DSNY is Paper.
Multi-Unit Apartment	Broken glass in small pieces (under 3" x 3") of mixed color.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
NYC	New York City
NYC WCS	New York City Waste Characterization Study
Observation	The value(s) associated with a given sampling unit.
OCC	An abbreviation for old corrugated cardboard, one of the material categories in the PWCS and the NYC WCS.
ONP	An abbreviation for old newspaper, one of the material categories in the PWCS and the NYC WCS.
Paper	The second of two streams of recyclable materials collected by DSNY consisting of newspapers; magazines; catalogues; junk mail; white office paper; mixed paper; and gray and corrugated cardboard/paperboard. The other stream of is Metals/Glass/Plastic (MGP).
PET	An abbreviation for polyethylene terephthalate, a plastic denoted by \#1 inside the "chasing arrows" recycling symbol.
Population (Statistics)	The entire aggregation of items from which a sample can be drawn. In the NYC WCS, the population was all of the residential waste collected at the curb by DSNY.
PP	An abbreviation for polyethylene propylene, a plastic denoted by \#5 inside the "chasing arrows" recycling symbol.
Potential Deposit	Beverage containers which are not currently designated as deposit containers under the New York State Redeemable Container Law, but which may be designated in future legislation.
PS	An abbreviation for polystyrene, a plastic denoted by \#6 inside the "chasing arrows" recycling symbol.
Pure Routes	DSNY Refuse and Recycling collection routes that include only residences from a single housing density and income stratum.
PWCS	The preliminary waste characterization study conducted by the New York City Department of Sanitation in 2004.
PVC	An abbreviation for polyvinyl chloride, a plastic denoted by \#3 inside the "chasing arrows" recycling symbol.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Recycling	The act of recovering items or materials that might have been discarded and, usually after processing, returning them to the stream of commerce. Also, the materials that are set out for recycling collection.
Recycling Subindicators	A set of abbreviations used to indicate; i) those materials designated for recycling under New York City's current curbside recycling program during the study period ("R"); ii) those materials for which markets exist and which could be added to a future New York City curbside program ("PR"); and iii) those materials that are not designated for recycling under New York City's curbside recycling program because established or emerging markets do not presently exist ("NR").
Refuse	Items or materials that are discarded and disposed.
Relative Variability	The variability from Sampling Unit to Sampling Unit in relation to the Mean. This is calculated by dividing the Standard Deviation by the Mean.
Residential Study	The component of the 2004/2005 waste characterization study that addressed the generation and composition of the curbside residential waste.
Sample	A portion of a population used to estimate the composition of the population as a whole. The Sample is made up of multiple Sampling Units.
Sample Acquisition, or Sampling	The procedure for selecting Sampling Units from the population.
Sample Number	The number of sampling units in a sample.
Sample Weight	The weight of a sampling unit. In the WCS, each refuse sampling unit was between 200 and 300 pounds.
Sampling Unit	A single elementary unit used as the basis for estimating the composition of the population.
Section	Each of the City's 59 Sanitation Districts is divided into 3 to 5 Sanitation District Sections within which routes are designed and tonnage data collected daily.
Single-serve (containers)	Beverage containers with a capacity of less than 24 ounces of liquid.

Glossary of Abbreviations and Definitions
(continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Sorting	The procedure for separating a heterogeneous amount of material, such as a 200 pound Sampling Units of refuse, into its constituent material categories.
Sorting Period	The days or weeks when the sampling and sorting of waste took place during the NYC WCS.
Standard Deviation	A measure of the dispersion or variability around the Mean of the weights of a group of Sampling Units of New York City waste.
Street Basket Waste Study	The component of the 2004/2005 waste characterization study that addressed the composition of the street basket waste.
Subsorts	The process of sorting a particular material into smaller constituent components (e.g. drinking containers were subsorted into deposit and non-deposit containers).
Upper Boundary	For a given material, the highest average percentage of that material expected in a population consistent with the sample, at the confidence level specified.
Waste	The combination of Refuse and Recycling
Waste Generation	The rate at which waste is set out for collection, typically reported in terms of amounts per generator per time period (e.g. pounds per capita per week).
WCS	The waste characterization study conducted over four seasons by the New York City Department of Sanitation in 2004 and 2005.

NYC Waste Characterization Study
Final Report, Volume 1

Section 1: Study Overview

[This page intentionally left blank.]

Section 1 Study Overview

1.1 Introduction

Volume 1 of the Final Report presents the results of the PWCS ${ }^{1}$, conducted in May and June 2004, and the WCS, conducted from October 2004 through August 2005. Both of these studies were conducted under a contract (PIN \#82702BR00015) between the DSNY and R. W. Beck, Inc. ("R. W. Beck").

The purpose of both the PWCS and WCS was to characterize the City's residential Waste. Both studies involved taking samples of Refuse and Recycling (MGP and Paper) and then sorting and weighing the materials in those Samples to arrive at an estimate of the composition of the Waste.

The PWCS took place in May and June 2004. The goal of the PWCS was to develop a snapshot of the City's curbside residential Waste. The PWCS was conducted in two phases. The PWCS Refuse Sort, designed to characterize curbside residential Refuse, took place from May 15 through May 28, 2004. The PWCS Recycling Sort, designed to characterize the Paper and MGP set out for Recycling collection, took place from June 7 through June 12, 2004.

The WCS took place from October 2004 through August 2005. It included the following components:

- A Residential Study, to characterize curbside-collected residential Waste by housing density and income strata over four seasons and estimate generation rates;
- A Street Basket Waste Study to characterize the Waste collected from the City's street baskets; and
- A Multi-Unit Apartment Study to identify correlations between Recycling success and the physical, operational, and demographic characteristics of the buildings.

The WCS included four seasonal Sorting Periods, the dates of which are shown in Table 1-1. Table 1-1 summarizes the structure of the PWCS and the WCS and some of the key differences such as the number and type of study components, the Sampling criteria, and the number of Sampling Units sorted. Volume 1 will report Residential results from the PWCS and the Residential/Street Basket results from the WCS. Volume 2 will cover methodology for the PWCS and Residential and Street Basket methodology for the WCS. Results and methodology for the MUS will be reported separately in Volume 3.

[^0]Table 1-1

		PWCS
Study Components	Residential Study	
		-Residential Study
Purpose	-Street Basket Waste Study	
		-Multi-Unit Apartment Study

(1) The standard used to determine how study samples were selected. The sampling criteria used for the PWCS were the borough in which the waste was collected and late-week/early week collection; the sampling criterion used for the WCS Residential Study was

Housing Density and Income Strata in which the waste was collected.

1.2 Basis for Sampling

1.2.1 PWCS

The number of Refuse and Recycling samples taken for analysis in the PWCS was distributed among the five Boroughs according to the amount of Refuse and Recycling, respectively, that each Borough contributes to the total Waste Stream, using tonnage data averaged over 2003 and 2004, accounting for the temporary suspension of glass and plastics recycling that concluded in April 2004.

Samples were also selected based on early in the week or late in the week collection days. This criteria was used to examine the hypothesis that the composition of Refuse set out for collection early in the week (i.e., Monday or Tuesday) would be significantly different from Refuse set out late in the week (i.e., Wednesday through Saturday). This issue is discussed in more detail in Volume 2, Section 2. All Samples were randomly selected after determining the number of Samples targeted based on these two criteria.

1.2.2 WCS Residential Study

Sampling for the WCS Residential Study was based on housing density and income strata. There are two reasons for using these criteria as a basis for Sampling. First, published data indicates that these demographic criteria affect Waste Generation, Recycling compliance, and/or Waste composition. The following documents, listed in Appendix P in Volume 4, are examples of studies that demonstrate this:

- Waste Composition Analysis for the State of Washington; Green Solutions, 2003;
- Waste Prevention, Recycling and Composting Options: Lessons from 30 U.S. "Communities" Demographic and Materials Generation and Recovery Levels"; U.S. EPA, 1994; and
- Katzev, Blake, Messer; "Determinants of Participation in Multi-Family Recycling Programs", Journal of Applied Social Psychology, 1993.

Second, the City's 1989/1990 WCS study used density and income as a basis for Sampling. In order to compare the results of that study with the results of the WCS, density and income were also used in the WCS.

The City's Census Tracts were originally divided into nine Density/Income Strata as defined in Table 1-2. Given the small number of Census Tracts in the low density/low income stratum, the dispersion of those Census Tracts, and the small number of residents in those Census Tracts (fewer than 3,000), it was decided to eliminate this stratum from the Study and focus resources on the remaining eight strata.

1.2.3 WCS Street Basket Study

Sampling for the WCS Street Basket Study was based on the DSNY's dedicated street basket routes. These are routes that collect only street basket Waste and do not collect residential or
institutional Waste on the same route. Samples of street basket Waste were selected at random from these routes.

The 1989/1990 Study did not include a study of street basket Waste.

1.3 New York City Demographics

Tables 1-2 through 1-5 present the definition of Density and Income Strata; the distribution of Census Tracts among Density/Income Strata; and the distribution of the Population of New York City among the Density/Income Strata, respectively.

Table 1-2
Definition of Density and Income Strata

	Housing Density Census Tracts	

Table 1-3
Distribution of Census Tracts Among Density and Income Strata

	Number of Tracts				Percentage of Tracts			
	High Income	Medium Income	$\begin{aligned} & \text { Low } \\ & \text { Income } \end{aligned}$	Total	High Income	Medium Income	$\begin{aligned} & \text { Low } \\ & \text { Income } \end{aligned}$	Total
High Density	167	127	342	636	7.53\%	5.73\%	15.43\%	28.69\%
Medium Density	162	435	392	989	7.31\%	19.62\%	17.68\%	44.61\%
Low Density	410	177	5	592	18.49\%	7.98\%	0.23\%	26.70\%
Total	739	739	739	2,217	33.33\%	33.33\%	33.33\%	100.00\%

Source: US Census Bureau, Census 2000

Table 1-4
Distribution of Population Among Density and Income Strata

	Number of Persons				Percentage of Persons			
	High Income	Medium Income	$\begin{aligned} & \text { Low } \\ & \text { Income } \end{aligned}$	Total	High Income	Medium Income	$\begin{aligned} & \text { Low } \\ & \text { Income } \end{aligned}$	Total
High Density	883,319	710,418	1,753,021	3,346,758	11.03\%	8.87\%	21.89\%	41.79\%
Medium Density	444,298	1,442,180	1,129,673	3,016,151	5.55\%	18.01\%	14.11\%	37.66\%
Low Density	1,171,081	471,531	2,757	1,645,369	14.62\%	5.89\%	0.03\%	20.55\%
Total	2,498,698	2,624,129	2,885,451	8,008,278	31.20\%	32.77\%	36.03\%	100.00\%

Source: US Census Bureau, Census 2000; Table P1 - Total Population

Table 1-5
Distribution of Housing Units Among Density and Income Strata

	Number of Housing Units Medium High Income				Income	Income	Total	Percentage of Income				Medium Income	Low Income	Total
High Density	538,713	304,316	643,449	$1,486,478$	16.83%	9.51%	20.10%	46.44%						
Medium Density	192,219	546,971	402,202	$1,141,392$	6.01%	17.09%	12.57%	35.66%						
Low Density	412,754	159,269	1,019	573,042	12.89%	4.98%	0.03%	17.90%						
Total	$1,143,686$	$1,010,556$	$1,046,670$	$3,200,912$	35.73%	31.57%	32.70%	100.00%						

Source: US Census Bureau, Census 2000; Table H1 - Housing Units

1.3.1 Maps of Study Area

Figures 1-1 through 1-4 present color and grayscale maps of the Census Tracts by Income; Housing Density; and then by the eight Density/Income Strata. As the maps in Figures 1-1A through 1-4E show, the Census Tracts for the eight strata are distributed throughout the city, intermingled with one another.

Figure 1-1A: Color Map of Census Tracts by Housing Density

Figure 1-1B: Color Map of Census Tracts by Income

Figure 1-1C: Color Map of Census Tracts by Density/Income Strata

Figure 1-2A: Grayscale Map of Census Tracts by Housing Density - Manhattan

Figure 1-2B: Grayscale Map of Census Tracts by Housing Density - Bronx

Figure 1-2C: Grayscale Map of Census Tracts by Housing Density - Brooklyn

Figure 1-2D: Grayscale Map of Census Tracts by Housing Density - Queens

Figure 1-2E: Grayscale Map of Census Tracts by Housing Density - Staten Island

Figure 1-3A: Grayscale Map of Census Tracts by Income - Manhattan

Figure 1-3B: Grayscale Map of Census Tracts by Income - Bronx

Figure 1-3C: Grayscale Map of Census Tracts by Income - Brooklyn

Figure 1-3D: Grayscale Map of Census Tracts by Income - Queens

Figure 1-3E: Grayscale Map of Census Tracts by Income - Staten Island

(Density/Income)
High/High
High/Medium
High/Low
Medium/High
Medium/Medium
Medium/Low
\square Low/High
Low/Medium
Low/Low
Larkland or Other Non-Residential

Figure 1-4A: Grayscale Map of Census Tracts by Density/Income Strata - Manhattan

Figure 1-4B: Grayscale Map of Census Tracts by Density/Income Strata - Bronx

Figure 1-4C: Grayscale Map of Census Tracts by Density/Income Strata - Brooklyn

Figure 1-4D: Grayscale Map of Census Tracts by Density/Income Strata - Queens

Figure 1-4E: Grayscale Map of Census Tracts by Density/Income Strata - Staten Island

1.4 Identifying "Pure" Collection Routes

Typically, each DSNY collection route serves an area larger than a single Census Tract. However, there are some areas where a group of Census Tracts from the same stratum are adjacent to one another. In some of these cases, it was possible to identify "pure" routes, (i.e., routes that collect from a single density/income stratum). A list of the weekly "pure" routes within each of the eight Density/Income Strata was provided by DSNY.

The list of Pure Routes was used to develop a universe of Pure Routes from which Sample routes would be randomly selected, taking into account a three-week Sampling period, a Refuse collection frequency of two or three times per week, and a Recycling collection frequency of once per week. The universe of collection routes for the PWCS was larger than the universe of collection routes for the WCS because the PWCS did not seek to develop results based on Density/Income Strata. Table 1-6 presents the universe of pure collection routes.

The universe of collection routes for the Street Basket Study included only those routes that were dedicated to street basket collection. Some DSNY routes collect from street baskets, as well as residences. These mixed routes were excluded from the Street Basket Study.

Table 1-6
Universe of Pure Collection Routes ${ }^{(1)}$ From Which Random Selection Was Made

(in numbers of routes)													
PWCS ${ }^{(2)}$	Refuse	Paper	MGP	Dual ${ }^{(3)(4)}$	Total		Total WCS	Refuse	Paper	MGP	Dual ${ }^{(3)(4)}$	Basket ${ }^{(5)}$	Total
Manhattan	711	180	106	0	997		High Density/High Income	768	282	133	0		1,183
Bronx	682	87	107	60	936		High Density/Medium Income	409	29	29	96		563
Brooklyn North	539	71	64	32	706		High Density/Low Income	376	28	41	0		445
Brooklyn South	1,120	80	77	586	1,863		Medium Density/High Income	52	22	15	0		89
Queens West	633	50	49	344	1,076		Medium Density/Medium Income	256	15	22	136		429
Queens East	992	0	0	738	1,730		Medium Density/Low Income	464	8	14	166		652
Staten Island	456	0	0	406	862		Low Density/High Income Low Density/Medium Income	323	0	0	1,126	2,493	
									0	0	300	623	
Total	5,133	468	403	2,166	8,170		Total	4,015	384	254	1,824	2,713	9,190
Fall 2004	Refuse	Paper	MGP	Dual ${ }^{(3)(4)}$	Basket ${ }^{(5)}$	Total ${ }^{(6)}$	Winter 2005	Refuse	Paper	MGP	Dual ${ }^{(3)(4)}$	Basket ${ }^{(5)}$	Total ${ }^{(6)}$
High Density/High Income	194	66	31	0		291	High Density/High Income	191	72	34	0		297
High Density/Medium Income	28	5	5	6		44	High Density/Medium Income	125	8	8	30		171
High Density/Low Income	73	4	8	0		85	High Density/Low Income	101	8	11	0		120
Medium Density/High Income	12	4	3	0		19	Medium Density/High Income	13	6	4	0		23
Medium Density/Medium Income	51	3	4	34		92	Medium Density/Medium Income	66	4	6	34		110
Medium Density/Low Income	106	2	2	40		150	Medium Density/Low Income	115	2	4	42		163
Low Density/High Income	269	0	0	232		501	Low Density/High Income	330	0	0	298		628
Low Density/Medium Income	14	0	0	18		32	Low Density/Medium Income	94	0	0	94		188
Total	747	84	53	330	644	1,858	Total	1,035	100	67	498	680	2,380
Spring 2005	Refuse	Paper	MGP	Dual ${ }^{(3)(4)}$	Basket ${ }^{(5)}$	Total ${ }^{(6)}$	Summer 2005	Refuse	Paper	MGP	Dual ${ }^{(3)(4)}$	Basket ${ }^{(5)}$	Total ${ }^{(6)}$
High Density/High Income	197	72	34	0		303	High Density/High Income	186	72	34	0		292
High Density/Medium Income	129	8	8	30		175	High Density/Medium Income	127	8	8	30		173
High Density/Low Income	101	8	11	0		120	High Density/Low Income	101	8	11	0		120
Medium Density/High Income	13	6	4	0		23	Medium Density/High Income	14	6	4	0		24
Medium Density/Medium Income	70	4	6	34		114	Medium Density/Medium Income	69	4	6	34		113
Medium Density/Low Income	121	2	4	42		169	Medium Density/Low Income	122	2	4	42		170
Low Density/High Income	398	0	0	298		696	Low Density/High Income	370	0	0	298		668
Low Density/Medium Income	113	0	0	94		207	Low Density/Medium Income	102	0	0	94		196
Total	1,142	100	67	498	688	2,495	Total	1,091	100	67	498	701	2,457

(1) Pure collection routes are those where all waste is generated by a single housing densitylincome stratum. Routes where waste is collected from multiple strata are considered "impure".
(2) Housing density/income strata are not used in the PWCS.
(3) Dual routes are those on which both paper and MGP are collected simultaneously but kept separate in trucks with two different compartments.
(4) For each dual route, two routes are counted -- one route for paper plus one route for MGP.
(5) This study uses socioeconomic factors of housing density and income for the residential component only. The street basket analysis was designed to look strictly at the overall composition.
(6) Total number of routes vary by season due to fluctuations in waste generation. Total number of routes vary by stratum due to relative availability of routes in each stratum.

1.5 Determining the Number of Samples

For each stratum, the routes from which Samples were taken were randomly selected, using a random-number generator, from the universe of pure collection routes shown in Table 1-6.

An equal number of Samples were collected from each of the eight strata. Based on the results of the PWCS and other Waste characterization studies, it was decided that 50 Samples of Refuse would be targeted for Sorting in each of the four seasons for each of the eight strata.

Because materials in the Recycling stream show less variability and more consistency than materials in the Refuse stream, it was decided that 40 Samples of MGP and 10 Samples of Paper would be targeted for Sorting in each of the four seasons for each of the eight strata.

Based on academic research and industry practice, it was determined that a representative Sampling Unit of Refuse weighs between 200 pounds and 250 pounds and a representative Sampling Unit of Recycling weighs between 100 pounds and 150 pounds. Table 1-7 shows the average targeted weights and average acquired weights during the PWCS and WCS. Table 1-8 shows the mass of Samples sorted during the PWCS and the WCS. A full discussion of the rationale behind the Sample Weights is presented in Volume 2 of the Final Report.

Table 1-9 summarizes the number of Samples acquired during the PWCS and WCS. A full discussion of the Sampling methodology is included in Volume 2 of the Final Report.

Table 1-7
Summary of Sample Weights

	Targeted Sample Weight			Average Weight of Samples Sorted					
(in pounds)	PWCS	WCS	PWCS	Fall 04	Winter 05	Spring 05	Summer 05	Annual	
Refuse	200	200	234	216	225	228	229	224	
Paper	100	100	117	113	124	136	134	127	
MGP	100	100	119	124	131	153	165	143	
Street Basket	NA	200	NA	209	221	233	223	221	

Table 1-8
Summary of Mass of Samples Sorted, PWCS and WCS

(in tons)	PWCS	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Total WCS
Refuse	23	43	46	46	46	181
Paper	6	5	5	5	5	21
MGP	7	20	22	24	26	93
Basket	NA	5	6	6	6	22
Total	36	73	79	81	83	316
(in pounds)	PWCS	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Total WCS
Refuse	46,860	86,056	92,083	91,430	91,476	361,045
Paper	11,535	9,040	10,506	10,856	10,759	41,160
MGP	13,416	39,593	44,641	48,915	52,801	185,950
Basket	NA	10,461	11,029	11,649	11,144	44,283
Total	71,811	145,149	158,260	162,849	166,180	632,439

Table 1-9

PWCS	Refuse	Paper	MGP	Dual ${ }^{(3)}$	Total		Total WCS	Refuse	Paper	MGP	Dual ${ }^{(3)}$	Basket	Total
Manhattan	36	22	18	0	76		High Density/High Income	203	41	162	0		406
Bronx	31	8	14	2	55		High Density/Medium Income	200	28	113	60		401
Brooklyn North	25	7	7	0	39		High Density/Low Income	201	41	164	0		406
Brooklyn South	39	9	12	20	80		Medium Density/High Income	201	39	161	1		402
Queens West	14	5	8	18	45		Medium Density/Medium Income	202	11	53	139		405
Queens East	39	0	0	34	73		Medium Density/Low Income	201	7	31	165		404
Staten Island	16	0	0	18	34		Low Density/High Income	202	0	0	205		407
							Low Density/Medium Income	199	0	0	204		403
Total	200	51	59	92	402		Total	1,609	167	684	774	200	3,434
Fall 2004	Refuse	Paper	MGP	Dual ${ }^{(3)}$	Basket	Total	Winter 2005	Refuse	Paper	MGP	Dual ${ }^{(3)}$	Basket	Total
High Density/High Income	50	10	40	0		100	High Density/High Income	53	11	42	0		106
High Density/Medium Income	50	10	38	2		100	High Density/Medium Income	50	10	32	9		101
High Density/Low Income	50	10	40	0		100	High Density/Low Income	51	11	44	0		106
Medium Density/High Income	50	10	40	0		100	Medium Density/High Income	51	10	41	0		102
Medium Density/Medium Income	50	3	12	35		100	Medium Density/Medium Income	51	1	13	39		104
Medium Density/Low Income	50	1	3	46		100	Medium Density/Low Income	51	2	3	48		104
Low Density/High Income	50	0	0	50		100	Low Density/High Income	52	0	0	55		107
Low Density/Medium Income	49	0	0	50		99	Low Density/Medium Income	50	0	0	54		104
Total	399	44	173	183	50	849	Total	409	45	175	205	50	884
Spring 2005	Refuse	Paper	MGP	Dual ${ }^{(3)}$	Basket	Total	Summer 2005	Refuse	Paper	MGP	Dual ${ }^{(3)}$	Basket	Total
High Density/High Income	50	10	40	0		100	High Density/High Income	50	10	40	0		100
High Density/Medium Income	50	3	24	23		100	High Density/Medium Income	50	5	19	26		100
High Density/Low Income	50	10	40	0		100	High Density/Low Income	50	10	40	0		100
Medium Density/High Income	50	9	40	1		100	Medium Density/High Income	50	10	40	0		100
Medium Density/Medium Income	51	6	15	29		101	Medium Density/Medium Income	50	1	13	36		100
Medium Density/Low Income	50	3	14	33		100	Medium Density/Low Income	50	1	11	38		100
Low Density/High Income	50	0	0	50		100	Low Density/High Income	50	0	0	50		100
Low Density/Medium Income	50	0	0	50		100	Low Density/Medium Income	50	0	0	50		100
Total	401	41	173	186	50	851	Total	400	37	163	200	50	850

(1) This table does not include samples acquired for use in the study of multi unit apartments.
(2) The number of samples acquired may differ from the number of samples targeted. These differences are due to logistical or operational difficulties, and sample availability
(3) Samples listed under "Dual" may be paper or MGP, thus, the number of paper and MGP samples may be higher than those shown in the paper and MGP columns.

1.6 Residential Waste Sorting

Determining the number of Material Categories to be used in Sorting residential Sampling Units was challenging because it involved striking a balance between precision and efficiency. On one hand, a large number of Material Categories provides a more accurate description of the Waste. On the other hand, a large number of Material Categories introduces more instances of potential uncertainty and requires more time to sort accurately. Typically, Waste composition studies use 40 to 60 Material Categories. The WCS used more than 90 categories with additional Subsorts and counts. Both product types and materials were used in developing the categories.

1.6.1 Overview of Material Sort Categories

Table 1-10 shows the core 91 Material Categories used in the WCS, organized by the nine Material Groups.

Table 1-10

Overview of Material Sort Categories for New York City Waste Characterization Study ${ }^{(1)}$

Paper	Organics
Newspaper	Leaves And Grass
Plain OCC/Kraft Paper	Prunings
High Grade Paper	Stumps/Limbs
Mixed Low Grade Paper	Food
Phone Books/Paperbacks	Wood Furniture/Furniture Pieces
Paper Bags	Non-C\&D Untreated Wood
Polycoated Paper Containers	Non-Clothing Textiles
Compostable/Soiled Paper/Waxed OCC/Kraft	Clothing Textiles
Single Use Paper Plates, Cups	Carpet/Upholstery
Other Non-recyclable Paper	Disposable Diapers and Sanitary Products
Plastics	Animal By-Products
PET Bottles	Rubber Products
HDPE Bottles: Natural	Shoes
HDPE Bottles: Colored	Other Leather Products
\#1 PET Tubs/Trays/Other Containers	Fines
\#2 HDPE Tubs/Trays/Other Containers	Upholstered or Other Organic-Type Furniture
\#3 PVC Bottles	Miscellaneous Organics
\#4 LDPE Bottles	Appliances and Electronics
\#5 PP Bottles	Appliances: Ferrous
\#7 Other Bottles	Appliances: Non-Ferrous
\#3 PVC Tubs	Appliances: Plastic
\#4 LDPE Tubs	Audio/Visual Equipment: Cell Phones
\#5 PP Tubs	Audio/Visual Equipment: Other
\#7 Other Tubs	Computer Monitors
Soda Crates and Bottle Carriers	Televisions
Other PVC	Other Computer Equipment
Rigid Polystyrene Containers and Packaging	Construction and Demolition Debris
Expanded Polystyrene Containers and Packaging	Untreated Dimension Lumber, Pallets, Crates
Other Rigid Containers/Packaging	Treated/Contaminated Wood
Plastic Bags	Gypsum Scrap
Other Film	Rock/Concrete/Bricks
Single Use Plastic Plates, Cups, Cutlery, Etc.	Other Construction Debris
Other Plastics Materials	Miscellaneous Inorganics
Glass	Miscellaneous Inorganics
Clear Container Glass	Ceramics
Green Container Glass	Oil Filters
Brown Container Glass	Household Hazardous Wastes
Mixed Cullet	Antifreeze
Other Container Glass	Wet-Cell Batteries
Other Glass	Gasoline/Kerosene/Motor Oil/Diesel Fuel
Metals	Latex Paints/Water-Based Adhesives/Glues
Aluminum Cans	Oil-Based Paints/Solvent-Based Adhesives/Glues
Aluminum Foil/Containers	Pesticides/Herbicides/Rodenticides
Other Aluminum	Dry-Cell Batteries
Other Non-Ferrous	Fluorescent Tubes
Tin Food Cans	Mercury-Laden Wastes
Empty Aerosol Cans	Compressed Gas Cylinders, Fire Extinguishers
Other Ferrous	Home Medical Products
Mixed Metals	Other Potentially Harmful Wastes

Total Categories: 91
(1) More detail on sort categories can be found in Volume 2 , Section 4.2 .1 of this report.

1.7 Waste Generation

In addition to determining the composition of the Waste, the WCS Residential Study was designed to estimate the generation of Waste in each of the eight strata. These estimates would suggest how Waste behavior varies by stratum. That is, these estimates would indicate how much Refuse and Recycling is set out for collection weekly by all residents in each stratum, and how these amounts vary by stratum.

Generation estimates can be formulated based on household and on individual (per capita) behavior. Per capita generation rates would provide a widely-accepted metric for purposes of comparison. However, per capita generation rates would also ignore the effect of household size among the strata and the effect that has on estimating generation and Diversion Rates. Therefore, both per capita and per household generation rates were developed. Generation amounts by stratum are expressed in tons per week. Per capita and per household generation rates are expressed in tons per year. Per household generation rates are also expressed as pounds per week.

The development of generation rates is explained in some detail in Volume 2, Section 2.2 of the Final Report. The starting point, however, was the weekly curbside tonnages collected during the PWCS and the WCS, as presented in Table 1-11. These tonnages were recorded by DSNY by Sanitation District Section during the three weeks that the Study took place each season and are supplied for reference. The WCS generation estimates were based on averages of actual tonnages generated over longer periods and were attributed to housing density and income strata using a combination of geographic and statistical analytical techniques, which are described in Volume 2. The end product was an estimate of the tonnage of Refuse and Recycling generated by all residents of each housing density and income strata citywide.

The generation rates for the PWCS and the WCS on a per capita basis are shown in Table 1-12 and the generation rates on a per household basis are shown in Table 1-13. Table 1-14 shows estimated average weekly generation. These tables present generation rates for Refuse, Paper, MGP, and Waste.

Table 1-11
Weekly Curbside Tonnages Collected during the PWCS and WCS

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
PWCS	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
Manhattan	10,109	1,759	844	12,712	10,068	1,760	876	12,704	10,329	1,878	886	13,094
Bronx	9,117	667	686	10,471	9,347	676	726	10,749	9,309	674	708	10,691
Brooklyn North	5,803	452	382	6,636	5,844	455	397	6,696	5,815	441	413	6,669
Brooklyn South	12,532	1,618	1,014	15,164	13,013	1,600	1,067	15,680	12,888	1,579	1,068	15,535
Queens West	7,520	985	682	9,187	7,755	985	698	9,437	7,703	994	708	9,405
Queens East	9,738	1,184	778	11,700	10,259	1,185	819	12,263	10,222	1,195	850	12,267
Staten Island	5,199	686	379	6,264	5,549	721	410	6,680	5,479	734	406	6,620
Total	60,019	7,350	4,764	72,133	61,836	7,382	4,993	74,211	61,746	7,495	5,039	74,280
Week Covering:		0/2004 thr	05/16/20			7/2004 thro	05/23/20			24/2004 th	05/30/2	

$\left(\right.$ in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
Fall 2004	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
Manhattan	9,743	2,077	896	12,715	9,586	1,933	864	12,383	10,254	1,914	844	13,012
Bronx	8,332	746	719	9,798	8,237	636	636	9,510	8,560	562	530	9,652
Brooklyn North	5,336	528	420	6,283	5,222	459	376	6,057	5,375	381	313	6,069
Brooklyn South	11,394	1,801	1,094	14,290	11,198	1,650	985	13,833	11,873	1,342	823	14,039
Queens West	6,954	1,136	710	8,799	6,840	982	633	8,455	7,061	840	557	8,458
Queens East	7,971	1,351	782	10,104	8,005	1,153	711	9,869	7,513	937	570	9,020
Staten Island	3,954	846	418	5,218	4,026	748	369	5,143	3,820	617	304	4,741
Total	53,683	8,484	5,040	67,208	53,114	7,562	4,573	65,250	54,456	6,593	3,941	64,990
Week Covering:		18/2004 th	10/24/2			5/2004 th	10/31/2			01/2004 th	11/07/2	

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
Spring 2005	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
Manhattan	9,647	1,676	856	12,179	9,777	1,683	870	12,330	9,863	1,759	876	12,498
Bronx	8,482	619	631	9,732	8,720	622	656	9,998	8,585	637	635	9,857
Brooklyn North	5,279	429	401	6,109	5,347	432	386	6,165	5,396	443	373	6,212
Brooklyn South	11,543	1,491	1,017	14,051	11,757	1,475	1,012	14,245	11,717	1,501	974	14,191
Queens West	6,987	920	673	8,580	7,144	917	652	8,713	6,989	927	630	8,545
Queens East	8,706	1,085	813	10,604	9,216	1,097	770	11,083	8,830	1,101	724	10,656
Staten Island	4,638	677	401	5,717	4,794	679	408	5,881	4,573	701	395	5,669
Total	55,282	6,897	4,793	66,971	56,756	6,905	4,755	68,415	55,953	7,069	4,607	67,629
		9/2005 thr	05/15/2			6/2005 th	05/22/2			23/2005 th	05/29/2	

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
Summer 2005	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
Manhattan	9,151	1,444	833	11,428	9,437	1,488	831	11,757	9,179	1,462	835	11,476
Bronx	8,572	604	682	9,858	8,913	639	687	10,238	8,595	590	679	9,864
Brooklyn North	5,113	382	413	5,909	5,335	406	424	6,165	5,124	391	406	5,920
Brooklyn South	11,256	1,314	1,052	13,622	11,301	1,308	1,023	13,631	11,060	1,311	1,011	13,382
Queens West	6,974	930	671	8,575	7,386	1,106	681	9,172	7,055	1,005	667	8,727
Queens East	8,411	1,040	780	10,231	8,710	1,137	773	10,619	8,567	1,099	772	10,437
Staten Island	4,029	624	420	5,072	4,004	611	398	5,013	4,037	617	400	5,054
Total	53,505	6,339	4,851	64,695	55,086	6,693	4,817	66,596	53,616	6,475	4,769	64,860
Week Covering:	08/08/2005 through 08/14/2005				08/15/2005 through 08/21/2005				08/22/2005 through 08/28/2005			

(1) Refuse, paper, and MGP tonnage values obtained from DSNY curbside refuse, MGP, and paper collection (without school collection) by week for FY 2004 (May 2004 through September 2005).

Table 1-12

Annual Generation Rates Per Capita, PWCS and WCS

Borough	PWCS					WCS Annual		
(in tons/year)	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste
Manhattan	0.35	0.06	0.03	0.45	0.32	0.05	0.03	0.41
Bronx	0.39	0.03	0.03	0.45	0.32	0.03	0.02	0.37
Brooklyn	0.19	0.02	0.02	0.23	0.34	0.04	0.03	0.40
Queens	0.20	0.03	0.02	0.24	0.35	0.05	0.03	0.43
Staten Island	0.60	0.08	0.05	0.73	0.41	0.06	0.04	0.51
Total	0.28	0.03	0.02	0.34	0.34	0.04	0.03	0.41

Density/Income Strata	WCS Annual			
(in tons/year)	Refuse	Paper	MGP	Waste
High Density/High Income	0.34	0.09	0.04	0.47
High Density/Medium Income	0.27	0.03	0.02	0.31
High Density/Low Income	0.31	0.01	0.02	0.34
Medium Density/High Income	0.28	0.08	0.03	0.39
Medium Density/Medium Income	0.33	0.05	0.03	0.41
Medium Density/Low Income	0.35	0.02	0.02	0.40
Low Density/High Income	0.44	0.07	0.04	0.56
Low Density/Medium Income	0.36	0.02	0.03	0.42
Total	0.34	0.04	0.03	0.41

Density/Income Strata	Fall 2004				Winter 2005				Spring 2005				Summer 2005			
(in tons/year)	Refuse	Paper	MGP	Waste												
High Density/High Income	0.35	0.10	0.04	0.49	0.34	0.09	0.04	0.47	0.35	0.09	0.04	0.48	0.33	0.08	0.04	0.45
High Density/Medium Income	0.27	0.03	0.02	0.32	0.24	0.03	0.02	0.29	0.27	0.03	0.02	0.32	0.28	0.03	0.02	0.32
High Density/Low Income	0.31	0.01	0.02	0.34	0.31	0.01	0.02	0.34	0.32	0.01	0.02	0.35	0.32	0.01	0.02	0.35
Medium Density/High Income	0.29	0.08	0.03	0.40	0.25	0.08	0.03	0.36	0.29	0.08	0.03	0.41	0.28	0.07	0.03	0.39
Medium Density/Medium Income	0.34	0.05	0.03	0.42	0.30	0.05	0.03	0.38	0.34	0.05	0.03	0.42	0.33	0.05	0.03	0.41
Medium Density/Low Income	0.37	0.03	0.02	0.42	0.33	0.02	0.02	0.37	0.37	0.02	0.02	0.41	0.34	0.02	0.02	0.39
Low Density/High Income	0.44	0.08	0.04	0.56	0.36	0.07	0.04	0.47	0.51	0.07	0.05	0.63	0.47	0.07	0.05	0.59
Low Density/Medium Income	0.36	0.02	0.03	0.41	0.30	0.02	0.03	0.35	0.38	0.02	0.04	0.44	0.40	0.02	0.04	0.46
Total	0.35	0.05	0.03	0.42	0.31	0.04	0.03	0.38	0.36	0.04	0.03	0.43	0.35	0.04	0.03	0.42

Note: Tonnage values based on DSNY average weekly curbside tonnages for the months of September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

Table 1-13

Annual Generation Rates Per Housing Unit, PWCS and WCS

Borough	PWCS						WCS Annual		
(in tons/year)	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste	
Manhattan	0.68	0.12	0.06	0.86	0.64	0.11	0.06	0.80	
Bronx	1.06	0.08	0.08	1.21	0.85	0.08	0.06	0.99	
Brooklyn	0.51	0.06	0.04	0.61	0.90	0.10	0.07	1.07	
Queens	0.55	0.07	0.05	0.66	0.92	0.14	0.09	1.15	
Staten Island	1.62	0.23	0.13	1.97	1.16	0.18	0.11	1.45	
Total	0.70	0.09	0.06	0.84	0.85	0.11	0.07	1.03	

Density/Income Strata	WCS Annual			
(in tons/year)	Refuse	Paper	MGP	Waste
High Density/High Income	0.53	0.14	0.06	0.74
High Density/Medium Income	0.65	0.08	0.05	0.78
High Density/Low Income	0.84	0.04	0.05	0.92
Medium Density/High Income	0.54	0.17	0.07	0.78
Medium Density/Medium Income	0.85	0.13	0.09	1.06
Medium Density/Low Income	1.02	0.06	0.07	1.15
Low Density/High Income	1.25	0.21	0.12	1.58
Low Density/Medium Income	1.20	0.09	0.11	1.40
Total	0.85	0.11	0.07	1.03

Density/Income Strata	Fall 2004				Winter 2005				Spring 2005				Summer 2005			
(in tons/year)	Refuse	Paper	MGP	Waste												
High Density/High Income	0.55	0.16	0.06	0.77	0.54	0.14	0.06	0.74	0.54	0.14	0.06	0.75	0.51	0.13	0.06	0.69
High Density/Medium Income	0.65	0.08	0.05	0.78	0.60	0.08	0.05	0.72	0.67	0.08	0.05	0.80	0.68	0.08	0.05	0.80
High Density/Low Income	0.83	0.04	0.05	0.92	0.82	0.04	0.05	0.90	0.85	0.04	0.05	0.93	0.85	0.03	0.05	0.93
Medium Density/High Income	0.56	0.18	0.07	0.81	0.50	0.16	0.06	0.72	0.57	0.17	0.07	0.81	0.54	0.16	0.07	0.76
Medium Density/Medium Income	0.88	0.14	0.09	1.11	0.79	0.13	0.08	1.00	0.87	0.13	0.09	1.09	0.85	0.12	0.09	1.06
Medium Density/Low Income	1.07	0.07	0.07	1.21	0.95	0.06	0.06	1.07	1.06	0.07	0.07	1.19	1.00	0.06	0.07	1.13
Low Density/High Income	1.25	0.22	0.12	1.59	1.00	0.21	0.11	1.31	1.43	0.21	0.14	1.78	1.32	0.20	0.13	1.65
Low Density/Medium Income	1.21	0.09	0.11	1.41	1.00	0.08	0.10	1.18	1.28	0.09	0.12	1.49	1.32	0.09	0.12	1.53
Total	0.86	0.12	0.07	1.06	0.77	0.11	0.07	0.95	0.89	0.11	0.08	1.08	0.86	0.11	0.08	1.04

Note: Tonnage values based on DSNY average weekly curbside tonnages for the months of September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

Table 1-14
Weekly Generation Rates Per Housing Unit, PWCS and WCS

Borough	PWCS						WCS Annual		
(in pounds/week/housing unit)	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste	
Manhattan	26.11	4.60	2.23	32.94	24.50	4.08	2.14	30.73	
Bronx	40.60	2.97	3.10	46.66	32.57	2.94	2.40	37.92	
Brooklyn	19.72	2.15	1.55	23.42	34.58	3.87	2.86	41.31	
Queens	21.08	2.64	1.83	25.56	35.56	5.22	3.42	44.20	
Staten Island	62.20	8.70	4.97	75.87	44.48	6.98	4.35	55.81	
Total	26.86	3.34	2.19	32.39	32.59	4.30	2.84	39.74	

Density/Income Strata	WCS Annual			
(in pounds/week/housing unit)	Refuse	Paper	MGP	Waste
High Density/High Income	20.56	5.51	2.31	28.37
High Density/Medium Income	24.98	2.97	1.89	29.84
High Density/Low Income	32.18	1.42	1.84	35.44
Medium Density/High Income	20.84	6.41	2.62	29.87
Medium Density/Medium Income	32.50	5.04	3.40	40.94
Medium Density/Low Income	39.25	2.47	2.52	44.24
Low Density/High Income	48.07	8.11	4.78	60.96
Low Density/Medium Income	46.30	3.37	4.35	54.03
Total	32.59	4.30	2.84	39.74

Density/Income Strata	Fall 2004				Winter 2005				Spring 2005				Summer 2005			
(in pounds/week/housing unit)	Refuse	Paper	MGP	Waste												
High Density/High Income	21.15	6.15	2.31	29.62	20.61	5.45	2.36	28.42	20.91	5.51	2.34	28.76	19.56	4.92	2.22	26.71
High Density/Medium Income	25.00	3.08	1.92	30.00	23.03	2.93	1.80	27.76	25.83	2.95	1.93	30.72	26.05	2.91	1.91	30.87
High Density/Low Income	31.92	1.54	1.92	35.38	31.65	1.38	1.74	34.77	32.56	1.45	1.82	35.83	32.59	1.33	1.88	35.80
Medium Density/High Income	21.54	6.92	2.69	31.15	19.11	6.28	2.48	27.88	21.94	6.36	2.75	31.04	20.77	6.09	2.56	29.42
Medium Density/Medium Income	33.85	5.38	3.46	42.69	30.20	5.00	3.13	38.32	33.33	5.00	3.50	41.83	32.63	4.76	3.51	40.90
Medium Density/Low Income	41.15	2.69	2.69	46.54	36.55	2.44	2.21	41.20	40.79	2.50	2.58	45.88	38.51	2.23	2.59	43.34
Low Density/High Income	48.08	8.46	4.62	61.15	38.40	7.93	4.19	50.52	55.07	8.25	5.24	68.57	50.74	7.78	5.07	63.59
Low Density/Medium Income	46.54	3.46	4.23	54.23	38.47	3.16	3.91	45.54	49.30	3.46	4.68	57.44	50.91	3.41	4.58	58.90
Total	33.17	4.62	2.87	40.66	29.80	4.23	2.63	36.65	34.28	4.33	2.96	41.57	33.12	4.04	2.91	40.07

Note: Tonnage values based on DSNY average weekly curbside tonnages for the months of September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

1.8 Summary Results

Although the PWCS used Borough-based Sampling and the WCS used strata-based Sampling, both results of the two studies were aggregated to provide PWCS and Annual WCS citywide results for Refuse, Recycling and Waste.

1.8.1 Citywide Results at a Glance, PWCS and Annual WCS Results

A summary of the PWCS and Annual WCS citywide results is presented in Tables 1-15 and 1-16. These tables compare Refuse, Paper, MGP, and Waste composition results for each material category. The tables also provide weekly tonnage generation for each stream. These tables are useful for comparing the material composition of different streams at the citywide level. Citywide Results at a Glance for each season (fall, winter, spring, and summer) can be found in Volume 1, Section 3.

Table 1-15
Citywide Results at a Glance, Preliminary Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper		3.71\%	39.84\%	0.65\%	24.14\%	7.17\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		1.35\%	20.64\%	0.25\%	12.47\%	3.24\%	R Paper
Paper	Mixed Paper	High Grade Paper		0.67\%	4.22\%	0.08\%	2.56\%	0.99\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		7.34\%	25.04\%	1.07\%	15.43\%	8.71\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.41\%	4.52\%	0.05\%	2.73\%	0.80\%	R Paper
Paper	Mixed Paper	Paper Bags		0.60\%	0.53\%	0.06\%	0.34\%	0.56\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.47\%	0.27\%	1.67\%	0.83\%	0.53\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		7.49\%	0.13\%	0.33\%	0.21\%	6.25\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.51\%	0.01\%	0.02\%	0.01\%	0.43\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.65\%	1.36\%	0.63\%	1.07\%	0.72\%	NR_Paper
Paper Total				23.19\%	96.55\%	4.80\%	59.79\%	29.40\%	
Plastic	PET Bottles	PET Bottles		0.98\%	0.06\%	5.94\%	2.42\%	1.22\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.31\%	0.02\%	2.69\%	1.09\%	0.44\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.45\%	0.03\%	2.68\%	1.09\%	0.56\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.03\%	0.00\%	0.00\%	0.00\%	0.02\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.08\%	0.00\%	0.11\%	0.05\%	0.07\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.01\%	0.00\%	0.06\%	0.02\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.22\%	0.00\%	0.66\%	0.27\%	0.23\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.07\%	0.01\%	0.17\%	0.07\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.06\%	0.00\%	0.13\%	0.05\%	0.06\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.07\%	0.00\%	0.08\%	0.03\%	0.06\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.16\%	0.00\%	0.40\%	0.16\%	0.16\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.69\%	0.05\%	0.11\%	0.07\%	0.59\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.61\%	0.01\%	1.53\%	0.62\%	0.61\%	PR_Plastics
Plastic	Film	Plastic Bags		2.79\%	0.22\%	0.76\%	0.44\%	2.39\%	PR_Plastics
Plastic	Film	Other Film		5.21\%	0.86\%	2.46\%	1.50\%	4.58\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		0.78\%	0.01\%	0.16\%	0.07\%	0.66\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		1.67\%	0.31\%	3.56\%	1.61\%	1.66\%	NR_Plastics
Plastic Total				14.19\%	1.58\%	21.53\%	9.57\%	13.41\%	
Glass	Container Glass	Clear Container Glass		1.28\%	0.08\%	7.13\%	2.91\%	1.55\%	R Glass
Glass	Container Glass	Green Container Glass		0.31\%	0.00\%	3.71\%	1.49\%	0.51\%	R Glass
Glass	Container Glass	Brown Container Glass		0.31\%	0.00\%	1.40\%	0.56\%	0.35\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		0.50\%	0.04\%	22.24\%	8.94\%	1.94\%	R Glass
Glass	Container Glass	Other Container Glass		0.20\%	0.00\%	0.62\%	0.25\%	0.21\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Glass
Glass Total				2.60\%	0.13\%	35.11\%	14.15\%	4.56\%	

Table 1-15
Citywide Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans		0.20\%	0.01\%	0.79\%	0.32\%	0.22\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.60\%	0.02\%	0.97\%	0.40\%	0.57\%	R Metal
Metal	Aluminum	Other Aluminum		0.05\%	0.01\%	0.20\%	0.09\%	0.05\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.06\%	0.00\%	0.27\%	0.11\%	0.07\%	R Metal
Metal	Ferrous	Tin Food Cans		0.91\%	0.04\%	7.12\%	2.88\%	1.25\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.12\%	0.00\%	0.64\%	0.26\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous		1.03\%	0.04\%	20.20\%	8.12\%	2.23\%	R Metal
Metal	Other Metal	Mixed Metals		0.56\%	0.09\%	0.90\%	0.42\%	0.54\%	R Metal
Metal Total				3.54\%	0.22\%	31.08\%	12.59\%	5.07\%	
Organics	Yard	Leaves and Grass		6.23\%	0.00\%	0.03\%	0.01\%	5.17\%	NR_Other
Organics	Yard	Prunings		3.04\%	0.00\%	0.03\%	0.01\%	2.53\%	NR_Other
Organics	Wood	Stumps/Limbs		0.67\%	0.00\%	0.00\%	0.00\%	0.56\%	NR_Other
Organics	Food	Food		15.93\%	0.40\%	1.20\%	0.72\%	13.35\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.38\%	0.00\%	0.07\%	0.03\%	0.32\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		2.07\%	0.18\%	0.16\%	0.17\%	1.75\%	NR_Other
Organics	Textiles	Clothing Textiles		3.70\%	0.12\%	0.05\%	0.09\%	3.09\%	NR_Other
Organics	Textiles	Carpet/Upholstery		1.27\%	0.01\%	0.00\%	0.01\%	1.05\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		3.81\%	0.07\%	0.08\%	0.08\%	3.17\%	NR_Other
Organics	Misc. Organic	Animal By-Products		1.25\%	0.02\%	0.01\%	0.02\%	1.04\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.32\%	0.01\%	0.17\%	0.08\%	0.28\%	NR_Other
Organics	Textiles	Shoes		0.67\%	0.02\%	0.07\%	0.04\%	0.56\%	NR_Other
Organics	Textiles	Other Leather Products		0.05\%	0.00\%	0.02\%	0.01\%	0.05\%	NR_Other
Organics	Misc. Organic	Fines		4.20\%	0.38\%	1.24\%	0.72\%	3.61\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		3.98\%	0.01\%	0.19\%	0.08\%	3.31\%	NR_Other
Organics Total				47.56\%	1.23\%	3.31\%	2.07\%	39.84\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.27\%	0.06\%	2.09\%	0.87\%	0.37\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.24\%	0.00\%	0.00\%	0.00\%	0.20\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.05\%	0.00\%	0.00\%	0.00\%	0.04\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.10\%	0.00\%	0.00\%	0.00\%	0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.19\%	0.00\%	0.81\%	0.33\%	0.22\%	NR_Other
Appliance/Electronic Total				0.86\%	0.06\%	2.91\%	1.20\%	0.92\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.45\%	0.06\%	0.13\%	0.09\%	0.39\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		2.99\%	0.02\%	0.08\%	0.04\%	2.49\%	NR_Other
C\&D Debris	Inorganic C\&D	Gypsum Scrap		1.16\%	0.01\%	0.00\%	0.01\%	0.97\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		0.58\%	0.00\%	0.06\%	0.02\%	0.49\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		1.82\%	0.11\%	0.01\%	0.07\%	1.52\%	NR_Other
C \& D Debris Total				7.01\%	0.20\%	0.28\%	0.23\%	5.86\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.23\%	0.01\%	0.41\%	0.17\%	0.22\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.36\%	0.01\%	0.45\%	0.19\%	0.33\%	NR_Other
Miscellaneous Inorganics Total				0.59\%	0.02\%	0.86\%	0.36\%	0.55\%	

Table 1-15
Citywide Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.07\%	0.00\%	0.00\%	0.00\%	0.06\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.11\%	0.00\%	0.01\%	0.00\%	0.09\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.07\%	0.00\%	0.06\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.07\%	0.00\%	0.04\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.04\%	0.00\%	0.00\%	0.00\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.09\%	0.00\%	0.00\%	0.00\%	0.07\%	NR_Other
HHW Total				0.45\%	0.01\%	0.12\%	0.05\%	0.38\%	
Grand Total				100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(6)}$									
Material Group				Refuse	Paper	MGP	Aggregated Recycling	Waste	
Paper Total			7	9,747.96	3,314.67	250.84	5,174.84	14,902.64	
Plastic Total			7	5,966.11	54.20	1,124.22	828.52	6,797.17	
Glass Total			7	1,094.75	4.54	1,833.52	1,224.54	2,312.93	
Metal Total			8	1,486.83	7.70	1,623.01	1,089.52	2,571.36	
Organics Total				19,989.40	42.24	173.11	178.78	20,193.25	
Appliance/Electronic Total				360.68	2.11	152.11	104.21	464.70	
C \& D Debris Total				2,944.54	6.70	14.52	19.76	2,968.04	
Miscellaneous Inorganics Total				249.92	0.73	44.78	30.84	280.89	
HHW Total				190.35	0.23	6.35	4.56	195.13	
Grand Total				42,030.55	3,433.11	5,222.46	8,655.57	50,686.12	

Subtotals by Recycling Designation

Recycling Designation	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream
Percent Designated Paper	14.07\%	94.78\%	2.15\%	57.66\%	21.47\%
Percent Designated MGP	8.34\%	0.74\%	79.17\%	32.16\%	12.38\%
Percent Designated Recycling	22.42\%	95.51\%	81.32\%	89.82\%	33.85\%

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category.
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through June 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-16
Citywide Results at a Glance, Annual Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.65\%	41.55\%	0.62\%	25.30\%	7.54\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.16\%	13.64\%	0.28\%	8.34\%	2.44\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.68\%	3.16\%	0.06\%	1.93\%	0.90\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.35\%	31.28\%	1.36\%	19.40\%	10.33\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.49\%	4.90\%	0.08\%	2.99\%	0.94\%	R Paper
Paper	Mixed Paper	Paper Bags	0.70\%	0.36\%	0.05\%	0.24\%	0.62\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.40\%	0.25\%	1.95\%	0.93\%	0.50\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.67\%	1.34\%	0.33\%	0.94\%	5.64\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.52\%	0.02\%	0.06\%	0.04\%	0.43\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.70\%	0.75\%	0.41\%	0.61\%	0.69\%	NR_Paper
Paper Total			23.32\%	97.25\%	5.22\%	60.70\%	30.04\%	
Plastic	PET Bottles	PET Bottles	0.90\%	0.07\%	6.46\%	2.61\%	1.21\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.28\%	0.01\%	3.15\%	1.25\%	0.46\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.30\%	0.01\%	3.27\%	1.30\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.02\%	0.01\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.00\%	0.21\%	0.08\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.10\%	0.04\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.20\%	0.08\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.00\%	0.42\%	0.17\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.06\%	0.03\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.07\%	0.03\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.04\%	0.01\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.27\%	0.01\%	0.28\%	0.12\%	0.24\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.64\%	0.04\%	0.10\%	0.06\%	0.54\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.79\%	0.04\%	1.34\%	0.55\%	0.75\%	PR_Plastics
Plastic	Film	Plastic Bags	3.22\%	0.23\%	0.94\%	0.51\%	2.73\%	PR_Plastics
Plastic	Film	Other Film	5.44\%	0.71\%	3.09\%	1.66\%	4.76\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.60\%	0.02\%	0.22\%	0.10\%	0.51\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.92\%	0.20\%	3.54\%	1.53\%	1.85\%	NR_Plastics
Plastic Total			14.76\%	1.36\%	23.57\%	10.18\%	13.94\%	
Glass	Container Glass	Clear Container Glass	1.20\%	0.05\%	8.15\%	3.26\%	1.57\%	R Glass
Glass	Container Glass	Green Container Glass	0.30\%	0.01\%	4.13\%	1.65\%	0.54\%	R Glass
Glass	Container Glass	Brown Container Glass	0.29\%	0.01\%	1.98\%	0.79\%	0.38\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.60\%	0.02\%	18.06\%	7.18\%	1.78\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.18\%	0.07\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.20\%	0.02\%	0.42\%	0.18\%	0.19\%	PR_Glass
Glass Total			2.60\%	0.10\%	32.93\%	13.13\%	4.49\%	

Table 1-16
Citywide Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.20\%	0.01\%	0.65\%	0.26\%	0.21\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.57\%	0.02\%	0.97\%	0.40\%	0.54\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.00\%	0.37\%	0.15\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	0.01\%	0.78\%	0.32\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	0.83\%	0.03\%	7.25\%	2.90\%	1.20\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.01\%	0.69\%	0.28\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous	1.25\%	0.04\%	12.82\%	5.12\%	1.94\%	R Metal
Metal	Other Metal	Mixed Metals	0.50\%	0.01\%	3.35\%	1.34\%	0.65\%	R Metal
Metal Total			3.65\%	0.14\%	26.87\%	10.75\%	4.92\%	
Organics	Yard	Leaves and Grass	4.01\%	0.01\%	0.01\%	0.01\%	3.29\%	NR_Other
Organics	Yard	Prunings	0.94\%	0.00\%	0.01\%	0.00\%	0.77\%	NR_Other
Organics	Wood	Stumps/Limbs	0.19\%	0.00\%	0.00\%	0.00\%	0.16\%	NR_Other
Organics	Food	Food	21.40\%	0.30\%	1.56\%	0.80\%	17.70\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.42\%	0.01\%	0.12\%	0.06\%	1.18\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.22\%	0.02\%	0.05\%	0.03\%	0.19\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.64\%	0.07\%	0.11\%	0.09\%	1.36\%	NR_Other
Organics	Textiles	Clothing Textiles	3.03\%	0.07\%	0.09\%	0.07\%	2.50\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.49\%	0.00\%	0.01\%	0.00\%	1.23\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.89\%	0.04\%	0.07\%	0.05\%	3.20\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.34\%	0.00\%	0.03\%	0.01\%	1.10\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.33\%	0.03\%	0.10\%	0.06\%	0.28\%	NR_Other
Organics	Textiles	Shoes	0.72\%	0.04\%	0.06\%	0.05\%	0.60\%	NR_Other
Organics	Textiles	Other Leather Products	0.12\%	0.00\%	0.01\%	0.00\%	0.10\%	NR_Other
Organics	Misc. Organic	Fines	4.34\%	0.34\%	0.23\%	0.29\%	3.61\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.09\%	0.00\%	0.11\%	0.04\%	0.90\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.87\%	0.02\%	0.10\%	0.05\%	0.72\%	NR_Other
Organics Total			47.05\%	0.95\%	2.67\%	1.63\%	38.89\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.39\%	0.00\%	5.54\%	2.20\%	0.71\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.03\%	0.00\%	0.14\%	0.06\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.24\%	0.01\%	0.87\%	0.35\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.27\%	0.01\%	0.29\%	0.12\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.08\%	0.00\%	0.08\%	0.03\%	0.07\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.14\%	0.00\%	0.00\%	0.00\%	0.12\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	0.01\%	0.52\%	0.21\%	0.20\%	NR_Other
Appliance/Electronic Total			1.36\%	0.04\%	7.45\%	2.98\%	1.65\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.75\%	0.01\%	0.01\%	0.01\%	0.62\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.96\%	0.04\%	0.10\%	0.06\%	1.62\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.09\%	0.00\%	0.02\%	0.01\%	0.90\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.80\%	0.00\%	0.08\%	0.03\%	0.66\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.68\%	0.07\%	0.21\%	0.12\%	1.40\%	NR_Other
C \& D Debris Total			6.28\%	0.12\%	0.41\%	0.24\%	5.20\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.25\%	0.01\%	0.10\%	0.05\%	0.21\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.46\%	0.02\%	0.46\%	0.19\%	0.42\%	NR_Other
Miscellaneous Inorganics Total			0.71\%	0.03\%	0.56\%	0.24\%	0.63\%	

Table 1-16
Citywide Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	0.01\%	0.11\%	0.05\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.00\%	0.06\%	0.02\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.00\%	0.03\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.06\%	0.00\%	0.02\%	0.01\%	0.05\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.07\%	0.03\%	0.03\%	NR_Other
HHW Total			0.27\%	0.02\%	0.33\%	0.14\%	0.25\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
						Aggregated		
Material Group			Refuse	Paper	MGP	Recycling	Waste	
Paper Total ${ }^{(2)}$			12,360.75	6,801.33	240.32	7,041.65	19,402.41	
Plastic Total ${ }^{(2)}$			7,823.45	94.79	1,085.78	1,180.58	9,004.02	
Glass Total ${ }^{(2)}$			1,375.71	6.77	1,516.80	1,523.57	2,899.28	
Metal Total ${ }^{(3)}$			1,932.65	9.65	1,237.63	1,247.28	3,179.93	
Organics Total			24,934.08	66.39	122.84	189.23	25,123.31	
Appliance/Ele			720.27	2.46	342.99	345.45	1,065.72	
C \& D Debris			3,329.44	8.56	18.98	27.54	3,356.98	
Miscellaneous	Total		377.17	2.17	25.72	27.89	405.06	
HHW Total			142.72	1.50	15.16	16.66	159.38	
Grand Total			52,996.24	6,993.63	4,606.23	11,599.86	64,596.10	
Subtotals by Recycling Designation								
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	
Percent Designated Paper			15.03\%	94.89\%	2.46\%	58.19\%	22.78\%	
Percent Designated MGP			8.34\%	0.55\%	79.89\%	32.06\%	12.60\%	
Percent Designated Recycling			23.37\%	95.45\%	82.35\%	90.25\%	35.38\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

1.8.2 Housing Density and Income Details

Although the Sampling for the WCS took place over four seasons, the results of the WCS can be aggregated to provide annual estimates of composition for each of the strata for each stream. Tables 1-17 through 1-21 summarize these results. These tables show the percentage of each material in each of the eight Density/Income Strata for Refuse, Paper, MGP, and Waste. They are useful for comparing the composition of the four streams by Density/Income Strata. Each material is identified by its Material Group, Subgroup, Category, and Subcategory. The table also shows the percentage of each material for each stream citywide. The column labeled "Recycling Subindicator" indicates those materials currently designated for Recycling by DSNY ("R"), those materials not designated for Recycling by DSNY ("NR"), and those materials that are not designated for Recycling under the City's current curbside Recycling program, but which might be added to a future curbside program, or potentially recyclable ("PR").

The far right-hand column shows the possible correlations between the percentage of a given material with housing density and/or income. These possible correlations were developed by visually examining the results for each material category, by strata. For example, to ascertain whether a correlation between "housing density" and "material category" existed, we examined the percentage composition of the material for each density strata, looking to see whether the percentages of the material consistently increased or decreased. If the percentages increased, from the low to the medium to the high density strata, then a positive correlation existed between the material and housing density. If the percentage of material decreased consistently, then a negative correlation between the material and housing density existed. If there was no consistent pattern, then no correlation was evident. For example, in Table 1-17, the percentage of newspaper in the Refuse stream increases from low high density housing to medium density housing to high density housing for each income level, indicating a positive correlation between newspaper and housing density.

Table 1-17
Housing Density and Income Details, Annual Waste Characterization Study, Refuse

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Refuse Stream	Recycling Subindicator	High Densityl High Income \%	High Densityl Medium Income $\%$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	Medium Densityl Medium Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	3.65\%	R Paper	5.53\%	5.10\%	4.26\%	3.26\%	3.01\%	3.65\%	2.50\%	2.68\%	Positive correlation with density
Paper	OCC	Plain OCC/Kraft Paper	1.16\%	R Paper	1.72\%	1.22\%	1.23\%	0.92\%	0.80\%	1.36\%	0.98\%	1.08\%	No discernible pattern
Paper	Mixed Paper	High Grade Paper	0.68\%	R Paper	1.53\%	0.87\%	0.61\%	1.02\%	0.42\%	0.59\%	0.53\%	0.44\%	Positive correlation with income, except MD
Paper	Mixed Paper	Mixed Low Grade Paper	8.35\%	R Paper	16.05\%	8.66\%	7.65\%	9.51\%	6.76\%	7.20\%	7.37\%	6.70\%	Positive correation with density
Paper	Mixed Paper	Phone Books/Paperbacks	0.49\%	R Paper	0.84\%	0.69\%	0.42\%	0.38\%	0.30\%	0.63\%	0.40\%	0.41\%	Positive correlation with HD income
Paper	Mixed Paper	Paper Bags	0.70\%	R Paper	1.55\%	0.64\%	0.67\%	0.99\%	0.63\%	0.57\%	0.50\%	0.47\%	Positive correation with density
Paper	Bev Cartons	Polycoated Paper Containers	0.40\%	R Bev Cartons	0.58\%	0.55\%	0.43\%	0.50\%	0.35\%	0.46\%	0.27\%	0.25\%	Positive correlation with density, except LI
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.67\%	NR_Paper	8.58\%	6.70\%	5.83\%	7.70\%	7.14\%	5.42\%	6.83\%	6.55\%	Positive correlation with density
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.52\%	NR_Paper	0.69\%	0.42\%	0.29\%	0.72\%	0.42\%	0.27\%	0.85\%	0.73\%	Positive correlation with density
Paper	Other Paper	Other Nonrecyclable Paper	0.70\%	NR_Paper	0.77\%	0.73\%	0.73\%	0.94\%	0.69\%	0.58\%	0.72\%	0.62\%	Positive correlation with density, except HI
Paper Total			23.32\%		37.84\%	25.58\%	22.11\%	25.93\%	20.51\%	20.72\%	20.96\%	19.92\%	Positive correlation with density
Plastic	PET Bottles	PET Botles	0.90\%	R Plastics	1.03\%	0.96\%	1.21\%	0.74\%	0.77\%	1.15\%	0.55\%	0.64\%	Positive correlation with density
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.28\%	R Plastics	0.22\%	0.29\%	0.44\%	0.13\%	0.23\%	0.32\%	0.25\%	0.14\%	Negative correlation with income, except LD
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.30\%	R Plastics	0.33\%	0.33\%	0.42\%	0.27\%	0.24\%	0.33\%	0.23\%	0.19\%	Positive correlation with density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tray/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	PR_Plastics	0.07\%	0.09\%	0.05\%	0.03\%	0.04\%	0.06\%	0.02\%	0.03\%	Positive correlation with density, except LI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattern
Plastic	\#3.\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	PR_Plastics	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	PR_Plastics	0.05\%	0.07\%	0.07\%	0.05\%	0.06\%	0.06\%	0.09\%	0.05\%	Positive correlation with density, except HI
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	PR_Plastics	0.04\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.26\%	0.19\%	0.17\%	0.28\%	0.16\%	0.12\%	0.15\%	0.16\%	Positive correlation with income, except LD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	PR_Plastics	0.07\%	0.05\%	0.04\%	0.09\%	0.03\%	0.03\%	0.04\%	0.04\%	Positive correlation with HD income
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.01\%	0.02\%	0.02\%	0.00\%	0.02\%	0.00\%	0.02\%	Negative correlation with income, except MD
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.04\%	0.01\%	Negative correlation with HD income
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.27\%	PR_Plastics	0.55\%	0.28\%	0.26\%	0.40\%	0.23\%	0.20\%	0.22\%	0.19\%	Positive correation with income and density
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.64\%	PR_Plastics	0.51\%	0.67\%	0.70\%	0.59\%	0.70\%	0.71\%	0.56\%	0.58\%	Negative correlation with income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.79\%	PR_Plastics	1.39\%	0.89\%	0.65\%	1.16\%	0.77\%	0.54\%	0.76\%	0.71\%	Positive correation with income and density
Plastic	Film	Plastic Bags	3.22\%	PR_Plastics	3.33\%	3.98\%	3.78\%	2.99\%	3.67\%	3.16\%	2.28\%	2.52\%	Positive correlation with density
Plastic	Film	Other Film	5.44\%	PR_Plastics	6.35\%	6.26\%	5.98\%	5.29\%	5.70\%	5.40\%	4.23\%	4.62\%	Positive correlation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.60\%	NR_Plastics	0.55\%	0.61\%	0.47\%	0.55\%	0.50\%	0.68\%	0.77\%	0.72\%	No discerrible pattern
Plastic	Other Plastic Products	Other Plastics Materials	1.92\%	NR_Plastics	1.44\%	2.13\%	1.87\%	1.61\%	1.80\%	1.91\%	2.24\%	2.10\%	Positive correlation with MD income
Plastic Total			14.76\%		16.24\%	16.86\%	16.20\%	14.23\%	14.95\%	14.73\%	12.46\%	12.76\%	Positive correlation with density
Glass	Container Glass	Clear Container Glass	1.20\%	R Glass	0.85\%	0.97\%	1.68\%	1.13\%	1.08\%	1.79\%	0.77\%	0.90\%	Negative correlation with income, except MD
Glass	Container Glass	Green Container Glass	0.30\%	R Glass	0.58\%	0.27\%	0.35\%	0.48\%	0.30\%	0.29\%	0.15\%	0.15\%	Positive correlation with MD income
Glass	Container Glass	Brown Container Glass	0.29\%	R Glass	0.18\%	0.21\%	0.51\%	0.32\%	0.30\%	0.36\%	0.11\%	0.20\%	Negative correlation with income, except MD
Glass	Mixed Cullet	Mixed Cullet	0.60\%	R Glass	0.84\%	0.69\%	0.76\%	0.53\%	0.54\%	0.79\%	0.28\%	0.33\%	Positive correlation with density, except LI
Glass	Container Glass	Other Container Glass	0.02\%	R Glass	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	0.04\%	0.02\%	0.01\%	No discerrible pattern
Glass	Other Glass	Other Glass	0.20\%	PR_Glass	0.14\%	0.20\%	0.18\%	0.19\%	0.22\%	0.23\%	0.19\%	0.22\%	Negative correlation with income, except HD
Glass Total			2.60\%		2.60\%	2.36\%	3.48\%	2.67\%	2.47\%	3.50\%	1.51\%	1.81\%	No discernible pattern
Metal	Aluminum	Aluminum Cans	0.20\%	R Metal	0.24\%	0.23\%	0.27\%	0.16\%	0.17\%	0.21\%	0.15\%	0.13\%	Positive correlation with density
Metal	Aluminum	Aluminum Foil/Containers	0.57\%	R Metal	0.63\%	0.53\%	0.57\%	0.63\%	0.58\%	0.59\%	0.53\%	0.51\%	No discernible pattern
Metal	Aluminum	Other Aluminum	0.04\%	R Metal	0.02\%	0.02\%	0.05\%	0.04\%	0.02\%	0.05\%	0.04\%	0.08\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	R M etal	0.12\%	0.17\%	0.12\%	0.23\%	0.11\%	0.10\%	0.15\%	0.16\%	Positive correlation with MD income
Metal	Ferrous	Tin Food Cans	0.83\%	R Metal	0.53\%	0.96\%	1.46\%	0.53\%	0.71\%	1.03\%	0.44\%	0.52\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.13\%	R Metal	0.13\%	0.10\%	0.15\%	0.12\%	0.14\%	0.12\%	0.13\%	0.12\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	1.25\%	R Metal	1.12\%	1.07\%	1.10\%	1.26\%	1.13\%	1.21\%	1.33\%	2.14\%	Negative correlation with density
Metal	Other Metal	Mixed Metals	0.50\%	R Metal	0.68\%	0.35\%	0.45\%	0.46\%	0.39\%	0.72\%	0.44\%	0.53\%	Positive correlation with H1 density
Metal Total			3.65\%		3.48\%	3.42\%	4.17\%	3.43\%	3.25\%	4.04\%	3.20\%	4.19\%	Positive correlation with density, except MI

Table 1-17
Housing Density and Income Details, Annual Waste Characterization Study, Refuse (continued)

Table 1-17
Housing Density and Income Details, Annual Waste Characterization Study, Refuse (continued)

Recycling Designation	$\%$ of Citywide Refuse Stream	High Density/ High Income \%	High Density/ Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Density } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Designated Paper	15.03\%	27.22\%	17.18\%	14.83\%	16.08\%	11.92\%	14.00\%	12.29\%	11.78\%
Designated Beverage Cartons	0.40\%	0.58\%	0.55\%	0.43\%	0.50\%	0.35\%	0.46\%	0.27\%	0.25\%
Designated Plastic	1.48\%	1.58\%	1.58\%	2.06\%	1.14\%	1.24\%	1.80\%	1.03\%	0.97\%
Designated Metal	4.06\%	3.83\%	3.62\%	4.41\%	3.68\%	3.54\%	4.79\%	3.77\%	4.68\%
Designated Glass	2.40\%	2.46\%	2.16\%	3.31\%	2.49\%	2.25\%	3.26\%	1.32\%	1.60\%
Designated MGP Subtotal	8.34\%	8.45\%	7.91\%	10.21\%	7.81\%	7.38\%	10.31\%	6.39\%	7.49\%
Potentially Designated Plastic	10.74\%	12.67\%	12.53\%	11.77\%	10.93\%	11.39\%	10.33\%	8.39\%	8.96\%
Potentially Designated Glass	0.20\%	0.14\%	0.20\%	0.18\%	0.19\%	0.22\%	0.23\%	0.19\%	0.22\%
Potentially Designated Materials Subtotal	10.94\%	12.81\%	12.73\%	11.94\%	11.11\%	11.61\%	10.56\%	8.57\%	9.18\%
Nondesignated Paper	7.90\%	10.04\%	7.85\%	6.86\%	9.36\%	8.24\%	6.27\%	8.41\%	7.90\%
Nondesignated Plastic	2.54\%	1.99\%	2.75\%	2.38\%	2.16\%	2.31\%	2.59\%	3.05\%	2.83\%
Other Nondesignated	55.25\%	39.49\%	51.58\%	53.79\%	53.49\%	58.54\%	56.27\%	61.30\%	60.82\%
Nondesignated Materials Subtotal	65.69\%	51.53\%	62.18\%	63.02\%	65.00\%	69.09\%	65.13\%	72.75\%	71.55\%
Designated for Recycling Total	23.37\%	35.66\%	25.09\%	25.04\%	23.88\%	19.30\%	24.31\%	18.68\%	19.27\%
Potentially or Not Designated for Recycling Total	76.63\%	64.34\%	74.91\%	74.96\%	76.12\%	80.70\%	75.69\%	81.32\%	80.73\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{(1)}$ Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.26 in Volume 2 .
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-18
Housing Density and Income Details, Annual Waste Characterization Study, Paper

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \text { High Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	$\begin{aligned} & \text { Medium Density/ } \\ & \text { High Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { // Medium Density/ } \\ \text { Medium Insome } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityy } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \hline \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	41.55\%	R Paper	48.47\%	42.37\%	35.11\%	39.12\%	34.42\%	34.20\%	45.45\%	43.69\%	Positive correlation with income
Paper	OCC	Plain OCC/Kratt Paper	13.64\%	R Paper	8.84\%	12.45\%	27.39\%	8.55\%	16.68\%	24.59\%	10.78\%	13.81\%	Negative correlation with income
Paper	Mixed Paper	High Grade Paper	3.16\%	R Paper	2.74\%	2.15\%	4.11\%	4.05\%	4.41\%	3.49\%	2.09\%	3.24\%	No discernible pattern
Paper	Mixed Paper	Mixed Low Grade Paper	31.28\%	R Paper	32.05\%	32.87\%	19.98\%	37.75\%	30.46\%	27.67\%	32.72\%	29.76\%	Positive correlation with income, except HD
Paper	Mixed Paper	Phone Books/Paperbacks	4.90\%	R Paper	4.15\%	5.90\%	4.52\%	6.12\%	7.17\%	5.05\%	3.06\%	4.71\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.36\%	R Paper	0.47\%	0.31\%	0.07\%	0.41\%	0.58\%	0.09\%	0.24\%	0.30\%	Positive correlation with HD income
Paper	Bev Cartons	Polycoated Paper Containers	0.25\%	R Bev Cartons	0.13\%	0.15\%	0.70\%	0.14\%	0.23\%	0.28\%	0.32\%	0.19\%	Negative correlation with income, except LD
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	1.34\%	NR_Paper	0.18\%	1.32\%	1.57\%	1.06\%	2.30\%	0.28\%	2.01\%	0.69\%	Negative correlation with HD income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.02\%	NR_Paper	0.01\%	0.02\%	0.01\%	0.02\%	0.05\%	0.01\%	0.01\%	0.02\%	No discernible pattern
Paper	Other Paper	Other Nonrecyclable Paper	0.75\%	NR_Paper	0.59\%	0.29\%	1.83\%	0.61\%	1.00\%	0.63\%	0.52\%	1.26\%	Negative correlation with MI density
Paper Total			97.25\%		97.63\%	97.83\%	95.29\%	97.85\%	97.30\%	96.30\%	97.22\%	97.67\%	Positive correlation with MD income
Plastic	PET Bottles	PET Botlles	0.07\%	R Plastics	0.02\%	0.03\%	0.02\%	0.02\%	0.02\%	0.09\%	0.20\%	0.06\%	No discernible pattern
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.01\%	R Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.01\%	0.03\%	Negative correlation with income, except HD
Plastic	HDPE Botlles	HDPE Bottles: Colored	0.01\%	R Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	0.02\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.00\%	PR_Plastics	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.01\%	PR_Plastics	0.00\%	0.01\%	0.02\%	0.00\%	0.01\%	0.02\%	0.03\%	0.03\%	Negative correlation with income, except LD
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.04\%	PR_Plastics	0.04\%	0.04\%	0.04\%	0.06\%	0.02\%	0.07\%	0.05\%	0.03\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.04\%	PR_Plastics	0.02\%	0.04\%	0.05\%	0.06\%	0.07\%	0.02\%	0.02\%	0.04\%	Negative correlation with income, except MD
Plastic	Film	Plastic Bags	0.23\%	PR_Plastics	0.25\%	0.22\%	0.14\%	0.09\%	0.20\%	0.29\%	0.30\%	0.22\%	Positive correlation with income, except MD
Plastic	Film	Other Film	0.71\%	PR_Plastics	0.96\%	0.67\%	1.03\%	0.57\%	0.78\%	0.67\%	0.46\%	0.46\%	Positive correlation with density, except MI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.02\%	NR_Plastics	0.00\%	0.00\%	0.04\%	0.01\%	0.04\%	0.00\%	0.02\%	0.01\%	Negative correlation with HI density
Plastic	Other Plastic Products	Other Plastics Materials	0.20\%	NR_Plastics	0.14\%	0.18\%	0.86\%	0.10\%	0.16\%	0.34\%	0.14\%	0.12\%	Negative correlation with income, except LD
Plastic Total			1.36\%		1.45\%	1.21\%	2.20\%	0.94\%	1.33\%	1.56\%	1.26\%	1.03\%	Negative correlation with MD income
Glass	Container Glass	Clear Container Glass	0.05\%	R Glass	0.03\%	0.06\%	0.03\%	0.05\%	0.00\%	0.13\%	0.07\%	0.07\%	Negative correlation with density, except MI
Glass	Container Glass	Green Container Glass	0.01\%	R Glass	0.00\%	0.02\%	0.00\%	0.05\%	0.00\%	0.01\%	0.00\%	0.02\%	No discerrible pattern
Glass	Container Glass	Brown Container Glass	0.01\%	R Glass	0.01\%	0.00\%	0.01\%	0.02\%	0.01\%	0.00\%	0.00\%	0.05\%	Positive correlation with MD income
Glass	Mixed Cullet	Mixed Cullet	0.02\%	R Glass	0.03\%	0.00\%	0.03\%	0.01\%	0.01\%	0.05\%	0.00\%	0.01\%	Positive correlation with HI density
Glass	Container Glass	Other Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Glass	Other Glass	Other Glass	0.02\%	PR_Glass	0.00\%	0.01\%	0.15\%	0.00\%	0.00\%	0.00\%	0.03\%	0.06\%	Negative correlation with income, except MD
Glass Total			0.10\%		0.06\%	0.09\%	0.22\%	0.12\%	0.02\%	0.18\%	0.11\%	0.22\%	Negative correlation with income, except MD
Metal	Aluminum	Aluminum Cans	0.01\%	R M etal	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Metal	Aluminum	Aluminum Foil/Containers	0.02\%	R Metal	0.00\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.04\%	0.03\%	Negative correlation with density, except LI
Metal	Aluminum	Other Aluminum	0.00\%	R M etal	0.00\%	0.00\%	0.03\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.01\%	R Metal	0.00\%	0.01\%	0.00\%	0.00\%	0.05\%	0.04\%	0.00\%	0.00\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	0.03\%	R Metal	0.00\%	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	0.08\%	0.08\%	Negative correlation with HD income
Metal	Ferrous	Empty Aerosol Cans	0.01\%	R Metal	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.02\%	No discernible pattern
Metal	Ferrous	Other Ferrous	0.04\%	R Metal	0.07\%	0.04\%	0.00\%	0.05\%	0.02\%	0.07\%	0.06\%	0.00\%	Positive correlation with income, except MD
Metal	Other Metal	Mixed Metals	0.01\%	R M etal	0.00\%	0.01\%	0.01\%	0.00\%	0.05\%	0.00\%	0.01\%	0.02\%	No discernible pattern
Metal Total			0.14\%		0.08\%	0.10\%	0.09\%	0.11\%	0.17\%	0.16\%	0.19\%	0.15\%	Negative correlation with density, except MII

Table 1-18
Housing Density and Income Details, Annual Waste Characterization Study, Paper (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { / Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattem
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discerrible pattern
Organics	Food	Food	0.30\%	NR_Other	0.10\%	0.20\%	0.11\%	0.27\%	0.44\%	0.38\%	0.46\%	0.18\%	Negative correlation with density, except MI
Organics	Wood	Wood Furniture/Furniture Pieces	0.01\%	NR_Other	0.04\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.00\%	Negative correlation with HD income
Organics	Wood	Non-C\&D Untreated Wood	0.02\%	NR_Other	0.01\%	0.00\%	0.08\%	0.08\%	0.02\%	0.03\%	0.01\%	0.02\%	No discernible pattern
Organics	Texiles	Non-Clothing Textiles	0.07\%	NR_Other	0.13\%	0.04\%	0.04\%	0.02\%	0.05\%	0.04\%	0.08\%	0.08\%	Negative correlation with MI density
Organics	Texilies	Clothing Texilies	0.07\%	NR_Other	0.03\%	0.01\%	0.04\%	0.09\%	0.01\%	0.32\%	0.08\%	0.06\%	No discernible pattern
Organics	Texiles	CarpetUpholstery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.04\%	NR_Other	0.02\%	0.11\%	0.02\%	0.01\%	0.06\%	0.08\%	0.02\%	0.04\%	Negative correlation with income, except HD
Organics	Misc. Organic	Animal By-Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.03\%	NR_Other	0.00\%	0.01\%	0.40\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	Negative correlation with HD income
Organics	Texilies	Shoes	0.04\%	NR_Other	0.05\%	0.00\%	0.00\%	0.00\%	0.05\%	0.08\%	0.04\%	0.03\%	Negative correlation with MD income
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Fines	0.34\%	NR_Other	0.22\%	0.22\%	0.62\%	0.26\%	0.31\%	0.42\%	0.44\%	0.29\%	Negative correlation with MD income
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.02\%	NR_Other	0.00\%	0.00\%	0.21\%	0.02\%	0.01\%	0.00\%	0.00\%	0.00\%	Positive correlation with MD income
Organics Total			0.95\%		0.60\%	0.61\%	1.54\%	0.88\%	0.97\%	1.39\%	1.11\%	0.71\%	Negative correlation with income, except LD
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00\%	R M etal	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	0.18\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.01\%	NR_Other	0.00\%	0.10\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.02\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.01\%	NR_Other	0.05\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	Negative correlation with HI density
Appliance/EIectronic Total			0.04\%		0.05\%	0.10\%	0.01\%	0.02\%	0.02\%	0.04\%	0.01\%	0.19\%	Negative correlation with HI density
$C \& D$ Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.03\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	Positive correlation with HD income
$C \& D$ Debris	Wood	Treated/Contaminated Wood	0.04\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.09\%	0.24\%	0.00\%	0.00\%	Negative correlation with MD income
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discernible pattem
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.00\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	No discernible pattern
C \& Debris	Inorganic C\&D	Other Construction Debris	0.07\%	NR_Other	0.09\%	0.02\%	0.58\%	0.05\%	0.02\%	0.04\%	0.00\%	0.00\%	Positive correlation with density, except MI
C \& D Debris Total			0.12\%		0.12\%	0.03\%	0.60\%	0.07\%	0.13\%	0.32\%	0.00\%	0.00\%	Positive correlation with density, except MI
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.01\%	NR_Other	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	No discernible pattern
Miscellaneous Inorganis	Misc. Inorganic	Ceramics	0.02\%	NR_Other	0.00\%	0.02\%	0.00\%	0.01\%	0.06\%	0.02\%	0.01\%	0.01\%	No discerrible pattern
Miscellaneous Inorganics Total			0.03\%		0.01\%	0.02\%	0.01\%	0.01\%	0.07\%	0.03\%	0.04\%	0.01\%	No discernible pattern
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.01\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	No discernible pattern
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	No discernible pattem
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Exinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW Total			0.02\%		0.00\%	0.01\%	0.04\%	0.01\%	0.01\%	0.01\%	0.06\%	0.02\%	Negative correlation with HD income

Table 1-18
Housing Density and Income Details, Annual Waste Characterization Study, Paper (continued)

Recycling Designation	$\%$ of Citywide Paper Stream	High Densityl High Income \%	High Density/ Medium Income Medium Income	High Densityl Low Income \%	Medium Density High Income \%	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Density } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$
Designated Paper	94.89\%	96.72\%	96.05\%	91.17\%	96.01\%	93.72\%	95.10\%	94.35\%	95.50\%
Designated Beverage Cartons	0.25\%	0.13\%	0.15\%	0.70\%	0.14\%	0.23\%	0.28\%	0.32\%	0.19\%
Designated Plastic	0.09\%	0.02\%	0.04\%	0.03\%	0.02\%	0.03\%	0.14\%	0.21\%	0.11\%
Designated Metal	0.14\%	0.08\%	0.10\%	0.09\%	0.11\%	0.18\%	0.16\%	0.19\%	0.15\%
Designated Glass	0.08\%	0.06\%	0.08\%	0.07\%	0.12\%	0.02\%	0.18\%	0.08\%	0.15\%
Designated MGP Subtotal	0.55\%	0.30\%	0.37\%	0.89\%	0.40\%	0.45\%	0.77\%	0.81\%	0.61\%
Potentially Designated Plastic	1.05\%	1.28\%	0.98\%	1.28\%	0.80\%	1.09\%	1.07\%	0.89\%	0.79\%
Potentially Designated Glass	0.02\%	0.00\%	0.01\%	0.15\%	0.00\%	0.00\%	0.00\%	0.03\%	0.06\%
Potentially Designated Materials Subtotal	1.07\%	1.28\%	0.99\%	1.43\%	0.80\%	1.09\%	1.07\%	0.91\%	0.86\%
Nondesignated Paper	2.11\%	0.78\%	1.64\%	3.42\%	1.69\%	3.36\%	0.92\%	2.55\%	1.97\%
Nondesignated Plastic	0.22\%	0.15\%	0.19\%	0.90\%	0.12\%	0.20\%	0.36\%	0.16\%	0.13\%
Other Nondesignated	1.16\%	0.77\%	0.77\%	2.20\%	0.98\%	1.18\%	1.79\%	1.23\%	0.93\%
Nondesignated Materials Subtotal	3.49\%	1.70\%	2.59\%	6.51\%	2.79\%	4.74\%	3.07\%	3.93\%	3.04\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from September 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-19
Housing Density and Income Details, Annual Waste Characterization Study, MGP

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { / Medium Density/ } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \hline \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	0.62\%	R Paper	0.29\%	0.59\%	0.12\%	0.75\%	0.58\%	0.92\%	0.89\%	0.90\%	Negative correlation with density, except MI
Paper	OCC	Plain OCCI/Kratt Paper	0.28\%	R Paper	0.13\%	0.26\%	0.13\%	0.12\%	0.27\%	0.33\%	0.42\%	0.52\%	Negative correlation with income, except HD
Paper	Mixed Paper	High Grade Paper	0.06\%	R Paper	0.04\%	0.06\%	0.01\%	0.04\%	0.07\%	0.08\%	0.06\%	0.15\%	Negative correlation with income, except HD
Paper	Mixed Paper	Mixed Low Grade Paper	1.36\%	R Paper	1.22\%	1.56\%	0.59\%	1.36\%	1.35\%	1.66\%	1.60\%	1.63\%	Negative correlation with density, except MI
Paper	Mixed Paper	Phone Books/Paperbacks	0.08\%	R Paper	0.03\%	0.02\%	0.06\%	0.17\%	0.13\%	0.09\%	0.09\%	0.05\%	Positive correlation with income, except HD
Paper	Mixed Paper	Paper Bags	0.05\%	R Paper	0.07\%	0.04\%	0.02\%	0.07\%	0.05\%	0.04\%	0.06\%	0.06\%	Positive correlation with income, except LD
Paper	Bev Cartons	Polycoated Paper Containers	1.95\%	R Bev Cartons	1.62\%	2.16\%	1.42\%	2.82\%	2.50\%	2.02\%	1.80\%	1.52\%	Positive correlation with income, except HD
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC//Kratt	0.33\%	NR_Paper	0.29\%	0.26\%	0.26\%	0.27\%	0.32\%	0.38\%	0.41\%	0.32\%	Negative correlation with MD income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.06\%	NR_Paper	0.05\%	0.05\%	0.03\%	0.05\%	0.07\%	0.07\%	0.06\%	0.08\%	Negative correlation with density, except HI
Paper	Other Paper	Other Nonrecyclable Paper	0.41\%	NR_Paper	0.20\%	0.41\%	0.40\%	0.24\%	0.54\%	0.56\%	0.39\%	0.45\%	Negative correlation with income, except HD
Paper Total			5.22\%		3.95\%	5.40\%	3.03\%	5.90\%	5.87\%	6.15\%	5.77\%	5.68\%	No discernible pattern
Plastic	PET Botlles	PET Botles	6.46\%	R Plastics	5.76\%	5.08\%	4.59\%	5.15\%	6.90\%	6.89\%	7.78\%	7.23\%	Positive correlation with income, except MD
Plastic	HDPE Botlles	HDPE Bottles: Natural	3.15\%	R Plastics	1.70\%	3.77\%	3.57\%	1.58\%	4.46\%	3.22\%	2.72\%	3.21\%	No discernible pattern
Plastic	HDPE Botlles	HDPE Bottles: Colored	3.27\%	R Plastics	2.43\%	3.21\%	3.01\%	2.25\%	3.53\%	3.25\%	3.91\%	3.45\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.02\%	PR_Plastics	0.01\%	0.02\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	No discerrible patterm
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.21\%	PR_Plastics	0.17\%	0.47\%	0.24\%	0.19\%	0.19\%	0.21\%	0.18\%	0.18\%	Positive correlation with density, except HI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.04\%	PR_Plastics	0.06\%	0.07\%	0.03\%	0.04\%	0.03\%	0.03\%	0.05\%	0.03\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.03\%	Negative correlation with MI density
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.10\%	PR_Plastics	0.04\%	0.07\%	0.07\%	0.06\%	0.11\%	0.14\%	0.12\%	0.13\%	Negative correlation with density
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#7 Other	0.20\%	PR_Plastics	0.23\%	0.32\%	0.11\%	0.19\%	0.19\%	0.21\%	0.22\%	0.21\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	PR_Plastics	0.00\%	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattem
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.01\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.42\%	PR_Plastics	0.57\%	0.41\%	0.35\%	0.36\%	0.42\%	0.36\%	0.41\%	0.41\%	Positive correlation with HD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06\%	PR_Plastics	0.04\%	0.05\%	0.04\%	0.05\%	0.04\%	0.07\%	0.06\%	0.16\%	Negative correlation with density, except MI
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.07\%	PR_Plastics	0.04\%	0.15\%	0.19\%	0.01\%	0.04\%	0.09\%	0.05\%	0.06\%	Negative correlation with income
Plastic	Other Plastic Products	Other PVC	0.04\%	NR_Plastics	0.00\%	0.01\%	0.01\%	0.01\%	0.02\%	0.17\%	0.03\%	0.01\%	Negative correlation with density, except MI
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.28\%	PR_Plastics	0.29\%	0.24\%	0.13\%	0.26\%	0.33\%	0.17\%	0.35\%	0.36\%	Positive correlation with HD income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.10\%	PR_Plastics	0.05\%	0.11\%	0.08\%	0.14\%	0.14\%	0.10\%	0.10\%	0.09\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.34\%	PR_Plastics	1.34\%	1.34\%	1.11\%	1.14\%	1.64\%	1.18\%	1.28\%	1.43\%	No discerrible pattem
Plastic	Film	Plastic Bags	0.94\%	PR_Plastics	0.84\%	1.08\%	0.57\%	1.04\%	1.05\%	0.85\%	1.06\%	0.99\%	Negative correlation with density, except MI
Plastic	Film	Other Film	3.09\%	PR_Plastics	4.18\%	3.48\%	3.22\%	2.60\%	3.52\%	3.29\%	2.09\%	2.40\%	Positive correlation with HD income
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.22\%	NR_Plastics	0.16\%	0.18\%	0.12\%	0.18\%	0.27\%	0.18\%	0.23\%	0.46\%	Negative correlation with density
Plastic	Other Plastic Products	Other Plastics Materials	3.54\%	NR_Plastics	2.73\%	4.00\%	4.87\%	2.52\%	3.69\%	3.41\%	3.43\%	3.31\%	Negative correlation with HD income
Plastic Total			23.57\%		20.64\%	24.11\%	22.34\%	17.80\%	26.65\%	23.89\%	24.12\%	24.18\%	No discernible pattern
Glass	Container Glass	Clear Container Glass	8.15\%	R Glass	7.36\%	7.21\%	4.12\%	8.09\%	6.98\%	8.81\%	11.31\%	10.02\%	Positive correlation with income, except MD
Glass	Container Glass	Green Container Glass	4.13\%	R Glass	10.95\%	4.05\%	0.95\%	10.00\%	2.30\%	2.06\%	3.50\%	2.73\%	Positive correlation with income
Glass	Container Glass	Brown Container Glass	1.98\%	R Glass	2.31\%	1.49\%	0.83\%	3.30\%	1.80\%	1.93\%	2.43\%	1.95\%	Positive correation with income, except MD
Glass	Mixed Cullet	Mixed Cullet	18.06\%	R Glass	26.52\%	15.98\%	16.51\%	23.38\%	20.76\%	14.94\%	13.00\%	15.16\%	Positive correlation with MD income
Glass	Container Glass	Other Container Glass	0.18\%	R Glass	0.18\%	0.15\%	0.08\%	0.23\%	0.18\%	0.21\%	0.21\%	0.22\%	Positive correlation with HD income
Glass	Other Glass	Other Glass	0.42\%	PR_Glass	0.42\%	0.41\%	0.20\%	0.25\%	0.49\%	0.42\%	0.42\%	0.73\%	Positive correation with HD income
Glass Total			32.93\%		47.74\%	29.28\%	22.69\%	45.26\%	32.51\%	28.36\%	30.86\%	30.81\%	Positive correlation with income
Metal	Aluminum	Aluminum Cans	0.65\%	R M etal	0.39\%	0.42\%	0.40\%	0.47\%	0.56\%	0.59\%	1.07\%	0.88\%	Negative correlation with density
Metal	Aluminum	Aluminum FoillContainers	0.97\%	R M etal	0.53\%	0.84\%	0.61\%	0.86\%	1.07\%	1.19\%	1.22\%	1.16\%	Negative correlation with density
Metal	Aluminum	Other Aluminum	0.37\%	R M etal	0.13\%	0.48\%	0.61\%	0.31\%	0.32\%	0.25\%	0.42\%	0.54\%	Negative correlation with income, except MD
Metal	Non-Ferrous	Other Non-Ferrous	0.78\%	R Metal	0.58\%	1.22\%	0.92\%	0.54\%	0.55\%	0.79\%	1.06\%	0.51\%	Positive correlation with density, except HI
Metal	Ferrous	Tin Food Cans	7.25\%	R M Meal	4.10\%	6.10\%	7.22\%	5.96\%	8.60\%	8.74\%	7.48\%	8.37\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.69\%	R M etal	0.61\%	0.66\%	0.59\%	0.39\%	0.88\%	0.75\%	0.69\%	0.62\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	12.82\%	R M etal	10.01\%	11.88\%	17.85\%	10.20\%	11.42\%	13.76\%	13.59\%	12.56\%	Negative correlation with income, except LD
Metal	Other Metal	Mixed Metals	3.35\%	R M etal	2.34\%	3.69\%	6.59\%	2.55\%	2.74\%	2.59\%	2.89\%	4.19\%	Negative correlation with income, except MD
Metal Total			26.87\%		18.69\%	25.30\%	34.78\%	21.27\%	26.16\%	28.66\%	28.43\%	28.81\%	Negative correlation with income

Table 1-19
Housing Density and Income Details, Annual Waste Characterization Study, MGP (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	Medium Densityl High Income $\%$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.01\%	NR_Other	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.00\%	No discernible pattem
Organics	Yard	Prunings	0.01\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	1.56\%	NR_Other	1.14\%	1.54\%	1.29\%	1.02\%	1.56\%	1.79\%	1.92\%	1.78\%	Negative correlation with density, except HI
Organics	Wood	Wood Furniture/Furniture Pieces	0.12\%	NR_Other	0.10\%	0.15\%	0.21\%	0.06\%	0.10\%	0.19\%	0.10\%	0.04\%	Negative correlation with income, except LD
Organics	Wood	Non-C\&D Untreated Wood	0.05\%	NR_Other	0.02\%	0.08\%	0.05\%	0.07\%	0.08\%	0.06\%	0.02\%	0.01\%	No discerrible pattern
Organics	Textiles	Non-Clothing Textiles	0.11\%	NR_Other	0.07\%	0.23\%	0.19\%	0.05\%	0.10\%	0.10\%	0.09\%	0.13\%	No discernible pattern
Organics	Texilies	Clothing Textiles	0.09\%	NR_Other	0.08\%	0.20\%	0.09\%	0.08\%	0.10\%	0.09\%	0.07\%	0.04\%	Positive correlation with MI density
Organics	Texiles	CarpetUpholstery	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	NR_Other	0.01\%	0.03\%	0.06\%	0.11\%	0.05\%	0.07\%	0.14\%	0.07\%	Negative correlation with density
Organics	Misc. Organic	Animal By-Products	0.03\%	NR_Other	0.05\%	0.02\%	0.01\%	0.01\%	0.03\%	0.00\%	0.07\%	0.01\%	Positive correlation with income, except MD
Organics	Misc. Organic	Rubber Products	0.10\%	NR_Other	0.04\%	0.20\%	0.07\%	0.07\%	0.11\%	0.07\%	0.07\%	0.23\%	No discerrible pattern
Organics	Texilies	Shoes	0.06\%	NR_Other	0.02\%	0.13\%	0.04\%	0.05\%	0.10\%	0.07\%	0.03\%	0.11\%	No discerrible pattern
Organics	Textiles	Other Leather Products	0.01\%	NR_Other	0.01\%	0.02\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	No discernible pattern
Organics	Misc. Organic	Fines	0.23\%	NR_Other	0.19\%	0.36\%	0.19\%	0.21\%	0.24\%	0.22\%	0.23\%	0.23\%	Negative correlation with density, except MI
Organics	Texties	Upholstered or Other Organic-Type Funiture	0.11\%	NR_Other	0.16\%	0.04\%	0.26\%	0.00\%	0.00\%	0.28\%	0.03\%	0.24\%	No discerrible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.10\%	NR_Other	0.09\%	0.06\%	0.04\%	0.06\%	0.04\%	0.33\%	0.10\%	0.09\%	Positive correlation with income, except MD
Organics Total			2.67\%		2.01\%	3.08\%	2.52\%	1.79\%	2.57\%	3.28\%	2.92\%	3.00\%	Negative correlation with income, except HD
Appliance/Electronic	Ferrous	Appliances: Ferrous	5.54\%	R Metal	3.99\%	8.38\%	10.01\%	5.94\%	3.75\%	5.85\%	4.67\%	5.30\%	Negative correlation with income, except MD
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.14\%	R Metal	0.12\%	0.18\%	0.13\%	0.16\%	0.04\%	0.16\%	0.24\%	0.10\%	Negative correlation with density, except MI
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.87\%	NR_Other	0.79\%	1.06\%	1.40\%	0.73\%	0.76\%	1.06\%	0.71\%	0.62\%	Positive correlation with density, except LI
Appliance/Electronic	Electronic/AV/Computer	AudioVVisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioVNisual Equipment: Other	0.29\%	NR_Other	0.19\%	0.29\%	0.46\%	0.19\%	0.25\%	0.25\%	0.36\%	0.20\%	Positive correlation with density, except HI
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.08\%	NR_Other	0.51\%	0.09\%	0.02\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correation with HD income
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.02\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.52\%	NR_Other	0.36\%	0.71\%	0.93\%	0.41\%	0.34\%	0.53\%	0.65\%	0.17\%	Positive correlation with density, except HI
Appliance/EIectronic Total			7.45\%		5.96\%	10.76\%	12.96\%	7.47\%	5.15\%	7.86\%	6.63\%	6.40\%	Negative correlation with HD income
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.02\%	0.00\%	0.00\%	0.02\%	0.01\%	0.01\%	0.01\%	0.05\%	Negative correlation with density, except HI
$C \& D$ debris	Wood	Treated/Contaminated Wood	0.10\%	NR_Other	0.10\%	0.08\%	0.38\%	0.02\%	0.07\%	0.02\%	0.05\%	0.03\%	Positive correlation with density, except HI
$C \& D$ debris	Inorganic C\&D	Gypsum Scrap	0.02\%	NR_Other	0.02\%	0.05\%	0.04\%	0.02\%	0.02\%	0.01\%	0.01\%	0.00\%	Positive correlation with density, except HI
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.08\%	NR_Other	0.05\%	0.06\%	0.15\%	0.00\%	0.03\%	0.17\%	0.08\%	0.05\%	Negative correlation with income, except LD
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	0.21\%	NR_Other	0.08\%	1.03\%	0.41\%	0.09\%	0.07\%	0.31\%	0.08\%	0.12\%	No discernible pattern
C \& D Debris Total			0.41\%		0.27\%	1.22\%	0.98\%	0.15\%	0.20\%	0.52\%	0.22\%	0.24\%	Negative correlation with income, except HD
Miscellaneous Inorga	Misc. Inorganic	Miscellaneous Inorganics	0.10\%	NR_Other	0.09\%	0.05\%	0.09\%	0.04\%	0.06\%	0.24\%	0.09\%	0.14\%	Negative correlation with income, except HD
Miscellaneous Inorga	Misc. Inorganic	Ceramics	0.46\%	NR_Other	0.27\%	0.47\%	0.44\%	0.18\%	0.43\%	0.51\%	0.65\%	0.47\%	Negative correlation with MD income
Miscellaneous Inorganics Total			0.56\%		0.37\%	0.52\%	0.53\%	0.21\%	0.50\%	0.75\%	0.73\%	0.61\%	Negative correlation with income, except LD
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.03\%	No discerrible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.11\%	NR_Other	0.25\%	0.18\%	0.01\%	0.07\%	0.08\%	0.19\%	0.07\%	0.10\%	Negative correlation with income, except HD
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Glues	0.06\%	NR_Other	0.03\%	0.06\%	0.02\%	0.01\%	0.10\%	0.15\%	0.03\%	0.02\%	Negative correlation with MD income
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.03\%	NR_Other	0.02\%	0.03\%	0.02\%	0.02\%	0.05\%	0.04\%	0.03\%	0.02\%	No discerrible pattem
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.01\%	0.00\%	0.06\%	0.02\%	0.01\%	0.00\%	0.01\%	0.01\%	Positive correlation with MD income
HHW	HHW	Home Medical Products	0.02\%	NR_Other	0.02\%	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.04\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.07\%	NR_Other	0.04\%	0.02\%	0.03\%	0.01\%	0.12\%	0.13\%	0.10\%	0.02\%	Negative correlation with MD income
$\frac{\text { HHW Total }}{\text { Grand Total }}$			0.33\%		0.37\%	0.31\%	0.16\%	0.14\%	0.40\%	0.53\%	0.30\%	0.27\%	Positive correlation with income, except MD
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-19
Housing Density and Income Details, Annual Waste Characterization Study, MGP (continued)

SUBTOTALS BY RECYCLING DESIGNATION

Recycling Designation	\% of Citywide MGP Stream	High Densityl High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	Medium Density High Income \%	/ Medium Density/ Medium Income \%	Medium Density Low Income \%	Low Densityl High Income \%	Low Density/ Medium Income \%
Designated Paper	2.46\%	1.78\%	2.53\%	0.93\%	2.51\%	2.45\%	3.12\%	3.11\%	3.31\%
Designated Beverage Cartons	1.95\%	1.62\%	2.16\%	1.42\%	2.82\%	2.50\%	2.02\%	1.80\%	1.52\%
Designated Plastic	12.88\%	9.88\%	12.07\%	11.16\%	8.98\%	14.90\%	13.36\%	14.42\%	13.89\%
Designated Metal	32.55\%	22.80\%	33.86\%	44.92\%	27.37\%	29.95\%	34.66\%	33.35\%	34.21\%
Designated Glass	32.51\%	47.32\%	28.88\%	22.49\%	45.02\%	32.02\%	27.94\%	30.44\%	30.08\%
Designated MGP Subtotal	79.89\%	81.63\%	76.96\%	80.00\%	84.18\%	79.36\%	77.99\%	80.00\%	79.70\%
Potentially Designated Plastic	6.89\%	7.86\%	7.86\%	6.17%	6.12\%	7.76\%	6.75\%	6.01\%	6.51\%
Potentially Designated Glass	0.42\%	0.42\%	0.41\%	0.20\%	0.25\%	0.49\%	0.42\%	0.42\%	0.73\%
Potentially Designated Materials Subtotal	7.31\%	8.28\%	8.27\%	6.37\%	6.36\%	8.25\%	7.17\%	6.43\%	7.24\%
Nondesignated Paper	0.80\%	0.55\%	0.72\%	0.69\%	0.57\%	0.92\%	1.00\%	0.86\%	0.85\%
Nondesignated Plastic	3.80\%	2.90\%	4.18\%	5.01\%	2.71\%	3.99\%	3.77\%	3.69\%	3.78\%
Other Nondesignated	5.74\%	4.87\%	7.34\%	7.01\%	3.67\%	5.02\%	6.94\%	5.90\%	5.12\%
Nondesignated Materials Subtotal	10.33\%	8.31\%	12.24\%	12.70\%	6.94\%	9.94\%	11.72\%	10.46\%	9.75\%

AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	Medium Density Medium Income	Medium Density	Low Densityl High Income	Low Densityl Medium Income
Paper Total ${ }^{(2]}$	240.32	25.07	15.75	17.47	15.14	56.36	31.21	58.94	20.39
Plastic Total ${ }^{(2)}$	1,085.78	130.83	70.25	128.61	45.69	255.81	121.28	246.54	86.77
Glass Total ${ }^{(2)}$	1,516.80	302.64	85.32	130.64	116.16	312.02	143.98	315.49	110.55
Metal Total ${ }^{(3)}$	1,237.63	118.46	73.71	200.24	54.58	251.13	145.49	290.60	103.41
Organics Total	122.84	12.76	8.99	14.51	4.60	24.67	16.67	29.87	10.77
Appliance/Electronic Total	342.99	37.80	31.35	74.58	19.17	49.40	39.92	67.80	22.98
C \& D Debris Total	18.98	1.69	3.56	5.67	0.38	1.88	2.64	2.29	0.88
Miscellaneous Inorganics Total	25.72	2.32	1.53	3.04	0.55	4.77	3.83	7.51	2.18
HHW Total	15.16	2.36	0.90	0.93	0.36	3.85	2.70	3.12	0.96
Grand Total	4,606.23	633.92	291.35	575.68	256.64	959.89	507.73	1,022.17	358.87

1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-20
Housing Density and Income Details, Annual Waste Characterization Study, Aggregated Recycling (Paper and MGP)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide $\begin{array}{c}\text { Recycling } \\ \text { Stream }\end{array}$	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	Medium Densityl High Income $\%$	Medium Density/ Medium Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	25.30\%	R Paper	34.48\%	25.97\%	15.36\%	28.02\%	20.80\%	17.39\%	29.04\%	19.62\%	Positive correlation with income
Paper	OCC	Plain OCC/Kraft Paper	8.34\%	R Paper	6.13\%	7.88\%	12.05\%	6.10\%	10.13\%	12.34\%	7.05\%	6.37\%	Negative correlation with income, except LD
Paper	Mixed Paper	High Grade Paper	1.93\%	R Paper	1.97\%	1.36\%	1.82\%	2.89\%	2.68\%	1.77\%	1.33\%	1.48\%	Positive correation with MD income
Paper	Mixed Paper	Mixed Low Grade Paper	19.40\%	R Paper	22.76\%	20.71\%	9.09\%	27.22\%	18.79\%	14.57\%	21.12\%	13.96\%	Positive correation with income
Paper	Mixed Paper	Phone Books/Paperbacks	2.99\%	R Paper	2.93\%	3.62\%	2.00\%	4.37\%	4.28\%	2.57\%	1.92\%	2.06\%	Positive correlation with MD income
Paper	Mixed Paper	Paper Bags	0.24\%	R Paper	0.35\%	0.21\%	0.04\%	0.32\%	0.37\%	0.07\%	0.18\%	0.16\%	Positive correlation with income, except MD
Paper	Bev Cartons	Polycoated Paper Containers	0.93\%	R Bev Cartons	0.57\%	0.93\%	1.10\%	0.92\%	1.14\%	1.16\%	0.87\%	0.94\%	Negative correlation with income
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.94\%	NR_Paper	0.22\%	0.90\%	0.84\%	0.83\%	1.49\%	0.33\%	1.40\%	0.48\%	Negative correlation with HI density
Paper	Compostable Paper	Single Use Paper Plate, Cups	0.04\%	NR_Paper	0.02\%	0.03\%	0.02\%	0.03\%	0.06\%	0.04\%	0.03\%	0.06\%	No discernible pattern
Paper	Other Paper	Other Nonrecyclable Paper	0.61\%	NR_Paper	0.52\%	0.34\%	1.03\%	0.51\%	0.81\%	0.59\%	0.47\%	0.80\%	Positive correlation with density, except MI
Paper Total			60.70\%		69.96\%	61.95\%	43.35\%	71.22\%	60.54\%	50.83\%	63.40\%	45.94\%	Positive correlation with income
Plastic	PET Bottles	PET Bottles	2.61\%	R Plastics	1.72\%	1.98\%	2.60\%	1.51\%	2.78\%	3.53\%	2.99\%	4.08\%	Negative correlation with income
Plastic	HDPE Botlles	HDPE Bottles: Natural	1.25\%	R Plastics	0.51\%	1.47\%	2.01\%	0.46\%	1.80\%	1.64\%	1.01\%	1.82\%	Negative correlation with income, except MD
Plastic	HDPE Botlles	HDPE Bottles: Colored	1.30\%	R Plastics	0.72\%	1.25\%	1.69\%	0.65\%	1.42\%	1.65\%	1.45\%	1.95\%	Negative correlation with income
Plastic	Injection Molded Tubs	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.08\%	PR_Plastics	0.05\%	0.19\%	0.14\%	0.06\%	0.08\%	0.11\%	0.07\%	0.10\%	Negative correlation with income, except HD
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	PR_Plastics	0.02\%	0.03\%	0.01\%	0.01\%	0.01\%	0.02\%	0.02\%	0.02\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.02\%	No discernible pattem
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botles: \#5 PP	0.04\%	PR_Plastics	0.01\%	0.03\%	0.04\%	0.02\%	0.04\%	0.07\%	0.04\%	0.07\%	Negative correlation with income and density
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botlles: \#7 Other	0.08\%	PR_Plastics	0.07\%	0.13\%	0.07\%	0.05\%	0.08\%	0.11\%	0.08\%	0.12\%	Negative correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.17\%	0.16\%	0.20\%	0.11\%	0.17\%	0.18\%	0.15\%	0.23\%	Negative correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	0.04\%	0.03\%	0.09\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.03\%	PR_Plastics	0.01\%	0.06\%	0.11\%	0.00\%	0.02\%	0.04\%	0.02\%	0.03\%	Negative correlation with income
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.09\%	0.01\%	0.01\%	Negative correlation with MD income
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.12\%	PR_Plastics	0.09\%	0.10\%	0.08\%	0.08\%	0.14\%	0.10\%	0.15\%	0.21\%	Negative correlation with density, except HI
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.06\%	PR_Plastics	0.04\%	0.07\%	0.06\%	0.09\%	0.07\%	0.09\%	0.07\%	0.06\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.55\%	PR_Plastics	0.41\%	0.55\%	0.65\%	0.37\%	0.70\%	0.60\%	0.48\%	0.82\%	Negative correlation with income, except MD
Plastic	Film	Plastic Bags	0.51\%	PR_Plastics	0.43\%	0.55\%	0.38\%	0.36\%	0.54\%	0.58\%	0.58\%	0.65\%	Negative correlation with income, except HD
Plastic	Film	Other Film	1.66\%	PR_Plastics	1.92\%	1.77\%	2.26\%	1.16\%	1.88\%	1.99\%	1.07\%	1.56\%	Positive correlation with density, except MI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.10\%	NR_Plastics	0.05\%	0.07\%	0.08\%	0.06\%	0.13\%	0.10\%	0.10\%	0.26\%	Negative correlation with density
Plastic	Other Plastic Products	Other Plastics Materials	1.53\%	NR_Plastics	0.91\%	1.65\%	3.12\%	0.80\%	1.58\%	1.89\%	1.36\%	1.92\%	Negative correlation with income
Plastic Total			10.18\%		7.15\%	10.08\%	13.55\%	5.83\%	11.50\%	12.85\%	9.70\%	14.05\%	Negative correlation with income
Glass	Container Glass	Clear Container Glass	3.26\%	R Glass	2.20\%	2.84\%	2.33\%	2.38\%	2.81\%	4.51\%	4.21\%	5.67\%	Negative correlation with income, except HD
Glass	Container Glass	Green Container Glass	1.65\%	R Glass	3.21\%	1.58\%	0.54\%	2.92\%	0.92\%	1.04\%	1.29\%	1.54\%	Positive correation with HD income
Glass	Container Glass	Brown Container Glass	0.79\%	R Glass	0.70\%	0.58\%	0.47\%	0.97\%	0.73\%	0.97\%	0.90\%	1.12\%	Positive correlation with HD income
Glass	Mixed Cullet	Mixed Cullet	7.18\%	R Glass	7.84\%	6.16\%	9.33\%	6.79\%	8.34\%	7.57\%	4.80\%	8.47\%	Positive correlation with density, except MI
Glass	Container Glass	Other Container Glass	0.07\%	R Glass	0.05\%	0.06\%	0.04\%	0.07\%	0.07\%	0.10\%	0.08\%	0.12\%	Negative correlation with density
Glass	Other Glass	Other Glass	0.18\%	PR_Glass	0.13\%	0.17\%	0.18\%	0.07\%	0.20\%	0.21\%	0.17\%	0.44\%	Negative correlation with income
Glass Total			13.13\%		14.13\%	11.39\%	12.89\%	13.20\%	13.07\%	14.42\%	11.46\%	17.36\%	Negative correlation with density, except HI
Metal	Aluminum	Aluminum Cans	0.26\%	R Metal	0.12\%	0.16\%	0.23\%	0.14\%	0.23\%	0.30\%	0.40\%	0.50\%	Negative correlation with income and density
Metal	Aluminum	Aluminum Foil/Containers	0.40\%	R M etal	0.16\%	0.34\%	0.35\%	0.26\%	0.44\%	0.61\%	0.48\%	0.66\%	Negative correlation with income and density
Metal	Aluminum	Other Aluminum	0.15\%	R M etal	0.04\%	0.18\%	0.35\%	0.10\%	0.13\%	0.13\%	0.16\%	0.30\%	Negative correlation with income, except MD
Metal	Non-Ferrous	Other Non-Ferrous	0.32\%	R M Metal	0.18\%	0.48\%	0.52\%	0.16\%	0.25\%	0.42\%	0.39\%	0.28\%	Negative correlation with income, except LD
Metal	Ferrous	Tin Food Cans	2.90\%	R M etal	1.21\%	2.38\%	4.07\%	1.74\%	3.47\%	4.42\%	2.82\%	4.76\%	Negative correlation with income and density
Metal	Ferrous	Empty Aerosol Cans	0.28\%	R Metal	0.18\%	0.27\%	0.34\%	0.12\%	0.36\%	0.38\%	0.25\%	0.36\%	Negative correlation with income
Metal	Ferrous	Other Ferrous	5.12\%	R Metal	2.99\%	4.64\%	10.02\%	2.98\%	4.62\%	6.95\%	5.07\%	7.09\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	1.34\%	R Metal	0.68\%	1.45\%	3.73\%	0.74\%	1.13\%	1.30\%	1.08\%	2.36\%	Negative correlation with income
Metal Total			10.75\%		5.55\%	9.90\%	19.61\%	6.23\%	10.64\%	14.52\%	10.64\%	16.30\%	Negative correlation with income

Table 1-20
Housing Density and Income Details, Annual Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	High Densityl Medium Income \%	High Densityl Low Income \%	$\begin{aligned} & \text { Medium Densityl } \\ & \text { High Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Medium Density Low Income \%	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.01\%	NR_Other	0.00\%	0.00\%	0.01\%	0.09\%	0.01\%	0.01\%	0.01\%	0.00\%	No discernible pattem
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.80\%	NR_Other	0.42\%	0.71\%	0.77\%	0.49\%	0.89\%	1.09\%	0.99\%	1.08\%	Negative correlation with income and density
Organics	Wood	Wood Furniture/Furniture Pieces	0.06\%	NR_Other	0.06\%	0.07\%	0.12\%	0.02\%	0.05\%	0.11\%	0.04\%	0.02\%	Negative correlation with income, except LD
Organics	Wood	Non-CCD Untreated Wood	0.03\%	NR_Other	0.01\%	0.03\%	0.06\%	0.08\%	0.04\%	0.04\%	0.01\%	0.01\%	Negative correlation with HD income
Organics	Texilies	Non-Clothing Textiles	0.09\%	NR_Other	0.11\%	0.11\%	0.12\%	0.02\%	0.07\%	0.07\%	0.08\%	0.11\%	No discerrible pattern
Organics	Texiles	Clothing Textiles	0.07\%	NR_Other	0.05\%	0.09\%	0.07\%	0.09\%	0.05\%	0.20\%	0.08\%	0.04\%	Positive correlation with MI density
Organics	Texiles	CarpetUphoistery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.05\%	NR_Other	0.01\%	0.08\%	0.04\%	0.04\%	0.06\%	0.08\%	0.06\%	0.06\%	Negative correlation with density, except MI
Organics	Misc. Organic	Animal By-Products	0.01\%	NR_Other	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
Organics	Misc. Organic	Rubber Products	0.06\%	NR_Other	0.01\%	0.08\%	0.22\%	0.02\%	0.05\%	0.04\%	0.03\%	0.13\%	Negative correlation with income, except MD
Organics	Texiles	Shoes	0.05\%	NR_Other	0.05\%	0.05\%	0.03\%	0.01\%	0.07\%	0.07\%	0.03\%	0.07\%	No discernible pattern
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Fines	0.29\%	NR_Other	0.21\%	0.27\%	0.38\%	0.24\%	0.28\%	0.32\%	0.36\%	0.25\%	Negative correlation with income, except LD
Organics	Texilies	Upholstered or Other Organic-Type Funniture	0.04\%	NR_Other	0.05\%	0.01\%	0.14\%	0.00\%	0.00\%	0.14\%	0.01\%	0.13\%	No discerrible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.05\%	NR_Other	0.03\%	0.03\%	0.12\%	0.03\%	0.03\%	0.17\%	0.04\%	0.05\%	No discernible pattern
Organics Total			1.63\%		1.03\%	1.56\%	2.10\%	1.15\%	1.62\%	2.35\%	1.78\%	1.99\%	Negative correlation with income and density
Appliance/Electronic	Ferrous	Appliances: Ferrous	2.20\%	R Metal	1.19\%	3.29\%	5.61\%	1.72\%	1.50\%	2.93\%	1.76\%	3.01\%	Negative correlation with income, except MD
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.06\%	R M etal	0.04\%	0.07\%	0.07\%	0.05\%	0.02\%	0.08\%	0.09\%	0.05\%	Negative correlation with density, except MI
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.35\%	NR_Other	0.23\%	0.42\%	0.79\%	0.21\%	0.31\%	0.55\%	0.26\%	0.43\%	Negative correlation with income
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioV游这Equipment: Other	0.12\%	NR_Other	0.05\%	0.17\%	0.26\%	0.06\%	0.11\%	0.13\%	0.13\%	0.12\%	Negative correlation with income, except LD
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.03\%	NR_Other	0.15\%	0.03\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HD income
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.21\%	NR_Other	0.14\%	0.28\%	0.53\%	0.13\%	0.14\%	0.27\%	0.24\%	0.10\%	Negative correlation with income, except LD
Appliance/Electronic Total			2.98\%		1.79\%	4.28\%	7.28\%	2.18\%	2.08\%	3.96\%	2.49\%	3.71\%	Negative correlation with income, except MD
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.03\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.03\%	Positive correlation with HD income
$C \& D$ Debris	Wood	Treated/Contaminated Wood	0.06\%	NR_Other	0.03\%	0.03\%	0.22\%	0.02\%	0.08\%	0.13\%	0.02\%	0.01\%	Negative correlation with MD income
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.01\%	NR_Other	0.00\%	0.02\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	Negative correlation with density, except HI
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/bricks	0.03\%	NR_Other	0.01\%	0.02\%	0.09\%	0.00\%	0.01\%	0.10\%	0.03\%	0.03\%	Negative correlation with income, except LD
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	0.12\%	NR_Other	0.08\%	0.43\%	0.48\%	0.06\%	0.04\%	0.18\%	0.03\%	0.07\%	Positive correlation with density, except MI
C \& D Debris Total			0.24\%		0.16\%	0.51\%	0.81\%	0.09\%	0.16\%	0.42\%	0.09\%	0.14\%	Negative correlation with income
Miscellaneous Inorganic	Misc. Inorganic	Miscellaneous Inorganics	0.05\%	NR_Other	0.04\%	0.02\%	0.05\%	0.01\%	0.03\%	0.13\%	0.05\%	0.08\%	Negative correlation with income, except HD
Miscellaneous Inorganic	Misc. Inorganic	Ceramics	0.19\%	NR_Other	0.08\%	0.19\%	0.25\%	0.06\%	0.21\%	0.27\%	0.24\%	0.26\%	Negative correlation with income
Miscellaneous Inorganics Total			0.24\%		0.12\%	0.22\%	0.30\%	0.07\%	0.24\%	0.40\%	0.30\%	0.34\%	Negative correlation with income
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	No discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	NR_Other	0.07\%	0.07\%	0.01\%	0.02\%	0.03\%	0.10\%	0.06\%	0.05\%	Negative correlation with MD income
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Gues	0.02\%	NR_Other	0.01\%	0.02\%	0.01\%	0.00\%	0.04\%	0.08\%	0.01\%	0.01\%	Negative correlation with MD income
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.02\%	NR_Other	0.01\%	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	No discerrible pattem
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Exinguishers	0.01\%	NR_Other	0.00\%	0.00\%	0.04\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Home Medical Products	0.01\%	NR_Other	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.03\%	No discerrible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.01\%	0.01\%	0.02\%	0.00\%	0.05\%	0.06\%	0.04\%	0.01\%	Negative correlation with MD income
$\frac{\text { HHW Total }}{\text { Grand Total }}$			0.14\%		0.11\%	0.13\%	0.11\%	0.05\%	0.16\%	0.27\%	0.15\%	0.16\%	Negative correlation with income, except HD
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	-

Table 1-20
Housing Density and Income Details, Annual Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Recycling Designation	\% of Citywide Recycling Stream	High Densityl High Income \%	High Densityl Medium Income \%	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \hline \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	Low Density/ Medium Income \%
Designated Paper	58.19\%	68.62\%	59.74\%	40.36\%	68.93\%	57.04\%	48.70\%	60.64\%	43.66\%
Designated Beverage Cartons	0.93\%	0.57\%	0.93\%	1.10\%	0.92\%	1.14\%	1.16\%	0.87\%	0.94\%
Designated Plastic	5.17\%	2.95\%	4.69\%	6.30\%	2.62\%	6.00\%	6.83\%	5.45\%	7.85\%
Designated Metal	13.01\%	6.78\%	13.26\%	25.29\%	7.99\%	12.16\%	17.52\%	12.49\%	19.37\%
Designated Glass	12.96\%	14.00\%	11.22\%	12.72\%	13.13\%	12.87\%	14.21\%	11.28\%	16.92\%
Designated MGP Subtotal	32.06\%	24.30\%	30.11\%	45.42\%	24.66\%	32.18\%	39.72\%	30.09\%	45.08\%
Potentially Designated Plastic	3.37\%	3.24\%	3.65\%	4.04\%	2.34\%	3.78\%	3.95\%	2.78\%	4.01\%
Potentially Designated Glass	0.18\%	0.13\%	0.17\%	0.18\%	0.07\%	0.20\%	0.21\%	0.17\%	0.44\%
Potentially Designated Materials Subtotal	3.55\%	3.37\%	3.82\%	4.21\%	2.41\%	3.97\%	4.15\%	2.95\%	4.45\%
Nondesignated Paper	1.59\%	0.76\%	1.27\%	1.89\%	1.37\%	2.36\%	0.96\%	1.90\%	1.34\%
Nondesignated Plastic	1.64\%	0.97\%	1.73\%	3.22\%	0.87\%	1.72\%	2.07\%	1.47\%	2.18\%
Other Nondesignated	2.98\%	1.98\%	3.33\%	4.91\%	1.76\%	2.73\%	4.38\%	2.95\%	3.29\%
Nondesignated Materials Subtotal	6.21\%	3.71\%	6.33\%	10.01\%	4.00\%	6.81\%	7.42\%	6.32\%	6.81\%
Designated for Recycling Total	90.25\%	92.92\%	89.85\%	85.77\%	93.59\%	89.21\%	88.43\%	90.73\%	88.74\%
Potentially or Not Designated for Recycling Total	9.75\%	7.08\%	10.15\%	14.23\%	6.41\%	10.79\%	11.57\%	9.27\%	11.26\%

aVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Densityl	Low Density/ High Income	Low Densityl Medium Income
Paper Total ${ }^{[2]}$	7,041.65	1,504.73	464.43	443.41	631.32	1,444.36	511.48	1,749.68	293.03
Plastic Total ${ }^{(2)}$	1,180.58	153.90	75.54	138.62	51.66	274.49	129.28	267.65	89.61
Glass Total ${ }^{(2)}$	1,523.57	303.92	85.38	131.89	117.02	311.77	145.09	316.19	110.75
Metal Total ${ }^{(3)}$	1,247.28	119.44	74.22	200.57	55.20	253.76	146.10	293.70	104.00
Organics Total	189.23	22.05	11.70	21.48	10.15	38.61	23.62	49.01	12.71
Appliance/Electronic Total	345.45	38.60	32.06	74.43	19.29	49.59	39.80	68.68	23.69
C \& D Debris Total	27.54	3.42	3.81	8.33	0.80	3.76	4.21	2.36	0.88
Miscellaneous Inorganics Total	27.89	2.48	1.61	3.09	0.64	5.70	3.99	8.18	2.20
HHW Total	16.66	2.38	0.94	1.10	0.40	3.93	2.75	4.23	1.01
Grand Total	11,599.86	2,150.92	749.69	1,022.92	886.49	2,385.97	1,006.31	2,759.68	637.88

1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliancelelectronic material group.

Table 1-21
Housing Density and Income Details, Annual Waste Characterization Study, Waste (Refuse and Recycling)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator Subindicato	High Densityl High Income \%	$\begin{aligned} & \hline \text { High Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	Medium Densityl High Income $\%$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Density/ High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	7.54\%	R Paper	13.43\%	8.52\%	5.28\%	10.74\%	6.67\%	5.20\%	8.08\%	5.10\%	Positive correlation with income and density
Paper	OCC	Plain OCC/Kraft Paper	2.44\%	R Paper	2.97\%	2.28\%	2.22\%	2.49\%	2.71\%	2.60\%	2.24\%	1.83\%	Positive correation with income, except MD
Paper	Mixed Paper	High Grade Paper	0.90\%	R Paper	1.65\%	0.94\%	0.72\%	1.59\%	0.88\%	0.72\%	0.70\%	0.59\%	Positive correation with income
Paper	Mixed Paper	Mixed Low Grade Paper	10.33\%	R Paper	17.95\%	10.62\%	7.78\%	14.86\%	9.22\%	8.03\%	10.29\%	7.73\%	Positive correation with income
Paper	Mixed Paper	Phone Books/Paperbacks	0.94\%	R Paper	1.42\%	1.16\%	0.57\%	1.59\%	1.13\%	0.85\%	0.73\%	0.65\%	Positive correlation with income
Paper	Mixed Paper	Paper Bags	0.62\%	R Paper	1.22\%	0.57\%	0.61\%	0.78\%	0.58\%	0.51\%	0.43\%	0.43\%	Positive correlation with density, except MI
Paper	Bev Cartons	Polycoated Paper Containers	0.50\%	R Bev Cartons	0.58\%	0.61\%	0.49\%	0.63\%	0.51\%	0.53\%	0.39\%	0.35\%	Positive correlation with MI density
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.64\%	NR_Paper	6.28\%	5.76\%	5.37\%	5.62\%	5.98\%	4.84\%	5.69\%	5.69\%	Positive correalaion with HD income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.43\%	NR_Paper	0.51\%	0.36\%	0.26\%	0.51\%	0.34\%	0.24\%	0.68\%	0.63\%	Positive correlation with income
Paper	Other Paper	Other Nonrecyclable Paper	0.69\%	NR_Paper	0.69\%	0.67\%	0.76\%	0.81\%	0.71\%	0.58\%	0.67\%	0.64\%	Positive correlation with income, except HD
Paper Total			30.04\%		46.69\%	31.49\%	24.06\%	39.61\%	28.74\%	24.10\%	29.91\%	23.63\%	Positive correlation with income
Plastic	PET Botlles	PET Bottles	1.21\%	R Plastics	1.22\%	1.13\%	1.34\%	0.97\%	1.19\%	1.42\%	1.07\%	1.13\%	Negative correlation with income, except HD
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.46\%	R Plastics	0.30\%	0.48\%	0.58\%	0.23\%	0.55\%	0.47\%	0.41\%	0.38\%	Negative correlation with HD income
Plastic	HDPE Botlles	HDPE Bottles: Colored	0.48\%	R Plastics	0.44\%	0.48\%	0.53\%	0.39\%	0.48\%	0.48\%	0.49\%	0.44\%	Negative correlation with HD income
Plastic	Injection Molded Tubs	\#1 \#2 Tubs/Tras/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	No discernible pattem
Plastic	Injection Molded Tubs	\#1.\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	PR_Plastics	0.06\%	0.10\%	0.05\%	0.04\%	0.05\%	0.06\%	0.03\%	0.04\%	Positive correlation with density, except LI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	No discernible pattem
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	0.02\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#7 Other	0.07\%	PR_Plastics	0.06\%	0.08\%	0.07\%	0.05\%	0.06\%	0.07\%	0.09\%	0.06\%	Negative correlation with MD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattem
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.03\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.23\%	0.19\%	0.18\%	0.23\%	0.16\%	0.13\%	0.15\%	0.17\%	Positive correlation with income, except LD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	PR_Plastics	0.06\%	0.05\%	0.04\%	0.06\%	0.03\%	0.03\%	0.03\%	0.05\%	Positive correation with HD income
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Cariers	0.01\%	PR_Plastics	0.00\%	0.02\%	0.03\%	0.02\%	0.01\%	0.02\%	0.00\%	0.02\%	Negative correlation with income, except MD
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%	0.01\%	0.03\%	0.01\%	Negative correlation with HD income
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.24\%	PR_Plastics	0.42\%	0.25\%	0.24\%	0.30\%	0.21\%	0.18\%	0.21\%	0.20\%	Positive correation with income and density
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.54\%	PR_Plastics	0.38\%	0.57\%	0.64\%	0.44\%	0.57\%	0.64\%	0.46\%	0.51\%	Negative correlation with income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.75\%	PR_Plastics	1.12\%	0.83\%	0.65\%	0.92\%	0.76\%	0.55\%	0.70\%	0.72\%	Positive correation with density
Plastic	Film	Plastic Bags	2.73\%	PR_Plastics	2.53\%	3.42\%	3.47\%	2.19\%	3.02\%	2.87\%	1.92\%	2.25\%	Positive correation with density
Plastic	Film	Other Film	4.76\%	PR_Plastics	5.13\%	5.53\%	5.64\%	4.04\%	4.91\%	5.01\%	3.57\%	4.18\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.51\%	NR_Plastics	0.41\%	0.52\%	0.44\%	0.40\%	0.43\%	0.61\%	0.62\%	0.66\%	Negative correlation with income, except HD
Plastic	Other Plastic Products	Other Plastics Materials	1.85\%	NR_Plastics	1.29\%	2.05\%	1.98\%	1.37\%	1.76\%	1.91\%	2.06\%	2.07\%	Negative correlation with income, except HD
Plastic Total			13.94\%		13.73\%	15.76\%	15.96\%	11.69\%	14.24\%	14.51\%	11.88\%	12.95\%	Positive correlation with density
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	1.57\%	R Glass	1.22\%	1.27\%	1.74\%	1.51\%	1.43\%	2.09\%	1.50\%	1.58\%	Negative correlation with income, except MD
Glass	Container Glass	Green Container Glass	0.54\%	R Glass	1.31\%	0.48\%	0.36\%	1.22\%	0.43\%	0.37\%	0.39\%	0.35\%	Positive correlation with income
Glass	Container Glass	Brown Container Glass	0.38\%	R Glass	0.32\%	0.27\%	0.50\%	0.52\%	0.39\%	0.43\%	0.27\%	0.33\%	No discerrible pattern
Glass	Mixed Cullet	Mixed Cullet	1.78\%	R Glass	2.76\%	1.59\%	1.55\%	2.42\%	2.15\%	1.55\%	1.23\%	1.50\%	Positive correlation with income, except LD
Glass	Container Glass	Other Container Glass	0.03\%	R Glass	0.03\%	0.02\%	0.02\%	0.04\%	0.03\%	0.04\%	0.03\%	0.03\%	No discernible pattern
Glass	Other Glass	Other Glass	0.19\%	PR_Glass	0.14\%	0.19\%	0.18\%	0.15\%	0.22\%	0.23\%	0.18\%	0.25\%	Negative correlation with density
Glass Total			4.49\%		5.77\%	3.83\%	4.35\%	5.85\%	4.65\%	4.72\%	3.62\%	4.04\%	No discernible pattern
Metal	Aluminum	Aluminum Cans	0.21\%	R Metal	0.21\%	0.22\%	0.27\%	0.15\%	0.18\%	0.22\%	0.20\%	0.18\%	Negative correlation with income, except LD
Metal	Aluminum	Aluminum Foil/Containers	0.54\%	R Metal	0.50\%	0.49\%	0.55\%	0.52\%	0.55\%	0.59\%	0.52\%	0.54\%	Negative correlation with income, except HD
Metal	Aluminum	Other Aluminum	0.06\%	R Metal	0.02\%	0.05\%	0.07\%	0.06\%	0.04\%	0.06\%	0.06\%	0.11\%	Negative correlation with income, except MD
Metal	Non-Ferrous	Other Non-Ferrous	0.17\%	R Metal	0.13\%	0.22\%	0.16\%	0.20\%	0.14\%	0.13\%	0.20\%	0.18\%	Positive correlation with income, except HD
Metal	Ferrous	Tin Food Cans	1.20\%	R Metal	0.72\%	1.19\%	1.70\%	0.90\%	1.28\%	1.41\%	0.94\%	1.12\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.16\%	R M etal	0.15\%	0.12\%	0.16\%	0.12\%	0.19\%	0.15\%	0.16\%	0.16\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	1.94\%	R Metal	1.64\%	1.65\%	1.92\%	1.78\%	1.84\%	1.85\%	2.12\%	2.85\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	0.65\%	R Metal	0.68\%	0.53\%	0.75\%	0.55\%	0.55\%	0.79\%	0.57\%	0.79\%	Negative correlation with density, except HI
Metal Total			4.92\%		4.05\%	4.48\%	5.59\%	4.28\%	4.77\%	5.22\%	4.77\%	5.92\%	Negative correlation with income

Table 1-21
Housing Density and Income Details, Annual Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Table 1-21
Housing Density and Income Details, Annual Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Recycling Designation	\% of Citywide	High Densityl High Income \%	High Density/ Medium Income \%	High Density/ Low Income \%	Medium Density High Income \%	Medium Densityl Medium Income \%	Medium Density/ Low Income \%	Low Densityl High Income \%	Low Densityl Medium Income \%
Designated Paper	22.78\%	38.64\%	24.09\%	17.18\%	32.04\%	21.9\%	17.90\%	22.48\%	16.32\%
Designated Beverage Cartons	0.50\%	0.58\%	0.61\%	0.49\%	0.63\%	0.51\%	0.53\%	0.39\%	0.35\%
Designated Plastic	2.14\%	1.95\%	2.09\%	2.45\%	1.59\%	2.23\%	2.36\%	1.97\%	1.95\%
Designated Metal	5.67\%	4.64\%	5.18\%	6.33\%	4.99\%	5.31\%	6.23\%	5.61\%	6.77\%
Designated Glass	4.30\%	5.63\%	3.64\%	4.17\%	5.70\%	4.44\%	4.49\%	3.43\%	3.79\%
Designated MGP Subtotal	12.60\%	12.80\%	11.52\%	13.44\%	12.89\%	12.48\%	13.62\%	11.40\%	12.86\%
Potentially Designated Plastic	9.42\%	10.07\%	11.09\%	11.06\%	8.33\%	9.82\%	9.61\%	7.20\%	8.26\%
Potentially Designated Glass	0.19\%	0.14\%	0.19\%	0.18\%	0.15\%	0.22\%	0.23\%	0.18\%	0.25\%
Potentially Designated Materials Subtotal	9.61\%	10.20\%	11.28\%	11.23\%	8.49\%	10.04\%	9.84\%	7.39\%	8.50\%
Nondesignated Paper	6.76\%	7.48\%	6.78\%	6.40\%	6.94\%	7.03\%	5.67\%	7.04\%	6.96\%
Nondesignated Plastic	2.38\%	1.71\%	2.58\%	2.45\%	1.77\%	2.19\%	2.54\%	2.71\%	2.74\%
Other Nondesignated	45.87\%	29.17\%	43.73\%	49.30\%	37.86\%	47.06\%	50.43\%	48.98\%	52.61\%
Nondesignated Materials Subtotal	55.01\%	38.36\%	53.10\%	58.15\%	46.58\%	56.28\%	58.64\%	58.73\%	62.32\%
Designated for Recycling Total	35.38\%	51.44\%	35.61\%	30.62\%	44.94\%	33.68\%	31.52\%	33.88\%	29.18\%
Potentially or Not Designated for Recycling	64.62\%	48.56\%	64.39\%	69.38\%	55.06\%	66.32\%	68.48\%	66.12\%	70.82\%

AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Density Low Income	Low Density High Income	Low Density/ Medium Income
Paper Total ${ }^{(2)}$	19,402.41	3,651.10	1,452.25	2,680.61	1,162.67	3,332.66	2,156.95	3,909.63	1,056.53
Plastic Total ${ }^{(2)}$	9,004.02	1,073.33	727.00	1,777.85	343.15	1,651.49	1,298.73	1,553.62	578.86
Glass Total ${ }^{(2)}$	2,899.28	451.17	176.76	484.09	171.63	539.69	422.55	472.69	180.71
Metal Total ${ }^{(3)}$	3,179.93	316.92	206.40	622.62	125.50	552.91	467.29	623.73	264.56
Organics Total	25,123.31	1,984.22	1,735.89	4,834.74	948.56	4,619.23	3,799.05	5,257.37	1,944.25
Appliance/Electronic Total	1,065.72	92.23	71.65	170.34	45.87	188.21	199.24	225.06	73.12
C \& D Debris Total	3,356.98	202.93	205.44	483.95	112.37	611.33	530.31	880.63	330.03
Miscellaneous Inorganics Total	405.06	32.48	23.98	52.18	19.43	67.89	54.40	122.70	32.00
HHW Total	159.38	15.11	12.82	33.51	5.83	33.71	20.87	26.72	10.82
Grand Total	64,596.10	7,819.49	4,612.18	11,139.89	2,935.02	11,597.12	8,949.40	13,072.14	4,470.87

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from September 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

1.8.3 Diversion Rates and Capture Rates

The results of the PWCS and WCS also provide data on the amount of Waste that was diverted from disposal and how much of the material designated for Recycling was collected for Recycling.

The Diversion Rate indicates what portion of the total Waste stream is source-separated and collected for Recycling. Diversion Rates are calculated by dividing the amount of material collected for Recycling, both Paper and MGP, by the total amount of Waste.

Table 1-22 shows the estimate of the percentage of Waste diverted from disposal during the PWCS and WCS by Borough and by Density/Income Strata annually and by season.

Table 1-22
Curbside Diversion Rates, PWCS and WCS

Borough	PWCS			WCS Annual							
		Total								Total	
	Paper	MGP	Recycling	Paper	MGP	Recycling					
Manhattan	13.95%	6.78%	20.74%	14.14%	7.11%	21.24%					
Bronx	6.36%	6.64%	13.00%	6.60%	6.60%	13.19%					
Brooklyn	9.18%	6.64%	15.81%	9.67%	6.91%	16.58%					
Queens	10.33%	7.18%	17.50%	11.36%	7.54%	18.90%					
Staten Island	11.47%	6.54%	18.01%	13.39%	7.52%	20.91%					
Total	10.30%	6.77%	17.08%	10.83%	7.13%	17.96%					

Density/Income Strata	WCS Annual		
	Total		
	Paper	MGP	Recycling
High Density/High Income	19.40%	8.11%	27.51%
High Density/Medium Income	9.94%	6.32%	16.25%
High Density/Low Income	4.01%	5.17%	9.18%
Medium Density/High Income	21.46%	8.74%	30.20%
Medium Density/Medium Income	12.30%	8.28%	20.57%
Medium Density/Low Income	5.57%	5.67%	11.24%
Low Density/High Income	13.29%	7.82%	21.11%
Low Density/Medium Income	6.24%	8.03%	14.27%
Total	10.83%	7.13%	17.96%

Density/Income Strata	Fall 2004			Winter 2005			Spring 2005			Summer 2005		
	Paper	MGP	Total Recycling									
High Density/High Income	20.82\%	7.63\%	28.46\%	19.11\%	8.31\%	27.42\%	19.13\%	8.16\%	27.29\%	18.42\%	8.36\%	26.78\%
High Density/Medium Income	10.28\%	6.28\%	16.55\%	10.52\%	6.48\%	16.99\%	9.60\%	6.30\%	15.90\%	9.43\%	6.22\%	15.65\%
High Density/Low Income	4.36\%	5.32\%	9.68\%	3.95\%	5.00\%	8.95\%	4.05\%	5.08\%	9.12\%	3.71\%	5.27\%	8.98\%
Medium Density/High Income	22.27\%	8.47\%	30.74\%	22.47\%	8.93\%	31.39\%	20.46\%	8.87\%	29.34\%	20.69\%	8.73\%	29.42\%
Medium Density/Medium Income	12.64\%	7.94\%	20.59\%	13.00\%	8.17\%	21.17\%	11.94\%	8.38\%	20.32\%	11.64\%	8.62\%	20.27\%
Medium Density/Low Income	5.80\%	5.67\%	11.46\%	5.90\%	5.37\%	11.27\%	5.44\%	5.64\%	11.08\%	5.15\%	6.00\%	11.16\%
Low Density/High Income	13.87\%	7.39\%	21.26\%	15.64\%	8.31\%	23.95\%	12.03\%	7.66\%	19.69\%	12.23\%	8.01\%	20.25\%
Low Density/Medium Income	6.40\%	7.64\%	14.04\%	6.92\%	8.59\%	15.51\%	6.02\%	8.17\%	14.19\%	5.79\%	7.80\%	13.59\%
Total	11.38\%	6.92\%	18.30\%	11.50\%	7.18\%	18.68\%	10.40\%	7.13\%	17.53\%	10.09\%	7.30\%	17.39\%

Table 1-23 shows the estimate of the percentage of material designated for Recycling that was collected for Recycling.

The Capture Rate measures the tonnages of Recycling setouts, as a fraction of all designated recyclables in the Waste stream. Capture Rates are calculated by dividing the amount of material collected for Recycling, both Paper and MGP, by the total amount of material designated for Recycling in the Waste stream.

Table 1-23 shows the estimate of the percentage of Recycling captured in the City's curbside Recycling program during the PWCS and WCS by Borough, and by Density/Income Strata annually and by season.

Table 1-23
Curbside Capture Rates, PWCS and WCS

Borough		PWCS	
	Paper	MGP	Recycling
Manhattan	53.51%	50.91%	52.63%
Bronx	30.73%	50.08%	38.29%
Brooklyn	41.96%	51.98%	45.65%
Queens	53.62%	65.28%	57.86%
Staten Island	61.84%	58.07%	60.42%
Total	47.99%	54.69%	50.44%
Density/Income Strata		WCS Annual	
			Paper
	50.21%	MGP	Recyl
High Density/High Income	41.25%	54.34%	53.48%
High Density/Medium Income	23.37%	38.45%	45.64%
High Density/Low Income	66.97%	67.81%	67.21%
Medium Density/High Income	58.02%	66.30%	61.09%
Medium Density/Medium Income	31.13%	41.65%	35.67%
Medium Density/Low Income	59.14%	68.56%	62.31%
Low Density/High Income	38.23%	62.44%	48.90%
Low Density/Medium Income	47.53%	56.58%	50.76%
Total			

Density/Income Strata	Fall 2004			Winter 2005			Spring 2005			Summer 2005		
			Total			Total			Total			Total
	Paper	MGP	Recycling									
High Density/High Income	52.42\%	64.54\%	55.20\%	49.16\%	61.76\%	52.40\%	50.00\%	67.03\%	54.11\%	49.01\%	60.35\%	52.06\%
High Density/Medium Income	43.24\%	56.99\%	47.59\%	39.74\%	53.70\%	44.11\%	43.93\%	56.04\%	48.04\%	38.46\%	52.78\%	43.11\%
High Density/Low Income	25.38\%	40.10\%	31.80\%	23.10\%	35.77\%	28.80\%	24.36\%	38.72\%	30.70\%	20.80\%	39.28\%	28.73\%
Medium Density/High Income	68.18\%	68.24\%	68.20\%	68.62\%	68.72\%	68.65\%	67.15\%	69.91\%	67.96\%	63.91\%	64.48\%	64.08\%
Medium Density/Medium Income	59.73\%	72.49\%	64.08\%	57.21\%	62.80\%	59.25\%	58.70\%	67.45\%	62.02\%	56.35\%	63.16\%	59.06\%
Medium Density/Low Income	35.37\%	41.61\%	38.20\%	31.60\%	41.50\%	35.66\%	28.91\%	43.40\%	34.83\%	28.95\%	40.20\%	34.08\%
Low Density/High Income	58.64\%	68.10\%	61.62\%	59.49\%	67.27\%	61.98\%	63.67\%	73.16\%	67.06\%	55.13\%	65.74\%	58.90\%
Low Density/Medium Income	37.66\%	68.30\%	49.83\%	38.47\%	66.27\%	50.11\%	40.34\%	65.39\%	51.76\%	36.65\%	53.24\%	44.64\%
Total	49.43\%	58.13\%	52.39\%	47.28\%	55.04\%	49.99\%	48.41\%	58.96\%	52.21\%	44.92\%	54.35\%	48.45\%

[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1
Section 2: Detailed Residential Results
[This page intentionally left blank.]

Section 2 Detailed Residential Results

2.1 Introduction

This section of Volume 1 presents more detailed data on the Waste composition and generation for the WCS Residential Study. It includes citywide results across seasons and by stream (Refuse, Paper, MGP, Aggregated Recycling, and Waste), and details on waste composition by density and income strata, and details on drink containers. The tables in this section are useful in making detailed evaluations and comparisons across several dimensions of the Study.

2.2 Citywide Results Across Seasons

Citywide results include two sets of tables. The Citywide Results At A Glance, by season (Tables 1-24 through 1-27) compare Refuse, MGP, Paper, and Waste Composition. These tables are useful in comparing the streams of waste during each season.

Citywide Results Across Seasons (Tables 1-28 through 1-32) compare the individual streams over the four seasons, and annually. These tables also provide weekly tonnage generation for each stream, each season. This enables one to track how compositions vary within a stream by season.

Table 1-24
Citywide Results at a Glance, Fall 2004, Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	$\%$ of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.60\%	40.13\%	0.52\%	25.15\%	7.55\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.12\%	18.94\%	0.34\%	11.91\%	3.09\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.64\%	3.17\%	0.08\%	2.00\%	0.89\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.18\%	29.35\%	1.33\%	18.76\%	10.12\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.43\%	3.89\%	0.06\%	2.44\%	0.80\%	R Paper
Paper	Mixed Paper	Paper Bags	0.67\%	0.32\%	0.04\%	0.22\%	0.58\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.40\%	0.20\%	2.01\%	0.88\%	0.49\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.43\%	0.65\%	0.26\%	0.50\%	6.98\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.57\%	0.02\%	0.04\%	0.03\%	0.47\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.64\%	0.48\%	0.39\%	0.45\%	0.61\%	NR_Paper
Paper Total			24.68\%	97.15\%	5.07\%	62.34\%	31.57\%	
Plastic	PET Bottles	PET Bottles	0.77\%	0.03\%	5.39\%	2.06\%	1.00\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.33\%	0.01\%	2.83\%	1.08\%	0.47\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.32\%	0.01\%	3.11\%	1.18\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.04\%	0.01\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	0.00\%	0.28\%	0.11\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.05\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottlee: \#5 PP	0.01\%	0.00\%	0.11\%	0.04\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.00\%	0.25\%	0.10\%	0.05\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.00\%	0.42\%	0.16\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.00\%	0.09\%	0.03\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.04\%	0.02\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.28\%	0.00\%	0.23\%	0.09\%	0.25\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.65\%	0.06\%	0.10\%	0.07\%	0.55\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.70\%	0.06\%	1.33\%	0.54\%	0.67\%	PR_Plastics
Plastic	Film	Plastic Bags	2.87\%	0.17\%	0.68\%	0.36\%	2.42\%	PR_Plastics
Plastic	Film	Other Film	5.63\%	0.78\%	3.40\%	1.77\%	4.92\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.55\%	0.01\%	0.12\%	0.05\%	0.46\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.93\%	0.23\%	3.59\%	1.50\%	1.86\%	NR_Plastics
Plastic Total			14.40\%	1.38\%	22.10\%	9.21\%	13.45\%	
Glass	Container Glass	Clear Container Glass	1.12\%	0.03\%	7.37\%	2.81\%	1.43\%	R Glass
Glass	Container Glass	Green Container Glass	0.27\%	0.01\%	3.94\%	1.50\%	0.49\%	R Glass
Glass	Container Glass	Brown Container Glass	0.30\%	0.01\%	1.90\%	0.72\%	0.38\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.63\%	0.03\%	14.86\%	5.64\%	1.54\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.21\%	0.08\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.12\%	0.04\%	0.49\%	0.21\%	0.14\%	PR_Glass
Glass Total			2.45\%	0.12\%	28.78\%	10.95\%	4.01\%	

Table 1-24
Citywide Results at a Glance, Fall 2004, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	$\%$ of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.16\%	0.01\%	0.53\%	0.21\%	0.17\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.03\%	1.02\%	0.40\%	0.50\%	R Metal
Metal	Aluminum	Other Aluminum	0.06\%	0.00\%	0.14\%	0.06\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.09\%	0.04\%	0.58\%	0.24\%	0.12\%	R Metal
Metal	Ferrous	Tin Food Cans	0.84\%	0.02\%	7.47\%	2.83\%	1.20\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.01\%	0.68\%	0.27\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.05\%	0.02\%	15.71\%	5.95\%	1.95\%	R Metal
Metal	Other Metal	Mixed Metals	0.51\%	0.03\%	2.87\%	1.11\%	0.62\%	R Metal
Metal Total			3.36\%	0.16\%	29.00\%	11.07\%	4.77\%	
Organics	Yard	Leaves and Grass	5.22\%	0.00\%	0.03\%	0.01\%	4.26\%	NR_Other
Organics	Yard	Prunings	1.25\%	0.00\%	0.01\%	0.00\%	1.02\%	NR_Other
Organics	Wood	Stumps/Limbs	0.14\%	0.00\%	0.00\%	0.00\%	0.11\%	NR_Other
Organics	Food	Food	22.41\%	0.18\%	1.14\%	0.54\%	18.41\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.09\%	0.03\%	0.14\%	0.07\%	0.90\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.06\%	0.00\%	0.02\%	0.01\%	0.05\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.56\%	0.06\%	0.17\%	0.10\%	1.29\%	NR_Other
Organics	Textiles	Clothing Textiles	3.08\%	0.13\%	0.09\%	0.11\%	2.54\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.29\%	0.00\%	0.01\%	0.00\%	1.06\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.03\%	0.07\%	0.07\%	0.07\%	3.30\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.25\%	0.00\%	0.01\%	0.00\%	1.03\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.30\%	0.00\%	0.07\%	0.03\%	0.25\%	NR_Other
Organics	Textiles	Shoes	0.67\%	0.01\%	0.06\%	0.03\%	0.55\%	NR_Other
Organics	Textiles	Other Leather Products	0.14\%	0.00\%	0.01\%	0.00\%	0.12\%	NR_Other
Organics	Misc. Organic	Fines	3.51\%	0.28\%	0.14\%	0.23\%	2.91\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.79\%	0.00\%	0.08\%	0.03\%	0.65\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.60\%	0.02\%	0.13\%	0.06\%	0.50\%	NR_Other
Organics Total			47.39\%	0.78\%	2.16\%	1.30\%	38.96\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.16\%	0.00\%	9.32\%	3.52\%	0.78\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.00\%	0.10\%	0.04\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.19\%	0.03\%	1.34\%	0.53\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.25\%	0.00\%	0.23\%	0.09\%	0.22\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	0.00\%	0.01\%	0.00\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.10\%	0.00\%	0.01\%	0.00\%	0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	0.00\%	0.46\%	0.17\%	0.19\%	NR_Other
Appliance/Electronic Total			0.98\%	0.03\%	11.47\%	4.35\%	1.60\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.34\%	0.03\%	0.01\%	0.02\%	0.28\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.71\%	0.13\%	0.15\%	0.14\%	1.42\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.45\%	0.00\%	0.01\%	0.00\%	1.18\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.70\%	0.01\%	0.14\%	0.06\%	0.58\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.67\%	0.10\%	0.25\%	0.16\%	1.39\%	NR_Other
C \& D Debris Total			5.86\%	0.27\%	0.56\%	0.38\%	4.86\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.16\%	0.00\%	0.04\%	0.02\%	0.13\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.44\%	0.04\%	0.47\%	0.20\%	0.40\%	NR_Other
Miscellaneous Inorganics Total			0.60\%	0.05\%	0.51\%	0.22\%	0.53\%	

Table 1-24
Citywide Results at a Glance, Fall 2004, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.02\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.11\%	0.05\%	0.12\%	0.08\%	0.10\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.07\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.02\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.00\%	0.04\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.00\%	0.02\%	0.01\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.04\%	0.02\%	0.03\%	NR_Other
HHW Total			0.28\%	0.05\%	0.34\%	0.16\%	0.26\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Weekly Generation Tonnage ${ }^{(1)}$

Material Group	Refuse	Paper	MGP	Aggregated Recycling	Waste
Paper Total ${ }^{(2)}$	13,312.97	7,299.94	231.68	7,531.62	20,844.59
Plastic Total ${ }^{(2)}$	7,767.80	103.63	1,009.63	1,113.26	8,881.06
Glass Total ${ }^{(2)}$	1,322.78	8.96	1,314.45	1,323.40	2,646.18
Metal Total ${ }^{(3)}$	1,810.35	12.28	1,324.88	1,337.16	3,147.51
Organics Total	25,564.46	58.76	98.89	157.65	25,722.11
Appliance/Electronic Total	530.74	2.33	523.77	526.10	1,056.84
C \& D Debris Total	3,159.23	20.61	25.72	46.33	3,205.56
Miscellaneous Inorganics Total	322.14	3.45	23.10	26.54	348.69
HHW Total	153.38	4.12	15.72	19.84	173.21
Grand Total	53,943.84	7,514.09	4,567.83	12,081.92	66,025.76

Subtotals by Recycling Designation

Recycling Designation	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream
Percent Designated Paper	14.64\%	95.79\%	2.37\%	60.47\%	23.02\%
Percent Designated MGP	7.72\%	0.48\%	80.05\%	30.56\%	11.90\%
Percent Designated Recycling	22.36\%	96.28\%	82.42\%	91.04\%	34.93\%

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-25
Citywide Results at a Glance, Winter 2005, Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.94\%	39.31\%	0.93\%	24.56\%	7.79\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.26\%	14.47\%	0.29\%	9.02\%	2.71\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.82\%	2.85\%	0.03\%	1.76\%	1.00\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.90\%	33.25\%	1.24\%	20.95\%	11.15\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.55\%	5.26\%	0.10\%	3.28\%	1.06\%	R Paper
Paper	Mixed Paper	Paper Bags	0.69\%	0.38\%	0.05\%	0.25\%	0.61\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.38\%	0.45\%	2.06\%	1.07\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.56\%	0.26\%	0.29\%	0.27\%	5.38\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.49\%	0.03\%	0.07\%	0.04\%	0.40\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.66\%	0.29\%	0.39\%	0.33\%	0.60\%	NR_Paper
Paper Total			24.25\%	96.56\%	5.45\%	61.54\%	31.22\%	
Plastic	PET Bottles	PET Bottles	1.00\%	0.17\%	6.15\%	2.47\%	1.28\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.26\%	0.01\%	3.34\%	1.29\%	0.45\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.31\%	0.00\%	3.23\%	1.24\%	0.49\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.01\%	0.20\%	0.08\%	0.06\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.10\%	0.04\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.00\%	0.25\%	0.10\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.00\%	0.40\%	0.15\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.01\%	0.04\%	0.02\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.09\%	0.03\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	0.01\%	0.30\%	0.12\%	0.23\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.63\%	0.06\%	0.11\%	0.08\%	0.53\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.71\%	0.03\%	1.26\%	0.50\%	0.67\%	PR_Plastics
Plastic	Film	Plastic Bags	3.30\%	0.30\%	0.83\%	0.50\%	2.78\%	PR_Plastics
Plastic	Film	Other Film	5.38\%	0.79\%	3.09\%	1.68\%	4.69\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.59\%	0.03\%	0.17\%	0.08\%	0.49\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.87\%	0.22\%	3.10\%	1.33\%	1.77\%	NR_Plastics
Plastic Total			14.68\%	1.66\%	22.74\%	9.77\%	13.76\%	
Glass	Container Glass	Clear Container Glass	1.26\%	0.08\%	7.91\%	3.09\%	1.61\%	R Glass
Glass	Container Glass	Green Container Glass	0.34\%	0.00\%	4.29\%	1.65\%	0.59\%	R Glass
Glass	Container Glass	Brown Container Glass	0.29\%	0.01\%	1.94\%	0.75\%	0.37\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.56\%	0.00\%	16.98\%	6.52\%	1.67\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.13\%	0.05\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.14\%	0.01\%	0.48\%	0.19\%	0.15\%	PR_Glass
Glass Total			2.60\%	0.11\%	31.72\%	12.26\%	4.41\%	

Table 1-25
Citywide Results at a Glance, Winter 2005, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.22\%	0.01\%	0.56\%	0.22\%	0.22\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.03\%	0.95\%	0.38\%	0.50\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.06\%	0.03\%	0.03\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.21\%	0.01\%	0.92\%	0.36\%	0.23\%	R Metal
Metal	Ferrous	Tin Food Cans	0.88\%	0.07\%	7.68\%	2.99\%	1.27\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.00\%	0.63\%	0.24\%	0.14\%	R Metal
Metal	Ferrous	Other Ferrous	1.46\%	0.05\%	13.86\%	5.36\%	2.19\%	R Metal
Metal	Other Metal	Mixed Metals	0.61\%	0.00\%	3.50\%	1.35\%	0.75\%	R Metal
Metal Total			4.04\%	0.17\%	28.16\%	10.93\%	5.33\%	
Organics	Yard	Leaves and Grass	1.12\%	0.00\%	0.01\%	0.00\%	0.91\%	NR_Other
Organics	Yard	Prunings	0.67\%	0.00\%	0.00\%	0.00\%	0.54\%	NR_Other
Organics	Wood	Stumps/Limbs	0.18\%	0.00\%	0.00\%	0.00\%	0.15\%	NR_Other
Organics	Food	Food	23.73\%	0.48\%	1.51\%	0.88\%	19.46\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.61\%	0.01\%	0.12\%	0.05\%	1.32\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.31\%	0.05\%	0.09\%	0.07\%	0.26\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.63\%	0.02\%	0.11\%	0.05\%	1.33\%	NR_Other
Organics	Textiles	Clothing Textiles	2.65\%	0.05\%	0.11\%	0.07\%	2.17\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.78\%	0.00\%	0.00\%	0.00\%	1.44\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.05\%	0.01\%	0.05\%	0.02\%	3.30\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.54\%	0.00\%	0.03\%	0.01\%	1.25\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.25\%	0.11\%	0.04\%	0.08\%	0.22\%	NR_Other
Organics	Textiles	Shoes	0.76\%	0.08\%	0.07\%	0.08\%	0.63\%	NR_Other
Organics	Textiles	Other Leather Products	0.08\%	0.00\%	0.00\%	0.00\%	0.07\%	NR_Other
Organics	Misc. Organic	Fines	4.09\%	0.61\%	0.20\%	0.45\%	3.41\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.80\%	0.00\%	0.05\%	0.02\%	1.47\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.77\%	0.00\%	0.03\%	0.01\%	0.63\%	NR_Other
Organics Total			47.01\%	1.41\%	2.42\%	1.80\%	38.57\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.31\%	0.00\%	6.50\%	2.50\%	0.72\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	0.00\%	0.02\%	0.01\%	0.02\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.16\%	0.00\%	0.68\%	0.26\%	0.18\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.17\%	0.01\%	0.25\%	0.10\%	0.16\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.06\%	0.00\%	0.17\%	0.07\%	0.06\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.25\%	0.00\%	0.01\%	0.00\%	0.20\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.06\%	0.01\%	0.67\%	0.26\%	0.10\%	NR_Other
Appliance/Electronic Total			1.03\%	0.02\%	8.32\%	3.21\%	1.44\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.42\%	0.01\%	0.00\%	0.01\%	0.35\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.03\%	0.00\%	0.04\%	0.02\%	1.66\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.09\%	0.00\%	0.03\%	0.01\%	0.89\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.47\%	0.00\%	0.02\%	0.01\%	0.38\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.33\%	0.04\%	0.19\%	0.10\%	1.10\%	NR_Other
C \& D Debris Total			5.35\%	0.05\%	0.29\%	0.14\%	4.37\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.25\%	0.01\%	0.11\%	0.05\%	0.21\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.53\%	0.01\%	0.46\%	0.18\%	0.47\%	NR_Other
Miscellaneous Inorganics Total			0.78\%	0.02\%	0.56\%	0.23\%	0.68\%	

Table 1-25
Citywide Results at a Glance, Winter 2005, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.14\%	0.05\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.04\%	0.00\%	0.05\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.10\%	0.00\%	0.04\%	0.02\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.03\%	0.00\%	0.03\%	0.01\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.07\%	0.03\%	0.03\%	NR_Other
HHW Total			0.26\%	0.01\%	0.33\%	0.13\%	0.23\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Refuse	Paper	MGP	Aggregated Recycling	Waste	
Paper Total ${ }^{(2)}$			11,768.95	6,627.28	233.57	6,860.85	18,629.80	
Plastic Total ${ }^{(2)}$			7,123.99	114.26	974.48	1,088.73	8,212.72	
Glass Total ${ }^{(2)}$			1,262.82	7.22	1,359.31	1,366.53	2,629.35	
Metal Total ${ }^{(3)}$			1,961.91	11.89	1,206.67	1,218.56	3,180.47	
Organics Total			22,816.15	97.05	103.82	200.87	23,017.03	
Appliance/Elect			501.89	1.14	356.44	357.58	859.48	
C \& D Debris			2,594.77	3.15	12.32	15.47	2,610.23	
Miscellaneous	Total		377.87	1.27	24.03	25.30	403.17	
HHW Total			124.50	0.36	14.08	14.44	138.94	
Grand Total			48,532.86	6,863.60	4,284.72	11,148.32	59,681.18	
Subtotals by Recycling Designation								
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	
Percent Designated Paper			16.17\%	95.53\%	2.63\%	59.83\%	24.32\%	
Percent Designated MGP			8.79\%	0.90\%	80.71\%	31.58\%	13.04\%	
Percent Designated Recycling			24.95\%	96.43\%	83.34\%	91.40\%	37.37\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-26
Citywide Results at a Glance, Spring 2005, Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\%$ of MGP Stream	$\%$ of Aggregated Recycling Stream	$\%$ of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.75\%	42.78\%	0.50\%	25.58\%	7.57\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.06\%	11.27\%	0.20\%	6.77\%	2.06\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.60\%	3.73\%	0.05\%	2.23\%	0.89\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.41\%	33.10\%	1.80\%	20.36\%	9.68\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.52\%	2.69\%	0.04\%	1.61\%	0.72\%	R Paper
Paper	Mixed Paper	Paper Bags	0.62\%	0.44\%	0.05\%	0.28\%	0.56\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.43\%	0.21\%	1.95\%	0.92\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.00\%	2.67\%	0.28\%	1.70\%	5.24\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.42\%	0.02\%	0.06\%	0.03\%	0.35\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.51\%	0.69\%	0.32\%	0.54\%	0.52\%	NR_Paper
Paper Total			21.32\%	97.60\%	5.23\%	60.02\%	28.10\%	
Plastic	PET Bottles	PET Bottles	0.82\%	0.03\%	6.35\%	2.60\%	1.13\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.24\%	0.01\%	3.14\%	1.28\%	0.42\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.27\%	0.01\%	3.43\%	1.40\%	0.47\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	0.00\%	0.17\%	0.07\%	0.06\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.08\%	0.03\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.00\%	0.12\%	0.05\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.02\%	0.00\%	0.02\%	0.01\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.00\%	0.39\%	0.16\%	0.15\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06\%	0.00\%	0.07\%	0.03\%	0.05\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	0.00\%	0.10\%	0.04\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	0.01\%	0.38\%	0.16\%	0.24\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.59\%	0.02\%	0.10\%	0.05\%	0.50\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.76\%	0.03\%	1.42\%	0.60\%	0.74\%	PR_Plastics
Plastic	Film	Plastic Bags	3.71\%	0.22\%	0.88\%	0.49\%	3.15\%	PR_Plastics
Plastic	Film	Other Film	5.31\%	0.64\%	3.05\%	1.62\%	4.67\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.56\%	0.02\%	0.21\%	0.09\%	0.48\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.72\%	0.21\%	3.93\%	1.72\%	1.72\%	NR_Plastics
Plastic Total			14.69\%	1.20\%	23.87\%	10.42\%	13.94\%	
Glass	Container Glass	Clear Container Glass	1.00\%	0.04\%	9.01\%	3.69\%	1.47\%	R Glass
Glass	Container Glass	Green Container Glass	0.24\%	0.00\%	4.59\%	1.87\%	0.53\%	R Glass
Glass	Container Glass	Brown Container Glass	0.22\%	0.00\%	1.77\%	0.72\%	0.30\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.52\%	0.02\%	18.74\%	7.64\%	1.77\%	R Glass
Glass	Container Glass	Other Container Glass	0.04\%	0.00\%	0.20\%	0.08\%	0.04\%	R Glass
Glass	Other Glass	Other Glass	0.24\%	0.02\%	0.27\%	0.12\%	0.22\%	PR_Glass
Glass Total			2.24\%	0.09\%	34.60\%	14.13\%	4.33\%	

Table 1-26
Citywide Results at a Glance, Spring 2005, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.16\%	0.00\%	0.58\%	0.24\%	0.17\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.60\%	0.01\%	0.97\%	0.40\%	0.56\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.69\%	0.28\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.11\%	0.00\%	0.72\%	0.29\%	0.15\%	R Metal
Metal	Ferrous	Tin Food Cans	0.86\%	0.03\%	7.48\%	3.06\%	1.25\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.00\%	0.68\%	0.28\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.17\%	0.04\%	12.39\%	5.06\%	1.85\%	R Metal
Metal	Other Metal	Mixed Metals	0.45\%	0.02\%	3.88\%	1.59\%	0.65\%	R Metal
Metal Total			3.50\%	0.10\%	27.39\%	11.20\%	4.85\%	
Organics	Yard	Leaves and Grass	5.67\%	0.00\%	0.02\%	0.01\%	4.68\%	NR_Other
Organics	Yard	Prunings	0.97\%	0.00\%	0.01\%	0.00\%	0.80\%	NR_Other
Organics	Wood	Stumps/Limbs	0.27\%	0.00\%	0.00\%	0.00\%	0.22\%	NR_Other
Organics	Food	Food	20.95\%	0.30\%	1.79\%	0.90\%	17.43\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.97\%	0.00\%	0.06\%	0.02\%	0.81\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.25\%	0.01\%	0.05\%	0.02\%	0.21\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.30\%	0.16\%	0.05\%	0.11\%	1.09\%	NR_Other
Organics	Textiles	Clothing Textiles	3.23\%	0.05\%	0.07\%	0.05\%	2.67\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.42\%	0.00\%	0.00\%	0.00\%	1.17\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.63\%	0.04\%	0.07\%	0.05\%	3.00\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.25\%	0.00\%	0.03\%	0.01\%	1.03\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.40\%	0.00\%	0.14\%	0.06\%	0.34\%	NR_Other
Organics	Textiles	Shoes	0.71\%	0.01\%	0.08\%	0.03\%	0.60\%	NR_Other
Organics	Textiles	Other Leather Products	0.17\%	0.00\%	0.00\%	0.00\%	0.14\%	NR_Other
Organics	Misc. Organic	Fines	5.37\%	0.24\%	0.21\%	0.23\%	4.47\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.18\%	0.00\%	0.20\%	0.08\%	0.99\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.88\%	0.00\%	0.07\%	0.03\%	0.73\%	NR_Other
Organics Total			48.63\%	0.80\%	2.83\%	1.63\%	40.39\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.39\%	0.00\%	3.21\%	1.31\%	0.55\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.05\%	0.00\%	0.05\%	0.02\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.30\%	0.01\%	0.70\%	0.29\%	0.30\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.24\%	0.00\%	0.26\%	0.11\%	0.22\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	0.00\%	0.09\%	0.04\%	0.04\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.08\%	0.04\%	0.48\%	0.22\%	0.10\%	NR_Other
Appliance/Electronic Total			1.10\%	0.05\%	4.80\%	1.98\%	1.25\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.21\%	0.00\%	0.03\%	0.01\%	1.00\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.05\%	0.02\%	0.09\%	0.05\%	1.70\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.16\%	0.01\%	0.02\%	0.01\%	0.96\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.25\%	0.00\%	0.09\%	0.04\%	1.04\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.81\%	0.12\%	0.17\%	0.14\%	1.52\%	NR_Other
C \& D Debris Total			7.49\%	0.15\%	0.41\%	0.25\%	6.22\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.37\%	0.00\%	0.09\%	0.04\%	0.31\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.43\%	0.00\%	0.47\%	0.19\%	0.39\%	NR_Other
Miscellaneous Inorganics Total			0.80\%	0.00\%	0.56\%	0.23\%	0.70\%	

Table 1-26
Citywide Results at a Glance, Spring 2005, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\%$ of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	0.00\%	0.05\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.00\%	0.06\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.06\%	0.01\%	0.02\%	0.01\%	0.05\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.04\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.07\%	0.00\%	0.02\%	0.01\%	0.06\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.00\%	0.12\%	0.05\%	0.04\%	NR_Other
HHW Total			0.23\%	0.01\%	0.32\%	0.13\%	0.21\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Refuse	Paper	MGP	Aggregated Recycling	Waste	
Paper Total ${ }^{(2)}$			11,878.62	6,857.74	252.04	7,109.78	18,988.40	
Plastic Total ${ }^{(2)}$			8,185.52	84.39	1,150.29	1,234.69	9,420.20	
Glass Total ${ }^{(2)}$			1,250.90	6.19	1,667.07	1,673.26	2,924.17	
Metal Total ${ }^{(3)}$			1,950.84	7.17	1,319.81	1,326.97	3,277.82	
Organics Total			27,100.75	56.33	136.38	192.71	27,293.46	
Appliance/Elec			610.53	3.66	231.15	234.81	845.34	
C \& D Debris T			4,174.89	10.47	19.65	30.12	4,205.01	
Miscellaneous	Total		444.71	0.25	26.78	27.02	471.73	
HHW Total			127.51	0.41	15.26	15.68	143.18	
Grand Total			55,724.27	7,026.61	4,818.43	11,845.05	67,569.31	
Subtotals by Recycling Designation								
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	
Percent Designated Paper			13.96\%	94.01\%	2.63\%	56.84\%	21.48\%	
Percent Designated MGP			7.71\%	0.42\%	79.84\%	32.73\%	12.10\%	
Percent Designated Recycling			21.67\%	94.43\%	82.47\%	89.57\%	33.57\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-27
Citywide Results at a Glance, Summer 2005, Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\%$ of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.35\%	44.21\%	0.58\%	25.89\%	7.27\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.19\%	9.26\%	0.30\%	5.50\%	1.94\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.67\%	2.87\%	0.09\%	1.70\%	0.85\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.99\%	29.49\%	1.07\%	17.56\%	10.48\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.45\%	8.03\%	0.13\%	4.71\%	1.19\%	R Paper
Paper	Mixed Paper	Paper Bags	0.84\%	0.30\%	0.07\%	0.20\%	0.73\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.39\%	0.15\%	1.81\%	0.85\%	0.47\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.72\%	1.82\%	0.48\%	1.26\%	4.94\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.60\%	0.01\%	0.07\%	0.04\%	0.50\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	1.01\%	1.59\%	0.55\%	1.15\%	1.03\%	NR_Paper
Paper Total			23.21\%	97.72\%	5.13\%	58.85\%	29.41\%	
Plastic	PET Bottles	PET Bottles	1.02\%	0.06\%	7.88\%	3.34\%	1.42\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.29\%	0.01\%	3.28\%	1.38\%	0.48\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.29\%	0.01\%	3.31\%	1.39\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.20\%	0.08\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.06\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.10\%	0.04\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.00\%	0.20\%	0.08\%	0.08\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.20\%	0.00\%	0.47\%	0.20\%	0.20\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	0.00\%	0.04\%	0.02\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.08\%	0.03\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.03\%	0.00\%	0.08\%	0.03\%	0.03\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.29\%	0.04\%	0.22\%	0.11\%	0.26\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.68\%	0.02\%	0.10\%	0.05\%	0.57\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.00\%	0.02\%	1.33\%	0.57\%	0.92\%	PR_Plastics
Plastic	Film	Plastic Bags	2.98\%	0.24\%	1.34\%	0.70\%	2.59\%	PR_Plastics
Plastic	Film	Other Film	5.43\%	0.62\%	2.82\%	1.55\%	4.75\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.72\%	0.02\%	0.39\%	0.18\%	0.63\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.14\%	0.14\%	3.50\%	1.55\%	2.04\%	NR_Plastics
Plastic Total			15.28\%	1.17\%	25.43\%	11.35\%	14.59\%	
Glass	Container Glass	Clear Container Glass	1.41\%	0.04\%	8.24\%	3.48\%	1.77\%	R Glass
Glass	Container Glass	Green Container Glass	0.36\%	0.02\%	3.71\%	1.57\%	0.57\%	R Glass
Glass	Container Glass	Brown Container Glass	0.35\%	0.01\%	2.31\%	0.97\%	0.46\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.68\%	0.00\%	21.44\%	9.00\%	2.13\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.18\%	0.08\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.28\%	0.00\%	0.44\%	0.19\%	0.27\%	PR_Glass
Glass Total			3.10\%	0.07\%	36.31\%	15.29\%	5.22\%	

Table 1-27
Citywide Results at a Glance, Summer 2005, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\%$ of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.26\%	0.00\%	0.90\%	0.38\%	0.28\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.63\%	0.01\%	0.93\%	0.40\%	0.59\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.01\%	0.54\%	0.23\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.00\%	0.90\%	0.38\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	0.74\%	0.01\%	6.44\%	2.71\%	1.08\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.16\%	0.00\%	0.76\%	0.32\%	0.19\%	R Metal
Metal	Ferrous	Other Ferrous	1.34\%	0.07\%	9.54\%	4.05\%	1.81\%	R Metal
Metal	Other Metal	Mixed Metals	0.45\%	0.00\%	3.13\%	1.31\%	0.60\%	R Metal
Metal Total			3.73\%	0.11\%	23.12\%	9.77\%	4.78\%	
Organics	Yard	Leaves and Grass	3.69\%	0.04\%	0.01\%	0.03\%	3.06\%	NR_Other
Organics	Yard	Prunings	0.83\%	0.02\%	0.00\%	0.01\%	0.69\%	NR_Other
Organics	Wood	Stumps/Limbs	0.17\%	0.00\%	0.00\%	0.00\%	0.14\%	NR_Other
Organics	Food	Food	18.76\%	0.25\%	1.79\%	0.90\%	15.65\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	2.06\%	0.01\%	0.16\%	0.07\%	1.71\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.27\%	0.04\%	0.03\%	0.03\%	0.23\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	2.08\%	0.04\%	0.12\%	0.08\%	1.73\%	NR_Other
Organics	Textiles	Clothing Textiles	3.13\%	0.03\%	0.09\%	0.05\%	2.59\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.52\%	0.00\%	0.01\%	0.01\%	1.26\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.87\%	0.03\%	0.09\%	0.06\%	3.21\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.34\%	0.00\%	0.06\%	0.03\%	1.11\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.35\%	0.00\%	0.14\%	0.06\%	0.30\%	NR_Other
Organics	Textiles	Shoes	0.74\%	0.07\%	0.04\%	0.06\%	0.62\%	NR_Other
Organics	Textiles	Other Leather Products	0.07\%	0.00\%	0.02\%	0.01\%	0.06\%	NR_Other
Organics	Misc. Organic	Fines	4.33\%	0.23\%	0.35\%	0.28\%	3.63\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.65\%	0.00\%	0.12\%	0.05\%	0.55\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.22\%	0.06\%	0.16\%	0.10\%	1.03\%	NR_Other
Organics Total			45.10\%	0.81\%	3.20\%	1.82\%	37.57\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.68\%	0.00\%	3.38\%	1.42\%	0.81\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.01\%	0.38\%	0.16\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.32\%	0.00\%	0.77\%	0.32\%	0.32\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.42\%	0.03\%	0.41\%	0.19\%	0.38\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.17\%	0.00\%	0.05\%	0.02\%	0.15\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.23\%	0.00\%	0.00\%	0.00\%	0.19\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.45\%	0.00\%	0.49\%	0.20\%	0.41\%	NR_Other
Appliance/Electronic Total			2.30\%	0.04\%	5.48\%	2.33\%	2.31\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.99\%	0.00\%	0.01\%	0.00\%	0.82\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.04\%	0.00\%	0.10\%	0.04\%	1.69\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.67\%	0.00\%	0.01\%	0.00\%	0.55\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.73\%	0.00\%	0.05\%	0.02\%	0.61\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.87\%	0.00\%	0.22\%	0.09\%	1.56\%	NR_Other
C \& D Debris Total			6.30\%	0.00\%	0.38\%	0.16\%	5.23\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.21\%	0.04\%	0.16\%	0.09\%	0.19\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.46\%	0.02\%	0.45\%	0.20\%	0.42\%	NR_Other
Miscellaneous Inorganics Total			0.68\%	0.06\%	0.61\%	0.29\%	0.61\%	

Table 1-27
Citywide Results at a Glance, Summer 2005, Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	0.00\%	0.15\%	0.07\%	0.03\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.04\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.01\%	0.02\%	0.01\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.02\%	0.00\%	0.00\%	0.00\%	0.02\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.02\%	0.00\%	0.02\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.09\%	0.00\%	0.01\%	0.01\%	0.07\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.06\%	0.03\%	0.02\%	NR_Other
HHW Total			0.31\%	0.02\%	0.33\%	0.15\%	0.28\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Refuse	Paper	MGP	Aggregated Recycling	Waste	
Paper Total ${ }^{(2)}$			12,482.46	6,420.38	243.99	6,664.37	19,146.83	
Plastic Total ${ }^{(2)}$			8,216.48	76.89	1,208.73	1,285.62	9,502.11	
Glass Total ${ }^{(2)}$			1,666.34	4.74	1,726.36	1,731.10	3,397.44	
Metal Total ${ }^{(3)}$			2,007.51	7.25	1,099.18	1,106.44	3,113.94	
Organics Total			24,254.95	53.41	152.27	205.68	24,460.63	
Appliance/Elec			1,237.92	2.70	260.60	263.30	1,501.22	
C \& D Debris			3,388.88	0.00	18.24	18.24	3,407.12	
Miscellaneous	Total		363.97	3.73	28.97	32.70	396.67	
HHW Total			165.49	1.11	15.60	16.70	182.19	
Grand Total			53,784.01	6,570.22	4,753.94	11,324.15	65,108.16	
Subtotals by Recycling Designation								
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Aggregated Recycling Stream	\% of Waste Stream	
Percent Designated Paper			15.49\%	94.14\%	2.23\%	55.56\%	22.46\%	
Percent Designated MGP			9.23\%	0.40\%	79.04\%	33.41\%	13.43\%	
Percent Designated Recycling			24.72\%	94.55\%	81.27\%	88.97\%	35.90\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-28
Citywide Results Across Seasons, Waste Characterization Study, Refuse

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Paper	ONP	Newspaper	3.60\%	3.94\%	3.75\%	3.35\%	3.65\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.12\%	1.26\%	1.06\%	1.19\%	1.16\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.64\%	0.82\%	0.60\%	0.67\%	0.68\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.18\%	8.90\%	7.41\%	8.99\%	8.35\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.43\%	0.55\%	0.52\%	0.45\%	0.49\%	R Paper
Paper	Mixed Paper	Paper Bags	0.67\%	0.69\%	0.62\%	0.84\%	0.70\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.40\%	0.38\%	0.43\%	0.39\%	0.40\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.43\%	6.56\%	6.00\%	5.72\%	6.67\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.57\%	0.49\%	0.42\%	0.60\%	0.52\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.64\%	0.66\%	0.51\%	1.01\%	0.70\%	NR_Paper
Paper Total			24.68\%	24.25\%	21.32\%	23.21\%	23.32\%	
Plastic	PET Botles	PET Bottles	0.77\%	1.00\%	0.82\%	1.02\%	0.90\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.33\%	0.26\%	0.24\%	0.29\%	0.28\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.32\%	0.31\%	0.27\%	0.29\%	0.30\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	0.05\%	0.06\%	0.03\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.08\%	0.08\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.17\%	0.15\%	0.20\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.03\%	0.06\%	0.05\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.01\%	0.01\%	0.03\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.28\%	0.26\%	0.26\%	0.29\%	0.27\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.65\%	0.63\%	0.59\%	0.68\%	0.64\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.70\%	0.71\%	0.76\%	1.00\%	0.79\%	PR_Plastics
Plastic	Film	Plastic Bags	2.87\%	3.30\%	3.71\%	2.98\%	3.22\%	PR_Plastics
Plastic	Film	Other Film	5.63\%	5.38\%	5.31\%	5.43\%	5.44\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.55\%	0.59\%	0.56\%	0.72\%	0.60\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.93\%	1.87\%	1.72\%	2.14\%	1.92\%	NR_Plastics
Plastic Total			14.40\%	14.68\%	14.69\%	15.28\%	14.76\%	
Glass	Container Glass	Clear Container Glass	1.12\%	1.26\%	1.00\%	1.41\%	1.20\%	R Glass
Glass	Container Glass	Green Container Glass	0.27\%	0.34\%	0.24\%	0.36\%	0.30\%	R Glass
Glass	Container Glass	Brown Container Glass	0.30\%	0.29\%	0.22\%	0.35\%	0.29\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.63\%	0.56\%	0.52\%	0.68\%	0.60\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.01\%	0.04\%	0.01\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.12\%	0.14\%	0.24\%	0.28\%	0.20\%	PR_Glass
Glass Total			2.45\%	2.60\%	2.24\%	3.10\%	2.60\%	

Table 1-28
Citywide Results Across Seasons, Waste Characterization Study, Refuse (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.16\%	0.22\%	0.16\%	0.26\%	0.20\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.52\%	0.60\%	0.63\%	0.57\%	R Metal
Metal	Aluminum	Other Aluminum	0.06\%	0.03\%	0.03\%	0.03\%	0.04\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.09\%	0.21\%	0.11\%	0.12\%	0.13\%	R Metal
Metal	Ferrous	Tin Food Cans	0.84\%	0.88\%	0.86\%	0.74\%	0.83\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.12\%	0.12\%	0.16\%	0.13\%	R Metal
Metal	Ferrous	Other Ferrous	1.05\%	1.46\%	1.17\%	1.34\%	1.25\%	R Metal
Metal	Other Metal	Mixed Metals	0.51\%	0.61\%	0.45\%	0.45\%	0.50\%	R Metal
Metal Total			3.36\%	4.04\%	3.50\%	3.73\%	3.65\%	
Organics	Yard	Leaves and Grass	5.22\%	1.12\%	5.67\%	3.69\%	4.01\%	NR_Other
Organics	Yard	Prunings	1.25\%	0.67\%	0.97\%	0.83\%	0.94\%	NR_Other
Organics	Wood	Stumps/Limbs	0.14\%	0.18\%	0.27\%	0.17\%	0.19\%	NR_Other
Organics	Food	Food	22.41\%	23.73\%	20.95\%	18.76\%	21.40\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.09\%	1.61\%	0.97\%	2.06\%	1.42\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.06\%	0.31\%	0.25\%	0.27\%	0.22\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.56\%	1.63\%	1.30\%	2.08\%	1.64\%	NR_Other
Organics	Textiles	Clothing Textiles	3.08\%	2.65\%	3.23\%	3.13\%	3.03\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.29\%	1.78\%	1.42\%	1.52\%	1.49\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.03\%	4.05\%	3.63\%	3.87\%	3.89\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.25\%	1.54\%	1.25\%	1.34\%	1.34\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.30\%	0.25\%	0.40\%	0.35\%	0.33\%	NR_Other
Organics	Textiles	Shoes	0.67\%	0.76\%	0.71\%	0.74\%	0.72\%	NR_Other
Organics	Textiles	Other Leather Products	0.14\%	0.08\%	0.17\%	0.07\%	0.12\%	NR_Other
Organics	Misc. Organic	Fines	3.51\%	4.09\%	5.37\%	4.33\%	4.34\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.79\%	1.80\%	1.18\%	0.65\%	1.09\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.60\%	0.77\%	0.88\%	1.22\%	0.87\%	NR_Other
Organics Total			47.39\%	47.01\%	48.63\%	45.10\%	47.05\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.16\%	0.31\%	0.39\%	0.68\%	0.39\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.02\%	0.05\%	0.01\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.19\%	0.16\%	0.30\%	0.32\%	0.24\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.25\%	0.17\%	0.24\%	0.42\%	0.27\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	0.06\%	0.04\%	0.17\%	0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.10\%	0.25\%	0.00\%	0.23\%	0.14\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	0.06\%	0.08\%	0.45\%	0.20\%	NR_Other
Appliance/Electronic Total			0.98\%	1.03\%	1.10\%	2.30\%	1.36\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.34\%	0.42\%	1.21\%	0.99\%	0.75\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.71\%	2.03\%	2.05\%	2.04\%	1.96\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.45\%	1.09\%	1.16\%	0.67\%	1.09\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.70\%	0.47\%	1.25\%	0.73\%	0.80\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.67\%	1.33\%	1.81\%	1.87\%	1.68\%	NR_Other
C \& D Debris Total			5.86\%	5.35\%	7.49\%	6.30\%	6.28\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.16\%	0.25\%	0.37\%	0.21\%	0.25\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.44\%	0.53\%	0.43\%	0.46\%	0.46\%	NR_Other
Miscellaneous Inorganics Total			0.60\%	0.78\%	0.80\%	0.68\%	0.71\%	

Table 1-28
Citywide Results Across Seasons, Waste Characterization Study, Refuse (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.11\%	0.04\%	0.03\%	0.03\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.04\%	0.02\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.10\%	0.06\%	0.08\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.03\%	0.07\%	0.09\%	0.06\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.03\%	0.04\%	0.02\%	0.03\%	NR_Other
HHW Total			0.28\%	0.26\%	0.23\%	0.31\%	0.27\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Paper Total ${ }^{(2)}$			13,312.97	11,768.95	11,878.62	12,482.46	12,360.75	
Plastic Total ${ }^{(2)}$			7,767.80	7,123.99	8,185.52	8,216.48	7,823.45	
Glass Total ${ }^{(2)}$			1,322.78	1,262.82	1,250.90	1,666.34	1,375.71	
Metal Total ${ }^{(3)}$			1,810.35	1,961.91	1,950.84	2,007.51	1,932.65	
Organics Total			25,564.46	22,816.15	27,100.75	24,254.95	24,934.08	
Appliance/Elect			530.74	501.89	610.53	1,237.92	720.27	
C \& D Debris			3,159.23	2,594.77	4,174.89	3,388.88	3,329.44	
Miscellaneous	Total		322.14	377.87	444.71	363.97	377.17	
HHW Total			153.38	124.50	127.51	165.49	142.72	
Grand Total			53,943.84	48,532.86	55,724.27	53,784.01	52,996.24	
Subtotals by Recycling Designation								
Recycling Design			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Percent Desig			14.64\%	16.17\%	13.96\%	15.49\%	15.03\%	
Percent Desig			7.72\%	8.79\%	7.71\%	9.23\%	8.34\%	
Percent Desig	ycling		22.36\%	24.95\%	21.67\%	24.72\%	23.37\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-29
Citywide Results Across Seasons, Waste Characterization Study, Paper

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Paper	ONP	Newspaper	40.13\%	39.31\%	42.78\%	44.21\%	41.55\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	18.94\%	14.47\%	11.27\%	9.26\%	13.64\%	R Paper
Paper	Mixed Paper	High Grade Paper	3.17\%	2.85\%	3.73\%	2.87\%	3.16\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	29.35\%	33.25\%	33.10\%	29.49\%	31.28\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	3.89\%	5.26\%	2.69\%	8.03\%	4.90\%	R Paper
Paper	Mixed Paper	Paper Bags	0.32\%	0.38\%	0.44\%	0.30\%	0.36\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.20\%	0.45\%	0.21\%	0.15\%	0.25\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.65\%	0.26\%	2.67\%	1.82\%	1.34\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.02\%	0.03\%	0.02\%	0.01\%	0.02\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.48\%	0.29\%	0.69\%	1.59\%	0.75\%	NR_Paper
Paper Total			97.15\%	96.56\%	97.60\%	97.72\%	97.25\%	
Plastic	PET Bottles	PET Bottles	0.03\%	0.17\%	0.03\%	0.06\%	0.07\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.00\%	0.01\%	0.01\%	0.04\%	0.01\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.06\%	0.06\%	0.02\%	0.02\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.06\%	0.03\%	0.03\%	0.02\%	0.04\%	PR_Plastics
Plastic	Film	Plastic Bags	0.17\%	0.30\%	0.22\%	0.24\%	0.23\%	PR_Plastics
Plastic	Film	Other Film	0.78\%	0.79\%	0.64\%	0.62\%	0.71\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.01\%	0.03\%	0.02\%	0.02\%	0.02\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	0.23\%	0.22\%	0.21\%	0.14\%	0.20\%	NR_Plastics
Plastic Total			1.38\%	1.66\%	1.20\%	1.17\%	1.36\%	
Glass	Container Glass	Clear Container Glass	0.03\%	0.08\%	0.04\%	0.04\%	0.05\%	R Glass
Glass	Container Glass	Green Container Glass	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%	R Glass
Glass	Container Glass	Brown Container Glass	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.03\%	0.00\%	0.02\%	0.00\%	0.02\%	R Glass
Glass	Container Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	R Glass
Glass	Other Glass	Other Glass	0.04\%	0.01\%	0.02\%	0.00\%	0.02\%	PR_Glass
Glass Total			0.12\%	0.11\%	0.09\%	0.07\%	0.10\%	

Table 1-29
Citywide Results Across Seasons, Waste Characterization Study, Paper (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.03\%	0.03\%	0.01\%	0.01\%	0.02\%	R Metal
Metal	Aluminum	Other Aluminum	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.04\%	0.01\%	0.00\%	0.00\%	0.01\%	R Metal
Metal	Ferrous	Tin Food Cans	0.02\%	0.07\%	0.03\%	0.01\%	0.03\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	R Metal
Metal	Ferrous	Other Ferrous	0.02\%	0.05\%	0.04\%	0.07\%	0.04\%	R Metal
Metal	Other Metal	Mixed Metals	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	R Metal
Metal Total			0.16\%	0.17\%	0.10\%	0.11\%	0.14\%	
Organics	Yard	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.04\%	0.01\%	NR_Other
Organics	Yard	Prunings	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	NR_Other
Organics	Wood	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Food	Food	0.18\%	0.48\%	0.30\%	0.25\%	0.30\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.03\%	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.00\%	0.05\%	0.01\%	0.04\%	0.02\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	0.06\%	0.02\%	0.16\%	0.04\%	0.07\%	NR_Other
Organics	Textiles	Clothing Textiles	0.13\%	0.05\%	0.05\%	0.03\%	0.07\%	NR_Other
Organics	Textiles	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	0.01\%	0.04\%	0.03\%	0.04\%	NR_Other
Organics	Misc. Organic	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.00\%	0.11\%	0.00\%	0.00\%	0.03\%	NR_Other
Organics	Textiles	Shoes	0.01\%	0.08\%	0.01\%	0.07\%	0.04\%	NR_Other
Organics	Textiles	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Fines	0.28\%	0.61\%	0.24\%	0.23\%	0.34\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.02\%	0.00\%	0.00\%	0.06\%	0.02\%	NR_Other
Organics Total			0.78\%	1.41\%	0.80\%	0.81\%	0.95\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.00\%	0.01\%	0.00\%	0.03\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic Total			0.03\%	0.02\%	0.05\%	0.04\%	0.04\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.03\%	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	0.13\%	0.00\%	0.02\%	0.00\%	0.04\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.10\%	0.04\%	0.12\%	0.00\%	0.07\%	NR_Other
C \& D Debris Total			0.27\%	0.05\%	0.15\%	0.00\%	0.12\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.00\%	0.01\%	0.00\%	0.04\%	0.01\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.04\%	0.01\%	0.00\%	0.02\%	0.02\%	NR_Other
Miscellaneous Inorganics Total			0.05\%	0.02\%	0.00\%	0.06\%	0.03\%	

Table 1-29
Citywide Results Across Seasons, Waste Characterization Study, Paper (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW Total			0.05\%	0.01\%	0.01\%	0.02\%	0.02\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Paper Total ${ }^{(2)}$			7,299.94	6,627.28	6,857.74	6,420.38	6,801.33	
Plastic Total ${ }^{(2)}$			103.63	114.26	84.39	76.89	94.79	
Glass Total ${ }^{(2)}$			8.96	7.22	6.19	4.74	6.77	
Metal Total ${ }^{(3)}$			12.28	11.89	7.17	7.25	9.65	
Organics Total			58.76	97.05	56.33	53.41	66.39	
Appliance/Elec			2.33	1.14	3.66	2.70	2.46	
C \& D Debris T			20.61	3.15	10.47	0.00	8.56	
Miscellaneous	Total		3.45	1.27	0.25	3.73	2.17	
HHW Total			4.12	0.36	0.41	1.11	1.50	
Grand Total			7,514.09	6,863.60	7,026.61	6,570.22	6,993.63	
Subtotals by Recycling Designation								
Recycling Design			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Percent Design			95.79\%	95.53\%	94.01\%	94.14\%	94.89\%	
Percent Design			0.48\%	0.90\%	0.42\%	0.40\%	0.55\%	
Percent Designated Recycling			96.28\%	96.43\%	94.43\%	94.55\%	95.45\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group

Table 1-30
Citywide Results Across Seasons, Waste Characterization Study, MGP

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Table 1-30
Citywide Results Across Seasons, Waste Characterization Study, MGP (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.53\%	0.56\%	0.58\%	0.90\%	0.65\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	1.02\%	0.95\%	0.97\%	0.93\%	0.97\%	R Metal
Metal	Aluminum	Other Aluminum	0.14\%	0.06\%	0.69\%	0.54\%	0.37\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.58\%	0.92\%	0.72\%	0.90\%	0.78\%	R Metal
Metal	Ferrous	Tin Food Cans	7.47\%	7.68\%	7.48\%	6.44\%	7.25\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.68\%	0.63\%	0.68\%	0.76\%	0.69\%	R Metal
Metal	Ferrous	Other Ferrous	15.71\%	13.86\%	12.39\%	9.54\%	12.82\%	R Metal
Metal	Other Metal	Mixed Metals	2.87\%	3.50\%	3.88\%	3.13\%	3.35\%	R Metal
Metal Total			29.00\%	28.16\%	27.39\%	23.12\%	26.87\%	
Organics	Yard	Leaves and Grass	0.03\%	0.01\%	0.02\%	0.01\%	0.01\%	NR_Other
Organics	Yard	Prunings	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	NR_Other
Organics	Wood	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Food	Food	1.14\%	1.51\%	1.79\%	1.79\%	1.56\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.14\%	0.12\%	0.06\%	0.16\%	0.12\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.02\%	0.09\%	0.05\%	0.03\%	0.05\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	0.17\%	0.11\%	0.05\%	0.12\%	0.11\%	NR_Other
Organics	Textiles	Clothing Textiles	0.09\%	0.11\%	0.07\%	0.09\%	0.09\%	NR_Other
Organics	Textiles	Carpet/Upholstery	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	0.05\%	0.07\%	0.09\%	0.07\%	NR_Other
Organics	Misc. Organic	Animal By-Products	0.01\%	0.03\%	0.03\%	0.06\%	0.03\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.07\%	0.04\%	0.14\%	0.14\%	0.10\%	NR_Other
Organics	Textiles	Shoes	0.06\%	0.07\%	0.08\%	0.04\%	0.06\%	NR_Other
Organics	Textiles	Other Leather Products	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%	NR_Other
Organics	Misc. Organic	Fines	0.14\%	0.20\%	0.21\%	0.35\%	0.23\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.08\%	0.05\%	0.20\%	0.12\%	0.11\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.13\%	0.03\%	0.07\%	0.16\%	0.10\%	NR_Other
Organics Total			2.16\%	2.42\%	2.83\%	3.20\%	2.67\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	9.32\%	6.50\%	3.21\%	3.38\%	5.54\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.10\%	0.02\%	0.05\%	0.38\%	0.14\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	1.34\%	0.68\%	0.70\%	0.77\%	0.87\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.23\%	0.25\%	0.26\%	0.41\%	0.29\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.01\%	0.17\%	0.09\%	0.05\%	0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.01\%	0.01\%	0.01\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.46\%	0.67\%	0.48\%	0.49\%	0.52\%	NR_Other
Appliance/Electronic Total			11.47\%	8.32\%	4.80\%	5.48\%	7.45\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	0.00\%	0.03\%	0.01\%	0.01\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	0.15\%	0.04\%	0.09\%	0.10\%	0.10\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.01\%	0.03\%	0.02\%	0.01\%	0.02\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.14\%	0.02\%	0.09\%	0.05\%	0.08\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.25\%	0.19\%	0.17\%	0.22\%	0.21\%	NR_Other
C \& D Debris Total			0.56\%	0.29\%	0.41\%	0.38\%	0.41\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.04\%	0.11\%	0.09\%	0.16\%	0.10\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.47\%	0.46\%	0.47\%	0.45\%	0.46\%	NR_Other
Miscellaneous Inorganics Total			0.51\%	0.56\%	0.56\%	0.61\%	0.56\%	

Table 1-30
Citywide Results Across Seasons, Waste Characterization Study, MGP (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
HHW	HHW	Oil Filters	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.02\%	0.00\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.12\%	0.14\%	0.05\%	0.15\%	0.11\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.07\%	0.05\%	0.06\%	0.04\%	0.06\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02\%	0.00\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.04\%	0.04\%	0.02\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.04\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.02\%	0.03\%	0.02\%	0.01\%	0.02\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.07\%	0.12\%	0.06\%	0.07\%	NR_Other
HHW Total			0.34\%	0.33\%	0.32\%	0.33\%	0.33\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Paper Total ${ }^{(2)}$			231.68	233.57	252.04	243.99	240.32	
Plastic Total ${ }^{(2)}$			1,009.63	974.48	1,150.29	1,208.73	1,085.78	
Glass Total ${ }^{(2)}$			1,314.45	1,359.31	1,667.07	1,726.36	1,516.80	
Metal Total ${ }^{(3)}$			1,324.88	1,206.67	1,319.81	1,099.18	1,237.63	
Organics Total			98.89	103.82	136.38	152.27	122.84	
Appliance/Elec			523.77	356.44	231.15	260.60	342.99	
C \& D Debris T			25.72	12.32	19.65	18.24	18.98	
Miscellaneous	Total		23.10	24.03	26.78	28.97	25.72	
HHW Total			15.72	14.08	15.26	15.60	15.16	
Grand Total			4,567.83	4,284.72	4,818.43	4,753.94	4,606.23	
Subtotals by Recycling Designation								
Recycling Design			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Percent Design			2.37\%	2.63\%	2.63\%	2.23\%	2.46\%	
Percent Design			80.05\%	80.71\%	79.84\%	79.04\%	79.89\%	
Percent Designated Recycling			82.42\%	83.34\%	82.47\%	81.27\%	82.35\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group

Table 1-31
Citywide Results Across Seasons, Waste Characterization Study, Aggregated Recycling (Paper and MGP)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Paper	ONP	Newspaper	25.15\%	24.56\%	25.58\%	25.89\%	25.30\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	11.91\%	9.02\%	6.77\%	5.50\%	8.34\%	R Paper
Paper	Mixed Paper	High Grade Paper	2.00\%	1.76\%	2.23\%	1.70\%	1.93\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	18.76\%	20.95\%	20.36\%	17.56\%	19.40\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	2.44\%	3.28\%	1.61\%	4.71\%	2.99\%	R Paper
Paper	Mixed Paper	Paper Bags	0.22\%	0.25\%	0.28\%	0.20\%	0.24\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.88\%	1.07\%	0.92\%	0.85\%	0.93\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.50\%	0.27\%	1.70\%	1.26\%	0.94\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.03\%	0.04\%	0.03\%	0.04\%	0.04\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.45\%	0.33\%	0.54\%	1.15\%	0.61\%	NR_Paper
Paper Total			62.34\%	61.54\%	60.02\%	58.85\%	60.70\%	
Plastic	PET Bottles	PET Bottles	2.06\%	2.47\%	2.60\%	3.34\%	2.61\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	1.08\%	1.29\%	1.28\%	1.38\%	1.25\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	1.18\%	1.24\%	1.40\%	1.39\%	1.30\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.11\%	0.08\%	0.07\%	0.08\%	0.08\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.04\%	0.04\%	0.03\%	0.04\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.10\%	0.10\%	0.05\%	0.08\%	0.08\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.16\%	0.15\%	0.16\%	0.20\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.02\%	0.03\%	0.02\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.03\%	0.04\%	0.03\%	0.03\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.01\%	0.00\%	0.03\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.09\%	0.12\%	0.16\%	0.11\%	0.12\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.07\%	0.08\%	0.05\%	0.05\%	0.06\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.54\%	0.50\%	0.60\%	0.57\%	0.55\%	PR_Plastics
Plastic	Film	Plastic Bags	0.36\%	0.50\%	0.49\%	0.70\%	0.51\%	PR_Plastics
Plastic	Film	Other Film	1.77\%	1.68\%	1.62\%	1.55\%	1.66\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.05\%	0.08\%	0.09\%	0.18\%	0.10\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.50\%	1.33\%	1.72\%	1.55\%	1.53\%	NR_Plastics
Plastic Total			9.21\%	9.77\%	10.42\%	11.35\%	10.18\%	
Glass	Container Glass	Clear Container Glass	2.81\%	3.09\%	3.69\%	3.48\%	3.26\%	R Glass
Glass	Container Glass	Green Container Glass	1.50\%	1.65\%	1.87\%	1.57\%	1.65\%	R Glass
Glass	Container Glass	Brown Container Glass	0.72\%	0.75\%	0.72\%	0.97\%	0.79\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	5.64\%	6.52\%	7.64\%	9.00\%	7.18\%	R Glass
Glass	Container Glass	Other Container Glass	0.08\%	0.05\%	0.08\%	0.08\%	0.07\%	R Glass
Glass	Other Glass	Other Glass	0.21\%	0.19\%	0.12\%	0.19\%	0.18\%	PR_Glass
Glass Total			10.95\%	12.26\%	14.13\%	15.29\%	13.13\%	

Table 1-31
Citywide Results Across Seasons, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.21\%	0.22\%	0.24\%	0.38\%	0.26\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.40\%	0.38\%	0.40\%	0.40\%	0.40\%	R Metal
Metal	Aluminum	Other Aluminum	0.06\%	0.03\%	0.28\%	0.23\%	0.15\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.24\%	0.36\%	0.29\%	0.38\%	0.32\%	R Metal
Metal	Ferrous	Tin Food Cans	2.83\%	2.99\%	3.06\%	2.71\%	2.90\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.27\%	0.24\%	0.28\%	0.32\%	0.28\%	R Metal
Metal	Ferrous	Other Ferrous	5.95\%	5.36\%	5.06\%	4.05\%	5.12\%	R Metal
Metal	Other Metal	Mixed Metals	1.11\%	1.35\%	1.59\%	1.31\%	1.34\%	R Metal
Metal Total			11.07\%	10.93\%	11.20\%	9.77\%	10.75\%	
Organics	Yard	Leaves and Grass	0.01\%	0.00\%	0.01\%	0.03\%	0.01\%	NR_Other
Organics	Yard	Prunings	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Organics	Wood	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Food	Food	0.54\%	0.88\%	0.90\%	0.90\%	0.80\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.07\%	0.05\%	0.02\%	0.07\%	0.06\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.01\%	0.07\%	0.02\%	0.03\%	0.03\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	0.10\%	0.05\%	0.11\%	0.08\%	0.09\%	NR_Other
Organics	Textiles	Clothing Textiles	0.11\%	0.07\%	0.05\%	0.05\%	0.07\%	NR_Other
Organics	Textiles	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	0.02\%	0.05\%	0.06\%	0.05\%	NR_Other
Organics	Misc. Organic	Animal By-Products	0.00\%	0.01\%	0.01\%	0.03\%	0.01\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.03\%	0.08\%	0.06\%	0.06\%	0.06\%	NR_Other
Organics	Textiles	Shoes	0.03\%	0.08\%	0.03\%	0.06\%	0.05\%	NR_Other
Organics	Textiles	Other Leather Products	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Organics	Misc. Organic	Fines	0.23\%	0.45\%	0.23\%	0.28\%	0.29\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.03\%	0.02\%	0.08\%	0.05\%	0.04\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.06\%	0.01\%	0.03\%	0.10\%	0.05\%	NR_Other
Organics Total			1.30\%	1.80\%	1.63\%	1.82\%	1.63\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	3.52\%	2.50\%	1.31\%	1.42\%	2.20\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.01\%	0.02\%	0.16\%	0.06\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.53\%	0.26\%	0.29\%	0.32\%	0.35\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.09\%	0.10\%	0.11\%	0.19\%	0.12\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	0.07\%	0.04\%	0.02\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.17\%	0.26\%	0.22\%	0.20\%	0.21\%	NR_Other
Appliance/Electronic Total			4.35\%	3.21\%	1.98\%	2.33\%	2.98\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.02\%	0.01\%	0.01\%	0.00\%	0.01\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	0.14\%	0.02\%	0.05\%	0.04\%	0.06\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.06\%	0.01\%	0.04\%	0.02\%	0.03\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.16\%	0.10\%	0.14\%	0.09\%	0.12\%	NR_Other
C \& D Debris Total			0.38\%	0.14\%	0.25\%	0.16\%	0.24\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.02\%	0.05\%	0.04\%	0.09\%	0.05\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.20\%	0.18\%	0.19\%	0.20\%	0.19\%	NR_Other
Miscellaneous Inorganics Total			0.22\%	0.23\%	0.23\%	0.29\%	0.24\%	

Table 1-31
Citywide Results Across Seasons, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.08\%	0.05\%	0.02\%	0.07\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.02\%	0.03\%	0.02\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.02\%	0.02\%	0.01\%	0.01\%	0.02\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.03\%	0.05\%	0.03\%	0.03\%	NR_Other
HHW Total			0.16\%	0.13\%	0.13\%	0.15\%	0.14\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Paper Total ${ }^{(2)}$			7,531.62	6,860.85	7,109.78	6,664.37	7,041.65	
Plastic Total ${ }^{(2)}$			1,113.26	1,088.73	1,234.69	1,285.62	1,180.58	
Glass Total ${ }^{(2)}$			1,323.40	1,366.53	1,673.26	1,731.10	1,523.57	
Metal Total ${ }^{(3)}$			1,337.16	1,218.56	1,326.97	1,106.44	1,247.28	
Organics Total			157.65	200.87	192.71	205.68	189.23	
Appliance/Electar			526.10	357.58	234.81	263.30	345.45	
C \& D Debris			46.33	15.47	30.12	18.24	27.54	
Miscellaneous	Total		26.54	25.30	27.02	32.70	27.89	
HHW Total			19.84	14.44	15.68	16.70	16.66	
Grand Total			12,081.92	11,148.32	11,845.05	11,324.15	11,599.86	
Subtotals by Recycling Designation								
Recycling Design			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Percent Desig			60.47\%	59.83\%	56.84\%	55.56\%	58.19\%	
Percent Desig			30.56\%	31.58\%	32.73\%	33.41\%	32.06\%	
Percent Desig	cycling		91.04\%	91.40\%	89.57\%	88.97\%	90.25\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-32
Citywide Results Across Seasons, Waste Characterization Study, Waste (Refuse and Recycling)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Paper	ONP	Newspaper	7.55\%	7.79\%	7.57\%	7.27\%	7.54\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	3.09\%	2.71\%	2.06\%	1.94\%	2.44\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.89\%	1.00\%	0.89\%	0.85\%	0.90\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	10.12\%	11.15\%	9.68\%	10.48\%	10.33\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.80\%	1.06\%	0.72\%	1.19\%	0.94\%	R Paper
Paper	Mixed Paper	Paper Bags	0.58\%	0.61\%	0.56\%	0.73\%	0.62\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.49\%	0.51\%	0.51\%	0.47\%	0.50\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.98\%	5.38\%	5.24\%	4.94\%	5.64\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.47\%	0.40\%	0.35\%	0.50\%	0.43\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.61\%	0.60\%	0.52\%	1.03\%	0.69\%	NR_Paper
Paper Total			31.57\%	31.22\%	28.10\%	29.41\%	30.04\%	
Plastic	PET Bottles	PET Bottles	1.00\%	1.28\%	1.13\%	1.42\%	1.21\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.47\%	0.45\%	0.42\%	0.48\%	0.46\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.48\%	0.49\%	0.47\%	0.48\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.06\%	0.06\%	0.04\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.07\%	0.07\%	0.08\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.17\%	0.15\%	0.20\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.03\%	0.05\%	0.04\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.01\%	0.02\%	0.02\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.01\%	0.01\%	0.03\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	0.23\%	0.24\%	0.26\%	0.24\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.55\%	0.53\%	0.50\%	0.57\%	0.54\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.67\%	0.67\%	0.74\%	0.92\%	0.75\%	PR_Plastics
Plastic	Film	Plastic Bags	2.42\%	2.78\%	3.15\%	2.59\%	2.73\%	PR_Plastics
Plastic	Film	Other Film	4.92\%	4.69\%	4.67\%	4.75\%	4.76\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.46\%	0.49\%	0.48\%	0.63\%	0.51\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.86\%	1.77\%	1.72\%	2.04\%	1.85\%	NR_Plastics
Plastic Total			13.45\%	13.76\%	13.94\%	14.59\%	13.94\%	
Glass	Container Glass	Clear Container Glass	1.43\%	1.61\%	1.47\%	1.77\%	1.57\%	R Glass
Glass	Container Glass	Green Container Glass	0.49\%	0.59\%	0.53\%	0.57\%	0.54\%	R Glass
Glass	Container Glass	Brown Container Glass	0.38\%	0.37\%	0.30\%	0.46\%	0.38\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	1.54\%	1.67\%	1.77\%	2.13\%	1.78\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.02\%	0.04\%	0.02\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.14\%	0.15\%	0.22\%	0.27\%	0.19\%	PR_Glass
Glass Total			4.01\%	4.41\%	4.33\%	5.22\%	4.49\%	

Table 1-32
Citywide Results Across Seasons, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.17\%	0.22\%	0.17\%	0.28\%	0.21\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.50\%	0.50\%	0.56\%	0.59\%	0.54\%	R Metal
Metal	Aluminum	Other Aluminum	0.06\%	0.03\%	0.07\%	0.07\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.23\%	0.15\%	0.17\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	1.20\%	1.27\%	1.25\%	1.08\%	1.20\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.15\%	0.14\%	0.15\%	0.19\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous	1.95\%	2.19\%	1.85\%	1.81\%	1.94\%	R Metal
Metal	Other Metal	Mixed Metals	0.62\%	0.75\%	0.65\%	0.60\%	0.65\%	R Metal
Metal Total			4.77\%	5.33\%	4.85\%	4.78\%	4.92\%	
Organics	Yard	Leaves and Grass	4.26\%	0.91\%	4.68\%	3.06\%	3.29\%	NR_Other
Organics	Yard	Prunings	1.02\%	0.54\%	0.80\%	0.69\%	0.77\%	NR_Other
Organics	Wood	Stumps/Limbs	0.11\%	0.15\%	0.22\%	0.14\%	0.16\%	NR_Other
Organics	Food	Food	18.41\%	19.46\%	17.43\%	15.65\%	17.70\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.90\%	1.32\%	0.81\%	1.71\%	1.18\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.05\%	0.26\%	0.21\%	0.23\%	0.19\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.29\%	1.33\%	1.09\%	1.73\%	1.36\%	NR_Other
Organics	Textiles	Clothing Textiles	2.54\%	2.17\%	2.67\%	2.59\%	2.50\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.06\%	1.44\%	1.17\%	1.26\%	1.23\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.30\%	3.30\%	3.00\%	3.21\%	3.20\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.03\%	1.25\%	1.03\%	1.11\%	1.10\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.25\%	0.22\%	0.34\%	0.30\%	0.28\%	NR_Other
Organics	Textiles	Shoes	0.55\%	0.63\%	0.60\%	0.62\%	0.60\%	NR_Other
Organics	Textiles	Other Leather Products	0.12\%	0.07\%	0.14\%	0.06\%	0.10\%	NR_Other
Organics	Misc. Organic	Fines	2.91\%	3.41\%	4.47\%	3.63\%	3.61\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.65\%	1.47\%	0.99\%	0.55\%	0.90\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.50\%	0.63\%	0.73\%	1.03\%	0.72\%	NR_Other
Organics Total			38.96\%	38.57\%	40.39\%	37.57\%	38.89\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.78\%	0.72\%	0.55\%	0.81\%	0.71\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.02\%	0.04\%	0.04\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.25\%	0.18\%	0.30\%	0.32\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.22\%	0.16\%	0.22\%	0.38\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.03\%	0.06\%	0.04\%	0.15\%	0.07\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.08\%	0.20\%	0.00\%	0.19\%	0.12\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.19\%	0.10\%	0.10\%	0.41\%	0.20\%	NR_Other
Appliance/Electronic Total			1.60\%	1.44\%	1.25\%	2.31\%	1.65\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.28\%	0.35\%	1.00\%	0.82\%	0.62\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.42\%	1.66\%	1.70\%	1.69\%	1.62\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.18\%	0.89\%	0.96\%	0.55\%	0.90\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.58\%	0.38\%	1.04\%	0.61\%	0.66\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.39\%	1.10\%	1.52\%	1.56\%	1.40\%	NR_Other
C \& D Debris Total			4.86\%	4.37\%	6.22\%	5.23\%	5.20\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.13\%	0.21\%	0.31\%	0.19\%	0.21\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.40\%	0.47\%	0.39\%	0.42\%	0.42\%	NR_Other
Miscellaneous Inorganics Total			0.53\%	0.68\%	0.70\%	0.61\%	0.63\%	

Table 1-32
Citywide Results Across Seasons, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.10\%	0.04\%	0.03\%	0.03\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.03\%	0.02\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.08\%	0.05\%	0.07\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.03\%	0.03\%	0.06\%	0.07\%	0.05\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.03\%	0.04\%	0.02\%	0.03\%	NR_Other
HHW Total			0.26\%	0.23\%	0.21\%	0.28\%	0.25\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Paper Total ${ }^{(2)}$			20,844.59	18,629.80	18,988.40	19,146.83	19,402.41	
Plastic Total ${ }^{(2)}$			8,881.06	8,212.72	9,420.20	9,502.11	9,004.02	
Glass Total ${ }^{(2)}$			2,646.18	2,629.35	2,924.17	3,397.44	2,899.28	
Metal Total ${ }^{(3)}$			3,147.51	3,180.47	3,277.82	3,113.94	3,179.93	
Organics Total			25,722.11	23,017.03	27,293.46	24,460.63	25,123.31	
Appliance/Elec			1,056.84	859.48	845.34	1,501.22	1,065.72	
C \& D Debris			3,205.56	2,610.23	4,205.01	3,407.12	3,356.98	
Miscellaneous	Total		348.69	403.17	471.73	396.67	405.06	
HHW Total			173.21	138.94	143.18	182.19	159.38	
Grand Total			66,025.76	59,681.18	67,569.31	65,108.16	64,596.10	
Subtotals by Recycling Designation								
Recycling Design			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Percent Desig			23.02\%	24.32\%	21.48\%	22.46\%	22.78\%	
Percent Desig			11.90\%	13.04\%	12.10\%	13.43\%	12.60\%	
Percent Desig	ycling		34.93\%	37.37\%	33.57\%	35.90\%	35.38\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

2.3 Housing Density and Income Details

Housing Density and Income Details tables, Tables 1-33 through Table 1-52, compare each strata to the others and to citywide results, for Refuse, MGP, Paper, and Waste. There is one table per season and per stream. This type of table is useful in comparing the composition and generation of different strata against each other. These tables also indicate possible correlations between the percentage of each material and housing density and/or income, developed by identifying patterns of relationships between these two variables. These possible correlations were developed by visually examining the results for each material category, by strata. For example, to ascertain whether a correlation between "housing density" and "material category" existed, we examined the percentage composition of the material for each density strata, looking to see whether the percentages of the material consistently increased or decreased. If the percentages increased, from the low to the medium to the high density strata, then a positive correlation existed between the material and housing density. If the percentage of material decreased consistently, then a negative correlation between the material and housing density existed. If there was no consistent pattern, then no correlation was evident. For example, in Table 1-33, the percentage of newspaper in the Refuse stream increases from low high density housing to medium density housing to high density housing for each income level, indicating a positive correlation between newspaper and housing density.

Table 1-33
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Refuse

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Refuse Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{gathered} \hline \begin{array}{c} \text { Medium Density } \\ \text { High Income } \\ \% \end{array} \\ \hline \end{gathered}$	Medium Density/ Medium Income \%	Medium Density/ Low Income $\%$	Low Densityl High Income \%	$\begin{gathered} \text { Low Densityl } \\ \text { e Medium Income } \\ \% \end{gathered}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	3.60\%	R Paper	5.39\%	5.08\%	4.47\%	3.63\%	2.56\%	3.48\%	2.52\%	2.89\%	Positive correlation with HD income
Paper	OCC	Plain OCC/Kratt Paper	1.12\%	R Paper	1.88\%	1.27\%	0.93\%	0.93\%	0.75\%	1.17\%	1.00\%	1.53\%	Positive correlation with HD income
Paper	Mixed Paper	High Grade Paper	0.64\%	R Paper	1.33\%	0.76\%	0.52\%	0.99\%	0.58\%	0.56\%	0.45\%	0.38\%	Positive correation with income
Paper	Mixed Paper	Mixed Low Grade Paper	8.18\%	R Paper	16.49\%	8.21\%	7.48\%	8.86\%	6.70\%	5.82\%	7.77\%	6.87\%	Positive correlation with income
Paper	Mixed Paper	Phone Books/Paperbacks	0.43\%	R Paper	0.70\%	0.43\%	0.37\%	0.42\%	0.15\%	0.65\%	0.46\%	0.38\%	Positive correation with income, except MD
Paper	Mixed Paper	Paper Bags	0.67\%	R Paper	1.66\%	0.56\%	0.59\%	0.97\%	0.61\%	0.46\%	0.48\%	0.37\%	Positive correlation with income, except HD
Paper	Bev Cartons	Polycoated Paper Containers	0.40\%	R Bev Cartons	0.61\%	0.47\%	0.46\%	0.45\%	0.36\%	0.41\%	0.29\%	0.26\%	Positive correlation with income, except MD
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.43\%	NR_Paper	11.95\%	8.29\%	8.34\%	8.29\%	8.52\%	6.19\%	8.50\%	7.96\%	No discernible pattern
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.57\%	NR_Paper	0.90\%	0.58\%	0.30\%	0.67\%	0.46\%	0.26\%	0.89\%	0.75\%	Positive correlation with income
Paper	Other Paper	Other Nonrecyclable Paper	0.64\%	NR_Paper	0.65\%	0.79\%	0.59\%	0.93\%	0.68\%	0.48\%	0.71\%	0.57\%	Positive correlation with income, except HD
Paper Total			24.68\%		41.56\%	26.44\%	24.05\%	26.16\%	21.37\%	19.49\%	23.07\%	21.96\%	Positive correlation with income
Plastic	PET Botlles	PET Bottles	0.77\%	R Plastics	1.02\%	0.82\%	1.05\%	0.67\%	0.65\%	0.85\%	0.48\%	0.56\%	Positive correlation with density
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.33\%	R Plastics	0.14\%	0.24\%	0.40\%	0.16\%	0.18\%	0.32\%	0.66\%	0.18\%	Negative correlation with income, except LD
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.32\%	R Plastics	0.36\%	0.34\%	0.42\%	0.29\%	0.28\%	0.32\%	0.27\%	0.26\%	Positive correlation with density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	PR_Plastics	0.15\%	0.10\%	0.00\%	0.06\%	0.01\%	0.06\%	0.01\%	0.03\%	Positive correlation with HD income
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.00\%	№ discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	PR_Plastics	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	PR_Plastics	0.05\%	0.06\%	0.05\%	0.04\%	0.07\%	0.02\%	0.03\%	0.03\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.22\%	0.17\%	0.21\%	0.27\%	0.15\%	0.09\%	0.19\%	0.12\%	Positive correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.04\%	0.03\%	0.02\%	0.05\%	0.02\%	0.01\%	0.05\%	0.06\%	Positive correlation with income, except LD
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.01\%	0.00\%	0.01\%	0.05\%	0.00\%	0.02\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.01\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.05\%	0.00\%	No discemible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.28\%	PR_Plastics	0.60\%	0.31\%	0.26\%	0.37\%	0.23\%	0.19\%	0.25\%	0.18\%	Positive correlation with density and income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.65\%	PR_Plastics	0.56\%	0.58\%	0.76\%	0.58\%	0.71\%	0.77\%	0.51\%	0.61\%	Negative correlation with income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.70\%	PR_Plastics	1.28\%	1.05\%	0.55\%	0.92\%	0.68\%	0.44\%	0.59\%	0.62\%	Positive correlation with density
Plastic	Film	Plastic Bags	2.87\%	PR_Plastics	3.00\%	3.79\%	3.49\%	2.55\%	3.21\%	2.50\%	2.12\%	2.34\%	Positive correlation with density
Plastic	Film	Other Film	5.63\%	PR_Plastics	6.85\%	6.60\%	5.86\%	5.64\%	6.14\%	5.01\%	4.74\%	4.66\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.55\%	NR_Plastics	0.56\%	0.45\%	0.46\%	0.40\%	0.47\%	0.55\%	0.76\%	0.63\%	Negative correlation with MD income
Plastic	Other Plastic Products	Other Plastics Materials	1.93\%	NR_Plastics	1.03\%	1.48\%	1.47\%	1.42\%	2.00\%	2.21\%	2.91\%	1.88\%	Negative correlation with MD income
Plastic Total			14.40\%		15.89\%	16.05\%	15.07\%	13.47\%	14.87\%	13.43\%	13.65\%	12.19\%	Positive correlation with density, except HI
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	1.12\%	R Glass	1.01\%	0.77\%	1.54\%	1.03\%	0.91\%	1.65\%	0.84\%	0.80\%	No discernible pattern
Glass	Container Glass	Green Container Glass	0.27\%	R Glass	0.40\%	0.27\%	0.32\%	0.36\%	0.34\%	0.28\%	0.11\%	0.07\%	Positive correlation with income, except HD
Glass	Container Glass	Brown Container Glass	0.30\%	R Glass	0.14\%	0.30\%	0.60\%	0.40\%	0.28\%	0.36\%	0.08\%	0.19\%	Positive correlation with density, except HII
Glass	Mixed Cullet	Mixed Cullet	0.63\%	R Glass	0.89\%	0.71\%	0.75\%	0.60\%	0.47\%	0.82\%	0.43\%	0.32\%	Positive correlation with density, except LI
Glass	Container Glass	Other Container Glass	0.02\%	R Glass	0.01\%	0.01\%	0.01\%	0.05\%	0.03\%	0.00\%	0.04\%	0.00\%	No discernible pattern
Glass	Other Glass	Other Glass	0.12\%	PR_Glass	0.05\%	0.10\%	0.15\%	0.10\%	0.10\%	0.08\%	0.17\%	0.16\%	Negative correlation with HD income
Glass Total			2.45\%		2.50\%	2.16\%	3.37\%	2.54\%	2.13\%	3.19\%	1.67\%	1.54\%	Positive correlation with density, except HI
Metal	Aluminum	Aluminum Cans	0.16\%	R Metal	0.20\%	0.23\%	0.22\%	0.22\%	0.12\%	0.19\%	0.10\%	0.09\%	Positive correlation with density, except HI
Metal	Aluminum	Aluminum Foilcontainers	0.52\%	R Metal	0.61\%	0.41\%	0.55\%	0.59\%	0.53\%	0.51\%	0.45\%	0.52\%	Positive correlation with MD income
Metal	Aluminum	Other Aluminum	0.06\%	R M etal	0.01\%	0.05\%	0.02\%	0.09\%	0.01\%	0.17\%	0.10\%	0.01\%	Negative correlation with HI density
Metal	Non-Ferrous	Other Non-Ferrous	0.09\%	R Metal	0.10\%	0.10\%	0.18\%	0.06\%	0.04\%	0.04\%	0.09\%	0.17\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	0.84\%	R Metal	0.56\%	1.00\%	1.64\%	0.61\%	0.60\%	0.93\%	0.45\%	0.56\%	Negative correlation with income, except MD
Metal	Ferrous	Empty Aerosol Cans	0.12\%	R Metal	0.12\%	0.10\%	0.17\%	0.09\%	0.10\%	0.12\%	0.11\%	0.13\%	Negative correlation with income, except HD
Metal	Ferrous	Other Ferrous	1.05\%	R Metal	0.83\%	1.33\%	0.98\%	1.24\%	0.69\%	1.63\%	0.93\%	1.11\%	No discernible pattern
Metal	Other Metal	Mixed Metals	0.51\%	R Metal	0.27\%	0.18\%	0.39\%	0.39\%	0.23\%	1.18\%	0.62\%	0.54\%	Negative correlation with density
Metal Total			3.36\%		2.71\%	3.39\%	4.14\%	3.30\%	2.33\%	4.76\%	2.86\%	3.13\%	Negative correlation with HD income

Table 1-33
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Refuse (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Refuse Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{aligned} & \hline \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	5.22\%	NR_Other	1.80\%	3.05\%	1.63\%	3.66\%	5.33\%	5.16\%	10.31\%	8.95\%	Negative correlation with density
Organics	Yard	Prunings	1.25\%	NR_Other	0.36\%	0.71\%	0.02\%	1.56\%	1.18\%	0.25\%	3.79\%	1.72\%	Negative correlation with density
Organics	Wood	Stumps/Limbs	0.14\%	NR_Other	0.00\%	0.16\%	0.00\%	0.05\%	0.14\%	0.00\%	0.46\%	0.14\%	Negative correlation with HI density
Organics	Food	Food	22.41\%	NR_Other	16.59\%	23.39\%	27.54\%	22.51\%	26.08\%	22.50\%	17.48\%	20.68\%	Negative correlation with income, except MD
Organics	Wood	Wood Furniture/Furniture Pieces	1.09\%	NR_Other	0.69\%	0.40\%	0.72\%	1.30\%	0.85\%	2.07\%	1.16\%	1.45\%	Negative correlation with density, except HI
Organics	Wood	Non-CCD Untreated Wood	0.06\%	NR_Other	0.02\%	0.03\%	0.07\%	0.10\%	0.06\%	0.02\%	0.11\%	0.07\%	Positive correlation with income, except HD
Organics	Texiles	Non-Clothing Textiles	1.56\%	NR_Other	1.17\%	1.47\%	1.62\%	1.27\%	1.78\%	1.28\%	1.89\%	1.40\%	Negative correlation with HD income
Organics	Textiles	Clothing Textiles	3.08\%	NR_Other	1.82\%	3.67\%	4.38\%	1.42\%	2.70\%	3.35\%	2.69\%	3.32\%	Negative correlation with income
Organics	Textiles	CarpetUpholstery	1.29\%	NR_Other	1.43\%	0.60\%	0.42\%	0.96\%	0.65\%	2.69\%	1.61\%	1.94\%	Positive correlation with HD income
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.03\%	NR_Other	3.08\%	3.72\%	4.83\%	4.74\%	4.07\%	4.24\%	3.26\%	4.81\%	Negative correlation with HD income
Organics	Misc. Organic	Animal By-Products	1.25\%	NR_Other	1.35\%	1.45\%	0.79\%	3.90\%	1.51\%	0.77\%	1.01\%	1.71\%	Positive correlation with MD income
Organics	Misc. Organic	Rubber Products	0.30\%	NR_Other	0.36\%	0.26\%	0.20\%	0.26\%	0.27\%	0.29\%	0.49\%	0.17\%	Positive correlation with income, except MD
Organics	Texilies	Shoes	0.67\%	NR_Other	0.36\%	0.60\%	0.67\%	0.66\%	0.65\%	0.94\%	0.56\%	0.98\%	Negative correlation with income, except MD
Organics	Texiles	Other Leather Products	0.14\%	NR_Other	0.04\%	0.22\%	0.16\%	0.06\%	0.32\%	0.10\%	0.09\%	0.03\%	Negative correlation with HI density
Organics	Misc. Organic	Fines	3.51\%	NR_Other	3.44\%	3.50\%	4.05\%	3.33\%	3.31\%	3.68\%	3.02\%	3.78\%	Negative correlation with income, except MD
Organics	Texilies	Upholstered or Other Organic-Type Furniture	0.79\%	NR_Other	0.09\%	0.61\%	0.21\%	0.84\%	1.63\%	0.84\%	1.22\%	0.16\%	Negative correlation with density, except MI
Organics	Misc. Organic	Miscellaneous Organics	0.60\%	NR_Other	0.36\%	0.53\%	0.76\%	1.24\%	0.43\%	0.40\%	0.77\%	0.65\%	Positive correlation with income, except $H D$
Organics Total			47.39\%		32.96\%	44.36\%	48.08\%	47.86\%	50.97\%	48.58\%	49.93\%	51.96\%	Negative correlation with density
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.16\%	R Metal	0.17\%	0.14\%	0.17\%	0.09\%	0.06\%	0.40\%	0.10\%	0.08\%	No discernible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R M etal	0.05\%	0.01\%	0.03\%	0.00\%	0.01\%	0.05\%	0.08\%	0.08\%	Negative correlation with MD income
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.19\%	NR_Other	0.16\%	0.28\%	0.18\%	0.11\%	0.11\%	0.22\%	0.27\%	0.09\%	Positive correlation with MI density
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.01\%	NR_Other	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioVVisual Equipment: Other	0.25\%	NR_Other	0.12\%	0.12\%	0.26\%	0.14\%	0.30\%	0.36\%	0.23\%	0.30\%	Negative correlation with density
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	NR_Other	0.00\%	0.00\%	0.00\%	0.17\%	0.05\%	0.14\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.10\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.31\%	0.00\%	0.11\%	0.34\%	Negative correlation with MI density
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	NR_Other	0.34\%	0.32\%	0.10\%	0.16\%	0.30\%	0.20\%	0.06\%	0.27\%	Positive correlation with density, except LI
Appliance/Electronic Total			0.98\%		0.84\%	0.88\%	0.77\%	0.68\%	1.13\%	1.38\%	0.85\%	1.17\%	Negative correlation with income, except HD
$C \& D$ Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.34\%	NR_Other	0.07\%	0.58\%	0.12\%	0.38\%	0.12\%	0.15\%	0.93\%	0.46\%	Negative correlation with density, except MI
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.71\%	NR_Other	0.59\%	1.68\%	1.15\%	2.24\%	1.85\%	2.08\%	2.09\%	2.38\%	Negative correlation with density, except HI
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.45\%	NR_Other	0.64\%	1.72\%	0.64\%	0.43\%	1.96\%	2.48\%	1.00\%	2.74\%	Negative correlation with income, except HD
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.70\%	NR_Other	0.30\%	0.61\%	0.80\%	0.39\%	0.76\%	1.30\%	0.45\%	0.49\%	Negative correlation with income
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	1.67\%	NR_Other	1.50\%	1.35\%	1.16\%	1.31\%	1.80\%	2.04\%	2.30\%	0.90\%	Positive correlation with income, except MD
C \& D Debris Total			5.86\%		3.10\%	5.94\%	3.86\%	4.75\%	6.49\%	8.05\%	6.77\%	6.98\%	Negative correlation with density
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.16\%	NR_Other	0.14\%	0.06\%	0.09\%	0.12\%	0.12\%	0.25\%	0.19\%	0.27\%	Negative correlation with density, except H I
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.44\%	NR_Other	0.07\%	0.47\%	0.33\%	0.74\%	0.32\%	0.57\%	0.69\%	0.42\%	No discernible pattern
Miscellaneous Inorganics Total			0.60\%		0.21\%	0.53\%	0.42\%	0.86\%	0.45\%	0.83\%	0.88\%	0.69\%	Negative correlation with density, except MI
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHw	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.11\%	NR_Other	0.06\%	0.01\%	0.04\%	0.14\%	0.10\%	0.08\%	0.19\%	0.26\%	Negative correlation with density
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	NR_Other	0.07\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.02\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.09\%	NR_Other	0.04\%	0.14\%	0.10\%	0.11\%	0.07\%	0.12\%	0.07\%	0.04\%	Positive correlation with MI density
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.04\%	NR_Other	0.04\%	0.03\%	0.07\%	0.10\%	0.05\%	0.04\%	0.02\%	0.01\%	Positive correlation with income, except HD
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.01\%	0.05\%	0.03\%	0.02\%	0.01\%	0.05\%	0.05\%	0.04\%	Negative correlation with density, except MI
HHW Total			0.28\%		0.23\%	0.24\%	0.25\%	0.38\%	0.26\%	0.29\%	0.33\%	0.38\%	Negative correlation with income, except MD
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-33
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Refuse (continued)

	\% of Citywide	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density High Income	Low Densityl Medium Income
Recycling Designation	Refuse Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	14.64\%	27.45\%	16.30\%	14.36\%	15.81\%	11.35\%	12.15\%	12.69\%	12.43\%
Designated Beverage Cartons	0.40\%	0.61\%	0.47\%	0.46\%	0.45\%	0.36\%	0.41\%	0.29\%	0.26\%
Designated Plastic	1.42\%	1.52\%	1.40\%	1.87\%	1.11\%	1.11\%	1.49\%	1.41\%	1.00\%
Designated Metal	3.56\%	2.93\%	3.54\%	4.34\%	3.39\%	2.40\%	5.22\%	3.04\%	3.30\%
Designated Glass	2.33\%	2.45\%	2.07\%	3.22\%	2.44\%	2.03\%	3.11\%	1.50\%	1.38\%
Designated MGP Subtotal	7.72\%	7.50\%	7.49\%	9.89\%	7.39\%	5.90\%	10.23\%	6.23\%	5.94\%
Potentially Designated Plastic	10.47\%	12.78\%	12.72\%	11.25\%	10.54\%	11.26\%	9.18\%	8.53\%	8.67\%
Potentially Designated Glass	0.12\%	0.05\%	0.10\%	0.15\%	0.10\%	0.10\%	0.08\%	0.17\%	0.16\%
Potentially Designated Materials Subtotal	10.59\%	12.83\%	12.81\%	11.40\%	10.64\%	11.36\%	9.26\%	8.70\%	8.83\%
Nondesignated Paper	9.64\%	13.50\%	9.67\%	9.23\%	9.90\%	9.66\%	6.93\%	10.09\%	9.28\%
Nondesignated Plastic	2.50\%	1.59\%	1.93\%	1.95\%	1.82\%	2.50\%	2.76\%	3.71\%	2.51\%
Other Nondesignated	54.91\%	37.12\%	51.80\%	53.17\%	54.45\%	59.22\%	58.68\%	58.58\%	61.02\%
Nondesignated Materials Subtotal	67.05\%	52.22\%	63.40\%	64.35\%	66.16\%	71.39\%	68.36\%	72.38\%	72.81\%
Designated for Recycling Total	22.36\%	34.95\%	23.79\%	24.25\%	23.20\%	17.25\%	22.38\%	18.92\%	18.36\%
Potentially or Not Designated for Recycling Total	77.64\%	65.05\%	76.21\%	75.75\%	76.80\%	82.75\%	77.62\%	81.08\%	81.64\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{(1)}$ Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.26 in Volume 2 .
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recyclin
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-34
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Paper

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	40.13\%	R Paper	42.30\%	35.18\%	47.21\%	37.86\%	29.30\%	28.71\%	50.32\%	43.72\%	Positive correlation with income, except HD
Paper	OCC	Plain OCC/Kraft Paper	18.94\%	R Paper	13.81\%	18.74\%	24.96\%	8.73\%	26.13\%	32.81\%	16.51\%	14.41\%	Negative correlation with income, except LD
Paper	Mixed Paper	High Grade Paper	3.17\%	R Paper	1.36\%	3.59\%	2.14\%	4.36\%	6.06\%	4.06\%	1.82\%	3.50\%	No discernible pattern
Paper	Mixed Paper	Mixed Low Grade Paper	29.35\%	R Paper	30.76\%	32.74\%	14.03\%	42.98\%	29.40\%	25.56\%	27.37\%	28.42\%	Positive correlation with MD income
Paper	Mixed Paper	Phone Books/Paperbacks	3.89\%	R Paper	7.27\%	6.91\%	6.82\%	2.38\%	2.69\%	3.52\%	0.79\%	4.14\%	Negative correlation with income, except HD
Paper	Mixed Paper	Paper Bags	0.32\%	R Paper	0.30\%	0.52\%	0.08\%	0.33\%	0.63\%	0.05\%	0.22\%	0.13\%	No discernible pattern
Paper	Bev Cartons	Polycoated Paper Containers	0.20\%	R Bev Cartons	0.29\%	0.12\%	0.37\%	0.19\%	0.26\%	0.15\%	0.05\%	0.15\%	Positive correlation with density, except MI
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.65\%	NR_Paper	0.21\%	0.07\%	0.87\%	0.23\%	1.48\%	0.18\%	0.64\%	1.44\%	Negative correlation with HI density
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.02\%	NR_Paper	0.00\%	0.01\%	0.01\%	0.03\%	0.07\%	0.00\%	0.01\%	0.05\%	No discernible pattern
Paper	Other Paper	Other Nonrecyclable Paper	0.48\%	NR_Paper	0.34\%	0.43\%	1.03\%	0.92\%	0.36\%	0.60\%	0.44\%	0.17\%	Positive correlation with density, except HI
Paper Total			97.15\%		96.64\%	98.30\%	97.52\%	98.00\%	96.38\%	95.64\%	98.17\%	96.14\%	Positive correlation with income, except HD
Plastic	PET Bottles	PET Botlles	0.03\%	R Plastics	0.03\%	0.02\%	0.01\%	0.00\%	0.01\%	0.07\%	0.04\%	0.15\%	Negative correlation with income, except HD
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.01\%	R Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.01\%	0.04\%	Negative correlation with income, except HD
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.01\%	R Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.05\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.00\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.06\%	PR_Plastics	0.09\%	0.03\%	0.01\%	0.09\%	0.03\%	0.06\%	0.07\%	0.02\%	Positive correlation with income, except MD
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.06\%	PR_Plastics	0.04\%	0.07\%	0.06\%	0.09\%	0.14\%	0.04\%	0.01\%	0.07\%	No discernible pattern
Plastic	Film	Plastic Bags	0.17\%	PR_Plastics	0.47\%	0.12\%	0.14\%	0.02\%	0.13\%	0.08\%	0.02\%	0.18\%	Negative correlation with MI density
Plastic	Film	Other Film	0.78\%	PR_Plastics	1.37\%	0.77\%	0.96\%	0.40\%	0.75\%	0.60\%	0.45\%	0.47\%	Positive correlation with density, except HI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.01\%	NR_Plastics	0.00\%	0.00\%	0.01\%	0.04\%	0.02\%	0.00\%	0.00\%	0.01\%	Positive correlation with MD income
Plastic	Other Plastic Products	Other Plastics Materials	0.23\%	NR_Plastics	0.28\%	0.08\%	0.04\%	0.20\%	0.28\%	0.08\%	0.34\%	0.05\%	Positive correalion with income, except MD
Plastic Total			1.38\%		2.29\%	1.09\%	1.25\%	0.87\%	1.38\%	1.05\%	0.96\%	1.13\%	No discernible pattern
Glass	Container Glass	Clear Container Glass	0.03\%	R Glass	0.00\%	0.04\%	0.07\%	0.01\%	0.00\%	0.17\%	0.00\%	0.23\%	Negative correlation with income, except MD
Glass	Container Glass	Green Container Glass	0.01\%	R Glass	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	No discerrible pattern
Glass	Container Glass	Brown Container Glass	0.01\%	R Glass	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.21\%	No discerrible pattern
Glass	Mixed Cullet	Mixed Cullet	0.03\%	R Glass	0.11\%	0.00\%	0.03\%	0.02\%	0.00\%	0.00\%	0.00\%	0.04\%	No discernible pattern
Glass	Container Glass	Other Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Glass	Other Glass	Other Glass	0.04\%	PR_Glass	0.00\%	0.00\%	0.54\%	0.00\%	0.00\%	0.00\%	0.00\%	0.19\%	No discernible pattern
Glass Total			0.12\%		0.11\%	0.12\%	0.68\%	0.04\%	0.00\%	0.17\%	0.00\%	0.75\%	Negative correlation with income, except MD
Metal	Aluminum	Aluminum Cans	0.01\%	R M etal	0.00\%	0.00\%	0.01\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal	Aluminum	Aluminum Foil/Containers	0.03\%	R M etal	0.00\%	0.02\%	0.01\%	0.02\%	0.03\%	0.01\%	0.04\%	0.08\%	No discernible pattern
Metal	Aluminum	Other Aluminum	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.04\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.17\%	0.03\%	0.00\%	0.00\%	№ discernible pattern
Metal	Ferrous	Tin Food Cans	0.02\%	R Metal	0.00\%	0.03\%	0.02\%	0.01\%	0.00\%	0.02\%	0.04\%	0.11\%	No discermible pattern
Metal	Ferrous	Empty Aerosol Cans	0.01\%	R M etal	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	0.00\%	0.07\%	No discernible pattern
Metal	Ferrous	Other Ferrous	0.02\%	R Metal	0.02\%	0.02\%	0.00\%	0.03\%	0.03\%	0.03\%	0.03\%	0.00\%	No discermible pattern
Metal	Other Metal	Mixed Metals	0.03\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.14\%	0.00\%	0.01\%	0.06\%	No discernible pattern
Metal Total			0.16\%		0.03\%	0.10\%	0.06\%	0.12\%	0.42\%	0.10\%	0.12\%	0.33\%	No discernible pattern

Table 1-34
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Paper (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Paper Stream	Recycling Subindicator	$\begin{aligned} & \text { High Densityl } \\ & \text { High Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { High Densityl\| } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl\| } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Medium Densityl Low Income $\%$	Low Densityl High Income \%	$\begin{aligned} & \text { L Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.18\%	NR_Other	0.06\%	0.02\%	0.05\%	0.15\%	0.58\%	0.16\%	0.06\%	0.14\%	No discerrible pattern
Organics	Wood	Wood Furnitur/Furniture Pieces	0.03\%	NR_Other	0.13\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HD income
Organics	Wood	Non-C\&D Untreated Wood	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Textiles	Non-Clothing Textiles	0.06\%	NR_Other	0.01\%	0.01\%	0.02\%	0.01\%	0.04\%	0.00\%	0.19\%	0.02\%	No discemible pattern
Organics	Textiles	Clothing Textiles	0.13\%	NR_Other	0.01\%	0.03\%	0.03\%	0.28\%	0.02\%	0.81\%	0.12\%	0.19\%	No discernible pattern
Organics	Textiles	CarpetUpholstery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	NR_Other	0.00\%	0.11\%	0.00\%	0.00\%	0.09\%	0.31\%	0.07\%	0.12\%	No discernible pattern
Organics	Misc. Organic	Animal By-Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattern
Organics	Texties	Shoes	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	0.12\%	No discernible pattern
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discemible pattern
Organics	Misc. Organic	Fines	0.28\%	NR_Other	0.28\%	0.19\%	0.19\%	0.21\%	0.54\%	0.35\%	0.11\%	0.26\%	Positive correlation with HI density
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.02\%	NR_Other	0.00\%	0.00\%	0.02\%	0.03\%	0.05\%	0.02\%	0.00\%	0.00\%	No discernible pattern
Organics Total			0.78\%		0.49\%	0.39\%	0.31\%	0.70\%	1.33\%	1.72\%	0.55\%	0.87\%	Negative correlation with income, except HD
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.03\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.69\%	No discerrible pattern
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNVisual Equipment: Other	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electroni//AV/Computer	Other Computer Equipment	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic Total			0.03\%		0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.75\%	No discernible pattern
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.03\%	NR_Other	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
$C \& D$ Debris	Wood	Treated/Contaminated Wood	0.13\%	NR_Other	0.00\%	0.00\%	0.00\%	0.05\%	0.30\%	0.88\%	0.00\%	0.00\%	Negative correlation with MD income
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.01\%	NR_Other	0.00\%	0.00\%	0.06\%	0.00\%	0.00\%	0.16\%	0.00\%	0.00\%	No discernible pattern
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	0.10\%	NR_Other	0.30\%	0.00\%	0.12\%	0.20\%	0.00\%	0.13\%	0.00\%	0.00\%	No discernible pattern
C \& D Debris Total			0.27\%		0.42\%	0.00\%	0.18\%	0.25\%	0.30\%	1.16\%	0.00\%	0.00\%	Negative correlation with MD income
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.00\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	No discerrible pattern
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.04\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.17\%	0.08\%	0.00\%	0.00\%	No discernible pattern
Miscellaneous Inorganics Total			0.05\%		0.01\%	0.00\%	0.00\%	0.01\%	0.17\%	0.11\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discerrible pattern
HHw	HHW	Antitreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Latex PaintsWater-Based Adhesives/Glues	0.05\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.20\%	0.00\%	No discernible pattern
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.02\%	Negative correlation with income, except HD
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHw	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW Total			0.05\%		0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.03\%	0.20\%	0.02\%	Negative correlation with MD income
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-34
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Paper (continued)

	\% of Citywide	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Densityl High Income	$\begin{array}{ll} \hline \text { Low Densityl } \\ \text { e Medium Income } \end{array}$
Recycling Designation	Paper Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	95.79\%	95.80\%	97.67\%	95.23\%	96.63\%	94.21\%	94.71\%	97.03\%	94.33\%
Designated Beverage Cartons	0.20\%	0.29\%	0.12\%	0.37\%	0.19\%	0.26\%	0.15\%	0.05\%	0.15\%
Designated Plastic	0.05\%	0.03\%	0.02\%	0.01\%	0.00\%	0.03\%	0.12\%	0.05\%	0.24\%
Designated Metal	0.16\%	0.03\%	0.10\%	0.06\%	0.12\%	0.42\%	0.10\%	0.12\%	0.33\%
Designated Glass	0.08\%	0.11\%	0.12\%	0.14\%	0.04\%	0.00\%	0.17\%	0.00\%	0.55\%
Designated MGP Subtotal	0.48\%	0.46\%	0.35\%	0.59\%	0.34\%	0.71\%	0.54\%	0.23\%	1.28\%
Potentially Designated Plastic	1.09\%	1.98\%	1.00\%	1.18\%	0.64\%	1.06\%	0.80\%	0.56\%	0.83\%
Potentially Designated Glass	0.04\%	0.00\%	0.00\%	0.54\%	0.00\%	0.00\%	0.00\%	0.00\%	0.19\%
Potentially Designated Materials Subtotal	1.13\%	1.98\%	1.00\%	1.72\%	0.64\%	1.06\%	0.80\%	0.56\%	1.02\%
Nondesignated Paper	1.16\%	0.54\%	0.50\%	1.92\%	1.18\%	1.91\%	0.78\%	1.09\%	1.66\%
Nondesignated Plastic	0.25\%	0.29\%	0.08\%	0.06\%	0.23\%	0.30\%	0.13\%	0.34\%	0.06\%
Other Nondesignated	1.19\%	0.93\%	0.39\%	0.49\%	0.97\%	1.81\%	3.04\%	0.75\%	1.64\%
Nondesignated Materials Subtotal	2.59\%	1.76\%	0.98\%	2.46\%	2.39\%	4.02\%	3.95\%	2.18\%	3.37\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 . (2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-35
Housing Density and Income Details, Fall 2004, Waste Characterization Study, MGP

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	0.52\%	R Paper	0.17\%	0.31\%	0.04\%	0.57\%	0.79\%	0.57\%	0.80\%	0.48\%	Negative correlation with density, except MI
Paper	OCC	Plain OCC/Kraft Paper	0.34\%	R Paper	0.27\%	0.17\%	0.21\%	0.10\%	0.30\%	0.25\%	0.45\%	0.93\%	Negative correalion with income, except HD
Paper	Mixed Paper	High Grade Paper	0.08\%	R Paper	0.06\%	0.07\%	0.01\%	0.09\%	0.09\%	0.12\%	0.05\%	0.25\%	Negative correlation with density, except H I
Paper	Mixed Paper	Mixed Low Grade Paper	1.33\%	R Paper	1.14\%	1.44\%	0.52\%	1.34\%	1.66\%	1.44\%	1.34\%	1.87\%	Negative correlation with density
Paper	Mixed Paper	Phone Books/Paperbacks	0.06\%	R Paper	0.01\%	0.01\%	0.00\%	0.15\%	0.18\%	0.12\%	0.00\%	0.00\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.04\%	R Paper	0.07\%	0.04\%	0.01\%	0.07\%	0.03\%	0.03\%	0.05\%	0.03\%	Positive correlation with income
Paper	Bev Cartons	Polycoated Paper Containers	2.01\%	$R \mathrm{Bev}$ Cartons	1.46\%	2.13\%	1.91\%	2.83\%	2.94\%	1.45\%	1.71\%	1.59\%	No discernible pattern
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.26\%	NR_Paper	0.21\%	0.26\%	0.29\%	0.27\%	0.24\%	0.27\%	0.26\%	0.38\%	Negative correlation with income, except MD
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.04\%	NR_Paper	0.04\%	0.05\%	0.03\%	0.03\%	0.04\%	0.03\%	0.05\%	0.05\%	No discernible pattern
Paper	Other Paper	Other Nonrrecyclable Paper	0.39\%	NR_Paper	0.18\%	0.34\%	0.38\%	0.40\%	0.46\%	0.47\%	0.36\%	0.57\%	Negative correlation with income
Paper Total			5.07\%		3.60\%	4.81\%	3.40\%	5.85\%	6.72\%	4.74\%	5.07\%	6.15\%	No discernible pattern
Plastic	PET Bottles	PET Botlles	5.39\%	R Plastics	4.94\%	3.79\%	3.53\%	4.00\%	5.96\%	5.31\%	6.72\%	6.64\%	Positive correlation with income, except MD
Plastic	HDPE Botlles	HDPE Botlles: Natural	2.83\%	R Plastics	1.50\%	3.35\%	3.47\%	1.24\%	3.99\%	2.73\%	2.31\%	3.31\%	Negative correlation with income, except MD
Plastic	HDPE Bottles	HDPE Bottles: Colored	3.11\%	R Plastics	2.13\%	3.30\%	2.69\%	1.87\%	3.66\%	2.58\%	3.90\%	3.39\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.04\%	PR_Plastics	0.01\%	0.02\%	0.01\%	0.02\%	0.08\%	0.01\%	0.07\%	0.01\%	Negative correlation with HI density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.28\%	PR_Plastics	0.15\%	0.60\%	0.27\%	0.02\%	0.36\%	0.17\%	0.32\%	0.25\%	Positive correlation with density, except HI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.05\%	PR_Plastics	0.03\%	0.06\%	0.03\%	0.05\%	0.04\%	0.04\%	0.08\%	0.06\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.11\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.11\%	PR_Plastics	0.06\%	0.10\%	0.08\%	0.05\%	0.13\%	0.12\%	0.12\%	0.14\%	Negative correlation with density, except HI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.25\%	PR_Plastics	0.24\%	0.83\%	0.10\%	0.18\%	0.21\%	0.31\%	0.21\%	0.28\%	Negative correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.01\%	0.01\%	Negative correlation with MD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.42\%	PR_Plastics	1.14\%	0.26\%	0.21\%	0.24\%	0.42\%	0.18\%	0.33\%	0.33\%	Positive correlation with HD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.09\%	PR_Plastics	0.08\%	0.11\%	0.04\%	0.08\%	0.09\%	0.08\%	0.08\%	0.20\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.00\%	0.13\%	0.08\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.04\%	NR_Plastics	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.24\%	0.03\%	0.01\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	PR_Plastics	0.16\%	0.13\%	0.19\%	0.13\%	0.25\%	0.04\%	0.30\%	0.61\%	Negative correlation with MI density
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.10\%	PR_Plastics	0.04\%	0.11\%	0.07\%	0.33\%	0.14\%	0.09\%	0.04\%	0.12\%	Positive correation with MD income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.33\%	PR_Plastics	1.39\%	1.23\%	1.08\%	1.16\%	1.67\%	1.15\%	1.19\%	1.62\%	Positive correlation with HD income
Plastic	Film	Plastic Bags	0.68\%	PR_Plastics	0.56\%	0.77\%	0.41\%	0.92\%	0.84\%	0.41\%	0.79\%	0.78\%	Positive correlation with income, except HD
Plastic	Film	Other Film	3.40\%	PR_Plastics	4.24\%	3.60\%	3.45\%	2.60\%	4.21\%	3.02\%	2.46\%	3.20\%	Positive correlation with density, except MI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.12\%	NR_Plastics	0.08\%	0.10\%	0.05\%	0.15\%	0.12\%	0.12\%	0.13\%	0.27\%	Negative correlation with density, except HI
Plastic	Other Plastic Products	Other Plastics Materials	3.59\%	NR_Plastics	2.67\%	3.74\%	4.21\%	2.41\%	3.76\%	3.75\%	4.02\%	3.01\%	Negative correlation with HD income
Plastic Total			22.10\%		19.45\%	22.30\%	20.00\%	15.50\%	25.98\%	20.37\%	23.12\%	24.36\%	No discernible pattern
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	7.37\%	R Glass	8.29\%	7.13\%	3.55\%	6.54\%	6.93\%	6.61%	9.27\%	10.19\%	Positive correlation with HD income
Glass	Container Glass	Green Container Glass	3.94\%	R Glass	11.48\%	3.26\%	0.69\%	10.00\%	1.95\%	1.44\%	3.47\%	2.66\%	Positive correlation with income
Glass	Container Glass	Brown Container Glass	1.90\%	R Glass	2.11\%	1.59\%	0.50\%	3.61\%	1.31\%	1.30\%	2.96\%	2.43\%	Positive correation with income
Glass	Mixed Cullet	Mixed Cullet	14.86\%	R Glass	22.97\%	11.35\%	11.57\%	20.84\%	17.23\%	11.84\%	12.03\%	10.28\%	Positive correlation with income, except HD
Glass	Container Glass	Other Container Glass	0.21\%	R Glass	0.20\%	0.09\%	0.08\%	0.15\%	0.32\%	0.44\%	0.12\%	0.23\%	Negative correlation with income, except HD
Glass	Other Glass	Other Glass	0.49\%	PR_Glass	0.51\%	0.59\%	0.16\%	0.35\%	0.53\%	0.54\%	0.40\%	1.17\%	Negative correlation with income, except HD
Glass Total			28.78\%		45.57\%	24.01\%	16.57\%	41.49\%	28.27\%	22.18\%	28.25\%	26.95\%	Positive correlation with income
Metal	Aluminum	Aluminum Cans	0.53\%	R Metal	0.33\%	0.26\%	0.31\%	0.37\%	0.48\%	0.39\%	1.00\%	0.66\%	Negative correlation with density
Metal	Aluminum	Aluminum Foil/Containers	1.02\%	R Metal	0.51\%	1.12\%	0.64\%	1.00\%	1.12\%	1.32\%	1.20\%	1.26\%	Negative correlation with density
Metal	Aluminum	Other Aluminum	0.14\%	R Metal	0.25\%	0.29\%	0.17\%	0.23\%	0.05\%	0.04\%	0.12\%	0.23\%	Positive correlation with HD income
Metal	Non-Ferrous	Other Non-Ferrous	0.58\%	R Metal	0.54\%	1.37\%	0.58\%	1.17\%	0.55\%	0.14\%	0.61\%	0.24\%	Positive correlation with income, except HD
Metal	Ferrous	Tin Food Cans	7.47\%	R Metal	4.06\%	5.67\%	6.75\%	5.60\%	9.07\%	9.02\%	7.87\%	9.80\%	Negative correlation with income, except MD
Metal	Ferrous	Empty Aerosol Cans	0.68\%	R Metal	0.65\%	0.64\%	0.73\%	0.34\%	0.84\%	0.54\%	0.70\%	0.70\%	No discernible pattern
Metal	Ferrous	Other Ferrous	15.71\%	R Metal	12.70\%	12.38\%	23.74\%	10.36\%	15.74\%	18.98\%	13.99\%	13.83\%	Negative correlation with MD income
Metal	Other Metal	Mixed Metals	2.87\%	R Metal	1.90\%	5.09\%	4.20\%	2.43\%	1.45\%	3.51\%	3.60\%	1.71\%	Negative correlation with HI density
Metal Total			29.00\%		20.95\%	26.81\%	37.12\%	21.50\%	29.30\%	33.94\%	29.09\%	28.42\%	Negative correlation with income, except LD

Table 1-35
Housing Density and Income Details, Fall 2004, Waste Characterization Study, MGP (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Medium Density/ } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.03\%	NR_Other	0.01\%	0.01\%	0.04\%	0.01\%	0.08\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.09\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	1.14\%	NR_Other	0.53\%	0.68\%	0.85\%	0.72\%	1.18\%	1.05\%	1.78\%	1.63\%	Negative correlation with density
Organics	Wood	Wood Furniture/Furniture Pieces	0.14\%	NR_Other	0.02\%	0.26\%	0.48\%	0.03\%	0.02\%	0.25\%	0.10\%	0.01\%	Positive correlation with density, except HII
Organics	Wood	Non-C\&D Untreated Wood	0.02\%	NR_Other	0.03\%	0.02\%	0.01\%	0.06\%	0.02\%	0.04\%	0.00\%	0.00\%	Positive correalion with HD income
Organics	Textiles	Non-Clothing Textiles	0.17\%	NR_Other	0.09\%	0.54\%	0.17\%	0.07\%	0.16\%	0.18\%	0.12\%	0.19\%	Negative correlation with income, except HD
Organics	Textiles	Clothing Textiles	0.09\%	NR_Other	0.09\%	0.18\%	0.05\%	0.11\%	0.11\%	0.15\%	0.03\%	0.02\%	Positive correlation with MI density
Organics	Textiles	CarpetUpholstery	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	NR_Other	0.00\%	0.09\%	0.04\%	0.25\%	0.03\%	0.04\%	0.17\%	0.05\%	No discernible pattern
Organics	Misc. Organic	Animal By-Products	0.01\%	NR_Other	0.00\%	0.09\%	0.00\%	0.00\%	0.02\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.07\%	NR_Other	0.06\%	0.08\%	0.10\%	0.04\%	0.08\%	0.02\%	0.04\%	0.13\%	Negative correlation with income, except MD
Organics	Texilies	Shoes	0.06\%	NR_Other	0.01\%	0.16\%	0.01\%	0.12\%	0.11\%	0.01\%	0.02\%	0.22\%	Positive correlation with MD income
Organics	Textiles	Other Leather Products	0.01\%	NR_Other	0.01\%	0.02\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	No discernible pattern
Organics	Misc. Organic	Fines	0.14\%	NR_Other	0.18\%	0.06\%	0.14\%	0.12\%	0.21\%	0.10\%	0.13\%	0.10\%	No discerrible pattern
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.08\%	NR_Other	0.00\%	0.02\%	0.59\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Negative correlation with HD income
Organics	Misc. Organic	Miscellaneous Organics	0.13\%	NR_Other	0.13\%	0.20\%	0.05\%	0.18\%	0.11\%	0.18\%	0.16\%	0.09\%	Positive correlation with MI density
Organics Total			2.16\%		1.18\%	2.40\%	2.54\%	1.72\%	2.16\%	2.03\%	2.56\%	2.54\%	Negative correlation with HD income
Appliance/Electronic	Ferrous	Appliances: Ferrous	9.32\%	R Metal	7.07\%	12.40\%	15.76\%	12.34\%	4.28\%	12.22\%	8.49\%	9.35\%	Negative correlation with income, except MD
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.10\%	R M etal	0.28\%	0.22\%	0.18\%	0.25\%	0.00\%	0.01\%	0.00\%	0.09\%	Positive correlation with density, except MI
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	1.34\%	NR_Other	1.02\%	2.34\%	2.31\%	0.96\%	1.10\%	1.86\%	0.89\%	0.88\%	Positive correlation with density
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.01\%	NR_Other	0.01\%	0.09\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	Positive correlation with MI density
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.23\%	NR_Other	0.00\%	0.07\%	0.69\%	0.04\%	0.21\%	0.30\%	0.19\%	0.15\%	Negative correlation with income, except LD
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.01\%	NR_Other	0.00\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	No discernible pattern
Appliance/Electronic	Electronic/Av/Computer	Other Computer Equipment	0.46\%	NR_Other	0.02\%	1.08\%	0.17\%	0.13\%	0.48\%	0.67\%	0.84\%	0.01\%	Negative correlation with density, except MI
Appliance/Electronic Total			11.47\%		8.40\%	16.20\%	19.16\%	13.72\%	6.08\%	15.05\%	10.41\%	10.55\%	Negative correlation with HD income
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.03\%	0.00\%	0.02\%	Negative correlation with income, except HD
$C \& D$ debris	Wood	Treated/Contaminated Wood	0.15\%	NR_Other	0.19\%	0.08\%	0.69\%	0.03\%	0.09\%	0.01\%	0.05\%	0.02\%	No discernible pattern
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.01\%	NR_Other	0.06\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.14\%	NR_Other	0.02\%	0.00\%	0.07\%	0.00\%	0.10\%	0.61\%	0.15\%	0.00\%	Negative correlation with MD income
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.25\%	NR_Other	0.06\%	2.52\%	0.11\%	0.03\%	0.14\%	0.24\%	0.02\%	0.09\%	Negative correlation with income, except HD
C \& D Debris Total			0.56\%		0.33\%	2.61\%	0.87\%	0.07\%	0.36\%	0.90\%	0.22\%	0.13\%	Negative correlation with MD income
Miscellaneous Inorganics Misc. Inorganic		Miscellaneous Inorganics	0.04\%	NR_Other	0.02\%	0.02\%	0.05\%	0.01\%	0.02\%	0.08\%	0.06\%	0.01\%	Negative correlation with MD income
Miscellaneous Inorganics Misc. Inorganic		Ceramics	0.47\%	NR_Other	0.27\%	0.42\%	0.25\%	0.13\%	0.56\%	0.47\%	0.74\%	0.43\%	No discernible pattern
Miscellaneous Inorganics Total			0.51\%		0.29\%	0.45\%	0.31\%	0.15\%	0.58\%	0.55\%	0.80\%	0.45\%	No discernible pattern
HHW	HHW	Oil Filters	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	0.00\%	0.01\%	№ discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.02\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.11\%	No discerrible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.12\%	NR_Other	0.16\%	0.23\%	0.01\%	0.00\%	0.22\%	0.08\%	0.09\%	0.11\%	Positive correlation with MI density
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.07\%	NR_Other	0.01\%	0.12\%	0.00\%	0.00\%	0.20\%	0.00\%	0.09\%	0.01\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.02\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.04\%	NR_Other	0.03\%	0.04\%	0.03\%	0.00\%	0.04\%	0.08\%	0.06\%	0.06\%	Negative correlation with MD income
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	№ discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.02\%	NR_Other	0.02\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.02\%	0.08\%	Positive correlation with HD income
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	NR_Other	0.01\%	0.02\%	0.00\%	0.00\%	0.03\%	0.05\%	0.12\%	0.03\%	Negative correlation with MD income
HHW Total			0.34\%		0.24\%	0.41\%	0.04\%	0.02\%	0.55\%	0.23\%	0.48\%	0.45\%	No discernible pattern
Grand Total					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	00.00\%	

Table 1-35
Housing Density and Income Details, Fall 2004, Waste Characterization Study, MGP (continued)

Recycling Designation	$\begin{gathered} \text { \% of Citywide } \\ \text { MGP } \end{gathered}$	High Density/ High Income	High Density/ Medium Income \%	High Densityl Low Income	$\begin{aligned} & \hline \text { Medium Density } \\ & \text { High Income } \end{aligned}$ \%	/ Medium Density/ Medium Income \%	Medium Density/ Low Income \%	Low Densityl High Income	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \end{gathered}$
Designated Paper	2.37\%	1.71\%	2.03\%	0.79\%	2.32\%	3.05\%	2.53\%	2.69\%	3.56\%
Designated Beverage Cartons	2.01\%	1.46\%	2.13\%	1.91\%	2.83\%	2.94\%	1.45\%	1.71\%	1.59\%
Designated Plastic	11.33\%	8.58\%	10.44\%	9.70\%	7.11\%	13.61\%	10.62\%	12.93\%	13.34\%
Designated Metal	38.42\%	28.30\%	39.42\%	53.06\%	34.09\%	33.58\%	46.16\%	37.58\%	37.86\%
Designated Glass	28.28\%	45.06\%	23.43\%	16.41\%	41.14\%	27.74\%	21.64\%	27.86\%	25.79\%
Designated MGP Subtotal	80.05\%	83.40\%	75.42\%	81.07\%	85.17\%	77.86\%	79.86\%	80.08\%	78.58\%
Potentially Designated Plastic	7.02\%	8.11\%	8.00\%	6.04\%	5.81\%	8.47\%	5.65\%	6.00\%	7.72\%
Potentially Designated Glass	0.49\%	0.51\%	0.59\%	0.16\%	0.35\%	0.53\%	0.54\%	0.40\%	1.17\%
Potentially Designated Materials Subtotal	7.51\%	8.62\%	8.59\%	6.20\%	6.16\%	9.00\%	6.19\%	6.40\%	8.89\%
Nondesignated Paper	0.69\%	0.43\%	0.65\%	0.70\%	0.70\%	0.74\%	0.77\%	0.67\%	1.00\%
Nondesignated Plastic	3.75\%	2.76\%	3.86\%	4.26\%	2.57\%	3.89\%	4.10\%	4.18\%	3.29\%
Other Nondesignated	5.63\%	3.08\%	9.45\%	6.98\%	3.08\%	5.46\%	6.55\%	5.98\%	4.68\%
Nondesignated Materials Subtotal	10.07\%	6.27\%	13.96\%	11.94\%	6.35\%	10.09\%	11.42\%	10.82\%	8.97\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 . (2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliancelelectronic material group.

Table 1-36
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Aggregated Recycling (Paper and MGP)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Recycling Stream	Recycling Subindicator	High Density/ High Income \%	High Densityl Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	25.15\%	R Paper	31.00\%	21.95\%	21.26\%	27.58\%	18.30\%	14.80\%	33.09\%	20.18\%	Positive correlation with income
Paper	OCC	Plain OCC/Kraft Paper	11.91\%	R Paper	10.18\%	11.70\%	11.35\%	6.35\%	16.16\%	16.71\%	10.92\%	7.08\%	Negative correlation with MD income
Paper	Mixed Paper	High Grade Paper	2.00\%	R Paper	1.01\%	2.25\%	0.97\%	3.19\%	3.76\%	2.11\%	1.21\%	1.73\%	No discernible pattern
Paper	Mixed Paper	Mixed Low Grade Paper	18.76\%	R Paper	22.81\%	20.87\%	6.60\%	31.51\%	18.69\%	13.64\%	18.32\%	13.97\%	Positive correation with income
Paper	Mixed Paper	Phone Books/Paperbacks	2.44\%	R Paper	5.32\%	4.29\%	3.07\%	1.77\%	1.72\%	1.84\%	0.52\%	1.88\%	Positive correlation with density, except MI
Paper	Mixed Paper	Paper Bags	0.22\%	R Paper	0.24\%	0.34\%	0.04\%	0.25\%	0.40\%	0.04\%	0.16\%	0.08\%	No discernible pattern
Paper	Bev Cartons	Polycoated Paper Containers	0.88\%	R Bev Cartons	0.61\%	0.88\%	1.22\%	0.92\%	1.29\%	0.79\%	0.63\%	0.94\%	Negative correlation with income, except MD
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.50\%	NR_Paper	0.21\%	0.14\%	0.55\%	0.24\%	1.00\%	0.22\%	0.51\%	0.86\%	Negative correlation with HI density
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.03\%	NR_Paper	0.01\%	0.02\%	0.02\%	0.03\%	0.06\%	0.01\%	0.02\%	0.05\%	No discernible pattern
Paper	Other Paper	Other Nonrecyclable Paper	0.45\%	NR_Paper	0.29\%	0.39\%	0.67\%	0.78\%	0.40\%	0.54\%	0.41\%	0.39\%	Negative correlation with HD income
Paper Total			62.34\%		71.68\%	62.84\%	45.76\%	72.62\%	61.78\%	50.71\%	65.79\%	47.15\%	Positive correlation with income
Plastic	PET Bottles	PET Bottles	2.06\%	R Plastics	1.35\%	1.45\%	1.95\%	1.10\%	2.31\%	2.66\%	2.37\%	3.68\%	Negative correlation with income
Plastic	HDPE Botlles	HDPE Botlles: Natural	1.08\%	R Plastics	0.40\%	1.27\%	1.91\%	0.34\%	1.55\%	1.36\%	0.81\%	1.82\%	Negative correlation with income, except MD
Plastic	HDPE Botlles	HDPE Bottles: Colored	1.18\%	R Plastics	0.57\%	1.25\%	1.48\%	0.52\%	1.42\%	1.29\%	1.36\%	1.87\%	Negative correlation with income, except MD
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.03\%	0.00\%	0.03\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.11\%	PR_Plastics	0.04\%	0.23\%	0.15\%	0.01\%	0.14\%	0.08\%	0.11\%	0.14\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	PR_Plastics	0.01\%	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	0.03\%	0.03\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.06\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.04\%	PR_Plastics	0.02\%	0.04\%	0.05\%	0.01\%	0.05\%	0.06\%	0.04\%	0.08\%	Negative correlation with income
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	0.10\%	PR_Plastics	0.06\%	0.31\%	0.05\%	0.05\%	0.08\%	0.15\%	0.07\%	0.16\%	Negative correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.16\%	PR_Plastics	0.31\%	0.10\%	0.11\%	0.07\%	0.16\%	0.09\%	0.12\%	0.18\%	Negative correlation with MI density
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.02\%	0.04\%	0.02\%	0.04\%	0.04\%	0.04\%	0.03\%	0.11\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.05\%	0.04\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.14\%	0.01\%	0.01\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.09\%	PR_Plastics	0.04\%	0.05\%	0.11\%	0.04\%	0.10\%	0.02\%	0.10\%	0.35\%	Negative correlation with income, except MD
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.07\%	PR_Plastics	0.08\%	0.06\%	0.04\%	0.16\%	0.07\%	0.08\%	0.06\%	0.08\%	Negative correlation with density, except HI
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.54\%	PR_Plastics	0.40\%	0.51\%	0.62\%	0.39\%	0.73\%	0.59\%	0.42\%	0.91\%	Negative correlation with income, except MD
Plastic	Film	Plastic Bags	0.36\%	PR_Plastics	0.50\%	0.37\%	0.29\%	0.27\%	0.40\%	0.25\%	0.29\%	0.51\%	Positive correlation with HD income
Plastic	Film	Other Film	1.77\%	PR_Plastics	2.14\%	1.84\%	2.33\%	1.00\%	2.08\%	1.80\%	1.15\%	1.96\%	No discernible pattern
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.05\%	NR_Plastics	0.03\%	0.04\%	0.04\%	0.07\%	0.06\%	0.06\%	0.04\%	0.15\%	Negative correlation with density, except HI
Plastic	Other Plastic Products	Other Plastics Materials	1.50\%	NR_Plastics	0.92\%	1.47\%	2.33\%	0.80\%	1.62\%	1.89\%	1.62\%	1.66\%	Negative correlation with income
Plastic Total			9.21\%		6.89\%	9.14\%	11.56\%	4.90\%	10.88\%	10.61\%	8.66\%	13.78\%	Negative correlation with income, except MD
Glass	Container Glass	Clear Container Glass	2.81\%	R Glass	2.23\%	2.73\%	1.98\%	1.81\%	2.67\%	3.35\%	3.22\%	5.65\%	Negative correlation with income, except HD
Glass	Container Glass	Green Container Glass	1.50\%	R Glass	3.08\%	1.29\%	0.38\%	2.76\%	0.75\%	0.71\%	1.21\%	1.48\%	Positive correlation with income, except LD
Glass	Container Glass	Brown Container Glass	0.72\%	R Glass	0.57\%	0.60\%	0.30\%	0.99\%	0.51\%	0.64\%	1.03\%	1.42\%	Negative correlation with density, except MI
Glass	Mixed Cullet	Mixed Cullet	5.64\%	R Glass	6.24\%	4.31\%	6.38\%	5.76\%	6.65\%	5.85\%	4.19\%	5.61\%	Positive correlation with density, except MI
Glass	Container Glass	Other Container Glass	0.08\%	R Glass	0.05\%	0.04\%	0.04\%	0.04\%	0.12\%	0.22\%	0.04\%	0.13\%	Negative correlation with income, except HD
Glass	Other Glass	Other Glass	0.21\%	PR_Glass	0.14\%	0.22\%	0.33\%	0.10\%	0.20\%	0.27\%	0.14\%	0.72\%	Negative correlation with income
Glass Total			10.95\%		12.30\%	9.18\%	9.42\%	11.46\%	10.91\%	11.05\%	9.83\%	15.02\%	Negative correlation with density, except HI
Metal	Aluminum	Aluminum Cans	0.21\%	R Metal	0.09\%	0.10\%	0.18\%	0.10\%	0.20\%	0.19\%	0.35\%	0.36\%	Negative correlation with density
Metal	Aluminum	Aluminum Foil/Containers	0.40\%	R Metal	0.14\%	0.44\%	0.36\%	0.29\%	0.46\%	0.66\%	0.45\%	0.72\%	Negative correlation with density
Metal	Aluminum	Other Aluminum	0.06\%	R M Metal	0.07\%	0.11\%	0.09\%	0.10\%	0.02\%	0.02\%	0.04\%	0.12\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.24\%	R M Metal	0.14\%	0.52\%	0.32\%	0.32\%	0.32\%	0.08\%	0.21\%	0.13\%	Positive correlation with density, except HI
Metal	Ferrous	Tin Food Cans	2.83\%	R Metal	1.09\%	2.17\%	3.72\%	1.55\%	3.50\%	4.47\%	2.76\%	5.38\%	Negative correlation with income and density
Metal	Ferrous	Empty Aerosol Cans	0.27\%	R M Metal	0.18\%	0.25\%	0.41\%	0.10\%	0.34\%	0.28\%	0.24\%	0.41\%	Negative correlation with income, except MD
Metal	Ferrous	Other Ferrous	5.95\%	R Metal	3.42\%	4.71\%	13.06\%	2.87\%	6.10\%	9.40\%	4.88\%	7.53\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	1.11\%	R Metal	0.51\%	1.93\%	2.31\%	0.67\%	0.64\%	1.73\%	1.26\%	0.96\%	Negative correlation with HD income
Metal Total			11.07\%		5.64\%	10.23\%	20.44\%	6.01\%	11.57\%	16.83\%	10.20\%	15.62\%	Negative correlation with income

Table 1-36
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{gathered} \hline \begin{array}{c} \text { Medium Density } \\ \text { High Income } \\ \% \end{array} \end{gathered}$	Medium Density/ Medium Income \%	$\begin{gathered} \hline \text { Medium Density } \\ \text { Low Income } \\ \% \end{gathered}$	$\begin{gathered} \text { \| Low Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.01\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	No discerrible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.54\%	NR_Other	0.19\%	0.27\%	0.49\%	0.30\%	0.81\%	0.60\%	0.66\%	0.95\%	Negative correlation with density
Organics	Wood	Wood Furniture/Furniture Pieces	0.07\%	NR_Other	0.10\%	0.12\%	0.27\%	0.02\%	0.01\%	0.12\%	0.04\%	0.01\%	Negative correlation with HD income
Organics	Wood	Non-C\&D Untreated Wood	0.01\%	NR_Other	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.00\%	0.00\%	No discernible pattern
Organics	Textiles	Non-Clothing Textiles	0.10\%	NR_Other	0.03\%	0.21\%	0.10\%	0.03\%	0.09\%	0.09\%	0.16\%	0.11\%	No discernible pattern
Organics	Textiles	Clothing Textiles	0.11\%	NR_Other	0.04\%	0.08\%	0.04\%	0.23\%	0.05\%	0.48\%	0.09\%	0.10\%	No discernible pattern
Organics	Texties	CarpetUphostery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	NR_Other	0.00\%	0.10\%	0.02\%	0.07\%	0.06\%	0.17\%	0.10\%	0.08\%	Negative correlation with density, except MI
Organics	Misc. Organic	Animal By-Products	0.00\%	NR_Other	0.00\%	0.03\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	Positive correlation with MI density
Organics	Misc. Organic	Rubber Products	0.03\%	NR_Other	0.02\%	0.03\%	0.05\%	0.01\%	0.04\%	0.02\%	0.01\%	0.07\%	Negative correlation with income, except MD
Organics	Texties	Shoes	0.03\%	NR_Other	0.00\%	0.06\%	0.00\%	0.03\%	0.04\%	0.03\%	0.01\%	0.17\%	No discernible pattern
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Organics	Misc. Organic	Fines	0.23\%	NR_Other	0.25\%	0.14\%	0.16\%	0.19\%	0.41\%	0.23\%	0.11\%	0.18\%	Positive correlation with HI density
Organics	Texties	Upholstered or Other Organic-Type Furniture	0.03\%	NR_Other	0.00\%	0.01\%	0.33\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Negative correlation with HD income
Organics	Misc. Organic	Miscellaneous Organics	0.06\%	NR_Other	0.04\%	0.08\%	0.04\%	0.07\%	0.07\%	0.10\%	0.06\%	0.05\%	Positive correlation with MI density
Organics Total			1.30\%		0.68\%	1.15\%	1.54\%	0.98\%	1.65\%	1.88\%	1.25\%	1.78\%	Negative correlation with income and density
Appliance/Electronic	Ferrous	Appliances: Ferrous	3.52\%	R Metal	1.90\%	4.70\%	8.67\%	3.40\%	1.65\%	6.04\%	2.95\%	5.09\%	Negative correlation with income, except MD
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.08\%	0.08\%	0.10\%	0.07\%	0.00\%	0.00\%	0.00\%	0.05\%	Positive correlation with HI density
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.53\%	NR_Other	0.27\%	0.89\%	1.27\%	0.26\%	0.43\%	0.93\%	0.31\%	0.79\%	Negative correlation with income
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.09\%	NR_Other	0.00\%	0.03\%	0.38\%	0.01\%	0.08\%	0.15\%	0.07\%	0.11\%	Negative correlation with income
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	NR_Other	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.17\%	NR_Other	0.00\%	0.41\%	0.09\%	0.04\%	0.19\%	0.33\%	0.29\%	0.01\%	Negative correlation with MD income
Appliancel/Electronic Total			4.35\%		2.25\%	6.14\%	10.54\%	3.79\%	2.35\%	7.45\%	3.62\%	6.08\%	Negative correlation with income, except MD
\bar{C} \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.02\%	NR_Other	0.09\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.01\%	Negative correlation with income, except HD
$C \& D$ debris	Wood	Treated/Contaminated Wood	0.14\%	NR_Other	0.05\%	0.03\%	0.38\%	0.04\%	0.21\%	0.45\%	0.02\%	0.02\%	Positive correlation with HI density
$C \& D$ debris	Inorganic C\&D	Gypsum Scrap	0.00\%	NR_Other	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.06\%	NR_Other	0.00\%	0.00\%	0.06\%	0.00\%	0.04\%	0.38\%	0.05\%	0.00\%	Negative correlation with MD income
$C \& D$ debris	Inorganic C\&D	Other Construction Debris	0.16\%	NR_Other	0.24\%	0.96\%	0.12\%	0.15\%	0.05\%	0.19\%	0.01\%	0.05\%	Positive correlation with HI density
C \& D Debris Total			0.38\%		0.40\%	0.99\%	0.56\%	0.20\%	0.32\%	1.03\%	0.08\%	0.08\%	Positive correlation with density, except LI
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.02\%	NR_Other	0.02\%	0.01\%	0.03\%	0.00\%	0.01\%	0.05\%	0.02\%	0.01\%	Negative correlation with MD income
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.20\%	NR_Other	0.07\%	0.16\%	0.14\%	0.04\%	0.32\%	0.28\%	0.26\%	0.24\%	No discernible pattern
Miscellaneous Inorganics Total			0.22\%		0.09\%	0.17\%	0.17\%	0.05\%	0.33\%	0.33\%	0.28\%	0.24\%	No discernible pattern
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.06\%	No discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.08\%	NR_Other	0.04\%	0.09\%	0.00\%	0.00\%	0.08\%	0.04\%	0.16\%	0.06\%	Positive correlation with MI density
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	NR_Other	0.00\%	0.04\%	0.00\%	0.00\%	0.08\%	0.00\%	0.03\%	0.01\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.02\%	NR_Other	0.01\%	0.02\%	0.02\%	0.00\%	0.02\%	0.05\%	0.02\%	0.04\%	Negative correlation with income, except HD
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.04\%	0.01\%	Negative correlation with MD income
$\frac{\text { HHW Total }}{\text { Grand Total }}$			100.00\%		0.07\%	0.16\%	0.02\%	0.01\%	0.22\%	0.13\%	0.30\%	0.25\%	Negative correlation with density, except HI
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-36
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued) subtotals by recycling designation

Recycling Designation	\% of Citywide Recycling Stream	High Densityl High Income \%	High Density/ Medium Income $\%$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Designated Paper	60.47\%	70.56\%	61.40\%	43.29\%	70.65\%	59.02\%	49.14\%	64.22\%	44.91\%
Designated Beverage Cartons	0.88\%	0.61\%	0.88\%	1.22\%	0.92\%	1.29\%	0.79\%	0.63\%	0.94\%
Designated Plastic	4.31\%	2.32\%	3.97\%	5.34\%	1.96\%	5.27\%	5.31\%	4.53\%	7.38\%
Designated Metal	14.63\%	7.62\%	15.01\%	29.21\%	9.48\%	13.22\%	22.87\%	13.15\%	20.76\%
Designated Glass	10.74\%	12.17\%	8.96\%	9.09\%	11.36\%	10.71\%	10.78\%	9.69\%	14.29\%
Designated MGP Subtotal	30.56\%	22.71\%	28.82\%	44.85\%	23.71\%	30.49\%	39.75\%	28.00\%	43.36\%
Potentially Designated Plastic	3.33\%	3.62\%	3.66\%	3.85\%	2.06\%	3.92\%	3.20\%	2.46\%	4.58\%
Potentially Designated Glass	0.21\%	0.14\%	0.22\%	0.33\%	0.10\%	0.20\%	0.27\%	0.14\%	0.72\%
Potentially Designated Materials Subtotal	3.54\%	3.76\%	3.88\%	4.19\%	2.16\%	4.12\%	3.47\%	2.59\%	5.30\%
Nondesignated Paper	0.98\%	0.51\%	0.56\%	1.25\%	1.05\%	1.46\%	0.77\%	0.94\%	1.30\%
Nondesignated Plastic	1.57\%	0.95\%	1.51\%	2.37\%	0.88\%	1.69\%	2.10\%	1.68\%	1.82\%
Nondesignated Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Other Nondesignated	2.87\%	1.51\%	3.83\%	4.06\%	1.55\%	3.22\%	4.77\%	2.57\%	3.30\%
Nondesignated Materials Subtotal	5.42\%	2.97\%	5.90\%	7.67\%	3.48\%	6.36\%	7.64\%	5.19\%	6.42\%
Designated for Recycling Total	91.04\%	93.27\%	90.22\%	88.14\%	94.36\%	89.51\%	88.89\%	92.22\%	88.28\%
Potentially or Not Designated for Recycling Total	8.96\%	6.73\%	9.78\%	11.86\%	5.64\%	10.49\%	11.11\%	7.78\%	11.72\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-37
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Waste (Refuse and Recycling)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \% \text { Medium Income } \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	7.55\%	R Paper	12.68\%	7.88\%	6.10\%	11.00\%	5.80\%	4.77\%	9.02\%	5.32\%	Positive correlation with density and income
Paper	OCC	Plain OCC//Kart Paper	3.09\%	R Paper	4.24\%	2.99\%	1.94\%	2.60\%	3.92\%	2.95\%	3.11\%	2.31\%	Positive correlation with income, except MD
Paper	Mixed Paper	High Grade Paper	0.89\%	R Paper	1.24\%	1.00\%	0.57\%	1.66\%	1.23\%	0.73\%	0.61\%	0.57\%	Positive correation with income
Paper	Mixed Paper	Mixed Low Grade Paper	10.12\%	R Paper	18.29\%	10.30\%	7.40\%	15.82\%	9.17\%	6.72\%	10.01\%	7.87\%	Positive correlation with density and income
Paper	Mixed Paper	Phone Books/Paperbacks	0.80\%	R Paper	2.01\%	1.07\%	0.63\%	0.84\%	0.47\%	0.79\%	0.47\%	0.59\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.58\%	R Paper	1.26\%	0.52\%	0.53\%	0.75\%	0.57\%	0.41\%	0.41\%	0.33\%	Positive correlation with income, except HD
Paper	Bev Cartons	Polycoated Paper Containers	0.49\%	R Bev Cartons	0.61\%	0.54\%	0.53\%	0.60\%	0.55\%	0.46\%	0.36\%	0.35\%	Positive correlation with income
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC//Kraft	6.98\%	NR_Paper	8.61\%	6.94\%	7.59\%	5.82\%	6.97\%	5.50\%	6.80\%	6.96\%	No discernible pattern
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.47\%	NR_Paper	0.65\%	0.49\%	0.27\%	0.47\%	0.38\%	0.24\%	0.70\%	0.65\%	Positive correation with income
Paper	Other Paper	Other Nonrecyclable Paper	0.61\%	NR_Paper	0.55\%	0.73\%	0.60\%	0.88\%	0.62\%	0.49\%	0.64\%	0.55\%	Positive correlation with income, except HD
Paper Total			31.57\%		50.13\%	32.47\%	26.15\%	40.44\%	29.69\%	23.07\%	32.15\%	25.50\%	Positive correlation with density and income
Plastic	PET Botles	PET Bottles	1.00\%	R Plastics	1.11\%	0.93\%	1.13\%	0.80\%	0.99\%	1.05\%	0.88\%	1.00\%	Negative correlation with income, except HD
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.47\%	R Plastics	0.22\%	0.41\%	0.55\%	0.21\%	0.46\%	0.44\%	0.69\%	0.41\%	No discernible pattern
Plastic	HDPE Botlles	HDPE Bottles: Colored	0.48\%	R Plastics	0.42\%	0.49\%	0.52\%	0.36\%	0.52\%	0.43\%	0.50\%	0.49\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	PR_Plastics	0.12\%	0.12\%	0.02\%	0.04\%	0.04\%	0.06\%	0.03\%	0.04\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottle: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botlles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	PR_Plastics	0.05\%	0.10\%	0.05\%	0.04\%	0.07\%	0.04\%	0.04\%	0.05\%	Positive correlation with density
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.24\%	0.16\%	0.20\%	0.21\%	0.15\%	0.09\%	0.18\%	0.13\%	Positive correation with density
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.03\%	0.03\%	0.02\%	0.05\%	0.03\%	0.02\%	0.04\%	0.07\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.01\%	0.01\%	0.02\%	0.00\%	0.02\%	0.02\%	0.04\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	PR_Plastics	0.44\%	0.26\%	0.25\%	0.26\%	0.20\%	0.17\%	0.22\%	0.20\%	Positive correation with density and income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.55\%	PR_Plastics	0.42\%	0.49\%	0.69\%	0.45\%	0.58\%	0.69\%	0.41\%	0.53\%	Negative correlation with income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.67\%	PR_Plastics	1.03\%	0.96\%	0.55\%	0.75\%	0.69\%	0.46\%	0.55\%	0.66\%	Positive correation with density
Plastic	Film	Plastic Bags	2.42\%	PR_Plastics	2.29\%	3.22\%	3.18\%	1.85\%	2.63\%	2.24\%	1.73\%	2.08\%	Positive correlation with density
Plastic	Film	Other Film	4.92\%	PR_Plastics	5.51\%	5.81\%	5.51\%	4.22\%	5.30\%	4.65\%	3.98\%	4.28\%	Positive correlation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.46\%	NR_Plastics	0.40\%	0.38\%	0.42\%	0.30\%	0.39\%	0.49\%	0.61\%	0.56\%	Negative correlation with density, except HI
Plastic	Other Plastic Products	Other Plastics Materials	1.86\%	NR_Plastics	1.00\%	1.48\%	1.55\%	1.23\%	1.92\%	2.18\%	2.63\%	1.85\%	Positive correlation with income, except LD
Plastic Total			13.45\%		13.33\%	14.90\%	14.73\%	10.84\%	14.05\%	13.10\%	12.59\%	12.41\%	Positive correlation with density, except HI
Glass	Container Glass	Clear Container Glass	1.43\%	R Glass	1.36\%	1.09\%	1.58\%	1.27\%	1.27\%	1.84\%	1.34\%	1.48\%	Negative correlation with density, except HI
Glass	Container Glass	Green Container Glass	0.49\%	R Glass	1.16\%	0.44\%	0.33\%	1.10\%	0.43\%	0.33\%	0.35\%	0.27\%	Positive correation with density and income
Glass	Container Glass	Brown Container Glass	0.38\%	R Glass	0.26\%	0.35\%	0.57\%	0.58\%	0.32\%	0.39\%	0.28\%	0.36\%	No discernible pattern
Glass	Mixed Cullet	Mixed Cullet	1.54\%	R Glass	2.41\%	1.31\%	1.29\%	2.18\%	1.74\%	1.40\%	1.23\%	1.06\%	Positive correlation with income
Glass	Container Glass	Other Container Glass	0.03\%	R Glass	0.02\%	0.02\%	0.01\%	0.04\%	0.05\%	0.02\%	0.04\%	0.02\%	No discernible pattern
Glass	Other Glass	Other Glass	0.14\%	PR_Glass	0.08\%	0.12\%	0.16\%	0.10\%	0.12\%	0.10\%	0.16\%	0.24\%	Negative correlation with $H \mathrm{D}$ income
Glass Total			4.01\%		5.29\%	3.33\%	3.95\%	5.28\%	3.94\%	4.09\%	3.40\%	3.43\%	No discernible pattern
Metal	Aluminum	Aluminum Cans	0.17\%	R Metal	0.17\%	0.21\%	0.22\%	0.18\%	0.14\%	0.19\%	0.15\%	0.13\%	Negative Correlation with HD income
Metal	Aluminum	Aluminum FoillContainers	0.50\%	R Metal	0.47\%	0.42\%	0.53\%	0.50\%	0.52\%	0.53\%	0.45\%	0.55\%	Negative correlation with income, except HD
Metal	Aluminum	Other Aluminum	0.06\%	R Metal	0.03\%	0.06\%	0.02\%	0.09\%	0.01\%	0.16\%	0.09\%	0.02\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	R M etal	0.11\%	0.17\%	0.19\%	0.14\%	0.10\%	0.04\%	0.11\%	0.16\%	Negative correlation with income, except MD
Metal	Ferrous	Tin Food Cans	1.20\%	R Metal	0.71\%	1.19\%	1.84\%	0.90\%	1.20\%	1.33\%	0.94\%	1.24\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.15\%	R Metal	0.14\%	0.13\%	0.19\%	0.09\%	0.15\%	0.14\%	0.14\%	0.17\%	No discernible pattern
Metal	Ferrous	Other Ferrous	1.95\%	R Metal	1.57\%	1.89\%	2.15\%	1.75\%	1.80\%	2.52\%	1.77\%	2.01\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	0.62\%	R Metal	0.34\%	0.47\%	0.57\%	0.48\%	0.32\%	1.25\%	0.76\%	0.60\%	No discernible pattern
Metal Total			4.77\%		3.54\%	4.52\%	5.72\%	4.13\%	4.24\%	6.15\%	4.42\%	4.89\%	Negative correlation with income

Table 1-37
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \text { High Densityl\| } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	4.26\%	NR_Other	1.29\%	2.55\%	1.48\%	2.53\%	4.24\%	4.57\%	8.12\%	7.70\%	Negative correlation with density
Organics	Yard	Prunings	1.02\%	NR_Other	0.26\%	0.59\%	0.02\%	1.08\%	0.94\%	0.23\%	2.98\%	1.48\%	Negative correlation with density
Organics	Wood	Stumps/Limbs	0.11\%	NR_Other	0.00\%	0.13\%	0.00\%	0.04\%	0.11\%	0.00\%	0.36\%	0.12\%	No discerrible pattern
Organics	Food	Food	18.41\%	NR_Other	11.92\%	19.56\%	24.92\%	15.68\%	20.88\%	19.99\%	13.90\%	17.91\%	Negative correlation with income, except MD
Organics	Wood	Wood Furniture/Furniture Pieces	0.90\%	NR_Other	0.53\%	0.35\%	0.68\%	0.91\%	0.68\%	1.85\%	0.92\%	1.25\%	Negative correlation with density
Organics	Wood	Non-CCD Untreated Wood	0.05\%	NR_Other	0.02\%	0.03\%	0.06\%	0.07\%	0.05\%	0.02\%	0.09\%	0.06\%	Positive correation with income, except HD
Organics	Texiles	Non-Clothing Textiles	1.29\%	NR_Other	0.84\%	1.26\%	1.47\%	0.89\%	1.43\%	1.15\%	1.52\%	1.22\%	No discernible pattern
Organics	Textiles	Clothing Texiles	2.54\%	NR_Other	1.31\%	3.08\%	3.96\%	1.06\%	2.16\%	3.02\%	2.14\%	2.87\%	Negative correation with income
Organics	Texiles	CarpetUpholstery	1.06\%	NR_Other	1.03\%	0.50\%	0.38\%	0.67\%	0.52\%	2.38\%	1.27\%	1.67\%	Positive correlation with income, except LD
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.30\%	NR_Other	2.20\%	3.12\%	4.36\%	3.30\%	3.25\%	3.77\%	2.59\%	4.15\%	Negative correlation with income, except MD
Organics	Misc. Organic	Animal By-Products	1.03\%	NR_Other	0.96\%	1.22\%	0.71\%	2.70\%	1.20\%	0.69\%	0.80\%	1.47\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.25\%	NR_Other	0.26\%	0.23\%	0.19\%	0.19\%	0.22\%	0.26\%	0.39\%	0.16\%	Positive correlation with income, except MD
Organics	Texiles	Shoes	0.55\%	NR_Other	0.26\%	0.51\%	0.60\%	0.47\%	0.52\%	0.83\%	0.44\%	0.87\%	Negative correation with income
Organics	Textiles	Other Leather Products	0.12\%	NR_Other	0.03\%	0.19\%	0.15\%	0.04\%	0.25\%	0.09\%	0.07\%	0.03\%	No discernible pattern
Organics	Misc. Organic	Fines	2.91\%	NR_Other	2.53\%	2.94\%	3.67\%	2.37\%	2.71\%	3.29\%	2.40\%	3.27\%	Negative correation with income
Organics	Texilies	Upholstered or Other Organic-Type Furniture	0.65\%	NR_Other	0.07\%	0.51\%	0.22\%	0.58\%	1.30\%	0.74\%	0.96\%	0.13\%	Negative correlation with density, except MI
Organics	Misc. Organic	Miscellaneous Organics	0.50\%	NR_Other	0.27\%	0.45\%	0.69\%	0.88\%	0.36\%	0.37\%	0.61\%	0.57\%	Negative correlation with HD income
Organics Total			38.96\%		23.77\%	37.21\%	43.57\%	33.45\%	40.82\%	43.23\%	39.58\%	44.92\%	Negative correlation with income
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.78\%	R Metal	0.66\%	0.90\%	0.99\%	1.11\%	0.38\%	1.05\%	0.71\%	0.78\%	Negative correlation with HD income
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.06\%	0.02\%	0.04\%	0.02\%	0.01\%	0.05\%	0.06\%	0.08\%	No discermible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.25\%	NR_Other	0.19\%	0.38\%	0.29\%	0.16\%	0.17\%	0.30\%	0.28\%	0.19\%	Negative correlation with MD income
Appliance/Electronic	Electronic/AV/Computer	AudioVVisual Equipment: Cell Phones	0.01\%	NR_Other	0.00\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	Negative correlation with HD income
Appliance/Electronic	Electronic/AV/Computer	AudioV isual Equipment: Other $^{\text {a }}$	0.22\%	NR_Other	0.09\%	0.11\%	0.27\%	0.10\%	0.26\%	0.33\%	0.19\%	0.27\%	Negative correlation w/ density and income
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.03\%	NR_Other	0.00\%	0.00\%	0.00\%	0.12\%	0.04\%	0.12\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/Av/Computer	Televisions	0.08\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	0.00\%	0.09\%	0.30\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.19\%	NR_Other	0.24\%	0.34\%	0.10\%	0.12\%	0.27\%	0.22\%	0.11\%	0.23\%	Positive correlation with density, except LI
Appliancel/Electronic Total			1.60\%		1.24\%	1.75\%	1.71\%	1.63\%	1.38\%	2.07\%	1.44\%	1.86\%	No discernible pattern
C\&D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.28\%	NR_Other	0.07\%	0.48\%	0.11\%	0.27\%	0.10\%	0.14\%	0.73\%	0.40\%	Positive correlation with density, except MI
$C \& D$ debris	Wood	Treated/Contaminated Wood	1.42\%	NR_Other	0.44\%	1.40\%	1.08\%	1.57\%	1.52\%	1.89\%	1.65\%	2.05\%	Negative correlation with density
$C \& D$ debris	Inorganic C\&D	Gypsum Scrap	1.18\%	NR_Other	0.46\%	1.44\%	0.57\%	0.29\%	1.56\%	2.20\%	0.79\%	2.36\%	Negative correlation with income, except HD
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.58\%	NR_Other	0.22\%	0.51\%	0.73\%	0.27\%	0.61\%	1.20\%	0.37\%	0.42\%	Negative correation with income
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.39\%	NR_Other	1.14\%	1.29\%	1.05\%	0.96\%	1.44\%	1.83\%	1.81\%	0.78\%	Negative correlation with MD income
C \& D Debris Total			4.86\%		2.33\%	5.12\%	3.54\%	3.35\%	5.22\%	7.25\%	5.34\%	6.01\%	Negative correlation with density
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.13\%	NR_Other	0.11\%	0.05\%	0.09\%	0.08\%	0.10\%	0.23\%	0.15\%	0.23\%	Negative correlation with income, except HD
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.40\%	NR_Other	0.07\%	0.42\%	0.31\%	0.53\%	0.32\%	0.54\%	0.60\%	0.39\%	No discernible pattern
Miscellaneous Inorganics Total			0.53\%		0.18\%	0.47\%	0.40\%	0.61\%	0.42\%	0.77\%	0.75\%	0.62\%	Negative correlation with density, except MI
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/M ${ }^{\text {ator Oilldiesel Fuel }}$	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.10\%	NR_Other	0.06\%	0.02\%	0.04\%	0.10\%	0.09\%	0.08\%	0.18\%	0.23\%	Negative correlation with density
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.05\%	0.01\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.02\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	No discermible pattern
HHW	HHW	Dry-Cell Batteries	0.07\%	NR_Other	0.03\%	0.12\%	0.09\%	0.08\%	0.06\%	0.11\%	0.06\%	0.04\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Home Medical Products	0.03\%	NR_Other	0.03\%	0.03\%	0.06\%	0.07\%	0.04\%	0.03\%	0.02\%	0.02\%	No discermible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.01\%	0.04\%	0.03\%	0.02\%	0.01\%	0.05\%	0.05\%	0.04\%	No discernible pattern
$\frac{\text { HHW Total }}{\text { Grand Total }}$			0.26\%		0.19\%	0.23\%	0.22\%	0.27\%	0.25\%	0.27\%	0.32\%	0.36\%	Negative correlation with density
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-37
Housing Density and Income Details, Fall 2004, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

	\% of Cilywide	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Densityl Medium Income
Recycling Designation	Waste Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	23.02\%	39.72\%	23.77\%	17.16\%	32.67\%	21.16\%	16.39\%	23.64\%	16.99\%
Designated Beverage Cartons	0.49\%	0.61\%	0.54\%	0.53\%	0.60\%	0.55\%	0.46\%	0.36\%	0.35\%
Designated Plastic	1.95\%	1.74\%	1.83\%	2.20\%	1.37\%	1.97\%	1.93\%	2.07\%	1.90\%
Designated Metal	5.59\%	4.26\%	5.44\%	6.75\%	5.26\%	4.63\%	7.24\%	5.19\%	5.75\%
Designated Glass	3.87\%	5.21\%	3.21\%	3.79\%	5.18\%	3.81\%	3.99\%	3.24\%	3.19\%
Designated MGP Subtotal	11.90\%	11.83\%	11.02\%	13.27\%	12.41\%	10.96\%	13.62\%	10.86\%	11.19\%
Potentially Designated Plastic	9.16\%	10.17\%	11.22\%	10.54\%	7.93\%	9.75\%	8.49\%	7.24\%	8.10\%
Potentially Designated Glass	0.14\%	0.08\%	0.12\%	0.16\%	0.10\%	0.12\%	0.10\%	0.16\%	0.24\%
Potentially Designated Materials Subtotal	9.30\%	10.25\%	11.33\%	10.70\%	8.03\%	9.87\%	8.59\%	7.40\%	8.34\%
Nondesignated Paper	8.05\%	9.81\%	8.16\%	8.45\%	7.18\%	7.98\%	6.22\%	8.15\%	8.16\%
Nondesignated Plastic	2.33\%	1.41\%	1.86\%	1.99\%	1.53\%	2.33\%	2.68\%	3.28\%	2.41\%
Other Nondesignated	45.39\%	26.99\%	43.86\%	48.42\%	38.18\%	47.70\%	52.50\%	46.67\%	52.91\%
Nondesignated Materials Subtotal	55.77\%	38.20\%	53.88\%	58.87\%	46.89\%	58.00\%	61.40\%	58.10\%	63.48\%
Designated for Recycling Total	34.93\%	51.55\%	34.78\%	30.43\%	45.08\%	32.12\%	30.00\%	34.50\%	28.18\%
Potentially or Not Designated for	65.07\%	48.45\%	65.22\%	69.57\%	54.92\%	67.88\%	70.00\%	65.50\%	71.82\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-38
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Refuse

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Refuse Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl\| } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Density/ } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	3.94\%	R Paper	5.31\%	5.19\%	4.08\%	2.79\%	3.84\%	3.74\%	3.16\%	3.05\%	Positive correlation with income, except MD
Paper	OCC	Plain OCC/Kraft Paper	1.26\%	R Paper	1.33\%	1.11\%	1.53\%	0.85\%	0.91\%	1.42\%	1.34\%	1.05\%	No discernible pattern
Paper	Mixed Paper	High Grade Paper	0.82\%	R Paper	1.72\%	1.12\%	0.78\%	0.79\%	0.36\%	0.50\%	0.98\%	0.60\%	Positive correlation with income, except MD
Paper	Mixed Paper	Mixed Low Grade Paper	8.90\%	R Paper	16.90\%	10.04\%	7.37\%	9.51\%	6.63\%	7.48\%	8.77\%	7.53\%	Positive correalion with income, except MD
Paper	Mixed Paper	Phone Books/Paperbacks	0.55\%	R Paper	1.07\%	1.29\%	0.27\%	0.69\%	0.21\%	0.70\%	0.49\%	0.38\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.69\%	R Paper	1.44\%	0.60\%	0.68\%	0.97\%	0.62\%	0.51\%	0.49\%	0.53\%	No discernible pattern
Paper	Bev Cartons	Polycoated Paper Containers	0.38\%	R Bev Cartons	0.52\%	0.38\%	0.40\%	0.54\%	0.29\%	0.39\%	0.35\%	0.27\%	No discernible pattern
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.56\%	NR_Paper	7.59\%	6.26\%	5.58\%	8.07\%	6.78\%	5.49\%	7.52\%	6.59\%	Positive correlation with income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.49\%	NR_Paper	0.75\%	0.32\%	0.25\%	0.68\%	0.35\%	0.22\%	0.97\%	0.59\%	Positive correation with income
Paper	Other Paper	Other Nonrecyclable Paper	0.66\%	NR_Paper	0.65\%	0.61\%	0.71\%	0.82\%	0.44\%	0.59\%	0.93\%	0.53\%	No discernible pattern
Paper Total			24.25\%		37.27\%	26.92\%	21.64\%	25.71\%	20.43\%	21.05\%	24.98\%	21.11\%	Positive correlation with income, except MD
Plastic	PET Botlles	PET Botlles	1.00\%	R Plastics	0.98\%	1.00\%	1.40\%	0.80\%	0.87\%	1.14\%	0.73\%	0.69\%	Positive correlation with density
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.26\%	R Plastics	0.17\%	0.30\%	0.44\%	0.11\%	0.26\%	0.31\%	0.14\%	0.12\%	Negative correlation with income, except LD
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.31\%	R Plastics	0.32\%	0.37\%	0.36\%	0.35\%	0.29\%	0.29\%	0.31\%	0.15\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	PR_Plastics	0.02\%	0.05\%	0.07\%	0.05\%	0.07\%	0.04\%	0.05\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.05\%	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	0.01\%	0.01\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	PR_Plastics	0.06\%	0.08\%	0.06\%	0.05\%	0.04\%	0.06\%	0.07\%	0.09\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.21\%	0.22\%	0.15\%	0.27\%	0.16\%	0.10\%	0.19\%	0.15\%	Positive correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.05\%	0.06\%	0.01\%	0.08\%	0.03\%	0.01\%	0.02\%	0.02\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.02\%	No discerrible pattern
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.02\%	Positive correlation with LD income
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	PR_Plastics	0.46\%	0.25\%	0.21\%	0.47\%	0.22\%	0.19\%	0.23\%	0.22\%	Positive correlation with income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.63\%	PR_Plastics	0.44\%	0.71\%	0.68\%	0.67\%	0.66\%	0.69\%	0.61\%	0.64\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.71\%	PR_Plastics	1.34\%	0.64\%	0.54\%	1.01\%	0.71\%	0.42\%	0.80\%	0.51\%	Positive correlation with income
Plastic	Film	Plastic Bags	3.30\%	PR_Plastics	3.25\%	4.27\%	3.45\%	2.96\%	3.45\%	3.33\%	2.82\%	2.80\%	Positive correation with density
Plastic	Film	Other Film	5.38\%	PR_Plastics	6.65\%	6.20\%	5.74\%	5.36\%	5.30\%	5.49\%	3.97\%	4.67\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.59\%	NR_Plastics	0.49\%	0.65\%	0.43\%	0.56\%	0.41\%	0.64\%	0.92\%	0.67\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	1.87\%	NR_Plastics	1.09\%	1.34\%	2.24\%	1.29\%	1.61\%	2.20\%	2.40\%	1.71\%	Negative correlation with density, except LI
Plastic Total			14.68\%		15.59\%	16.19\%	15.83\%	14.05\%	14.10\%	14.96\%	13.33\%	12.55\%	Positive correlation with density
Glass	Container Glass	Clear Container Glass	1.26\%	R Glass	0.77\%	1.09\%	1.78\%	1.17\%	1.11\%	1.71\%	0.93\%	1.04\%	Negative correlation with income, except MD
Glass	Container Glass	Green Container Glass	0.34\%	R Glass	0.79\%	0.33\%	0.31\%	0.65\%	0.35\%	0.26\%	0.15\%	0.19\%	Positive correlation with income, except LD
Glass	Container Glass	Brown Container Glass	0.29\%	R Glass	0.16\%	0.21\%	0.49\%	0.30\%	0.31\%	0.34\%	0.13\%	0.19\%	Negative correlation with income
Glass	Mixed Cullet	Mixed Cullet	0.56\%	R Glass	0.69\%	0.78\%	0.72\%	0.50\%	0.48\%	0.63\%	0.26\%	0.36\%	Positive correlation with density
Glass	Container Glass	Other Container Glass	0.01\%	R Glass	0.02\%	0.01\%	0.00\%	0.00\%	0.01\%	0.04\%	0.01\%	0.00\%	No discerrible pattern
Glass	Other Glass	Other Glass	0.14\%	PR_Glass	0.10\%	0.13\%	0.12\%	0.29\%	0.16\%	0.19\%	0.12\%	0.10\%	No discernible pattern
Glass Total			2.60\%		2.51\%	2.55\%	3.42\%	2.91\%	2.42\%	3.16\%	1.59\%	1.87\%	Negative correlation with income, except MD
Metal	Aluminum	Aluminum Cans	0.22\%	R Metal	0.32\%	0.25\%	0.22\%	0.14\%	0.18\%	0.18\%	0.24\%	0.16\%	Positive correlation with income, except MD
Metal	Aluminum	Aluminum FoillContainers	0.52\%	R M Metal	0.53\%	0.51\%	0.54\%	0.62\%	0.45\%	0.54\%	0.58\%	0.40\%	No discerrible pattern
Metal	Aluminum	Other Aluminum	0.03\%	R M Metal	0.01\%	0.00\%	0.06\%	0.02\%	0.02\%	0.00\%	0.02\%	0.06\%	No discerrible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.21\%	R Metal	0.12\%	0.26\%	0.12\%	0.03\%	0.29\%	0.20\%	0.32\%	0.15\%	No discerrible pattern
Metal	Ferrous	Tin Food Cans	0.88\%	R Metal	0.50\%	1.02\%	1.42\%	0.64\%	0.81\%	1.03\%	0.55\%	0.57\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.12\%	R M Metal	0.14\%	0.05\%	0.09\%	0.15\%	0.17\%	0.10\%	0.14\%	0.12\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	1.46\%	R Metal	1.45\%	1.09\%	1.45\%	1.04\%	1.78\%	1.15\%	1.60\%	1.61\%	No discernible pattern
Metal	Other Metal	Mixed Metals	0.61\%	R Metal	1.56\%	0.51\%	0.44\%	0.46\%	0.42\%	0.77\%	0.39\%	0.33\%	Positive correlation with income, except MD
Metal Total			4.04\%		4.65\%	3.70\%	4.35\%	3.10\%	4.13\%	3.97\%	3.84\%	3.39\%	No discernible pattern

Table 1-38
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Refuse (continued)

Table 1-38
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Refuse (continued)

	\% of Citywide	High Densityl High Income	High Densityl Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Densityl Medium Income
Recycling Designation	Refuse Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	16.17\%	27.77\%	19.35\%	14.71\%	15.60\%	12.57\%	14.35\%	15.22\%	13.14\%
Designated Beverage Cartons	0.38\%	0.52\%	0.38\%	0.40\%	0.54\%	0.29\%	0.39\%	0.35\%	0.27\%
Designated Plastic	1.57\%	1.47\%	1.67\%	2.21\%	1.26\%	1.41\%	1.74\%	1.17\%	0.96\%
Designated Metal	4.37\%	4.67\%	3.96\%	4.83\%	3.32\%	4.19\%	4.70\%	3.99\%	4.17\%
Designated Glass	2.46\%	2.41\%	2.42\%	3.30\%	2.62\%	2.26\%	2.98\%	1.48\%	1.78\%
Designated MGP Subtotal	8.79\%	9.07\%	8.43\%	10.74\%	7.74\%	8.15\%	9.81\%	6.99\%	7.18\%
Potentially Designated Plastic	10.64\%	12.55\%	12.54\%	10.96\%	10.94\%	10.67\%	10.38\%	8.79\%	9.20\%
Potentially Designated Glass	0.14\%	0.10\%	0.13\%	0.12\%	0.29\%	0.16\%	0.19\%	0.12\%	0.10\%
Potentially Designated Materials Subtotal	10.78\%	12.65\%	12.67\%	11.07\%	11.23\%	10.83\%	10.57\%	8.91\%	9.29\%
Nondesignated Paper	7.70\%	8.99\%	7.19\%	6.53\%	9.57\%	7.57\%	6.30\%	9.42\%	7.71\%
Nondesignated Plastic	2.47\%	1.57\%	1.98\%	2.66\%	1.85\%	2.02\%	2.84\%	3.36\%	2.39\%
Other Nondesignated	54.10\%	39.96\%	50.38\%	54.28\%	54.01\%	58.86\%	56.13\%	56.11\%	60.29\%
Nondesignated Materials Subtotal	64.27\%	50.52\%	59.55\%	63.47\%	65.43\%	68.45\%	65.27\%	68.89\%	70.39\%
Designated for Recycling Total	24.95\%	36.83\%	27.78\%	25.45\%	23.34\%	20.72\%	24.16\%	22.20\%	20.32\%
Potentially or Not Designated for Recycling Total	75.05\%	63.17\%	72.22\%	74.55\%	76.66\%	79.28\%	75.84\%	77.80\%	79.68\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-39
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Paper

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \text { High Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	39.31\%	R Paper	40.18\%	41.54\%	29.30\%	37.05\%	38.36\%	27.81\%	45.23\%	40.72\%	No discernible pattern
Paper	OCC	Plain OCC/Kratt Paper	14.47\%	R Paper	5.61\%	16.50\%	24.75\%	8.33\%	16.43\%	28.90\%	14.56\%	20.79\%	Negative correlation with income
Paper	Mixed Paper	High Grade Paper	2.85\%	R Paper	4.39\%	1.55\%	12.25\%	3.32\%	1.66\%	2.98\%	0.47\%	1.24\%	Positive correlation with density, except MI
Paper	Mixed Paper	Mixed Low Grade Paper	33.25\%	R Paper	41.32\%	29.64\%	21.58\%	32.74\%	35.75\%	27.52\%	30.25\%	30.59\%	Positive correlation with HD income
Paper	Mixed Paper	Phone Books/Paperbacks	5.26\%	R Paper	5.15\%	7.61\%	4.31\%	15.32\%	4.21\%	9.58\%	1.55\%	1.44\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.38\%	R Paper	0.67\%	0.22\%	0.16\%	0.32\%	0.52\%	0.19\%	0.22\%	0.25\%	No discernible pattern
Paper	Bev Cartons	Polycoated Paper Containers	0.45\%	$R \mathrm{Bev}$ Cartons	0.13\%	0.32\%	0.79\%	0.19\%	0.32\%	0.18\%	1.00\%	0.19\%	No discernible pattern
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.26\%	NR_Paper	0.06\%	0.16\%	0.27\%	0.35\%	0.14\%	0.14\%	0.53\%	0.49\%	No discernible pattern
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.03\%	NR_Paper	0.02\%	0.01\%	0.01\%	0.00\%	0.09\%	0.01\%	0.00\%	0.02\%	No discernible pattern
Paper	Other Paper	Other Nonrrecyclable Paper	0.29\%	NR_Paper	0.09\%	0.04\%	0.10\%	0.26\%	0.11\%	0.05\%	0.62\%	1.61\%	Negative correlation with density, except LI
Paper Total			96.56\%		97.62\%	97.59\%	93.53\%	97.89\%	97.59\%	97.36\%	94.42\%	97.34\%	Positive correlation with income, except LD
Plastic	PET Bottles	PET Bottles	0.17\%	R Plastics	0.03\%	0.01\%	0.04\%	0.01\%	0.02\%	0.03\%	0.63\%	0.00\%	No discernible pattern
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.01\%	R Plastics	0.01\%	0.03\%	0.02\%	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	No discernible pattern
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.00\%	R Plastics	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.01\%	PR_Plastics	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.01\%	PR_Plastics	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.01\%	PR_Plastics	0.01\%	0.00\%	0.03\%	0.00\%	0.00\%	0.02\%	0.03\%	0.02\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.06\%	PR_Plastics	0.02\%	0.13\%	0.09\%	0.08\%	0.01\%	0.12\%	0.10\%	0.05\%	Negative correlation with density except MI
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.03\%	PR_Plastics	0.01\%	0.07\%	0.06\%	0.07\%	0.03\%	0.01\%	0.02\%	0.06\%	No discernible pattern
Plastic	Film	Plastic Bags	0.30\%	PR_Plastics	0.14\%	0.28\%	0.28\%	0.11\%	0.19\%	0.53\%	0.54\%	0.25\%	No discernible pattern
Plastic	Film	Other Film	0.79\%	PR_Plastics	1.14\%	0.82\%	1.13\%	0.67\%	0.87\%	0.48\%	0.49\%	0.59\%	Positive correlation with density, except MI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.03\%	NR_Plastics	0.00\%	0.01\%	0.03\%	0.00\%	0.05\%	0.00\%	0.05\%	0.01\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	0.22\%	NR_Plastics	0.10\%	0.32\%	1.56\%	0.08\%	0.20\%	0.17\%	0.05\%	0.19\%	Positive correlation with density
Plastic Total			1.66\%		1.50\%	1.68\%	3.25\%	1.03\%	1.43\%	1.38\%	1.98\%	1.20\%	Positive correlation with density, except HI
Glass	Container Glass	Clear Container Glass	0.08\%	R Glass	0.11\%	0.14\%	0.03\%	0.00\%	0.00\%	0.00\%	0.19\%	0.00\%	No discernible pattern
Glass	Container Glass	Green Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Glass	Container Glass	Brown Container Glass	0.01\%	R Glass	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discerrnible pattern
Glass	Mixed Cullet	Mixed Cullet	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Glass	Container Glass	Other Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Glass	Other Glass	Other Glass	0.01\%	PR_Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	No discernible pattern
Glass Total			0.11\%		0.14\%	0.14\%	0.03\%	0.03\%	0.00\%	0.00\%	0.25\%	0.00\%	No discernible pattern
Metal	Aluminum	Aluminum Cans	0.01\%	R Metal	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Metal	Aluminum	Aluminum Foil/Containers	0.03\%	R Metal	0.00\%	0.01\%	0.02\%	0.00\%	0.03\%	0.03\%	0.07\%	0.01\%	No discernible pattern
Metal	Aluminum	Other Aluminum	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	No discerrible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.01\%	R Metal	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.13\%	0.00\%	0.00\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	0.07\%	R Metal	0.01\%	0.00\%	0.02\%	0.04\%	0.00\%	0.04\%	0.22\%	0.06\%	Negative correlation with HI density
Metal	Ferrous	Empty Aerosol Cans	0.00\%	R Metal	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Metal	Ferrous	Other Ferrous	0.05\%	R Metal	0.03\%	0.00\%	0.01\%	0.17\%	0.01\%	0.23\%	0.04\%	0.00\%	No discernible pattern
Metal	Other Metal	Mixed Metals	0.00\%	R Metal	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal Total			0.17\%		0.05\%	0.07\%	0.09\%	0.22\%	0.06\%	0.45\%	0.34\%	0.07\%	Negative correlation with HI density

Table 1-39
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Paper (continued)

Table 1-39
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Paper (continued)

Recycling Designation	$\%$ of Citywide Paper Stream	High Densityl High Income \%	High Density/ Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \text { Medium Density } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Medium Density Low Income $\%$ \%	Low Densityl High Income \%	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$
Designated Paper	95.53\%	97.32\%	97.06\%	92.37\%	97.08\%	96.93\%	96.98\%	92.27\%	95.03\%
Designated Beverage Cartons	0.45\%	0.13\%	0.32\%	0.79\%	0.19\%	0.32\%	0.18\%	1.00\%	0.19\%
Designated Plastic	0.19\%	0.04\%	0.05\%	0.06\%	0.02\%	0.02\%	0.04\%	0.64\%	0.02\%
Designated Metal	0.17\%	0.05\%	0.07\%	0.09\%	0.22\%	0.06\%	0.45\%	0.34\%	0.07\%
Designated Glass	0.10\%	0.14\%	0.14\%	0.03\%	0.03\%	0.00\%	0.00\%	0.21\%	0.00\%
Designated MGP Subtotal	0.90\%	0.36\%	0.58\%	0.97\%	0.46\%	0.41\%	0.67\%	2.19\%	0.29\%
Potentially Designated Plastic	1.23\%	1.36\%	1.30\%	1.60\%	0.93\%	1.15\%	1.16\%	1.23\%	0.98\%
Potentially Designated Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%
Potentially Designated Materials Subtotal	1.24\%	1.36\%	1.30\%	1.60\%	0.93\%	1.15\%	1.16\%	1.27\%	0.98\%
Nondesignated Paper	0.58\%	0.17\%	0.21\%	0.38\%	0.61\%	0.34\%	0.20\%	1.15\%	2.12\%
Nondesignated Plastic	0.25\%	0.10\%	0.33\%	1.59\%	0.08\%	0.26\%	0.17\%	0.10\%	0.20\%
Other Nondesignated	1.50\%	0.69\%	0.52\%	3.09\%	0.83\%	0.92\%	0.82\%	3.01\%	1.38\%
Nondesignated Materials Subtotal	2.33\%	0.97\%	1.05\%	5.06\%	1.53\%	1.51\%	1.19\%	4.27\%	3.70\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | | | |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| M | | | |

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2. 2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliancelelectronic material group.

Table 1-40
Housing Density and Income Details, Winter 2005, Waste Characterization Study, MGP

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	High Densityl Medium Income Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl\| } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	0.93\%	R Paper	0.26\%	0.48\%	0.20\%	0.79\%	0.86\%	1.75\%	1.64\%	1.10\%	Negative correlation with density
Paper	OCC	Plain OCC/Kraft Paper	0.29\%	R Paper	0.05\%	0.20\%	0.19\%	0.10\%	0.38\%	0.37\%	0.38\%	0.60\%	Negative correlation with density
Paper	Mixed Paper	High Grade Paper	0.03\%	R Paper	0.02\%	0.05\%	0.01\%	0.04\%	0.03\%	0.04\%	0.02\%	0.02\%	No discernible pattern
Paper	Mixed Paper	Mixed Low Grade Paper	1.24\%	R Paper	1.12\%	2.20\%	0.51\%	1.22\%	1.09\%	1.49\%	1.26\%	1.86\%	No discernible pattern
Paper	Mixed Paper	Phone Books/Paperbacks	0.10\%	R Paper	0.04\%	0.06\%	0.00\%	0.34\%	0.17\%	0.11\%	0.09\%	0.05\%	Positive correlation with income, except HD
Paper	Mixed Paper	Paper Bags	0.05\%	R Paper	0.04\%	0.05\%	0.02\%	0.05\%	0.06\%	0.04\%	0.05\%	0.10\%	Negative correlation with density
Paper	Bev Cartons	Polycoated Paper Containers	2.06\%	R Bev Cartons	1.72\%	2.82\%	1.24\%	3.13\%	2.59\%	2.25\%	1.78\%	1.80\%	No discernible pattern
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.29\%	NR_Paper	0.19\%	0.20\%	0.22\%	0.27\%	0.30\%	0.48\%	0.34\%	0.31\%	Negative correlation with income, except LD
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.07\%	NR_Paper	0.06\%	0.06\%	0.04\%	0.07\%	0.07\%	0.06\%	0.05\%	0.17\%	Negative correlation with density, except H/
Paper	Other Paper	Other Nonrecyclable Paper	0.39\%	NR_Paper	0.28\%	0.42\%	0.24\%	0.15\%	0.59\%	0.56\%	0.35\%	0.41\%	No discernible pattern
Paper Total			5.45\%		3.79\%	6.53\%	2.66\%	6.16\%	6.13\%	7.15\%	5.97\%	6.41\%	No discernible pattern
Plastic	PET Botlles	PET Bottles	6.15\%	R Plastics	5.88\%	5.07\%	3.74\%	5.09\%	6.69\%	6.76\%	7.25\%	7.13\%	Positive correlation with income, except MD
Plastic	HDPE Botlles	HDPE Bottles: Natural	3.34\%	R Plastics	1.99\%	4.20\%	3.09\%	1.76\%	4.60\%	4.07\%	2.92\%	3.57\%	No discerrible pattern
Plastic	HDPE Bottles	HDPE Bottles: Colored	3.23\%	R Plastics	2.56\%	2.94\%	2.54\%	2.52\%	3.90\%	3.74\%	3.51\%	3.19\%	Negative correlation with density, except MI
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras/Other Containers: \#1 PET	0.02\%	PR_Plastics	0.00\%	0.02\%	0.08\%	0.00\%	0.02\%	0.02\%	0.02\%	0.02\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.20\%	PR_Plastics	0.11\%	0.51\%	0.19\%	0.12\%	0.19\%	0.40\%	0.08\%	0.23\%	Negative correlation with income, except HD
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.04\%	PR_Plastics	0.04\%	0.05\%	0.03\%	0.07\%	0.02\%	0.03\%	0.06\%	0.03\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botlles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	№ discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.10\%	PR_Plastics	0.03\%	0.07\%	0.05\%	0.08\%	0.10\%	0.14\%	0.16\%	0.14\%	Negative correlation with density
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#7 Other	0.25\%	PR_Plastics	0.43\%	0.20\%	0.12\%	0.14\%	0.31\%	0.19\%	0.23\%	0.22\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	PR_Plastics	0.00\%	0.02\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.40\%	PR_Plastics	0.45\%	0.30\%	0.37\%	0.31\%	0.43\%	0.34\%	0.47\%	0.28\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	PR_Plastics	0.02\%	0.04\%	0.03\%	0.01\%	0.02\%	0.17\%	0.04\%	0.04\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.09\%	PR_Plastics	0.00\%	0.14\%	0.43\%	0.00\%	0.01\%	0.09\%	0.01\%	0.11\%	Negative correlation with income
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.04\%	0.06\%	0.02\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.30\%	PR_Plastics	0.32\%	0.28\%	0.11\%	0.35\%	0.28\%	0.33\%	0.39\%	0.24\%	Positive correlation with income, except MD
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.11\%	PR_Plastics	0.05\%	0.11\%	0.06\%	0.09\%	0.11\%	0.12\%	0.17\%	0.13\%	Negative correlation with density
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.26\%	PR_Plastics	1.19\%	1.40\%	1.06\%	1.07\%	1.69\%	1.06\%	1.16\%	1.20\%	No discernible pattern
Plastic	Film	Plastic Bags	0.83\%	PR_Plastics	0.63\%	0.81\%	0.36\%	1.03\%	1.00\%	1.06\%	0.97\%	0.72\%	No discernible pattern
Plastic	Film	Other Film	3.09\%	PR_Plastics	4.22\%	3.47\%	2.97\%	2.56\%	3.37\%	3.51\%	2.14\%	2.44\%	Negative correlation with income, except HD
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.17\%	NR_Plastics	0.13\%	0.13\%	0.08\%	0.11\%	0.27\%	0.15\%	0.18\%	0.16\%	No discerrible pattern
Plastic	Other Plastic Products	Other Plastics Materials	3.10\%	NR_Plastics	2.66\%	3.52\%	4.22\%	2.34\%	3.02\%	2.79\%	2.87\%	3.60\%	Negative correlation with income, except MD
Plastic Total			22.74\%		20.71\%	23.31\%	19.55\%	17.67\%	26.11\%	25.05\%	22.64\%	23.44\%	No discernible pattern
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	7.91\%	R Glass	6.43\%	8.17\%	3.58\%	10.84\%	6.64\%	8.21\%	11.05\%	10.11\%	No discernible pattern
Glass	Container Glass	Green Container Glass	4.29\%	R Glass	10.64\%	4.31\%	1.22\%	12.81\%	1.93\%	1.74\%	3.55\%	2.30\%	Positive correlation with income
Glass	Container Glass	Brown Container Glass	1.94\%	R Glass	2.33\%	1.31\%	0.70\%	3.62\%	2.34\%	1.76\%	2.02\%	1.44\%	Positive correlation with income
Glass	Mixed Cullet	Mixed Cullet	16.98\%	R Glass	25.05\%	15.17\%	14.16\%	18.72\%	20.75\%	14.17\%	12.47\%	11.82\%	Positive correation with income, except MD
Glass	Container Glass	Other Container Glass	0.13\%	R Glass	0.12\%	0.09\%	0.01\%	0.23\%	0.10\%	0.10\%	0.18\%	0.31\%	No discernible pattern
Glass	Other Glass	Other Glass	0.48\%	PR_Glass	0.22\%	0.55\%	0.18\%	0.33\%	0.62\%	0.43\%	0.69\%	0.70\%	Negative correlation with density
Glass Total			31.72\%		44.79\%	29.60\%	19.85\%	46.55\%	32.37\%	26.39\%	29.95\%	26.69\%	Positive correlation with income
Metal	Aluminum	Aluminum Cans	0.56\%	R M etal	0.47\%	0.29\%	0.25\%	0.39\%	0.42\%	0.46\%	1.06\%	0.81\%	Positive correalion with income, except MD
Metal	Aluminum	Aluminum Foil Containers	0.95\%	R Metal	0.52\%	0.70\%	0.63\%	1.03\%	1.17\%	1.13\%	1.19\%	0.96\%	Negative correlation with density, except MI
Metal	Aluminum	Other Aluminum	0.06\%	R Metal	0.00\%	0.00\%	0.05\%	0.29\%	0.13\%	0.06\%	0.03\%	0.00\%	Positive correlation with income, except HD
Metal	Non-Ferrous	Other Non-Ferrous	0.92\%	R Metal	0.28\%	1.47\%	1.10\%	0.24\%	0.93\%	1.48\%	1.12\%	0.57\%	No discerrible pattern
Metal	Ferrous	Tin Food Cans	7.68\%	R M etal	4.22\%	7.31\%	6.57\%	6.96\%	9.13\%	9.87\%	8.01\%	9.42\%	Negative correlation with density
Metal	Ferrous	Empty Aerosol Cans	0.63\%	R Metal	0.70\%	0.65\%	0.34\%	0.46\%	0.81\%	0.80\%	0.54\%	0.61\%	No discernible pattern
Metal	Ferrous	Other Ferrous	13.86\%	R Metal	11.46\%	10.73\%	18.22\%	12.62\%	11.46\%	12.99\%	16.90\%	14.24\%	Negative correlation with density, except LI
Metal	Other Metal	Mixed Metals	3.50\%	R Metal	2.21\%	3.16\%	10.34\%	1.69\%	1.89\%	2.93\%	2.07\%	5.43\%	Negative correlation with income
Metal Total			28.16\%		19.84\%	24.30\%	37.50\%	23.68\%	25.94\%	29.71\%	30.93\%	32.04\%	Negative correlation with income

Table 1-40
Housing Density and Income Details, Winter 2005, Waste Characterization Study, MGP (continued)

Table 1-40
Housing Density and Income Details, Winter 2005, Waste Characterization Study, MGP (continued)

UBTOTALS BY RECYCLING DESIGNATION

	$\begin{gathered} \text { \% of Citywide } \\ \text { MGP } \end{gathered}$	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density High Income	/ Medium Density/ Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Income
Recycling Designation	Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	2.63\%	1.53\%	3.03\%	0.93\%	2.54\%	2.58\%	3.79\%	3.45\%	3.72\%
Designated Beverage Cartons	2.06\%	1.72\%	2.82\%	1.24\%	3.13\%	2.59\%	2.25\%	1.78\%	1.80\%
Designated Plastic	12.71\%	10.42\%	12.21\%	9.37\%	9.37\%	15.18\%	14.57\%	13.68\%	13.89\%
Designated Metal	34.69\%	25.16\%	33.14\%	52.92\%	26.13\%	30.40\%	35.44\%	35.85\%	38.37\%
Designated Glass	31.24\%	44.57\%	29.05\%	19.67\%	46.22\%	31.75\%	25.97\%	29.26\%	25.98\%
Designated MGP Subtotal	80.71\%	81.87\%	77.23\%	83.20\%	84.85\%	79.92\%	78.22\%	80.56\%	80.04\%
Potentially Designated Plastic	6.75\%	7.50\%	7.44\%	5.87\%	5.82\%	7.57\%	7.52\%	5.91\%	5.79\%
Potentially Designated Glass	0.48\%	0.22\%	0.55\%	0.18\%	0.33\%	0.62\%	0.43\%	0.69\%	0.70\%
Potentially Designated Materials Subtotal	7.23\%	7.72\%	7.99\%	6.06\%	6.14\%	8.20\%	7.94\%	6.61\%	6.50\%
Nondesignated Paper	0.75\%	0.54\%	0.68\%	0.50\%	0.49\%	0.96\%	1.11\%	0.74\%	0.89\%
Nondesignated Plastic	3.28\%	2.79\%	3.66\%	4.30\%	2.49\%	3.35\%	2.96\%	3.05\%	3.76\%
Other Nondesignated	5.39\%	5.55\%	7.42\%	5.01\%	3.49\%	4.99\%	5.97\%	5.59\%	5.09\%
Nondesignated Materials Subtotal	9.43\%	8.88\%	11.75\%	9.82\%	6.47\%	9.30\%	10.04\%	9.38\%	9.74\%

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Density Low Income	Low Densityl High Income	Low Density/ Medium Income
Paper Total ${ }^{[12]}$	233.57	24.66	18.18	14.59	15.08	54.42	32.09	53.77	20.78
Plastic Total ${ }^{(2)}$	974.48	134.94	64.89	107.03	43.26	231.88	112.38	204.07	76.02
Glass Total ${ }^{(2)}$	1,359.31	291.76	82.41	108.67	113.96	287.55	118.42	270.00	86.54
Metal Total ${ }^{(3)}$	1,206.67	129.27	67.66	205.29	57.98	230.42	133.32	278.84	103.89
Organics Total	103.82	10.22	9.08	10.63	4.94	27.45	13.52	18.79	9.19
Appliance/Electronic Total	356.44	52.44	29.64	98.38	8.26	46.72	31.65	64.48	24.88
C \& D Debris Total	12.32	0.68	5.06	1.14	0.34	1.29	3.18	0.03	0.59
Miscellaneous Inorganics Total	24.03	3.02	1.10	1.42	0.60	4.95	2.05	8.87	2.02
HHW Total	14.08	4.45	0.37	0.33	0.42	3.53	2.07	2.53	0.37
Grand Total	4,284.72	651.45	278.40	547.48	244.83	888.22	448.70	901.37	324.28

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 . 22) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliancelelectronic material group.

Table 1-41
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \hline \text { High Densityl\| } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Density } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	24.56\%	R Paper	28.09\%	25.89\%	13.04\%	26.74\%	23.89\%	15.38\%	30.11\%	18.78\%	Positive correlation with income
Paper	OCC	Plain OCC/Kraft Paper	9.02\%	R Paper	3.93\%	10.29\%	11.02\%	5.99\%	10.24\%	15.29\%	9.64\%	9.61\%	Negative correlation with income, except LD
Paper	Mixed Paper	High Grade Paper	1.76\%	R Paper	3.07\%	0.98\%	5.41\%	2.39\%	1.03\%	1.58\%	0.32\%	0.56\%	Positive correlation with density, except MI
Paper	Mixed Paper	Mixed Low Grade Paper	20.95\%	R Paper	29.14\%	19.18\%	9.80\%	23.78\%	22.37\%	15.10\%	20.19\%	14.68\%	Positive correlation with income
Paper	Mixed Paper	Phone Books/Paperbacks	3.28\%	R Paper	3.60\%	4.73\%	1.90\%	11.06\%	2.65\%	5.07\%	1.04\%	0.67\%	Positive correlation with MI density
Paper	Mixed Paper	Paper Bags	0.25\%	R Paper	0.48\%	0.16\%	0.08\%	0.24\%	0.34\%	0.12\%	0.16\%	0.17\%	Positive correlation with HD income
Paper	Bev Cartons	Polycoated Paper Containers	1.07\%	R Bev Cartons	0.61\%	1.28\%	1.04\%	1.03\%	1.20\%	1.17\%	1.27\%	1.08\%	Negative correlation with density, except MI
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.27\%	NR_Paper	0.10\%	0.18\%	0.24\%	0.33\%	0.20\%	0.30\%	0.47\%	0.39\%	Negative correlation with density
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.04\%	NR_Paper	0.04\%	0.03\%	0.03\%	0.02\%	0.08\%	0.04\%	0.02\%	0.10\%	Negative correlation with density, except HI
Paper	Other Paper	Other Nonrecyclable Paper	0.33\%	NR_Paper	0.15\%	0.18\%	0.18\%	0.23\%	0.30\%	0.29\%	0.52\%	0.95\%	Negative correlation with density
Paper Total			61.54\%		69.19\%	62.88\%	42.75\%	71.81\%	62.29\%	54.34\%	63.74\%	46.99\%	Positive correlation with income
Plastic	PET Bottles	PET Botles	2.47\%	R Plastics	1.80\%	1.94\%	2.11\%	1.45\%	2.60\%	3.24\%	2.93\%	3.95\%	Negative correlation with income
Plastic	HDPE Botlles	HDPE Bottles: Natural	1.29\%	R Plastics	0.61\%	1.62\%	1.73\%	0.50\%	1.78\%	1.95\%	1.02\%	1.98\%	Negative correlation with income
Plastic	HDPE Bottles	HDPE Bottles: Colored	1.24\%	R Plastics	0.78\%	1.13\%	1.42\%	0.72\%	1.50\%	1.79\%	1.22\%	1.77\%	Negative correlation with income
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tray/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%	0.01\%	0.01\%	0.01\%	Negative correlation with HD income
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.08\%	PR_Plastics	0.04\%	0.20\%	0.11\%	0.03\%	0.07\%	0.19\%	0.04\%	0.13\%	Negative correlation with income, except HD
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	PR_Plastics	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discerrible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#5 PP	0.04\%	PR_Plastics	0.01\%	0.02\%	0.03\%	0.02\%	0.04\%	0.07\%	0.06\%	0.08\%	Negative correlation with income and density
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botles: \#7 Other	0.10\%	PR_Plastics	0.13\%	0.08\%	0.07\%	0.04\%	0.12\%	0.09\%	0.09\%	0.12\%	Positive correlation with HD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	PR_Plastics	0.14\%	0.12\%	0.21\%	0.09\%	0.17\%	0.16\%	0.16\%	0.15\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.02\%	PR_Plastics	0.03\%	0.02\%	0.01\%	0.00\%	0.01\%	0.08\%	0.03\%	0.02\%	Positive correlation with income, except MD
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.03\%	PR_Plastics	0.00\%	0.05\%	0.24\%	0.00\%	0.00\%	0.04\%	0.00\%	0.06\%	Negative correlation with income, except MD
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.01\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.12\%	PR_Plastics	0.10\%	0.11\%	0.08\%	0.10\%	0.11\%	0.17\%	0.16\%	0.14\%	Negative correlation with MD income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.08\%	PR_Plastics	0.03\%	0.12\%	0.07\%	0.08\%	0.05\%	0.12\%	0.12\%	0.10\%	Negative correlation with density, except MI
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.50\%	PR_Plastics	0.37\%	0.58\%	0.62\%	0.35\%	0.67\%	0.51\%	0.42\%	0.69\%	Negative correlation with income, except MD
Plastic	Film	Plastic Bags	0.50\%	PR_Plastics	0.29\%	0.49\%	0.33\%	0.38\%	0.50\%	0.78\%	0.69\%	0.51\%	Negative correlation with density
Plastic	Film	Other Film	1.68\%	PR_Plastics	2.07\%	1.83\%	2.16\%	1.20\%	1.84\%	1.93\%	1.06\%	1.61\%	Negative correlation with income, except HD
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.08\%	NR_Plastics	0.04\%	0.06\%	0.06\%	0.03\%	0.13\%	0.07\%	0.10\%	0.09\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	1.33\%	NR_Plastics	0.88\%	1.54\%	3.05\%	0.72\%	1.29\%	1.42\%	1.03\%	2.08\%	Negative correlation with income
Plastic Total			9.77\%		7.32\%	9.92\%	12.36\%	5.76\%	10.95\%	12.66\%	9.15\%	13.52\%	Negative correlation with income
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	3.09\%	R Glass	2.02\%	3.21\%	2.02\%	3.08\%	2.56\%	3.91\%	3.95\%	5.60\%	Negative correlation with density, except MI
Glass	Container Glass	Green Container Glass	1.65\%	R Glass	3.22\%	1.64\%	0.68\%	3.66\%	0.74\%	0.83\%	1.23\%	1.27\%	Positive correlation with HD income
Glass	Container Glass	Brown Container Glass	0.75\%	R Glass	0.73\%	0.50\%	0.39\%	1.03\%	0.90\%	0.84\%	0.71\%	0.80\%	Positive correlation with income, except LD
Glass	Mixed Cullet	Mixed Cullet	6.52\%	R Glass	7.59\%	5.78\%	7.91\%	5.32\%	8.01\%	6.76\%	4.33\%	6.54\%	Positive correlation with density, except MI
Glass	Container Glass	Other Container Glass	0.05\%	R Glass	0.04\%	0.03\%	0.01\%	0.06\%	0.04\%	0.05\%	0.06\%	0.17\%	Positive correlation with HD income
Glass	Other Glass	Other Glass	0.19\%	PR_Glass	0.07\%	0.21\%	0.10\%	0.09\%	0.24\%	0.20\%	0.27\%	0.39\%	Negative correation with density
Glass Total			12.26\%		13.66\%	11.37\%	11.11\%	13.25\%	12.49\%	12.58\%	10.55\%	14.78\%	Negative correlation with density, except HII
Metal	Aluminum	Aluminum Cans	0.22\%	R Metal	0.14\%	0.12\%	0.14\%	0.11\%	0.17\%	0.22\%	0.37\%	0.45\%	Negative correlation with income, except HD
Metal	Aluminum	Aluminum Foil Containers	0.38\%	R Metal	0.16\%	0.27\%	0.36\%	0.29\%	0.47\%	0.55\%	0.46\%	0.54\%	Negative correlation with income and density
Metal	Aluminum	Other Aluminum	0.03\%	R Metal	0.00\%	0.00\%	0.03\%	0.08\%	0.05\%	0.03\%	0.02\%	0.00\%	Positive correlation with income, except HD
Metal	Non-Ferrous	Other Non-Ferrous	0.36\%	R Metal	0.08\%	0.56\%	0.62\%	0.07\%	0.36\%	0.77\%	0.39\%	0.32\%	Negative correlation with income, except LD
Metal	Ferrous	Tin Food Cans	2.99\%	R Metal	1.29\%	2.79\%	3.68\%	2.01\%	3.52\%	4.73\%	2.92\%	5.24\%	Negative correlation with income and density
Metal	Ferrous	Empty Aerosol Cans	0.24\%	R Metal	0.21\%	0.25\%	0.19\%	0.13\%	0.32\%	0.39\%	0.19\%	0.34\%	Negative correlation with income, except HD
Metal	Ferrous	Other Ferrous	5.36\%	R Metal	3.49\%	4.09\%	10.19\%	3.71\%	4.43\%	6.31\%	5.89\%	7.88\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	1.35\%	R Metal	0.68\%	1.23\%	5.78\%	0.48\%	0.73\%	1.40\%	0.72\%	3.01\%	Negative correlation with income
Metal Total			10.93\%		6.05\%	9.30\%	21.00\%	6.89\%	10.05\%	14.40\%	10.96\%	17.77\%	Negative correlation with income

Table 1-41
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \text { High DensityI } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.88\%	NR_Other	0.39\%	0.68\%	0.67\%	0.51\%	0.78\%	1.00\%	1.47\%	1.35\%	Negative correlation with density
Organics	Wood	Wood Furniture/Furniture Pieces	0.05\%	NR_Other	0.03\%	0.06\%	0.10\%	0.02\%	0.06\%	0.14\%	0.03\%	0.01\%	Negative correlation with income, except LD
Organics	Wood	Non-C\&D Untreated Wood	0.07\%	NR_Other	0.05\%	0.07\%	0.17\%	0.07\%	0.11\%	0.08\%	0.01\%	0.04\%	Negative correlation with income, except MD
Organics	Textiles	Non-Clothing Textiles	0.05\%	NR_Other	0.03\%	0.09\%	0.14\%	0.00\%	0.03\%	0.03\%	0.03\%	0.18\%	Negative correlation with income, except MD
Organics	Textiles	Clothing Textiles	0.07\%	NR_Other	0.10\%	0.15\%	0.05\%	0.05\%	0.06\%	0.07\%	0.06\%	0.05\%	Negative correlation with MD income
Organics	Textiles	CarpetUpholstery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.02\%	NR_Other	0.02\%	0.01\%	0.01\%	0.03\%	0.03\%	0.01\%	0.03\%	0.06\%	Negative correlation with MI density
Organics	Misc. Organic	Animal By-Products	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.08\%	NR_Other	0.01\%	0.06\%	0.73\%	0.00\%	0.01\%	0.05\%	0.01\%	0.04\%	Negative correlation with income
Organics	Texiles	Shoes	0.08\%	NR_Other	0.01\%	0.04\%	0.00\%	0.00\%	0.19\%	0.07\%	0.09\%	0.09\%	No discernible pattern
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Fines	0.45\%	NR_Other	0.23\%	0.35\%	0.34\%	0.37\%	0.35\%	0.36\%	0.88\%	0.30\%	Negative correlation with density, except MI
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.02\%	NR_Other	0.05\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discermible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.01\%	NR_Other	0.02\%	0.00\%	0.00\%	0.04\%	0.01\%	0.01\%	0.02\%	0.02\%	Negative correlation with density, except HI
Organics Total			1.80\%		0.94\%	1.50\%	2.32\%	1.10\%	1.68\%	1.84\%	2.66\%	2.14\%	Negative correlation with income, except LD
Appliance/Electronic	Ferrous	Appliances: Ferrous	2.50\%	R Metal	1.61\%	3.34\%	8.59\%	0.70\%	1.70\%	2.72\%	1.70\%	3.50\%	Negative correlation with income
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	R Metal	0.00\%	0.02\%	0.03\%	0.00\%	0.02\%	0.01\%	0.00\%	0.01\%	Negative correlation with income, except MD
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.26\%	NR_Other	0.20\%	0.18\%	0.46\%	0.18\%	0.18\%	0.22\%	0.36\%	0.38\%	No discernible pattern
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNVisual Equipment: Other	0.10\%	NR_Other	0.10\%	0.16\%	0.11\%	0.05\%	0.06\%	0.07\%	0.15\%	0.06\%	Negative correlation with MD income
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.07\%	NR_Other	0.34\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electroni//AV/Computer	Other Computer Equipment	0.26\%	NR_Other	0.19\%	0.34\%	0.85\%	0.07\%	0.08\%	0.32\%	0.28\%	0.30\%	Negative correlation with income
Appliance/Electronic Total			3.21\%		2.44\%	4.06\%	10.05\%	1.00\%	2.05\%	3.37\%	2.49\%	4.25\%	Negative correlation with income
C\&D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.00\%	0.03\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	Positive correlation with MI density
$C \& D$ Debris	Wood	Treated/Contaminated Wood	0.02\%	NR_Other	0.02\%	0.00\%	0.06\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	Positive correlation with density, except MI
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.01\%	NR_Other	0.00\%	0.08\%	0.04\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.01\%	NR_Other	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.10\%	No discerrible pattern
C\&D Debris	Inorganic C\&D	Other Construction Debris	0.10\%	NR_Other	0.00\%	0.65\%	0.12\%	0.02\%	0.06\%	0.33\%	0.00\%	0.01\%	Negative correlation with income, except HD
C \& D Debris Total			0.14\%		0.03\%	0.76\%	0.23\%	0.04\%	0.12\%	0.35\%	0.00\%	0.10\%	Negative correlation with income, except HD
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.05\%	NR_Other	0.05\%	0.04\%	0.03\%	0.01\%	0.04\%	0.04\%	0.05\%	0.10\%	Positive correlation with HD income
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.18\%	NR_Other	0.10\%	0.11\%	0.13\%	0.09\%	0.17\%	0.18\%	0.31\%	0.26\%	Negative correlation with income, except LD
Miscellaneous Inorganics Total			0.23\%		0.16\%	0.15\%	0.16\%	0.10\%	0.21\%	0.22\%	0.36\%	0.36\%	Negative correlation with density, except HI
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	№ discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Latex PaintsWater-Based Adhesives/Glues	0.05\%	NR_Other	0.17\%	0.01\%	0.00\%	0.03\%	0.00\%	0.13\%	0.02\%	0.02\%	Positive correlation with HD income
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.01\%	0.01\%	0.00\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.02\%	NR_Other	0.01\%	0.02\%	0.01\%	0.01\%	0.04\%	0.02\%	0.01\%	0.03\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discernible pattern
HHW	HHW	Home Medical Products	0.01\%	NR_Other	0.01\%	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%	0.01\%	0.02\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%	0.06\%	0.05\%	0.02\%	Negative correlation with density, except HI
HHW Total			00.13\%		0.21\%	0.05\%	0.04\%	0.05\%	0.15\%	0.22\%	0.10\%	0.09\%	Positive correlation with income, except MD
Grand Total					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-41
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from January 2005 through March 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-42
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide	Recycling	High Densityl High Income	High Densityl Medium Income \%	High Density/ Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income $\%$	Low Densityl High Income	Low Density/ Medium Income \%	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	7.79\%	R Paper	11.55\%	8.71\%	4.88\%	10.31\%	8.08\%	5.06\%	9.61\%	5.49\%	Positive correlation with density and income
Paper	OCC	Plain OCC/Kratt Paper	2.71\%	R Paper	2.04\%	2.67\%	2.38\%	2.47\%	2.88\%	2.99\%	3.32\%	2.38\%	Negative correlation with income, except HD
Paper	Mixed Paper	High Grade Paper	1.00\%	R Paper	2.09\%	1.09\%	1.20\%	1.29\%	0.50\%	0.62\%	0.82\%	0.60\%	No discernible pattern
Paper	Mixed Paper	Mixed Low Grade Paper	11.15\%	R Paper	20.26\%	11.59\%	7.59\%	13.99\%	9.97\%	8.34\%	11.50\%	8.64\%	Positive correlation with density, except LI
Paper	Mixed Paper	Phone Books/Paperbacks	1.06\%	R Paper	1.76\%	1.88\%	0.41\%	3.94\%	0.73\%	1.19\%	0.62\%	0.42\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.61\%	R Paper	1.17\%	0.53\%	0.62\%	0.74\%	0.56\%	0.47\%	0.41\%	0.47\%	No discernible pattern
Paper	Bev Cartons	Polycoated Paper Containers	0.51\%	RBev Cartons	0.54\%	0.54\%	0.46\%	0.69\%	0.48\%	0.48\%	0.57\%	0.40\%	Positive correlation with income
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.38\%	NR_Paper	5.53\%	5.23\%	5.10\%	5.64\%	5.39\%	4.91\%	5.83\%	5.63\%	Positive correation with income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.40\%	NR_Paper	0.56\%	0.27\%	0.23\%	0.47\%	0.30\%	0.20\%	0.74\%	0.51\%	Positive correlation with income
Paper	Other Paper	Other Nonrecyclable Paper	0.60\%	NR_Paper	0.51\%	0.54\%	0.66\%	0.63\%	0.41\%	0.55\%	0.84\%	0.60\%	No discerrible pattern
Paper Total			31.22\%		46.02\%	33.03\%	23.53\%	40.18\%	29.29\%	24.80\%	34.26\%	25.13\%	Positive correlation with density and income, except LLI
Plastic	PET Botles	PET Bottles	1.28\%	R Plastics	1.21\%	1.16\%	1.47\%	1.01\%	1.23\%	1.37\%	1.25\%	1.20\%	Negative correlation with income and MD
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.45\%	R Plastics	0.29\%	0.52\%	0.56\%	0.23\%	0.58\%	0.50\%	0.35\%	0.40\%	Negative correlation with income, except MD
Plastic	HDPE Botlles	HDPE Bottles: Colored	0.49\%	R Plastics	0.44\%	0.50\%	0.46\%	0.47\%	0.55\%	0.46\%	0.53\%	0.40\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1 \#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	PR_Plastics	0.02\%	0.08\%	0.07\%	0.05\%	0.07\%	0.06\%	0.04\%	0.04\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.04\%	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	0.03\%	Negative correlation with density and income
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#7 Other	0.07\%	PR_Plastics	0.08\%	0.08\%	0.06\%	0.05\%	0.06\%	0.06\%	0.08\%	0.10\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	PR_Plastics	0.19\%	0.20\%	0.16\%	0.21\%	0.16\%	0.11\%	0.18\%	0.15\%	Positive correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.05\%	0.05\%	0.01\%	0.06\%	0.02\%	0.01\%	0.02\%	0.02\%	Positive correation with income
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.02\%	0.02\%	0.00\%	0.00\%	0.01\%	0.00\%	0.03\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.01\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	PR_Plastics	0.36\%	0.23\%	0.20\%	0.35\%	0.20\%	0.19\%	0.21\%	0.21\%	Positive correlation with density and income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.53\%	PR_Plastics	0.33\%	0.61\%	0.62\%	0.48\%	0.53\%	0.62\%	0.49\%	0.55\%	Negative correlation with income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.67\%	PR_Plastics	1.07\%	0.63\%	0.55\%	0.80\%	0.70\%	0.43\%	0.71\%	0.54\%	Positive correation with income
Plastic	Film	Plastic Bags	2.78\%	PR_Plastics	2.44\%	3.63\%	3.17\%	2.15\%	2.82\%	3.04\%	2.31\%	2.45\%	Negative correlation with income, except HD
Plastic	Film	Other Film	4.69\%	PR_Plastics	5.39\%	5.46\%	5.42\%	4.05\%	4.57\%	5.09\%	3.27\%	4.20\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutler, Etc.	0.49\%	NR_Plastics	0.36\%	0.55\%	0.40\%	0.40\%	0.36\%	0.57\%	0.72\%	0.58\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	1.77\%	NR_Plastics	1.03\%	1.37\%	2.31\%	1.11\%	1.54\%	2.11\%	2.07\%	1.77\%	Negative correlation with income, except LD
Plastic Total			13.76\%		13.32\%	15.13\%	15.52\%	11.45\%	13.44\%	14.70\%	12.32\%	12.70\%	Negative correlation with income
Glass	Container Glass	Clear Container Glass	1.61\%	R Glass	1.11\%	1.45\%	1.80\%	1.77\%	1.42\%	1.96\%	1.65\%	1.75\%	Negative correlation with income, except MD
Glass	Container Glass	Green Container Glass	0.59\%	R Glass	1.45\%	0.55\%	0.34\%	1.59\%	0.43\%	0.33\%	0.41\%	0.36\%	Positive correation with income
Glass	Container Glass	Brown Container Glass	0.37\%	R Glass	0.31\%	0.26\%	0.48\%	0.53\%	0.44\%	0.39\%	0.27\%	0.28\%	No discernible pattern
Glass	Mixed Cullet	Mixed Cullet	1.67\%	R Glass	2.58\%	1.63\%	1.37\%	2.01\%	2.07\%	1.32\%	1.24\%	1.32\%	No discernible pattern
Glass	Container Glass	Other Container Glass	0.02\%	R Glass	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	0.04\%	0.02\%	0.03\%	No discerrible pattern
Glass	Other Glass	Other Glass	0.15\%	PR_Glass	0.09\%	0.14\%	0.12\%	0.23\%	0.18\%	0.19\%	0.15\%	0.14\%	No discerrible pattern
Glass Total			4.41\%		5.57\%	4.05\%	4.11\%	6.16\%	4.55\%	4.22\%	3.74\%	3.87\%	No discernible pattern
Metal	Aluminum	Aluminum Cans	0.22\%	R Metal	0.27\%	0.23\%	0.22\%	0.13\%	0.18\%	0.19\%	0.28\%	0.21\%	Positive correlation with income, except MD
Metal	Aluminum	Aluminum Foilcontainers	0.50\%	R Metal	0.43\%	0.47\%	0.53\%	0.52\%	0.46\%	0.54\%	0.55\%	0.42\%	No discernible pattern
Metal	Aluminum	Other Aluminum	0.03\%	R M Metal	0.01\%	0.00\%	0.06\%	0.04\%	0.03\%	0.00\%	0.02\%	0.05\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.23\%	R M etal	0.11\%	0.31\%	0.16\%	0.04\%	0.31\%	0.27\%	0.34\%	0.17\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	1.27\%	R Metal	0.71\%	1.32\%	1.62\%	1.07\%	1.38\%	1.45\%	1.12\%	1.29\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.14\%	R M etal	0.16\%	0.09\%	0.10\%	0.15\%	0.20\%	0.14\%	0.15\%	0.15\%	No discernible pattern
Metal	Ferrous	Other Ferrous	2.19\%	R Metal	2.01\%	1.60\%	2.23\%	1.88\%	2.34\%	1.73\%	2.63\%	2.58\%	No discernible pattern
Metal	Other Metal	Mixed Metals	0.75\%	R M etal	1.32\%	0.63\%	0.92\%	0.47\%	0.49\%	0.84\%	0.47\%	0.74\%	Negative correlation with income, except HD
Metal Total			5.33\%		5.03\%	4.65\%	5.84\%	4.29\%	5.38\%	5.15\%	5.54\%	5.62\%	No discernible pattern

Table 1-42
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{aligned} & \hline \text { Medium Density } \\ & \text { High Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { yl Medium Densityl\| } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Density/ } \\ \text { Low Income } \\ \% \end{gathered}$	$\begin{gathered} \text { \| Low Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.91\%	NR_Other	0.17\%	0.65\%	0.26\%	1.09\%	0.46\%	0.72\%	2.56\%	1.53\%	No discernible pattern
Organics	Yard	Prunings	0.54\%	NR_Other	0.81\%	0.20\%	0.14\%	0.59\%	0.20\%	0.14\%	1.16\%	1.63\%	Positive correlation with income, except LD
Organics	Wood	Stumps/Limbs	0.15\%	NR_Other	0.00\%	0.04\%	0.02\%	0.00\%	0.00\%	0.00\%	0.72\%	0.13\%	No discernible pattern
Organics	Food	Food	19.46\%	NR_Other	11.94\%	20.00\%	23.72\%	14.78\%	22.18\%	22.27\%	16.43\%	20.14\%	Negative correlation with income
Organics	Wood	Wood Furnitur/Furniture Pieces	1.32\%	NR_Other	0.58\%	0.85\%	1.32\%	1.60\%	0.79\%	2.30\%	1.66\%	1.60\%	Negative correlation with income and HD
Organics	Wood	Non-C\&D Untreated Wood	0.26\%	NR_Other	0.36\%	0.16\%	0.53\%	0.15\%	0.23\%	0.07\%	0.19\%	0.19\%	No discernible pattern
Organics	Textiles	Non-Clothing Textiles	1.33\%	NR_Other	1.16\%	1.50\%	1.31\%	1.17\%	1.43\%	1.45\%	1.09\%	1.81\%	Negative correlation with income, except HD
Organics	Texilies	Clothing Textiles	2.17\%	NR_Other	0.97\%	2.23\%	3.27\%	0.94\%	2.21\%	2.50\%	1.82\%	2.33\%	Negative correlation with income
Organics	Textiles	CarpetUpholstery	1.44\%	NR_Other	1.72\%	1.46\%	1.08\%	1.10\%	1.39\%	1.11\%	2.03\%	1.37\%	Positive correlation with income, except MD
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.30\%	NR_Other	2.14\%	3.06\%	3.82\%	2.99\%	3.41\%	3.71\%	3.14\%	4.00\%	Negative correlation with income
Organics	Misc. Organic	Animal By-Products	1.25\%	NR_Other	1.54\%	0.61\%	0.55\%	2.47\%	1.30\%	0.80\%	1.77\%	1.90\%	Positive correation with income
Organics	Misc. Organic	Rubber Products	0.22\%	NR_Other	0.11\%	0.17\%	0.26\%	0.24\%	0.34\%	0.28\%	0.14\%	0.13\%	No discernible pattern
Organics	Texilies	Shoes	0.63\%	NR_Other	0.25\%	0.77\%	0.81\%	0.36\%	0.73\%	0.76\%	0.60\%	0.44\%	No discernible pattern
Organics	Textiles	Other Leather Products	0.07\%	NR_Other	0.01\%	0.07\%	0.14\%	0.06\%	0.01\%	0.13\%	0.06\%	0.03\%	No discernible pattern
Organics	Misc. Organic	Fines	3.41\%	NR_Other	2.53\%	3.59\%	4.24\%	3.52\%	3.04\%	4.12\%	2.79\%	3.82\%	Negative correlation with income, except MD
Organics	Texiles	Upholstered or Other Organic-Type Furniture	1.47\%	NR_Other	0.95\%	0.88\%	2.48\%	1.64\%	1.72\%	0.92\%	1.23\%	1.33\%	Negative correlation with income, except MD
Organics	Misc. Organic	Miscellaneous Organics	0.63\%	NR_Other	0.52\%	0.62\%	0.33\%	0.96\%	0.62\%	0.76\%	0.75\%	0.86\%	No discernible pattern
Organics Total			38.57\%		25.76\%	36.87\%	44.29\%	33.67\%	40.06\%	42.03\%	38.15\%	43.33\%	Negative correlation with density and income
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.72\%	R Metal	0.45\%	0.75\%	1.20\%	0.36\%	0.40\%	0.90\%	0.52\%	1.19\%	Negative correlation with income
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	R M etal	0.01\%	0.05\%	0.01\%	0.01\%	0.01\%	0.05\%	0.00\%	0.01\%	No discerrnible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.18\%	NR_Other	0.22\%	0.08\%	0.09\%	0.11\%	0.30\%	0.17\%	0.18\%	0.15\%	No discernible pattern
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/Av/Computer	AudioNVisual Equipment: Other	0.16\%	NR_Other	0.14\%	0.10\%	0.24\%	0.10\%	0.10\%	0.09\%	0.23\%	0.17\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.06\%	NR_Other	0.09\%	0.00\%	0.00\%	0.00\%	0.27\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.20\%	NR_Other	0.00\%	0.00\%	0.00\%	0.18\%	0.53\%	0.53\%	0.13\%	0.00\%	No discerrnible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.10\%	NR_Other	0.14\%	0.28\%	0.09\%	0.13\%	0.04\%	0.08\%	0.07\%	0.14\%	No discernible pattern
Appliance/Eİectronic Total			1.44\%		1.06\%	1.26\%	1.63\%	0.90\%	1.65\%	1.82\%	1.14\%	1.66\%	Negative correlation with income
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.35\%	NR_Other	0.30\%	0.28\%	0.27\%	0.24\%	0.23\%	0.30\%	0.61\%	0.49\%	Positive correlation with income, except MD
C \& D Debris	Wood	Treated/Contaminated Wood	1.66\%	NR_Other	0.88\%	1.95\%	1.73\%	1.07\%	1.31\%	2.55\%	1.24\%	3.36\%	Negative correlation with income, except HD
$C \& D$ debris	Inorganic C\&D	Gypsum Scrap	0.89\%	NR_Other	0.64\%	0.56\%	1.04\%	0.51\%	0.85\%	1.53\%	0.78\%	0.64\%	No discernible pattern
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete//Bricks	0.38\%	NR_Other	0.05\%	0.15\%	0.61\%	0.14\%	0.92\%	0.33\%	0.11\%	0.15\%	Negative correlation with income, except MD
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.10\%	NR_Other	0.70\%	1.37\%	0.40\%	0.96\%	1.03\%	1.87\%	1.12\%	2.26\%	Negative correlation with income, except HD
C\&D Debris Total			4.37\%		2.57\%	4.31\%	4.05\%	2.92\%	4.34\%	6.57\%	3.86\%	6.90\%	Negative correlation with income, except HD
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.21\%	NR_Other	0.31\%	0.17\%	0.13\%	0.04\%	0.29\%	0.16\%	0.24\%	0.17\%	No discernible pattern
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.47\%	NR_Other	0.18\%	0.21\%	0.64\%	0.20\%	0.63\%	0.42\%	0.54\%	0.48\%	No discernible pattern
Miscellaneous Inorganics Total			0.68\%		0.49\%	0.39\%	0.76\%	0.24\%	0.92\%	0.58\%	0.78\%	0.65\%	No discernible pattern
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Latex PaintsWater-Based Adhesives/Glues	0.04\%	NR_Other	0.05\%	0.06\%	0.03\%	0.04\%	0.08\%	0.01\%	0.02\%	0.00\%	No discernible pattern
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	NR_Other	0.03\%	0.04\%	0.01\%	0.00\%	0.12\%	0.00\%	0.01\%	0.00\%	No discernible pattem
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	NR_Other	0.00\%	0.02\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.08\%	NR_Other	0.05\%	0.11\%	0.10\%	0.10\%	0.11\%	0.09\%	0.04\%	0.08\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
HHW	HHW	Home Medical Products	0.03\%	NR_Other	0.02\%	0.05\%	0.05\%	0.01\%	0.02\%	0.01\%	0.04\%	0.01\%	No discernible pattern
HHW	HHW	Other Potentially Harmfu Wastes	0.03\%	NR_Other	0.00\%	0.00\%	0.06\%	0.05\%	0.01\%	0.01\%	0.05\%	0.02\%	Positive correlation with income, except HD
$\frac{\text { HHW Total }}{\text { Grand Total }}$			$\frac{0.23 \%}{100.00 \%}$		0.16\%	0.31\%	0.27\%	0.20\%	0.37\%	0.13\%	0.20\%	0.13\%	No discernible pattern
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	00.00\%	0.00\%	0.00\%	

Table 1-42
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling) (continued) SUBTOTALS BY RECYCLING DESIGNATION

Recycling Designation	\% of Citywide	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income \%	$\begin{gathered} \text { Medium Density } \\ \text { High Income } \end{gathered}$	Medium Density/ Medium Income \%	Medium Density/ Low Income \%	Low Densityl High Income \%	Low Densityl Medium Income
Designated Paper	24.32\%	38.88\%	26.46\%	17.09\%	32.74\%	22.72\%	18.66\%	26.29\%	18.00\%
Designated Beverage Cartons	0.51\%	0.54\%	0.54\%	0.46\%	0.69\%	0.48\%	0.48\%	0.57\%	0.40\%
Designated Plastic	2.22\%	1.94\%	2.18\%	2.48\%	1.71\%	2.36\%	2.33\%	2.13\%	2.01\%
Designated Metal	6.06\%	5.49\%	5.44\%	7.05\%	4.66\%	5.79\%	6.10\%	6.07\%	6.83\%
Designated Glass	4.26\%	5.48\%	3.90\%	3.99\%	5.93\%	4.37\%	4.04\%	3.59\%	3.73\%
Designated MGP Subtotal	13.04\%	13.45\%	12.06\%	13.98\%	12.99\%	13.00\%	12.95\%	12.35\%	12.96\%
Potentially Designated Plastic	9.27\%	9.99\%	11.03\%	10.33\%	8.23\%	9.18\%	9.68\%	7.37\%	8.33\%
Potentially Designated Glass	0.15\%	0.09\%	0.14\%	0.12\%	0.23\%	0.18\%	0.19\%	0.15\%	0.14\%
Potentially Designated Materials Subtotal	9.42\%	10.08\%	11.17\%	10.45\%	8.46\%	9.36\%	9.87\%	7.52\%	8.48\%
Nondesignated Paper	6.38\%	6.60\%	6.04\%	5.99\%	6.75\%	6.09\%	5.66\%	7.41\%	6.73%
Nondesignated Plastic	2.27\%	1.39\%	1.92\%	2.70\%	1.51\%	1.90\%	2.68\%	2.83\%	2.36\%
Other Nondesignated	44.55\%	29.60\%	42.35\%	49.79\%	37.55\%	46.93\%	50.18\%	43.61\%	51.47\%
Nondesignated Materials Subtotal	53.21\%	37.59\%	50.30\%	58.48\%	45.81\%	54.92\%	58.52\%	53.84\%	60.56\%
Designated for Recycling Total	37.37\%	52.33\%	38.52\%	31.07\%	45.73\%	35.72\%	31.61\%	38.64\%	30.96\%
Potentially or Not Designated for Recycling Total	62.63\%	47.67\%	61.48\%	68.93\%	54.27\%	64.28\%	68.39\%	61.36\%	69.04\%

average weekly generation tonnage ${ }^{(1)}$

Material Group	Citywide	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Densityl Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Densityl Medium Income
Paper Total ${ }^{(2)}$	18,629.80	3,609.52	1,419.75	2,575.91	1,102.13	3,185.25	2,070.49	3,718.02	948.75
Plastic Total ${ }^{(2)}$	8,212.72	1,044.90	650.18	1,698.55	313.99	1,461.07	1,227.11	1,337.38	479.53
Glass Total ${ }^{(2)}$	2,629.35	436.88	173.86	449.76	168.97	495.24	352.68	405.73	146.24
Metal Total ${ }^{(3)}$	3,180.47	394.66	199.84	639.49	117.61	585.14	429.81	601.69	212.23
Organics Total	23,017.03	2,020.39	1,584.75	4,848.05	923.55	4,356.15	3,508.87	4,139.20	1,636.07
Appliance/Electronic Total	859.48	83.29	54.28	178.71	24.62	179.61	152.23	124.01	62.73
C \& D Debris Total	2,610.23	201.91	185.08	443.01	80.12	471.80	548.92	418.89	260.50
Miscellaneous Inorganics Total	403.17	38.77	16.65	83.68	6.47	100.28	48.04	84.76	24.53
HHW Total	138.94	12.56	13.33	29.53	5.50	40.47	11.26	21.34	4.96
Grand Total	59,681.18	7,842.88	4,297.72	10,946.68	2,742.94	10,875.00	8,349.40	10,851.02	3,775.55

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from January 2005 through March 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-43
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Refuse

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Refuse Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \hline \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	3.75\%	R Paper	6.54\%	5.29\%	4.42\%	3.46\%	2.98\%	4.28\%	2.11\%	2.20\%	Positive correlation with density
Paper	OCC	Plain OCC/Kraft Paper	1.06\%	R Paper	2.11\%	0.93\%	1.08\%	0.89\%	0.60\%	1.49\%	0.79\%	0.77\%	Positive correlation with density
Paper	Mixed Paper	High Grade Paper	0.60\%	R Paper	1.68\%	0.42\%	0.57\%	1.45\%	0.42\%	0.46\%	0.31\%	0.48\%	Positive with high income except in LD
Paper	Mixed Paper	Mixed Low Grade Paper	7.41\%	R Paper	13.61\%	7.40\%	7.09\%	8.48\%	6.52\%	7.66\%	5.51\%	5.95\%	Positive correlation with density
Paper	Mixed Paper	Phone Books/Paperbacks	0.52\%	R Paper	1.13\%	0.60\%	0.35\%	0.14\%	0.51\%	0.65\%	0.38\%	0.44\%	Positive correlation with HD / H
Paper	Mixed Paper	Paper Bags	0.62\%	R Paper	1.46\%	0.61\%	0.61\%	0.86\%	0.48\%	0.54\%	0.39\%	0.44\%	Positive correation with density
Paper	Bev Cartons	Polycoated Paper Containers	0.43\%	R Bev Catrons	0.59\%	0.85\%	0.47\%	0.55\%	0.31\%	0.55\%	0.21\%	0.24\%	Positive correation with density
Paper	Compostable Paper	Compostable/Soiled PaperWaxed OCC/Kraft	6.00\%	NR_Paper	7.84\%	6.56\%	5.06\%	7.68\%	6.56\%	5.32\%	5.34\%	6.28\%	Positive with income except in low density
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.42\%	NR_Paper	0.57\%	0.33\%	0.23\%	0.72\%	0.43\%	0.21\%	0.54\%	0.64\%	Positive with income except in low density
Paper	Other Paper	Other Nonrecyclable Paper	0.51\%	NR_Paper	0.54\%	0.50\%	0.63\%	0.85\%	0.55\%	0.43\%	0.40\%	0.38\%	No discernible pattern
Paper Total			21.32\%		36.07\%	23.48\%	20.51\%	25.07\%	19.37\%	21.59\%	15.98\%	17.80\%	Positive with density, especially HD/HI
Plastic	PET Botlles	PET Bottles	0.82\%	R Plastics	1.00\%	0.86\%	1.13\%	0.72\%	0.70\%	1.17\%	0.40\%	0.62\%	Positive correlation with density
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.24\%	R Plastics	0.20\%	0.29\%	0.44\%	0.12\%	0.22\%	0.32\%	0.09\%	0.14\%	Negative correlation with income
Plastic	HDPE Botlles	HDPE Bottles: Colored	0.27\%	R Plastics	0.26\%	0.28\%	0.41\%	0.21\%	0.20\%	0.44\%	0.16\%	0.16\%	Positive correlation with low income
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	Negative correlation with density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	PR_Plastics	0.06\%	0.15\%	0.09\%	0.01\%	0.08\%	0.09\%	0.01\%	0.01\%	Positive with density, negative with HI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.01\%	PR_Plastics	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	PR_Plastics	0.07\%	0.08\%	0.10\%	0.07\%	0.08\%	0.08\%	0.06\%	0.05\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.02\%	PR_Plastics	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrnible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	PR_Plastics	0.24\%	0.20\%	0.15\%	0.25\%	0.14\%	0.10\%	0.10\%	0.17\%	No discemible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06\%	PR_Plastics	0.11\%	0.05\%	0.07\%	0.14\%	0.05\%	0.04\%	0.03\%	0.02\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.00\%	0.02\%	0.05\%	0.02\%	0.00\%	0.00\%	0.00\%	0.06\%	No discerrible pattern
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.06\%	0.00\%	No discemible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	PR_Plastics	0.50\%	0.29\%	0.36\%	0.34\%	0.21\%	0.18\%	0.17\%	0.17\%	Positive correlation with density
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.59\%	PR_Plastics	0.52\%	0.63\%	0.68\%	0.46\%	0.65\%	0.61\%	0.55\%	0.46\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.76\%	PR_Plastics	1.38\%	0.82\%	0.66\%	1.34\%	0.76\%	0.53\%	0.65\%	0.62\%	Positive correlation with density and income
Plastic	Film	Plastic Bags	3.71\%	PR_Plastics	3.97\%	4.45\%	4.50\%	3.55\%	4.44\%	3.92\%	2.31\%	2.71\%	Positive with density, negative with HI
Plastic	Film	Other Film	5.31\%	PR_Plastics	5.77\%	6.39\%	6.30\%	4.89\%	5.77\%	5.79\%	3.64\%	4.17\%	Positive with density, negative with HI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.56\%	NR_Plastics	0.48\%	0.58\%	0.42\%	0.58\%	0.57\%	0.68\%	0.56\%	0.70\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	1.72\%	NR_Plastics	1.39\%	2.43\%	1.60\%	1.67\%	1.90\%	1.75\%	1.48\%	2.02\%	Positive correlation with medium income
Plastic Total			14.69\%		16.14\%	17.57\%	17.00\%	14.42\%	15.81\%	15.73\%	10.31\%	12.11\%	Positive with density, negative with HI
Glass	Container Glass	Clear Container Glass	1.00\%	R Glass	0.48\%	0.81\%	1.28\%	1.05\%	0.97\%	1.92\%	0.50\%	0.77\%	Negative correlation with income
Glass	Container Glass	Green Container Glass	0.24\%	R Glass	0.47\%	0.17\%	0.29\%	0.51\%	0.19\%	0.24\%	0.14\%	0.16\%	Positive with HI, except in low density
Glass	Container Glass	Brown Container Glass	0.22\%	R Glass	0.19\%	0.11\%	0.44\%	0.28\%	0.15\%	0.27\%	0.07\%	0.20\%	No discernible pattern
Glass	Mixed Cullet	Mixed Cullet	0.52\%	R Glass	0.70\%	0.47\%	0.56\%	0.53\%	0.63\%	0.87\%	0.18\%	0.23\%	Negative correlation with low density
Glass	Container Glass	Other Container Glass	0.04\%	R Glass	0.03\%	0.04\%	0.03\%	0.03\%	0.04\%	0.07\%	0.02\%	0.03\%	No discernible pattern
Glass	Other Glass	Other Glass	0.24\%	PR_Glass	0.16\%	0.15\%	0.18\%	0.12\%	0.34\%	0.35\%	0.24\%	0.15\%	No discernible pattern
Glass Total			2.24\%		2.02\%	1.76\%	2.78\%	2.52\%	2.33\%	3.71\%	1.15\%	1.54\%	Positive correlation with medium density
Metal	Aluminum	Aluminum Cans	0.16\%	R Metal	0.19\%	0.21\%	0.22\%	0.13\%	0.15\%	0.21\%	0.07\%	0.11\%	Positive with density, negative with income
Metal	Aluminum	Aluminum Foil/Containers	0.60\%	R Metal	0.67\%	0.61\%	0.59\%	0.63\%	0.66\%	0.64\%	0.49\%	0.58\%	No discemible pattern
Metal	Aluminum	Other Aluminum	0.03\%	R M Metal	0.01\%	0.00\%	0.10\%	0.00\%	0.01\%	0.03\%	0.01\%	0.01\%	Positive correation with low income
Metal	Non-Ferrous	Other Non-Ferrous	0.11\%	R Metal	0.15\%	0.17\%	0.08\%	0.55\%	0.06\%	0.07\%	0.07\%	0.18\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	0.86\%	R Metal	0.49\%	1.01\%	1.53\%	0.45\%	0.72\%	1.36\%	0.38\%	0.51\%	Positive with density, negative with income
Metal	Ferrous	Empty Aerosol Cans	0.12\%	R M etal	0.12\%	0.14\%	0.11\%	0.10\%	0.14\%	0.13\%	0.09\%	0.13\%	No discernible pattern
Metal	Ferrous	Other Ferrous	1.17\%	R Metal	1.07\%	0.85\%	1.53\%	1.17\%	0.97\%	0.91\%	1.19\%	1.61\%	No discerrible pattern
Metal	Other Metal	Mixed Metals	0.45\%	R Metal	0.73\%	0.42\%	0.48\%	0.25\%	0.43\%	0.36\%	0.40\%	0.52\%	No discernible pattern
Metal Total			3.50\%		3.42\%	3.42\%	4.64\%	3.28\%	3.14\%	3.71\%	2.72\%	3.65\%	Negative correlation with income

Table 1-43
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Refuse (continued)

Table 1-43
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Refuse (continued)

	\% of Citywide	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Densityl Medium Income
Recycling Designation	Refuse Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	13.96\%	26.52\%	15.24\%	14.12\%	15.27\%	11.51\%	15.08\%	9.48\%	10.27\%
Designated Beverage Cartons	0.43\%	0.59\%	0.85\%	0.47\%	0.55\%	0.31\%	0.55\%	0.21\%	0.24\%
Designated Plastic	1.34\%	1.46\%	1.43\%	1.97\%	1.05\%	1.13\%	1.93\%	0.66\%	0.92\%
Designated Metal	3.94\%	3.61\%	3.55\%	4.85\%	3.53\%	3.65\%	3.86\%	3.67\%	4.28\%
Designated Glass	2.01\%	1.86\%	1.61\%	2.60\%	2.40\%	1.99\%	3.36\%	0.91\%	1.39\%
Designated MGP Subtotal	7.71\%	7.53\%	7.44\%	9.90\%	7.53\%	7.07\%	9.70\%	5.45\%	6.82\%
Potentially Designated Plastic	11.06\%	12.81\%	13.13\%	13.02\%	11.11\%	12.22\%	11.37\%	7.57\%	8.47\%
Potentially Designated Glass	0.24\%	0.16\%	0.15\%	0.18\%	0.12\%	0.34\%	0.35\%	0.24\%	0.15\%
Potentially Designated Materials Subtotal	11.30\%	12.97\%	13.28\%	13.20\%	11.23\%	12.56\%	11.72\%	7.80\%	8.62\%
Nondesignated Paper	6.93\%	8.95\%	7.39\%	5.92\%	9.25\%	7.55\%	5.96\%	6.28\%	7.29\%
Nondesignated Plastic	2.29\%	1.87\%	3.01\%	2.02\%	2.27\%	2.47\%	2.43\%	2.09\%	2.72\%
Other Nondesignated	57.81\%	42.15\%	53.64\%	54.85\%	54.45\%	58.83\%	55.11\%	68.89\%	64.27\%
Nondesignated Materials Subtotal	67.03\%	52.98\%	64.03\%	62.79\%	65.96\%	68.85\%	63.50\%	77.27\%	74.28\%
Designated for Recycling Total	21.67\%	34.05\%	22.69\%	24.01\%	22.81\%	18.59\%	24.78\%	14.93\%	17.09\%
Potentially or Not Designated for Recycling Total	78.33\%	65.95\%	77.31\%	75.99\%	77.19\%	81.41\%	75.22\%	85.07\%	82.91\%

Material Group	Citywide	High Density/ High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Income
Paper Total ${ }^{(2)}$	11,878.62	2,078.24	937.65	2,098.64	540.42	1,829.25	1,781.38	1,886.97	726.10
Plastic Total ${ }^{(2)}$	8,185.52	930.17	701.51	1,739.74	310.86	1,493.28	1,298.08	1,217.95	493.93
Glass Total ${ }^{(2)}$	1,250.90	116.47	70.28	284.79	54.39	220.13	306.29	135.76	62.80
Metal Total ${ }^{(3)}$	1,950.84	197.23	136.61	474.62	70.70	296.32	305.94	320.73	148.69
Organics Total	27,100.75	2,106.90	1,915.59	4,919.30	977.67	4,727.35	3,983.90	6,327.04	2,143.00
Applianc/EIlectronic Total	610.53	22.40	35.59	67.95	27.19	88.05	65.82	253.25	50.27
C \& D Debris Total	4,174.89	248.74	162.33	576.05	147.60	697.71	427.43	1,501.13	413.88
Miscellaneous Inorganics Total	444.71	51.78	28.87	33.31	23.78	61.46	60.45	149.60	35.44
HHW Total	127.51	9.96	4.57	36.57	2.59	29.21	21.90	17.61	5.09
Grand Total	55,724.27	5,761.92	3,993.01	10,230.96	2,155.21	9,442.75	8,251.19	11,810.04	4,079.20

1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-44
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Paper

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income $\%$	High Density/ Medium Income $\%$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl\| } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \hline \text { Medium Density/ I } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	42.78\%	R Paper	53.76\%	41.86\%	29.88\%	41.42\%	32.86\%	46.99\%	43.47\%	47.04\%	No discernible pattern
Paper	OCC	Plain OCC/Kraft Paper	11.27\%	R Paper	9.91\%	9.22\%	33.51\%	9.33\%	12.99\%	16.89\%	5.16\%	9.86\%	Negative correlation with density and income
Paper	Mixed Paper	High Grade Paper	3.73\%	R Paper	2.11\%	1.84\%	1.69\%	4.54\%	8.15\%	2.38\%	3.02\%	1.65\%	Positive correlation with medium density
Paper	Mixed Paper	Mixed Low Grade Paper	33.10\%	R Paper	31.13\%	37.13\%	23.97\%	36.31\%	33.99\%	25.60\%	36.26\%	33.91\%	No discerrible pattern
Paper	Mixed Paper	Phone Books/Paperbacks	2.69\%	R Paper	0.84\%	2.05\%	2.81\%	2.90\%	3.13\%	4.20\%	3.29\%	4.35\%	Negative correlation with density and income
Paper	Mixed Paper	Paper Bags	0.44\%	R Paper	0.59\%	0.28\%	0.01\%	0.40\%	0.90\%	0.05\%	0.22\%	0.38\%	No discernible pattern
Paper	Bev Cartons	Polycoated Paper Containers	0.21\%	R Bev Cartons	0.03\%	0.11\%	1.23\%	0.11\%	0.24\%	0.15\%	0.16\%	0.11\%	No discerrible pattern
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	2.67\%	NR_Paper	0.01\%	4.43\%	1.00\%	2.54\%	2.97\%	0.40\%	5.75\%	0.40\%	No discernible pattern
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.02\%	NR_Paper	0.01\%	0.07\%	0.03\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	Positive correlation with high density
Paper	Other Paper	Other Nonrecyclable Paper	0.69\%	NR_Paper	0.15\%	0.61\%	0.79\%	0.71\%	1.58\%	0.52\%	0.54\%	0.43\%	No discernible pattern
Paper Total			97.60\%		98.55\%	97.61\%	94.92\%	98.26\%	96.81\%	97.19\%	97.89\%	98.13\%	No discernible pattern
Plastic	PET Botlles	PET Botlles	0.03\%	R Plastics	0.00\%	0.10\%	0.01\%	0.05\%	0.01\%	0.01\%	0.06\%	0.07\%	№ discernible pattern
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.01\%	R Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.07\%	Positive correlation with low density
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.01\%	R Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.02\%	Positive correlation with low density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras//Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	№ discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.02\%	PR_Plastics	0.02\%	0.00\%	0.00\%	0.07\%	0.02\%	0.02\%	0.01\%	0.02\%	Positive correlation with medium density
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.03\%	PR_Plastics	0.00\%	0.02\%	0.06\%	0.03\%	0.08\%	0.01\%	0.03\%	0.02\%	No discernible pattern
Plastic	Film	Plastic Bags	0.22\%	PR_Plastics	0.16\%	0.18\%	0.05\%	0.07\%	0.26\%	0.17\%	0.35\%	0.30\%	Negative correlation with density
Plastic	Film	Other Film	0.64\%	PR_Plastics	0.40\%	0.75\%	0.99\%	0.66\%	0.83\%	0.74\%	0.56\%	0.45\%	No discernible pattern
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.02\%	NR_Plastics	0.00\%	0.00\%	0.03\%	0.01\%	0.05\%	0.00\%	0.01\%	0.01\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	0.21\%	NR_Plastics	0.02\%	0.01\%	1.37\%	0.09\%	0.06\%	0.84\%	0.11\%	0.23\%	Positive correlation with low income
Plastic Total			1.20\%		0.61\%	1.07\%	2.53\%	1.00\%	1.35\%	1.79\%	1.19\%	1.19\%	Negative correlation with income
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	0.04\%	R Glass	0.00\%	0.00\%	0.01\%	0.10\%	0.00\%	0.06\%	0.09\%	0.04\%	Negative correlation with density
Glass	Container Glass	Green Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Glass	Container Glass	Brown Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Glass	Mixed Cullet	Mixed Cullet	0.02\%	R Glass	0.00\%	0.00\%	0.03\%	0.00\%	0.05\%	0.18\%	0.00\%	0.00\%	Positive correlation with LI and MD
Glass	Container Glass	Other Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Glass	Other Glass	Other Glass	0.02\%	PR_Glass	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.05\%	No discernible pattern
Glass Total			0.09\%		0.00\%	0.05\%	0.04\%	0.10\%	0.07\%	0.24\%	0.15\%	0.09\%	No discernible pattern
Metal	Aluminum	Aluminum Cans	0.00\%	R M etal	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal	Aluminum	Aluminum Foilcontainers	0.01\%	R Metal	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	0.03\%	0.00\%	No discernible pattern
Metal	Aluminum	Other Aluminum	0.00\%	R M etal	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	0.03\%	R Metal	0.00\%	0.02\%	0.02\%	0.04\%	0.03\%	0.01\%	0.05\%	0.11\%	Negative correlation with density
Metal	Ferrous	Empty Aerosol Cans	0.00\%	R Metal	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	0.04\%	R Metal	0.00\%	0.14\%	0.00\%	0.00\%	0.02\%	0.00\%	0.08\%	0.00\%	No discemible pattern
Metal	Other Metal	Mixed Metals	0.02\%	R Metal	0.00\%	0.01\%	0.00\%	0.00\%	0.07\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Metal Total			0.10\%		0.00\%	0.20\%	0.05\%	0.08\%	0.13\%	0.02\%	0.18\%	0.13\%	Positive correlation with medium income

Table 1-44
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Paper (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{aligned} & \hline \text { Medium Density I I } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	No discerrible pattern
Organics	Food	Food	0.30\%	NR_Other	0.00\%	0.65\%	0.08\%	0.20\%	0.99\%	0.18\%	0.07\%	0.11\%	Positive correlation with MD and MI
Organics	Wood	Wood Furnitur/Furniture Pieces	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Wood	Non-C\&D Untreated Wood	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.03\%	0.00\%	No discermible pattern
Organics	Textiles	Non-Clothing Textiles	0.16\%	NR_Other	0.46\%	0.07\%	0.07\%	0.03\%	0.13\%	0.03\%	0.05\%	0.13\%	No discernible pattern
Organics	Textiles	Clothing Texilies	0.05\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.02\%	0.08\%	0.13\%	0.00\%	Negative correlation with density
Organics	Textiles	CarpetUpholstery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.04\%	NR_Other	0.00\%	0.07\%	0.03\%	0.01\%	0.15\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
Organics	Misc. Organic	Animal By-Products	0.00\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
Organics	Misc. Organic	Rubber Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Organics	Texiles	Shoes	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
Organics	Misc. Organic	Fines	0.24\%	NR_Other	0.18\%	0.26\%	0.36\%	0.32\%	0.23\%	0.30\%	0.23\%	0.22\%	No discernible pattern
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics Total			0.80\%		0.66\%	1.05\%	0.55\%	0.56\%	1.52\%	0.64\%	0.53\%	0.45\%	No discernible pattern
Appliance/EIectronic	Ferrous	Appliances: Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.11\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.04\%	NR_Other	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Appliance/Electronic Total			0.05\%		0.18\%	0.00\%	0.00\%	0.00\%	0.00\%	0.11\%	0.02\%	0.01\%	No discernible pattern
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
C \& D Debris	Wood	Treated/Contaminated Wood	0.02\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.12\%	NR_Other	0.00\%	0.00\%	1.91\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
C \& D Debris Total			0.15\%		0.00\%	0.00\%	1.92\%	0.00\%	0.10\%	0.00\%	0.02\%	0.00\%	No discernible pattern
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Miscellaneous Inorganics Total			0.00\%		0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Gasoline/Kerosene/M Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Glues	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.01\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	No discerrible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
$\frac{\text { HHW Total }}{\text { Grand Total }}$			100.00\%		0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	No discernible pattern
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-44
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Paper (continued)

Recycling Designation	\% of Citywide Paper Stream	High Densityl High Income \%	High Densityl Medium Income \%	High Density Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Density/ } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	Low Density/ Medium Income \%
Designated Paper	94.01\%	98.34\%	92.39\%	91.87\%	94.90\%	92.02\%	96.11\%	91.43\%	97.18\%
Designated Beverage Cartons	0.21\%	0.03\%	0.11\%	1.23\%	0.11\%	0.24\%	0.15\%	0.16\%	0.11\%
Designated Plastic	0.05\%	0.00\%	0.10\%	0.02\%	0.05\%	0.03\%	0.01\%	0.09\%	0.16\%
Designated Metal	0.10\%	0.00\%	0.20\%	0.05\%	0.08\%	0.13\%	0.02\%	0.18\%	0.13\%
Designated Glass	0.07\%	0.00\%	0.00\%	0.04\%	0.10\%	0.07\%	0.24\%	0.09\%	0.04\%
Designated MGP Subtotal	0.42\%	0.03\%	0.42\%	1.33\%	0.34\%	0.47\%	0.43\%	0.52\%	0.43\%
Potentially Designated Plastic	0.93\%	0.59\%	0.96\%	1.11\%	0.85\%	1.20\%	0.93\%	0.99\%	0.79\%
Potentially Designated Glass	0.02\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.05\%
Potentially Designated Materials Subtotal	0.95\%	0.59\%	1.01\%	1.11\%	0.85\%	1.20\%	0.93\%	1.05\%	0.85\%
Nondesignated Paper	3.38\%	0.18\%	5.11\%	1.82\%	3.25\%	4.55\%	0.93\%	6.31\%	0.83\%
Nondesignated Plastic	0.23\%	0.02\%	0.01\%	1.40\%	0.10\%	0.12\%	0.84\%	0.11\%	0.24\%
Other Nondesignated	1.01\%	0.84\%	1.06\%	2.47\%	0.57\%	1.64\%	0.76\%	0.58\%	0.47\%
Nondesignated Materials Subtotal	4.62\%	1.04\%	6.17\%	5.69\%	3.91\%	6.31\%	2.54\%	7.00\%	1.54\%

Material Group	Citywide	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density High Income	/ Medium Density/ Medium Income	Medium Densityl Low Income	Low Density High Income	Low Densityl Medium Income
Paper Total ${ }^{[2]}$	6,857.74	1,494.17	444.73	432.25	613.29	1,370.16	491.10	1,731.39	280.65
Plastic Total ${ }^{(2)}$	84.39	9.21	4.90	11.51	6.23	19.10	9.02	21.04	3.39
Glass Total ${ }^{(2)}$	6.19	0.00	0.24	0.16	0.61	0.99	1.20	2.72	0.26
Metal Total ${ }^{(3)}$	7.17	0.05	0.93	0.21	0.50	1.81	0.11	3.19	0.37
Organics Total	56.33	10.03	4.80	2.48	3.49	21.58	3.24	9.40	1.30
Appliance/Electronic Total	3.66	2.77	0.00	0.00	0.00	0.00	0.55	0.33	0.02
C \& D Debris Total	10.47	0.00	0.00	8.72	0.00	1.42	0.00	0.32	0.00
Miscellaneous Inorganics Total	0.25	0.00	0.00	0.00	0.00	0.16	0.00	0.07	0.02
HHW Total	0.41	0.00	0.02	0.05	0.04	0.05	0.06	0.19	0.00
Grand Total	7,026.61	1,516.23	455.61	455.39	624.16	1,415.28	505.28	1,768.66	286.01

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from April 2005 through June 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.26 in Volume 2 . (2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-45
Housing Density and Income Details, Spring 2005, Waste Characterization Study, MGP

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \text { High Densityl\| } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	Medium Densityl High Income $\%$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Densityl\| } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	0.50\%	R Paper	0.44\%	0.54\%	0.03\%	1.01\%	0.36\%	0.61\%	0.48\%	1.12\%	No discernible pattern
Paper	OCC	Plain OCC/Kraft Paper	0.20\%	R Paper	0.06\%	0.31\%	0.09\%	0.13\%	0.18\%	0.32\%	0.32\%	0.16\%	No discerrible pattern
Paper	Mixed Paper	High Grade Paper	0.05\%	R Paper	0.07\%	0.06\%	0.02\%	0.03\%	0.03\%	0.08\%	0.07\%	0.04\%	No discernible pattern
Paper	Mixed Paper	Mixed Low Grade Paper	1.80\%	R Paper	1.34\%	1.57\%	0.88\%	1.57\%	1.56\%	2.29\%	2.67\%	1.66\%	Negative correlation with high density
Paper	Mixed Paper	Phone Books/Paperbacks	0.04\%	R Paper	0.03\%	0.00\%	0.05\%	0.14\%	0.02\%	0.06\%	0.01\%	0.08\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.05\%	R Paper	0.06\%	0.04\%	0.02\%	0.08\%	0.03\%	0.03\%	0.06\%	0.03\%	Positive correlation with income
Paper	Bev Cartons	Polycoated Paper Containers	1.95\%	R Bev Catons	1.67\%	1.93\%	1.15\%	2.66\%	2.40\%	2.23\%	1.98\%	1.45\%	Positive correation with income
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.28\%	NR_Paper	0.23\%	0.15\%	0.20\%	0.22\%	0.30\%	0.26\%	0.41\%	0.19\%	No discernible pattern
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.06\%	NR_Paper	0.05\%	0.05\%	0.01\%	0.06\%	0.07\%	0.05\%	0.09\%	0.03\%	No discernible pattern
Paper	Other Paper	Other Nonrecyclable Paper	0.32\%	NR_Paper	0.13\%	0.35\%	0.35\%	0.20\%	0.46\%	0.37\%	0.30\%	0.25\%	No discernible pattern
Paper Total			5.23\%		4.07\%	5.00\%	2.79\%	6.09\%	5.40\%	6.31\%	6.40\%	5.04\%	Negative correlation with high density
Plastic	PET Botlles	PET Botlles	6.35\%	R Plastics	5.84\%	4.91\%	4.75\%	4.93\%	6.52\%	6.95\%	7.49\%	7.07\%	Negative correlation with density
Plastic	HDPE Botlles	HDPE Botlles: Natural	3.14\%	R Plastics	1.52\%	4.03\%	3.68\%	1.77\%	4.46\%	3.01\%	2.84\%	3.01\%	Negative correlation with high income
Plastic	HDPE Bottles	HDPE Bottles: Colored	3.43\%	R Plastics	2.54\%	3.42\%	3.27\%	2.46\%	3.34\%	3.67\%	4.15\%	3.66\%	Negative correlation with density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.01\%	0.04\%	0.02\%	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	Positive correlation with high density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.17\%	PR_Plastics	0.08\%	0.43\%	0.22\%	0.49\%	0.08\%	0.08\%	0.16\%	0.22\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#3 PVC	0.02\%	PR_Plastics	0.00\%	0.15\%	0.02\%	0.00\%	0.01\%	0.04\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.08\%	PR_Plastics	0.02\%	0.05\%	0.05\%	0.06\%	0.06\%	0.15\%	0.11\%	0.11\%	Negative correlation with density and income
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#7 Other	0.12\%	PR_Plastics	0.08\%	0.11\%	0.14\%	0.30\%	0.09\%	0.15\%	0.12\%	0.13\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.02\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.05\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.39\%	PR_Plastics	0.26\%	0.46\%	0.30\%	0.42\%	0.32\%	0.38\%	0.48\%	0.64\%	Negative correlation with density
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.07\%	PR_Plastics	0.06\%	0.04\%	0.01\%	0.08\%	0.01\%	0.03\%	0.07\%	0.35\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.10\%	PR_Plastics	0.06\%	0.18\%	0.05\%	0.03\%	0.10\%	0.14\%	0.11\%	0.12\%	No discerrible pattern
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.38\%	PR_Plastics	0.31\%	0.34\%	0.16\%	0.33\%	0.54\%	0.20\%	0.50\%	0.32\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.10\%	PR_Plastics	0.06\%	0.11\%	0.08\%	0.06\%	0.17\%	0.08\%	0.09\%	0.06\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.42\%	PR_Plastics	1.47\%	1.41\%	0.95\%	1.25\%	1.77\%	1.16\%	1.44\%	1.59\%	No discerrible pattern
Plastic	Film	Plastic Bags	0.88\%	PR_Plastics	0.58\%	1.16\%	0.68\%	1.00\%	0.91\%	0.73\%	1.05\%	0.98\%	No discerrible pattern
Plastic	Film	Other Film	3.05\%	PR_Plastics	4.00\%	3.47\%	3.29\%	2.81\%	3.34\%	3.82\%	2.06\%	2.10\%	Negative correlation with low density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.21\%	NR_Plastics	0.15\%	0.19\%	0.13\%	0.17\%	0.22\%	0.18\%	0.22\%	0.42\%	Negative correlation with density
Plastic	Other Plastic Products	Other Plastics Materials	3.93\%	NR_Plastics	2.74\%	4.01\%	5.34\%	3.01\%	4.36\%	3.36\%	4.06\%	3.76\%	No discemible pattern
Plastic Total			23.87\%		19.78\%	24.54\%	23.13\%	19.18\%	26.29\%	24.17\%	25.03\%	24.61\%	Negative with high income except in LD
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	9.01\%	R Glass	7.07\%	7.49\%	5.48\%	7.00\%	7.55\%	10.88\%	12.79\%	10.28\%	Negative correlation with density
Glass	Container Glass	Green Container Glass	4.59\%	R Glass	12.39\%	4.78\%	1.08\%	9.28\%	2.93\%	2.55\%	3.69\%	3.00\%	Positive correation with density and income
Glass	Container Glass	Brown Container Glass	1.77\%	R Glass	1.80\%	1.33\%	0.86\%	2.70\%	1.48\%	2.17\%	2.14\%	1.89\%	No discermible pattern
Glass	Mixed Cullet	Mixed Cullet	18.74\%	R Glass	31.04\%	18.91\%	16.54\%	26.22\%	22.23\%	14.61\%	10.67\%	16.25\%	Positive with income except in LD
Glass	Container Glass	Other Container Glass	0.20\%	R Glass	0.23\%	0.13\%	0.18\%	0.16\%	0.11\%	0.18\%	0.32\%	0.25\%	Positive correlation with low density
Glass	Other Glass	Other Glass	0.27\%	PR_Glass	0.09\%	0.27\%	0.10\%	0.24\%	0.39\%	0.45\%	0.27\%	0.31\%	Negative correation with high density
Glass Total			34.60\%		52.62\%	32.90\%	24.23\%	45.60\%	34.70\%	30.83\%	29.88\%	31.99\%	Positive with income except in LD
Metal	Aluminum	Aluminum Cans	0.58\%	R Metal	0.27\%	0.38\%	0.38\%	0.46\%	0.52\%	0.63\%	0.86\%	0.87\%	Negative correlation with density and income
Metal	Aluminum	Aluminum Foilcontainers	0.97\%	R Metal	0.51\%	1.00\%	0.64\%	0.77\%	0.97\%	1.12\%	1.28\%	1.22\%	Negative correlation with density
Metal	Aluminum	Other Aluminum	0.69\%	R Metal	0.09\%	0.94\%	1.95\%	0.53\%	0.34\%	0.40\%	0.72\%	1.00\%	No discerrible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.72\%	R M etal	0.18\%	0.86\%	0.85\%	0.33\%	0.31\%	1.06\%	1.31\%	0.49\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	7.48\%	R M Metal	4.38\%	5.86\%	7.83\%	6.03\%	8.79\%	9.19\%	7.70\%	8.05\%	Negative correlation with density and income
Metal	Ferrous	Empty Aerosol Cans	0.68\%	R Metal	0.61\%	0.70\%	0.56\%	0.34\%	0.89\%	0.76\%	0.69\%	0.53\%	No discernible pattern
Metal	Ferrous	Other Ferrous	12.39\%	R M Metal	8.18\%	12.78\%	18.62\%	10.69\%	10.49\%	11.64\%	13.68\%	13.27\%	No discernible pattern
Metal	Other Metal	Mixed Metals	3.88\%	R Metal	3.53\%	3.29\%	5.01\%	2.94\%	5.18\%	2.53\%	2.45\%	6.56\%	No discernible pattern
Metal Total			27.39\%		17.75\%	25.80\%	35.83\%	22.10\%	27.48\%	27.33\%	28.69\%	32.01\%	Negative correlation with income

Table 1-45
Housing Density and Income Details, Spring 2005, Waste Characterization Study, MGP (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.02\%	NR_Other	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	0.02\%	0.05\%	0.01\%	Negative correlation with density
Organics	Yard	Prunings	0.01\%	NR_Other	0.00\%	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	Positive correation with low density
Organics	Food	Food	1.79\%	NR_Other	1.35\%	1.93\%	1.55\%	1.10\%	1.47\%	2.01\%	2.54\%	1.53\%	No discernible pattern
Organics	Wood	Wood Furnitur/Furniture Pieces	0.06\%	NR_Other	0.01\%	0.16\%	0.05\%	0.09\%	0.07\%	0.04\%	0.04\%	0.11\%	No discernible pattern
Organics	Wood	Non-C\&D Untreated Wood	0.05\%	NR_Other	0.00\%	0.01\%	0.00\%	0.12\%	0.13\%	0.06\%	0.01\%	0.02\%	Positive correlation with medium density
Organics	Texiles	Non-Clothing Textiles	0.05\%	NR_Other	0.04\%	0.08\%	0.05\%	0.06\%	0.07\%	0.07\%	0.02\%	0.05\%	No discernible pattern
Organics	Texilies	Clothing Texiles	0.07\%	NR_Other	0.02\%	0.12\%	0.11\%	0.01\%	0.07\%	0.02\%	0.11\%	0.02\%	No discerrible pattern
Organics	Textiles	CarpetUphoistery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.07\%	NR_Other	0.01\%	0.01\%	0.07\%	0.04\%	0.05\%	0.04\%	0.15\%	0.06\%	Negative correlation with density
Organics	Misc. Organic	Animal By-Products	0.03\%	NR_Other	0.03\%	0.00\%	0.02\%	0.02\%	0.00\%	0.00\%	0.09\%	0.01\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.14\%	NR_Other	0.04\%	0.29\%	0.11\%	0.03\%	0.16\%	0.04\%	0.16\%	0.32\%	Positive correlation with medium income
Organics	Texilies	Shoes	0.08\%	NR_Other	0.03\%	0.20\%	0.12\%	0.05\%	0.11\%	0.08\%	0.03\%	0.03\%	Positive correation with density
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discemible pattern
Organics	Misc. Organic	Fines	0.21\%	NR_Other	0.24\%	0.20\%	0.14\%	0.21\%	0.22\%	0.30\%	0.16\%	0.26\%	No discernible pattern
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.20\%	NR_Other	0.46\%	0.00\%	0.17\%	0.00\%	0.00\%	1.07\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.07\%	NR_Other	0.15\%	0.01\%	0.10\%	0.01\%	0.02\%	0.07\%	0.09\%	0.07\%	No discernible pattern
Organics Total			2.83\%		2.38\%	3.10\%	2.49\%	1.76\%	2.39\%	3.81\%	3.49\%	2.50\%	No discernible pattern
Appliance/Electronic	Ferrous	Appliances: Ferrous	3.21\%	R Metal	0.19\%	5.79\%	7.28\%	2.94\%	1.80\%	3.36\%	3.88\%	1.96\%	No discernible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.05\%	R Metal	0.01\%	0.01\%	0.00\%	0.05\%	0.00\%	0.17\%	0.08\%	0.11\%	Negative correlation with density
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.70\%	NR_Other	1.00\%	0.54\%	0.79\%	0.69\%	0.66\%	1.21\%	0.39\%	0.49\%	Negative correlation with low density
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	No discerrnible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioV Visual Equipment: Other	0.26\%	NR_Other	0.26\%	0.35\%	0.24\%	0.08\%	0.20\%	0.19\%	0.44\%	0.04\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.09\%	NR_Other	0.52\%	0.32\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with high density
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.01\%	NR_Other	0.00\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.48\%	NR_Other	0.48\%	0.44\%	0.62\%	0.96\%	0.33\%	0.47\%	0.59\%	0.04\%	No discernible pattern
Appliance/Electronic Total			4.80\%		2.46\%	7.58\%	8.92\%	4.73\%	2.99\%	5.40\%	5.38\%	2.65\%	No discernible pattern
C\&D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.03\%	NR_Other	0.08\%	0.00\%	0.02\%	0.06\%	0.00\%	0.00\%	0.00\%	0.16\%	No discernible pattern
$C \& D$ debris	Wood	Treated/Contaminated Wood	0.09\%	NR_Other	0.02\%	0.08\%	0.30\%	0.03\%	0.08\%	0.03\%	0.10\%	0.05\%	No discernible pattern
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.02\%	NR_Other	0.00\%	0.00\%	0.06\%	0.01\%	0.03\%	0.03\%	0.01\%	0.00\%	No discernible pattern
C \& Debris	Inorganic C\&D	Rock/Concrete//ricks	0.09\%	NR_Other	0.15\%	0.22\%	0.39\%	0.00\%	0.02\%	0.01\%	0.03\%	0.01\%	Positive correlation with high density
C \& Debris	Inorganic C\&D	Other Construction Debris	0.17\%	NR_Other	0.07\%	0.02\%	0.82\%	0.20\%	0.02\%	0.18\%	0.01\%	0.35\%	No discerrible pattern
C\&D Debris Total			0.41\%		0.33\%	0.31\%	1.58\%	0.30\%	0.15\%	0.25\%	0.15\%	0.57\%	No discernible pattern
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.09\%	NR_Other	0.04\%	0.04\%	0.21\%	0.02\%	0.04\%	0.01\%	0.11\%	0.24\%	No discerrible pattern
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.47\%	NR_Other	0.29\%	0.67\%	0.44\%	0.13\%	0.29\%	0.78\%	0.68\%	0.29\%	No discerrible pattern
Miscellaneous Inorganics Total			0.56\%		0.33\%	0.70\%	0.65\%	0.15\%	0.33\%	0.79\%	0.79\%	0.53\%	No discernible pattern
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	No discerrible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	NR_Other	0.16\%	0.01\%	0.01\%	0.00\%	0.00\%	0.23\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.06\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.54\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.02\%	NR_Other	0.01\%	0.03\%	0.01\%	0.03\%	0.02\%	0.02\%	0.02\%	0.00\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.04\%	NR_Other	0.02\%	0.00\%	0.26\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrnible pattern
HHW	HHW	Home Medical Products	0.02\%	NR_Other	0.04\%	0.03\%	0.03\%	0.01\%	0.03\%	0.00\%	0.01\%	0.04\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.12\%	NR_Other	0.06\%	0.01\%	0.03\%	0.03\%	0.21\%	0.31\%	0.12\%	0.00\%	Positive correation with medium density
$\frac{\text { HHW Total }}{\text { Grand Total }}$			$\begin{gathered} \text { 0.32\% } \\ \hline 100.00 \% \end{gathered}$		0.29\%	0.07\%	0.36\%	0.08\%	0.27\%	1.11\%	0.19\%	0.10\%	No discernible pattern
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-45
Housing Density and Income Details, Spring 2005, Waste Characterization Study, MGP (continued)

SUBTOTALS BY RECYCLING DESIGNATIO

	\% of Citywide	High Density/ High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Density Low Income	Low Densityl High Income	Low Density/ Medium Income
Recycling Designation	MGP Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	2.63\%	2.00\%	2.53\%	1.09\%	2.95\%	2.18\%	3.39\%	3.62\%	3.11\%
Designated Beverage Cartons	1.95\%	1.67\%	1.93\%	1.15\%	2.66\%	2.40\%	2.23\%	1.98\%	1.45\%
Designated Plastic	12.92\%	9.89\%	12.36\%	11.70\%	9.17\%	14.32\%	13.62\%	14.48\%	13.74\%
Designated Metal	30.65\%	17.95\%	31.59\%	43.11\%	25.09\%	29.28\%	30.85\%	32.65\%	34.08\%
Designated Glass	34.32\%	52.53\%	32.63\%	24.14\%	45.36\%	34.30\%	30.38\%	29.61\%	31.67\%
Designated MGP Subtotal	79.84\%	82.03\%	78.51\%	80.10\%	82.28\%	80.30\%	77.09\%	78.73\%	80.94\%
Potentially Designated Plastic	6.81\%	7.00\%	7.99\%	5.96\%	6.83\%	7.39\%	7.01\%	6.26\%	6.65\%
Potentially Designated Glass	0.27\%	0.09\%	0.27\%	0.10\%	0.24\%	0.39\%	0.45\%	0.27\%	0.31\%
Potentially Designated Materials Subtotal	7.08\%	7.09\%	8.26\%	6.05\%	7.07\%	7.79\%	7.46\%	6.54\%	6.97\%
Nondesignated Paper	0.65\%	0.41\%	0.55\%	0.56\%	0.48\%	0.83\%	0.69\%	0.80\%	0.48\%
Nondesignated Plastic	4.14\%	2.89\%	4.19\%	5.47\%	3.18\%	4.57\%	3.54\%	4.28\%	4.22\%
Other Nondesignated	5.65\%	5.58\%	5.97\%	6.73\%	4.04\%	4.33\%	7.84\%	6.04\%	4.29\%
Nondesignated Materials Subtotal	10.44\%	8.88\%	10.71\%	12.76\%	7.70\%	9.74\%	12.06\%	11.12\%	8.99\%

Material Group	Citywide	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density High Income	Low Densityl Medium Income
Paper Total ${ }^{[2]}$	252.04	26.32	14.97	15.97	16.48	53.64	32.99	72.08	19.58
Plastic Total ${ }^{(2)}$	1,150.29	127.92	73.41	132.23	51.89	260.94	126.48	281.84	95.58
Glass Total ${ }^{(2)}$	1,667.07	340.22	98.42	138.52	123.37	344.43	161.32	336.56	124.24
Metal Total ${ }^{(3)}$	1,319.81	114.75	77.18	204.80	59.79	272.79	143.00	323.16	124.32
Organics Total	136.38	15.40	9.29	14.22	4.77	23.71	19.96	39.30	9.73
Appliance/Electronic Total	231.15	15.88	22.66	51.01	12.81	29.67	28.24	60.57	10.31
C \& D Debris Total	19.65	2.11	0.94	9.05	0.81	1.53	1.29	1.71	2.21
Miscellaneous Inorganics Total	26.78	2.13	2.11	3.72	0.41	3.30	4.15	8.89	2.07
HHW Total	15.26	1.84	0.21	2.05	0.21	2.65	5.81	2.10	0.39
Grand Total	4,818.43	646.58	299.18	571.57	270.55	992.67	523.24	1,126.22	388.42

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-46
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Medium Density Low Income $\%$	Low Densityl High Income \%	$\begin{aligned} & \hline \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	25.58\%	R Paper	37.82\%	25.48\%	13.27\%	29.20\%	19.46\%	23.39\%	26.75\%	20.59\%	Positive correlation with income, except MD
Paper	OCC	Plain OCC/Kraft Paper	6.77\%	R Paper	6.97\%	5.69\%	14.91\%	6.55\%	7.71\%	8.46\%	3.28\%	4.27\%	Positive correlation with density, except MI
Paper	Mixed Paper	High Grade Paper	2.23\%	R Paper	1.50\%	1.14\%	0.76\%	3.18\%	4.80\%	1.21\%	1.87\%	0.73\%	Positive correlation with income, except MD
Paper	Mixed Paper	Mixed Low Grade Paper	20.36\%	R Paper	22.23\%	23.04\%	11.12\%	25.81\%	20.62\%	13.74\%	23.19\%	15.34\%	Positive correalion with income, except HD
Paper	Mixed Paper	Phone Books/Paperbacks	1.61\%	R Paper	0.60\%	1.24\%	1.28\%	2.06\%	1.85\%	2.09\%	2.02\%	1.89\%	Negative correlation with density, except HI
Paper	Mixed Paper	Paper Bags	0.28\%	R Paper	0.43\%	0.19\%	0.02\%	0.30\%	0.55\%	0.04\%	0.16\%	0.18\%	Positive correlation with HD income
Paper	Bev Cartons	Polycoated Paper Containers	0.92\%	$R \mathrm{Bev}$ Cartons	0.52\%	0.83\%	1.18\%	0.88\%	1.13\%	1.21\%	0.87\%	0.88\%	Negative correlation with income
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCCI/Kraft	1.70\%	NR_Paper	0.08\%	2.73\%	0.55\%	1.84\%	1.87\%	0.33\%	3.68\%	0.28\%	Positive correlation with density, except HI
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.03\%	NR_Paper	0.03\%	0.06\%	0.02\%	0.03\%	0.03\%	0.03\%	0.04\%	0.02\%	Positive correlation with MI density
Paper	Other Paper	Other Nonrecyclable Paper	0.54\%	NR_Paper	0.14\%	0.51\%	0.54\%	0.55\%	1.12\%	0.45\%	0.44\%	0.33\%	Negative correlation with HD income
Paper Total			60.02\%		70.30\%	60.90\%	43.65\%	70.39\%	59.13\%	50.96\%	62.30\%	44.52\%	Positive correlation with income
Plastic	PET Botlles	PET Botlles	2.60\%	R Plastics	1.75\%	2.01\%	2.65\%	1.53\%	2.69\%	3.54\%	2.95\%	4.11\%	Negative correlation with income
Plastic	HDPE Bottles	HDPE Bottles: Natural	1.28\%	R Plastics	0.45\%	1.60\%	2.05\%	0.54\%	1.85\%	1.53\%	1.11\%	1.76\%	Negative correlation with income, except MD
Plastic	HDPE Bottles	HDPE Bottles: Colored	1.40\%	R Plastics	0.76\%	1.35\%	1.82\%	0.74\%	1.38\%	1.87\%	1.63\%	2.11\%	Negative correlation with income and density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.02\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.07\%	PR_Plastics	0.02\%	0.17\%	0.12\%	0.15\%	0.03\%	0.04\%	0.07\%	0.13\%	No discerrible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.00\%	0.06\%	0.01\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#5 PP	0.03\%	PR_Plastics	0.01\%	0.02\%	0.03\%	0.02\%	0.02\%	0.07\%	0.04\%	0.06\%	Negative correlation with income, except MD
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botlles: \#7 Other	0.05\%	PR_Plastics	0.03\%	0.04\%	0.08\%	0.09\%	0.04\%	0.08\%	0.06\%	0.07\%	Negative correlation with income, except MD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.02\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.16\%	PR_Plastics	0.08\%	0.18\%	0.17\%	0.13\%	0.13\%	0.19\%	0.19\%	0.37\%	Negative correlation with density, except MI
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.02\%	0.02\%	0.00\%	0.02\%	0.01\%	0.01\%	0.03\%	0.20\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.04\%	PR_Plastics	0.02\%	0.07\%	0.03\%	0.01\%	0.04\%	0.07\%	0.04\%	0.07\%	Negative correlation with income, except HD
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.16\%	PR_Plastics	0.09\%	0.14\%	0.09\%	0.11\%	0.23\%	0.10\%	0.20\%	0.19\%	Negative correlation with density, except MI
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.05\%	PR_Plastics	0.03\%	0.05\%	0.05\%	0.07\%	0.08\%	0.05\%	0.04\%	0.04\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.60\%	PR_Plastics	0.44\%	0.57\%	0.55\%	0.40\%	0.78\%	0.60\%	0.58\%	0.92\%	Negative correlation with density, except HI
Plastic	Film	Plastic Bags	0.49\%	PR_Plastics	0.29\%	0.57\%	0.40\%	0.35\%	0.53\%	0.46\%	0.62\%	0.69\%	Negative correlation with density, except MI
Plastic	Film	Other Film	1.62\%	PR_Plastics	1.48\%	1.83\%	2.27\%	1.31\%	1.86\%	2.31\%	1.14\%	1.40\%	Negative correlation with income
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.09\%	NR_Plastics	0.04\%	0.07\%	0.09\%	0.06\%	0.12\%	0.09\%	0.09\%	0.25\%	Negative correlation with density, except LI
Plastic	Other Plastic Products	Other Plastics Materials	1.72\%	NR_Plastics	0.83\%	1.59\%	3.58\%	0.97\%	1.83\%	2.12\%	1.64\%	2.26\%	Negative correlation with income
Plastic Total			10.42\%		6.34\%	10.37\%	14.00\%	6.50\%	11.63\%	13.17\%	10.46\%	14.67\%	Negative correlation with income
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	3.69\%	R Glass	2.11\%	2.97\%	3.06\%	2.18\%	3.11\%	5.56\%	5.03\%	5.94\%	Negative correlation with income and density
Glass	Container Glass	Green Container Glass	1.87\%	R Glass	3.70\%	1.89\%	0.60\%	2.81\%	1.21\%	1.30\%	1.43\%	1.73\%	Positive correlation with HD income
Glass	Container Glass	Brown Container Glass	0.72\%	R Glass	0.54\%	0.53\%	0.48\%	0.82\%	0.63\%	1.10\%	0.83\%	1.09\%	Negative correlation with density
Glass	Mixed Cullet	Mixed Cullet	7.64\%	R Glass	9.28\%	7.50\%	9.22\%	7.93\%	9.19\%	7.52\%	4.15\%	9.36\%	Positive correlation with density, except MI
Glass	Container Glass	Other Container Glass	0.08\%	R Glass	0.07\%	0.05\%	0.10\%	0.05\%	0.04\%	0.09\%	0.12\%	0.14\%	No discermible pattern
Glass	Other Glass	Other Glass	0.12\%	PR_Glass	0.03\%	0.14\%	0.05\%	0.07\%	0.16\%	0.23\%	0.14\%	0.20\%	Negative correlation with density
Glass Total			14.13\%		15.73\%	13.07\%	13.50\%	13.86\%	14.34\%	15.80\%	11.72\%	18.46\%	Negative correlation with density, except HI
Metal	Aluminum	Aluminum Cans	0.24\%	R Metal	0.08\%	0.15\%	0.21\%	0.15\%	0.21\%	0.32\%	0.34\%	0.50\%	Negative correlation with income and density
Metal	Aluminum	Aluminum Foil/Containers	0.40\%	R M etal	0.15\%	0.40\%	0.36\%	0.24\%	0.40\%	0.57\%	0.52\%	0.70\%	Negative correlation with density, except MI
Metal	Aluminum	Other Aluminum	0.28\%	R Metal	0.03\%	0.37\%	1.09\%	0.16\%	0.14\%	0.20\%	0.28\%	0.58\%	Negative correlation with income, except MD
Metal	Non-Ferrous	Other Non-Ferrous	0.29\%	R M Meal	0.06\%	0.34\%	0.47\%	0.10\%	0.13\%	0.54\%	0.51\%	0.29\%	Negative correlation with income, except LD
Metal	Ferrous	Tin Food Cans	3.06\%	R M Metal	1.31\%	2.34\%	4.37\%	1.86\%	3.64\%	4.68\%	3.02\%	4.68\%	Negative correlation with income and density
Metal	Ferrous	Empty Aerosol Cans	0.28\%	R M Metal	0.18\%	0.30\%	0.31\%	0.10\%	0.37\%	0.39\%	0.27\%	0.31\%	Negative correlation with income
Metal	Ferrous	Other Ferrous	5.06\%	R M Metal	2.45\%	5.15\%	10.36\%	3.23\%	4.34\%	5.92\%	5.37\%	7.64\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	1.59\%	R Metal	1.05\%	1.31\%	2.79\%	0.89\%	2.18\%	1.29\%	0.96\%	3.78\%	Negative correlation with income, except MD
Metal Total			11.20\%		5.31\%	10.35\%	19.96\%	6.74\%	11.40\%	13.91\%	11.27\%	18.49\%	Negative correlation with income

Table 1-46
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywid Recycling Stream	Recycling Subindicator	High Densityl High Income \%	High Densityl Medium Income Medium Income \%	High Densityl Low Income \%	Medium Density High Income $\%$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Density } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.01\%	No discernible pattern
Organics	Yard	Prunings	0.00\%	NR_Other	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.90\%	NR_Other	0.40\%	1.16\%	0.90\%	0.47\%	1.19\%	1.11\%	1.03\%	0.93\%	Negative correlation with density, except MI
Organics	Wood	Wood Furnitur/Furniture Pieces	0.02\%	NR_Other	0.00\%	0.06\%	0.03\%	0.03\%	0.03\%	0.02\%	0.02\%	0.06\%	No discernible pattern
Organics	Wood	Non-C\&D Untreated Wood	0.02\%	NR_Other	0.00\%	0.00\%	0.00\%	0.04\%	0.05\%	0.04\%	0.02\%	0.01\%	No discernible pattern
Organics	Textiles	Non-Clothing Textiles	0.11\%	NR_Other	0.34\%	0.07\%	0.06\%	0.04\%	0.11\%	0.05\%	0.04\%	0.08\%	Positive correlation with HD income
Organics	Textiles	Clothing Textiles	0.05\%	NR_Other	0.02\%	0.05\%	0.06\%	0.01\%	0.04\%	0.05\%	0.12\%	0.01\%	Positive correlation with density, except HI
Organics	Textiles	CarpetUpholstery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.05\%	NR_Other	0.00\%	0.05\%	0.05\%	0.02\%	0.11\%	0.02\%	0.06\%	0.04\%	Negative correlation with HI density
Organics	Misc. Organic	Animal By-Products	0.01\%	NR_Other	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.04\%	0.01\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.06\%	NR_Other	0.01\%	0.11\%	0.06\%	0.01\%	0.07\%	0.02\%	0.06\%	0.19\%	No discernible pattern
Organics	Texilies	Shoes	0.03\%	NR_Other	0.01\%	0.08\%	0.07\%	0.01\%	0.05\%	0.04\%	0.03\%	0.02\%	Positive correlation with density, except HI
Organics	Texties	Other Leather Products	0.00\%	NR_Other	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Fines	0.23\%	NR_Other	0.19\%	0.24\%	0.24\%	0.28\%	0.22\%	0.30\%	0.21\%	0.24\%	No discerrible pattern
Organics	Texiles	Upholstered or Other Organic-Type Furniture	0.08\%	NR_Other	0.14\%	0.00\%	0.10\%	0.00\%	0.00\%	0.54\%	0.00\%	0.00\%	No discemible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.03\%	NR_Other	0.04\%	0.01\%	0.05\%	0.00\%	0.01\%	0.03\%	0.03\%	0.04\%	Negative correlation with income, except HD
Organics Total			1.63\%		1.18\%	1.87\%	1.63\%	0.92\%	1.88\%	2.26\%	1.68\%	1.63\%	Negative correlation with MD income
Appliance/Electronic	Ferrous	Appliances: Ferrous	1.31\%	R Metal	0.06\%	2.29\%	4.05\%	0.89\%	0.74\%	1.71\%	1.51\%	1.13\%	Negative correlation with HD income
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	R Metal	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.08\%	0.03\%	0.06\%	Negative correlation with density, except MI
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.29\%	NR_Other	0.30\%	0.22\%	0.44\%	0.21\%	0.27\%	0.67\%	0.15\%	0.28\%	Negative correlation with density, except HI
Appliance/Electronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.11\%	NR_Other	0.08\%	0.14\%	0.13\%	0.02\%	0.08\%	0.10\%	0.18\%	0.03\%	Positive correlation with density, except HI
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	NR_Other	0.15\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HI density
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.22\%	NR_Other	0.27\%	0.17\%	0.34\%	0.29\%	0.14\%	0.24\%	0.23\%	0.02\%	Positive correlation with density, except HI
Appliancel/Electronic Total			1.98\%		0.86\%	3.00\%	4.97\%	1.43\%	1.23\%	2.80\%	2.10\%	1.53\%	Negative correlation with HD income
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.02\%	0.00\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.09\%	No discernible pattern
$C \& D$ debris	Wood	Treated/Contaminated Wood	0.05\%	NR_Other	0.01\%	0.03\%	0.17\%	0.01\%	0.06\%	0.02\%	0.05\%	0.03\%	Negative correlation with HD income
$C \& D$ debris	Inorganic C\&D	Gypsum Scrap	0.01\%	NR_Other	0.00\%	0.00\%	0.03\%	0.00\%	0.04\%	0.01\%	0.01\%	0.00\%	No discernible pattern
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.04\%	NR_Other	0.05\%	0.09\%	0.22\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	Negative correlation with HD income
C \& Debris	Inorganic C\&D	Other Construction Debris	0.14\%	NR_Other	0.02\%	0.01\%	1.31\%	0.06\%	0.01\%	0.09\%	0.00\%	0.20\%	No discernible pattern
C \& D Debris Total			0.25\%		0.10\%	0.12\%	1.73\%	0.09\%	0.12\%	0.13\%	0.07\%	0.33\%	Negative correlation with income
Miscellaneous Inorganics Misc. Inorganic		Miscellaneous Inorganics	0.04\%	NR_Other	0.01\%	0.02\%	0.12\%	0.01\%	0.02\%	0.00\%	0.05\%	0.14\%	Negative correlation with income, except MD
Miscellaneous Inorganics Misc. Inorganic		Ceramics	0.19\%	NR_Other	0.09\%	0.26\%	0.24\%	0.04\%	0.12\%	0.40\%	0.26\%	0.17\%	Negative correlation with MD income
Miscellaneous Inorganics Total			0.23\%		0.10\%	0.28\%	0.36\%	0.05\%	0.14\%	0.40\%	0.31\%	0.31\%	Negative correlation with income, except LD
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Latex PaintsWater-Based Adhesives/Glues	0.02\%	NR_Other	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.12\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Glues	0.03\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.28\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.01\%	NR_Other	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.00\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.01\%	0.00\%	0.14\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discemible pattern
HHW	HHW	Home Medical Products	0.01\%	NR_Other	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.05\%	NR_Other	0.02\%	0.01\%	0.02\%	0.01\%	0.09\%	0.16\%	0.05\%	0.00\%	Negative correlation with MD income
$\frac{\text { HHW Total }}{\text { Grand Total }}$			$\frac{0.13 \%}{100.00 \%}$		0.09\%	0.03\%	0.20\%	0.03\%	0.11\%	0.57\%	0.08\%	0.06\%	Negative correlation with MD income
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-46
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-47
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { yl Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	7.57\%	R Paper	15.08\%	8.50\%	5.23\%	11.01\%	6.33\%	6.40\%	6.96\%	4.81\%	Possible correlation with density and income
Paper	OCC	Plain OCC/Kraft Paper	2.06\%	R Paper	3.44\%	1.68\%	2.34\%	2.55\%	2.05\%	2.26\%	1.28\%	1.27\%	Negative correlation with low density
Paper	Mixed Paper	High Grade Paper	0.89\%	R Paper	1.63\%	0.53\%	0.58\%	1.96\%	1.31\%	0.55\%	0.61\%	0.51\%	Positive with income, negative with LD
Paper	Mixed Paper	Mixed Low Grade Paper	9.68\%	R Paper	15.96\%	9.89\%	7.46\%	13.57\%	9.38\%	8.33\%	8.99\%	7.28\%	Positive correlation with income and density
Paper	Mixed Paper	Phone Books/Paperbacks	0.72\%	R Paper	0.98\%	0.70\%	0.44\%	0.70\%	0.78\%	0.81\%	0.70\%	0.64\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.56\%	R Paper	1.18\%	0.54\%	0.55\%	0.70\%	0.49\%	0.49\%	0.35\%	0.40\%	Positive correlation with density
Paper	Bev Cartons	Polycoated Paper Containers	0.51\%	R Bev Cartons	0.57\%	0.84\%	0.54\%	0.65\%	0.48\%	0.62\%	0.34\%	0.33\%	Negative correlation with low density
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.24\%	NR_Paper	5.72\%	5.95\%	4.65\%	5.97\%	5.61\%	4.76\%	5.01\%	5.43\%	No discernible pattern
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.35\%	NR_Paper	0.42\%	0.29\%	0.21\%	0.51\%	0.35\%	0.19\%	0.44\%	0.55\%	Positive with income except in LD
Paper	Other Paper	Other Nonrecyclable Paper	0.52\%	NR_Paper	0.43\%	0.50\%	0.62\%	0.76\%	0.67\%	0.43\%	0.41\%	0.37\%	No discernible pattern
Paper Total			28.10\%		45.41\%	29.43\%	22.62\%	38.37\%	27.45\%	24.84\%	25.10\%	21.59\%	Positive correlation with density and income
Plastic	PET Botlles	PET Botles	1.13\%	R Plastics	1.20\%	1.05\%	1.27\%	0.95\%	1.11\%	1.43\%	0.90\%	1.11\%	No discerrible pattern
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.42\%	R Plastics	0.27\%	0.50\%	0.58\%	0.24\%	0.55\%	0.46\%	0.29\%	0.37\%	Negative correlation with high income
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.47\%	R Plastics	0.40\%	0.45\%	0.54\%	0.37\%	0.44\%	0.59\%	0.45\%	0.44\%	Negative correlation with income
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.01\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	PR_Plastics	0.05\%	0.15\%	0.09\%	0.05\%	0.07\%	0.08\%	0.02\%	0.02\%	Positive with density, negative with HI
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.03\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	No discermible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	No discermible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	0.02\%	No discerrible pattern
Plastic	\#3-77 Bottles	\#3 Through \#7 Botles: \#7 Other	0.07\%	PR_Plastics	0.06\%	0.07\%	0.10\%	0.07\%	0.07\%	0.08\%	0.06\%	0.05\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	PR_Plastics	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	PR_Plastics	0.20\%	0.20\%	0.15\%	0.21\%	0.14\%	0.11\%	0.11\%	0.19\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	PR_Plastics	0.08\%	0.04\%	0.06\%	0.10\%	0.04\%	0.04\%	0.03\%	0.05\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.01\%	0.03\%	0.05\%	0.02\%	0.01\%	0.01\%	0.01\%	0.06\%	No discerrible pattern
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.05\%	0.00\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.24\%	PR_Plastics	0.39\%	0.26\%	0.34\%	0.27\%	0.21\%	0.17\%	0.18\%	0.17\%	Positive correlation with density
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.50\%	PR_Plastics	0.39\%	0.54\%	0.62\%	0.34\%	0.54\%	0.55\%	0.45\%	0.40\%	Negative with income except in LD
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.74\%	PR_Plastics	1.12\%	0.78\%	0.65\%	1.07\%	0.77\%	0.53\%	0.64\%	0.66\%	Positive correlation with density and income
Plastic	Film	Plastic Bags	3.15\%	PR_Plastics	2.96\%	3.83\%	4.13\%	2.61\%	3.64\%	3.54\%	1.98\%	2.43\%	Positive with density, negative with income
Plastic	Film	Other Film	4.67\%	PR_Plastics	4.60\%	5.66\%	5.94\%	3.84\%	4.98\%	5.40\%	3.15\%	3.78\%	Positive with density, negative with income
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.48\%	NR_Plastics	0.36\%	0.50\%	0.39\%	0.43\%	0.48\%	0.62\%	0.46\%	0.64\%	Negative correlation with income
Plastic	Other Plastic Products	Other Plastics Materials	1.72\%	NR_Plastics	1.24\%	2.30\%	1.78\%	1.47\%	1.88\%	1.79\%	1.51\%	2.06\%	Positive correlation with medium income
Plastic Total			13.94\%		13.47\%	16.42\%	16.73\%	12.10\%	14.96\%	15.45\%	10.34\%	12.47\%	Positive with density, negative with income
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	1.47\%	R Glass	0.93\%	1.15\%	1.44\%	1.38\%	1.41\%	2.32\%	1.40\%	1.50\%	Negative correlation with income
Glass	Container Glass	Green Container Glass	0.53\%	R Glass	1.35\%	0.45\%	0.32\%	1.19\%	0.39\%	0.35\%	0.39\%	0.38\%	Positive correlation with income
Glass	Container Glass	Brown Container Glass	0.30\%	R Glass	0.28\%	0.18\%	0.45\%	0.43\%	0.25\%	0.36\%	0.22\%	0.33\%	No discernible pattern
Glass	Mixed Cullet	Mixed Cullet	1.77\%	R Glass	3.04\%	1.59\%	1.35\%	2.70\%	2.37\%	1.60\%	0.96\%	1.52\%	No discerrible pattern
Glass	Container Glass	Other Container Glass	0.04\%	R Glass	0.04\%	0.04\%	0.03\%	0.03\%	0.04\%	0.08\%	0.04\%	0.05\%	No discernible pattern
Glass	Other Glass	Other Glass	0.22\%	PR_Glass	0.12\%	0.15\%	0.17\%	0.11\%	0.31\%	0.33\%	0.22\%	0.16\%	No discernible pattern
Glass Total			4.33\%		5.76\%	3.56\%	3.76\%	5.85\%	4.77\%	5.05\%	3.23\%	3.94\%	Positive correlation with medium density
Metal	Aluminum	Aluminum Cans	0.17\%	R Metal	0.16\%	0.20\%	0.22\%	0.14\%	0.16\%	0.22\%	0.12\%	0.16\%	Negative correlation with income
Metal	Aluminum	Aluminum Foilcontainers	0.56\%	R Metal	0.53\%	0.58\%	0.57\%	0.51\%	0.61\%	0.63\%	0.50\%	0.60\%	Negative correlation with high income
Metal	Aluminum	Other Aluminum	0.07\%	R Metal	0.01\%	0.06\%	0.19\%	0.05\%	0.04\%	0.05\%	0.07\%	0.09\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.15\%	R Metal	0.13\%	0.20\%	0.11\%	0.42\%	0.08\%	0.12\%	0.16\%	0.20\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	1.25\%	R Metal	0.71\%	1.22\%	1.79\%	0.86\%	1.31\%	1.73\%	0.90\%	1.10\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.15\%	R Metal	0.13\%	0.17\%	0.13\%	0.10\%	0.18\%	0.16\%	0.13\%	0.15\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	1.85\%	R Metal	1.45\%	1.53\%	2.34\%	1.78\%	1.65\%	1.47\%	2.02\%	2.46\%	Positive correlation with low density
Metal	Other Metal	Mixed Metals	0.65\%	R Metal	0.82\%	0.57\%	0.69\%	0.43\%	0.78\%	0.47\%	0.51\%	0.98\%	No discemible pattern
Metal Total			4.85\%		3.94\%	4.52\%	6.04\%	4.30\%	4.82\%	4.84\%	4.40\%	5.75\%	Negative correlation with income

Table 1-47
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	Medium Density High Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	4.68\%	NR_Other	2.03\%	2.76\%	0.49\%	2.57\%	2.37\%	1.39\%	12.81\%	9.35\%	Positive with income, negative with density
Organics	Yard	Prunings	0.80\%	NR_Other	0.48\%	0.16\%	0.25\%	0.29\%	0.44\%	0.22\%	2.31\%	0.97\%	Positive correlation with low density
Organics	Wood	Stumps/Limbs	0.22\%	NR_Other	0.04\%	0.13\%	0.03\%	0.52\%	0.19\%	0.02\%	0.39\%	0.85\%	Negative correlation with density
Organics	Food	Food	17.43\%	NR_Other	11.42\%	20.71\%	22.37\%	13.73\%	20.09\%	21.09\%	12.56\%	16.18\%	Negative correlation with income
Organics	Wood	Wood Furniture/Furniture Pieces	0.81\%	NR_Other	0.54\%	1.05\%	0.91\%	0.37\%	0.32\%	1.05\%	1.07\%	1.01\%	No discernible pattern
Organics	Wood	Non-C\&D Untreated Wood	0.21\%	NR_Other	0.04\%	0.20\%	0.11\%	0.27\%	0.55\%	0.12\%	0.17\%	0.15\%	No discernible pattern
Organics	Textiles	Non-Clothing Textiles	1.09\%	NR_Other	0.86\%	1.41\%	1.24\%	0.99\%	1.32\%	1.34\%	0.72\%	0.97\%	Negative correlation with high income
Organics	Textiles	Clothing Texilies	2.67\%	NR_Other	1.41\%	3.01\%	3.56\%	1.50\%	3.21\%	3.73\%	1.74\%	2.59\%	Negative correation with income
Organics	Textiles	CarpetUpholstery	1.17\%	NR_Other	1.10\%	0.30\%	0.94\%	0.89\%	1.16\%	0.95\%	1.98\%	0.79\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.00\%	NR_Other	2.39\%	2.97\%	3.88\%	2.30\%	3.04\%	3.45\%	2.34\%	3.52\%	Negative correlation with income
Organics	Misc. Organic	Animal By-Products	1.03\%	NR_Other	1.02\%	0.86\%	0.59\%	2.76\%	0.85\%	1.45\%	1.00\%	0.91\%	Positive correlation with medium density
Organics	Misc. Organic	Rubber Products	0.34\%	NR_Other	0.18\%	0.26\%	0.82\%	0.14\%	0.28\%	0.15\%	0.36\%	0.19\%	No discernible pattern
Organics	Texilies	Shoes	0.60\%	NR_Other	0.31\%	0.75\%	0.93\%	0.40\%	0.78\%	0.77\%	0.29\%	0.39\%	Negative correlation with income
Organics	Textiles	Other Leather Products	0.14\%	NR_Other	0.05\%	0.05\%	0.09\%	0.04\%	0.19\%	0.14\%	0.17\%	0.33\%	Negative correlation with density and income
Organics	Misc. Organic	Fines	4.47\%	NR_Other	3.72\%	4.50\%	5.66\%	3.78\%	4.25\%	5.55\%	3.58\%	4.49\%	Negative correlation with income
Organics	Texilies	Upholstered or Other Organic-Type Furniture	0.99\%	NR_Other	0.75\%	1.16\%	1.56\%	0.35\%	0.87\%	1.17\%	0.70\%	1.15\%	Negative correlation with income
Organics	Misc. Organic	Miscellaneous Organics	0.73\%	NR_Other	0.57\%	0.38\%	0.41\%	1.42\%	0.37\%	0.60\%	1.18\%	1.46\%	Negative correlation with density
Organics Total			40.39\%		26.91\%	40.64\%	43.84\%	32.33\%	40.27\%	43.18\%	43.36\%	45.31\%	Negative correlation with income and density
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.55\%	R Metal	0.15\%	0.46\%	0.55\%	0.40\%	0.39\%	0.31\%	1.05\%	0.71\%	Positive correlation with low density
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R M etal	0.00\%	0.02\%	0.02\%	0.05\%	0.17\%	0.02\%	0.02\%	0.01\%	Positive correlation with medium density
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.30\%	NR_Other	0.14\%	0.30\%	0.23\%	0.32\%	0.17\%	0.35\%	0.47\%	0.35\%	Negative correlation with density
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Audio) ${ }_{\text {isual Equipment: Other }}$	0.22\%	NR_Other	0.09\%	0.17\%	0.09\%	0.03\%	0.21\%	0.31\%	0.44\%	0.11\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	NR_Other	0.04\%	0.02\%	0.00\%	0.06\%	0.00\%	0.00\%	0.10\%	0.08\%	Positive correlation with low density
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.10\%	NR_Other	0.09\%	0.24\%	0.18\%	0.46\%	0.06\%	0.03\%	0.06\%	0.01\%	Negative correlation with low density
Appliance/Electronic Total			1.25\%		0.52\%	1.23\%	1.06\%	1.31\%	0.99\%	1.02\%	2.14\%	1.27\%	Positive correlation with low density
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.00\%	NR_Other	0.72\%	0.31\%	0.46\%	0.85\%	0.43\%	0.61\%	1.81\%	3.26\%	Positive correlation with low density
C \& D Debris	Wood	Treated/Contaminated Wood	1.70\%	NR_Other	0.99\%	1.01\%	1.36\%	1.03\%	1.48\%	1.36\%	2.96\%	2.17\%	Negative correlation with density
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.96\%	NR_Other	0.43\%	0.74\%	0.87\%	0.33\%	1.81\%	0.53\%	1.17\%	0.75\%	No discerrible pattern
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete//Bricks	1.04\%	NR_Other	0.20\%	0.22\%	0.89\%	0.59\%	0.57\%	1.50\%	1.81\%	1.74\%	Negative with density, positive with LI
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.52\%	NR_Other	0.83\%	1.16\%	1.71\%	2.07\%	1.61\%	0.62\%	2.48\%	0.83\%	No discermible pattern
C \& D Debris Total			6.22\%		3.17\%	3.44\%	5.27\%	4.87\%	5.91\%	4.62\%	10.22\%	8.75\%	Negative correlation with density
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.31\%	NR_Other	0.29\%	0.24\%	0.08\%	0.39\%	0.25\%	0.19\%	0.60\%	0.45\%	Positive with income, negative with density
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.39\%	NR_Other	0.39\%	0.41\%	0.25\%	0.40\%	0.30\%	0.51\%	0.48\%	0.34\%	No discernible pattern
Miscellaneous Inorganics Total			0.70\%		0.68\%	0.65\%	0.33\%	0.79\%	0.55\%	0.70\%	1.08\%	0.79\%	Negative correlation with density
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	Positive correlation with low density
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/M Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	NR_Other	0.08\%	0.00\%	0.00\%	0.01\%	0.10\%	0.01\%	0.00\%	0.01\%	No discermible pattern
HHW	HHW	Oii-Based Paint/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.10\%	0.00\%	0.02\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
HHW	HHW	Dry-Cell Batteries	0.05\%	NR_Other	0.02\%	0.04\%	0.07\%	0.04\%	0.05\%	0.09\%	0.04\%	0.05\%	Negative correlation with income
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	Positive correlation with high density
HHW	HHW	Home Medical Products	0.06\%	NR_Other	0.01\%	0.01\%	0.23\%	0.02\%	0.01\%	0.06\%	0.01\%	0.03\%	Negative correation with income
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	NR_Other	0.04\%	0.03\%	0.03\%	0.01\%	0.09\%	0.03\%	0.05\%	0.01\%	No discernible pattern
HHW Total			0.21\%		0.15\%	0.10\%	0.34\%	0.09\%	0.27\%	0.30\%	0.14\%	0.12\%	Positive correlation with low income

Table 1-47
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

	\% of Citywide	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Density/ Medium Income	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	Low Density/ Medium Income \%
Recycling Designation	Waste Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	21.48\%	38.26\%	21.85\%	16.60\%	30.48\%	20.35\%	18.83\%	18.89\%	14.91\%
Designated Beverage Cartons	0.51\%	0.57\%	0.84\%	0.54\%	0.65\%	0.48\%	0.62\%	0.34\%	0.33\%
Designated Plastic	2.03\%	1.87\%	1.99\%	2.38\%	1.56\%	2.10\%	2.48\%	1.65\%	1.92\%
Designated Metal	5.44\%	4.09\%	5.00\%	6.60\%	4.74\%	5.38\%	5.17\%	5.47\%	6.47\%
Designated Glass	4.11\%	5.64\%	3.41\%	3.59\%	5.74\%	4.47\%	4.72\%	3.01\%	3.78\%
Designated MGP Subtotal	12.10\%	12.17\%	11.25\%	13.11\%	12.69\%	12.42\%	12.99\%	10.47\%	12.50\%
Potentially Designated Plastic	9.70\%	10.00\%	11.64\%	12.18\%	8.63\%	10.50\%	10.56\%	6.68\%	7.86\%
Potentially Designated Glass	0.22\%	0.12\%	0.15\%	0.17\%	0.11\%	0.31\%	0.33\%	0.22\%	0.16\%
Potentially Designated Materials Subtotal	9.92\%	10.12\%	11.79\%	12.35\%	8.74\%	10.80\%	10.89\%	6.89\%	8.02\%
Nondesignated Paper	6.11\%	6.58\%	6.74\%	5.48\%	7.24\%	6.63\%	5.39\%	5.86\%	6.35\%
Nondesignated Plastic	2.21\%	1.60\%	2.79\%	2.17\%	1.91\%	2.37\%	2.41\%	2.02\%	2.70\%
Other Nondesignated	48.19\%	31.27\%	45.59\%	50.29\%	38.95\%	47.44\%	49.49\%	55.86\%	55.53\%
Nondesignated Materials Subtotal	56.50\%	39.44\%	55.12\%	57.94\%	48.10\%	56.43\%	57.28\%	63.75\%	64.57\%
Designated for Recycling Total	33.57\%	50.44\%	33.09\%	29.72\%	43.17\%	32.76\%	31.83\%	29.36\%	27.41\%
Potentially or Not Designated for Recycling Total	66.43\%	49.56\%	66.91\%	70.28\%	56.83\%	67.24\%	68.17\%	70.64\%	72.59\%

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	Medium Density/ Medium Income	Medium Density Low Income	Low Densityl High Income	Low Density/ Medium Income
Paper Total ${ }^{(2)}$	18,988.40	3,598.74	1,397.34	2,546.86	1,170.18	3,253.05	2,305.47	3,690.44	1,026.32
Plastic Total ${ }^{(2)}$	9,420.20	1,067.30	779.82	1,883.48	368.98	1,773.32	1,433.58	1,520.83	592.90
Glass Total ${ }^{(2)}$	2,924.17	456.69	168.93	423.47	178.37	565.55	468.81	475.04	187.31
Metal Total ${ }^{(3)}$	3,277.82	312.04	214.71	679.63	131.00	570.92	449.06	647.09	273.37
Organics Total	27,293.46	2,132.34	1,929.68	4,936.00	985.94	4,772.64	4,007.10	6,375.74	2,154.03
Appliance/Electronic Total	845.34	41.05	58.26	118.96	40.00	117.72	94.60	314.15	60.60
C \& D Debris Total	4,205.01	250.85	163.27	593.83	148.41	700.67	428.73	1,503.16	416.10
Miscellaneous Inorganics Total	471.73	53.91	30.98	37.04	24.19	64.92	64.60	158.56	37.53
HHW Total	143.18	11.80	4.80	38.67	2.84	31.92	27.76	19.91	5.48
Grand Total	67,569.31	7,924.72	4,747.80	11,257.92	3,049.91	11,850.70	9,279.71	14,704.91	4,753.63

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-48
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Refuse

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Refuse Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	3.35\%	R Paper	4.83\%	4.85\%	4.04\%	3.09\%	2.74\%	3.08\%	2.40\%	2.69\%	Positive correlation with density
Paper	OCC	Plain OCC/Kraft Paper	1.19\%	R Paper	1.53\%	1.57\%	1.37\%	1.01\%	0.96\%	1.38\%	0.90\%	1.01\%	Positive correlation with density, except LI
Paper	Mixed Paper	High Grade Paper	0.67\%	R Paper	1.40\%	1.20\%	0.57\%	0.81\%	0.32\%	0.83\%	0.50\%	0.32\%	Positive correlation with income, except MD
Paper	Mixed Paper	Mixed Low Grade Paper	8.99\%	R Paper	17.26\%	9.14\%	8.63\%	11.27\%	7.17\%	7.91\%	7.97\%	6.63\%	Positive correlation with density
Paper	Mixed Paper	Phone Books/Paperbacks	0.45\%	R Paper	0.43\%	0.49\%	0.70\%	0.31\%	0.31\%	0.52\%	0.31\%	0.43\%	Negative correlation with income, except MD
Paper	Mixed Paper	Paper Bags	0.84\%	R Paper	1.66\%	0.78\%	0.80\%	1.15\%	0.82\%	0.76\%	0.64\%	0.55\%	Positive correlation with income, except HD
Paper	Bev Cartons	Polycoated Paper Containers	0.39\%	R Bev Cartons	0.60\%	0.47\%	0.37\%	0.45\%	0.43\%	0.46\%	0.24\%	0.23\%	Positive correlation with density, except LI
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.72\%	NR_Paper	6.78\%	5.69\%	4.40\%	6.75\%	6.61\%	4.62\%	6.35\%	5.51\%	Positive correlation with income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.60\%	NR_Paper	0.52\%	0.46\%	0.38\%	0.80\%	0.41\%	0.37\%	1.08\%	0.90\%	Positive correation with income
Paper	Other Paper	Other Nonrecyclable Paper	1.01\%	NR_Paper	1.28\%	1.00\%	1.00\%	1.17\%	1.06\%	0.85\%	0.92\%	0.96\%	Positive correlation with density, except MI
Paper Total			23.21\%		36.30\%	25.65\%	22.27\%	26.81\%	20.83\%	20.80\%	21.32\%	19.21\%	Positive correlation with income and density
Plastic	PET Bottles	PET Bottles	1.02\%	R Plastics	1.12\%	1.17\%	1.27\%	0.79\%	0.88\%	1.46\%	0.65\%	0.69\%	Negative correlation with income
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.29\%	R Plastics	0.38\%	0.33\%	0.46\%	0.12\%	0.27\%	0.34\%	0.12\%	0.12\%	Positive correlation with density, except HI
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.29\%	R Plastics	0.38\%	0.32\%	0.48\%	0.25\%	0.19\%	0.26\%	0.21\%	0.17\%	Positive correation with density
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	PR_Plastics	0.05\%	0.06\%	0.02\%	0.02\%	0.01\%	0.04\%	0.02\%	0.05\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.01\%	0.03\%	0.02\%	0.01\%	0.02\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	PR_Plastics	0.04\%	0.06\%	0.06\%	0.04\%	0.04\%	0.07\%	0.20\%	0.05\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.20\%	PR_Plastics	0.37\%	0.19\%	0.18\%	0.33\%	0.17\%	0.20\%	0.13\%	0.21\%	Positive correlation with HD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	PR_Plastics	0.09\%	0.08\%	0.05\%	0.07\%	0.03\%	0.05\%	0.04\%	0.04\%	Positive correlation with HD income
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.01\%	0.02\%	0.01\%	0.00\%	0.03\%	0.00\%	0.00\%	Negative correlation with HD income
Plastic	Other Plastic Products	Other PVC	0.03\%	NR_Plastics	0.00\%	0.03\%	0.12\%	0.00\%	0.00\%	0.01\%	0.00\%	0.04\%	Negative correlation with income, except MD
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.29\%	PR_Plastics	0.66\%	0.25\%	0.21\%	0.45\%	0.26\%	0.22\%	0.24\%	0.22\%	Positive correation with income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.68\%	PR_Plastics	0.52\%	0.75\%	0.70\%	0.68\%	0.77\%	0.77\%	0.59\%	0.64\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.00\%	PR_Plastics	1.56\%	1.02\%	0.84\%	1.36\%	0.94\%	0.77\%	1.00\%	1.03\%	Positive correlation with income, except LD
Plastic	Film	Plastic Bags	2.98\%	PR_Plastics	3.08\%	3.44\%	3.67\%	2.88\%	3.56\%	2.91\%	1.98\%	2.29\%	Positive correlation with density, except MI
Plastic	Film	Other Film	5.43\%	PR_Plastics	6.12\%	5.88\%	6.00\%	5.26\%	5.53\%	5.30\%	4.60\%	4.97\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.72\%	NR_Plastics	0.69\%	0.78\%	0.58\%	0.65\%	0.53\%	0.85\%	0.88\%	0.87\%	No discerrible pattern
Plastic	Other Plastic Products	Other Plastics Materials	2.14\%	NR_Plastics	2.30\%	3.15\%	2.18\%	2.04\%	1.68\%	1.50\%	2.32\%	2.66\%	Positive correation with MD income
Plastic Total			15.28\%		17.41\%	17.53\%	16.88\%	14.98\%	14.92\%	14.83\%	13.02\%	14.09\%	Positive correlation with density
Glass	Container Glass	Clear Container Glass	1.41\%	R Glass	1.15\%	1.21\%	2.11\%	1.29\%	1.32\%	1.87\%	0.88\%	1.01\%	Negative correlation with income
Glass	Container Glass	Green Container Glass	0.36\%	R Glass	0.67\%	0.32\%	0.46\%	0.40\%	0.34\%	0.38\%	0.19\%	0.18\%	Positive correlation with density, except MI
Glass	Container Glass	Brown Container Glass	0.35\%	R Glass	0.26\%	0.22\%	0.50\%	0.31\%	0.47\%	0.48\%	0.15\%	0.23\%	Negative correlation with income, except HD
Glass	Mixed Cullet	Mixed Cullet	0.68\%	R Glass	1.09\%	0.80\%	1.01\%	0.50\%	0.58\%	0.81\%	0.24\%	0.43\%	Positive correation with density
Glass	Container Glass	Other Container Glass	0.01\%	R Glass	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.04\%	0.00\%	0.01\%	Negative correlation with income, except HD
Glass	Other Glass	Other Glass	0.28\%	PR_Glass	0.25\%	0.41\%	0.26\%	0.24\%	0.27\%	0.32\%	0.20\%	0.42\%	Negative correlation with income, except HD
Glass Total			3.10\%		3.43\%	2.97\%	4.36\%	2.74\%	3.01\%	3.91\%	1.67\%	2.29\%	Positive correlation with density, except MI
Metal	Aluminum	Aluminum Cans	0.26\%	R Metal	0.27\%	0.24\%	0.41\%	0.15\%	0.22\%	0.26\%	0.20\%	0.15\%	Positive correlation with density, except HI
Metal	Aluminum	Aluminum Foil/Containers	0.63\%	R Metal	0.71\%	0.56\%	0.59\%	0.68\%	0.65\%	0.68\%	0.62\%	0.53\%	Positive correlation with H1 density
Metal	Aluminum	Other Aluminum	0.03\%	R M Metal	0.03\%	0.02\%	0.01\%	0.04\%	0.03\%	0.01\%	0.01\%	0.23\%	Positive correlation with income, except LD
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	R Metal	0.11\%	0.17\%	0.12\%	0.23\%	0.07\%	0.09\%	0.16\%	0.14\%	No discernible pattern
Metal	Ferrous	Tin Food Cans	0.74\%	R Metal	0.59\%	0.82\%	1.28\%	0.45\%	0.73\%	0.81\%	0.40\%	0.44\%	Positive correlation with density
Metal	Ferrous	Empty Aerosol Cans	0.16\%	R M Metal	0.16\%	0.08\%	0.22\%	0.15\%	0.16\%	0.14\%	0.18\%	0.12\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	1.34\%	R M Metal	1.15\%	1.03\%	0.43\%	1.56\%	1.14\%	1.12\%	1.67\%	4.01\%	Negative correlation with density
Metal	Other Metal	Mixed Metals	0.45\%	R Metal	0.13\%	0.30\%	0.51\%	0.77\%	0.50\%	0.57\%	0.33\%	0.68\%	Negative correlation with income
Metal Total			3.73\%		3.14\%	3.21\%	3.56\%	4.02\%	3.50\%	3.69\%	3.56\%	6.31\%	Negative correlation with income, except MD

Table 1-48
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Refuse (continued)

Table 1-48
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Refuse (continued)

	\% of Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	yl Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Densityl Medium Income
Recycling Designation	Refuse Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	15.49\%	27.11\%	18.03\%	16.11\%	17.64\%	12.32\%	14.49\%	12.73\%	11.61\%
Designated Beverage Cartons	0.39\%	0.60\%	0.47\%	0.37\%	0.45\%	0.43\%	0.46\%	0.24\%	0.23\%
Designated Plastic	1.59\%	1.89\%	1.82\%	2.21\%	1.16\%	1.35\%	2.06\%	0.98\%	0.99\%
Designated Metal	4.43\%	4.13\%	3.47\%	3.64\%	4.47\%	4.01\%	5.42\%	4.42\%	6.71\%
Designated Glass	2.82\%	3.18\%	2.56\%	4.09\%	2.50\%	2.73\%	3.59\%	1.47\%	1.87\%
Designated MGP Subtotal	9.23\%	9.80\%	8.31\%	10.31\%	8.58\%	8.51\%	11.53\%	7.12\%	9.79\%
Potentially Designated Plastic	10.79\%	12.52\%	11.76\%	11.81\%	11.14\%	11.36\%	10.41\%	8.83\%	9.53\%
Potentially Designated Glass	0.28\%	0.25\%	0.41\%	0.26\%	0.24\%	0.27\%	0.32\%	0.20\%	0.42\%
Potentially Designated Materials Subtotal	11.07\%	12.77\%	12.17\%	12.07\%	11.37\%	11.63\%	10.73\%	9.03\%	9.95\%
Nondesignated Paper	7.32\%	8.59\%	7.15\%	5.78\%	8.72\%	8.08\%	5.85\%	8.35\%	7.37\%
Nondesignated Plastic	2.89\%	3.00\%	3.95\%	2.87\%	2.69\%	2.22\%	2.36\%	3.21\%	3.57\%
Other Nondesignated	53.99\%	38.73\%	50.39\%	52.85\%	50.99\%	57.23\%	55.04\%	59.57\%	57.71\%
Nondesignated Materials Subtotal	64.21\%	50.31\%	61.49\%	61.50\%	62.40\%	67.54\%	63.25\%	71.12\%	68.65\%
Designated for Recycling Total	24.72\%	36.91\%	26.34\%	26.43\%	26.23\%	20.84\%	26.02\%	19.84\%	21.40\%
Potentially or Not Designated for	75.28\%	63.09\%	73.66\%	73.57\%	73.7	79.16	73.	80.16\%	78.60\%

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	Medium Density/ Medium Income	Medium Density Low Income	Low Densityl High Income	Low Densityl Medium Income
Paper Total ${ }^{(2)}$	12,482.46	1,955.41	1,032.02	2,278.56	546.88	1,924.03	1,618.87	2,317.97	808.71
Plastic Total ${ }^{(2)}$	8,216.48	937.70	705.17	1,727.52	305.60	1,377.96	1,154.43	1,415.10	592.99
Glass Total ${ }^{(2)}$	1,666.34	184.97	119.34	446.07	55.87	277.68	304.26	181.75	96.41
Metal Total ${ }^{(3)}$	2,007.51	169.38	129.20	364.14	82.07	323.51	286.86	386.88	265.46
Organics Total	24,254.95	1,820.14	1,691.85	4,683.18	848.58	4,388.27	3,580.35	5,285.26	1,957.31
Applianc/EIlectronic Total	1,237.92	112.64	65.16	157.62	48.77	225.46	335.44	227.81	65.02
C \& D Debris Total	3,388.88	166.94	235.63	498.08	118.21	640.79	460.30	895.00	373.92
Miscellaneous Inorganics Total	363.97	20.57	24.44	38.67	27.64	49.15	26.36	142.23	34.91
HHW Total	165.49	19.20	20.48	39.24	6.01	28.48	17.25	19.86	14.96
Grand Total	53,784.01	5,386.95	4,023.30	10,233.08	2,039.65	9,235.34	7,784.10	10,871.87	4,209.71

(1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Seccion 2.26 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-49
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Paper

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{aligned} & \text { Medium Densityl } \\ & \text { High Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Density/ } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	44.21\%	R Paper	59.45\%	51.32\%	32.81\%	40.31\%	37.74\%	33.49\%	42.48\%	43.01\%	Positive correlation with income, except LD
Paper	OCC	Plain OCC/Kraft Paper	9.26\%	R Paper	5.00\%	4.99\%	26.27\%	7.74\%	10.12\%	18.59\%	6.67\%	10.74\%	Negative correlation with income, except HD
Paper	Mixed Paper	High Grade Paper	2.87\%	R Paper	3.36\%	1.55\%	0.59\%	3.95\%	1.49\%	4.61\%	3.05\%	6.42\%	Positive correation with HD income
Paper	Mixed Paper	Mixed Low Grade Paper	29.49\%	R Paper	24.43\%	31.92\%	20.85\%	38.46\%	22.40\%	32.70\%	37.31\%	26.14\%	No discernible pattern
Paper	Mixed Paper	Phone Books/Paperbacks	8.03\%	R Paper	2.86\%	7.01\%	3.92\%	4.26\%	19.59\%	2.91\%	6.82\%	8.68\%	Negative correlation with HI density
Paper	Mixed Paper	Paper Bags	0.30\%	R Paper	0.33\%	0.20\%	0.05\%	0.62\%	0.24\%	0.08\%	0.33\%	0.43\%	Positive correlation with income, except LD
Paper	Bev Cartons	Polycoated Paper Containers	0.15\%	R Bev Cartons	0.06\%	0.04\%	0.43\%	0.09\%	0.07\%	0.70\%	0.10\%	0.32\%	Negative correlation with density
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	1.82\%	NR_Paper	0.45\%	0.67\%	4.36\%	1.20\%	4.81\%	0.42\%	1.05\%	0.39\%	Negative correlation with HD income
Paper	Compostable Paper	Single Use Paper Plate, Cups	0.01\%	NR_Paper	0.01\%	0.01\%	0.00\%	0.03\%	0.03\%	0.01\%	0.00\%	0.02\%	No discernible pattern
Paper	Other Paper	Other Nonrecyclable Paper	1.59\%	NR_Paper	1.94\%	0.08\%	5.67\%	0.53\%	2.06\%	1.41\%	0.51\%	2.90\%	Positive correlation with density, except MI
Paper Total			97.72\%		97.89\%	97.80\%	94.94\%	97.20\%	98.54\%	94.93\%	98.31\%	99.06\%	Positive correlation with HD income
Plastic	PET Botlles	PET Bottles	0.06\%	R Plastics	0.01\%	0.00\%	0.02\%	0.02\%	0.05\%	0.29\%	0.08\%	0.00\%	Negative correlation with density, except MI
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.01\%	R Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.06\%	0.00\%	0.00\%	No discernible pattern
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.01\%	R Plastics	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.00\%	0.00\%	№ discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.04\%	PR_Plastics	0.00\%	0.02\%	0.03\%	0.00\%	0.03\%	0.08\%	0.07\%	0.03\%	Negative correlation with income, except LD
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.02\%	PR_Plastics	0.00\%	0.00\%	0.06\%	0.01\%	0.02\%	0.07\%	0.00\%	0.01\%	Negative correlation with income, except HD
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.02\%	PR_Plastics	0.03\%	0.00\%	0.01\%	0.05\%	0.00\%	0.00\%	0.01\%	0.01\%	No discernible pattern
Plastic	Film	Plastic Bags	0.24\%	PR_Plastics	0.18\%	0.31\%	0.10\%	0.15\%	0.22\%	0.41\%	0.33\%	0.16\%	Negative correlation with MD income
Plastic	Film	Other Film	0.62\%	PR_Plastics	0.87\%	0.32\%	1.03\%	0.58\%	0.68\%	0.88\%	0.35\%	0.36\%	Positive correlation with density, except MI
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.02\%	NR_Plastics	0.01\%	0.01\%	0.08\%	0.00\%	0.03\%	0.01\%	0.01\%	0.02\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	0.14\%	NR_Plastics	0.16\%	0.32\%	0.52\%	0.03\%	0.10\%	0.28\%	0.05\%	0.02\%	Negative correlation with income, except LD
Plastic Total			1.17\%		1.29\%	0.98\%	1.87\%	0.87\%	1.13\%	2.13\%	0.92\%	0.62\%	Negative correlation with MD income
Glass	Container Glass	Clear Container Glass	0.04\%	R Glass	0.00\%	0.04\%	0.00\%	0.08\%	0.00\%	0.31\%	0.01\%	0.01\%	No discermible pattern
Glass	Container Glass	Green Container Glass	0.02\%	R Glass	0.00\%	0.00\%	0.00\%	0.17\%	0.00\%	0.03\%	0.00\%	0.00\%	No discernible pattern
Glass	Container Glass	Brown Container Glass	0.01\%	R Glass	0.00\%	0.00\%	0.00\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
Glass	Mixed Cullet	Mixed Cullet	0.00\%	R Glass	0.00\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Glass	Container Glass	Other Container Glass	0.00\%	R Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discemible pattern
Glass	Other Glass	Other Glass	0.00\%	PR_Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	No discernible pattern
Glass Total			0.07\%		0.00\%	0.04\%	0.07\%	0.34\%	0.00\%	0.35\%	0.04\%	0.01\%	Negative correlation with HD income
Metal	Aluminum	Aluminum Cans	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	No discernible pattern
Metal	Aluminum	Aluminum Foil/Containers	0.01\%	R M Metal	0.00\%	0.00\%	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	0.01\%	Negative correlation with HI density
Metal	Aluminum	Other Aluminum	0.01\%	R M Metal	0.00\%	0.00\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal	Non-Ferrous	Other Non-Ferrous	0.00\%	R Metal	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Metal	Ferrous	Tin Food Cans	0.01\%	R M Meal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.02\%	0.03\%	No discermible pattern
Metal	Ferrous	Empty Aerosol Cans	0.00\%	R M Meal	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	0.07\%	R Metal	0.24\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.07\%	0.01\%	No discernible pattern
Metal	Other Metal	Mixed Metals	0.00\%	R Metal	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Metal Total			0.11\%		0.25\%	0.05\%	0.16\%	0.03\%	0.02\%	0.09\%	0.12\%	0.05\%	No discernible pattern

Table 1-49
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Paper (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Paper Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.04\%	NR_Other	0.00\%	0.00\%	0.00\%	0.47\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.02\%	NR_Other	0.00\%	0.00\%	0.18\%	0.02\%	0.00\%	0.02\%	0.00\%	0.04\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.25\%	NR_Other	0.13\%	0.14\%	0.08\%	0.58\%	0.09\%	1.18\%	0.22\%	0.00\%	Positive correlation with MI density
Organics	Wood	Wood Furniture/Furniture Pieces	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.05\%	0.00\%	0.00\%	No discernible pattern
Organics	Wood	Non-C\&D Untreated Wood	0.04\%	NR_Other	0.00\%	0.00\%	0.12\%	0.26\%	0.00\%	0.05\%	0.00\%	0.00\%	No discernible pattern
Organics	Texiles	Non-Clothing Textiles	0.04\%	NR_Other	0.04\%	0.05\%	0.00\%	0.02\%	0.02\%	0.13\%	0.05\%	0.02\%	No discernible pattern
Organics	Texilies	Clothing Texiles	0.03\%	NR_Other	0.00\%	0.01\%	0.11\%	0.02\%	0.00\%	0.25\%	0.00\%	0.00\%	Negative correlation with HD income
Organics	Textiles	CarpetUpholstery	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.03\%	NR_Other	0.04\%	0.27\%	0.02\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Organics	Misc. Organic	Animal By-Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.00\%	NR_Other	0.00\%	0.02\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Texilies	Shoes	0.07\%	NR_Other	0.24\%	0.00\%	0.01\%	0.00\%	0.00\%	0.27\%	0.00\%	0.00\%	No discerrible pattern
Organics	Textiles	Other Leather Products	0.00\%	NR_Other	0.00\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
Organics	Misc. Organic	Fines	0.23\%	NR_Other	0.12\%	0.08\%	1.38\%	0.09\%	0.07\%	0.52\%	0.19\%	0.19\%	No discernible pattern
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.06\%	NR_Other	0.00\%	0.00\%	0.86\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics Total			0.81\%		0.57\%	0.59\%	2.78\%	1.55\%	0.18\%	2.47\%	0.47\%	0.26\%	Negative correlation with HD income
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	R Metal	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioV Visual Equipment: Other	0.03\%	NR_Other	0.00\%	0.40\%	0.05\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	Negative correlation with HD income
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic Total			0.04\%		0.00\%	0.40\%	0.05\%	0.00\%	0.04\%	0.03\%	0.00\%	0.00\%	Negative correlation with HD income
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
$C \& D$ debris	Wood	Treated/Contaminated Wood	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
$C \& D$ debris	Inorganic C\&D	Gypsum Scrap	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
C \& Debris	Inorganic C\&D	Rock/Concrete//ricks	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
C \& Debris	Inorganic C\&D	Other Construction Debris	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
C \& D Debris Total			0.00\%		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.04\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.14\%	0.00\%	No discerrible pattern
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.02\%	NR_Other	0.00\%	0.09\%	0.00\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	Positive correlation with MI density
Miscellaneous Inorganics Total			0.06\%		0.00\%	0.09\%	0.00\%	0.00\%	0.07\%	0.01\%	0.14\%	0.00\%	Positive correlation with MI density
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.00\%	NR_Other	0.00\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.01\%	NR_Other	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Home Medical Products	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
$\frac{\text { HHW Total }}{\text { Grand Total }}$			$\begin{gathered} 0.02 \% \\ \hline 100.00 \% \end{gathered}$		0.01\%	0.04\%	0.15\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	Negative correlation with HD income
					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-49
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Paper (continued)

	\% of Citywide	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Densityl	Low Densityl High Income	Low Densityl Medium Income
Recycling Designation	Paper Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	94.14\%	95.43\%	97.00\%	84.48\%	95.36\%	91.58\%	92.38\%	96.65\%	95.42\%
Designated Beverage Cartons	0.15\%	0.06\%	0.04\%	0.43\%	0.09\%	0.07\%	0.70\%	0.10\%	0.32\%
Designated Plastic	0.07\%	0.02\%	0.00\%	0.02\%	0.03\%	0.05\%	0.40\%	0.08\%	0.00\%
Designated Metal	0.12\%	0.25\%	0.05\%	0.16\%	0.03\%	0.06\%	0.09\%	0.12\%	0.05\%
Designated Glass	0.07\%	0.00\%	0.04\%	0.06\%	0.34\%	0.00\%	0.35\%	0.02\%	0.01\%
Designated MGP Subtotal	0.40\%	0.33\%	0.13\%	0.67\%	0.48\%	0.18\%	1.54\%	0.33\%	0.38\%
Potentially Designated Plastic	0.94\%	1.09\%	0.65\%	1.24\%	0.81\%	0.96\%	1.43\%	0.77\%	0.58\%
Potentially Designated Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%
Potentially Designated Materials Subtotal	0.94\%	1.09\%	0.65\%	1.25\%	0.81\%	0.96\%	1.43\%	0.79\%	0.58\%
Nondesignated Paper	3.43\%	2.40\%	0.76\%	10.03\%	1.75\%	6.90\%	1.84\%	1.56\%	3.31\%
Nondesignated Plastic	0.16\%	0.17\%	0.33\%	0.60\%	0.04\%	0.12\%	0.29\%	0.07\%	0.04\%
Other Nondesignated	0.92\%	0.58\%	1.12\%	2.97\%	1.57\%	0.26\%	2.51\%	0.61\%	0.26\%
Nondesignated Materials Subtotal	4.51\%	3.16\%	2.22\%	13.60\%	3.36\%	7.28\%	4.64\%	2.23\%	3.61\%

| AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$ | |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 . (2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-50
Housing Density and Income Details, Summer 2005, Waste Characterization Study, MGP

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	Medium Densityl Medium Income Medium Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income High Income \%	$\begin{aligned} & \hline \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	0.58\%	R Paper	0.29\%	1.03\%	0.19\%	0.63\%	0.36\%	0.87\%	0.75\%	0.89\%	Negative correlation with density, except MI
Paper	OCC	Plain OCC/Kraft Paper	0.30\%	R Paper	0.16\%	0.36\%	0.04\%	0.17\%	0.25\%	0.38\%	0.51\%	0.43\%	Negative correlation with density, except MI
Paper	Mixed Paper	High Grade Paper	0.09\%	R Paper	0.01\%	0.06\%	0.00\%	0.01\%	0.13\%	0.07\%	0.10\%	0.29\%	Negative correlation with density, except HI
Paper	Mixed Paper	Mixed Low Grade Paper	1.07\%	R Paper	1.28\%	1.06\%	0.47\%	1.27\%	1.08\%	1.42\%	1.00\%	1.20\%	Negative correlation with density, except HI
Paper	Mixed Paper	Phone Books/Paperbacks	0.13\%	R Paper	0.05\%	0.01\%	0.18\%	0.04\%	0.14\%	0.07\%	0.24\%	0.07\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.07\%	R Paper	0.10\%	0.04\%	0.03\%	0.09\%	0.08\%	0.07\%	0.07\%	0.06\%	Positive correlation with income
Paper	Bev Cartons	Polycoated Paper Containers	1.81\%	R Bev Cartons	1.65\%	1.79\%	1.35\%	2.68\%	2.08\%	2.21\%	1.70\%	1.28\%	No discernible pattern
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.48\%	NR_Paper	0.55\%	0.42\%	0.33\%	0.33\%	0.43\%	0.51\%	0.60\%	0.41\%	Positive correlation with income, except MD
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.07\%	NR_Paper	0.04\%	0.04\%	0.04\%	0.04\%	0.08\%	0.14\%	0.05\%	0.09\%	Negative correlation with income, except HD
Paper	Other Paper	Other Nonrrecyclable Paper	0.55\%	NR_Paper	0.23\%	0.53\%	0.61\%	0.23\%	0.65\%	0.81\%	0.54\%	0.56\%	Negative correlation with income
Paper Total			5.13\%		4.37\%	5.34\%	3.24\%	5.50\%	5.29\%	6.55\%	5.56\%	5.29\%	Negative correlation with density, except MI
Plastic	PET Botles	PET Bottles	7.88\%	R Plastics	6.36\%	6.55\%	6.26\%	6.61\%	8.37\%	8.56\%	9.45\%	8.00\%	Negative correlation with density, except MI
Plastic	HDPE Botlles	HDPE Botlles: Natural	3.28\%	R Plastics	1.76\%	3.52\%	3.99\%	1.56\%	4.80\%	3.21\%	2.80\%	3.02\%	Negative correlation with income, except MD
Plastic	HDPE Bottles	HDPE Bottles: Colored	3.31\%	R Plastics	2.51\%	3.17\%	3.50\%	2.14\%	3.29\%	3.08\%	4.02\%	3.51\%	Negative correlation with HD income
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras//Other Containers: \#1 PET	0.01\%	PR_Plastics	0.01\%	0.01\%	0.00\%	0.00\%	0.02\%	0.02\%	0.01\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.20\%	PR_Plastics	0.34\%	0.36\%	0.27\%	0.12\%	0.14\%	0.23\%	0.14\%	0.04\%	Positive correlation with density, except HI
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.06\%	PR_Plastics	0.16\%	0.03\%	0.03\%	0.03\%	0.06\%	0.03\%	0.05\%	0.03\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#4 LDPE	0.01\%	PR_Plastics	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.01\%	0.00\%	Negative correlation with MD income
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.10\%	PR_Plastics	0.06\%	0.08\%	0.09\%	0.07\%	0.13\%	0.15\%	0.09\%	0.12\%	Negative correlation with income
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#7 Other	0.20\%	PR_Plastics	0.18\%	0.14\%	0.10\%	0.12\%	0.16\%	0.19\%	0.31\%	0.24\%	Positive correlation with income, except MD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.05\%	0.04\%	0.01\%	0.01\%	0.01\%	Positive correlation with MD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.02\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.47\%	PR_Plastics	0.44\%	0.58\%	0.54\%	0.49\%	0.52\%	0.54\%	0.37\%	0.37\%	Negative correlation with MD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	PR_Plastics	0.02\%	0.02\%	0.08\%	0.02\%	0.05\%	0.02\%	0.06\%	0.04\%	No discernible pattern
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.08\%	PR_Plastics	0.08\%	0.14\%	0.21\%	0.00\%	0.05\%	0.12\%	0.05\%	0.00\%	Positive correlation with density, except HI
Plastic	Other Plastic Products	Other PVC	0.08\%	NR_Plastics	0.00\%	0.00\%	0.05\%	0.00\%	0.03\%	0.42\%	0.10\%	0.00\%	Negative correlation with MD income
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.22\%	PR_Plastics	0.36\%	0.23\%	0.06\%	0.24\%	0.25\%	0.13\%	0.22\%	0.27\%	Negative correlation with density, except HI
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.10\%	PR_Plastics	0.05\%	0.11\%	0.09\%	0.08\%	0.13\%	0.13\%	0.10\%	0.07\%	Negative correlation with density, except MI
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.33\%	PR_Plastics	1.31\%	1.34\%	1.35\%	1.06\%	1.46\%	1.32\%	1.28\%	1.32\%	Negative correlation with income, except MD
Plastic	Film	Plastic Bags	1.34\%	PR_Plastics	1.62\%	1.54\%	0.81\%	1.21\%	1.44\%	1.22\%	1.39\%	1.43\%	Positive correation with HD income
Plastic	Film	Other Film	2.82\%	PR_Plastics	4.26\%	3.38\%	3.16\%	2.44\%	3.15\%	2.85\%	1.75\%	1.94\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.39\%	NR_Plastics	0.30\%	0.31\%	0.20\%	0.28\%	0.48\%	0.29\%	0.37\%	0.93\%	Negative correlation with density, except HI
Plastic	Other Plastic Products	Other Plastics Materials	3.50\%	NR_Plastics	2.86\%	4.68\%	5.69\%	2.29\%	3.57\%	3.65\%	2.71\%	2.86\%	Negative correlation with income
Plastic Total			25.43\%		22.66\%	26.21\%	26.49\%	18.83\%	28.14\%	26.17\%	25.29\%	24.21\%	Negative correlation with HD income
Glass	Container Glass	Clear Container Glass	8.24\%	R Glass	7.70\%	6.10\%	3.87\%	8.20\%	6.77\%	9.50\%	11.80\%	9.50\%	Negative correlation with density
Glass	Container Glass	Green Container Glass	3.71\%	R Glass	9.23\%	3.85\%	0.84\%	8.05\%	2.33\%	2.46\%	3.28\%	2.88\%	Positive correalion with income, except MD
Glass	Container Glass	Brown Container Glass	2.31\%	R Glass	3.03\%	1.72\%	1.26\%	3.31\%	2.11\%	2.46\%	2.59\%	2.03\%	Positive correation with income, except MD
Glass	Mixed Cullet	Mixed Cullet	21.44\%	R Glass	26.91\%	18.33\%	23.59\%	27.48\%	22.69\%	19.06\%	16.67\%	21.29\%	Positive correlation with MD income
Glass	Container Glass	Other Container Glass	0.18\%	R Glass	0.17\%	0.28\%	0.04\%	0.42\%	0.20\%	0.11\%	0.22\%	0.11\%	Positive correlation with income, except HD
Glass	Other Glass	Other Glass	0.44\%	PR_Glass	0.90\%	0.23\%	0.36\%	0.07\%	0.42\%	0.25\%	0.37\%	0.78\%	Negative correlation with MI density
Glass Total			36.31\%		47.94\%	30.51\%	29.95\%	47.53\%	34.52\%	33.84\%	34.94\%	36.59\%	Positive correlation with income, except LD
Metal	Aluminum	Aluminum Cans	0.90\%	R Metal	0.51\%	0.74\%	0.65\%	0.64\%	0.81\%	0.86\%	1.37\%	1.16\%	Negative correlation with density
Metal	Aluminum	Aluminum Foil/Containers	0.93\%	R Metal	0.57\%	0.54\%	0.54\%	0.65\%	1.04\%	1.18\%	1.19\%	1.18\%	Negative correlation with density
Metal	Aluminum	Other Aluminum	0.54\%	R Metal	0.19\%	0.68\%	0.25\%	0.19\%	0.74\%	0.46\%	0.72\%	0.81\%	Negative correlation with density, except HI
Metal	Non-Ferrous	Other Non-Ferrous	0.90\%	R Metal	1.35\%	1.20\%	1.15\%	0.40\%	0.47\%	0.60\%	1.13\%	0.71\%	Positive correation with income, except MD
Metal	Ferrous	Tin Food Cans	6.44\%	R Metal	3.71\%	5.62\%	7.70\%	5.27\%	7.50\%	7.03\%	6.49\%	6.51\%	Negative correlation with income, except MD
Metal	Ferrous	Empty Aerosol Cans	0.76\%	R Metal	0.47\%	0.67\%	0.72\%	0.42\%	0.99\%	0.91\%	0.78\%	0.64\%	Negative correlation with HD income
Metal	Ferrous	Other Ferrous	9.54\%	R Metal	7.68\%	11.57\%	10.88\%	7.14\%	8.16\%	11.24\%	10.41\%	9.24\%	Negative correlation with MD income
Metal	Other Metal	Mixed Metals	3.13\%	R Metal	1.68\%	3.24\%	7.05\%	3.07\%	2.33\%	1.43\%	3.41\%	2.92\%	Positive correlation with income, except HD
Metal Total			23.12\%		16.16\%	24.26\%	28.93\%	17.79\%	22.04\%	23.72\%	25.50\%	23.16\%	Negative correlation with income, except LD

Table 1-50
Housing Density and Income Details, Summer 2005, Waste Characterization Study, MGP (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide MGP Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	Medium Density/ High Income $\%$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \hline \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.02\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.00\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Organics	Wood	Stumps/Limbs	0.00\%	NR_Other	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	1.79\%	NR_Other	1.87\%	1.76\%	1.73\%	0.90\%	1.69\%	2.13\%	1.85\%	1.93\%	Negative correlation with income, except HD
Organics	Wood	Wood Furniture/Furniture Pieces	0.16\%	NR_Other	0.25\%	0.04\%	0.11\%	0.05\%	0.22\%	0.22\%	0.17\%	0.01\%	No discernible pattern
Organics	Wood	Non-C\&D Untreated Wood	0.03\%	NR_Other	0.00\%	0.12\%	0.04\%	0.00\%	0.02\%	0.01\%	0.04\%	0.01\%	Positive correlation with density, except HI
Organics	Textiles	Non-Clothing Textiles	0.12\%	NR_Other	0.10\%	0.11\%	0.31\%	0.04\%	0.07\%	0.09\%	0.13\%	0.10\%	Negative correlation with income, except LD
Organics	Textiles	Clothing Textiles	0.09\%	NR_Other	0.11\%	0.13\%	0.11\%	0.13\%	0.07\%	0.11\%	0.08\%	0.04\%	Positive correlation with MI density
Organics	Texties	CarpetUpholstery	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.04\%	0.00\%	No discernible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.09\%	NR_Other	0.03\%	0.01\%	0.10\%	0.04\%	0.06\%	0.19\%	0.14\%	0.09\%	Negative correlation with density
Organics	Misc. Organic	Animal By-Products	0.06\%	NR_Other	0.18\%	0.00\%	0.03\%	0.01\%	0.00\%	0.00\%	0.15\%	0.01\%	No discernible pattern
Organics	Misc. Organic	Rubber Products	0.14\%	NR_Other	0.03\%	0.31\%	0.06\%	0.21\%	0.19\%	0.14\%	0.05\%	0.38\%	Positive correlation with MD income
Organics	Texiles	Shoes	0.04\%	NR_Other	0.02\%	0.08\%	0.05\%	0.02\%	0.04\%	0.05\%	0.02\%	0.03\%	Negative correlation with income, except HD
Organics	Textiles	Other Leather Products	0.02\%	NR_Other	0.01\%	0.02\%	0.03\%	0.01\%	0.06\%	0.00\%	0.02\%	0.01\%	Negative correlation with HD income
Organics	Misc. Organic	Fines	0.35\%	NR_Other	0.22\%	0.84\%	0.37\%	0.24\%	0.24\%	0.31\%	0.42\%	0.39\%	Negative correlation with HI density
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.12\%	NR_Other	0.03\%	0.12\%	0.12\%	0.00\%	0.00\%	0.00\%	0.08\%	0.90\%	No discemible pattern
Organics	Misc. Organic	Miscellaneous Organics	0.16\%	NR_Other	0.02\%	0.02\%	0.02\%	0.00\%	0.02\%	1.00\%	0.11\%	0.17\%	Negative correlation with income, except HD
Organics Total			3.20\%		2.94\%	3.57\%	3.07\%	1.69\%	2.68\%	4.25\%	3.35\%	4.06\%	Negative correlation with income, except HD
Appliance/Electronic	Ferrous	Appliances: Ferrous	3.38\%	R Metal	3.46\%	6.68\%	1.95\%	5.97\%	4.58\%	2.01\%	1.92\%	4.20\%	Positive correalion with MD income
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.38\%	R Metal	0.22\%	0.43\%	0.29\%	0.35\%	0.11\%	0.42\%	0.82\%	0.16\%	Negative correlation with density, except MI
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.77\%	NR_Other	0.50\%	0.85\%	1.64\%	0.61\%	0.79\%	0.63\%	0.62\%	0.46\%	Positive correlation with density, except HI
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioVNisual Equipment: Other	0.41\%	NR_Other	0.13\%	0.34\%	0.68\%	0.47\%	0.47\%	0.34\%	0.37\%	0.48\%	Negative correlation with income, except MD
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.05\%	NR_Other	0.34\%	0.00\%	0.00\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HI density
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.49\%	NR_Other	0.33\%	0.45\%	1.45\%	0.39\%	0.34\%	0.32\%	0.42\%	0.12\%	Positive correlation with income, except $H D$
Appliance/Electronic Total			5.48\%		4.97\%	8.74\%	6.01\%	7.96\%	6.29\%	3.72\%	4.15\%	5.41\%	Positive correlation with density, except HI
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.01\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	No discerrible pattern
C \& D Debris	Wood	Treated/Contaminated Wood	0.10\%	NR_Other	0.11\%	0.14\%	0.43\%	0.01\%	0.04\%	0.04\%	0.03\%	0.02\%	Positive correlation with density, except HI
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.01\%	NR_Other	0.00\%	0.00\%	0.03\%	0.00\%	0.02\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.05\%	NR_Other	0.00\%	0.00\%	0.12\%	0.00\%	0.00\%	0.00\%	0.14\%	0.03\%	No discernible pattern
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.22\%	NR_Other	0.20\%	0.08\%	0.67\%	0.07\%	0.07\%	0.19\%	0.28\%	0.01\%	Positive correlation with density, except HI
C\&D Debris Total			0.38\%		0.31\%	0.22\%	1.24\%	0.07\%	0.13\%	0.24\%	0.49\%	0.06\%	Positive correlation with density, except HII
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.16\%	NR_Other	0.19\%	0.04\%	0.05\%	0.08\%	0.08\%	0.77\%	0.04\%	0.12\%	Negative correlation with density, except HI
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.45\%	NR_Other	0.19\%	0.49\%	0.82\%	0.24\%	0.44\%	0.40\%	0.37\%	0.69\%	Negative correlation with income, except MD
Miscellaneous Inorganics Total			0.61\%		0.38\%	0.54\%	0.88\%	0.32\%	0.52\%	1.17\%	0.42\%	0.81\%	Negative correlation with income
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	№ discerrible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.05\%	0.00\%	Negative correlation with HI density
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.15\%	NR_Other	0.12\%	0.46\%	0.02\%	0.16\%	0.11\%	0.21\%	0.13\%	0.23\%	No discernible pattern
HHW	HHW	Oii-Based Paint/Solvent-Based Adhesives/Glues	0.04\%	NR_Other	0.07\%	0.08\%	0.08\%	0.02\%	0.01\%	0.05\%	0.02\%	0.05\%	No discernible pattern
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Dry-Cell Batteries	0.02\%	NR_Other	0.02\%	0.01\%	0.03\%	0.03\%	0.03\%	0.01\%	0.02\%	0.02\%	No discernible pattern
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discemible pattern
HHw	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.02\%	NR_Other	0.01\%	0.01\%	0.00\%	0.08\%	0.05\%	0.00\%	0.01\%	0.02\%	Positive correation with MD income
HHW	HHW	Home Medical Products	0.01\%	NR_Other	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.03\%	0.02\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.06\%	NR_Other	0.03\%	0.04\%	0.03\%	0.01\%	0.19\%	0.03\%	0.02\%	0.03\%	No discernible pattern
HHW Total			0.33\%		0.26\%	0.61\%	0.18\%	0.31\%	0.39\%	0.32\%	0.29\%	0.40\%	No discernible pattern
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-50 Housing Density and Income Details, Summer 2005, Waste Characterization Study, MGP (continued)

SUBTOTALS BY RECYCLING DESIGNATION

Recycling Designation	$\begin{aligned} & \text { \% of Citywide } \\ & \text { MGP } \\ & \text { Stream } \end{aligned}$	High Density/ High Income \%	High Densityl Medium Income \%	High Density/ Low Income \%	Medium Densityl High Income \%	Medium Densityl Medium Income \%	Medium Density/ Low Income $\%$	Low Densityl High Income \%	Low Densityl Medium Income \%
Designated Paper	2.23\%	1.89\%	2.56\%	0.91\%	2.22\%	2.04\%	2.89\%	2.68\%	2.94\%
Designated Beverage Cartons	1.81\%	1.65\%	1.79\%	1.35\%	2.68\%	2.08\%	2.21\%	1.70\%	1.28\%
Designated Plastic	14.46\%	10.63\%	13.24\%	13.75\%	10.31\%	16.45\%	14.85\%	16.27\%	14.53\%
Designated Metal	26.89\%	19.84\%	31.36\%	31.16\%	24.11\%	26.73\%	26.15\%	28.24\%	27.52\%
Designated Glass	35.87\%	47.04\%	30.28\%	29.60\%	47.46\%	34.10\%	33.59\%	34.57\%	35.81\%
Designated MGP Subtotal	79.04\%	79.16\%	76.67\%	75.87\%	84.55\%	79.37\%	76.80\%	80.79\%	79.14\%
Potentially Designated Plastic	6.99\%	8.87\%	7.99\%	6.79\%	5.95\%	7.61\%	6.97\%	5.84\%	5.88\%
Potentially Designated Glass	0.44\%	0.90\%	0.23\%	0.36\%	0.07\%	0.42\%	0.25\%	0.37\%	0.78\%
Potentially Designated Materials Subtotal	7.43\%	9.77\%	8.22\%	7.15\%	6.03\%	8.02\%	7.21\%	6.21\%	6.66\%
Nondesignated Paper	1.09\%	0.83\%	0.99\%	0.98\%	0.60\%	1.16\%	1.46\%	1.19\%	1.07\%
Nondesignated Plastic	3.97\%	3.16\%	4.99\%	5.94\%	2.57\%	4.08\%	4.35\%	3.18\%	3.79\%
Other Nondesignated	6.24\%	5.19\%	6.57\%	9.15\%	4.04\%	5.32\%	7.28\%	5.96\%	6.40\%
Nondesignated Materials Subtotal	11.30\%	9.18\%	12.55\%	16.07\%	7.20\%	10.56\%	13.10\%	10.33\%	11.26\%

Material Group	Citywide	High Densityl High Income	High Density/ Medium Income	High Density Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Density Low Income	Low Densityl High Income	Low Density/ Medium Income
Paper Total ${ }^{(2)}$	243.99	26.86	15.85	19.21	13.88	52.84	34.48	60.78	20.09
Plastic Total ${ }^{(2)}$	1,208.73	139.43	77.82	156.88	47.49	281.10	137.68	276.32	92.01
Glass Total ${ }^{(2)}$	1,726.36	294.93	90.59	177.37	119.90	344.81	177.99	381.69	139.07
Metal Total ${ }^{(3)}$	1,099.18	99.42	72.01	171.31	44.88	220.16	124.77	278.58	88.05
Organics Total	152.27	18.07	10.58	18.18	4.27	26.76	22.37	36.58	15.44
Appliance/Electronic Total	260.60	30.61	25.96	35.61	20.08	62.86	19.56	45.36	20.58
C \& D Debris Total	18.24	1.92	0.65	7.36	0.19	1.26	1.28	5.34	0.24
Miscellaneous Inorganics Total	28.97	2.33	1.60	5.19	0.80	5.23	6.17	4.56	3.08
HHW Total	15.60	1.63	1.81	1.09	0.78	3.89	1.69	3.18	1.54
Grand Total	4,753.94	615.20	296.87	592.21	252.26	998.92	525.99	1,092.37	380.10

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 . (2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
3) The metal tonnages do not include the weight of metals found within the appliancelelectronic material group.

Table 1-51
Housing Density and Income Details, Summer 2005 Waste Characterization Study, Aggregated Recycling (Paper and MGP)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income Income
Paper	ONP	Newspaper	25.89\%	R Paper	40.98\%	31.32\%	13.68\%	28.54\%	21.83\%	15.94\%	25.97\%	18.82\%	Positive correlation with income
Paper	OCC	Plain OCC/Kraft Paper	5.50\%	R Paper	3.49\%	3.15\%	10.89\%	5.50\%	5.92\%	8.79\%	4.23\%	4.82\%	Negative correlation with income, except HD
Paper	Mixed Paper	High Grade Paper	1.70\%	R Paper	2.32\%	0.96\%	0.25\%	2.78\%	0.91\%	2.17\%	1.88\%	2.90\%	Positive correlation with HD income
Paper	Mixed Paper	Mixed Low Grade Paper	17.56\%	R Paper	17.20\%	19.64\%	8.90\%	27.43\%	13.33\%	15.88\%	22.94\%	11.82\%	Positive correlation with MI density
Paper	Mixed Paper	Phone Books/Paperbacks	4.71\%	R Paper	1.98\%	4.23\%	1.72\%	3.01\%	11.31\%	1.38\%	4.21\%	3.74\%	Negative correlation with HI density
Paper	Mixed Paper	Paper Bags	0.20\%	R Paper	0.26\%	0.14\%	0.04\%	0.47\%	0.17\%	0.08\%	0.22\%	0.22\%	Positive correlation with income, except LD
Paper	Bev Cartons	Polycoated Paper Containers	0.85\%	R Bev Cartons	0.55\%	0.74\%	0.97\%	0.86\%	0.93\%	1.51\%	0.73\%	0.87\%	Negative correlation with income
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	1.26\%	NR_Paper	0.48\%	0.57\%	2.00\%	0.94\%	2.94\%	0.47\%	0.87\%	0.40\%	Negative correlation with H D income
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.04\%	NR_Paper	0.02\%	0.02\%	0.02\%	0.03\%	0.05\%	0.08\%	0.02\%	0.06\%	Negative correlation with income, except HD
Paper	Other Paper	Other Nonrrecyclable Paper	1.15\%	NR_Paper	1.41\%	0.26\%	2.70\%	0.44\%	1.46\%	1.09\%	0.52\%	1.56\%	Negative correlation with MI density
Paper Total			58.85\%		68.69\%	61.03\%	41.16\%	69.99\%	58.86\%	47.38\%	61.60\%	45.22\%	Positive correlation with income
Plastic	PET Botlles	PET Botlles	3.34\%	R Plastics	1.99\%	2.60\%	3.68\%	1.97\%	3.59\%	4.74\%	3.79\%	4.60\%	Negative correlation with income
Plastic	HDPE Botlles	HDPE Botlles: Natural	1.38\%	R Plastics	0.55\%	1.40\%	2.34\%	0.47\%	2.04\%	1.76\%	1.11\%	1.73\%	Negative correlation with income, except MD
Plastic	HDPE Bottles	HDPE Bottles: Colored	1.39\%	R Plastics	0.79\%	1.26\%	2.05\%	0.64\%	1.40\%	1.68\%	1.59\%	2.02\%	Negative correlation with income
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Tras//Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	№ discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.08\%	PR_Plastics	0.11\%	0.14\%	0.16\%	0.04\%	0.06\%	0.12\%	0.06\%	0.03\%	Negative correlation with income, except LD
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	PR_Plastics	0.05\%	0.01\%	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botlles: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	No discerrible pattern
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Botles: \#5 PP	0.04\%	PR_Plastics	0.02\%	0.03\%	0.06\%	0.02\%	0.06\%	0.08\%	0.04\%	0.07\%	Negative correlation with income
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	PR_Plastics	0.06\%	0.05\%	0.06\%	0.03\%	0.07\%	0.10\%	0.13\%	0.14\%	Negative correlation with income, except HD
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.00\%	0.01\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.20\%	PR_Plastics	0.14\%	0.23\%	0.31\%	0.16\%	0.23\%	0.29\%	0.15\%	0.21\%	Negative correlation with income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.02\%	PR_Plastics	0.00\%	0.01\%	0.05\%	0.00\%	0.02\%	0.01\%	0.03\%	0.02\%	Negative correlation with H D income
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.03\%	PR_Plastics	0.02\%	0.05\%	0.12\%	0.00\%	0.02\%	0.06\%	0.02\%	0.00\%	Negative correlation with income, except LD
Plastic	Other Plastic Products	Other PVC	0.03\%	NR_Plastics	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.22\%	0.04\%	0.00\%	Negative correlation with MD income
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.11\%	PR_Plastics	0.11\%	0.10\%	0.05\%	0.07\%	0.12\%	0.11\%	0.13\%	0.17\%	Negative correlation with density, except HI
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.05\%	PR_Plastics	0.02\%	0.04\%	0.07\%	0.03\%	0.07\%	0.10\%	0.04\%	0.05\%	Negative correlation with income
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.57\%	PR_Plastics	0.43\%	0.53\%	0.80\%	0.35\%	0.62\%	0.71\%	0.51\%	0.76\%	Negative correlation with income
Plastic	Film	Plastic Bags	0.70\%	PR_Plastics	0.63\%	0.80\%	0.51\%	0.46\%	0.74\%	0.84\%	0.75\%	0.89\%	Negative correlation with income, except HD
Plastic	Film	Other Film	1.55\%	PR_Plastics	1.93\%	1.54\%	2.28\%	1.13\%	1.73\%	1.94\%	0.90\%	1.27\%	Negative correlation with income, except HD
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.18\%	NR_Plastics	0.10\%	0.13\%	0.15\%	0.09\%	0.22\%	0.16\%	0.15\%	0.54\%	Negative correlation with income, except MD
Plastic	Other Plastic Products	Other Plastics Materials	1.55\%	NR_Plastics	1.00\%	2.06\%	3.55\%	0.70\%	1.57\%	2.09\%	1.10\%	1.65\%	Negative correlation with income
Plastic Total			11.35\%		7.96\%	11.02\%	16.31\%	6.20\%	12.63\%	15.06\%	10.57\%	14.16\%	Negative correlation with income
Glass	Container Glass	Clear Container Glass	3.48\%	R Glass	2.40\%	2.45\%	2.27\%	2.49\%	2.88\%	5.26\%	4.68\%	5.46\%	Negative correlation with density
Glass	Container Glass	Green Container Glass	1.57\%	R Glass	2.88\%	1.53\%	0.49\%	2.51\%	0.99\%	1.34\%	1.30\%	1.65\%	Positive correlation with HD income
Glass	Container Glass	Brown Container Glass	0.97\%	R Glass	0.95\%	0.68\%	0.74\%	1.05\%	0.90\%	1.32\%	1.03\%	1.17\%	Negative correlation with density, except HI
Glass	Mixed Cullet	Mixed Cullet	9.00\%	R Glass	8.40\%	7.29\%	13.86\%	8.15\%	9.66\%	10.26\%	6.60\%	12.22\%	Positive correlation with density, except MI
Glass	Container Glass	Other Container Glass	0.08\%	R Glass	0.05\%	0.11\%	0.02\%	0.12\%	0.08\%	0.06\%	0.09\%	0.06\%	Positive correlation with income, except HD
Glass	Other Glass	Other Glass	0.19\%	PR_Glass	0.28\%	0.09\%	0.21\%	0.02\%	0.18\%	0.13\%	0.16\%	0.45\%	Negative correlation with MI density
Glass Total			15.29\%		14.97\%	12.16\%	17.59\%	14.34\%	14.69\%	18.37\%	13.85\%	21.01\%	Negative correlation with income, except HD
Metal	Aluminum	Aluminum Cans	0.38\%	R Metal	0.16\%	0.30\%	0.38\%	0.19\%	0.34\%	0.48\%	0.55\%	0.67\%	Negative correlation with income and density
Metal	Aluminum	Aluminum Foil/Containers	0.40\%	R Metal	0.18\%	0.22\%	0.32\%	0.20\%	0.45\%	0.64\%	0.49\%	0.68\%	Negative correlation with income and density
Metal	Aluminum	Other Aluminum	0.23\%	R Metal	0.06\%	0.27\%	0.19\%	0.06\%	0.31\%	0.25\%	0.28\%	0.46\%	Negative correlation with density, except HI
Metal	Non-Ferrous	Other Non-Ferrous	0.38\%	R Metal	0.42\%	0.50\%	0.67\%	0.12\%	0.20\%	0.33\%	0.45\%	0.41\%	Negative correlation with income, except LD
Metal	Ferrous	Tin Food Cans	2.71\%	R Metal	1.16\%	2.23\%	4.51\%	1.56\%	3.19\%	3.79\%	2.58\%	3.75\%	Negative correlation with income
Metal	Ferrous	Empty Aerosol Cans	0.32\%	R Metal	0.15\%	0.27\%	0.42\%	0.13\%	0.42\%	0.49\%	0.31\%	0.37\%	Negative correlation with income
Metal	Ferrous	Other Ferrous	4.05\%	R Metal	2.56\%	4.60\%	6.38\%	2.13\%	3.47\%	6.05\%	4.17\%	5.31\%	Negative correlation with income
Metal	Other Metal	Mixed Metals	1.31\%	R Metal	0.53\%	1.29\%	4.14\%	0.91\%	0.99\%	0.77\%	1.35\%	1.67\%	Negative correlation with income, except MD
Metal Total			9.77\%		5.22\%	9.67\%	17.03\%	5.30\%	9.39\%	12.80\%	10.17\%	13.32\%	Negative correlation with income

Table 1-51
Housing Density and Income Details, Summer 2005 Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Recycling Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \text { \| Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	$\begin{array}{c}\text { Possible Correlations with Housing Density and } \\ \text { Income }\end{array}$
Organics	Yard	Leaves and Grass	0.03\%	NR_Other	0.00\%	0.00\%	0.00\%	0.34\%	0.00\%	0.00\%	0.01\%	0.00\%	No discernible pattern
Organics	Yard	Prunings	0.01\%	NR_Other	0.00\%	0.00\%	0.07\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	№ discernible pattern
Organics	Wood	Stumps/limbs	0.00\%	NR_Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Organics	Food	Food	0.90\%	NR_Other	0.68\%	0.78\%	1.05\%	0.67\%	0.77\%	1.69\%	0.87\%	1.11\%	Negative correlation with income
Organics	Wood	Wood Furnitur/Furniture Pieces	0.07\%	NR_Other	0.08\%	0.01\%	0.06\%	0.03\%	0.09\%	0.14\%	0.07\%	0.01\%	Negative correlation with MD income
Organics	Wood	Non-C\&D Unireated Wood	0.03\%	NR_Other	0.00\%	0.05\%	0.07\%	0.19\%	0.01\%	0.03\%	0.02\%	0.00\%	Negative correlation with density, except HI
Organics	Textiles	Non-Clothing Textiles	0.08\%	NR_Other	0.06\%	0.07\%	0.18\%	0.02\%	0.04\%	0.11\%	0.09\%	0.06\%	Negative correlation with income, except LD
Organics	Textiles	Clothing Textiles	0.05\%	NR_Other	0.04\%	0.06\%	0.11\%	0.05\%	0.03\%	0.18\%	0.03\%	0.02\%	Negative correlation with HD income
Organics	Textiles	CarpetUpholstery	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	No discerrible pattern
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.06\%	NR_Other	0.04\%	0.17\%	0.07\%	0.04\%	0.02\%	0.10\%	0.05\%	0.05\%	No discernible pattern
Organics	Misc. Organic	Animal By-Products	0.03\%	NR_Other	0.06\%	0.00\%	0.02\%	0.01\%	0.00\%	0.00\%	0.06\%	0.01\%	No discemible pattern
Organics	Misc. Organic	Rubber Products	0.06\%	NR_Other	0.01\%	0.13\%	0.04\%	0.06\%	0.08\%	0.07\%	0.02\%	0.22\%	No discernible pattern
Organics	Textiles	Shoes	0.06\%	NR_Other	0.17\%	0.03\%	0.03\%	0.01\%	0.02\%	0.15\%	0.01\%	0.02\%	Negative correlation with income, except HD
Organics	Textiles	Other Leather Products	0.01\%	NR_Other	0.00\%	0.02\%	0.02\%	0.02\%	0.02\%	0.00\%	0.01\%	0.00\%	No discermible pattern
Organics	Misc. Organic	Fines	0.28\%	NR_Other	0.15\%	0.38\%	0.79\%	0.13\%	0.14\%	0.41\%	0.28\%	0.30\%	Negative correlation with income
Organics	Texties	Upholstered or Other Organic-Type Furniture	0.05\%	NR_Other	0.01\%	0.05\%	0.07\%	0.00\%	0.00\%	0.00\%	0.03\%	0.52\%	Negative correlation with income, except MD
Organics	Misc. Organic	Miscellaneous Organics	0.10\%	NR_Other	0.01\%	0.01\%	0.37\%	0.00\%	0.01\%	0.54\%	0.05\%	0.10\%	Negative correlation with income, except HD
Organics Total			1.82\%		1.31\%	1.77\%	2.95\%	1.59\%	1.24\%	3.43\%	1.61\%	2.44\%	Negative correlation with income, except MD
Applianc//Electronic	Ferrous	Appliances: Ferrous	1.42\%	R Metal	1.08\%	2.65\%	1.14\%	1.77\%	1.95\%	1.08\%	0.76\%	2.41\%	No discernible pattern
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.16\%	R Metal	0.07\%	0.17\%	0.17\%	0.10\%	0.07\%	0.23\%	0.33\%	0.09\%	Negative correlation with density, except MI
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.32\%	NR_Other	0.16\%	0.34\%	0.96\%	0.18\%	0.34\%	0.34\%	0.25\%	0.26\%	Negative correlation with income, except MD
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.19\%	NR_Other	0.04\%	0.37\%	0.42\%	0.14\%	0.20\%	0.19\%	0.15\%	0.28\%	Negative correlation with income, except MD
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.02\%	NR_Other	0.11\%	0.00\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	Positive correlation with HI density
Applianc/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discermible pattern
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	NR_Other	0.10\%	0.18\%	0.85\%	0.11\%	0.15\%	0.17\%	0.17\%	0.07\%	Negative correlation with income, except LD
Appliancel/Electronic Total			2.33\%		1.55\%	3.72\%	3.55\%	2.36\%	2.70\%	2.01\%	1.64\%	3.11\%	No discernible pattern
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
C \& D Debris	Wood	Treated/Contaminated Wood	0.04\%	NR_Other	0.04\%	0.05\%	0.25\%	0.00\%	0.02\%	0.02\%	0.01\%	0.01\%	Positive correlation with density, except HI
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.00\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.02\%	NR_Other	0.00\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.05\%	0.01\%	No discernible pattern
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.09\%	NR_Other	0.06\%	0.03\%	0.39\%	0.02\%	0.03\%	0.10\%	0.11\%	0.01\%	Negative correlation with MD income
C \& D Debris Total			0.16\%		0.10\%	0.09\%	0.73\%	0.02\%	0.05\%	0.13\%	0.19\%	0.04\%	Positive correlation with density, except HI
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.09\%	NR_Other	0.06\%	0.02\%	0.03\%	0.02\%	0.04\%	0.42\%	0.10\%	0.07\%	Negative correlation with density, except HI
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.20\%	NR_Other	0.06\%	0.25\%	0.48\%	0.07\%	0.23\%	0.22\%	0.15\%	0.40\%	Negative correlation with income, except MD
Miscellaneous Inorganics Total			0.29\%		0.12\%	0.27\%	0.51\%	0.09\%	0.27\%	0.64\%	0.25\%	0.47\%	Negative correlation with income
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	No discernible pattern
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	№ discernible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.07\%	NR_Other	0.04\%	0.18\%	0.04\%	0.05\%	0.05\%	0.12\%	0.05\%	0.13\%	No discemible pattern
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.02\%	0.03\%	0.05\%	0.01\%	0.00\%	0.03\%	0.01\%	0.03\%	Negative correlation with income, except MD
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
HHW	HHW	Dry-Cell Batteries	0.01\%	NR_Other	0.01\%	0.03\%	0.02\%	0.02\%	0.02\%	0.01\%	0.01\%	0.01\%	Positive correlation with density, except HI
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.00\%	0.01\%	0.00\%	0.02\%	0.02\%	0.00\%	0.00\%	0.01\%	No discermible pattern
HHW	HHW	Home Medical Products	0.01\%	NR_Other	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	No discemible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.01\%	0.02\%	0.05\%	0.00\%	0.08\%	0.01\%	0.01\%	0.02\%	Negative correlation with income, except MD
HHW Total			0.15\%		0.09\%	0.27\%	0.17\%	0.10\%	0.17\%	0.17\%	0.12\%	0.23\%	Negative correlation with HI density
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-51
Housing Density and Income Details, Summer 2005 Waste Characterization Study, Aggregated Recycling (Paper and MGP) (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Material Group	Citywide	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density High Income	Medium Density/ Medium Income	Medium Density Low Income	Low Densityl High Income	Low Densityl Medium Income
Paper Total ${ }^{(2)}$	6,664.37	1,353.40	455.64	415.63	595.09	1,381.74	463.21	1,700.32	299.34
Plastic Total ${ }^{(2)}$	1,285.62	156.86	82.25	164.69	52.70	296.40	147.28	291.68	93.76
Glass Total ${ }^{(2)}$	1,731.10	294.93	90.79	177.65	121.93	344.81	179.57	382.32	139.11
Metal Total ${ }^{(3)}$	1,106.44	102.78	72.22	171.96	45.03	220.47	125.17	280.61	88.19
Organics Total	205.68	25.84	13.24	29.77	13.52	29.20	33.55	44.41	16.16
Applianc/EIlectronic Total	263.30	30.61	27.74	35.81	20.10	63.43	19.68	45.36	20.59
C \& D Debris Total	18.24	1.92	0.65	7.36	0.19	1.26	1.28	5.34	0.24
Miscellaneous Inorganics Total	32.70	2.33	2.01	5.19	0.80	6.23	6.22	6.83	3.08
HHW Total	16.70	1.73	2.00	1.70	0.87	3.94	1.69	3.24	1.54
Grand Total	11,324.15	1,970.39	746.54	1,009.76	850.24	2,347.47	977.64	2,760.10	662.01

(1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-52
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{aligned} & \text { High DensityI } \\ & \text { Medium Income } \\ & \% \end{aligned}$	High Densityl Low Income \%	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { e Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Paper	ONP	Newspaper	7.27\%	R Paper	14.51\%	9.00\%	4.91\%	10.58\%	6.61\%	4.52\%	7.17\%	4.88\%	Positive correlation with income and density
Paper	OCC	Plain OCC/Kraft Paper	1.94\%	R Paper	2.06\%	1.82\%	2.22\%	2.33\%	1.96\%	2.21\%	1.58\%	1.52\%	No discernible pattern
Paper	Mixed Paper	High Grade Paper	0.85\%	R Paper	1.64\%	1.16\%	0.54\%	1.39\%	0.44\%	0.98\%	0.78\%	0.67\%	Positive correlation with income, except MD
Paper	Mixed Paper	Mixed Low Grade Paper	10.48\%	R Paper	17.25\%	10.78\%	8.65\%	16.02\%	8.42\%	8.80\%	11.00\%	7.33\%	Positive correlation with income, except MD
Paper	Mixed Paper	Phone Books/Paperbacks	1.19\%	R Paper	0.84\%	1.08\%	0.80\%	1.10\%	2.54\%	0.61\%	1.10\%	0.88\%	No discernible pattern
Paper	Mixed Paper	Paper Bags	0.73\%	R Paper	1.29\%	0.68\%	0.73\%	0.95\%	0.69\%	0.69\%	0.56\%	0.50\%	Positive correlation with density, except MI
Paper	Bev Cartons	Polycoated Paper Containers	0.47\%	R Bev Cartons	0.59\%	0.51\%	0.43\%	0.57\%	0.53\%	0.58\%	0.34\%	0.32\%	Positive correlation with income, except MD
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	4.94\%	NR_Paper	5.09\%	4.89\%	4.18\%	5.04\%	5.87\%	4.16\%	5.24\%	4.81\%	Positive correlation with income, except MD
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.50\%	NR_Paper	0.39\%	0.39\%	0.34\%	0.57\%	0.34\%	0.34\%	0.86\%	0.79\%	Negative correlation with HI density
Paper	Other Paper	Other Nonrecyclable Paper	1.03\%	NR_Paper	1.32\%	0.89\%	1.16\%	0.96\%	1.14\%	0.88\%	0.84\%	1.04\%	Positive correlation with density, except MI
Paper Total			29.41\%		44.97\%	31.19\%	23.96\%	39.52\%	28.54\%	23.76\%	29.48\%	22.74\%	Positive correlation with income and density
Plastic	PET Botlles	PET Bottles	1.42\%	R Plastics	1.36\%	1.39\%	1.48\%	1.14\%	1.43\%	1.83\%	1.28\%	1.22\%	Negative correlation with income, except LD
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.48\%	R Plastics	0.43\%	0.49\%	0.63\%	0.22\%	0.63\%	0.50\%	0.32\%	0.34\%	Negative correlation with income, except MD
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.48\%	R Plastics	0.49\%	0.47\%	0.62\%	0.37\%	0.44\%	0.42\%	0.49\%	0.42\%	Positive correlation with density, except HI
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	PR_Plastics	0.07\%	0.07\%	0.03\%	0.02\%	0.02\%	0.05\%	0.03\%	0.05\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.01\%	0.03\%	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	No discernible pattern
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	PR_Plastics	0.05\%	0.06\%	0.06\%	0.04\%	0.05\%	0.07\%	0.19\%	0.06\%	Negative correlation with MD income
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.20\%	PR_Plastics	0.31\%	0.19\%	0.19\%	0.28\%	0.19\%	0.21\%	0.13\%	0.21\%	Positive correlation with H I density
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	PR_Plastics	0.07\%	0.06\%	0.05\%	0.05\%	0.03\%	0.04\%	0.04\%	0.04\%	Positive correlation with density, except MI
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.01\%	0.02\%	0.03\%	0.01\%	0.01\%	0.04\%	0.00\%	0.00\%	Negative correlation with HD income
Plastic	Other Plastic Products	Other PVC	0.03\%	NR_Plastics	0.00\%	0.03\%	0.11\%	0.00\%	0.00\%	0.04\%	0.01\%	0.03\%	Negative correlation with income, except MD
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	PR_Plastics	0.51\%	0.23\%	0.19\%	0.34\%	0.24\%	0.21\%	0.22\%	0.21\%	Positive correation with income
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.57\%	PR_Plastics	0.39\%	0.64\%	0.64\%	0.49\%	0.63\%	0.70\%	0.48\%	0.56\%	Negative correlation with income, except HD
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.92\%	PR_Plastics	1.26\%	0.94\%	0.84\%	1.06\%	0.88\%	0.76\%	0.90\%	0.99\%	Positive correlation with income, except LD
Plastic	Film	Plastic Bags	2.59\%	PR_Plastics	2.42\%	3.02\%	3.39\%	2.17\%	2.99\%	2.68\%	1.73\%	2.10\%	Positive correation with density
Plastic	Film	Other Film	4.75\%	PR_Plastics	4.99\%	5.20\%	5.67\%	4.05\%	4.76\%	4.93\%	3.85\%	4.47\%	Positive correation with density
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.63\%	NR_Plastics	0.54\%	0.68\%	0.54\%	0.48\%	0.47\%	0.77\%	0.73\%	0.83\%	No discernible pattern
Plastic	Other Plastic Products	Other Plastics Materials	2.04\%	NR_Plastics	1.96\%	2.98\%	2.30\%	1.65\%	1.66\%	1.57\%	2.08\%	2.52\%	No discernible pattern
Plastic Total			14.59\%		14.88\%	16.51\%	16.83\%	12.40\%	14.46\%	14.86\%	12.52\%	14.10\%	Negative correlation with income
Glass	Container Glass	Clear Container Glass	1.77\%	R Glass	1.49\%	1.41\%	2.13\%	1.64\%	1.64\%	2.25\%	1.65\%	1.62\%	Negative correlation with density, except MI
Glass	Container Glass	Green Container Glass	0.57\%	R Glass	1.27\%	0.51\%	0.46\%	1.02\%	0.47\%	0.49\%	0.42\%	0.38\%	Positive correlation with income, except MD
Glass	Container Glass	Brown Container Glass	0.46\%	R Glass	0.44\%	0.29\%	0.52\%	0.53\%	0.56\%	0.58\%	0.33\%	0.36\%	Negative correlation with income, except HD
Glass	Mixed Cullet	Mixed Cullet	2.13\%	R Glass	3.05\%	1.82\%	2.16\%	2.75\%	2.42\%	1.87\%	1.53\%	2.03\%	Positive correlation with density, except MI
Glass	Container Glass	Other Container Glass	0.02\%	R Glass	0.03\%	0.02\%	0.01\%	0.04\%	0.03\%	0.04\%	0.02\%	0.01\%	Positive correlation with income, except MD
Glass	Other Glass	Other Glass	0.27\%	PR_Glass	0.26\%	0.36\%	0.26\%	0.17\%	0.25\%	0.30\%	0.19\%	0.43\%	Negative correlation with income, except HD
Glass Total			5.22\%		6.52\%	4.41\%	5.55\%	6.15\%	5.37\%	5.52\%	4.14\%	4.83\%	Positive correlation with density, except MI
Metal	Aluminum	Aluminum Cans	0.28\%	R Metal	0.24\%	0.25\%	0.41\%	0.16\%	0.25\%	0.29\%	0.27\%	0.22\%	Negative correlation with income, except LD
Metal	Aluminum	Aluminum FoillContainers	0.59\%	R M etal	0.57\%	0.50\%	0.56\%	0.54\%	0.61\%	0.68\%	0.59\%	0.55\%	Negative correlation with MD income
Metal	Aluminum	Other Aluminum	0.07\%	R Metal	0.04\%	0.06\%	0.03\%	0.04\%	0.09\%	0.04\%	0.06\%	0.26\%	Negative correlation with density, except HI
Metal	Non-Ferrous	Other Non-Ferrous	0.17\%	R M etal	0.19\%	0.22\%	0.17\%	0.20\%	0.09\%	0.12\%	0.22\%	0.18\%	Negative correlation with HI density
Metal	Ferrous	Tin Food Cans	1.08\%	R Metal	0.74\%	1.04\%	1.57\%	0.78\%	1.23\%	1.14\%	0.84\%	0.89\%	Negative correlation with income, except MD
Metal	Ferrous	Empty Aerosol Cans	0.19\%	R Metal	0.16\%	0.11\%	0.23\%	0.15\%	0.22\%	0.18\%	0.21\%	0.15\%	No discerrible pattern
Metal	Ferrous	Other Ferrous	1.81\%	R Metal	1.53\%	1.59\%	0.96\%	1.73\%	1.61\%	1.67\%	2.18\%	4.19\%	Negative correlation with density
Metal	Other Metal	Mixed Metals	0.60\%	R Metal	0.24\%	0.45\%	0.84\%	0.81\%	0.60\%	0.59\%	0.53\%	0.81\%	Negative correlation with income, except MD
Metal Total			4.78\%		3.70\%	4.22\%	4.77\%	4.40\%	4.70\%	4.70\%	4.90\%	7.26\%	Negative correlation with income, except MD

Table 1-52
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	Possible Correlations with Housing Density and Income
Organics	Yard	Leaves and Grass	3.06\%	NR_Other	0.43\%	2.38\%	0.76\%	1.79\%	1.97\%	1.74\%	7.69\%	5.70\%	Negative correlation with density, except MI
Organics	Yard	Prunings	0.69\%	NR_Other	0.27\%	0.20\%	0.07\%	1.12\%	0.32\%	0.94\%	1.59\%	0.91\%	Negative correlation with density
Organics	Wood	Stumps/Limbs	0.14\%	NR_Other	0.00\%	0.21\%	0.04\%	0.01\%	0.17\%	0.23\%	0.02\%	0.70\%	Negative correlation with income, except HD
Organics	Food	Food	15.65\%	NR_Other	9.38\%	16.25\%	21.06\%	12.51\%	17.42\%	16.35\%	13.70\%	13.92\%	Negative correlation with income, except MD
Organics	Wood	Wood Furniture/Furniture Pieces	1.71\%	NR_Other	1.88\%	1.35\%	1.00\%	0.53\%	2.02\%	2.27\%	1.79\%	2.22\%	Negative correlation with income, except HD
Organics	Wood	Non-C\&D Untreated Wood	0.23\%	NR_Other	0.05\%	0.12\%	0.11\%	0.70\%	0.10\%	0.87\%	0.12\%	0.04\%	Positive correlation with MI density
Organics	Textiles	Non-Clothing Textiles	1.73\%	NR_Other	1.33\%	1.62\%	2.43\%	1.11\%	1.92\%	1.60\%	1.39\%	1.94\%	Negative correlation with income, except MD
Organics	Textiles	Clothing Texilies	2.59\%	NR_Other	1.56\%	2.99\%	4.30\%	1.29\%	2.23\%	2.92\%	2.09\%	2.27\%	Negative correlation with income
Organics	Texiles	CarpetUpholstery	1.26\%	NR_Other	1.33\%	1.05\%	1.40\%	0.64\%	1.20\%	0.83\%	1.56\%	1.48\%	Negative correlation with MI density
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.21\%	NR_Other	2.77\%	2.80\%	3.75\%	2.91\%	3.66\%	3.28\%	2.81\%	3.10\%	Negative correlation with income, except MD
Organics	Misc. Organic	Animal By-Products	1.11\%	NR_Other	1.10\%	1.00\%	0.66\%	2.71\%	1.83\%	0.50\%	0.89\%	1.34\%	Positive correlation with income, except LD
Organics	Misc. Organic	Rubber Products	0.30\%	NR_Other	0.17\%	0.32\%	0.21\%	0.22\%	0.25\%	0.55\%	0.27\%	0.45\%	Negative correlation with income, except HD
Organics	Textiles	Shoes	0.62\%	NR_Other	0.60\%	0.52\%	0.89\%	0.39\%	0.54\%	0.82\%	0.41\%	0.75\%	Negative correlation with income, except HD
Organics	Textiles	Other Leather Products	0.06\%	NR_Other	0.03\%	0.13\%	0.05\%	0.03\%	0.13\%	0.07\%	0.02\%	0.07\%	No discernible pattern
Organics	Misc. Organic	Fines	3.63\%	NR_Other	2.87\%	3.32\%	3.87\%	3.06\%	3.58\%	5.16\%	3.04\%	3.85\%	Negative correlation with income
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.55\%	NR_Other	0.05\%	0.90\%	0.78\%	0.00\%	0.08\%	1.12\%	0.65\%	0.55\%	Negative correlation with MD income
Organics	Misc. Organic	Miscellaneous Organics	1.03\%	NR_Other	1.27\%	0.58\%	0.54\%	0.82\%	0.71\%	2.00\%	1.07\%	1.22\%	Negative correlation with density, except HI
Organics Total			37.57\%		25.09\%	35.75\%	41.92\%	29.83\%	38.14\%	41.25\%	39.10\%	40.51\%	Negative correlation with income
Appliance/EIectronic	Ferrous	Appliances: Ferrous	0.81\%	R M etal	1.01\%	0.58\%	0.17\%	0.76\%	0.80\%	1.67\%	0.84\%	0.66\%	Positive correalion with income, except MD
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.02\%	0.08\%	0.02\%	0.11\%	0.01\%	0.03\%	0.07\%	0.02\%	No discernible pattern
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.32\%	NR_Other	0.58\%	0.45\%	0.37\%	0.19\%	0.30\%	0.26\%	0.25\%	0.15\%	Positive correlation with income, except MD
Appliance/EIectronic	Electronic/Av/Computer	AudioNisual Equipment: Cell Phones	0.01\%	NR_Other	0.00\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	Negative correlation with income, except MD
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.38\%	NR_Other	0.21\%	0.33\%	0.30\%	0.38\%	0.34\%	0.99\%	0.22\%	0.32\%	No discernible pattern
Appliance/Electronic	Electronic/Av/Computer	Computer Monitors	0.15\%	NR_Other	0.03\%	0.05\%	0.00\%	0.43\%	0.25\%	0.45\%	0.00\%	0.18\%	No discerrible pattern
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.19\%	NR_Other	0.00\%	0.12\%	0.22\%	0.21\%	0.10\%	0.22\%	0.33\%	0.30\%	Negative correlation with HD income
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.41\%	NR_Other	0.09\%	0.33\%	0.62\%	0.31\%	0.69\%	0.45\%	0.29\%	0.13\%	Negative correlation with HD income
Appliance/EIectronic Total			2.31\%		1.95\%	1.95\%	1.72\%	2.38\%	2.49\%	4.05\%	2.00\%	1.76\%	Negative correlation with MD income
$\overline{C \& D ~ D e b r i s ~}$	Wood	Untreated Dimension Lumber, Pallets, Crates	0.82\%	NR_Other	0.12\%	0.75\%	1.11\%	0.43\%	0.79\%	0.69\%	1.30\%	0.42\%	Negative correlation with HD income
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.69\%	NR_Other	1.25\%	1.79\%	1.04\%	1.43\%	1.98\%	1.73\%	1.90\%	2.61\%	Negative correlation with density
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.55\%	NR_Other	0.08\%	0.69\%	0.26\%	0.28\%	0.62\%	0.51\%	0.73\%	1.41\%	Negative correlation with density, except MI
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.61\%	NR_Other	0.13\%	0.09\%	1.07\%	0.75\%	1.07\%	0.63\%	0.25\%	0.54\%	No discerrible pattern
C \& Debris	Inorganic C\&D	Other Construction Debris	1.56\%	NR_Other	0.71\%	1.62\%	1.01\%	1.20\%	1.08\%	1.70\%	2.43\%	2.71\%	Negative correlation with density, except MI
C\&D Debris Total			5.23\%		2.30\%	4.95\%	4.50\%	4.10\%	5.54\%	5.27\%	6.60\%	7.68\%	Negative correlation with density
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.19\%	NR_Other	0.14\%	0.23\%	0.09\%	0.18\%	0.14\%	0.15\%	0.37\%	0.18\%	Negative correlation with density, except MI
Miscellaneous Inorganis	Misc. Inorganic	Ceramics	0.42\%	NR_Other	0.18\%	0.32\%	0.30\%	0.80\%	0.34\%	0.22\%	0.72\%	0.60\%	Positive correlation with income, except HD
Miscellaneous Inorganics Total			0.61\%		0.31\%	0.55\%	0.39\%	0.98\%	0.48\%	0.37\%	1.09\%	0.78\%	Positive correlation with income, except HD
HHW	HHW	Oil Filters	0.01\%	NR_Other	0.01\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	№ discerrible pattern
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discemible pattern
HHW	HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	No discerrible pattern
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	NR_Other	0.01\%	0.03\%	0.01\%	0.02\%	0.07\%	0.01\%	0.01\%	0.13\%	Negative correlation with MI density
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Glues	0.03\%	NR_Other	0.01\%	0.01\%	0.03\%	0.10\%	0.01\%	0.00\%	0.05\%	0.08\%	Positive correlation with MD income
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Dry-Cell Batteries	0.07\%	NR_Other	0.06\%	0.10\%	0.06\%	0.07\%	0.06\%	0.11\%	0.06\%	0.04\%	Positive correlation with MI density
HHW	HHW	Fluorescent Tubes	0.02\%	NR_Other	0.00\%	0.27\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discernible pattern
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	No discerrible pattern
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.00\%	0.00\%	0.08\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	№ discernible pattern
HHW	HHW	Home Medical Products	0.07\%	NR_Other	0.17\%	0.05\%	0.09\%	0.02\%	0.11\%	0.07\%	0.02\%	0.03\%	No discernible pattern
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	NR_Other	0.01\%	0.00\%	0.02\%	0.01\%	0.03\%	0.02\%	0.01\%	0.04\%	Negative correlation with MI density
HHW Total			0.28\%		0.28\%	0.47\%	0.36\%	0.24\%	0.28\%	0.22\%	0.17\%	0.34\%	Positive correlation with density, except MI
Grand Total					100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	

Table 1-52
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling) (continued)

	\% of Cilywide	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Densityl	Medium Density/ Low Income	Low Density/ High Income	Low Density/ Medium Income
Recycling Designation	Waste Stream	\%	\%	\%	\%	\%	\%	\%	\%
Designated Paper	22.46\%	37.59\%	24.51\%	17.85\%	32.38\%	20.66\%	17.81\%	22.19\%	15.79\%
Designated Beverage Cartons	0.47\%	0.59\%	0.51\%	0.43\%	0.57\%	0.53\%	0.58\%	0.34\%	0.32\%
Designated Plastic	2.38\%	2.27\%	2.36\%	2.73\%	1.72\%	2.50\%	2.74\%	2.10\%	1.99\%
Designated Metal	5.63\%	4.73\%	4.88\%	4.96\%	5.26\%	5.51\%	6.39\%	5.81\%	7.95\%
Designated Glass	4.95\%	6.26\%	4.05\%	5.29\%	5.98\%	5.12\%	5.22\%	3.94\%	4.41\%
Designated MGP Subtotal	13.43\%	13.86\%	11.79\%	13.41\%	13.54\%	13.65\%	14.93\%	12.19\%	14.66\%
Potentially Designated Plastic	9.52\%	10.11\%	10.48\%	11.15\%	8.55\%	9.82\%	9.74\%	7.60\%	8.73\%
Potentially Designated Glass	0.27\%	0.26\%	0.36\%	0.26\%	0.17\%	0.25\%	0.30\%	0.19\%	0.43\%
Potentially Designated Materials Subtotal	9.78\%	10.37\%	10.84\%	11.41\%	8.72\%	10.08\%	10.04\%	7.80\%	9.15\%
Nondesignated Paper	6.47\%	6.80\%	6.17%	5.68\%	6.57\%	7.35\%	5.38\%	6.94\%	6.64\%
Nondesignated Plastic	2.70\%	2.49\%	3.68\%	2.95\%	2.13\%	2.14\%	2.38\%	2.82\%	3.38\%
Other Nondesignated	45.15\%	28.90\%	43.01\%	48.70\%	36.67\%	46.12\%	49.46\%	48.06\%	50.38\%
Nondesignated Materials Subtotal	54.32\%	38.19\%	52.86\%	57.33\%	45.36\%	55.61\%	57.22\%	57.82\%	60.41\%
Designated for Recycling Total	35.90\%	51.44\%	36.31\%	31.26\%	45.92\%	34.32\%	32.74\%	34.38\%	30.44\%
Potentially or Not Designated for Recycling Total	64.10\%	48.56\%	63.69\%	68.74\%	54.08\%	65.68\%	67.26\%	65.62\%	69.56\%

Material Group	Citywide	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density High Income	Medium Densityl Medium Income	Medium Density Low Income	Low Densityl High Income	Low Density/ Medium Income
Paper Total ${ }^{(2)}$	19,146.83	3,308.81	1,487.66	2,694.19	1,141.97	3,305.77	2,082.07	4,018.29	1,108.05
Plastic Total ${ }^{(2)}$	9,502.11	1,094.56	787.43	1,892.21	358.31	1,674.36	1,301.71	1,706.78	686.76
Glass Total ${ }^{(2)}$	3,397.44	479.90	210.13	623.72	177.80	622.49	483.82	564.06	235.52
Metal Total ${ }^{(3)}$	3,113.94	272.16	201.42	536.10	127.10	543.98	412.03	667.49	353.66
Organics Total	24,460.63	1,845.97	1,705.09	4,712.95	862.11	4,417.47	3,613.89	5,329.67	1,973.47
Appliance/Electronic Total	1,501.22	143.24	92.89	193.43	68.87	288.89	355.11	273.17	85.61
C \& D Debris Total	3,407.12	168.86	236.28	505.44	118.40	642.05	461.58	900.34	374.16
Miscellaneous Inorganics Total	396.67	22.91	26.45	43.86	28.45	55.38	32.57	149.06	37.99
HHW Total	182.19	20.94	22.48	40.94	6.88	32.42	18.95	23.10	16.50
Grand Total	65,108.16	7,357.34	4,769.84	11,242.84	2,88989	11,582.81	8,761.75	13,631.97	4,871.72

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Seccion 2.2 .6 in Volume 2
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

2.4 Details on Drink Containers

The Sorting of Refuse and MGP in the PWCS and the WCS included subsorting of drink containers by type. This extra research was performed in order to better understand the presence of certain types of containers in the waste stream. This understanding focuses on containers in the waste stream in terms of their function or use, as opposed to constituent materials.

During the WCS, Subsorts and Counts were conducted on certain materials in the Refuse and MGP Samples. The results of the subsorts were used to determine the material's contribution to the overall composition of the streams. The Counts were used determine the actual number of containers or products in each category.

The categories used in subsorting containers were:

- Deposit Status
- Deposit containers under the New York State Redeemable Container Law;
- Non-deposit; and
- Potential deposit, a designation referring to containers under consideration for inclusion in an expanded New York State Redeemable Container Law.
- Size/Function
- Single-serve, referring to beverage containers of 24 ounces or less;
- Multi-serve, referring to beverage containers of more than 24 ounces; and
- Non-beverage containers.

A container's deposit status and size are not mutually exclusive. For example, a 12-ounce Pepsi bottle is both a deposit container and a single serve container.

As an illustration, during the sorting of Refuse and MGP, a 32-ounce PET plastic water bottle would undergo a primary sort and two secondary sorts.

- The primary sort would be based on what the bottle was made of. In this case, it would be sorted and weighed as a part of the PET plastic materials.
- The first secondary sort would be based on the container's deposit status. The water bottle would be sorted as a potential-deposit container because water bottles were to be part of the expanded New York State Redeemable Container Law. It would be aggregated with other potential-deposit containers. The aggregated containers would be weighed and the individual containers counted.
- The final secondary sort would be based on size/function. The water bottle would be classified as a multi-serve container and aggregated with other multi-serve containers. The aggregated multi-serve containers would be weighed and the individual containers counted.

This procedure was followed for all samples of Refuse and MGP.
Tables 1-53 through 1-80 show the results of the container subsorts and counts by stream, by strata, and citywide. Results are shown for three streams: Refuse, MGP, and Waste. Results are not shown for Paper because there were very few containers in the Paper stream. However, the results for Waste reflect the weighted sum of Refuse, MGP, and Paper streams.

The tables present the data for the eight Density/Income Strata and citywide in three ways: (1) as a percent of the stream, (2) the count in the stream, by season and annually, and (3) as a percent of the container stream. These tables are useful for understanding how much of all Refuse, MGP, and waste generated consist of containers that are deposit vs. non-deposit vs. potentially a deposit under future legislation; and how many are single-serve vs. multi-serve containers.

For example, in Table 1-53, "High Density/High Income Drink Container Counts and Sorts Refuse", deposit PET bottles make up 0.28 percent of the total Refuse stream for that strata in the fall season. In other words, out of all Refuse that the High Density/High Income areas generated in the fall, 0.28 percent consisted of deposit PET bottles. The same table shows that out of all the samples of Refuse generated by High Density/High Income residents in the fall, 301 deposit PET bottles were found. It should be noted that the percentage 0.28 estimates the fraction of all High Density/High Income Fall Refuse generated in the City that is PET deposit bottles, in addition to measuring the actual fraction of all High Density/High Income Fall Refuse samples. The counts, however, only measure the number of containers found in all High Density/High Income Refuse samples. Counts can be extrapolated citywide by dividing them by the weight of all High Density/High Income Fall Refuse samples sorted, and then applying a count per pound estimate to the total High Density/High Income Fall Refuse stream. This same explanation applies to aggregated results across seasons and strata.

Table 1-80 presents citywide data in a different way. Here we see that citywide (across strata) deposit PET bottles make up 7.58 percent of all drink containers in the Fall Refuse stream citywide. In other words, out of all drink containers that residents citywide throw out with Refuse, 7.58 percent are deposit PET bottles. This alternate calculation was made only for citywide data, and not by strata.

During the PWCS, a more limited set of subsorts and counts were used. Glass containers, PET bottles and aluminum cans were sorted into deposit and non-deposit categories. There were also a number of "product" counts, including shoes, disposable razors, single-use cameras, and cell phones. These are shown in Tables 1-154 through 1-156.

Table 1-53
High Density/High Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.28\%	0.22\%	0.21\%	0.28\%	0.25\%	301	286	250	405	1,242
Clear Container Glass	0.14\%	0.11\%	0.10\%	0.16\%	0.13\%	32	26	31	31	120
Green Container Glass	0.12\%	0.28\%	0.13\%	0.26\%	0.20\%	25	61	34	52	172
Brown Container Glass	0.10\%	0.10\%	0.13\%	0.21\%	0.14\%	22	28	32	48	130
Other Container Glass	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0	1	1	0	2
Aluminum Cans	0.20\%	0.26\%	0.18\%	0.24\%	0.22\%	430	605	451	677	2,163
Deposit Total	0.84\%	0.99\%	0.77\%	1.16\%	0.93\%	810	1,007	799	1,213	3,829
Potential Deposit										
PET Bottles	0.53\%	0.52\%	0.53\%	0.59\%	0.54\%	642	708	695	826	2,871
HDPE Bottles: Natural	0.02\%	0.04\%	0.04\%	0.04\%	0.03\%	19	35	32	47	133
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	12	6	3	0	21
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.04\%	0.00\%	0.00\%	0.01\%	0	8	0	0	8
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	3	0	4
Clear Container Glass	0.42\%	0.25\%	0.11\%	0.20\%	0.25\%	56	44	25	41	166
Green Container Glass	0.02\%	0.02\%	0.04\%	0.04\%	0.03\%	3	5	3	2	13
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	0	0	2	2
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	18	27	9	31	85
Potential Deposit Total	1.01\%	0.89\%	0.73\%	0.89\%	0.88\%	751	833	770	949	3,303
Non-Deposit										
PET Bottles	0.21\%	0.24\%	0.26\%	0.25\%	0.24\%	192	252	226	226	896
HDPE Bottles: Natural	0.12\%	0.13\%	0.16\%	0.34\%	0.19\%	113	105	118	153	489
HDPE Bottles: Colored	0.35\%	0.31\%	0.26\%	0.38\%	0.32\%	278	252	244	338	1,112
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	9	13	10	9	41
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	10	8	8	1	27
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	24	35	15	26	100
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.07\%	0.04\%	0.05\%	61	94	93	85	333
Clear Container Glass	0.45\%	0.41\%	0.26\%	0.79\%	0.47\%	104	108	68	154	434
Green Container Glass	0.26\%	0.48\%	0.30\%	0.38\%	0.35\%	22	43	27	35	127
Brown Container Glass	0.04\%	0.05\%	0.06\%	0.04\%	0.05\%	13	15	13	10	51
Other Container Glass	0.01\%	0.01\%	0.02\%	0.02\%	0.01\%	3	5	5	1	14
Aluminum Cans	0.00\%	0.05\%	0.00\%	0.01\%	0.02\%	0	12	6	12	30
Non-Deposit Total	1.50\%	1.77\%	1.41\%	2.26\%	1.73\%	829	942	833	1,050	3,654

Table 1-53
High Density/High Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.16\%	0.16\%	0.20\%	0.19\%	0.18\%	142	178	179	173	672
HDPE Bottles: Natural	0.06\%	0.04\%	0.07\%	0.10\%	0.07\%	64	35	50	65	214
HDPE Bottles: Colored	0.30\%	0.29\%	0.22\%	0.36\%	0.29\%	214	224	212	301	951
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	5	13	10	9	37
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	10	8	7	1	26
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	16	26	15	26	83
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.06\%	0.06\%	0.04\%	0.05\%	48	77	82	78	285
Non-Beverage Total	0.57\%	0.57\%	0.57\%	0.71\%	0.60\%	499	561	555	653	2,268
Single Serve										
PET Bottles	0.61\%	0.57\%	0.47\%	0.58\%	0.56\%	787	812	729	976	3,304
HDPE Bottles: Natural	0.02\%	0.00\%	0.01\%	0.02\%	0.01\%	29	12	25	39	105
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	31	18	21	22	92
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	1	0	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	1	0	0	9
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	13	10	12	7	42
Single Serve Total	0.66\%	0.59\%	0.51\%	0.62\%	0.59\%	870	853	788	1,044	3,555
Multi Serve										
PET Bottles	0.25\%	0.27\%	0.29\%	0.35\%	0.29\%	194	245	261	310	1,010
HDPE Bottles: Natural	0.05\%	0.12\%	0.10\%	0.11\%	0.10\%	45	86	75	94	300
HDPE Bottles: Colored	0.01\%	0.01\%	0.02\%	0.02\%	0.02\%	5	9	13	15	42
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	0	2
Multi Serve Total	0.31\%	0.41\%	0.41\%	0.48\%	0.40\%	245	341	349	419	1,354

Table 1-53
High Density/High Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.02\%	0.98\%	1.00\%	1.12\%	1.03\%	1,135	1,246	1,171	1,457	5,009
HDPE Bottles: Natural	0.14\%	0.17\%	0.20\%	0.38\%	0.22\%	132	140	150	200	622
HDPE Bottles: Colored	0.36\%	0.32\%	0.26\%	0.38\%	0.33\%	290	258	247	338	1,133
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.05\%	0.01\%	0.01\%	0.02\%	9	21	10	9	49
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	10	8	8	1	27
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	24	35	15	26	100
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.07\%	0.04\%	0.05\%	62	94	96	85	337
Clear Container Glass	1.01\%	0.77\%	0.48\%	1.15\%	0.85\%	192	178	124	226	720
Green Container Glass	0.40\%	0.79\%	0.47\%	0.67\%	0.58\%	50	109	64	89	312
Brown Container Glass	0.14\%	0.16\%	0.19\%	0.26\%	0.18\%	35	43	45	60	183
Other Container Glass	0.01\%	0.02\%	0.03\%	0.02\%	0.02\%	3	6	6	1	16
Aluminum Cans	0.20\%	0.32\%	0.19\%	0.27\%	0.24\%	448	644	466	720	2,278
GRAND TOTAL	3.35\%	3.64\%	2.91\%	4.31\%	3.54\%	2,390	2,782	2,402	3,212	10,786

(1) Values shown are the total number of containers observed in the High Density/High Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-54
High Density/Medium Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.23\%	0.34\%	0.28\%	0.33\%	0.30\%	291	352	283	326	1,252
Clear Container Glass	0.11\%	0.26\%	0.16\%	0.33\%	0.21\%	23	57	36	63	179
Green Container Glass	0.17\%	0.18\%	0.10\%	0.20\%	0.16\%	43	46	26	40	155
Brown Container Glass	0.22\%	0.17\%	0.09\%	0.20\%	0.17\%	46	58	26	45	175
Other Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
Aluminum Cans	0.22\%	0.21\%	0.18\%	0.19\%	0.20\%	413	477	423	477	1,790
Deposit Total	0.96\%	1.17\%	0.82\%	1.25\%	1.05\%	818	990	794	951	3,553
Potential Deposit										
PET Bottles	0.38\%	0.34\%	0.36\%	0.53\%	0.40\%	479	475	491	760	2,205
HDPE Bottles: Natural	0.04\%	0.06\%	0.06\%	0.09\%	0.06\%	36	44	62	107	249
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	5	6	1	1	13
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	1	6	8
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	4	3	1	11
Clear Container Glass	0.13\%	0.12\%	0.22\%	0.33\%	0.21\%	29	26	50	67	172
Green Container Glass	0.03\%	0.02\%	0.00\%	0.00\%	0.01\%	4	3	0	0	7
Brown Container Glass	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.01\%	0.03\%	0.02\%	0.04\%	0.02\%	21	42	39	73	175
Potential Deposit Total	0.62\%	0.57\%	0.66\%	1.00\%	0.72\%	580	600	647	1,015	2,842
Non-Deposit										
PET Bottles	0.21\%	0.32\%	0.22\%	0.31\%	0.26\%	181	244	199	259	883
HDPE Bottles: Natural	0.20\%	0.24\%	0.23\%	0.24\%	0.23\%	167	208	197	202	774
HDPE Bottles: Colored	0.33\%	0.37\%	0.28\%	0.32\%	0.32\%	277	247	236	255	1,015
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.02\%	0.00\%	0.01\%	20	8	16	4	48
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	12	7	10	5	34
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	14	33	16	17	80
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.08\%	0.08\%	0.06\%	0.07\%	99	109	107	94	409
Clear Container Glass	0.53\%	0.70\%	0.43\%	0.55\%	0.55\%	121	151	99	118	489
Green Container Glass	0.08\%	0.12\%	0.07\%	0.12\%	0.10\%	20	13	7	16	56
Brown Container Glass	0.06\%	0.04\%	0.02\%	0.02\%	0.04\%	24	10	6	8	48
Other Container Glass	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%	2	1	14	2	19
Aluminum Cans	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	3	14	8	16	41
Non-Deposit Total	1.51\%	1.92\%	1.41\%	1.64\%	1.61\%	940	1,045	915	996	3,896

Table 1-54
High Density/Medium Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.17\%	0.24\%	0.14\%	0.23\%	0.19\%	141	178	141	194	654
HDPE Bottles: Natural	0.07\%	0.04\%	0.07\%	0.07\%	0.06\%	57	46	51	58	212
HDPE Bottles: Colored	0.30\%	0.34\%	0.26\%	0.30\%	0.30\%	250	228	215	233	926
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	16	8	16	4	44
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	7	4	4	20
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	13	26	14	16	69
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.07\%	0.05\%	0.06\%	84	72	84	78	318
Non-Beverage Total	0.61\%	0.70\%	0.57\%	0.67\%	0.64\%	566	565	525	587	2,243
Single Serve										
PET Bottles	0.44\%	0.40\%	0.41\%	0.60\%	0.46\%	552	558	593	910	2,613
HDPE Bottles: Natural	0.01\%	0.02\%	0.03\%	0.04\%	0.02\%	20	39	53	80	192
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	15	23	17	18	73
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	0	7	7	22
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	3	2	1	7
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.02\%	0.01\%	0.01\%	0.03\%	9	26	27	17	79
Single Serve Total	0.52\%	0.45\%	0.46\%	0.66\%	0.53\%	606	649	699	1,033	2,987
Multi Serve										
PET Bottles	0.25\%	0.35\%	0.33\%	0.32\%	0.31\%	255	278	260	236	1,029
HDPE Bottles: Natural	0.19\%	0.23\%	0.21\%	0.22\%	0.21\%	134	167	151	171	623
HDPE Bottles: Colored	0.02\%	0.00\%	0.02\%	0.01\%	0.01\%	18	2	12	5	37
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	2	0	2
Multi Serve Total	0.47\%	0.58\%	0.56\%	0.55\%	0.54\%	410	447	425	412	1,694

Table 1-54
High Density/Medium Income Drink Container Counts and Sorts - Refuse (continued)

Percent of Refuse										
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.82\%	1.00\%	0.86\%	1.17\%	0.96\%	951	1,071	973	1,345	4,340
HDPE Bottles: Natural	0.24\%	0.30\%	0.29\%	0.33\%	0.29\%	203	252	259	309	1,023
HDPE Bottles: Colored	0.34\%	0.37\%	0.28\%	0.32\%	0.33\%	282	253	237	256	1,028
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.02\%	0.00\%	0.01\%	20	8	16	4	48
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	13	7	11	11	42
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	14	33	16	17	80
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.08\%	0.08\%	0.06\%	0.07\%	102	113	110	95	420
Clear Container Glass	0.77\%	1.09\%	0.81\%	1.21\%	0.97\%	173	234	185	248	840
Green Container Glass	0.27\%	0.33\%	0.17\%	0.32\%	0.27\%	67	62	33	56	218
Brown Container Glass	0.30\%	0.21\%	0.11\%	0.22\%	0.21\%	72	68	32	53	225
Other Container Glass	0.01\%	0.01\%	0.04\%	0.00\%	0.02\%	4	1	14	2	21
Aluminum Cans	0.23\%	0.25\%	0.21\%	0.24\%	0.23\%	437	533	470	566	2,006
GRAND TOTAL	3.08\%	3.66\%	2.89\%	3.89\%	3.38\%	2,338	2,635	2,356	2,962	10,291

(1) Values shown are the total number of containers observed in the High Density/Medium Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-55
High Density/Low Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.40\%	0.52\%	0.43\%	0.46\%	0.45\%	383	468	423	481	1,755
Clear Container Glass	0.50\%	0.56\%	0.35\%	0.77\%	0.55\%	88	105	62	137	392
Green Container Glass	0.23\%	0.20\%	0.25\%	0.36\%	0.26\%	50	44	65	84	243
Brown Container Glass	0.55\%	0.44\%	0.41\%	0.48\%	0.47\%	119	123	107	123	472
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
Aluminum Cans	0.22\%	0.20\%	0.20\%	0.33\%	0.23\%	501	507	526	718	2,252
Deposit Total	1.90\%	1.92\%	1.64\%	2.40\%	1.97\%	1,142	1,247	1,183	1,543	5,115
Potential Deposit										
PET Bottles	0.36\%	0.42\%	0.39\%	0.49\%	0.41\%	426	416	540	667	2,049
HDPE Bottles: Natural	0.04\%	0.12\%	0.15\%	0.19\%	0.12\%	64	125	167	207	563
HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	1	1	5	8	15
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	14	12	9	40
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	2	0	3
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	1	3	3	11
Clear Container Glass	0.24\%	0.26\%	0.29\%	0.47\%	0.32\%	46	56	71	88	261
Green Container Glass	0.03\%	0.02\%	0.00\%	0.01\%	0.01\%	5	2	0	1	8
Brown Container Glass	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	2	0	2	0	4
Other Container Glass	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	1	0	1	0	2
Aluminum Cans	0.01\%	0.03\%	0.02\%	0.05\%	0.03\%	15	55	39	83	192
Potential Deposit Total	0.70\%	0.84\%	0.86\%	1.23\%	0.91\%	569	671	842	1,066	3,148
Non-Deposit										
PET Bottles	0.28\%	0.46\%	0.31\%	0.31\%	0.34\%	236	239	294	295	1,064
HDPE Bottles: Natural	0.36\%	0.32\%	0.29\%	0.28\%	0.31\%	301	263	266	216	1,046
HDPE Bottles: Colored	0.42\%	0.36\%	0.41\%	0.47\%	0.41\%	270	396	282	267	1,215
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	12	13	22	12	59
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	10	9	5	17	41
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.03\%	0.02\%	20	32	29	64	145
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.10\%	0.06\%	0.07\%	92	98	139	99	428
Clear Container Glass	0.79\%	0.96\%	0.64\%	0.87\%	0.81\%	165	198	148	164	675
Green Container Glass	0.07\%	0.09\%	0.04\%	0.09\%	0.07\%	8	18	9	10	45
Brown Container Glass	0.05\%	0.05\%	0.03\%	0.03\%	0.04\%	12	9	6	5	32
Other Container Glass	0.00\%	0.00\%	0.02\%	0.01\%	0.01\%	0	6	6	2	14
Aluminum Cans	0.00\%	0.00\%	0.01\%	0.03\%	0.01\%	0	5	11	15	31
Non-Deposit Total	2.05\%	2.35\%	1.88\%	2.19\%	2.12\%	1,126	1,286	1,217	1,166	4,795

Table 1-55
High Density/Low Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.21\%	0.21\%	0.20\%	0.23\%	0.21\%	189	179	180	222	770
HDPE Bottles: Natural	0.07\%	0.06\%	0.08\%	0.08\%	0.07\%	59	47	70	61	237
HDPE Bottles: Colored	0.39\%	0.36\%	0.38\%	0.33\%	0.37\%	255	387	231	253	1,126
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	8	13	22	12	55
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	2	3	9	19
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.03\%	0.02\%	20	34	29	64	147
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.04\%	0.09\%	0.05\%	0.06\%	75	56	116	85	332
Non-Beverage Total	0.74\%	0.72\%	0.79\%	0.75\%	0.75\%	611	718	651	706	2,686
Single Serve										
PET Bottles	0.46\%	0.53\%	0.51\%	0.62\%	0.53\%	597	631	756	916	2,900
HDPE Bottles: Natural	0.06\%	0.05\%	0.06\%	0.06\%	0.05\%	117	93	130	133	473
HDPE Bottles: Colored	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	7	7	35	10	59
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	10	21	10	17	58
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	2	0	2
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.02\%	0.02\%	0.01\%	0.01\%	15	28	25	15	83
Single Serve Total	0.54\%	0.61\%	0.60\%	0.70\%	0.61\%	747	780	958	1,091	3,576
Multi Serve										
PET Bottles	0.33\%	0.50\%	0.43\%	0.42\%	0.42\%	258	327	297	305	1,187
HDPE Bottles: Natural	0.26\%	0.31\%	0.31\%	0.32\%	0.30\%	271	234	234	229	968
HDPE Bottles: Colored	0.01\%	0.00\%	0.01\%	0.02\%	0.01\%	6	3	6	12	27
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	0	0	2
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	1	2	5
Multi Serve Total	0.61\%	0.82\%	0.75\%	0.76\%	0.73\%	536	567	538	548	2,189

Table 1-55
High Density/Low Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse				Count in Refuse ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.05\%	1.40\%	1.13\%	1.27\%	1.21\%	1,045	1,123	1,257	1,443	4,868
HDPE Bottles: Natural	0.40\%	0.44\%	0.44\%	0.46\%	0.44\%	365	388	433	423	1,609
HDPE Bottles: Colored	0.42\%	0.36\%	0.41\%	0.48\%	0.42\%	271	397	287	275	1,230
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	12	13	22	12	59
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	15	23	17	26	81
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.03\%	0.02\%	20	33	31	64	148
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.10\%	0.06\%	0.07\%	96	99	142	102	439
Clear Container Glass	1.54\%	1.78\%	1.28\%	2.11\%	1.68\%	299	359	281	389	1,328
Green Container Glass	0.32\%	0.31\%	0.29\%	0.46\%	0.35\%	63	64	74	95	296
Brown Container Glass	0.60\%	0.49\%	0.44\%	0.50\%	0.51\%	133	132	115	128	508
Other Container Glass	0.01\%	0.00\%	0.03\%	0.01\%	0.01\%	2	6	7	2	17
Aluminum Cans	0.22\%	0.22\%	0.22\%	0.41\%	0.27\%	516	567	576	816	2,475
GRAND TOTAL	4.65\%	5.11\%	4.38\%	5.82\%	4.99\%	2,837	3,204	3,242	3,775	13,058

(1) Values shown are the total number of containers observed in the High Density/Low Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-56
Medium Density/High Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.18\%	0.22\%	0.20\%	0.18\%	0.19\%	199	194	204	241	838
Clear Container Glass	0.18\%	0.07\%	0.26\%	0.19\%	0.18\%	32	14	53	45	144
Green Container Glass	0.13\%	0.21\%	0.20\%	0.16\%	0.17\%	22	44	44	39	149
Brown Container Glass	0.34\%	0.27\%	0.25\%	0.29\%	0.29\%	59	69	51	65	244
Other Container Glass	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	3	0	1	0	4
Aluminum Cans	0.20\%	0.13\%	0.12\%	0.13\%	0.14\%	247	326	337	371	1,281
Deposit Total	1.03\%	0.89\%	1.04\%	0.95\%	0.98\%	562	647	690	761	2,660
Potential Deposit										
PET Bottles	0.30\%	0.35\%	0.29\%	0.37\%	0.33\%	351	431	374	620	1,776
HDPE Bottles: Natural	0.02\%	0.01\%	0.03\%	0.02\%	0.02\%	22	15	21	31	89
HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	1	2	1	8
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	3	1	0	12
Clear Container Glass	0.20\%	0.20\%	0.32\%	0.29\%	0.25\%	38	45	66	61	210
Green Container Glass	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	2	1	1	1	5
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	1	2
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	37	26	21	46	130
Potential Deposit Total	0.56\%	0.58\%	0.66\%	0.71\%	0.63\%	464	522	486	762	2,234
Non-Deposit										
PET Bottles	0.19\%	0.24\%	0.23\%	0.24\%	0.22\%	139	201	185	263	788
HDPE Bottles: Natural	0.14\%	0.10\%	0.09\%	0.09\%	0.11\%	89	91	92	97	369
HDPE Bottles: Colored	0.29\%	0.35\%	0.21\%	0.25\%	0.27\%	195	241	177	226	839
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	4	6	10	13	33
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	5	6	4	7	22
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	11	25	14	20	70
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.06\%	0.04\%	0.05\%	54	96	99	99	348
Clear Container Glass	0.65\%	0.90\%	0.47\%	0.81\%	0.70\%	128	172	112	181	593
Green Container Glass	0.23\%	0.43\%	0.30\%	0.24\%	0.30\%	27	31	28	26	112
Brown Container Glass	0.06\%	0.03\%	0.02\%	0.02\%	0.03\%	14	12	6	7	39
Other Container Glass	0.04\%	0.00\%	0.02\%	0.00\%	0.02\%	9	2	5	1	17
Aluminum Cans	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	2	11	6	2	21
Non-Deposit Total	1.64\%	2.13\%	1.45\%	1.74\%	1.72\%	677	894	738	942	3,251

Table 1-56
Medium Density/High Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.13\%	0.38\%	0.19\%	0.18\%	0.22\%	108	155	149	205	617
HDPE Bottles: Natural	0.07\%	0.06\%	0.06\%	0.06\%	0.06\%	54	55	51	60	220
HDPE Bottles: Colored	0.24\%	0.34\%	0.19\%	0.24\%	0.25\%	168	222	159	217	766
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	4	6	10	13	33
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	5	5	4	7	21
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	11	25	14	19	69
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.04\%	0.06\%	0.04\%	0.05\%	54	84	87	89	314
Non-Beverage Total	0.51\%	0.85\%	0.52\%	0.55\%	0.60\%	404	552	474	610	2,040
Single Serve										
PET Bottles	0.47\%	0.37\%	0.34\%	0.37\%	0.39\%	466	503	467	684	2,120
HDPE Bottles: Natural	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	24	13	30	28	95
HDPE Bottles: Colored	0.01\%	0.02\%	0.01\%	0.00\%	0.01\%	10	36	16	6	68
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	1	2
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	4	12	11	8	35
Single Serve Total	0.49\%	0.40\%	0.37\%	0.39\%	0.41\%	505	565	524	727	2,321
Multi Serve										
PET Bottles	0.13\%	0.20\%	0.19\%	0.24\%	0.19\%	106	160	141	235	642
HDPE Bottles: Natural	0.07\%	0.05\%	0.05\%	0.04\%	0.05\%	39	37	33	40	149
HDPE Bottles: Colored	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	1	14	4	4	23
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0	0	2	0	2
Multi Serve Total	0.21\%	0.25\%	0.25\%	0.29\%	0.25\%	146	211	180	280	817

Table 1-56
Medium Density/High Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.67\%	0.80\%	0.72\%	0.79\%	0.74\%	689	826	763	1,124	3,402
HDPE Bottles: Natural	0.16\%	0.11\%	0.12\%	0.12\%	0.13\%	111	106	113	128	458
HDPE Bottles: Colored	0.29\%	0.35\%	0.21\%	0.25\%	0.27\%	199	242	179	227	847
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	4	6	10	13	33
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	5	6	4	8	23
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	12	25	14	20	71
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.07\%	0.04\%	0.05\%	62	99	100	99	360
Clear Container Glass	1.03\%	1.17\%	1.05\%	1.29\%	1.13\%	198	231	231	287	947
Green Container Glass	0.36\%	0.65\%	0.51\%	0.40\%	0.48\%	51	76	73	66	266
Brown Container Glass	0.40\%	0.30\%	0.28\%	0.31\%	0.32\%	74	81	57	73	285
Other Container Glass	0.05\%	0.00\%	0.03\%	0.00\%	0.02\%	12	2	6	1	21
Aluminum Cans	0.22\%	0.14\%	0.13\%	0.15\%	0.16\%	286	363	364	419	1,432
GRAND TOTAL	3.23\%	3.60\%	3.14\%	3.39\%	3.33\%	1,703	2,063	1,914	2,465	8,145

(1) Values shown are the total number of containers observed in the Medium Density/High Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-57
Medium Density/Medium Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.16\%	0.37\%	0.25\%	0.24\%	0.25\%	161	164	230	254	809
Clear Container Glass	0.23\%	0.23\%	0.28\%	0.43\%	0.29\%	35	44	57	77	213
Green Container Glass	0.16\%	0.19\%	0.10\%	0.24\%	0.17\%	32	35	24	54	145
Brown Container Glass	0.20\%	0.22\%	0.13\%	0.47\%	0.25\%	48	51	31	95	225
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
Aluminum Cans	0.11\%	0.16\%	0.12\%	0.19\%	0.15\%	272	298	317	384	1,271
Deposit Total	0.87\%	1.17\%	0.88\%	1.56\%	1.11\%	549	592	659	864	2,664
Potential Deposit										
PET Bottles	0.30\%	0.25\%	0.27\%	0.41\%	0.31\%	337	314	370	553	1,574
HDPE Bottles: Natural	0.02\%	0.03\%	0.06\%	0.12\%	0.06\%	24	26	66	115	231
HDPE Bottles: Colored	0.01\%	0.02\%	0.00\%	0.00\%	0.01\%	15	26	1	1	43
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	12	10	23
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	2	5	1	10
Clear Container Glass	0.19\%	0.17\%	0.21\%	0.24\%	0.20\%	35	33	45	51	164
Green Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	0	2
Brown Container Glass	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	2	1	2	0	5
Other Container Glass	0.00\%	0.00\%	0.02\%	0.01\%	0.01\%	0	0	7	2	9
Aluminum Cans	0.00\%	0.02\%	0.02\%	0.03\%	0.02\%	13	43	34	45	135
Potential Deposit Total	0.55\%	0.50\%	0.60\%	0.81\%	0.61\%	430	446	542	779	2,197
Non-Deposit										
PET Bottles	0.19\%	0.25\%	0.19\%	0.23\%	0.21\%	194	205	178	207	784
HDPE Bottles: Natural	0.16\%	0.23\%	0.16\%	0.16\%	0.17\%	143	188	134	127	592
HDPE Bottles: Colored	0.27\%	0.26\%	0.20\%	0.19\%	0.23\%	187	205	158	197	747
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	13	7	17	7	44
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	11	13	3	4	31
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	19	42	15	16	92
\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.04\%	0.08\%	0.04\%	0.06\%	60	75	111	69	315
Clear Container Glass	0.48\%	0.71\%	0.48\%	0.65\%	0.58\%	89	170	101	155	515
Green Container Glass	0.17\%	0.16\%	0.09\%	0.10\%	0.13\%	18	16	8	14	56
Brown Container Glass	0.07\%	0.09\%	0.02\%	0.01\%	0.04\%	9	13	9	7	38
Other Container Glass	0.02\%	0.01\%	0.02\%	0.00\%	0.01\%	5	2	12	1	20
Aluminum Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	1	5	4	16
Non-Deposit Total	1.47\%	1.78\%	1.26\%	1.42\%	1.47\%	754	937	751	808	3,250

Table 1-57
Medium Density/Medium Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.14\%	0.21\%	0.14\%	0.19\%	0.17\%	140	153	136	159	588
HDPE Bottles: Natural	0.04\%	0.07\%	0.03\%	0.06\%	0.05\%	36	58	30	49	173
HDPE Bottles: Colored	0.25\%	0.23\%	0.17\%	0.18\%	0.21\%	161	167	139	180	647
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	13	7	17	7	44
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	9	6	1	2	18
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	16	34	15	15	80
\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.04\%	0.07\%	0.04\%	0.05\%	58	72	103	63	296
Non-Beverage Total	0.52\%	0.57\%	0.44\%	0.49\%	0.50\%	433	497	441	475	1,846
Single Serve										
PET Bottles	0.28\%	0.36\%	0.28\%	0.39\%	0.33\%	379	383	406	633	1,801
HDPE Bottles: Natural	0.02\%	0.04\%	0.02\%	0.04\%	0.03\%	38	37	35	70	180
HDPE Bottles: Colored	0.02\%	0.03\%	0.01\%	0.01\%	0.02\%	28	45	19	16	108
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	7	14	12	35
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	1	0	2	6
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	4	8	11	6	29
Single Serve Total	0.32\%	0.43\%	0.32\%	0.44\%	0.38\%	454	481	485	739	2,159
Multi Serve										
PET Bottles	0.22\%	0.17\%	0.28\%	0.29\%	0.24\%	181	137	217	218	753
HDPE Bottles: Natural	0.12\%	0.18\%	0.18\%	0.18\%	0.16\%	95	124	136	124	479
HDPE Bottles: Colored	0.02\%	0.01\%	0.00\%	0.00\%	0.01\%	10	9	1	2	22
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	2	1	4
Multi Serve Total	0.35\%	0.36\%	0.46\%	0.47\%	0.41\%	287	271	356	345	1,259

Table 1-57
Medium Density/Medium Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse				Count in Refuse ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.65\%	0.87\%	0.70\%	0.88\%	0.77\%	692	683	778	1,014	3,167
HDPE Bottles: Natural	0.18\%	0.26\%	0.22\%	0.27\%	0.23\%	167	214	200	242	823
HDPE Bottles: Colored	0.28\%	0.29\%	0.20\%	0.19\%	0.24\%	202	231	159	198	790
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.02\%	0.01\%	0.01\%	13	7	17	7	44
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	12	13	15	14	54
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	19	42	15	17	93
\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.04\%	0.08\%	0.04\%	0.06\%	62	77	116	70	325
Clear Container Glass	0.91\%	1.11\%	0.97\%	1.32\%	1.08\%	159	247	203	283	892
Green Container Glass	0.34\%	0.35\%	0.19\%	0.34\%	0.30\%	51	52	32	68	203
Brown Container Glass	0.28\%	0.31\%	0.15\%	0.47\%	0.30\%	59	65	42	102	268
Other Container Glass	0.03\%	0.01\%	0.04\%	0.02\%	0.02\%	6	2	19	3	30
Aluminum Cans	0.12\%	0.18\%	0.15\%	0.22\%	0.17\%	291	342	356	433	1,422
GRAND TOTAL	2.88\%	3.45\%	2.74\%	3.79\%	3.20\%	1,733	1,975	1,952	2,451	8,111

(1) Values shown are the total number of containers observed in the Medium Density/Medium Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-58
Medium Density/Low Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.38\%	0.45\%	0.42\%	0.51\%	0.44\%	349	428	432	609	1,818
Clear Container Glass	0.59\%	0.44\%	0.74\%	0.55\%	0.58\%	108	86	138	109	441
Green Container Glass	0.17\%	0.24\%	0.19\%	0.28\%	0.22\%	37	61	43	67	208
Brown Container Glass	0.33\%	0.31\%	0.24\%	0.47\%	0.34\%	77	77	56	111	321
Other Container Glass	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0	0	4	0	4
Aluminum Cans	0.16\%	0.16\%	0.18\%	0.21\%	0.18\%	367	395	431	550	1,743
Deposit Total	1.64\%	1.61\%	1.78\%	2.02\%	1.76\%	938	1,047	1,104	1,446	4,535
Potential Deposit										
PET Bottles	0.30\%	0.34\%	0.40\%	0.60\%	0.41\%	382	395	469	910	2,156
HDPE Bottles: Natural	0.05\%	0.11\%	0.07\%	0.14\%	0.09\%	76	85	103	192	456
HDPE Bottles: Colored	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	7	5	0	12
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	14	17	19	27	77
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	1	7	6	16
Clear Container Glass	0.30\%	0.42\%	0.42\%	0.51\%	0.41\%	63	82	81	115	341
Green Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	0	0	1	1
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	1	2
Other Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	1	0	2	3
Aluminum Cans	0.01\%	0.02\%	0.03\%	0.05\%	0.03\%	27	39	46	119	231
Potential Deposit Total	0.67\%	0.90\%	0.94\%	1.34\%	0.96\%	565	627	730	1,373	3,295
Non-Deposit										
PET Bottles	0.16\%	0.34\%	0.35\%	0.35\%	0.30\%	145	341	286	320	1,092
HDPE Bottles: Natural	0.27\%	0.21\%	0.25\%	0.20\%	0.23\%	246	200	199	173	818
HDPE Bottles: Colored	0.32\%	0.28\%	0.43\%	0.26\%	0.33\%	190	176	251	229	846
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	14	16	10	16	56
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	14	22	10	10	56
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	14	36	27	21	98
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.06\%	0.08\%	0.07\%	0.06\%	38	81	124	80	323
Clear Container Glass	0.76\%	0.85\%	0.76\%	0.81\%	0.79\%	136	178	141	163	618
Green Container Glass	0.11\%	0.02\%	0.05\%	0.09\%	0.07\%	14	5	9	9	37
Brown Container Glass	0.03\%	0.02\%	0.04\%	0.01\%	0.02\%	6	4	7	5	22
Other Container Glass	0.00\%	0.03\%	0.06\%	0.03\%	0.03\%	0	13	11	10	34
Aluminum Cans	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	22	1	9	11	43
Non-Deposit Total	1.72\%	1.86\%	2.04\%	1.85\%	1.87\%	839	1,073	1,084	1,047	4,043

Table 1-58
Medium Density/Low Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.12\%	0.28\%	0.26\%	0.22\%	0.22\%	105	199	213	202	719
HDPE Bottles: Natural	0.08\%	0.05\%	0.08\%	0.10\%	0.08\%	62	44	65	88	259
HDPE Bottles: Colored	0.31\%	0.32\%	0.54\%	0.25\%	0.36\%	172	169	249	212	802
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	13	16	10	16	55
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	6	6	8	9	29
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	12	36	27	21	96
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.05\%	0.08\%	0.06\%	0.05\%	29	53	108	70	260
Non-Beverage Total	0.56\%	0.73\%	0.98\%	0.67\%	0.73\%	399	523	680	618	2,220
Single Serve										
PET Bottles	0.43\%	0.47\%	0.56\%	0.82\%	0.57\%	545	638	706	1,322	3,211
HDPE Bottles: Natural	0.04\%	0.03\%	0.06\%	0.08\%	0.05\%	106	73	102	150	431
HDPE Bottles: Colored	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	11	8	10	11	40
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	22	33	21	28	104
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	10	12	21	16	59
Single Serve Total	0.49\%	0.52\%	0.64\%	0.92\%	0.64\%	696	764	860	1,527	3,847
Multi Serve										
PET Bottles	0.30\%	0.35\%	0.35\%	0.41\%	0.35\%	208	251	258	311	1,028
HDPE Bottles: Natural	0.22\%	0.22\%	0.19\%	0.16\%	0.20\%	152	149	135	127	563
HDPE Bottles: Colored	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	2	3	4	3	12
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
Multi Serve Total	0.52\%	0.58\%	0.55\%	0.58\%	0.56\%	363	404	397	441	1,605

Table 1-58
Medium Density/Low Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse				Count in Refuse ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.85\%	1.14\%	1.17\%	1.46\%	1.15\%	876	1,164	1,187	1,839	5,066
HDPE Bottles: Natural	0.32\%	0.31\%	0.32\%	0.34\%	0.32\%	322	285	302	365	1,274
HDPE Bottles: Colored	0.32\%	0.29\%	0.44\%	0.26\%	0.33\%	190	183	256	229	858
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	14	16	10	16	56
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	28	39	29	37	133
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	14	36	27	21	98
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.06\%	0.08\%	0.07\%	0.06\%	40	82	131	86	339
Clear Container Glass	1.65\%	1.71\%	1.92\%	1.87\%	1.79\%	307	346	360	387	1,400
Green Container Glass	0.28\%	0.26\%	0.24\%	0.38\%	0.29\%	51	66	52	77	246
Brown Container Glass	0.36\%	0.34\%	0.27\%	0.48\%	0.36\%	84	81	63	117	345
Other Container Glass	0.00\%	0.04\%	0.07\%	0.04\%	0.04\%	0	14	15	12	41
Aluminum Cans	0.19\%	0.18\%	0.21\%	0.26\%	0.21\%	416	435	486	680	2,017
GRAND TOTAL	4.03\%	4.36\%	4.76\%	5.21\%	4.59\%	2,342	2,747	2,918	3,866	11,873

(1) Values shown are the total number of containers observed in the Medium Density/Low Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-59
Low Density/High Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.13\%	0.18\%	0.11\%	0.13\%	0.14\%	107	187	107	163	564
Clear Container Glass	0.19\%	0.11\%	0.11\%	0.16\%	0.15\%	21	23	23	37	104
Green Container Glass	0.06\%	0.05\%	0.10\%	0.12\%	0.09\%	15	13	23	35	86
Brown Container Glass	0.06\%	0.08\%	0.07\%	0.10\%	0.08\%	12	21	15	25	73
Other Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
Aluminum Cans	0.08\%	0.14\%	0.06\%	0.18\%	0.11\%	225	423	173	400	1,221
Deposit Total	0.54\%	0.56\%	0.45\%	0.70\%	0.56\%	382	667	341	660	2,050
Potential Deposit										
PET Bottles	0.21\%	0.32\%	0.17\%	0.30\%	0.25\%	274	417	229	465	1,385
HDPE Bottles: Natural	0.00\%	0.02\%	0.02\%	0.02\%	0.01\%	8	20	23	31	82
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	3	4	0	0	7
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	2	5	7
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	4	4
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	1	4	6
Clear Container Glass	0.19\%	0.23\%	0.11\%	0.21\%	0.18\%	40	45	22	49	156
Green Container Glass	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0	0	1	2	3
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.01\%	0.11\%	0.01\%	0.02\%	0.03\%	55	38	20	36	149
Potential Deposit Total	0.43\%	0.68\%	0.31\%	0.57\%	0.48\%	380	525	298	596	1,799
Non-Deposit										
PET Bottles	0.13\%	0.22\%	0.13\%	0.21\%	0.17\%	127	209	107	175	618
HDPE Bottles: Natural	0.65\%	0.12\%	0.08\%	0.10\%	0.24\%	108	102	70	79	359
HDPE Bottles: Colored	0.26\%	0.31\%	0.16\%	0.21\%	0.23\%	181	202	131	160	674
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	10	14	9	11	44
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	9	7	5	8	29
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	10	34	17	13	74
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.07\%	0.06\%	0.20\%	0.09\%	64	109	83	95	351
Clear Container Glass	0.45\%	0.59\%	0.28\%	0.51\%	0.45\%	91	126	67	119	403
Green Container Glass	0.05\%	0.10\%	0.03\%	0.06\%	0.06\%	7	12	4	7	30
Brown Container Glass	0.02\%	0.04\%	0.00\%	0.05\%	0.03\%	4	11	2	5	22
Other Container Glass	0.03\%	0.01\%	0.02\%	0.00\%	0.02\%	5	3	5	0	13
Aluminum Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	6	1	5	15
Non-Deposit Total	1.65\%	1.49\%	0.79\%	1.37\%	1.30\%	619	835	501	677	2,632

Table 1-59
Low Density/High Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.10\%	0.16\%	0.10\%	0.17\%	0.13\%	103	151	89	141	484
HDPE Bottles: Natural	0.05\%	0.06\%	0.04\%	0.04\%	0.05\%	48	47	37	41	173
HDPE Bottles: Colored	0.27\%	0.29\%	0.14\%	0.20\%	0.22\%	171	167	120	152	610
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	10	13	8	12	43
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	7	7	3	8	25
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	10	31	17	14	72
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.06\%	0.06\%	0.06\%	0.05\%	48	83	76	81	288
Non-Beverage Total	0.46\%	0.59\%	0.37\%	0.51\%	0.47\%	397	499	350	449	1,695
Single Serve										
PET Bottles	0.25\%	0.36\%	0.19\%	0.32\%	0.27\%	308	477	278	536	1,599
HDPE Bottles: Natural	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	17	27	22	21	87
HDPE Bottles: Colored	0.02\%	0.01\%	0.00\%	0.00\%	0.01\%	13	18	4	6	41
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	1	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	4	5	11
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	0	3	5
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	10	23	8	18	59
Single Serve Total	0.29\%	0.40\%	0.21\%	0.34\%	0.30\%	350	547	317	589	1,803
Multi Serve										
PET Bottles	0.11\%	0.21\%	0.10\%	0.16\%	0.14\%	91	170	81	127	469
HDPE Bottles: Natural	0.06\%	0.19\%	0.04\%	0.06\%	0.08\%	52	46	35	48	181
HDPE Bottles: Colored	0.02\%	0.01\%	0.01\%	0.00\%	0.01\%	10	4	3	2	19
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
Multi Serve Total	0.19\%	0.42\%	0.15\%	0.22\%	0.23\%	153	222	119	177	671

Table 1-59
Low Density/High Income Drink Container Counts and Sorts - Refuse (continued)

Percent of Refuse					Count in Refuse ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.48\%	0.73\%	0.40\%	0.65\%	0.55\%	508	813	443	803	2,567
HDPE Bottles: Natural	0.66\%	0.14\%	0.09\%	0.12\%	0.25\%	116	122	93	110	441
HDPE Bottles: Colored	0.27\%	0.31\%	0.16\%	0.21\%	0.23\%	184	206	131	160	681
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	10	14	9	11	44
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	9	7	7	13	36
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	10	34	17	17	78
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.07\%	0.06\%	0.20\%	0.09\%	64	110	84	99	357
Clear Container Glass	0.84\%	0.93\%	0.50\%	0.88\%	0.77\%	152	194	112	205	663
Green Container Glass	0.11\%	0.15\%	0.14\%	0.19\%	0.15\%	22	25	28	44	119
Brown Container Glass	0.08\%	0.13\%	0.07\%	0.15\%	0.11\%	16	32	17	30	95
Other Container Glass	0.04\%	0.01\%	0.02\%	0.00\%	0.02\%	7	3	5	0	15
Aluminum Cans	0.10\%	0.24\%	0.07\%	0.20\%	0.15\%	283	467	194	441	1,385
GRAND TOTAL	2.63\%	2.73\%	1.55\%	2.64\%	2.34\%	1,381	2,027	1,140	1,933	6,481

(1) Values shown are the total number of containers observed in the Low Density/High Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-60
Low Density/Medium Income Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.18\%	0.33\%	0.15\%	0.20\%	0.21\%	171	168	155	257	751
Clear Container Glass	0.21\%	0.25\%	0.16\%	0.35\%	0.24\%	41	42	32	73	188
Green Container Glass	0.03\%	0.08\%	0.08\%	0.10\%	0.07\%	7	18	14	22	61
Brown Container Glass	0.15\%	0.15\%	0.20\%	0.23\%	0.19\%	29	28	39	49	145
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.09\%	0.15\%	0.09\%	0.11\%	0.11\%	228	332	256	317	1,133
Deposit Total	0.66\%	0.96\%	0.67\%	0.99\%	0.82\%	476	588	496	718	2,278
Potential Deposit										
PET Bottles	0.21\%	0.20\%	0.25\%	0.32\%	0.25\%	249	260	300	526	1,335
HDPE Bottles: Natural	0.02\%	0.02\%	0.02\%	0.04\%	0.02\%	22	18	33	53	126
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	10	4	1	1	16
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	5	12	7	24
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.02\%	0.00\%	0.00\%	0.01\%	0	15	2	2	19
Clear Container Glass	0.16\%	0.14\%	0.19\%	0.22\%	0.18\%	33	30	39	54	156
Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	1
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	1
Aluminum Cans	0.00\%	0.00\%	0.01\%	0.03\%	0.01\%	4	13	21	68	106
Potential Deposit Total	0.39\%	0.38\%	0.48\%	0.62\%	0.48\%	318	347	408	713	1,786
Non-Deposit										
PET Bottles	0.17\%	0.16\%	0.22\%	0.17\%	0.18\%	121	117	171	151	560
HDPE Bottles: Natural	0.17\%	0.10\%	0.11\%	0.09\%	0.12\%	130	111	98	84	423
HDPE Bottles: Colored	0.25\%	0.15\%	0.16\%	0.17\%	0.18\%	132	127	136	147	542
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	4	10	4	12	30
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	11	2	3	6	22
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.01\%	0.02\%	19	24	14	15	72
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.08\%	0.05\%	0.05\%	0.05\%	35	106	85	71	297
Clear Container Glass	0.43\%	0.65\%	0.42\%	0.44\%	0.48\%	80	97	97	95	369
Green Container Glass	0.04\%	0.11\%	0.08\%	0.08\%	0.08\%	6	12	8	9	35
Brown Container Glass	0.04\%	0.03\%	0.00\%	0.00\%	0.02\%	9	6	2	0	17
Other Container Glass	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	1	0	9	1	11
Aluminum Cans	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	1	4	14	14	33
Non-Deposit Total	1.15\%	1.33\%	1.10\%	1.04\%	1.14\%	549	616	641	605	2,411

Table 1-60
Low Density/Medium Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.10\%	0.14\%	0.17\%	0.14\%	0.14\%	97	94	130	120	441
HDPE Bottles: Natural	0.07\%	0.03\%	0.03\%	0.02\%	0.04\%	55	38	37	29	159
HDPE Bottles: Colored	0.25\%	0.12\%	0.16\%	0.16\%	0.17\%	123	101	128	120	472
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	4	11	3	12	30
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	8	0	2	5	15
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.01\%	0.01\%	19	22	8	15	64
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.07\%	0.04\%	0.04\%	0.04\%	31	84	72	59	246
Non-Beverage Total	0.47\%	0.40\%	0.41\%	0.39\%	0.41\%	337	350	380	360	1,427
Single Serve										
PET Bottles	0.22\%	0.21\%	0.24\%	0.38\%	0.27\%	309	312	349	662	1,632
HDPE Bottles: Natural	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	29	20	29	38	116
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	15	14	5	26	60
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	6	13	8	29
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	0	0	2
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	2	30	8	13	53
Single Serve Total	0.25\%	0.24\%	0.26\%	0.41\%	0.30\%	357	384	404	747	1,892
Multi Serve										
PET Bottles	0.16\%	0.22\%	0.20\%	0.17\%	0.19\%	116	153	153	153	575
HDPE Bottles: Natural	0.09\%	0.09\%	0.09\%	0.09\%	0.09\%	65	70	66	70	271
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	4	9	4	1	18
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	2	1	1	4
Multi Serve Total	0.26\%	0.33\%	0.30\%	0.26\%	0.29\%	185	234	224	225	868

Table 1-60
Low Density/Medium Income Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.56\%	0.69\%	0.62\%	0.69\%	0.64\%	541	545	626	934	2,646
HDPE Bottles: Natural	0.18\%	0.12\%	0.14\%	0.12\%	0.14\%	152	129	131	137	549
HDPE Bottles: Colored	0.26\%	0.15\%	0.16\%	0.17\%	0.19\%	142	131	137	148	558
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	4	11	4	12	31
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	11	7	15	13	46
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.01\%	0.02\%	19	24	14	15	72
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.09\%	0.05\%	0.05\%	0.05\%	35	121	87	73	316
Clear Container Glass	0.80\%	1.04\%	0.77\%	1.01\%	0.90\%	154	169	168	222	713
Green Container Glass	0.07\%	0.19\%	0.16\%	0.18\%	0.15\%	13	30	22	32	97
Brown Container Glass	0.19\%	0.19\%	0.20\%	0.23\%	0.20\%	38	35	41	49	163
Other Container Glass	0.00\%	0.00\%	0.03\%	0.01\%	0.01\%	1	0	9	2	12
Aluminum Cans	0.09\%	0.16\%	0.11\%	0.15\%	0.13\%	233	349	291	399	1,272
GRAND TOTAL	2.20\%	2.67\%	2.25\%	2.66\%	2.44\%	1,343	1,551	1,545	2,036	6,475

(1) Values shown are the total number of containers observed in the Low Density/Medium Income stratum refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-61
Citywide Drink Container Counts and Sorts - Refuse

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.26\%	0.35\%	0.27\%	0.30\%	0.29\%	1,962	2,247	2,084	2,736	9,029
Clear Container Glass	0.31\%	0.29\%	0.29\%	0.41\%	0.33\%	380	397	432	572	1,781
Green Container Glass	0.14\%	0.18\%	0.15\%	0.23\%	0.17\%	231	322	273	393	1,219
Brown Container Glass	0.25\%	0.24\%	0.19\%	0.32\%	0.25\%	412	455	357	561	1,785
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	9	1	6	0	16
Aluminum Cans	0.15\%	0.18\%	0.14\%	0.21\%	0.17\%	2,683	3,363	2,914	3,894	12,854
Deposit Total	1.11\%	1.24\%	1.04\%	1.48\%	1.22\%	5,677	6,785	6,066	8,156	26,684
Potential Deposit										
PET Bottles	0.32\%	0.35\%	0.32\%	0.45\%	0.36\%	3,140	3,416	3,468	5,327	15,351
HDPE Bottles: Natural	0.03\%	0.06\%	0.06\%	0.09\%	0.06\%	271	368	507	783	1,929
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	50	55	18	12	135
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	9	0	0	9
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	21	36	58	65	180
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	2	5	9
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	20	27	25	17	89
Clear Container Glass	0.24\%	0.24\%	0.23\%	0.32\%	0.26\%	340	361	399	526	1,626
Green Container Glass	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	15	12	5	8	40
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	2	4	4	18
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	8	5	15
Aluminum Cans	0.01\%	0.03\%	0.02\%	0.03\%	0.02\%	190	283	229	501	1,203
Potential Deposit Total	0.62\%	0.71\%	0.65\%	0.92\%	0.72\%	4,057	4,571	4,723	7,253	20,604
Non-Deposit										
PET Bottles	0.19\%	0.30\%	0.24\%	0.26\%	0.25\%	1,335	1,808	1,646	1,896	6,685
HDPE Bottles: Natural	0.31\%	0.20\%	0.18\%	0.19\%	0.22\%	1,297	1,268	1,174	1,131	4,870
HDPE Bottles: Colored	0.32\%	0.30\%	0.27\%	0.29\%	0.29\%	1,710	1,846	1,615	1,819	6,990
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	86	87	98	84	355
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	82	74	48	58	262
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	131	261	147	192	731
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.06\%	0.07\%	0.08\%	0.07\%	503	768	841	692	2,804
Clear Container Glass	0.58\%	0.73\%	0.48\%	0.69\%	0.61\%	914	1,200	833	1,149	4,096
Green Container Glass	0.12\%	0.16\%	0.09\%	0.12\%	0.12\%	122	150	100	126	498
Brown Container Glass	0.04\%	0.05\%	0.02\%	0.02\%	0.03\%	91	80	51	47	269
Other Container Glass	0.01\%	0.01\%	0.03\%	0.01\%	0.02\%	25	32	67	18	142
Aluminum Cans	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	37	54	60	79	230
Non-Deposit Total	1.64\%	1.85\%	1.41\%	1.70\%	1.64\%	6,333	7,628	6,680	7,291	27,932

Table 1-61
Citywide Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.14\%	0.21\%	0.17\%	0.20\%	0.18\%	1,025	1,287	1,217	1,416	4,945
HDPE Bottles: Natural	0.06\%	0.05\%	0.06\%	0.07\%	0.06\%	435	370	391	451	1,647
HDPE Bottles: Colored	0.30\%	0.29\%	0.27\%	0.25\%	0.28\%	1,514	1,665	1,453	1,668	6,300
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	73	87	96	85	341
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	55	41	32	45	173
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	117	234	139	190	680
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.07\%	0.05\%	0.05\%	427	581	728	603	2,339
Non-Beverage Total	0.56\%	0.64\%	0.59\%	0.60\%	0.60\%	3,646	4,265	4,056	4,458	16,425
Single Serve										
PET Bottles	0.38\%	0.43\%	0.37\%	0.51\%	0.42\%	3,943	4,314	4,284	6,639	19,180
HDPE Bottles: Natural	0.03\%	0.03\%	0.03\%	0.04\%	0.03\%	380	314	426	559	1,679
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	130	169	127	115	541
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	1	0	5
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	46	68	70	78	262
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	15	9	4	6	34
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	67	149	123	100	439
Single Serve Total	0.43\%	0.48\%	0.42\%	0.57\%	0.48\%	4,585	5,023	5,035	7,497	22,140
Multi Serve										
PET Bottles	0.23\%	0.30\%	0.27\%	0.30\%	0.28\%	1,409	1,721	1,668	1,895	6,693
HDPE Bottles: Natural	0.14\%	0.20\%	0.16\%	0.16\%	0.17\%	853	913	865	903	3,534
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	56	53	47	44	200
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	0	0	4
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	3	0	1	4
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	7	8	4	21
Multi Serve Total	0.39\%	0.51\%	0.44\%	0.47\%	0.45\%	2,325	2,697	2,588	2,847	10,457

Table 1-61
Citywide Drink Container Counts and Sorts - Refuse (continued)

	Percent of Refuse					Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.77\%	1.00\%	0.82\%	1.02\%	0.90\%	6,437	7,471	7,198	9,959	31,065
HDPE Bottles: Natural	0.33\%	0.26\%	0.24\%	0.29\%	0.28\%	1,568	1,636	1,681	1,914	6,799
HDPE Bottles: Colored	0.32\%	0.31\%	0.27\%	0.29\%	0.30\%	1,760	1,901	1,633	1,831	7,125
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	86	96	98	84	364
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	103	110	106	123	442
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	132	262	149	197	740
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.08\%	0.08\%	0.07\%	523	795	866	709	2,893
Clear Container Glass	1.12\%	1.26\%	1.00\%	1.41\%	1.20\%	1,634	1,958	1,664	2,247	7,503
Green Container Glass	0.27\%	0.34\%	0.24\%	0.36\%	0.30\%	368	484	378	527	1,757
Brown Container Glass	0.30\%	0.29\%	0.22\%	0.35\%	0.29\%	511	537	412	612	2,072
Other Container Glass	0.02\%	0.01\%	0.04\%	0.01\%	0.02\%	35	34	81	23	173
Aluminum Cans	0.16\%	0.22\%	0.16\%	0.26\%	0.20\%	2,910	3,700	3,203	4,474	14,287
GRAND TOTAL	3.37\%	3.80\%	3.10\%	4.11\%	3.58\%	16,067	18,984	17,469	22,700	75,220

(1) Values shown are the total number of containers observed in all refuse samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-62
High Density/High Income Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.65\%	0.86\%	0.69\%	0.81\%	0.75\%	302	520	428	509	1,759
Clear Container Glass	0.77\%	0.60\%	0.70\%	1.54\%	0.90\%	70	66	93	184	413
Green Container Glass	1.72\%	2.19\%	2.34\%	2.21\%	2.12\%	160	195	217	226	798
Brown Container Glass	1.42\%	1.51\%	1.27\%	1.92\%	1.53\%	138	169	180	256	743
Other Container Glass	0.02\%	0.04\%	0.00\%	0.01\%	0.02\%	1	8	0	1	10
Aluminum Cans	0.28\%	0.38\%	0.21\%	0.36\%	0.31\%	395	519	359	657	1,930
Deposit Total	4.87\%	5.58\%	5.22\%	6.84\%	5.62\%	1,066	1,477	1,277	1,833	5,653
Potential Deposit										
PET Bottles	3.17\%	3.53\%	3.80\%	4.25\%	3.69\%	1,960	2,545	3,209	3,360	11,074
HDPE Bottles: Natural	0.65\%	0.91\%	0.63\%	0.73\%	0.73\%	205	308	211	276	1,000
HDPE Bottles: Colored	0.10\%	0.01\%	0.00\%	0.00\%	0.03\%	23	7	0	1	31
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	3	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	1	0	5
\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.02\%	0.00\%	0.01\%	0.03\%	11	8	0	2	21
Clear Container Glass	0.83\%	0.84\%	1.19\%	0.94\%	0.95\%	74	95	124	109	402
Green Container Glass	0.42\%	0.19\%	0.00\%	0.13\%	0.19\%	18	13	0	15	46
Brown Container Glass	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	2	0	1	0	3
Other Container Glass	0.01\%	0.02\%	0.05\%	0.00\%	0.02\%	1	1	3	0	5
Aluminum Cans	0.03\%	0.05\%	0.05\%	0.11\%	0.06\%	48	86	81	121	336
Potential Deposit Total	5.32\%	5.58\%	5.75\%	6.17\%	5.70\%	2,346	3,066	3,630	3,884	12,926
Non-Deposit										
PET Bottles	1.12\%	1.50\%	1.35\%	1.30\%	1.32\%	407	644	632	626	2,309
HDPE Bottles: Natural	0.86\%	1.08\%	0.89\%	1.03\%	0.96\%	319	456	435	482	1,692
HDPE Bottles: Colored	2.03\%	2.54\%	2.54\%	2.50\%	2.40\%	457	718	725	826	2,726
\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.03\%	0.00\%	0.16\%	0.05\%	12	16	2	45	75
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	1	2	1	5	9
\#3 Through \#7 Bottles: \#5 PP	0.06\%	0.03\%	0.02\%	0.06\%	0.04\%	44	32	28	53	157
\#3 Through \#7 Bottles: \#7 Other	0.16\%	0.40\%	0.08\%	0.17\%	0.20\%	64	90	63	54	271
Clear Container Glass	6.70\%	4.99\%	5.17\%	5.22\%	5.51\%	418	415	446	424	1,703
Green Container Glass	9.33\%	8.26\%	10.05\%	6.88\%	8.64\%	382	369	498	353	1,602
Brown Container Glass	0.66\%	0.82\%	0.50\%	1.11\%	0.77\%	41	66	36	92	235
Other Container Glass	0.17\%	0.06\%	0.18\%	0.17\%	0.14\%	7	5	14	12	38
Aluminum Cans	0.02\%	0.03\%	0.01\%	0.05\%	0.03\%	43	31	26	47	147
Non-Deposit Total	21.13\%	19.75\%	20.79\%	18.65\%	20.09\%	2,195	2,844	2,906	3,019	10,964

Table 1-62
High Density/High Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.69\%	0.82\%	0.81\%	0.88\%	0.80\%	278	388	435	447	1,548
HDPE Bottles: Natural	0.21\%	0.25\%	0.25\%	0.15\%	0.21\%	62	92	154	72	380
HDPE Bottles: Colored	2.09\%	2.19\%	2.50\%	2.68\%	2.36\%	484	609	716	826	2,635
\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.02\%	0.00\%	0.02\%	0.02\%	10	12	2	11	35
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	1	2	1	5	9
\#3 Through \#7 Bottles: \#5 PP	0.06\%	0.03\%	0.02\%	0.06\%	0.04\%	44	29	27	49	149
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.06\%	0.04\%	0.05\%	0.05\%	19	50	39	24	132
Non-Beverage Total	3.11\%	3.36\%	3.62\%	3.84\%	3.48\%	898	1,182	1,374	1,434	4,888
Single Serve										
PET Bottles	1.91\%	2.32\%	2.44\%	2.75\%	2.35\%	1,592	2,078	2,524	2,748	8,942
HDPE Bottles: Natural	0.09\%	0.12\%	0.05\%	0.04\%	0.08\%	58	101	53	43	255
HDPE Bottles: Colored	0.01\%	0.03\%	0.01\%	0.01\%	0.02\%	7	28	14	12	61
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	3	3	0	4	10
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	3	5	1	4	13
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.03\%	0.02\%	0.02\%	0.03\%	26	24	21	18	89
Single Serve Total	2.05\%	2.51\%	2.53\%	2.83\%	2.48\%	1,689	2,239	2,613	2,829	9,370
Multi Serve										
PET Bottles	2.20\%	2.67\%	2.51\%	2.67\%	2.52\%	900	1,219	1,312	1,300	4,731
HDPE Bottles: Natural	1.35\%	1.64\%	1.20\%	1.55\%	1.43\%	418	622	469	643	2,152
HDPE Bottles: Colored	0.06\%	0.21\%	0.03\%	0.05\%	0.09\%	16	56	11	19	102
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	3	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	1	0	2
\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.03\%	0.00\%	0.06\%	0.04\%	8	5	1	13	27
Multi Serve Total	3.70\%	4.56\%	3.75\%	4.34\%	4.09\%	1,342	1,906	1,794	1,975	7,017

Table 1-62
High Density/High Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	4.94\%	5.88\%	5.84\%	6.36\%	5.76\%	2,669	3,709	4,269	4,495	15,142
HDPE Bottles: Natural	1.50\%	1.99\%	1.52\%	1.76\%	1.70\%	524	764	646	758	2,692
HDPE Bottles: Colored	2.13\%	2.56\%	2.54\%	2.51\%	2.43\%	480	725	725	827	2,757
\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.04\%	0.00\%	0.16\%	0.06\%	12	19	2	45	78
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	1	2	1	5	9
\#3 Through \#7 Bottles: \#5 PP	0.06\%	0.03\%	0.02\%	0.06\%	0.04\%	48	32	29	53	162
\#3 Through \#7 Bottles: \#7 Other	0.24\%	0.43\%	0.08\%	0.18\%	0.23\%	75	98	63	56	292
Clear Container Glass	8.29\%	6.43\%	7.07\%	7.70\%	7.36\%	562	576	663	717	2,518
Green Container Glass	11.48\%	10.64\%	12.39\%	9.23\%	10.95\%	560	577	715	594	2,446
Brown Container Glass	2.11\%	2.33\%	1.80\%	3.03\%	2.31\%	181	235	217	348	981
Other Container Glass	0.20\%	0.12\%	0.23\%	0.17\%	0.18\%	9	14	17	13	53
Aluminum Cans	0.33\%	0.47\%	0.27\%	0.51\%	0.39\%	486	636	466	825	2,413
GRAND TOTAL	31.32\%	30.91\%	31.76\%	31.67\%	31.41\%	5,607	7,387	7,813	8,736	29,543

(1) Values shown are the total number of containers observed in the High Density/High Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-63
High Density/Medium Income Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.38\%	0.47\%	0.59\%	0.56\%	0.50\%	165	204	318	338	1,025
Clear Container Glass	0.63\%	1.06\%	1.02\%	0.76\%	0.86\%	59	69	87	78	293
Green Container Glass	0.28\%	0.65\%	0.87\%	1.16\%	0.75\%	23	54	87	132	296
Brown Container Glass	1.31\%	0.92\%	0.90\%	1.27\%	1.10\%	95	88	91	134	408
Other Container Glass	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0	3	2	0	5
Aluminum Cans	0.19\%	0.18\%	0.20\%	0.36\%	0.23\%	253	217	308	516	1,294
Deposit Total	2.79\%	3.28\%	3.59\%	4.11\%	3.45\%	595	635	893	1,198	3,321
Potential Deposit										
PET Bottles	1.73\%	2.18\%	2.62\%	4.24\%	2.71\%	936	1,284	2,038	3,514	7,772
HDPE Bottles: Natural	0.91\%	1.27\%	1.15\%	1.04\%	1.09\%	268	367	397	390	1,422
HDPE Bottles: Colored	0.10\%	0.04\%	0.04\%	0.03\%	0.05\%	22	9	14	6	51
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	9	0	0	0	9
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	0	0	2	2
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.07\%	0.01\%	0.01\%	0.03\%	7	29	2	3	41
Clear Container Glass	0.83\%	0.96\%	0.75\%	1.19\%	0.93\%	77	85	94	155	411
Green Container Glass	0.02\%	0.07\%	0.00\%	0.00\%	0.02\%	2	3	0	0	5
Brown Container Glass	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	1	0	1	2
Other Container Glass	0.00\%	0.00\%	0.02\%	0.21\%	0.06\%	0	0	3	34	37
Aluminum Cans	0.04\%	0.09\%	0.17\%	0.24\%	0.14\%	57	119	206	266	648
Potential Deposit Total	3.68\%	4.70\%	4.76\%	6.97\%	5.04\%	1,378	1,897	2,754	4,371	10,400
Non-Deposit										
PET Bottles	1.68\%	2.42\%	1.70\%	1.75\%	1.88\%	606	823	790	852	3,071
HDPE Bottles: Natural	2.44\%	2.93\%	2.88\%	2.48\%	2.68\%	855	1,073	1,239	1,167	4,334
HDPE Bottles: Colored	3.20\%	2.90\%	3.38\%	3.14\%	3.16\%	623	655	978	1,011	3,267
\#3 Through \#7 Bottles: \#3 PVC	0.06\%	0.05\%	0.15\%	0.03\%	0.07\%	21	18	44	14	97
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	5	7	0	0	12
\#3 Through \#7 Bottles: \#5 PP	0.10\%	0.07\%	0.05\%	0.08\%	0.07\%	62	36	65	63	226
\#3 Through \#7 Bottles: \#7 Other	0.79\%	0.14\%	0.10\%	0.13\%	0.29\%	100	82	70	58	310
Clear Container Glass	5.67\%	6.15\%	5.72\%	4.15\%	5.41\%	371	389	508	364	1,632
Green Container Glass	2.97\%	3.59\%	3.90\%	2.69\%	3.29\%	127	143	195	133	598
Brown Container Glass	0.28\%	0.37\%	0.43\%	0.45\%	0.38\%	25	28	36	35	124
Other Container Glass	0.09\%	0.09\%	0.09\%	0.07\%	0.09\%	4	8	6	12	30
Aluminum Cans	0.02\%	0.02\%	0.00\%	0.14\%	0.05\%	39	22	3	114	178
Non-Deposit Total	17.29\%	18.73\%	18.41\%	15.10\%	17.36\%	2,838	3,284	3,934	3,823	13,879

Table 1-63
High Density/Medium Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	1.01\%	1.27\%	0.95\%	1.12\%	1.09\%	389	502	510	568	1,969
HDPE Bottles: Natural	0.35\%	1.08\%	0.53\%	0.31\%	0.56\%	97	133	147	113	490
HDPE Bottles: Colored	3.29\%	2.53\%	2.98\%	2.93\%	2.93\%	581	573	830	970	2,954
\#3 Through \#7 Bottles: \#3 PVC	0.06\%	0.05\%	0.15\%	0.03\%	0.07\%	19	17	44	14	94
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	2	3	0	0	5
\#3 Through \#7 Bottles: \#5 PP	0.09\%	0.06\%	0.05\%	0.07\%	0.07\%	61	30	65	55	211
\#3 Through \#7 Bottles: \#7 Other	0.12\%	0.11\%	0.04\%	0.05\%	0.08\%	56	57	26	21	160
Non-Beverage Total	4.92\%	5.11\%	4.71\%	4.50\%	4.81\%	1,205	1,315	1,622	1,741	5,883
Single Serve										
PET Bottles	1.03\%	1.29\%	1.66\%	2.72\%	1.69\%	785	1,046	1,727	2,897	6,455
HDPE Bottles: Natural	0.06\%	0.08\%	0.10\%	0.06\%	0.07\%	45	55	96	59	255
HDPE Bottles: Colored	0.02\%	0.04\%	0.01\%	0.01\%	0.02\%	20	26	19	18	83
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	12	4	0	0	16
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0	5	0	9	14
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.07\%	0.06\%	0.05\%	0.06\%	29	47	44	29	149
Single Serve Total	1.16\%	1.49\%	1.83\%	2.86\%	1.84\%	892	1,183	1,886	3,012	6,973
Multi Serve										
PET Bottles	1.75\%	2.54\%	2.23\%	2.68\%	2.30\%	532	743	930	1,233	3,438
HDPE Bottles: Natural	2.91\%	3.40\%	3.43\%	3.06\%	3.20\%	1,022	1,198	1,390	1,384	4,994
HDPE Bottles: Colored	0.23\%	0.22\%	0.33\%	0.09\%	0.22\%	44	33	112	29	218
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	1	3
\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.03\%	0.01\%	0.03\%	0.04\%	18	5	2	8	33
Multi Serve Total	4.99\%	6.19\%	6.00\%	5.87\%	5.76\%	1,617	1,980	2,434	2,655	8,686

Table 1-63
High Density/Medium Income Drink Container Counts and Sorts - MGP (continued)

(1) Values shown are the total number of containers observed in the High Density/Medium Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-64
High Density/Low Income Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.83\%	0.76\%	0.86\%	1.21\%	0.92\%	279	343	453	608	1,683
Clear Container Glass	0.93\%	0.73\%	1.54\%	0.99\%	1.05\%	84	54	104	96	338
Green Container Glass	0.41\%	0.57\%	0.31\%	0.40\%	0.42\%	35	62	29	45	171
Brown Container Glass	0.42\%	0.54\%	0.66\%	0.92\%	0.64\%	47	45	74	101	267
Other Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	1	0	3	4
Aluminum Cans	0.22\%	0.20\%	0.17\%	0.28\%	0.22\%	236	281	231	451	1,199
Deposit Total	2.81\%	2.79\%	3.54\%	3.81\%	3.25\%	681	786	891	1,304	3,662
Potential Deposit										
PET Bottles	1.43\%	1.53\%	2.09\%	2.64\%	1.93\%	806	932	1,253	2,104	5,095
HDPE Bottles: Natural	0.95\%	0.96\%	0.92\%	1.14\%	1.00\%	324	328	374	494	1,520
HDPE Bottles: Colored	0.10\%	0.03\%	0.02\%	0.04\%	0.05\%	28	6	10	11	55
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	0	2	1	8
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	2	0	2
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	3	0	2	5
Clear Container Glass	0.52\%	0.51\%	0.53\%	0.55\%	0.53\%	50	52	59	64	225
Green Container Glass	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	1	0	2	0	3
Brown Container Glass	0.02\%	0.01\%	0.00\%	0.00\%	0.01\%	1	1	0	0	2
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.06\%	0.04\%	0.19\%	0.28\%	0.14\%	73	37	150	255	515
Potential Deposit Total	3.10\%	3.08\%	3.78\%	4.65\%	3.66\%	1,288	1,359	1,852	2,931	7,430
Non-Deposit										
PET Bottles	1.28\%	1.45\%	1.81\%	2.42\%	1.74\%	486	556	766	923	2,731
HDPE Bottles: Natural	2.52\%	2.13\%	2.76\%	2.85\%	2.57\%	902	796	1,155	1,330	4,183
HDPE Bottles: Colored	2.59\%	2.51\%	3.25\%	3.46\%	2.96\%	551	531	862	1,058	3,002
\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.03\%	0.02\%	0.03\%	0.03\%	48	9	6	13	76
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	7	11	2	5	25
\#3 Through \#7 Bottles: \#5 PP	0.08\%	0.05\%	0.05\%	0.09\%	0.07\%	55	27	58	67	207
\#3 Through \#7 Bottles: \#7 Other	0.10\%	0.11\%	0.14\%	0.10\%	0.11\%	63	60	41	45	209
Clear Container Glass	2.10\%	2.35\%	3.41\%	2.33\%	2.54\%	159	183	273	220	835
Green Container Glass	0.27\%	0.64\%	0.74\%	0.44\%	0.52\%	16	27	41	24	108
Brown Container Glass	0.07\%	0.15\%	0.20\%	0.33\%	0.19\%	7	11	10	29	57
Other Container Glass	0.08\%	0.01\%	0.18\%	0.03\%	0.08\%	3	1	15	2	21
Aluminum Cans	0.02\%	0.02\%	0.02\%	0.10\%	0.04\%	28	41	28	66	163
Non-Deposit Total	9.15\%	9.46\%	12.58\%	12.18\%	10.85\%	2,325	2,253	3,257	3,782	11,617

Table 1-64
High Density/Low Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.91\%	0.80\%	1.17\%	1.12\%	1.00\%	366	358	538	576	1,838
HDPE Bottles: Natural	0.41\%	0.29\%	0.38\%	0.24\%	0.33\%	135	113	146	91	485
HDPE Bottles: Colored	2.64\%	2.28\%	3.19\%	3.46\%	2.90\%	561	529	830	1,053	2,973
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.02\%	0.02\%	0.03\%	0.02\%	13	9	6	13	41
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	6	3	2	1	12
\#3 Through \#7 Bottles: \#5 PP	0.07\%	0.13\%	0.05\%	0.07\%	0.08\%	50	42	55	54	201
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.08\%	0.04\%	0.07\%	0.07\%	40	34	27	30	131
Non-Beverage Total	4.13\%	3.60\%	4.85\%	5.00\%	4.41\%	1,171	1,088	1,604	1,818	5,681
Single Serve										
PET Bottles	0.87\%	1.08\%	1.38\%	2.22\%	1.39\%	731	870	1,174	2,131	4,906
HDPE Bottles: Natural	0.06\%	0.06\%	0.19\%	0.10\%	0.10\%	78	72	165	123	438
HDPE Bottles: Colored	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	8	5	12	3	28
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	7	2	5	20
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	4	1	3	9	17
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.02\%	0.02\%	0.02\%	0.02\%	22	24	11	14	71
Single Serve Total	0.98\%	1.17\%	1.61\%	2.36\%	1.54\%	852	979	1,367	2,285	5,483
Multi Serve										
PET Bottles	1.57\%	2.01\%	2.11\%	2.43\%	2.03\%	460	592	778	934	2,764
HDPE Bottles: Natural	2.79\%	2.61\%	2.97\%	3.48\%	2.97\%	1,003	969	1,179	1,578	4,729
HDPE Bottles: Colored	0.22\%	0.18\%	0.16\%	0.05\%	0.15\%	52	52	48	14	166
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	3	2	3	8
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.07\%	0.01\%	0.02\%	0	4	2	3	9
Multi Serve Total	4.59\%	4.82\%	5.31\%	5.98\%	5.18\%	1,515	1,620	2,009	2,532	7,676

Table 1-64
High Density/Low Income Drink Container Counts and Sorts - MGP (continued)

(1) Values shown are the total number of containers observed in the High Density/Low Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-65
Medium Density/High Income Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.60\%	0.99\%	0.86\%	0.96\%	0.85\%	294	549	505	644	1,992
Clear Container Glass	0.86\%	1.47\%	0.74\%	1.27\%	1.08\%	90	122	78	241	531
Green Container Glass	1.19\%	2.10\%	1.56\%	1.50\%	1.58\%	117	182	139	200	638
Brown Container Glass	3.17\%	2.80\%	2.18\%	2.74\%	2.72\%	303	260	248	345	1,156
Other Container Glass	0.00\%	0.01\%	0.00\%	0.22\%	0.06\%	1	1	0	27	29
Aluminum Cans	0.30\%	0.33\%	0.37\%	0.46\%	0.37\%	359	410	474	693	1,936
Deposit Total	6.13\%	7.70\%	5.72\%	7.16\%	6.65\%	1,164	1,524	1,444	2,150	6,282
Potential Deposit										
PET Bottles	2.22\%	2.41\%	2.82\%	4.04\%	2.87\%	1,375	1,691	2,172	3,431	8,669
HDPE Bottles: Natural	0.38\%	0.71\%	0.56\%	0.65\%	0.57\%	118	190	211	230	749
HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	1	1	0	4
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0	2	0	0	2
\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.02\%	0.00\%	0.01\%	0.03\%	7	6	2	5	20
Clear Container Glass	0.86\%	0.82\%	0.68\%	1.26\%	0.90\%	73	76	75	151	375
Green Container Glass	0.17\%	0.07\%	0.02\%	0.00\%	0.07\%	5	7	1	1	14
Brown Container Glass	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%	1	0	0	3	4
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.05\%	0.04\%	0.09\%	0.12\%	0.08\%	48	53	136	176	413
Potential Deposit Total	3.78\%	4.09\%	4.19\%	6.11\%	4.53\%	1,629	2,027	2,598	3,998	10,252
Non-Deposit										
PET Bottles	1.18\%	1.69\%	1.25\%	1.60\%	1.42\%	435	678	591	742	2,446
HDPE Bottles: Natural	0.85\%	1.05\%	1.21\%	0.91\%	1.01\%	293	460	504	460	1,717
HDPE Bottles: Colored	1.87\%	2.51\%	2.46\%	2.14\%	2.25\%	468	587	677	797	2,529
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.07\%	0.00\%	0.03\%	0.04\%	13	13	1	18	45
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	2	2	5
\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.07\%	0.06\%	0.07\%	0.06\%	39	58	73	61	231
\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.12\%	0.30\%	0.10\%	0.15\%	33	55	47	51	186
Clear Container Glass	4.83\%	8.55\%	5.57\%	5.67\%	6.12\%	336	635	534	575	2,080
Green Container Glass	8.64\%	10.64\%	7.70\%	6.54\%	8.35\%	333	443	359	364	1,499
Brown Container Glass	0.43\%	0.82\%	0.52\%	0.55\%	0.58\%	26	55	38	43	162
Other Container Glass	0.14\%	0.22\%	0.16\%	0.20\%	0.18\%	5	13	14	21	53
Aluminum Cans	0.02\%	0.02\%	0.00\%	0.06\%	0.02\%	24	29	7	61	121
Non-Deposit Total	18.15\%	25.74\%	19.22\%	17.88\%	20.18\%	2,006	3,026	2,847	3,195	11,074

Table 1-65
Medium Density/High Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.60\%	0.93\%	0.86\%	0.91\%	0.82\%	288	402	436	495	1,621
HDPE Bottles: Natural	0.25\%	0.32\%	0.48\%	0.12\%	0.30\%	71	107	143	65	386
HDPE Bottles: Colored	1.79\%	2.43\%	2.28\%	2.03\%	2.13\%	431	511	643	745	2,330
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.03\%	0.00\%	0.03\%	0.03\%	13	13	1	17	44
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	1	2	4
\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.07\%	0.05\%	0.06\%	0.06\%	37	56	70	53	216
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.05\%	0.03\%	0.04\%	0.05\%	28	44	20	19	111
Non-Beverage Total	2.80\%	3.82\%	3.72\%	3.20\%	3.38\%	869	1,133	1,314	1,396	4,712
Single Serve										
PET Bottles	1.58\%	1.82\%	2.01\%	2.91\%	2.08\%	1,227	1,464	1,905	3,021	7,617
HDPE Bottles: Natural	0.05\%	0.06\%	0.09\%	0.06\%	0.06\%	44	56	82	61	243
HDPE Bottles: Colored	0.04\%	0.03\%	0.01\%	0.01\%	0.02\%	25	23	9	14	71
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	1	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	1	1	2
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	3	2	3	8
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.09\%	0.04\%	0.02\%	0.04\%	5	27	25	14	71
Single Serve Total	1.68\%	2.00\%	2.14\%	3.01\%	2.20\%	1,301	1,574	2,024	3,115	8,014
Multi Serve										
PET Bottles	1.66\%	2.48\%	2.09\%	2.63\%	2.21\%	590	951	931	1,306	3,778
HDPE Bottles: Natural	0.87\%	1.38\%	1.35\%	1.35\%	1.23\%	283	402	443	564	1,692
HDPE Bottles: Colored	0.11\%	0.12\%	0.04\%	0.06\%	0.08\%	26	35	14	27	102
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0	1	0	5	6
\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.03\%	0.02\%	0.04\%	0.05\%	11	5	4	14	34
Multi Serve Total	2.73\%	4.02\%	3.49\%	4.09\%	3.57\%	910	1,394	1,392	1,916	5,612

Table 1-65
Medium Density/High Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	4.00\%	5.09\%	4.93\%	6.61\%	5.15\%	2,104	2,918	3,268	4,817	13,107
HDPE Bottles: Natural	1.24\%	1.76\%	1.77\%	1.56\%	1.58\%	411	650	715	690	2,466
HDPE Bottles: Colored	1.87\%	2.52\%	2.46\%	2.14\%	2.25\%	470	588	678	797	2,533
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.07\%	0.00\%	0.03\%	0.04\%	13	14	1	18	46
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	2	3	6
\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.08\%	0.06\%	0.07\%	0.06\%	39	60	73	61	233
\#3 Through \#7 Bottles: \#7 Other	0.18\%	0.14\%	0.30\%	0.12\%	0.19\%	40	61	49	56	206
Clear Container Glass	6.54\%	10.84\%	7.00\%	8.20\%	8.09\%	499	833	687	967	2,986
Green Container Glass	10.00\%	12.81\%	9.28\%	8.05\%	10.00\%	455	632	499	565	2,151
Brown Container Glass	3.61\%	3.62\%	2.70\%	3.31\%	3.30\%	330	315	286	391	1,322
Other Container Glass	0.15\%	0.23\%	0.16\%	0.42\%	0.23\%	6	14	14	48	82
Aluminum Cans	0.37\%	0.39\%	0.46\%	0.64\%	0.47\%	431	492	617	930	2,470
GRAND TOTAL	28.06\%	37.54\%	29.13\%	31.15\%	31.36\%	4,799	6,577	6,889	9,343	27,608

(1) Values shown are the total number of containers observed in the Medium Density/High Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-66
Medium Density/Medium Income Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.97\%	1.08\%	1.31\%	1.27\%	1.16\%	418	518	696	719	2,351
Clear Container Glass	0.69\%	0.44\%	1.06\%	1.24\%	0.87\%	55	38	130	145	368
Green Container Glass	0.63\%	0.58\%	0.77\%	1.00\%	0.75\%	62	65	77	111	315
Brown Container Glass	1.12\%	1.78\%	1.14\%	1.86\%	1.47\%	126	179	123	223	651
Other Container Glass	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0	0	1	2	3
Aluminum Cans	0.35\%	0.28\%	0.30\%	0.39\%	0.33\%	414	395	461	635	1,905
Deposit Total	3.75\%	4.15\%	4.58\%	5.77\%	4.59\%	1,075	1,195	1,488	1,835	5,593
Potential Deposit										
PET Bottles	2.80\%	2.91\%	3.05\%	4.88\%	3.43\%	1,630	1,994	2,240	4,229	10,093
HDPE Bottles: Natural	0.99\%	1.23\%	1.16\%	1.50\%	1.22\%	279	445	439	639	1,802
HDPE Bottles: Colored	0.08\%	0.14\%	0.01\%	0.05\%	0.07\%	18	27	2	21	68
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	10	0	0	7	17
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	1	1	0	0	2
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.05\%	0.00\%	0.03\%	0.03\%	8	13	0	10	31
Clear Container Glass	1.00\%	0.92\%	1.09\%	1.65\%	1.17\%	99	96	134	200	529
Green Container Glass	0.01\%	0.05\%	0.03\%	0.00\%	0.02\%	1	5	3	0	9
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Other Container Glass	0.14\%	0.00\%	0.00\%	0.01\%	0.04\%	3	0	0	2	5
Aluminum Cans	0.11\%	0.07\%	0.20\%	0.34\%	0.19\%	90	80	246	424	840
Potential Deposit Total	5.16\%	5.38\%	5.54\%	8.48\%	6.17\%	2,139	2,661	3,064	5,532	13,396
Non-Deposit										
PET Bottles	2.18\%	2.70\%	2.17\%	2.21\%	2.31\%	777	994	979	1,113	3,863
HDPE Bottles: Natural	3.00\%	3.37\%	3.30\%	3.30\%	3.24\%	1,441	1,280	1,369	1,675	5,765
HDPE Bottles: Colored	3.58\%	3.75\%	3.33\%	3.23\%	3.46\%	740	837	982	1,192	3,751
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.02\%	0.01\%	0.06\%	0.03\%	14	16	3	32	65
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	3	16	3	13	35
\#3 Through \#7 Bottles: \#5 PP	0.13\%	0.09\%	0.06\%	0.13\%	0.10\%	75	78	57	92	302
\#3 Through \#7 Bottles: \#7 Other	0.19\%	0.26\%	0.09\%	0.12\%	0.16\%	92	90	65	76	323
Clear Container Glass	5.24\%	5.28\%	5.40\%	3.89\%	4.94\%	378	448	436	438	1,700
Green Container Glass	1.31\%	1.31\%	2.13\%	1.33\%	1.53\%	56	57	108	72	293
Brown Container Glass	0.20\%	0.56\%	0.34\%	0.25\%	0.33\%	16	36	27	23	102
Other Container Glass	0.18\%	0.10\%	0.10\%	0.17\%	0.14\%	11	9	12	14	46
Aluminum Cans	0.03\%	0.06\%	0.01\%	0.07\%	0.04\%	30	63	19	66	178
Non-Deposit Total	16.08\%	17.51\%	16.94\%	14.78\%	16.29\%	3,633	3,924	4,060	4,806	16,423

Table 1-66
Medium Density/Medium Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	1.47\%	1.53\%	1.53\%	1.47\%	1.50\%	515	680	748	814	2,757
HDPE Bottles: Natural	0.34\%	0.71\%	0.55\%	0.34\%	0.48\%	112	193	207	170	682
HDPE Bottles: Colored	3.24\%	3.34\%	3.25\%	3.15\%	3.24\%	695	759	940	1,113	3,507
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.02\%	0.01\%	0.06\%	0.03\%	13	16	3	31	63
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	7	1	6	20
\#3 Through \#7 Bottles: \#5 PP	0.13\%	0.08\%	0.06\%	0.12\%	0.10\%	65	73	54	82	274
\#3 Through \#7 Bottles: \#7 Other	0.11\%	0.10\%	0.04\%	0.07\%	0.08\%	57	52	24	35	168
Non-Beverage Total	5.33\%	5.79\%	5.43\%	5.20\%	5.43\%	1,463	1,780	1,977	2,251	7,471
Single Serve										
PET Bottles	1.95\%	2.07\%	2.41\%	3.67\%	2.54\%	1,514	1,682	2,153	3,646	8,995
HDPE Bottles: Natural	0.18\%	0.09\%	0.14\%	0.07\%	0.12\%	72	73	123	82	350
HDPE Bottles: Colored	0.03\%	0.02\%	0.01\%	0.02\%	0.02\%	22	28	16	21	87
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	11	8	2	12	33
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	3	5
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.05\%	0.05\%	0.05\%	31	32	39	38	140
Single Serve Total	2.20\%	2.24\%	2.62\%	3.82\%	2.74\%	1,652	1,824	2,333	3,802	9,611
Multi Serve										
PET Bottles	2.64\%	3.10\%	2.46\%	3.45\%	2.91\%	837	1,107	996	1,598	4,538
HDPE Bottles: Natural	3.55\%	3.53\%	3.65\%	4.58\%	3.84\%	1,177	1,416	1,492	2,058	6,143
HDPE Bottles: Colored	0.21\%	0.37\%	0.07\%	0.15\%	0.20\%	61	92	28	54	235
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0	4	1	3	8
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.15\%	0.00\%	0.04\%	0.06\%	9	12	0	12	33
Multi Serve Total	6.45\%	7.15\%	6.18\%	8.23\%	7.01\%	2,084	2,631	2,517	3,725	10,957

Table 1-66
Medium Density/Medium Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	5.96\%	6.69\%	6.52\%	8.37\%	6.90\%	2,825	3,506	3,915	6,061	16,307
HDPE Bottles: Natural	3.99\%	4.60\%	4.46\%	4.80\%	4.46\%	1,720	1,725	1,808	2,314	7,567
HDPE Bottles: Colored	3.66\%	3.90\%	3.34\%	3.29\%	3.53\%	758	864	984	1,213	3,819
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.02\%	0.01\%	0.06\%	0.03\%	14	16	3	32	65
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	13	16	3	20	52
\#3 Through \#7 Bottles: \#5 PP	0.13\%	0.10\%	0.06\%	0.13\%	0.11\%	76	79	57	92	304
\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.31\%	0.09\%	0.16\%	0.19\%	100	103	65	86	354
Clear Container Glass	6.93\%	6.64\%	7.55\%	6.77\%	6.98\%	532	582	700	783	2,597
Green Container Glass	1.95\%	1.93\%	2.93\%	2.33\%	2.30\%	119	127	188	183	617
Brown Container Glass	1.31\%	2.34\%	1.48\%	2.11\%	1.80\%	142	215	150	246	753
Other Container Glass	0.32\%	0.10\%	0.11\%	0.20\%	0.18\%	14	9	13	18	54
Aluminum Cans	0.48\%	0.42\%	0.52\%	0.81\%	0.56\%	534	538	726	1,125	2,923
GRAND TOTAL	25.00\%	27.04\%	27.06\%	29.02\%	27.05\%	6,847	7,780	8,612	12,173	35,412

(1) Values shown are the total number of containers observed in the Medium Density/Medium Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-67
Medium Density/Low Income Drink Container Counts and Sorts - MGP

	Percent of MGP				Count in MGP ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	1.10\%	1.63\%	1.40\%	1.65\%	1.44\%	517	719	786	980	3,002
Clear Container Glass	1.27\%	1.62\%	2.28\%	2.25\%	1.86\%	107	134	222	217	680
Green Container Glass	0.71\%	1.18\%	1.37\%	1.60\%	1.21\%	70	121	158	208	557
Brown Container Glass	1.09\%	1.36\%	1.91\%	2.04\%	1.61\%	127	138	252	266	783
Other Container Glass	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	1	0	1	0	2
Aluminum Cans	0.28\%	0.37\%	0.39\%	0.45\%	0.37\%	360	594	612	788	2,354
Deposit Total	4.47\%	6.17\%	7.36\%	7.99\%	6.50\%	1,182	1,706	2,031	2,459	7,378
Potential Deposit										
PET Bottles	2.01\%	2.25\%	3.04\%	4.40\%	2.95\%	1,139	1,319	2,056	3,666	8,180
HDPE Bottles: Natural	0.61\%	1.15\%	0.67\%	1.05\%	0.86\%	230	415	296	505	1,446
HDPE Bottles: Colored	0.04\%	0.05\%	0.03\%	0.09\%	0.05\%	8	13	7	26	54
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	0	0	4
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	22	1	0	17	40
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	6	7
\#3 Through \#7 Bottles: \#7 Other	0.15\%	0.02\%	0.00\%	0.02\%	0.05\%	19	15	2	19	55
Clear Container Glass	0.98\%	1.61\%	1.64\%	1.89\%	1.52\%	94	163	205	246	708
Green Container Glass	0.01\%	0.00\%	0.04\%	0.01\%	0.02\%	1	0	3	1	5
Brown Container Glass	0.02\%	0.02\%	0.02\%	0.00\%	0.02\%	3	3	2	0	8
Other Container Glass	0.07\%	0.01\%	0.00\%	0.00\%	0.02\%	2	1	0	0	3
Aluminum Cans	0.05\%	0.06\%	0.22\%	0.27\%	0.15\%	62	73	275	272	682
Potential Deposit Total	3.96\%	5.19\%	5.66\%	7.74\%	5.65\%	1,585	2,003	2,846	4,758	11,192
Non-Deposit										
PET Bottles	2.20\%	2.88\%	2.50\%	2.51\%	2.51\%	796	1,101	1,101	1,195	4,193
HDPE Bottles: Natural	2.12\%	2.91\%	2.33\%	2.17\%	2.36\%	893	1,080	1,003	1,122	4,098
HDPE Bottles: Colored	2.55\%	3.69\%	3.64\%	2.98\%	3.19\%	587	851	912	914	3,264
\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.03\%	0.04\%	0.03\%	0.03\%	17	20	14	23	74
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	10	22	3	15	50
\#3 Through \#7 Bottles: \#5 PP	0.12\%	0.14\%	0.15\%	0.14\%	0.14\%	86	89	86	107	368
\#3 Through \#7 Bottles: \#7 Other	0.16\%	0.17\%	0.15\%	0.17\%	0.16\%	72	99	95	74	340
Clear Container Glass	4.36\%	4.97\%	6.96\%	5.37\%	5.43\%	321	396	615	493	1,825
Green Container Glass	0.72\%	0.56\%	1.14\%	0.85\%	0.83\%	37	28	64	49	178
Brown Container Glass	0.19\%	0.37\%	0.24\%	0.42\%	0.30\%	21	36	28	30	115
Other Container Glass	0.35\%	0.07\%	0.17\%	0.11\%	0.18\%	34	8	24	13	79
Aluminum Cans	0.06\%	0.03\%	0.02\%	0.14\%	0.06\%	51	44	21	134	250
Non-Deposit Total	12.85\%	15.84\%	17.34\%	14.91\%	15.20\%	2,925	3,774	3,966	4,169	14,834

Table 1-67
Medium Density/Low Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	1.28\%	2.02\%	1.57\%	1.48\%	1.57\%	636	712	754	809	2,911
HDPE Bottles: Natural	0.41\%	0.59\%	0.47\%	0.44\%	0.47\%	147	217	179	169	712
HDPE Bottles: Colored	2.53\%	3.44\%	3.57\%	3.07\%	3.14\%	582	794	899	922	3,197
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.03\%	0.03\%	0.03\%	0.03\%	18	19	11	20	68
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	3	6	0	12	21
\#3 Through \#7 Bottles: \#5 PP	0.11\%	0.12\%	0.13\%	0.10\%	0.11\%	70	82	80	93	325
\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.12\%	0.10\%	0.13\%	0.11\%	50	73	56	45	224
Non-Beverage Total	4.46\%	6.33\%	5.86\%	5.27\%	5.44\%	1,506	1,903	1,979	2,070	7,458
Single Serve										
PET Bottles	1.43\%	1.74\%	2.46\%	3.72\%	2.36\%	1,211	1,329	2,104	3,782	8,426
HDPE Bottles: Natural	0.20\%	0.28\%	0.19\%	0.14\%	0.20\%	126	156	189	219	690
HDPE Bottles: Colored	0.01\%	0.02\%	0.02\%	0.01\%	0.01\%	4	18	13	13	48
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	3	6
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	23	15	3	20	61
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	3	3	1	4	11
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.04\%	0.04\%	0.04\%	0.04\%	23	39	39	34	135
Single Serve Total	1.68\%	2.09\%	2.71\%	3.94\%	2.62\%	1,393	1,560	2,349	4,075	9,377
Multi Serve										
PET Bottles	2.22\%	3.25\%	2.81\%	3.14\%	2.84\%	676	1,043	1,087	1,253	4,059
HDPE Bottles: Natural	2.20\%	3.17\%	2.35\%	2.49\%	2.53\%	824	1,132	917	1,205	4,078
HDPE Bottles: Colored	0.10\%	0.20\%	0.12\%	0.14\%	0.14\%	25	53	32	43	153
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.01\%	0.02\%	0.01\%	9	1	6	16	32
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.05\%	0.01\%	0.02\%	0.03\%	1	3	3	14	21
Multi Serve Total	4.58\%	6.68\%	5.31\%	5.80\%	5.55\%	1,536	2,232	2,045	2,531	8,344

Table 1-67
Medium Density/Low Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	5.31\%	6.76\%	6.95\%	8.56\%	6.89\%	2,452	3,139	3,943	5,841	15,375
HDPE Bottles: Natural	2.73\%	4.07\%	3.01\%	3.21\%	3.22\%	1,123	1,495	1,299	1,627	5,544
HDPE Bottles: Colored	2.58\%	3.74\%	3.67\%	3.08\%	3.25\%	595	864	919	940	3,318
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.03\%	0.04\%	0.03\%	0.03\%	21	20	14	23	78
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.03\%	0.01\%	32	23	3	32	90
\#3 Through \#7 Bottles: \#5 PP	0.12\%	0.14\%	0.15\%	0.15\%	0.14\%	87	89	86	113	375
\#3 Through \#7 Bottles: \#7 Other	0.31\%	0.19\%	0.15\%	0.19\%	0.21\%	91	114	97	93	395
Clear Container Glass	6.61\%	8.21\%	10.88\%	9.50\%	8.81\%	522	693	1,042	956	3,213
Green Container Glass	1.44\%	1.74\%	2.55\%	2.46\%	2.06\%	108	149	225	258	740
Brown Container Glass	1.30\%	1.76\%	2.17\%	2.46\%	1.93\%	151	177	282	296	906
Other Container Glass	0.44\%	0.10\%	0.18\%	0.11\%	0.21\%	37	9	25	13	84
Aluminum Cans	0.39\%	0.46\%	0.63\%	0.86\%	0.59\%	473	711	908	1,194	3,286
GRAND TOTAL	21.28\%	27.20\%	30.36\%	30.64\%	27.35\%	5,692	7,483	8,843	11,386	33,404

(1) Values shown are the total number of containers observed in the Medium Density/Low Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-68
Low Density/High Income Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	1.82\%	2.00\%	2.00\%	2.13\%	1.99\%	737	1,039	1,054	1,230	4,060
Clear Container Glass	1.25\%	1.22\%	1.53\%	2.71\%	1.71\%	108	143	145	360	756
Green Container Glass	0.90\%	0.89\%	1.70\%	1.52\%	1.28\%	96	100	207	212	615
Brown Container Glass	2.25\%	1.78\%	1.87\%	2.08\%	1.99\%	223	203	244	296	966
Other Container Glass	0.02\%	0.00\%	0.00\%	0.01\%	0.01\%	2	0	0	1	3
Aluminum Cans	0.87\%	0.84\%	0.62\%	0.97\%	0.82\%	1,137	1,391	990	1,762	5,280
Deposit Total	7.10\%	6.72\%	7.72\%	9.42\%	7.81\%	2,303	2,876	2,640	3,861	11,680
Potential Deposit										
PET Bottles	2.87\%	2.93\%	3.28\%	4.96\%	3.56\%	1,840	2,350	2,503	4,850	11,543
HDPE Bottles: Natural	0.65\%	0.68\%	0.75\%	0.74\%	0.71\%	175	260	248	337	1,020
HDPE Bottles: Colored	0.04\%	0.00\%	0.04\%	0.03\%	0.03\%	14	1	11	7	33
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	1	2	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	0	0	16	16
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	2	0	3	7
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.02\%	0.00\%	0.10\%	0.03\%	6	6	0	27	39
Clear Container Glass	1.79\%	1.73\%	1.82\%	2.48\%	1.97\%	167	197	221	322	907
Green Container Glass	0.29\%	0.26\%	0.02\%	0.10\%	0.16\%	35	12	1	8	56
Brown Container Glass	0.00\%	0.02\%	0.00\%	0.00\%	0.01\%	0	2	0	0	2
Other Container Glass	0.04\%	0.00\%	0.00\%	0.00\%	0.01\%	2	0	0	0	2
Aluminum Cans	0.10\%	0.21\%	0.23\%	0.29\%	0.21\%	125	123	282	316	846
Potential Deposit Total	5.81\%	5.86\%	6.14\%	8.71\%	6.69\%	2,367	2,955	3,266	5,886	14,474
Non-Deposit										
PET Bottles	2.03\%	2.32\%	2.21\%	2.36\%	2.23\%	689	954	919	1,043	3,605
HDPE Bottles: Natural	1.66\%	2.24\%	2.09\%	2.07\%	2.01\%	583	838	825	961	3,207
HDPE Bottles: Colored	3.87\%	3.51\%	4.10\%	3.99\%	3.88\%	754	823	1,019	1,204	3,800
\#3 Through \#7 Bottles: \#3 PVC	0.07\%	0.06\%	0.01\%	0.05\%	0.05\%	24	23	3	24	74
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	3	0	0	7	10
\#3 Through \#7 Bottles: \#5 PP	0.12\%	0.15\%	0.11\%	0.09\%	0.12\%	65	96	132	105	398
\#3 Through \#7 Bottles: \#7 Other	0.20\%	0.21\%	0.12\%	0.21\%	0.18\%	76	102	83	108	369
Clear Container Glass	6.24\%	8.10\%	9.44\%	6.62\%	7.63\%	463	634	802	607	2,506
Green Container Glass	2.28\%	2.40\%	1.97\%	1.66\%	2.06\%	101	107	105	96	409
Brown Container Glass	0.71\%	0.22\%	0.27\%	0.51\%	0.43\%	31	16	24	44	115
Other Container Glass	0.06\%	0.18\%	0.32\%	0.21\%	0.20\%	6	11	13	22	52
Aluminum Cans	0.04\%	0.01\%	0.01\%	0.11\%	0.04\%	44	22	11	73	150
Non-Deposit Total	17.26\%	19.40\%	20.66\%	17.88\%	18.83\%	2,839	3,626	3,936	4,294	14,695

Table 1-68
Low Density/High Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	1.28\%	1.24\%	1.46\%	2.35\%	1.61\%	504	597	671	751	2,523
HDPE Bottles: Natural	0.59\%	0.54\%	0.51\%	0.31\%	0.48\%	116	155	173	127	571
HDPE Bottles: Colored	3.91\%	3.12\%	3.96\%	3.89\%	3.74\%	695	696	1,016	1,175	3,582
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.13\%	0.01\%	0.04\%	0.05\%	19	43	3	19	84
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	4	6
\#3 Through \#7 Bottles: \#5 PP	0.09\%	0.11\%	0.10\%	0.08\%	0.09\%	54	90	121	96	361
\#3 Through \#7 Bottles: \#7 Other	0.11\%	0.10\%	0.09\%	0.14\%	0.11\%	45	54	56	56	211
Non-Beverage Total	6.04\%	5.24\%	6.12\%	6.81\%	6.09\%	1,435	1,635	2,040	2,228	7,338
Single Serve										
PET Bottles	2.44\%	2.64\%	2.80\%	4.26\%	3.07\%	1,927	2,461	2,548	4,753	11,689
HDPE Bottles: Natural	0.08\%	0.10\%	0.06\%	0.06\%	0.07\%	48	104	69	79	300
HDPE Bottles: Colored	0.03\%	0.02\%	0.10\%	0.00\%	0.04\%	28	27	25	2	82
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	0	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	1	2	0	19	22
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	2	1	1	10	14
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.06\%	0.03\%	0.05\%	0.05\%	23	46	25	44	138
Single Serve Total	2.60\%	2.83\%	3.00\%	4.39\%	3.24\%	2,030	2,642	2,668	4,907	12,247
Multi Serve										
PET Bottles	2.75\%	3.27\%	3.18\%	3.51\%	3.19\%	900	1,387	1,237	1,614	5,138
HDPE Bottles: Natural	1.95\%	2.24\%	2.22\%	2.43\%	2.22\%	627	865	831	1,092	3,415
HDPE Bottles: Colored	0.13\%	0.22\%	0.09\%	0.10\%	0.13\%	35	62	26	32	155
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	1	3	0	5	9
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	2	3
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.03\%	0.01\%	0.12\%	0.05\%	12	6	1	35	54
Multi Serve Total	4.89\%	5.77\%	5.50\%	6.16\%	5.59\%	1,575	2,324	2,095	2,780	8,774

Table 1-68
Low Density/High Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP				Count in MGP ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	6.72\%	7.25\%	7.49\%	9.45\%	7.78\%	3,266	4,343	4,476	7,123	19,208
HDPE Bottles: Natural	2.31\%	2.92\%	2.84\%	2.80\%	2.72\%	758	1,098	1,073	1,298	4,227
HDPE Bottles: Colored	3.90\%	3.51\%	4.15\%	4.02\%	3.91\%	768	824	1,030	1,211	3,833
\#3 Through \#7 Bottles: \#3 PVC	0.08\%	0.06\%	0.01\%	0.05\%	0.05\%	25	25	3	24	77
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	3	0	0	23	26
\#3 Through \#7 Bottles: \#5 PP	0.12\%	0.16\%	0.11\%	0.09\%	0.12\%	67	98	132	108	405
\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.23\%	0.12\%	0.31\%	0.22\%	82	108	83	135	408
Clear Container Glass	9.27\%	11.05\%	12.79\%	11.80\%	11.31\%	738	974	1,168	1,289	4,169
Green Container Glass	3.47\%	3.55\%	3.69\%	3.28\%	3.50\%	232	219	313	316	1,080
Brown Container Glass	2.96\%	2.02\%	2.14\%	2.59\%	2.43\%	254	221	268	340	1,083
Other Container Glass	0.12\%	0.18\%	0.32\%	0.22\%	0.21\%	10	11	13	23	57
Aluminum Cans	1.00\%	1.06\%	0.86\%	1.37\%	1.07\%	1,306	1,536	1,283	2,151	6,276
GRAND TOTAL	30.17\%	31.98\%	34.52\%	36.01\%	33.33\%	7,509	9,457	9,842	14,041	40,849

(1) Values shown are the total number of containers observed in the Low Density/High Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-69
Low Density/Medium Income Drink Container Counts and Sorts - MGP

	Percent of MGP				Count in MGP ${ }^{(1)}$					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	1.84\%	2.02\%	1.83\%	1.49\%	1.78\%	737	924	967	875	3,503
Clear Container Glass	2.28\%	2.14\%	1.45\%	1.84\%	1.91\%	188	187	150	230	755
Green Container Glass	1.33\%	0.82\%	0.95\%	1.38\%	1.13\%	124	88	108	184	504
Brown Container Glass	1.87\%	1.08\%	1.66\%	1.78\%	1.61\%	169	117	200	240	726
Other Container Glass	0.00\%	0.02\%	0.06\%	0.00\%	0.02\%	0	2	5	0	7
Aluminum Cans	0.55\%	0.75\%	0.76\%	0.73\%	0.70\%	715	1,141	1,296	1,426	4,578
Deposit Total	7.87\%	6.82\%	6.72\%	7.22\%	7.15\%	1,933	2,459	2,726	2,955	10,073
Potential Deposit										
PET Bottles	2.83\%	2.55\%	3.34\%	4.43\%	3.33\%	1,615	1,673	2,706	4,236	10,230
HDPE Bottles: Natural	0.71\%	0.82\%	0.59\%	0.58\%	0.67\%	214	268	208	278	968
HDPE Bottles: Colored	0.06\%	0.03\%	0.00\%	0.05\%	0.03\%	13	7	0	27	47
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	0	0	3	11
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	8	0	4	0	12
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.11\%	0.00\%	0.04\%	0.05\%	12	10	1	11	34
Clear Container Glass	1.26\%	1.59\%	1.62\%	2.30\%	1.71\%	121	162	194	296	773
Green Container Glass	0.04\%	0.00\%	0.00\%	0.00\%	0.01\%	3	0	0	0	3
Brown Container Glass	0.04\%	0.03\%	0.00\%	0.00\%	0.02\%	2	4	0	0	6
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	0	0	0	5
Aluminum Cans	0.08\%	0.05\%	0.11\%	0.31\%	0.14\%	85	70	171	335	661
Potential Deposit Total	5.10\%	5.19\%	5.67\%	7.72\%	5.97\%	2,086	2,194	3,284	5,186	12,750
Non-Deposit										
PET Bottles	1.96\%	2.57\%	1.90\%	2.08\%	2.11\%	645	885	780	967	3,277
HDPE Bottles: Natural	2.60\%	2.75\%	2.42\%	2.43\%	2.54\%	820	929	934	1,115	3,798
HDPE Bottles: Colored	3.34\%	3.16\%	3.66\%	3.46\%	3.42\%	733	676	924	1,162	3,495
\#3 Through \#7 Bottles: \#3 PVC	0.06\%	0.03\%	0.01\%	0.03\%	0.03\%	27	14	6	19	66
\#3 Through \#7 Bottles: \#4 LDPE	0.10\%	0.01\%	0.00\%	0.00\%	0.03\%	4	12	1	1	18
\#3 Through \#7 Bottles: \#5 PP	0.14\%	0.14\%	0.10\%	0.12\%	0.12\%	85	81	91	107	364
\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.10\%	0.13\%	0.20\%	0.16\%	66	55	72	68	261
Clear Container Glass	6.65\%	6.39\%	7.21\%	5.36\%	6.40\%	405	483	603	509	2,000
Green Container Glass	1.30\%	1.48\%	2.05\%	1.49\%	1.59\%	48	65	88	92	293
Brown Container Glass	0.52\%	0.33\%	0.23\%	0.25\%	0.33\%	21	31	24	27	103
Other Container Glass	0.23\%	0.29\%	0.19\%	0.11\%	0.20\%	5	21	9	13	48
Aluminum Cans	0.02\%	0.01\%	0.00\%	0.11\%	0.04\%	32	13	7	128	180
Non-Deposit Total	17.13\%	17.25\%	17.89\%	15.65\%	16.97\%	2,891	3,265	3,539	4,208	13,903

Table 1-69
Low Density/Medium Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	1.32\%	1.42\%	1.34\%	1.39\%	1.37\%	480	609	602	662	2,353
HDPE Bottles: Natural	0.49\%	0.56\%	0.48\%	0.53\%	0.51\%	115	148	160	177	600
HDPE Bottles: Colored	2.73\%	3.07\%	3.51\%	3.23\%	3.15\%	590	642	859	1,064	3,155
\#3 Through \#7 Bottles: \#3 PVC	0.18\%	0.04\%	0.01\%	0.03\%	0.06\%	27	16	6	19	68
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	3	3	1	1	8
\#3 Through \#7 Bottles: \#5 PP	0.13\%	0.13\%	0.10\%	0.11\%	0.12\%	74	75	92	100	341
\#3 Through \#7 Bottles: \#7 Other	0.12\%	0.06\%	0.07\%	0.07\%	0.08\%	45	33	38	33	149
Non-Beverage Total	4.97\%	5.29\%	5.51\%	5.37\%	5.30\%	1,334	1,526	1,758	2,056	6,674
Single Serve										
PET Bottles	2.13\%	2.11\%	2.95\%	3.70\%	2.76\%	1,588	1,707	2,710	4,100	10,105
HDPE Bottles: Natural	0.07\%	0.04\%	0.11\%	0.05\%	0.07\%	74	58	89	65	286
HDPE Bottles: Colored	0.06\%	0.01\%	0.02\%	0.02\%	0.03\%	37	6	14	23	80
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	9	4	0	3	16
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	4	3	3	18
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.10\%	0.04\%	0.03\%	0.05\%	17	24	31	28	100
Single Serve Total	2.30\%	2.27\%	3.12\%	3.80\%	2.91\%	1,733	1,803	2,847	4,222	10,605
Multi Serve										
PET Bottles	3.13\%	3.37\%	2.73\%	2.89\%	3.01\%	959	1,191	1,140	1,315	4,605
HDPE Bottles: Natural	2.75\%	2.92\%	2.46\%	2.48\%	2.64\%	854	1,000	910	1,150	3,914
HDPE Bottles: Colored	0.55\%	0.16\%	0.26\%	0.26\%	0.31\%	91	48	31	102	272
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0	2	2	0	4
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.03\%	0.01\%	0.13\%	0.05\%	15	7	2	19	43
Multi Serve Total	6.46\%	6.49\%	5.47\%	5.77\%	6.02\%	1,919	2,248	2,085	2,586	8,838

Table 1-69
Low Density/Medium Income Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	6.64\%	7.13\%	7.07\%	8.00\%	7.23\%	2,997	3,482	4,453	6,078	17,010
HDPE Bottles: Natural	3.31\%	3.57\%	3.01\%	3.02\%	3.21\%	1,034	1,197	1,142	1,393	4,766
HDPE Bottles: Colored	3.39\%	3.19\%	3.66\%	3.51\%	3.45\%	746	683	924	1,189	3,542
\#3 Through \#7 Bottles: \#3 PVC	0.06\%	0.03\%	0.01\%	0.03\%	0.03\%	27	14	6	19	66
\#3 Through \#7 Bottles: \#4 LDPE	0.11\%	0.01\%	0.00\%	0.00\%	0.03\%	12	12	1	4	29
\#3 Through \#7 Bottles: \#5 PP	0.14\%	0.14\%	0.11\%	0.12\%	0.13\%	93	81	95	107	376
\#3 Through \#7 Bottles: \#7 Other	0.28\%	0.22\%	0.13\%	0.24\%	0.21\%	78	65	73	79	295
Clear Container Glass	10.19\%	10.11\%	10.28\%	9.50\%	10.02\%	714	832	947	1,035	3,528
Green Container Glass	2.66\%	2.30\%	3.00\%	2.88\%	2.73\%	175	153	196	276	800
Brown Container Glass	2.43\%	1.44\%	1.89\%	2.03\%	1.95\%	192	152	224	267	835
Other Container Glass	0.23\%	0.31\%	0.25\%	0.11\%	0.22\%	10	23	14	13	60
Aluminum Cans	0.66\%	0.81\%	0.87\%	1.16\%	0.88\%	832	1,224	1,474	1,889	5,419
GRAND TOTAL	30.09\%	29.26\%	30.28\%	30.59\%	30.09\%	6,910	7,918	9,549	12,349	36,726

(1) Values shown are the total number of containers observed in the Low Density/Medium Income stratum MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-70
Citywide Drink Container Counts and Sorts - MGP

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	1.11\%	1.28\%	1.32\%	1.40\%	1.28\%	3,449	4,816	5,207	5,903	19,375
Clear Container Glass	1.04\%	1.02\%	1.32\%	1.72\%	1.28\%	761	813	1,009	1,551	4,134
Green Container Glass	0.88\%	1.06\%	1.28\%	1.33\%	1.14\%	687	867	1,022	1,318	3,894
Brown Container Glass	1.49\%	1.48\%	1.44\%	1.83\%	1.56\%	1,228	1,199	1,412	1,861	5,700
Other Container Glass	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	5	15	9	34	63
Aluminum Cans	0.43\%	0.44\%	0.39\%	0.54\%	0.45\%	3,869	4,948	4,731	6,928	20,476
Deposit Total	4.96\%	5.30\%	5.75\%	6.83\%	5.73\%	9,999	12,658	13,390	17,595	53,642
Potential Deposit										
PET Bottles	2.50\%	2.66\%	3.07\%	4.37\%	3.17\%	11,301	13,788	18,177	29,390	72,656
HDPE Bottles: Natural	0.76\%	0.97\%	0.83\%	0.98\%	0.88\%	1,813	2,581	2,384	3,149	9,927
HDPE Bottles: Colored	0.07\%	0.05\%	0.02\%	0.04\%	0.04\%	128	71	45	99	343
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	6	0	0	11
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	54	1	2	45	102
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	16	5	7	11	39
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.04\%	0.00\%	0.04\%	0.03\%	70	90	7	79	246
Clear Container Glass	1.08\%	1.14\%	1.27\%	1.64\%	1.29\%	755	926	1,106	1,543	4,330
Green Container Glass	0.14\%	0.10\%	0.02\%	0.04\%	0.07\%	66	40	10	25	141
Brown Container Glass	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	9	11	3	4	27
Other Container Glass	0.05\%	0.00\%	0.01\%	0.02\%	0.02\%	13	2	6	36	57
Aluminum Cans	0.07\%	0.09\%	0.17\%	0.26\%	0.15\%	588	641	1,547	2,165	4,941
Potential Deposit Total	4.74\%	5.07\%	5.40\%	7.39\%	5.67\%	14,818	18,162	23,294	36,546	92,820
Non-Deposit										
PET Bottles	1.78\%	2.21\%	1.96\%	2.12\%	2.01\%	4,841	6,635	6,558	7,461	25,495
HDPE Bottles: Natural	2.07\%	2.37\%	2.31\%	2.29\%	2.26\%	6,106	6,912	7,464	8,312	28,794
HDPE Bottles: Colored	3.04\%	3.18\%	3.41\%	3.27\%	3.23\%	4,913	5,678	7,079	8,164	25,834
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.04\%	0.02\%	0.06\%	0.04\%	176	129	79	188	572
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	34	70	12	48	164
\#3 Through \#7 Bottles: \#5 PP	0.11\%	0.10\%	0.08\%	0.10\%	0.09\%	511	497	590	655	2,253
\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.21\%	0.12\%	0.16\%	0.17\%	566	633	536	534	2,269
Clear Container Glass	5.25\%	5.75\%	6.42\%	4.89\%	5.58\%	2,851	3,583	4,217	3,630	14,281
Green Container Glass	2.93\%	3.12\%	3.30\%	2.34\%	2.92\%	1,100	1,239	1,458	1,183	4,980
Brown Container Glass	0.39\%	0.44\%	0.33\%	0.48\%	0.41\%	188	279	223	323	1,013
Other Container Glass	0.16\%	0.12\%	0.19\%	0.14\%	0.15\%	75	76	107	109	367
Aluminum Cans	0.03\%	0.03\%	0.01\%	0.09\%	0.04\%	291	265	122	689	1,367
Non-Deposit Total	16.02\%	17.57\%	18.15\%	15.94\%	16.92\%	21,652	25,996	28,445	31,296	107,389

Table 1-70
Citywide Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	1.14\%	1.26\%	1.29\%	1.50\%	1.30\%	3,456	4,248	4,694	5,122	17,520
HDPE Bottles: Natural	0.40\%	0.53\%	0.46\%	0.31\%	0.42\%	855	1,158	1,309	984	4,306
HDPE Bottles: Colored	2.95\%	2.87\%	3.29\%	3.22\%	3.09\%	4,619	5,113	6,733	7,868	24,333
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.05\%	0.02\%	0.04\%	0.04\%	132	145	76	144	497
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	24	24	6	31	85
\#3 Through \#7 Bottles: \#5 PP	0.09\%	0.09\%	0.07\%	0.09\%	0.09\%	455	477	564	582	2,078
\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.09\%	0.06\%	0.09\%	0.08\%	340	397	286	263	1,286
Non-Beverage Total	4.72\%	4.89\%	5.19\%	5.24\%	5.02\%	9,881	11,562	13,668	14,994	50,105
Single Serve										
PET Bottles	1.78\%	2.00\%	2.36\%	3.41\%	2.41\%	10,575	12,637	16,845	27,078	67,135
HDPE Bottles: Natural	0.11\%	0.11\%	0.11\%	0.07\%	0.10\%	545	675	866	731	2,817
HDPE Bottles: Colored	0.02\%	0.02\%	0.03\%	0.01\%	0.02\%	151	161	122	106	540
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	12	5	0	8	25
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	62	40	8	60	170
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	21	23	11	45	100
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.04\%	0.04\%	0.04\%	176	263	235	219	893
Single Serve Total	1.96\%	2.19\%	2.55\%	3.55\%	2.58\%	11,542	13,804	18,087	28,247	71,680
Multi Serve										
PET Bottles	2.34\%	2.90\%	2.62\%	3.07\%	2.73\%	5,854	8,233	8,411	10,553	33,051
HDPE Bottles: Natural	2.40\%	2.64\%	2.53\%	2.89\%	2.62\%	6,208	7,604	7,631	9,674	31,117
HDPE Bottles: Colored	0.18\%	0.23\%	0.12\%	0.11\%	0.16\%	350	431	302	320	1,403
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	6	0	5	13
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	10	14	12	30	66
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.01\%	0.06\%	0.05\%	74	47	15	118	254
Multi Serve Total	4.98\%	5.83\%	5.28\%	6.14\%	5.55\%	12,498	16,335	16,371	20,700	65,904

Table 1-70
Citywide Drink Container Counts and Sorts - MGP (continued)

	Percent of MGP					Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	5.39\%	6.15\%	6.35\%	7.88\%	6.46\%	19,591	25,239	29,942	42,754	117,526
HDPE Bottles: Natural	2.83\%	3.34\%	3.14\%	3.28\%	3.15\%	7,919	9,493	9,848	11,461	38,721
HDPE Bottles: Colored	3.11\%	3.23\%	3.43\%	3.31\%	3.27\%	5,041	5,749	7,124	8,263	26,177
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.04\%	0.02\%	0.06\%	0.04\%	181	135	79	188	583
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	88	71	14	93	266
\#3 Through \#7 Bottles: \#5 PP	0.11\%	0.10\%	0.08\%	0.10\%	0.10\%	527	502	597	666	2,292
\#3 Through \#7 Bottles: \#7 Other	0.25\%	0.25\%	0.12\%	0.20\%	0.20\%	636	723	543	613	2,515
Clear Container Glass	7.37\%	7.91\%	9.01\%	8.24\%	8.15\%	4,367	5,322	6,332	6,724	22,745
Green Container Glass	3.94\%	4.29\%	4.59\%	3.71\%	4.13\%	1,853	2,146	2,490	2,526	9,015
Brown Container Glass	1.90\%	1.94\%	1.77\%	2.31\%	1.98\%	1,425	1,489	1,638	2,188	6,740
Other Container Glass	0.21\%	0.13\%	0.20\%	0.18\%	0.18\%	93	93	122	179	487
Aluminum Cans	0.53\%	0.56\%	0.58\%	0.90\%	0.65\%	4,748	5,854	6,400	9,782	26,784
GRAND TOTAL	25.71\%	27.93\%	29.30\%	30.17\%	28.32\%	46,469	56,816	65,129	85,437	253,851

(1) Values shown are the total number of containers observed in all MGP samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-71
High Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.25\%	0.23\%	0.21\%	0.27\%	0.24\%	603	807	678	914	3,002
Clear Container Glass	0.16\%	0.14\%	0.13\%	0.24\%	0.17\%	102	93	124	215	534
Green Container Glass	0.22\%	0.39\%	0.29\%	0.38\%	0.31\%	185	256	251	278	970
Brown Container Glass	0.18\%	0.20\%	0.20\%	0.32\%	0.22\%	160	197	212	304	873
Other Container Glass	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	1	9	1	1	12
Aluminum Cans	0.16\%	0.22\%	0.15\%	0.21\%	0.18\%	825	1,125	810	1,335	4,095
Deposit Total	0.97\%	1.19\%	0.98\%	1.42\%	1.13\%	1,876	2,487	2,076	3,047	9,486
Potential Deposit										
PET Bottles	0.62\%	0.67\%	0.70\%	0.79\%	0.69\%	2,604	3,255	3,904	4,186	13,949
HDPE Bottles: Natural	0.06\%	0.10\%	0.08\%	0.09\%	0.08\%	224	343	243	323	1,133
HDPE Bottles: Colored	0.02\%	0.01\%	0.00\%	0.00\%	0.01\%	35	13	3	1	52
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.03\%	0.00\%	0.00\%	0.01\%	0	11	0	0	11
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	1	0	5
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	12	8	3	2	25
Clear Container Glass	0.37\%	0.26\%	0.18\%	0.22\%	0.26\%	130	140	149	150	569
Green Container Glass	0.05\%	0.03\%	0.03\%	0.04\%	0.04\%	21	18	3	17	59
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	1	2	5
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	3	0	5
Aluminum Cans	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	66	113	90	152	421
Potential Deposit Total	1.13\%	1.12\%	1.00\%	1.17\%	1.10\%	3,099	3,902	4,400	4,833	16,234
Non-Deposit										
PET Bottles	0.24\%	0.30\%	0.30\%	0.29\%	0.28\%	600	896	858	853	3,207
HDPE Bottles: Natural	0.15\%	0.19\%	0.19\%	0.33\%	0.21\%	432	562	553	636	2,183
HDPE Bottles: Colored	0.40\%	0.43\%	0.39\%	0.49\%	0.43\%	735	971	969	1,173	3,848
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	21	29	12	54	116
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	10	9	6	36
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	68	67	43	81	259
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.07\%	0.06\%	0.05\%	0.06\%	126	184	157	139	606
Clear Container Glass	0.83\%	0.72\%	0.61\%	1.02\%	0.79\%	522	524	514	578	2,138
Green Container Glass	0.90\%	1.04\%	1.04\%	0.85\%	0.96\%	404	412	525	388	1,729
Brown Container Glass	0.08\%	0.11\%	0.08\%	0.12\%	0.10\%	54	82	49	102	287
Other Container Glass	0.02\%	0.01\%	0.03\%	0.03\%	0.02\%	10	10	19	13	52
Aluminum Cans	0.00\%	0.04\%	0.00\%	0.01\%	0.01\%	43	43	32	59	177
Non-Deposit Total	2.69\%	2.94\%	2.72\%	3.22\%	2.89\%	3,026	3,790	3,740	4,082	14,638

Table 1-71
High Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.17\%	0.18\%	0.21\%	0.21\%	0.19\%	421	566	614	620	2,221
HDPE Bottles: Natural	0.06\%	0.05\%	0.07\%	0.09\%	0.07\%	127	127	204	137	595
HDPE Bottles: Colored	0.37\%	0.39\%	0.36\%	0.49\%	0.40\%	699	834	928	1,136	3,597
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	15	25	12	20	72
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	10	8	6	35
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	60	55	42	77	234
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.05\%	0.03\%	0.04\%	68	127	121	102	418
Non-Beverage Total	0.65\%	0.69\%	0.71\%	0.84\%	0.72\%	1,401	1,744	1,929	2,098	7,172
Single Serve										
PET Bottles	0.58\%	0.61\%	0.54\%	0.66\%	0.60\%	2,380	2,893	3,253	3,724	12,250
HDPE Bottles: Natural	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	87	113	78	82	360
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	38	46	35	34	153
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	3	0	4	12
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	1	0	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	6	1	4	22
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	39	34	34	25	132
Single Serve Total	0.63\%	0.64\%	0.57\%	0.69\%	0.63\%	2,560	3,095	3,402	3,873	12,930
Multi Serve										
PET Bottles	0.35\%	0.42\%	0.42\%	0.48\%	0.41\%	1,095	1,464	1,573	1,610	5,742
HDPE Bottles: Natural	0.14\%	0.23\%	0.17\%	0.21\%	0.19\%	463	709	544	738	2,454
HDPE Bottles: Colored	0.01\%	0.03\%	0.02\%	0.02\%	0.02\%	21	65	24	34	144
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	3	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	1	0	2
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.00\%	0.00\%	0.01\%	0.00\%	9	6	1	13	29
Multi Serve Total	0.51\%	0.68\%	0.61\%	0.71\%	0.62\%	1,588	2,248	2,143	2,395	8,374

Table 1-71
High Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste						Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.11\%	1.21\%	1.20\%	1.36\%	1.22\%	3,807	4,958	5,440	5,953	20,158
HDPE Bottles: Natural	0.22\%	0.29\%	0.27\%	0.43\%	0.30\%	656	905	796	959	3,316
HDPE Bottles: Colored	0.42\%	0.44\%	0.40\%	0.49\%	0.44\%	770	984	972	1,174	3,900
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.04\%	0.01\%	0.02\%	0.02\%	21	40	12	54	127
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	10	9	6	36
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	72	67	44	81	264
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.08\%	0.06\%	0.05\%	0.06\%	138	192	160	141	631
Clear Container Glass	1.36\%	1.11\%	0.93\%	1.49\%	1.22\%	754	757	787	943	3,241
Green Container Glass	1.16\%	1.45\%	1.35\%	1.27\%	1.31\%	610	686	779	683	2,758
Brown Container Glass	0.26\%	0.31\%	0.28\%	0.44\%	0.32\%	216	279	262	408	1,165
Other Container Glass	0.02\%	0.02\%	0.04\%	0.03\%	0.03\%	12	20	23	14	69
Aluminum Cans	0.17\%	0.27\%	0.16\%	0.24\%	0.21\%	934	1,281	932	1,546	4,693
GRAND TOTAL	4.79\%	5.24\%	4.70\%	5.81\%	5.12\%	8,001	10,179	10,216	11,962	40,358

(1) Values shown are the total number of containers observed in the High Density/High Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-72
High Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.22\%	0.32\%	0.28\%	0.31\%	0.28\%	456	557	604	664	2,281
Clear Container Glass	0.13\%	0.30\%	0.20\%	0.32\%	0.24\%	82	127	123	141	473
Green Container Glass	0.16\%	0.19\%	0.14\%	0.24\%	0.18\%	67	100	113	172	452
Brown Container Glass	0.27\%	0.20\%	0.13\%	0.25\%	0.21\%	141	146	117	179	583
Other Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	2	3	2	0	7
Aluminum Cans	0.19\%	0.19\%	0.17\%	0.19\%	0.18\%	668	697	731	993	3,089
Deposit Total	0.98\%	1.20\%	0.92\%	1.31\%	1.10\%	1,416	1,630	1,690	2,149	6,885
Potential Deposit										
PET Bottles	0.43\%	0.42\%	0.47\%	0.71\%	0.51\%	1,417	1,759	2,529	4,274	9,979
HDPE Bottles: Natural	0.09\%	0.13\%	0.12\%	0.14\%	0.12\%	304	411	459	497	1,671
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	27	15	15	7	64
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	10	0	1	6	17
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	2	2
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	10	33	5	4	52
Clear Container Glass	0.17\%	0.16\%	0.23\%	0.36\%	0.23\%	107	111	144	222	584
Green Container Glass	0.02\%	0.02\%	0.00\%	0.00\%	0.01\%	6	6	0	0	12
Brown Container Glass	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	2	1	0	1	4
Other Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0	0	3	34	37
Aluminum Cans	0.01\%	0.03\%	0.03\%	0.05\%	0.03\%	78	163	245	339	825
Potential Deposit Total	0.75\%	0.78\%	0.85\%	1.28\%	0.92\%	1,961	2,499	3,401	5,386	13,247
Non-Deposit										
PET Bottles	0.28\%	0.42\%	0.30\%	0.37\%	0.34\%	789	1,068	994	1,111	3,962
HDPE Bottles: Natural	0.32\%	0.39\%	0.38\%	0.35\%	0.36\%	1,022	1,283	1,436	1,369	5,110
HDPE Bottles: Colored	0.47\%	0.50\%	0.45\%	0.47\%	0.47\%	900	904	1,214	1,266	4,284
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.03\%	0.01\%	0.01\%	41	26	60	18	145
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	17	14	10	5	46
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	76	69	81	80	306
\#3 Through \#7 Bottles: \#7 Other	0.10\%	0.07\%	0.07\%	0.06\%	0.08\%	199	191	177	152	719
Clear Container Glass	0.80\%	0.98\%	0.72\%	0.73\%	0.80\%	492	540	607	483	2,122
Green Container Glass	0.25\%	0.34\%	0.30\%	0.27\%	0.29\%	147	156	202	149	654
Brown Container Glass	0.07\%	0.06\%	0.04\%	0.04\%	0.05\%	49	38	42	43	172
Other Container Glass	0.01\%	0.01\%	0.04\%	0.01\%	0.02\%	6	9	20	14	49
Aluminum Cans	0.00\%	0.01\%	0.00\%	0.02\%	0.01\%	42	36	11	130	219
Non-Deposit Total	2.34\%	2.81\%	2.36\%	2.33\%	2.45\%	3,780	4,334	4,854	4,820	17,788

Table 1-72
High Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.20\%	0.28\%	0.18\%	0.27\%	0.23\%	530	681	653	762	2,626
HDPE Bottles: Natural	0.08\%	0.10\%	0.09\%	0.08\%	0.09\%	154	179	198	171	702
HDPE Bottles: Colored	0.46\%	0.45\%	0.41\%	0.44\%	0.44\%	831	803	1,045	1,203	3,882
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.03\%	0.01\%	0.01\%	35	25	60	18	138
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	7	10	4	4	25
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	74	56	79	71	280
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.05\%	0.06\%	0.04\%	0.05\%	140	129	110	99	478
Non-Beverage Total	0.82\%	0.92\%	0.78\%	0.84\%	0.84\%	1,771	1,883	2,149	2,328	8,131
Single Serve										
PET Bottles	0.43\%	0.41\%	0.45\%	0.67\%	0.49\%	1,341	1,605	2,321	3,807	9,074
HDPE Bottles: Natural	0.01\%	0.02\%	0.03\%	0.04\%	0.03\%	65	94	149	139	447
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	35	49	36	36	156
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	20	4	7	7	38
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	8	2	10	21
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.02\%	0.01\%	0.01\%	0.03\%	38	73	71	46	228
Single Serve Total	0.51\%	0.47\%	0.50\%	0.73\%	0.56\%	1,502	1,833	2,586	4,045	9,966
Multi Serve										
PET Bottles	0.32\%	0.45\%	0.42\%	0.44\%	0.41\%	787	1,021	1,192	1,469	4,469
HDPE Bottles: Natural	0.34\%	0.42\%	0.39\%	0.38\%	0.38\%	1,156	1,368	1,541	1,555	5,620
HDPE Bottles: Colored	0.04\%	0.02\%	0.04\%	0.01\%	0.02\%	62	35	124	34	255
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	1	3
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	18	5	4	8	35
Multi Serve Total	0.70\%	0.89\%	0.85\%	0.83\%	0.82\%	2,027	2,430	2,861	3,067	10,385

Table 1-72
High Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste						Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.93\%	1.16\%	1.05\%	1.39\%	1.13\%	2,662	3,384	4,127	6,049	16,222
HDPE Bottles: Natural	0.41\%	0.52\%	0.50\%	0.49\%	0.48\%	1,326	1,694	1,895	1,866	6,781
HDPE Bottles: Colored	0.49\%	0.50\%	0.45\%	0.47\%	0.48\%	927	919	1,229	1,273	4,348
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.03\%	0.01\%	0.01\%	41	26	60	18	145
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	27	14	11	11	63
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.02\%	76	69	81	82	308
\#3 Through \#7 Bottles: \#7 Other	0.10\%	0.08\%	0.07\%	0.06\%	0.08\%	209	224	182	156	771
Clear Container Glass	1.09\%	1.45\%	1.15\%	1.41\%	1.27\%	681	778	874	846	3,179
Green Container Glass	0.44\%	0.55\%	0.45\%	0.51\%	0.48\%	220	262	315	321	1,118
Brown Container Glass	0.35\%	0.26\%	0.18\%	0.29\%	0.27\%	192	185	159	223	759
Other Container Glass	0.02\%	0.01\%	0.04\%	0.02\%	0.02\%	8	12	25	48	93
Aluminum Cans	0.21\%	0.23\%	0.20\%	0.25\%	0.22\%	788	896	987	1,462	4,133
GRAND TOTAL	4.07\%	4.79\%	4.13\%	4.92\%	4.47\%	7,157	8,463	9,945	12,355	37,920

(1) Values shown are the total number of containers observed in the High Density/Medium Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-73
High Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.41\%	0.51\%	0.43\%	0.48\%	0.46\%	663	813	876	1,089	3,441
Clear Container Glass	0.50\%	0.55\%	0.40\%	0.76\%	0.55\%	172	160	166	233	731
Green Container Glass	0.23\%	0.21\%	0.25\%	0.35\%	0.26\%	85	106	94	129	414
Brown Container Glass	0.52\%	0.43\%	0.40\%	0.48\%	0.46\%	167	168	181	224	740
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	3	5
Aluminum Cans	0.21\%	0.19\%	0.19\%	0.31\%	0.22\%	738	793	758	1,170	3,459
Deposit Total	1.87\%	1.89\%	1.67\%	2.38\%	1.95\%	1,826	2,041	2,075	2,848	8,790
Potential Deposit										
PET Bottles	0.40\%	0.46\%	0.46\%	0.59\%	0.48\%	1,234	1,348	1,793	2,773	7,148
HDPE Bottles: Natural	0.09\%	0.15\%	0.18\%	0.23\%	0.16\%	388	453	541	702	2,084
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	29	7	15	19	70
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	10	14	14	10	48
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	4	0	5
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	4	3	5	16
Clear Container Glass	0.25\%	0.26\%	0.29\%	0.45\%	0.31\%	96	108	130	152	486
Green Container Glass	0.03\%	0.02\%	0.00\%	0.01\%	0.01\%	6	2	2	1	11
Brown Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	3	1	2	0	6
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	1	0	2
Aluminum Cans	0.01\%	0.02\%	0.03\%	0.06\%	0.03\%	89	92	189	338	708
Potential Deposit Total	0.80\%	0.92\%	0.97\%	1.36\%	1.02\%	1,860	2,030	2,694	4,000	10,584
Non-Deposit										
PET Bottles	0.32\%	0.50\%	0.38\%	0.41\%	0.40\%	723	799	1,061	1,221	3,804
HDPE Bottles: Natural	0.46\%	0.40\%	0.40\%	0.40\%	0.42\%	1,203	1,061	1,421	1,546	5,231
HDPE Bottles: Colored	0.51\%	0.46\%	0.53\%	0.61\%	0.53\%	821	929	1,145	1,325	4,220
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	60	22	28	25	135
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	17	20	7	22	66
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.03\%	0.02\%	75	60	87	133	355
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.10\%	0.06\%	0.07\%	155	158	181	144	638
Clear Container Glass	0.83\%	0.99\%	0.75\%	0.92\%	0.87\%	326	381	422	384	1,513
Green Container Glass	0.07\%	0.11\%	0.07\%	0.10\%	0.09\%	24	45	50	34	153
Brown Container Glass	0.05\%	0.05\%	0.04\%	0.04\%	0.04\%	19	20	16	34	89
Other Container Glass	0.00\%	0.00\%	0.03\%	0.01\%	0.01\%	3	7	21	4	35
Aluminum Cans	0.00\%	0.00\%	0.01\%	0.03\%	0.01\%	29	46	39	81	195
Non-Deposit Total	2.34\%	2.61\%	2.35\%	2.64\%	2.48\%	3,455	3,548	4,478	4,953	16,434

Table 1-73
High Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.24\%	0.24\%	0.24\%	0.27\%	0.25\%	556	539	719	798	2,612
HDPE Bottles: Natural	0.08\%	0.07\%	0.09\%	0.09\%	0.08\%	194	160	216	152	722
HDPE Bottles: Colored	0.50\%	0.45\%	0.51\%	0.48\%	0.48\%	816	916	1,062	1,306	4,100
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	21	22	28	25	96
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	5	5	10	31
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.03\%	0.02\%	0.03\%	0.02\%	70	77	84	120	351
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.04\%	0.08\%	0.05\%	0.05\%	115	90	144	115	464
Non-Beverage Total	0.89\%	0.83\%	0.96\%	0.94\%	0.91\%	1,783	1,809	2,258	2,526	8,376
Single Serve										
PET Bottles	0.47\%	0.54\%	0.54\%	0.68\%	0.56\%	1,331	1,504	1,930	3,052	7,817
HDPE Bottles: Natural	0.06\%	0.05\%	0.06\%	0.06\%	0.05\%	195	165	295	256	911
HDPE Bottles: Colored	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	15	12	47	13	87
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	0	0	4
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	16	28	12	22	78
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	1	5	9	19
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	37	52	36	29	154
Single Serve Total	0.54\%	0.61\%	0.63\%	0.76\%	0.64\%	1,602	1,762	2,325	3,381	9,070
Multi Serve										
PET Bottles	0.38\%	0.56\%	0.50\%	0.51\%	0.49\%	718	920	1,075	1,239	3,952
HDPE Bottles: Natural	0.39\%	0.41\%	0.43\%	0.47\%	0.42\%	1,274	1,204	1,413	1,808	5,699
HDPE Bottles: Colored	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	58	55	54	26	193
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	5	2	3	10
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	5	3	5	14
Multi Serve Total	0.79\%	0.99\%	0.95\%	1.01\%	0.93\%	2,051	2,189	2,547	3,081	9,868

Table 1-73
High Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste						Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.13\%	1.47\%	1.27\%	1.48\%	1.34\%	2,620	2,960	3,730	5,083	14,393
HDPE Bottles: Natural	0.55\%	0.56\%	0.58\%	0.63\%	0.58\%	1,591	1,514	1,962	2,248	7,315
HDPE Bottles: Colored	0.52\%	0.46\%	0.54\%	0.62\%	0.53\%	850	936	1,160	1,344	4,290
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	60	22	28	25	135
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	27	34	21	32	114
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.03\%	0.02\%	75	61	91	133	360
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.10\%	0.06\%	0.07\%	159	162	184	149	654
Clear Container Glass	1.58\%	1.80\%	1.44\%	2.13\%	1.74\%	594	649	718	769	2,730
Green Container Glass	0.33\%	0.34\%	0.32\%	0.46\%	0.36\%	115	153	146	164	578
Brown Container Glass	0.57\%	0.48\%	0.45\%	0.52\%	0.50\%	189	189	199	258	835
Other Container Glass	0.01\%	0.01\%	0.03\%	0.01\%	0.02\%	5	8	22	7	42
Aluminum Cans	0.22\%	0.22\%	0.22\%	0.41\%	0.27\%	856	931	986	1,589	4,362
GRAND TOTAL	5.00\%	5.43\%	4.99\%	6.39\%	5.45\%	7,141	7,619	9,247	11,801	35,808

(1) Values shown are the total number of containers observed in the High Density/Low Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-74
Medium Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.17\%	0.24\%	0.23\%	0.22\%	0.21\%	493	743	714	887	2,837
Clear Container Glass	0.20\%	0.18\%	0.25\%	0.24\%	0.22\%	122	136	132	286	676
Green Container Glass	0.19\%	0.33\%	0.28\%	0.24\%	0.26\%	139	226	183	239	787
Brown Container Glass	0.50\%	0.43\%	0.37\%	0.46\%	0.44\%	362	329	299	413	1,403
Other Container Glass	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%	4	1	1	27	33
Aluminum Cans	0.16\%	0.12\%	0.12\%	0.13\%	0.13\%	606	736	816	1,064	3,222
Deposit Total	1.23\%	1.30\%	1.26\%	1.31\%	1.27\%	1,726	2,171	2,145	2,916	8,958
Potential Deposit										
PET Bottles	0.40\%	0.46\%	0.46\%	0.61\%	0.48\%	1,726	2,124	2,554	4,051	10,455
HDPE Bottles: Natural	0.04\%	0.07\%	0.07\%	0.07\%	0.06\%	140	205	232	261	838
HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	2	3	1	12
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	2	2
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	2	0	0	3
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	15	9	3	5	32
Clear Container Glass	0.21\%	0.21\%	0.28\%	0.31\%	0.26\%	111	121	141	212	585
Green Container Glass	0.02\%	0.01\%	0.01\%	0.00\%	0.01\%	7	8	2	2	19
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	4	6
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
Aluminum Cans	0.02\%	0.01\%	0.02\%	0.03\%	0.02\%	85	79	157	222	543
Potential Deposit Total	0.71\%	0.76\%	0.84\%	1.03\%	0.84\%	2,093	2,551	3,092	4,760	12,496
Non-Deposit										
PET Bottles	0.23\%	0.31\%	0.27\%	0.31\%	0.28\%	574	879	776	1,005	3,234
HDPE Bottles: Natural	0.17\%	0.16\%	0.17\%	0.15\%	0.16\%	382	551	596	559	2,088
HDPE Bottles: Colored	0.36\%	0.46\%	0.37\%	0.36\%	0.39\%	663	829	854	1,023	3,369
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	17	19	11	31	78
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	6	6	6	9	27
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	50	83	87	81	301
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.07\%	0.04\%	0.05\%	87	151	146	150	534
Clear Container Glass	0.86\%	1.38\%	0.84\%	1.08\%	1.03\%	466	807	648	757	2,678
Green Container Glass	0.89\%	1.25\%	0.89\%	0.77\%	0.95\%	360	475	387	392	1,614
Brown Container Glass	0.07\%	0.10\%	0.06\%	0.06\%	0.07\%	40	67	44	50	201
Other Container Glass	0.04\%	0.02\%	0.03\%	0.02\%	0.03\%	14	15	19	22	70
Aluminum Cans	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	26	41	13	63	143
Non-Deposit Total	2.68\%	3.77\%	2.74\%	2.84\%	2.99\%	2,685	3,923	3,587	4,142	14,337

Table 1-74
Medium Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.14\%	0.35\%	0.21\%	0.21\%	0.22\%	396	557	585	700	2,238
HDPE Bottles: Natural	0.07\%	0.07\%	0.08\%	0.05\%	0.07\%	125	162	194	126	607
HDPE Bottles: Colored	0.32\%	0.45\%	0.34\%	0.35\%	0.36\%	599	734	802	962	3,097
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	17	19	11	30	77
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	6	5	5	9	25
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	48	81	84	72	285
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.03\%	0.04\%	0.03\%	0.04\%	82	128	107	108	425
Non-Beverage Total	0.59\%	0.93\%	0.70\%	0.67\%	0.72\%	1,273	1,686	1,788	2,007	6,754
Single Serve										
PET Bottles	0.46\%	0.42\%	0.42\%	0.52\%	0.45\%	1,693	1,969	2,380	3,705	9,747
HDPE Bottles: Natural	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%	68	69	112	89	338
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	35	59	25	20	139
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	1	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	1	2	4
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	3	2	3	9
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	9	39	36	22	106
Single Serve Total	0.48\%	0.46\%	0.46\%	0.54\%	0.48\%	1,806	2,141	2,556	3,842	10,345
Multi Serve										
PET Bottles	0.23\%	0.36\%	0.33\%	0.40\%	0.33\%	696	1,111	1,077	1,543	4,427
HDPE Bottles: Natural	0.12\%	0.15\%	0.15\%	0.15\%	0.14\%	322	439	476	605	1,842
HDPE Bottles: Colored	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	27	49	18	31	125
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	6	7
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	11	5	6	14	36
Multi Serve Total	0.38\%	0.53\%	0.49\%	0.57\%	0.49\%	1,056	1,605	1,577	2,199	6,437

Table 1-74
Medium Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.80\%	1.01\%	0.95\%	1.14\%	0.97\%	2,793	3,746	4,044	5,943	16,526
HDPE Bottles: Natural	0.21\%	0.23\%	0.24\%	0.22\%	0.23\%	522	756	828	820	2,926
HDPE Bottles: Colored	0.36\%	0.47\%	0.37\%	0.37\%	0.39\%	669	831	857	1,024	3,381
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	17	20	11	31	79
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	6	6	6	11	29
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	51	85	87	81	304
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.07\%	0.04\%	0.05\%	102	160	149	155	566
Clear Container Glass	1.27\%	1.77\%	1.38\%	1.64\%	1.51\%	699	1,064	921	1,255	3,939
Green Container Glass	1.10\%	1.59\%	1.19\%	1.02\%	1.22\%	506	709	572	633	2,420
Brown Container Glass	0.58\%	0.53\%	0.43\%	0.53\%	0.52\%	404	396	343	467	1,610
Other Container Glass	0.04\%	0.02\%	0.03\%	0.04\%	0.04\%	18	16	20	49	103
Aluminum Cans	0.18\%	0.13\%	0.14\%	0.16\%	0.15\%	717	856	986	1,349	3,908
GRAND TOTAL	4.61\%	5.83\%	4.84\%	5.19\%	5.10\%	6,504	8,645	8,824	11,818	35,791

(1) Values shown are the total number of containers observed in the Medium Density/High Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-75
Medium Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.21\%	0.38\%	0.31\%	0.30\%	0.30\%	579	682	926	973	3,160
Clear Container Glass	0.24\%	0.22\%	0.31\%	0.45\%	0.30\%	90	82	187	222	581
Green Container Glass	0.18\%	0.20\%	0.14\%	0.27\%	0.20\%	94	100	101	165	460
Brown Container Glass	0.25\%	0.32\%	0.20\%	0.53\%	0.32\%	174	230	154	318	876
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	1	2	4
Aluminum Cans	0.12\%	0.15\%	0.12\%	0.19\%	0.14\%	688	697	778	1,020	3,183
Deposit Total	0.99\%	1.26\%	1.08\%	1.74\%	1.27\%	1,626	1,791	2,147	2,700	8,264
Potential Deposit										
PET Bottles	0.46\%	0.43\%	0.47\%	0.75\%	0.53\%	1,970	2,310	2,610	4,783	11,673
HDPE Bottles: Natural	0.10\%	0.12\%	0.15\%	0.22\%	0.15\%	303	471	505	754	2,033
HDPE Bottles: Colored	0.01\%	0.03\%	0.00\%	0.01\%	0.01\%	33	53	3	22	111
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	0	12	17	40
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	0	1	3
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	10	15	5	11	41
Clear Container Glass	0.23\%	0.21\%	0.26\%	0.33\%	0.26\%	134	129	179	251	693
Green Container Glass	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	2	6	3	0	11
Brown Container Glass	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	2	1	2	0	5
Other Container Glass	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	3	0	7	4	14
Aluminum Cans	0.01\%	0.02\%	0.03\%	0.05\%	0.03\%	106	123	280	469	978
Potential Deposit Total	0.85\%	0.83\%	0.95\%	1.38\%	1.00\%	2,575	3,109	3,606	6,312	15,602
Non-Deposit										
PET Bottles	0.32\%	0.42\%	0.33\%	0.38\%	0.36\%	973	1,200	1,158	1,320	4,651
HDPE Bottles: Natural	0.36\%	0.46\%	0.41\%	0.41\%	0.41\%	1,585	1,468	1,505	1,802	6,360
HDPE Bottles: Colored	0.50\%	0.51\%	0.44\%	0.43\%	0.47\%	929	1,042	1,140	1,389	4,500
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	27	23	20	39	109
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	14	29	6	17	66
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	94	121	72	108	395
\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.05\%	0.07\%	0.04\%	0.06\%	153	165	176	145	639
Clear Container Glass	0.80\%	0.99\%	0.83\%	0.86\%	0.87\%	467	618	537	593	2,215
Green Container Glass	0.24\%	0.23\%	0.25\%	0.20\%	0.23\%	74	73	116	86	349
Brown Container Glass	0.07\%	0.12\%	0.04\%	0.03\%	0.06\%	25	49	37	30	141
Other Container Glass	0.03\%	0.01\%	0.03\%	0.02\%	0.02\%	16	11	24	15	66
Aluminum Cans	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	36	64	24	70	194
Non-Deposit Total	2.45\%	2.83\%	2.43\%	2.41\%	2.52\%	4,393	4,863	4,815	5,614	19,685

Table 1-75
Medium Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.23\%	0.29\%	0.24\%	0.27\%	0.26\%	656	833	884	973	3,346
HDPE Bottles: Natural	0.06\%	0.11\%	0.07\%	0.08\%	0.08\%	148	251	237	219	855
HDPE Bottles: Colored	0.45\%	0.45\%	0.41\%	0.42\%	0.43\%	858	926	1,079	1,293	4,156
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	26	23	20	38	107
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	15	13	2	8	38
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	81	108	69	97	355
\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.04\%	0.06\%	0.03\%	0.05\%	116	124	127	98	465
Non-Beverage Total	0.84\%	0.92\%	0.81\%	0.84\%	0.85\%	1,900	2,278	2,418	2,726	9,322
Single Serve										
PET Bottles	0.38\%	0.45\%	0.42\%	0.63\%	0.47\%	1,897	2,067	2,559	4,280	10,803
HDPE Bottles: Natural	0.03\%	0.04\%	0.03\%	0.03\%	0.03\%	110	110	158	152	530
HDPE Bottles: Colored	0.02\%	0.02\%	0.01\%	0.01\%	0.01\%	50	73	35	37	195
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	13	15	16	24	68
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	2	0	5	11
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	35	40	50	44	169
Single Serve Total	0.43\%	0.52\%	0.47\%	0.69\%	0.53\%	2,110	2,307	2,818	4,542	11,777
Multi Serve										
PET Bottles	0.38\%	0.39\%	0.43\%	0.53\%	0.43\%	1,018	1,245	1,213	1,816	5,292
HDPE Bottles: Natural	0.38\%	0.43\%	0.45\%	0.54\%	0.45\%	1,273	1,540	1,630	2,182	6,625
HDPE Bottles: Colored	0.03\%	0.04\%	0.01\%	0.01\%	0.02\%	71	101	29	56	257
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	0	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	4	1	3	8
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	9	13	2	13	37
Multi Serve Total	0.80\%	0.87\%	0.89\%	1.09\%	0.91\%	2,372	2,903	2,875	4,070	12,220

Table 1-75
Medium Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.99\%	1.23\%	1.11\%	1.43\%	1.19\%	3,522	4,192	4,694	7,076	19,484
HDPE Bottles: Natural	0.46\%	0.58\%	0.55\%	0.63\%	0.55\%	1,888	1,939	2,010	2,556	8,393
HDPE Bottles: Colored	0.52\%	0.55\%	0.44\%	0.44\%	0.48\%	962	1,095	1,143	1,411	4,611
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	27	23	20	39	109
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	25	29	18	34	106
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	95	122	72	109	398
\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.06\%	0.07\%	0.05\%	0.06\%	163	180	181	156	680
Clear Container Glass	1.27\%	1.42\%	1.41\%	1.64\%	1.43\%	691	829	903	1,066	3,489
Green Container Glass	0.43\%	0.43\%	0.39\%	0.47\%	0.43\%	170	179	220	251	820
Brown Container Glass	0.32\%	0.44\%	0.25\%	0.56\%	0.39\%	201	280	193	348	1,022
Other Container Glass	0.05\%	0.01\%	0.04\%	0.03\%	0.03\%	20	11	32	21	84
Aluminum Cans	0.14\%	0.18\%	0.16\%	0.25\%	0.18\%	830	884	1,082	1,559	4,355
GRAND TOTAL	4.28\%	4.93\%	4.46\%	5.53\%	4.79\%	8,594	9,763	10,568	14,626	43,551

(1) Values shown are the total number of containers observed in the Medium Density/Medium Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-76
Medium Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.40\%	0.49\%	0.46\%	0.55\%	0.47\%	868	1,147	1,218	1,596	4,829
Clear Container Glass	0.60\%	0.48\%	0.79\%	0.63\%	0.63\%	218	220	360	329	1,127
Green Container Glass	0.19\%	0.28\%	0.24\%	0.35\%	0.26\%	107	182	201	276	766
Brown Container Glass	0.35\%	0.35\%	0.32\%	0.54\%	0.39\%	204	215	308	377	1,104
Other Container Glass	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	1	0	5	0	6
Aluminum Cans	0.16\%	0.17\%	0.18\%	0.21\%	0.18\%	727	989	1,043	1,340	4,099
Deposit Total	1.72\%	1.76\%	1.99\%	2.29\%	1.94\%	2,125	2,753	3,135	3,918	11,931
Potential Deposit										
PET Bottles	0.38\%	0.43\%	0.53\%	0.81\%	0.54\%	1,522	1,718	2,526	4,588	10,354
HDPE Bottles: Natural	0.08\%	0.16\%	0.10\%	0.19\%	0.13\%	306	501	399	701	1,907
HDPE Bottles: Colored	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	8	20	12	26	66
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	0	0	4
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	36	18	19	44	117
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	6	7
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	21	16	9	25	71
Clear Container Glass	0.32\%	0.46\%	0.47\%	0.57\%	0.45\%	158	245	286	363	1,052
Green Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	1	0	3	2	6
Brown Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	4	3	2	1	10
Other Container Glass	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	2	2	0	2	6
Aluminum Cans	0.01\%	0.02\%	0.04\%	0.06\%	0.03\%	89	112	321	392	914
Potential Deposit Total	0.82\%	1.08\%	1.16\%	1.67\%	1.17\%	2,152	2,635	3,577	6,150	14,514
Non-Deposit										
PET Bottles	0.27\%	0.46\%	0.45\%	0.46\%	0.41\%	944	1,443	1,388	1,522	5,297
HDPE Bottles: Natural	0.36\%	0.34\%	0.35\%	0.31\%	0.34\%	1,143	1,281	1,202	1,298	4,924
HDPE Bottles: Colored	0.43\%	0.45\%	0.59\%	0.41\%	0.47\%	780	1,027	1,164	1,147	4,118
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	31	36	24	39	130
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	24	44	13	25	106
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	100	125	113	129	467
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.06\%	0.08\%	0.07\%	0.06\%	110	180	219	154	663
Clear Container Glass	0.92\%	1.02\%	1.07\%	1.05\%	1.01\%	457	574	757	659	2,447
Green Container Glass	0.14\%	0.05\%	0.11\%	0.13\%	0.11\%	51	33	73	58	215
Brown Container Glass	0.03\%	0.04\%	0.05\%	0.03\%	0.04\%	27	40	35	35	137
Other Container Glass	0.02\%	0.03\%	0.06\%	0.03\%	0.04\%	34	21	35	23	113
Aluminum Cans	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	73	45	30	147	295
Non-Deposit Total	2.26\%	2.50\%	2.80\%	2.55\%	2.53\%	3,774	4,849	5,053	5,236	18,912

Table 1-76
Medium Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.18\%	0.35\%	0.32\%	0.29\%	0.28\%	743	912	967	1,014	3,636
HDPE Bottles: Natural	0.09\%	0.08\%	0.10\%	0.12\%	0.10\%	210	261	244	257	972
HDPE Bottles: Colored	0.42\%	0.46\%	0.68\%	0.41\%	0.50\%	757	963	1,149	1,138	4,007
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	31	35	21	36	123
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	9	12	8	21	50
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	82	118	107	115	422
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.05\%	0.07\%	0.06\%	0.05\%	79	126	164	115	484
Non-Beverage Total	0.75\%	0.99\%	1.20\%	0.92\%	0.96\%	1,911	2,427	2,660	2,696	9,694
Single Serve										
PET Bottles	0.46\%	0.51\%	0.64\%	0.96\%	0.64\%	1,757	1,971	2,812	5,119	11,659
HDPE Bottles: Natural	0.05\%	0.04\%	0.06\%	0.08\%	0.06\%	234	230	291	369	1,124
HDPE Bottles: Colored	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	15	26	23	26	90
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	3	6
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	45	48	24	48	165
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	3	1	4	13
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	33	51	60	50	194
Single Serve Total	0.53\%	0.58\%	0.72\%	1.06\%	0.72\%	2,092	2,329	3,211	5,619	13,251
Multi Serve										
PET Bottles	0.39\%	0.48\%	0.47\%	0.55\%	0.47\%	887	1,294	1,345	1,572	5,098
HDPE Bottles: Natural	0.32\%	0.37\%	0.30\%	0.30\%	0.32\%	977	1,282	1,052	1,337	4,648
HDPE Bottles: Colored	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	27	56	36	46	165
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	9	1	6	16	32
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	4	3	14	22
Multi Serve Total	0.72\%	0.87\%	0.79\%	0.87\%	0.81\%	1,903	2,637	2,442	2,985	9,967

Table 1-76
Medium Density/Low Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste						Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.05\%	1.37\%	1.43\%	1.83\%	1.42\%	3,334	4,308	5,132	7,706	20,480
HDPE Bottles: Natural	0.44\%	0.50\%	0.46\%	0.50\%	0.47\%	1,449	1,782	1,601	1,999	6,831
HDPE Bottles: Colored	0.43\%	0.46\%	0.59\%	0.42\%	0.48\%	788	1,047	1,176	1,173	4,184
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.02\%	0.01\%	35	36	24	39	134
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	60	62	32	69	223
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	101	125	113	135	474
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.06\%	0.08\%	0.07\%	0.07\%	131	196	228	179	734
Clear Container Glass	1.84\%	1.96\%	2.32\%	2.25\%	2.09\%	833	1,039	1,403	1,351	4,626
Green Container Glass	0.33\%	0.33\%	0.35\%	0.49\%	0.37\%	159	215	277	336	987
Brown Container Glass	0.39\%	0.39\%	0.36\%	0.58\%	0.43\%	235	258	345	413	1,251
Other Container Glass	0.02\%	0.04\%	0.08\%	0.04\%	0.04\%	37	23	40	25	125
Aluminum Cans	0.19\%	0.19\%	0.22\%	0.29\%	0.22\%	889	1,146	1,394	1,879	5,308
GRAND TOTAL	4.79\%	5.34\%	5.95\%	6.51\%	5.64\%	8,051	10,237	11,765	15,304	45,357

(1) Values shown are the total number of containers observed in the Medium Density/Low Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-77
Low Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.24\%	0.31\%	0.24\%	0.28\%	0.26\%	844	1,226	1,162	1,393	4,625
Clear Container Glass	0.24\%	0.21\%	0.21\%	0.35\%	0.25\%	129	168	169	397	863
Green Container Glass	0.12\%	0.11\%	0.21\%	0.22\%	0.17\%	111	113	230	247	701
Brown Container Glass	0.21\%	0.21\%	0.20\%	0.24\%	0.22\%	235	225	259	321	1,040
Other Container Glass	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	4	0	0	1	5
Aluminum Cans	0.13\%	0.17\%	0.10\%	0.22\%	0.15\%	1,363	1,815	1,164	2,162	6,504
Deposit Total	0.95\%	1.01\%	0.96\%	1.31\%	1.06\%	2,686	3,547	2,984	4,521	13,738
Potential Deposit										
PET Bottles	0.38\%	0.57\%	0.39\%	0.64\%	0.49\%	2,116	2,772	2,734	5,325	12,947
HDPE Bottles: Natural	0.05\%	0.07\%	0.07\%	0.08\%	0.07\%	184	280	273	368	1,105
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	17	5	11	7	40
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	2	0	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	2	21	23
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	2	0	7	11
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	6	7	1	31	45
Clear Container Glass	0.28\%	0.32\%	0.23\%	0.36\%	0.30\%	207	243	243	371	1,064
Green Container Glass	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	35	12	2	10	59
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	0	0	2
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	0	0	0	2
Aluminum Cans	0.02\%	0.10\%	0.03\%	0.04\%	0.04\%	180	161	302	352	995
Potential Deposit Total	0.77\%	1.10\%	0.73\%	1.16\%	0.93\%	2,750	3,486	3,568	6,492	16,296
Non-Deposit										
PET Bottles	0.26\%	0.38\%	0.27\%	0.36\%	0.31\%	819	1,170	1,027	1,222	4,238
HDPE Bottles: Natural	0.64\%	0.28\%	0.22\%	0.25\%	0.34\%	691	941	895	1,040	3,567
HDPE Bottles: Colored	0.49\%	0.52\%	0.45\%	0.49\%	0.48\%	935	1,026	1,153	1,364	4,478
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	34	37	12	35	118
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	12	7	5	15	39
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.01\%	0.02\%	75	130	149	118	472
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.07\%	0.06\%	0.17\%	0.09\%	140	212	168	204	724
Clear Container Glass	0.82\%	1.12\%	0.96\%	0.94\%	0.95\%	554	760	870	727	2,911
Green Container Glass	0.21\%	0.28\%	0.17\%	0.18\%	0.21\%	108	119	109	103	439
Brown Container Glass	0.07\%	0.05\%	0.02\%	0.08\%	0.06\%	35	27	26	49	137
Other Container Glass	0.03\%	0.02\%	0.04\%	0.02\%	0.03\%	11	14	18	23	66
Aluminum Cans	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	47	28	12	81	168
Non-Deposit Total	2.58\%	2.76\%	2.23\%	2.54\%	2.51\%	3,461	4,471	4,444	4,981	17,357

Table 1-77
Low Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.17\%	0.24\%	0.20\%	0.33\%	0.23\%	609	752	761	892	3,014
HDPE Bottles: Natural	0.08\%	0.09\%	0.07\%	0.06\%	0.08\%	164	202	210	168	744
HDPE Bottles: Colored	0.50\%	0.48\%	0.42\%	0.47\%	0.46\%	866	864	1,136	1,327	4,193
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	29	56	11	31	127
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	9	7	3	12	31
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.02\%	0.01\%	0.02\%	64	121	138	110	433
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.05\%	0.06\%	0.05\%	93	138	132	138	501
Non-Beverage Total	0.81\%	0.90\%	0.77\%	0.95\%	0.85\%	1,834	2,140	2,391	2,678	9,043
Single Serve										
PET Bottles	0.38\%	0.58\%	0.37\%	0.60\%	0.48\%	2,236	2,945	2,827	5,301	13,309
HDPE Bottles: Natural	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	65	131	91	100	387
HDPE Bottles: Colored	0.02\%	0.01\%	0.01\%	0.00\%	0.01\%	41	45	29	8	123
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	1	0	3
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	2	4	24	33
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	3	1	13	19
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	33	69	35	62	199
Single Serve Total	0.42\%	0.62\%	0.40\%	0.63\%	0.51\%	2,381	3,196	2,988	5,508	14,073
Multi Serve										
PET Bottles	0.30\%	0.44\%	0.33\%	0.41\%	0.36\%	993	1,558	1,318	1,743	5,612
HDPE Bottles: Natural	0.20\%	0.33\%	0.20\%	0.24\%	0.24\%	680	912	868	1,140	3,600
HDPE Bottles: Colored	0.02\%	0.02\%	0.01\%	0.01\%	0.02\%	45	66	30	34	175
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	3	0	5	9
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	0	2	4
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	12	7	1	35	55
Multi Serve Total	0.52\%	0.80\%	0.54\%	0.67\%	0.62\%	1,731	2,548	2,217	2,959	9,455

Table 1-77
Low Density/High Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste						Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	0.88\%	1.25\%	0.90\%	1.28\%	1.07\%	3,779	5,168	4,923	7,940	21,810
HDPE Bottles: Natural	0.69\%	0.35\%	0.29\%	0.32\%	0.41\%	875	1,221	1,168	1,408	4,672
HDPE Bottles: Colored	0.50\%	0.53\%	0.45\%	0.49\%	0.49\%	952	1,031	1,164	1,371	4,518
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	35	39	12	35	121
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	12	7	7	36	62
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	77	132	149	125	483
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.08\%	0.06\%	0.19\%	0.09\%	146	219	169	235	769
Clear Container Glass	1.34\%	1.65\%	1.40\%	1.65\%	1.50\%	890	1,171	1,282	1,495	4,838
Green Container Glass	0.35\%	0.41\%	0.39\%	0.42\%	0.39\%	254	244	341	360	1,199
Brown Container Glass	0.28\%	0.27\%	0.22\%	0.33\%	0.27\%	270	254	285	370	1,179
Other Container Glass	0.04\%	0.02\%	0.04\%	0.02\%	0.03\%	17	14	18	24	73
Aluminum Cans	0.15\%	0.28\%	0.12\%	0.27\%	0.20\%	1,590	2,004	1,478	2,595	7,667
GRAND TOTAL	4.31\%	4.87\%	3.91\%	5.01\%	4.50\%	8,897	11,504	10,996	15,994	47,391

(1) Values shown are the total number of containers observed in the Low Density/High Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-78
Low Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.30\%	0.45\%	0.28\%	0.29\%	0.32\%	914	1,092	1,126	1,132	4,264
Clear Container Glass	0.36\%	0.39\%	0.25\%	0.45\%	0.36\%	230	229	182	303	944
Green Container Glass	0.13\%	0.14\%	0.15\%	0.19\%	0.15\%	132	106	122	206	566
Brown Container Glass	0.28\%	0.22\%	0.30\%	0.34\%	0.29\%	198	145	239	289	871
Other Container Glass	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0	2	5	0	7
Aluminum Cans	0.12\%	0.19\%	0.14\%	0.15\%	0.15\%	944	1,473	1,552	1,743	5,712
Deposit Total	1.19\%	1.40\%	1.13\%	1.42\%	1.28\%	2,418	3,047	3,226	3,673	12,364
Potential Deposit										
PET Bottles	0.40\%	0.38\%	0.49\%	0.62\%	0.48\%	1,868	1,933	3,007	4,762	11,570
HDPE Bottles: Natural	0.07\%	0.09\%	0.07\%	0.08\%	0.07\%	236	286	241	331	1,094
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	23	11	1	28	63
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	5	12	10	35
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	0	4	0	12
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	12	25	3	13	53
Clear Container Glass	0.24\%	0.25\%	0.30\%	0.37\%	0.29\%	157	192	233	350	932
Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	1	4
Brown Container Glass	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	2	5	0	0	7
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	0	0	1	6
Aluminum Cans	0.01\%	0.01\%	0.02\%	0.05\%	0.02\%	89	83	192	403	767
Potential Deposit Total	0.74\%	0.76\%	0.87\%	1.14\%	0.89\%	2,411	2,541	3,693	5,899	14,544
Non-Deposit										
PET Bottles	0.30\%	0.36\%	0.35\%	0.31\%	0.33\%	771	1,002	956	1,118	3,847
HDPE Bottles: Natural	0.35\%	0.32\%	0.30\%	0.27\%	0.31\%	955	1,040	1,037	1,199	4,231
HDPE Bottles: Colored	0.48\%	0.40\%	0.44\%	0.42\%	0.43\%	869	808	1,064	1,309	4,050
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	31	24	10	31	96
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	15	14	4	7	40
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.03\%	0.02\%	0.02\%	0.02\%	104	106	105	122	437
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.07\%	0.05\%	0.06\%	0.06\%	102	161	157	140	560
Clear Container Glass	0.88\%	1.10\%	0.95\%	0.80\%	0.92\%	485	580	701	605	2,371
Green Container Glass	0.13\%	0.22\%	0.24\%	0.19\%	0.19\%	54	77	96	101	328
Brown Container Glass	0.09\%	0.06\%	0.02\%	0.02\%	0.04\%	32	37	26	27	122
Other Container Glass	0.02\%	0.03\%	0.04\%	0.01\%	0.02\%	6	21	18	14	59
Aluminum Cans	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	33	17	21	143	214
Non-Deposit Total	2.32\%	2.60\%	2.42\%	2.13\%	2.35\%	3,457	3,887	4,195	4,816	16,355

Table 1-78
Low Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.19\%	0.24\%	0.25\%	0.23\%	0.23\%	581	703	734	782	2,800
HDPE Bottles: Natural	0.10\%	0.07\%	0.07\%	0.06\%	0.07\%	172	186	197	206	761
HDPE Bottles: Colored	0.43\%	0.37\%	0.42\%	0.39\%	0.40\%	717	743	989	1,184	3,633
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.00\%	0.01\%	0.01\%	31	27	9	31	98
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	11	3	3	6	23
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.03\%	0.01\%	0.02\%	0.02\%	93	98	100	115	406
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.06\%	0.04\%	0.04\%	0.04\%	77	117	110	92	396
Non-Beverage Total	0.79\%	0.79\%	0.80\%	0.75\%	0.78\%	1,682	1,877	2,142	2,416	8,117
Single Serve										
PET Bottles	0.36\%	0.36\%	0.45\%	0.61\%	0.45\%	1,903	2,019	3,064	4,762	11,748
HDPE Bottles: Natural	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	103	78	118	103	402
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	52	25	19	49	145
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	10	13	11	45
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	6	3	3	20
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.03\%	0.01\%	0.01\%	0.01\%	19	54	39	42	154
Single Serve Total	0.39\%	0.40\%	0.48\%	0.65\%	0.49\%	2,096	2,192	3,256	4,970	12,514
Multi Serve										
PET Bottles	0.38\%	0.48\%	0.40\%	0.38\%	0.40\%	1,080	1,344	1,295	1,468	5,187
HDPE Bottles: Natural	0.29\%	0.33\%	0.29\%	0.27\%	0.29\%	922	1,070	981	1,220	4,193
HDPE Bottles: Colored	0.05\%	0.02\%	0.03\%	0.02\%	0.03\%	95	57	35	103	290
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	2	0	4
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	15	9	3	20	47
Multi Serve Total	0.72\%	0.84\%	0.71\%	0.68\%	0.73\%	2,112	2,482	2,316	2,811	9,721

Table 1-78
Low Density/Medium Income Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste						Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.00\%	1.20\%	1.11\%	1.22\%	1.13\%	3,553	4,027	5,089	7,012	19,681
HDPE Bottles: Natural	0.41\%	0.40\%	0.37\%	0.34\%	0.38\%	1,191	1,326	1,278	1,530	5,325
HDPE Bottles: Colored	0.49\%	0.40\%	0.44\%	0.42\%	0.44\%	892	819	1,065	1,337	4,113
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	31	25	10	31	97
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	23	19	16	17	75
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.03\%	0.02\%	0.02\%	0.02\%	112	106	109	122	449
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.10\%	0.05\%	0.06\%	0.06\%	114	186	160	153	613
Clear Container Glass	1.48\%	1.75\%	1.50\%	1.62\%	1.58\%	872	1,001	1,116	1,258	4,247
Green Container Glass	0.27\%	0.36\%	0.38\%	0.38\%	0.35\%	189	183	218	308	898
Brown Container Glass	0.36\%	0.28\%	0.33\%	0.36\%	0.33\%	232	187	265	316	1,000
Other Container Glass	0.02\%	0.03\%	0.05\%	0.01\%	0.03\%	11	23	23	15	72
Aluminum Cans	0.13\%	0.21\%	0.16\%	0.22\%	0.18\%	1,066	1,573	1,765	2,289	6,693
GRAND TOTAL	4.25\%	4.77\%	4.42\%	4.68\%	4.52\%	8,286	9,475	11,114	14,388	43,263

(1) Values shown are the total number of containers observed in the Low Density/Medium Income stratum refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-79
Citywide Drink Container Counts and Sorts - Waste (Refuse and Recycling)

Percent of Waste							Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
By Deposit Type											
Deposit											
PET Bottles	0.29\%	0.38\%	0.31\%	0.35\%	0.33\%	2,353	5,420	7,067	7,304	8,648	28,439
Clear Container Glass	0.33\%	0.32\%	0.33\%	0.46\%	0.36\%	406	1,145	1,215	1,443	2,126	5,929
Green Container Glass	0.18\%	0.22\%	0.21\%	0.29\%	0.22\%	336	920	1,189	1,295	1,712	5,116
Brown Container Glass	0.31\%	0.30\%	0.26\%	0.40\%	0.32\%	496	1,641	1,655	1,769	2,425	7,490
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	14	16	15	34	79
Aluminum Cans	0.15\%	0.18\%	0.14\%	0.22\%	0.17\%	2,879	6,559	8,325	7,652	10,827	33,363
Deposit Total	1.26\%	1.40\%	1.27\%	1.72\%	1.41\%	6,470	15,699	19,467	19,478	25,772	80,416
Potential Deposit											
PET Bottles	0.43\%	0.49\%	0.49\%	0.69\%	0.53\%	NA	14,457	17,219	21,657	34,742	88,075
HDPE Bottles: Natural	0.07\%	0.12\%	0.11\%	0.15\%	0.11\%	NA	2,085	2,950	2,893	3,937	11,865
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	NA	178	126	63	111	478
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	5	15	0	0	20
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	75	37	60	110	282
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	17	6	9	16	48
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	90	117	32	96	335
Clear Container Glass	0.27\%	0.28\%	0.28\%	0.38\%	0.30\%	NA	1,100	1,289	1,505	2,071	5,965
Green Container Glass	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	NA	81	52	15	33	181
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	17	13	7	8	45
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	14	3	14	41	72
Aluminum Cans	0.01\%	0.03\%	0.03\%	0.05\%	0.03\%	NA	782	926	1,776	2,667	6,151
Potential Deposit Total	0.83\%	0.96\%	0.92\%	1.31\%	1.00\%	NA	18,901	22,753	28,031	43,832	113,517
Non-Deposit											
PET Bottles	0.28\%	0.41\%	0.33\%	0.37\%	0.35\%	NA	6,193	8,457	8,218	9,372	32,240
HDPE Bottles: Natural	0.40\%	0.34\%	0.31\%	0.33\%	0.34\%	NA	7,413	8,187	8,645	9,449	33,694
HDPE Bottles: Colored	0.47\%	0.48\%	0.47\%	0.48\%	0.47\%	NA	6,632	7,536	8,703	9,996	32,867
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	NA	262	216	177	272	927
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	116	144	60	106	426
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	NA	642	761	737	852	2,992
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.06\%	0.07\%	0.08\%	0.07\%	NA	1,072	1,402	1,381	1,228	5,083
Clear Container Glass	0.84\%	1.01\%	0.85\%	0.92\%	0.90\%	NA	3,769	4,784	5,056	4,786	18,395
Green Container Glass	0.30\%	0.35\%	0.31\%	0.27\%	0.31\%	NA	1,222	1,390	1,558	1,311	5,481
Brown Container Glass	0.06\%	0.07\%	0.04\%	0.05\%	0.06\%	NA	281	360	275	370	1,286
Other Container Glass	0.02\%	0.02\%	0.04\%	0.02\%	0.02\%	NA	100	108	174	128	510
Aluminum Cans	0.00\%	0.01\%	0.00\%	0.02\%	0.01\%	NA	329	320	182	774	1,605
Non-Deposit Total	2.45\%	2.77\%	2.46\%	2.58\%	2.56\%	NA	28,031	33,665	35,166	38,644	135,506

Table 1-79
Citywide Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

Percent of Waste							Count in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
By Container Size											
Non-Beverage											
PET Bottles	0.20\%	0.26\%	0.23\%	0.27\%	0.24\%	NA	4,492	5,543	5,917	6,541	22,493
HDPE Bottles: Natural	0.08\%	0.08\%	0.08\%	0.08\%	0.08\%	NA	1,294	1,528	1,700	1,436	5,958
HDPE Bottles: Colored	0.45\%	0.44\%	0.46\%	0.44\%	0.45\%	NA	6,143	6,783	8,190	9,549	30,665
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	NA	205	232	172	229	838
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	79	65	38	76	258
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.02\%	0.02\%	0.02\%	NA	572	714	703	777	2,766
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.06\%	0.05\%	0.05\%	NA	770	979	1,015	867	3,631
Non-Beverage Total	0.79\%	0.87\%	0.86\%	0.88\%	0.85\%	NA	13,555	15,844	17,735	19,475	66,609
Single Serve											
PET Bottles	0.44\%	0.51\%	0.48\%	0.68\%	0.53\%	NA	14,538	16,973	21,146	33,750	86,407
HDPE Bottles: Natural	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%	NA	927	990	1,292	1,290	4,499
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	NA	281	335	249	223	1,088
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	16	5	1	8	30
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	108	108	78	138	432
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	36	32	15	51	134
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	NA	243	412	361	320	1,336
Single Serve Total	0.49\%	0.57\%	0.53\%	0.73\%	0.58\%	NA	16,149	18,855	23,142	35,780	93,926
Multi Serve											
PET Bottles	0.35\%	0.45\%	0.41\%	0.48\%	0.42\%	NA	7,274	9,957	10,088	12,460	39,779
HDPE Bottles: Natural	0.29\%	0.35\%	0.31\%	0.35\%	0.32\%	NA	7,067	8,524	8,505	10,585	34,681
HDPE Bottles: Colored	0.02\%	0.02\%	0.02\%	0.01\%	0.02\%	NA	406	484	350	364	1,604
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	6	6	0	5	17
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	1	0	0	0	1
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NA	10	17	12	31	70
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	NA	76	54	23	122	275
Multi Serve Total	0.66\%	0.84\%	0.74\%	0.84\%	0.77\%	NA	14,840	19,042	18,978	23,567	76,427

Table 1-79
Citywide Drink Container Counts and Sorts - Waste (Refuse and Recycling) (continued)

	Percent of Waste					Count in Was	Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$											
PET Bottles	1.00\%	1.28\%	1.13\%	1.42\%	1.21\%	2,353	26,070	32,743	37,179	52,762	148,754
HDPE Bottles: Natural	0.47\%	0.45\%	0.42\%	0.48\%	0.46\%	NA	9,498	11,137	11,538	13,386	45,559
HDPE Bottles: Colored	0.48\%	0.49\%	0.47\%	0.48\%	0.48\%	NA	6,810	7,662	8,766	10,107	33,345
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	NA	267	231	177	272	947
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	NA	191	181	120	216	708
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	NA	659	767	746	868	3,040
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.07\%	0.07\%	0.08\%	0.07\%	NA	1,162	1,519	1,413	1,324	5,418
Clear Container Glass	1.43\%	1.61\%	1.47\%	1.77\%	1.57\%	406	6,014	7,288	8,004	8,983	30,289
Green Container Glass	0.49\%	0.59\%	0.53\%	0.57\%	0.54\%	336	2,223	2,631	2,868	3,056	10,778
Brown Container Glass	0.38\%	0.37\%	0.30\%	0.46\%	0.38\%	496	1,939	2,028	2,051	2,803	8,821
Other Container Glass	0.03\%	0.02\%	0.04\%	0.02\%	0.03\%	NA	128	127	203	203	661
Aluminum Cans	0.17\%	0.22\%	0.17\%	0.28\%	0.21\%	2,879	7,670	9,571	9,610	14,268	41,119
GRAND TOTAL	4.54\%	5.13\%	4.65\%	5.61\%	4.98\%	6,470	62,631	75,885	82,675	108,248	329,439

(1) Values shown are the total number of containers observed in all refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-80
Citywide Drink Container Sorts - Out of All Drink Containers

	Percent of All Drink Containers in Refuse					Percent of All Drink Containers in MGP					Percent of All Drink Containers in Waste				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Deposit															
PET Bottles	7.58\%	9.33\%	8.63\%	7.41\%	8.19\%	4.32\%	4.59\%	4.49\%	4.64\%	4.52\%	6.29\%	7.42\%	6.77\%	6.32\%	6.68\%
Clear Container Glass	9.14\%	7.72\%	9.34\%	9.96\%	9.08\%	4.05\%	3.64\%	4.51\%	5.69\%	4.53\%	7.16\%	6.20\%	7.17\%	8.28\%	7.25\%
Green Container Glass	4.19\%	4.71\%	4.73\%	5.58\%	4.84\%	3.42\%	3.79\%	4.35\%	4.42\%	4.03\%	3.90\%	4.32\%	4.55\%	5.12\%	4.50\%
Brown Container Glass	7.47\%	6.20\%	6.13\%	7.89\%	6.98\%	5.79\%	5.31\%	4.91\%	6.05\%	5.52\%	6.80\%	5.83\%	5.57\%	7.16\%	6.37\%
Other Container Glass	0.13\%	0.02\%	0.11\%	0.00\%	0.06\%	0.03\%	0.03\%	0.03\%	0.06\%	0.04\%	0.09\%	0.02\%	0.07\%	0.02\%	0.05\%
Aluminum Cans	4.53\%	4.69\%	4.51\%	5.21\%	4.76\%	1.66\%	1.59\%	1.34\%	1.79\%	1.60\%	3.41\%	3.46\%	3.08\%	3.86\%	3.47\%
Deposit Total	33.05\%	32.66\%	33.45\%	36.05\%	33.92\%	19.28\%	18.96\%	19.64\%	22.66\%	20.23\%	27.65\%	27.24\%	27.22\%	30.75\%	28.33\%
Potential Deposit															
PET Botlles	9.46\%	9.16\%	10.37\%	10.97\%	10.03\%	9.72\%	9.52\%	10.49\%	14.48\%	11.19\%	9.57\%	9.57\%	10.43\%	12.38\%	10.58\%
HDPE Bottles: Natural	0.78\%	1.53\%	2.03\%	2.29\%	1.69\%	2.96\%	3.46\%	2.84\%	3.26\%	3.12\%	1.64\%	2.28\%	2.40\%	2.67\%	2.27\%
HDPE Bottles: Colored	0.17\%	0.21\%	0.07\%	0.07\%	0.13\%	0.26\%	0.17\%	0.07\%	0.13\%	0.15\%	0.21\%	0.19\%	0.07\%	0.09\%	0.14\%
\#3 Through \#7 Botlles: \#3 PVC	0.00\%	0.12\%	0.00\%	0.00\%	0.03\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.00\%	0.00\%	0.02\%
\#3 Through \#7 Bottles: \#4 LDPE	0.02\%	0.04\%	0.08\%	0.07\%	0.06\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.02\%	0.03\%	0.05\%	0.05\%	0.04\%
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.02\%	0.00\%	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.06\%	0.08\%	0.05\%	0.06\%	0.18\%	0.13\%	0.00\%	0.12\%	0.11\%	0.10\%	0.09\%	0.05\%	0.08\%	0.08\%
Clear Container Glass	7.03\%	6.36\%	7.38\%	7.78\%	7.16\%	4.20\%	4.10\%	4.32\%	5.43\%	4.55\%	5.93\%	5.47\%	5.99\%	6.85\%	6.10\%
Green Container Glass	0.35\%	0.23\%	0.22\%	0.22\%	0.26\%	0.53\%	0.37\%	0.06\%	0.14\%	0.26\%	0.42\%	0.28\%	0.15\%	0.19\%	0.26\%
Brown Container Glass	0.15\%	0.02\%	0.08\%	0.03\%	0.07\%	0.05\%	0.04\%	0.02\%	0.01\%	0.03\%	0.11\%	0.03\%	0.05\%	0.02\%	0.05\%
Other Container Glass	0.03\%	0.01\%	0.12\%	0.11\%	0.07\%	0.19\%	0.02\%	0.03\%	0.05\%	0.07\%	0.09\%	0.01\%	0.08\%	0.09\%	0.07\%
Aluminum Cans	0.26\%	0.89\%	0.52\%	0.83\%	0.64\%	0.29\%	0.32\%	0.60\%	0.87\%	0.54\%	0.28\%	0.66\%	0.55\%	0.85\%	0.60\%
Potential Deposit Total	18.28\%	18.64\%	20.96\%	22.44\%	20.19\%	18.42\%	18.13\%	18.43\%	24.51\%	20.03\%	18.36\%	18.69\%	19.82\%	23.27\%	20.19\%
Non-Deposit															
PET Botles	5.76\%	7.92\%	7.59\%	6.40\%	6.89\%	6.93\%	7.90\%	6.69\%	7.01\%	7.11\%	6.24\%	7.92\%	7.19\%	6.66\%	6.99\%
HDPE Bottles: Natural	9.13\%	5.32\%	5.75\%	4.66\%	6.14\%	8.06\%	8.49\%	7.88\%	7.60\%	7.98\%	8.70\%	6.55\%	6.71\%	5.81\%	6.88\%
HDPE Bottles: Colored	9.38\%	7.97\%	8.80\%	6.98\%	8.21\%	11.82\%	11.39\%	11.63\%	10.83\%	11.40\%	10.33\%	9.27\%	10.07\%	8.49\%	9.49\%
\#3 Through \#7 Botlles: \#3 PVC	0.32\%	0.24\%	0.40\%	0.26\%	0.30\%	0.17\%	0.14\%	0.07\%	0.19\%	0.14\%	0.26\%	0.20\%	0.25\%	0.23\%	0.24\%
\#3 Through \#7 Bottles: \#4 LDPE	0.13\%	0.12\%	0.10\%	0.10\%	0.11\%	0.04\%	0.02\%	0.00\%	0.02\%	0.02\%	0.10\%	0.08\%	0.06\%	0.07\%	0.07\%
\#3 Through \#7 Bottles: \#5 PP	0.32\%	0.44\%	0.44\%	0.40\%	0.40\%	0.41\%	0.34\%	0.26\%	0.33\%	0.33\%	0.36\%	0.40\%	0.36\%	0.38\%	0.37\%
\#3 Through \#7 Bottles: \#7 Other	1.30\%	1.58\%	2.40\%	2.01\%	1.82\%	0.80\%	0.77\%	0.42\%	0.52\%	0.61\%	1.11\%	1.26\%	1.52\%	1.42\%	1.33\%
Clear Container Glass	17.20\%	19.19\%	15.43\%	16.69\%	17.13\%	20.42\%	20.58\%	21.92\%	16.20\%	19.70\%	18.43\%	19.63\%	18.38\%	16.49\%	18.15\%
Green Container Glass	3.42\%	4.13\%	2.87\%	2.96\%	3.34\%	11.38\%	11.18\%	11.26\%	7.75\%	10.30\%	6.53\%	6.87\%	6.63\%	4.86\%	6.16\%
Brown Container Glass	1.26\%	1.30\%	0.73\%	0.58\%	0.95\%	1.53\%	1.58\%	1.11\%	1.59\%	1.44\%	1.38\%	1.42\%	0.91\%	0.98\%	1.16\%
Other Container Glass	0.35\%	0.26\%	0.95\%	0.22\%	0.43\%	0.61\%	0.42\%	0.64\%	0.48\%	0.54\%	0.45\%	0.32\%	0.81\%	0.32\%	0.47\%
Aluminum Cans	0.09\%	0.21\%	0.12\%	0.24\%	0.17\%	0.12\%	0.10\%	0.03\%	0.31\%	0.14\%	0.10\%	0.16\%	0.08\%	0.27\%	0.16\%
Non-Deposit Total	48.67\%	48.70\%	45.59\%	41.50\%	45.89\%	62.30\%	62.91\%	61.93\%	52.83\%	59.74\%	53.99\%	54.07\%	52.96\%	45.98\%	51.48\%
Single Serve															
PET Botlles	46.67\%	43.16\%	43.30\%	49.30\%	45.73\%	25.69\%	24.98\%	30.20\%	35.24\%	29.60\%	37.91\%	36.35\%	37.50\%	43.04\%	38.94\%
HDPE Bottles: Natural	3.26%	2.58\%	3.30\%	3.44\%	3.16\%	1.57\%	1.34\%	1.44\%	0.73\%	1.23\%	2.55\%	2.04\%	2.48\%	2.21\%	2.31\%
HDPE Bottles: Colored	1.39\%	1.10\%	0.79\%	0.63\%	0.96\%	0.33\%	0.26\%	0.44\%	0.11\%	0.27\%	0.94\%	0.75\%	0.64\%	0.40\%	0.66\%
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.00\%	0.01\%	0.00\%	0.01\%	0.04\%	0.01\%	0.00\%	0.02\%	0.02\%	0.04\%	0.00\%	0.01\%	0.01\%	0.01\%
\#3 Through \#7 Bottles: \#4 LDPE	0.25\%	0.36\%	0.35\%	0.35\%	0.33\%	0.05\%	0.03\%	0.01\%	0.05\%	0.03\%	0.16\%	0.22\%	0.20\%	0.21\%	0.20\%
\#3 Through \#7 Botles: \#5 PP	0.07\%	0.05\%	0.03\%	0.07\%	0.06\%	0.03\%	0.04\%	0.02\%	0.09\%	0.05\%	0.06\%	0.04\%	0.03\%	0.08\%	0.05\%
\#3 Through \#7 Bottles: \#7 Other	1.07\%	1.09\%	0.99\%	0.80\%	0.98\%	0.50\%	0.65\%	0.47\%	0.40\%	0.50\%	0.83\%	0.90\%	0.79\%	0.62\%	0.77\%
Single Serve Total	52.76\%	48.34\%	48.77\%	54.58\%	51.22\%	28.20\%	27.32\%	32.59\%	36.63\%	31.69\%	42.49\%	40.30\%	41.64\%	46.57\%	42.95\%
Multi Serve															
PET Bottles	27.98\%	30.46\%	31.78\%	29.01\%	29.81\%	33.74\%	36.11\%	33.45\%	31.64\%	33.57\%	30.41\%	32.41\%	32.48\%	30.18\%	31.33\%
HDPE Bottles: Natural	17.65\%	20.18\%	18.20\%	15.57\%	17.81\%	34.65\%	32.89\%	32.26\%	29.84\%	32.17\%	24.74\%	25.19\%	24.40\%	21.95\%	23.94\%
HDPE Bottles: Colored	1.51\%	0.78\%	1.09\%	0.78\%	1.02\%	2.66\%	2.89\%	1.48\%	1.15\%	1.95\%	1.98\%	1.63\%	1.30\%	0.94\%	1.42\%
\#3 Through \#7 Botlles: \#3 PVC	0.06\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.04\%	0.00\%	0.02\%	0.02\%	0.04\%	0.02\%	0.00\%	0.01\%	0.02\%
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Botles: \#5 PP	0.00\%	0.10\%	0.00\%	0.01\%	0.03\%	0.01\%	0.08\%	0.05\%	0.05\%	0.05\%	0.00\%	0.09\%	0.02\%	0.03\%	0.04\%
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.15\%	0.16\%	0.05\%	0.10\%	0.72\%	0.69\%	0.18\%	0.66\%	0.56\%	0.32\%	0.37\%	0.17\%	0.32\%	0.30\%
Multi Serve Total	47.24\%	51.66\%	51.23\%	45.42\%	48.78\%	71.80\%	72.68\%	67.41\%	63.37\%	68.31\%	57.51\%	59.70\%	58.36\%	53.43\%	57.05\%

[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1
Section 3: Residential Historical Comparisons
[This page intentionally left blank.]

Section 3 Residential Historical Comparisons

3.1 Introduction

Comparing past and present Waste composition results is useful in several ways. First, such comparisons highlight trends over time. The generation and composition of Waste is influenced by many factors, including changes in Population size, demographics, economic conditions, and technology. Changes in these factors are reflected in the character of the Waste. For example, over the past ten years, the use of plastics has increased and this is evident in comparing the City's Waste in 1989/1990 and 2004/2005.

Second, the 1989/1990 WCS was conducted at a time when the City's Recycling program was just beginning. Relatively few areas of the City had Recycling collection in 1989, and sampling was not carried out in those areas. By 2004/2005, when the PWCS and the WCS took place, Recycling was well-established citywide. A comparison of the studies from these two periods shows the amount that is now being diverted from disposal and how much more material might be diverted. It also shows that there are limits to diversion, at least under the present program.

The methodologies used in the 1989/1990 Study and the WCS were similar in a number of ways. Both studies used two demographic criteria as a means of characterizing the City's residential Waste and developed nine demographic strata based on these criteria. Both studies examined seasonality by including four seasonal sorts and sorted Refuse Samples of 200 pounds to 300 pounds.

However, comparisons between the two studies are complicated by certain differences in methodology and logistical procedures. The 1989/1990 Study sorted more than 1,300 residential Refuse samples and no Recycling samples; the WCS sorted more than 3,400 Refuse and Recycling samples. Because citywide Recycling was in its nascent stage in 1989, the 1989/1990 Study excluded any Census Tracts for which a curbside Recycling program was in operation or planned for implementation. Therefore, only residential Refuse samples were characterized. In 2004/2005, Recycling collection was citywide and the WCS characterized Refuse and Recycling, both Paper and MGP.

While both studies used median household income as one of the demographic criteria, the 1989/1990 Study used population density and the WCS used housing density. The 1989/1990 Study excluded the 10 percent of the population in Census Tracts with the highest and lowest densities and incomes. Because the WCS was designed to randomly sample Census Tracts, giving an equal opportunity for every Census Tract to be selected, none of the Census Tracts were excluded from the WCS.

In estimating the composition of the Refuse, the 1989/1990 Study specifically excluded bulk waste. Therefore, in order to make comparisons between the WCS and the 1989/1990 Study, the results of the WCS were calculated without Bulk Items and these results are presented in Section 3.4.

Finally, the Refuse samples in the 1989/1990 Study were sorted into 45 Material Categories. The PWCS Refuse samples were sorted into 87 Material Categories and the WCS Refuse samples were sorted into 91 Material Categories. Therefore, certain adjustments had to be made to reconcile the differences in the Material Categories used in the two studies. For example, the "non-recyclable paper" category in the PWCS and WCS is included in "Other Paper" in the 1989/1990 Study.

3.2 Adjustments to 2004/2005 from 1989/1990 Material Categories

Tables 1-81 and 1-82 summarize the adjustments in the Material Categories that were made to arrive at the comparisons of the studies. These tables are useful in understanding the modifications in the Material Categories that were necessary to make a comparison of the results possible.

Table 1-81
Adjustments to PWCS 2004 Material Categories for Comparison with 1989/1990 Study

1989/1990 Group	1989/1990 Category	2004 Group	2004 Category
Paper	Newsprint	Paper	Newspaper
Paper	Corrugated/Kraft	Paper	Plain OCC/Kraft Paper
Paper	Office/Computer Paper	Paper	High Grade Paper
Paper	Other Paper	Paper	Mixed Low Grade Paper
Paper	Books/Phone Books	Paper	Phone Books
Paper	Books/Phone Books	Paper	Paperbacks
Paper	Other Paper	Paper	Paper Bags
Paper	Other Paper	Paper	Polycoated Containers
Paper	Other Paper	Paper	Compostable/Soiled/ Waxed OCC
Paper	Other Paper	Paper	Single Use Paper Plates, Cups
Paper	Other Paper	Paper	Other Nonrecyclable Paper
Plastic	PET Containers	Plastic	PET Bottles: Deposit
Plastic	Clear HDPE Containers	Plastic	HDPE Natural Bottles
Plastic	Colored HDPE Containers	Plastic	HDPE Colored Bottles
Plastic	Miscellaneous Plastic	Plastic	\#1-\#2 Tubs/Trays: \#1 PET
Plastic	Miscellaneous Plastic	Plastic	\#1-\#2 Tubs/Trays: \#2 HDPE
Plastic	PVC	Plastic	\#3-\#7 Containers: \#3 PVC
Plastic	LDPE	Plastic	\#3-\#7 Containers: \#4 LDPE
Plastic	Polypropylene	Plastic	\#3-\#7 Containers: \#5 PP
Plastic	Miscellaneous Plastic	Plastic	\#3-\#7 Containers: \#7 Other
Plastic	PVC	Plastic	Other PVC
Plastic	Polystyrene	Plastic	Rigid Polystyrene
Plastic	Polystyrene	Plastic	Expanded Polystyrene
Plastic	Miscellaneous Plastic	Plastic	Other Rigid Containers/Packaging
Plastic	Films/Bags	Plastic	Plastic Bags
Plastic	Films/Bags	Plastic	Other Film
Plastic	Miscellaneous Plastic	Plastic	Plastic Crates and Soda Bottle Carriers
Plastic	Miscellaneous Plastic	Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.
Plastic	Miscellaneous Plastic	Plastic	Single Use Cameras
Plastic	Miscellaneous Plastic	Plastic	Disposable Razors
Plastic	Miscellaneous Plastic	Plastic	Other Plastics Materials
Glass	Clear Glass	Glass	Clear Glass
Glass	Green Glass	Glass	Green Glass
Glass	Brown Glass	Glass	Brown Glass
Glass	Miscellaneous Glass	Glass	Mixed Cullet
Glass	Miscellaneous Glass	Glass	Other Glass
Metal	Aluminum Beverage Cans	Metal	Aluminum Cans
Metal	Aluminum Food Containers/Foil	Metal	Aluminum Foil/Tins
Metal	Miscellaneous Aluminum	Metal	Other Aluminum
Metal	Other Metal	Metal	Other Non-Ferrous
Metal	Metal Food Containers	Metal	Tin Food Cans
Metal	Other Metal	Metal	Empty Aerosol Cans
Metal	Other Metal	Metal	Other Ferrous
Metal	Other Metal	Metal	Mixed Metals
Yard	Grass/Leaves	Organic	Leaves and Grass
Yard	Brush/Prunings/Stumps	Organic	Prunings
Yard	Brush/Prunings/Stumps	Organic	Stumps/Limbs

Table 1-81
Adjustments to PWCS 2004 Material Categories for Comparison with 1989/1990 Study (continued)

1989/1990 Group	1989/1990 Category	2004 Group	2004 Category
Organic	Food Waste	Organic	Food
Organic	Lumber	Organic	Non-C\&D, Untreated Wood
Organic	Textiles	Organic	Non-Clothing Textiles
Organic	Textiles	Organic	Clothing Textiles
Organic	Textiles	Organic	Carpet/Upholstery
Organic	Diapers	Organic	Disposable Diapers/Sanitary Products
Organic	Miscellaneous Organic	Organic	Animal By-Products
Organic	Rubber	Organic	Rubber Products
Organic	Textiles	Organic	Shoes: Leather
Organic	Textiles	Organic	Shoes: Rubber
Organic	Textiles	Organic	Shoes: Other
Organic	Textiles	Organic	Other Leather Products
Organic	Fines	Organic	Fines
Organic	Miscellaneous Organic	Organic	Miscellaneous Organics
Organic	Lumber	Const. Debris	Untreated Dimension Lumber, Pallets, Crates
Organic	Lumber	Const. Debris	Treated/Contaminated Wood
Inorganic/HHW	Miscellaneous Inorganics	Const. Debris	Gypsum Scrap
Inorganic/HHW	Miscellaneous Inorganics	Const. Debris	Fiberglass Insulation
Inorganic/HHW	Miscellaneous Inorganics	Const. Debris	Rock/Concrete/Bricks
Inorganic/HHW	Miscellaneous Inorganics	Const. Debris	Asphaltic Roofing
Inorganic/HHW	Miscellaneous Inorganics	Const. Debris	Other C\&D Debris
Inorganic/HHW	Miscellaneous Inorganics	Misc	Misc. Inorganics
Inorganic/HHW	Non-Bulk Ceramics	Misc	Ceramics
Inorganic/HHW	Miscellaneous HHW	HHW	Oil Filters
Inorganic/HHW	Miscellaneous HHW	HHW	Antifreeze
Inorganic/HHW	Car Batteries	HHW	Wet-Cell Batteries
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Gasoline/Kerosene
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Motor Oil/Diesel Oil
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Latex Paints
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Water and Solvent-Based Adhesives/Glues
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Oil-Based Paint/Solvent
Inorganic/HHW	Pesticides	HHW	Pesticides/Herbicides/Rodenticides
Inorganic/HHW	Dry Cell Batteries	HHW	Dry-Cell Batteries
Inorganic/HHW	Miscellaneous HHW	HHW	Fluorescent Tubes
Inorganic/HHW	Miscellaneous HHW	HHW	Mercury-Laden waste
Inorganic/HHW	Miscellaneous HHW	HHW	Compressed Gas Cylinders/Fire Extinguishers
Inorganic/HHW	Miscellaneous HHW	HHW	Asbestos
Inorganic/HHW	Miscellaneous HHW	HHW	Explosives
Inorganic/HHW	Miscellaneous HHW	HHW	Smoke Detectors
Inorganic/HHW	Medical Waste	HHW	Home Medical Products
Inorganic/HHW	Miscellaneous HHW	HHW	Other Potentially Harmful Wastes
Not Assessed In 1990	Appliances And Electronics	App. \& Elec.	Small Appliances
Not Assessed In 1990	Appliances And Electronics	App. \& Elec.	Audio/Visual Equipment: Cell Phones
Not Assessed In 1990	Appliances And Electronics	App. \& Elec.	Audio/Visual Equipment: Other
Not Assessed In 1990	Appliances And Electronics	App. \& Elec.	Computer Monitors
Not Assessed In 1990	Appliances And Electronics	App. \& Elec.	Televisions
Not Assessed In 1990	Appliances And Electronics	App. \& Elec.	Other Computer Equip.

Table 1-82
Adjustments to WCS 2004/2005 Material Categories for Comparison with 1989/1990 Study

1989/1990 Group	1989/1990 Category	2004/2005 Group	2004/2005 Fall through Spring Category ${ }^{(1)}$	2005 Summer Category ${ }^{(2)}$
Paper	Newsprint	Paper	Newspaper	Newspaper
Paper	Corrugated/Kraft	Paper	Plain OCC/Kraft Paper	Plain OCC/Kraft Paper
Paper	Office/Computer Paper	Paper	High Grade Paper	High Grade Paper
Paper	Other Paper	Paper	Mixed Low Grade Paper	Mixed Low Grade Paper
Paper	Books/Phone Books	Paper	Phone Books/Paperbacks	Phone Books/Paperbacks
Paper	Other Paper	Paper	Paper Bags	Paper Bags
Paper	Other Paper	Paper	Polycoated Paper Containers	Polycoated Paper Containers
Paper	Other Paper	Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	Compostable/Soiled Paper/Waxed OCC/Kraft
Paper	Other Paper	Paper	Single Use Paper Plates, Cups	Single Use Paper Plates, Cups
Paper	Other Paper	Paper	Other Nonrecyclable Paper	Other Nonrecyclable Paper
Plastic	PET Containers	Plastic	PET Bottles	PET Bottles
Plastic	Clear HDPE Containers	Plastic	HDPE Bottles: Natural	HDPE Bottles: Natural
Plastic	Colored HDPE Containers	Plastic	HDPE Bottles: Colored	HDPE Bottles: Colored
Plastic	Miscellaneous Plastic	Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET
Plastic	Miscellaneous Plastic	Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE
Plastic	PVC	Plastic	\#3 Through \#7 Bottles: \#3 PVC	\#3 Through \#7 Bottles: \#3 PVC
Plastic	LDPE	Plastic	\#3 Through \#7 Bottles: \#4 LDPE	\#3 Through \#7 Bottles: \#4 LDPE
Plastic	Polypropylene	Plastic	\#3 Through \#7 Bottles: \#5 PP	\#3 Through \#7 Bottles: \#5 PP
Plastic	Miscellaneous Plastic	Plastic	\#3 Through \#7 Bottles: \#7 Other	\#3 Through \#7 Bottles: \#7 Other
Plastic	PVC	Plastic	\#3 Through \#7 Tubs: \#3 PVC	\#3 Through \#7 Tubs: \#3 PVC
Plastic	LDPE	Plastic	\#3 Through \#7 Tubs: \#4 LDPE	\#3 Through \#7 Tubs: \#4 LDPE
Plastic	Polypropylene	Plastic	\#3 Through \#7 Tubs: \#5 PP	\#3 Through \#7 Tubs: \#5 PP
Plastic	Miscellaneous Plastic	Plastic	\#3 Through \#7 Tubs: \#7 Other	\#3 Through \#7 Tubs: \#7 Other
Plastic	Miscellaneous Plastic	Plastic	Soda Crates and Bottle Carriers	Soda Crates and Bottle Carriers
Plastic	PVC	Plastic	Other PVC	Other PVC
Plastic	Polystyrene	Plastic	Rigid Polystyrene Containers and Packaging	Rigid Polystyrene Containers and Packaging
Plastic	Polystyrene	Plastic	Expanded Polystyrene Containers and Packaging	Expanded Polystyrene Containers and Packaging
Plastic	Miscellaneous Plastic	Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging
Plastic	Films/Bags	Plastic	Plastic Bags	Plastic Bags: Shopping Bags
Plastic	Films/Bags	Plastic	Plastic Bags	Plastic Bags: Dry Cleaning Bags \& Newspaper Bags
Plastic	Films/Bags	Plastic	Other Film	Film: Garbage/Recycling Bags
Plastic	Films/Bags	Plastic	Other Film	Film: Other
Plastic	Miscellaneous Plastic	Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	Single Use Plastic Plates, Cups, Cutlery, Etc.
Plastic	Miscellaneous Plastic	Plastic	Other Plastics Materials	Plastic Materials: Personal Hygiene
Plastic	Miscellaneous Plastic	Plastic	Other Plastics Materials	Plastic Materials: Toys/Housewares
Plastic	Miscellaneous Plastic	Plastic	Other Plastics Materials	Plastic Materials: Other
Glass	Clear Glass	Glass	Clear Container Glass	Clear Container Glass
Glass	Green Glass	Glass	Green Container Glass	Green Container Glass
Glass	Brown Glass	Glass	Brown Container Glass	Brown Container Glass
Glass	Miscellaneous Glass	Glass	Mixed Cullet	Mixed Cullet
Glass	Miscellaneous Glass	Glass	Other Container Glass	Other Container Glass
Glass	Miscellaneous Glass	Glass	Other Glass	Other Glass
Metal	Aluminum Beverage Cans	Metal	Aluminum Cans	Aluminum Cans
Metal	Aluminum Food Containers/Foil	Metal	Aluminum Foil/Containers	Aluminum: Foil/Containers
Metal	Miscellaneous Aluminum	Metal	Other Aluminum	Aluminum: Toys/Housewares
Metal	Miscellaneous Aluminum	Metal	Other Aluminum	Aluminum: Hardware
Metal	Miscellaneous Aluminum	Metal	Other Aluminum	Aluminum: Other
Metal	Other Metal	Metal	Other Non-Ferrous	Non-Ferrous: Toys/Housewares
Metal	Other Metal	Metal	Other Non-Ferrous	Non-Ferrous: Hardware
Metal	Other Metal	Metal	Other Non-Ferrous	Non-Ferrous: Other
Metal	Metal Food Containers	Metal	Tin Food Cans	Tin Food Cans
Metal	Other Metal	Metal	Empty Aerosol Cans	Empty Aerosol Cans
Metal	Other Metal	Metal	Other Ferrous	Ferrous: Toys/Housewares
Metal	Other Metal	Metal	Other Ferrous	Ferrous: Hardware
Metal	Other Metal	Metal	Other Ferrous	Ferrous: Other
Metal	Other Metal	Metal	Mixed Metals	Mixed Metals: Toys/Housewares
Metal	Other Metal	Metal	Mixed Metals	Mixed Metals: Hardware
Metal	Other Metal	Metal	Mixed Metals	Mixed Metals: Other
Metal	Other Metal	App. \& Elec.	Appliances: Ferrous	Appliances: Ferrous
Metal	Other Metal	App. \& Elec.	Appliances: Non-Ferrous	Appliances: Non-Ferrous
Yard	Grass/Leaves	Organic	Leaves And Grass	Leaves And Grass
Yard	Brush/Prunings/Stumps	Organic	Prunings	Prunings
Yard	Brush/Prunings/Stumps	Organic	Stumps/Limbs	Stumps/Limbs

Table 1-82
Adjustments to WCS 2004/2005 Material Categories for Comparison with 1989/1990 Study (continued)

1989/1990 Group	1989/1990 Category	2004/2005 Group	2004/2005 Fall through Spring Category ${ }^{(1)}$	2005 Summer Category ${ }^{(2)}$
Organic	Food Waste	Organic	Food	Food
Organic	Miscellaneous Organic	Organic	Wood Furniture/Furniture Pieces	Wood Furniture/Furniture Pieces
Organic	Lumber	Organic	Non-C\&D Untreated Wood	Non-C\&D Untreated Wood
Organic	Textiles	Organic	Non-Clothing Textiles	Non-Clothing Textiles
Organic	Textiles	Organic	Clothing Textiles	Clothing Textiles
Organic	Textiles	Organic	Carpet/Upholstery	Carpet/Upholstery
Organic	Diapers	Organic	Disposable Diapers and Sanitary Products	Disposable Diapers and Sanitary Products
Organic	Miscellaneous Organic	Organic	Animal By-Products	Animal By-Products
Organic	Rubber	Organic	Rubber Products	Rubber Products
Organic	Textiles	Organic	Shoes	Shoes
Organic	Textiles	Organic	Other Leather Products	Other Leather Products
Organic	Fines	Organic	Fines	Fines
Organic	Textiles	Organic	Upholstered or Other Organic-Type Furniture	Upholstered or Other Organic-Type Furniture
Organic	Miscellaneous Organic	Organic	Miscellaneous Organics	Miscellaneous Organics
Organic	Lumber	C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	Untreated Dimension Lumber, Pallets, Crates
Organic	Lumber	C \& D Debris	Treated/Contaminated Wood	Treated/Contaminated Wood
Inorganic/HHW	Miscellaneous Inorganics	C \& D Debris	Gypsum Scrap	Gypsum Scrap
Inorganic/HHW	Miscellaneous Inorganics	C \& D Debris	Rock/Concrete/Bricks	Rock/Concrete/Bricks
Inorganic/HHW	Miscellaneous Inorganics	C \& D Debris	Other Construction Debris	Other Construction Debris
Inorganic/HHW	Miscellaneous Inorganics	Misc	Miscellaneous Inorganics	Miscellaneous Inorganics
Inorganic/HHW	Non-Bulk Ceramics	Misc	Ceramics	Ceramics
Inorganic/HHW	Miscellaneous HHW	HHW	Oil Filters	Oil Filters
Inorganic/HHW	Miscellaneous HHW	HHW	Antifreeze	Antifreeze
Inorganic/HHW	Car Batteries	HHW	Wet-Cell Batteries	Wet-Cell Batteries
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	Gasoline/Kerosene/Motor Oil/Diesel Fuel
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Latex Paints/Water-Based Adhesives/Glues	Latex Paints/Water-Based Adhesives/Glues
Inorganic/HHW	Paints/Solvents/Fuel	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	Oil-Based Paints/Solvent-Based Adhesives/Glues
Inorganic/HHW	Pesticides	HHW	Pesticides/Herbicides/Rodenticides	Pesticides/Herbicides/Rodenticides
Inorganic/HHW	Dry Cell Batteries	HHW	Dry-Cell Batteries	Dry-Cell Batteries
Inorganic/HHW	Miscellaneous HHW	HHW	Fluorescent Tubes	Fluorescent Tubes
Inorganic/HHW	Miscellaneous HHW	HHW	Mercury-Laden Wastes	Mercury-Laden Wastes
Inorganic/HHW	Miscellaneous HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	Compressed Gas Cylinders, Fire Extinguishers
Inorganic/HHW	Medical Waste	HHW	Home Medical Products	Home Medical Products
Inorganic/HHW	Miscellaneous HHW	HHW	Other Potentially Harmful Wastes	Other Potentially Harmful Wastes
Not Assessed In 1989/90	Appliances And Electronics	App. \& Elec.	Appliances: Plastic	Appliances: Plastic
Not Assessed In 1989/90	Appliances And Electronics	App. \& Elec.	Audio/Visual Equipment: Cell Phones	Audio/Visual Equipment: Cell Phones
Not Assessed In 1989/90	Appliances And Electronics	App. \& Elec.	Audio/Visual Equipment: Other	Audio/Visual Equipment: Other
Not Assessed In 1989/90	Appliances And Electronics	App. \& Elec.	Computer Monitors	Computer Monitors
Not Assessed In 1989/90	Appliances And Electronics	App. \& Elec.	Televisions	Televisions
Not Assessed In 1989/90	Appliances And Electronics	App. \& Elec.	Other Computer Equipment	Other Computer Equipment

(1) The number of materials examined during the WCS was less than those in the PWCS. Materials within a material group were combined if they were infrequently - or never - seen in the PWCS.
(2) Materials shown in bold were subdivided into more specific categories during the Summer sort. This subdivision was done to gather more detailed information of the materials.

3.3 Seasonal Comparisons 2004/2005 to 1989/1990

Comparisons in Refuse composition between these two periods, 1989/1990 and 2004/2004, are shown in Tables 1-83 through 1-87.

Table 1-83 compares the results of the PWCS with results of the 1989/1990 Study. Because the PWCS was took place in May and June (2004) and involved a single Sorting Period, it was deemed a "spring" event. For this reason, the results of the PWCS are compared with the results of the Spring Sorting Period of the 1989/1990 Study. Annual comparisons with the PWCS are not possible because the PWCS was conducted during only one season.

Tables 1-84 through 1-87 present the results of the 2004/2005 WCS and 1989/1990 Study each season and annually. These comparisons are presented in a condensed format so that comparisons with the 1989/1990 Study can be made. These types of reports are useful in looking at changes in the Waste stream over time.

Table 1-83
Waste Composition, PWCS 2004 vs. Spring 1990, Residential Results Excluding Bulk

1990 Material Group ${ }^{(1)}$	1990 Material Category ${ }^{(1)}$		Citywide	
		$\begin{aligned} & \text { N } \\ & \stackrel{3}{2} \end{aligned}$	Spring 1990	$\begin{gathered} \text { PWCS } \\ 2004 \end{gathered}$
PAPER	Corrugated/Kraft		4.81\%	3.29\%
PAPER	Newsprint		8.39\%	7.34\%
PAPER	Office/Computer Paper		0.23\%	1.02\%
PAPER	Other Paper	2	17.52\%	17.59\%
PAPER	Books/Phone Books		0.54\%	0.83\%
PAPER Total			31.49\%	30.07\%
PLASTIC	Clear HDPE Containers		0.47\%	0.44\%
PLASTIC	Colored HDPE Containers		0.57\%	0.51\%
PLASTIC	LDPE		0.08\%	0.01\%
PLASTIC	Films/Bags		5.03\%	7.11\%
PLASTIC	PET Containers	3	0.56\%	1.25\%
PLASTIC	PVC		0.12\%	0.08\%
PLASTIC	Polypropylene		0.13\%	0.23\%
PLASTIC	Polystyrene		0.93\%	0.77\%
PLASTIC	Miscellaneous Plastic		1.27\%	3.16\%
PLASTIC Total			9.16\%	13.56\%
GLASS	Clear Glass		3.52\%	1.59\%
GLASS	Green Glass		1.05\%	0.52\%
GLASS	Brown Glass		0.94\%	0.37\%
GLASS	Miscellaneous Glass	4	0.17\%	2.09\%
GLASS Total			5.68\%	4.57\%
METAL	Aluminum Beverage Cans		0.31\%	0.22\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.58\%
METAL	Miscellaneous Aluminum		0.04\%	0.06\%
METAL	Metal Food Containers		2.09\%	1.26\%
METAL	Other Metal	6	2.78\%	2.34\%
METAL Total			5.72\%	4.46\%
YARD	Grass/Leaves		2.79\%	5.33\%
YARD	Brush/Prunings/Stumps		1.32\%	2.99\%
YARD Total			4.11\%	8.31\%
ORGANIC	Lumber		3.63\%	2.83\%
ORGANIC	Textiles		5.31\%	6.18\%
ORGANIC	Rubber		0.21\%	0.27\%
ORGANIC	Fines	5	2.98\%	3.69\%
ORGANIC	Diapers		3.80\%	3.25\%
ORGANIC	Food Waste		14.87\%	13.69\%
ORGANIC	Miscellaneous Organic		9.12\%	4.43\%
ORGANIC Total			39.92\%	34.35\%
INORGANIC/HHW	Non-Bulk Ceramics		0.22\%	0.36\%
INORGANIC/HHW	Miscellaneous Inorganics	5	3.16\%	3.11\%
INORGANIC/HHW	Pesticides		0.01\%	0.00\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.13\%	0.16\%
INORGANIC/HHW	Dry Cell Batteries		0.02\%	0.06\%
INORGANIC/HHW	Car Batteries		0.20\%	0.06\%
INORGANIC/HHW	Medical Waste		0.03\%	0.03\%
INORGANIC/HHW	Miscellaneous HHW	7	0.15\%	0.08\%
INORGANIC/HHW Total			3.92\%	3.86\%

Table 1-83
Waste Composition, PWCS 2004 vs. Spring 1990, Residential Results Excluding Bulk (continued)

1990 Material Group ${ }^{(1)}$	1990 Material Category ${ }^{(1)}$	Citywide		
		\%	Spring 1990	$\begin{gathered} \text { PWCS } \\ 2004 \end{gathered}$
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.83\%
APPL/ELECT. Total			0.00\%	0.83\%
GRAND TOTAL		9	100.00\%	100.00\%
Percent of Waste th	Designated as Recyclable	10	44.32\%	33.71\%

1. For 1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and Citywide percentage figures are as reported in Volume 2, Exhibit 8-1 (page 8-4) of the OMD version of the DSNY Operations Planning Evaluation Control (OPEC)'s "New York City Waste Composition Study". In some instances, indicated in these footnotes, 2004 data, Material Groups, Material Categories, and percentage figures were combined for comparison to 1990 data.
2. 1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass" 5. 1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004 data does not.
5. 2004 "Other Metal" data combines "Empty Aerosol Cans", "Other Ferrous", "Other NonFerrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1990's "Other Metal" ("Other Ferrous Metal" in the 1990 OPEC report).
6. 1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
7. This category was not assessed in 1990 .
8. In some cases, the 1990 percentage figures do not add up to exactly 100% due to rounding.
9. This is the sum of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1990 data, this includes all Paper and Metal, as well as Container Glass and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissue, waxed, coated) was included in the 1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, 1990 figures overcount designated recyclable paper. For 2004 data, totals reflect designated recyclable materials only.

Table 1-84
Waste Composition, Fall 2004 vs. Fall 1989, Residential Results Excluding Bulk ${ }^{(11)}$

$1990 \text { Material }$ $\text { Group }{ }^{(1)}$	1990 Material Category ${ }^{(1)}$		Citywide		High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density / Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$\begin{aligned} & \text { M } \\ & \stackrel{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{gathered} \text { Fall } \\ 2004 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$
PAPER	Corrugated/Kraft		5.22\%	3.10\%	5.12\%	4.25\%	5.77\%	3.01\%	6.19\%	1.90\%	4.95\%	2.61\%	5.51\%	3.93\%	5.16\%	2.95\%	3.90\%	3.13\%	7.50\%	2.32\%
PAPER	Newsprint		11.08\%	7.60\%	18.26\%	12.68\%	18.23\%	7.90\%	8.19\%	6.18\%	13.03\%	11.04\%	10.59\%	5.83\%	8.40\%	4.93\%	11.85\%	9.08\%	9.63\%	5.34\%
PAPER	Office/Computer Paper		0.91\%	0.90\%	0.58\%	1.25\%	0.83\%	1.01\%	0.11\%	0.57\%	0.97\%	1.67\%	0.81\%	1.24\%	0.43\%	0.77\%	1.63\%	0.62\%	1.06\%	0.58\%
PAPER	Other Paper	2	18.54\%	19.57\%	23.05\%	30.10\%	18.51\%	19.69\%	15.00\%	17.12\%	19.93\%	24.65\%	19.41\%	18.46\%	15.85\%	14.46\%	19.68\%	19.49\%	19.08\%	16.87\%
PAPER	Books/Phone Books		1.15\%	0.81\%	0.70\%	2.01\%	1.01\%	1.07\%	0.30\%	0.63\%	2.21\%	0.84\%	1.00\%	0.47\%	0.76\%	0.81\%	2.12\%	0.48\%	0.42\%	0.60\%
PAPER Total			36.90\%	31.97\%	47.71\%	50.28\%	44.35\%	32.67\%	29.79\%	26.40\%	41.09\%	40.81\%	37.32\%	29.93\%	30.60\%	23.92\%	39.18\%	32.80\%	37.69\%	25.71\%
PLASTIC	Clear HDPE Containers		0.49\%	0.49\%	0.42\%	0.22\%	0.33\%	0.46\%	0.72\%	0.61\%	0.38\%	0.22\%	0.43\%	0.47\%	0.56\%	0.47\%	0.34\%	0.70\%	0.59\%	0.44\%
PLASTIC	Colored HDPE Containers		0.62\%	0.50\%	0.68\%	0.43\%	0.35\%	0.53\%	0.69\%	0.57\%	0.52\%	0.37\%	0.54\%	0.53\%	0.49\%	0.45\%	0.72\%	0.52\%	0.64\%	0.52\%
PLASTIC	LDPE		0.15\%	0.01\%	0.11\%	0.00\%	0.12\%	0.01\%	0.21\%	0.01\%	0.11\%	0.00\%	0.18\%	0.01\%	0.16\%	0.01\%	0.12\%	0.00\%	0.14\%	0.01\%
PLASTIC	Films/Bags		4.93\%	7.49\%	6.48\%	7.85\%	6.07\%	9.15\%	6.62\%	8.81\%	5.71\%	6.18\%	5.36\%	8.04\%	5.04\%	7.19\%	2.98\%	5.95\%	4.30\%	6.42\%
PLASTIC	PET Containers	3	0.45\%	1.06\%	0.45\%	1.14\%	0.35\%	0.98\%	0.62\%	1.19\%	0.39\%	0.84\%	0.51\%	1.02\%	0.39\%	1.14\%	0.31\%	0.98\%	0.57\%	1.05\%
PLASTIC	PVC		0.16\%	0.03\%	0.14\%	0.02\%	0.05\%	0.03\%	0.24\%	0.03\%	0.08\%	0.01\%	0.08\%	0.04\%	0.36\%	0.04\%	0.05\%	0.05\%	0.17\%	0.01\%
PLASTIC	Polypropylene		0.21\%	0.19\%	0.29\%	0.26\%	0.11\%	0.18\%	0.15\%	0.23\%	0.20\%	0.22\%	0.23\%	0.17\%	0.23\%	0.11\%	0.27\%	0.20\%	0.12\%	0.16\%
PLASTIC	Polystyrene		0.68\%	0.81\%	1.07\%	0.87\%	0.87\%	0.77\%	0.94\%	0.96\%	0.35\%	0.73\%	0.77\%	0.80\%	0.64\%	0.90\%	0.37\%	0.66\%	0.97\%	0.74\%
PLASTIC	Miscellaneous Plastic		1.09\%	3.02\%	0.86\%	2.68\%	1.20\%	3.08\%	1.03\%	2.73\%	1.99\%	2.44\%	1.32\%	3.14\%	1.38\%	3.06\%	0.80\%	3.39\%	1.21\%	3.26\%
PLASTIC Total			8.78\%	13.62\%	10.50\%	13.47\%	9.45\%	15.20\%	11.22\%	15.12\%	9.73\%	11.02\%	9.42\%	14.21\%	9.25\%	13.38\%	5.96\%	12.46\%	8.71\%	12.62\%
GLASS	Clear Glass		2.95\%	1.49\%	2.48\%	1.40\%	2.61\%	1.17\%	3.22\%	1.63\%	3.28\%	1.33\%	3.15\%	1.30\%	2.99\%	1.96\%	2.60\%	1.39\%	2.86\%	1.56\%
GLASS	Green Glass		0.97\%	0.52\%	0.41\%	1.23\%	0.81\%	0.48\%	1.77\%	0.34\%	0.75\%	1.17\%	0.93\%	0.43\%	0.99\%	0.36\%	0.55\%	0.36\%	0.99\%	0.29\%
GLASS	Brown Glass		0.83\%	0.40\%	0.64\%	0.27\%	0.36\%	0.37\%	1.18\%	0.58\%	0.60\%	0.62\%	0.70\%	0.33\%	0.61\%	0.45\%	0.76\%	0.30\%	1.28\%	0.38\%
GLASS	Miscellaneous Glass	4	0.16\%	1.82\%	0.42\%	2.63\%	0.27\%	1.58\%	0.26\%	1.60\%	0.00\%	2.47\%	0.18\%	1.96\%	0.21\%	1.68\%	0.00\%	1.53\%	0.16\%	1.38\%
GLASS Total			4.91\%	4.22\%	3.95\%	5.53\%	4.05\%	3.61\%	6.43\%	4.16\%	4.63\%	5.59\%	4.96\%	4.02\%	4.80\%	4.45\%	3.91\%	3.58\%	5.29\%	3.61\%
METAL	Aluminum Beverage Cans		0.33\%	0.18\%	0.35\%	0.17\%	0.23\%	0.21\%	0.44\%	0.23\%	0.34\%	0.20\%	0.33\%	0.14\%	0.31\%	0.20\%	0.28\%	0.16\%	0.34\%	0.13\%
METAL	Aluminum Food Containers/Foil		0.48\%	0.51\%	0.51\%	0.48\%	0.46\%	0.43\%	0.49\%	0.54\%	0.47\%	0.51\%	0.57\%	0.53\%	0.39\%	0.55\%	0.41\%	0.47\%	0.71\%	0.56\%
METAL	Miscellaneous Aluminum		0.21\%	0.06\%	0.42\%	0.03\%	0.55\%	0.06\%	0.15\%	0.03\%	0.12\%	0.10\%	0.14\%	0.01\%	0.10\%	0.16\%	0.21\%	0.09\%	0.26\%	0.02\%
METAL	Metal Food Containers		2.03\%	1.27\%	1.92\%	0.73\%	1.88\%	1.27\%	2.79\%	1.93\%	2.07\%	0.94\%	2.09\%	1.23\%	2.01\%	1.45\%	1.44\%	1.02\%	2.10\%	1.30\%
METAL	Other Metal	6	2.45\%	3.07\%	2.26\%	2.48\%	2.96\%	2.98\%	2.03\%	2.88\%	0.80\%	2.83\%	1.58\%	2.53\%	3.58\%	4.33\%	3.09\%	3.19\%	1.94\%	3.32\%
METAL Total			5.50\%	5.09\%	5.46\%	3.89\%	6.08\%	4.96\%	5.90\%	5.61\%	3.80\%	4.58\%	4.71\%	4.44\%	6.39\%	6.69\%	5.43\%	4.93\%	5.35\%	5.34\%
YARD	Grass/Leaves		5.96\%	4.36\%	3.93\%	1.29\%	6.59\%	2.57\%	0.25\%	1.48\%	4.08\%	2.54\%	2.52\%	4.24\%	4.28\%	4.61\%	12.56\%	8.55\%	7.41\%	7.77\%
YARD	Brush/Prunings/Stumps		0.28\%	1.01\%	0.59\%	0.26\%	0.07\%	0.74\%	0.00\%	0.02\%	0.00\%	1.13\%	0.10\%	1.05\%	0.13\%	0.23\%	0.41\%	2.73\%	0.55\%	1.56\%
YARD Total			6.24\%	5.38\%	4.52\%	1.55\%	6.66\%	3.31\%	0.25\%	1.49\%	4.08\%	3.67\%	2.62\%	5.30\%	4.41\%	4.84\%	12.97\%	11.28\%	7.96\%	9.33\%
ORGANIC	Lumber		2.25\%	1.76\%	1.64\%	0.52\%	0.74\%	1.85\%	2.57\%	1.27\%	2.90\%	1.81\%	3.84\%	1.65\%	3.68\%	2.19\%	1.61\%	2.45\%	2.32\%	2.44\%
ORGANIC	Textiles		4.72\%	5.40\%	4.11\%	3.26\%	5.07\%	5.78\%	7.46\%	6.68\%	4.25\%	3.33\%	5.67\%	4.98\%	4.81\%	6.47\%	2.51\%	5.28\%	3.66\%	6.39\%
ORGANIC	Rubber		0.32\%	0.26\%	0.14\%	0.27\%	0.06\%	0.23\%	0.04\%	0.19\%	0.00\%	0.19\%	0.07\%	0.22\%	0.17\%	0.27\%	0.92\%	0.40\%	0.10\%	0.16\%
ORGANIC	Fines	5	2.26\%	2.96\%	2.08\%	2.55\%	1.86\%	2.97\%	2.81\%	3.70\%	2.11\%	2.41\%	2.09\%	2.74\%	2.46\%	3.41\%	1.97\%	2.50\%	2.15\%	3.29\%
ORGANIC	Diapers		3.49\%	3.37\%	2.90\%	2.20\%	1.91\%	3.16\%	4.41\%	4.39\%	4.40\%	3.36\%	3.70\%	3.33\%	3.59\%	3.96\%	3.06\%	2.65\%	3.10\%	4.17\%
ORGANIC	Food Waste		14.34\%	18.81\%	10.94\%	11.95\%	11.50\%	19.73\%	16.11\%	25.22\%	14.04\%	16.02\%	15.58\%	21.14\%	15.82\%	20.88\%	13.61\%	14.63\%	13.00\%	18.02\%
ORGANIC	Miscellaneous Organic		8.26\%	2.32\%	5.65\%	1.77\%	5.96\%	2.04\%	9.47\%	2.06\%	7.51\%	4.28\%	7.41\%	2.28\%	11.08\%	2.34\%	7.97\%	2.20\%	7.34\%	3.32\%
ORGANIC Total			35.64\%	34.89\%	27.46\%	22.52\%	27.10\%	35.76\%	42.87\%	43.51\%	35.21\%	31.40\%	38.36\%	36.34\%	41.61\%	39.53\%	31.65\%	30.10\%	31.67\%	37.79\%

Table 1-84
Waste Composition, Fall 2004 vs. Fall 1989, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

$1990 \text { Material }$$\text { Group }^{(1)}$	1990 Material Category ${ }^{(1)}$	Citywide			High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density / Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{gathered} \text { Fall } \\ 2004 \end{gathered}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{gathered} \text { Fall } \\ 2004 \end{gathered}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{gathered} \text { Fall } \\ 2004 \end{gathered}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{gathered} \text { Fall } \\ 2004 \end{gathered}$	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{gathered} \text { Fall } \\ 2004 \end{gathered}$
INORGANIC/HHW	Non-Bulk Ceramics		0.22\%	0.41\%	0.02\%	0.07\%	0.09\%	0.44\%	0.05\%	0.31\%	0.07\%	0.54\%	0.10\%	0.32\%	0.35\%	0.58\%	0.42\%	0.61\%	0.13\%	0.39\%
INORGANIC/HHW	Miscellaneous Inorganics	5	1.65\%	3.39\%	0.30\%	1.97\%	1.73\%	2.98\%	2.99\%	2.44\%	1.35\%	1.61\%	2.20\%	4.18\%	2.50\%	5.62\%	0.44\%	3.17\%	2.97\%	3.82\%
INORGANIC/HHW	Pesticides		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.06\%	0.12\%	0.02\%	0.11\%	0.43\%	0.03\%	0.43\%	0.04\%	0.01\%	0.10\%	0.05\%	0.13\%	0.02\%	0.08\%	0.01\%	0.22\%	0.08\%	0.27\%
INORGANIC/HHW	Dry Cell Batteries		0.02\%	0.07\%	0.03\%	0.03\%	0.02\%	0.12\%	0.01\%	0.09\%	0.01\%	0.08\%	0.01\%	0.06\%	0.03\%	0.11\%	0.01\%	0.06\%	0.03\%	0.04\%
INORGANIC/HHW	Car Batteries		0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.23\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.00\%	0.04\%	0.01\%	0.03\%	0.02\%	0.03\%	0.02\%	0.06\%	0.02\%	0.07\%	0.01\%	0.04\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.02\%
INORGANIC/HHW	Miscellaneous HHW	7	0.04\%	0.03\%	0.00\%	0.02\%	0.02\%	0.05\%	0.00\%	0.03\%	0.01\%	0.02\%	0.01\%	0.02\%	0.03\%	0.05\%	0.00\%	0.05\%	0.11\%	0.04\%
INORGANIC/HHW Total			2.01\%	4.07\%	0.38\%	2.23\%	2.31\%	3.65\%	3.50\%	2.98\%	1.47\%	2.42\%	2.62\%	4.75\%	2.94\%	6.48\%	0.88\%	4.13\%	3.32\%	4.58\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.77\%	0.00\%	0.53\%	0.00\%	0.84\%	0.00\%	0.71\%	0.00\%	0.52\%	0.00\%	1.01\%	0.00\%	0.72\%	0.00\%	0.72\%	0.00\%	1.02\%
APPL/ELECT. Total			0.00\%	0.77\%	0.00\%	0.53\%	0.00\%	0.84\%	0.00\%	0.71\%	0.00\%	0.52\%	0.00\%	1.01\%	0.00\%	0.72\%	0.00\%	0.72\%	0.00\%	1.02\%
GRAND TOTAL		9	99.98\%	100.00\%	99.98\%	100.00\%	100.00\%	100.00\%	99.96\%	100.00\%	100.01\%	100.00\%	100.01\%	100.00\%	100.00\%	100.00\%	99.98\%	100.00\%	99.99\%	100.00\%

1. For 1989 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and Citywide percentage figures are as reported in Volume 2, Exhibit $8-1$ (page $8-4$) of the OMD version of the DSNY Operations Planning Evaluation Control (OPEC)'s "New York City Waste Composition Study". Percentage figures by stratum, unless otherwise noted in these footnotes, are as reported in Volume 2, Exhibits 3-4 through 3-12, (pages 3-6 through 3-14), of the OMD version of the DSNY OPEC's "New York City Waste Composition Study". In some instances, indicated in these footnotes, 2004 data, Material Groups, Material Categories, and percentage figures were combined for comparison to 1989 data.
2. 1989 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004 data does not.
6. 2004 "Other Metal" data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989 's "Other Metal" ("Other Ferrous Metal" in the 1989 OPEC report).
7. 1989 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989.
9. In some cases, the 1989 percentage figures do not add up to exactly 100% due to rounding
10. This is the sum of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989 data, this includes all Paper and Metal, as well as Container Glass and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissue, waxed, coated) was included in the 1989 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, 1989 figures overcount designated recyclable paper. For 2004 data, totals reflect designated recyclable materials only.
11. Results are presented here excluding bulk items because Volume 2 of the New York City Waste Composition Study, 1989-1990, OMD Version presented strata-specified results without bulk.

Table 1-85
Waste Composition, Winter 2005 vs. Winter 1990, Residential Results Excluding Bulk ${ }^{(11)}$

1990 Material Group ${ }^{(1)}$	1990 Material Category ${ }^{(1)}$		Citywide		High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density / Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$\begin{aligned} & \text { M } \\ & \text { 을 } \end{aligned}$	Winter 1990	$\begin{gathered} \text { Winter } \\ 2005 \end{gathered}$	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005
PAPER	Corrugated/Kraft		5.27\%	2.51\%	4.82\%	2.08\%	4.03\%	2.26\%	5.70\%	2.37\%	4.91\%	2.50\%	4.82\%	2.55\%	5.63\%	2.84\%	5.48\%	2.92\%	5.65\%	2.17\%
PAPER	Newsprint		8.28\%	8.10\%	13.80\%	11.76\%	15.57\%	9.08\%	7.38\%	5.14\%	11.08\%	10.45\%	9.16\%	8.43\%	8.47\%	5.24\%	6.07\%	10.11\%	9.18\%	5.80\%
PAPER	Office/Computer Paper		0.46\%	1.04\%	0.58\%	2.10\%	1.50\%	1.13\%	0.25\%	1.23\%	0.11\%	1.31\%	0.32\%	0.54\%	0.17\%	0.69\%	0.36\%	0.87\%	1.27\%	0.62\%
PAPER	Other Paper	2	17.73\%	19.80\%	20.99\%	29.55\%	23.43\%	19.44\%	14.66\%	15.53\%	20.95\%	23.04\%	19.80\%	18.35\%	17.22\%	15.73\%	17.25\%	21.77\%	18.69\%	17.43\%
PAPER	Books/Phone Books		0.42\%	1.09\%	0.55\%	1.79\%	0.31\%	1.93\%	0.40\%	0.45\%	0.24\%	3.97\%	0.29\%	0.75\%	0.49\%	1.20\%	0.49\%	0.67\%	0.41\%	0.44\%
PAPER Total			32.16\%	32.54\%	40.74\%	47.27\%	44.84\%	33.84\%	28.39\%	24.71\%	37.29\%	41.27\%	34.39\%	30.63\%	31.98\%	25.70\%	29.65\%	36.34\%	35.20\%	26.46\%
PLASTIC	Clear HDPE Containers		0.54\%	0.50\%	0.46\%	0.33\%	0.39\%	0.58\%	0.84\%	0.63\%	0.56\%	0.25\%	0.72\%	0.62\%	0.62\%	0.53\%	0.33\%	0.41\%	0.56\%	0.46\%
PLASTIC	Colored HDPE Containers		0.62\%	0.53\%	0.58\%	0.47\%	0.60\%	0.54\%	0.76\%	0.51\%	0.51\%	0.49\%	0.65\%	0.60\%	0.63\%	0.48\%	0.54\%	0.59\%	0.63\%	0.47\%
PLASTIC	LDPE		0.05\%	0.01\%	0.05\%	0.00\%	0.06\%	0.02\%	0.08\%	0.01\%	0.03\%	0.00\%	0.08\%	0.01\%	0.03\%	0.01\%	0.02\%	0.00\%	0.11\%	0.00\%
PLASTIC	Films/Bags		5.05\%	7.96\%	5.99\%	8.28\%	7.13\%	9.39\%	5.26\%	9.10\%	6.54\%	6.54\%	5.62\%	7.96\%	5.81\%	8.61\%	4.04\%	6.12\%	5.06\%	7.28\%
PLASTIC	PET Containers	3	0.63\%	1.39\%	0.69\%	1.29\%	0.65\%	1.23\%	0.72\%	1.61\%	0.61\%	1.08\%	0.80\%	1.31\%	0.73\%	1.47\%	0.48\%	1.40\%	0.65\%	1.32\%
PLASTIC	PVC		0.11\%	0.02\%	0.10\%	0.05\%	0.19\%	0.01\%	0.25\%	0.01\%	0.06\%	0.02\%	0.12\%	0.01\%	0.08\%	0.02\%	0.03\%	0.04\%	0.11\%	0.03\%
PLASTIC	Polypropylene		0.08\%	0.20\%	0.04\%	0.22\%	0.08\%	0.23\%	0.16\%	0.19\%	0.03\%	0.25\%	0.09\%	0.20\%	0.06\%	0.14\%	0.05\%	0.22\%	0.09\%	0.21\%
PLASTIC	Polystyrene		0.98\%	0.81\%	0.85\%	0.72\%	1.25\%	0.87\%	0.88\%	0.87\%	0.98\%	0.87\%	1.14\%	0.78\%	0.96\%	0.85\%	0.96\%	0.79\%	0.97\%	0.83\%
PLASTIC	Miscellaneous Plastic		1.09\%	3.24\%	0.96\%	2.84\%	1.04\%	2.91\%	1.46\%	3.36\%	1.48\%	2.58\%	1.26\%	2.90\%	1.05\%	3.34\%	0.74\%	3.96\%	1.36\%	3.18\%
PLASTIC Total			9.15\%	14.66\%	9.72\%	14.21\%	11.39\%	15.80\%	10.41\%	16.29\%	10.80\%	12.08\%	10.48\%	14.39\%	9.97\%	15.44\%	7.19\%	13.53\%	9.54\%	13.78\%
GLASS	Clear Glass		3.51\%	1.73\%	2.72\%	1.20\%	3.04\%	1.54\%	4.46\%	1.94\%	4.13\%	1.90\%	4.45\%	1.54\%	2.57\%	2.08\%	3.12\%	1.82\%	3.06\%	1.91\%
GLASS	Green Glass		1.17\%	0.65\%	0.66\%	1.58\%	0.91\%	0.60\%	1.51\%	0.42\%	0.68\%	1.73\%	1.35\%	0.49\%	1.06\%	0.36\%	1.18\%	0.43\%	0.98\%	0.42\%
GLASS	Brown Glass		0.96\%	0.41\%	0.62\%	0.35\%	0.83\%	0.29\%	1.54\%	0.51\%	0.72\%	0.59\%	1.01\%	0.51\%	0.72\%	0.42\%	0.84\%	0.30\%	0.77\%	0.30\%
GLASS	Miscellaneous Glass	4	0.05\%	2.00\%	0.01\%	2.96\%	0.02\%	1.92\%	0.00\%	1.70\%	0.09\%	2.46\%	0.21\%	2.40\%	0.12\%	1.64\%	0.05\%	1.57\%	0.03\%	1.60\%
GLASS Total			5.69\%	4.80\%	4.01\%	6.08\%	4.80\%	4.35\%	7.51\%	4.57\%	5.62\%	6.67\%	7.02\%	4.94\%	4.47\%	4.51\%	5.19\%	4.11\%	4.84\%	4.22\%
METAL	Aluminum Beverage Cans		0.37\%	0.24\%	0.44\%	0.29\%	0.37\%	0.23\%	0.41\%	0.23\%	0.32\%	0.14\%	0.43\%	0.20\%	0.53\%	0.20\%	0.28\%	0.30\%	0.38\%	0.23\%
METAL	Aluminum Food Containers/Foil		0.56\%	0.54\%	0.64\%	0.46\%	0.53\%	0.50\%	0.47\%	0.56\%	0.66\%	0.55\%	0.73\%	0.49\%	0.51\%	0.57\%	0.52\%	0.61\%	0.56\%	0.47\%
METAL	Miscellaneous Aluminum		0.04\%	0.02\%	0.02\%	0.01\%	0.02\%	0.00\%	0.00\%	0.01\%	0.07\%	0.02\%	0.00\%	0.05\%	0.03\%	0.00\%	0.07\%	0.02\%	0.10\%	0.05\%
METAL	Metal Food Containers		2.32\%	1.39\%	2.79\%	0.78\%	2.02\%	1.42\%	2.99\%	1.80\%	2.36\%	1.14\%	2.53\%	1.48\%	2.19\%	1.55\%	1.78\%	1.24\%	2.53\%	1.42\%
METAL	Other Metal	6	2.22\%	2.88\%	1.32\%	2.97\%	1.70\%	2.61\%	2.31\%	3.38\%	3.10\%	2.35\%	1.98\%	2.31\%	1.97\%	3.52\%	2.39\%	2.53\%	2.26\%	3.21\%
METAL Total			5.51\%	5.06\%	5.21\%	4.50\%	4.64\%	4.76\%	6.18\%	5.98\%	6.51\%	4.19\%	5.67\%	4.53\%	5.23\%	5.84\%	5.04\%	4.70\%	5.83\%	5.38\%
YARD	Grass/Leaves		7.59\%	0.94\%	4.10\%	0.18\%	0.70\%	0.66\%	0.60\%	0.26\%	0.64\%	1.23\%	1.08\%	0.47\%	1.67\%	0.73\%	19.15\%	2.61\%	1.81\%	1.58\%
YARD	Brush/Prunings/Stumps		0.77\%	0.42\%	1.12\%	0.83\%	1.16\%	0.21\%	0.02\%	0.17\%	0.31\%	0.62\%	0.71\%	0.08\%	0.28\%	0.14\%	0.89\%	0.82\%	0.24\%	0.89\%
YARD Total			8.36\%	1.36\%	5.22\%	1.01\%	1.86\%	0.87\%	0.62\%	0.43\%	0.95\%	1.85\%	1.79\%	0.55\%	1.95\%	0.86\%	20.04\%	3.43\%	2.05\%	2.47\%
ORGANIC	Lumber		2.09\%	1.74\%	1.24\%	1.08\%	1.48\%	2.25\%	1.30\%	2.08\%	1.69\%	1.42\%	1.74\%	1.28\%	2.30\%	2.38\%	3.30\%	1.24\%	0.89\%	3.19\%
ORGANIC	Textiles		5.08\%	4.95\%	3.96\%	2.82\%	3.63\%	4.92\%	5.45\%	6.24\%	3.84\%	3.23\%	4.73\%	5.16\%	4.52\%	5.53\%	5.63\%	4.55\%	5.43\%	6.10\%
ORGANIC	Rubber		0.06\%	0.21\%	0.00\%	0.11\%	0.06\%	0.17\%	0.12\%	0.27\%	0.00\%	0.25\%	0.07\%	0.22\%	0.07\%	0.28\%	0.02\%	0.16\%	0.10\%	0.14\%
ORGANIC	Fines	5	2.33\%	3.63\%	2.20\%	2.66\%	1.87\%	3.74\%	2.21\%	4.43\%	2.32\%	3.64\%	2.07\%	3.30\%	2.49\%	4.28\%	2.34\%	3.09\%	2.97\%	4.26\%
ORGANIC	Diapers		4.34\%	3.52\%	2.59\%	2.28\%	2.86\%	3.17\%	6.02\%	4.05\%	4.25\%	3.09\%	5.07\%	3.66\%	3.69\%	3.86\%	3.93\%	3.46\%	4.20\%	4.27\%
ORGANIC	Food Waste		13.82\%	20.68\%	12.21\%	12.57\%	14.05\%	20.86\%	18.05\%	24.81\%	15.87\%	15.46\%	16.49\%	23.76\%	16.86\%	23.41\%	9.61\%	18.09\%	14.19\%	21.65\%
ORGANIC	Miscellaneous Organic		8.72\%	2.94\%	8.41\%	2.69\%	6.99\%	2.09\%	11.22\%	2.00\%	7.62\%	4.08\%	7.14\%	2.79\%	14.21\%	3.23\%	6.55\%	3.75\%	9.03\%	3.81\%
ORGANIC Total			36.44\%	37.66\%	30.61\%	24.22\%	30.94\%	37.20\%	44.37\%	43.88\%	35.59\%	31.17\%	37.31\%	40.16\%	44.14\%	42.97\%	31.38\%	34.34\%	36.81\%	43.42\%

Table 1-85
Waste Composition, Winter 2005 vs. Winter 1990, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

1990 Material Group ${ }^{(1)}$	1990 Material Category ${ }^{(1)}$	Citywide			High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density / Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$\begin{aligned} & \text { س } \\ & \text { (} \\ & \text { 2 } \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \end{gathered}$	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005	Winter 1990	Winter 2005								
INORGANIC/HHW	Non-Bulk Ceramics		0.27\%	0.49\%	0.07\%	0.20\%	0.26\%	0.22\%	0.62\%	0.67\%	0.18\%	0.21\%	0.30\%	0.67\%	0.10\%	0.42\%	0.07\%	0.57\%	0.40\%	0.50\%
INORGANIC/HHW	Miscellaneous Inorganics	5	2.06\%	2.66\%	4.16\%	1.74\%	1.13\%	2.19\%	1.31\%	2.72\%	2.78\%	1.77\%	2.82\%	3.01\%	2.03\%	3.77\%	1.23\%	2.23\%	5.17\%	3.32\%
INORGANIC/HHW	Pesticides		0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.02\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.14\%	0.08\%	0.00\%	0.10\%	0.09\%	0.12\%	0.53\%	0.04\%	0.13\%	0.04\%	0.06\%	0.22\%	0.00\%	0.02\%	0.06\%	0.03\%	0.07\%	0.02\%
INORGANIC/HHW	Dry Cell Batteries		0.02\%	0.09\%	0.03\%	0.05\%	0.01\%	0.11\%	0.02\%	0.10\%	0.01\%	0.10\%	0.04\%	0.12\%	0.06\%	0.10\%	0.01\%	0.05\%	0.04\%	0.08\%
INORGANIC/HHW	Car Batteries		0.01\%	0.00\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.02\%	0.03\%	0.01\%	0.02\%	0.02\%	0.05\%	0.02\%	0.05\%	0.03\%	0.02\%	0.02\%	0.02\%	0.02\%	0.01\%	0.03\%	0.04\%	0.02\%	0.02\%
INORGANIC/HHW	Miscellaneous HHW	7	0.08\%	0.04\%	0.05\%	0.01\%	0.02\%	0.03\%	0.01\%	0.06\%	0.12\%	0.08\%	0.09\%	0.01\%	0.04\%	0.01\%	0.15\%	0.09\%	0.01\%	0.02\%
INORGANIC/HHW Total			2.60\%	3.40\%	4.51\%	2.12\%	1.53\%	2.75\%	2.51\%	3.67\%	3.25\%	2.22\%	3.33\%	4.07\%	2.25\%	4.33\%	1.55\%	3.02\%	5.71\%	3.96\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.52\%	0.00\%	0.58\%	0.00\%	0.43\%	0.00\%	0.47\%	0.00\%	0.54\%	0.00\%	0.73\%	0.00\%	0.34\%	0.00\%	0.53\%	0.00\%	0.32\%
APPLIELECT. Total			0.00\%	0.52\%	0.00\%	0.58\%	0.00\%	0.43\%	0.00\%	0.47\%	0.00\%	0.54\%	0.00\%	0.73\%	0.00\%	0.34\%	0.00\%	0.53\%	0.00\%	0.32\%
GRAND TOTAL		9	99.91\%	100.00\%	100.02\%	100.00\%	100.00\%	100.00\%	99.99\%	100.00\%	100.01\%	100.00\%	99.99\%	100.00\%	99.99\%	100.00\%	100.04\%	100.00\%	99.98\%	100.00\%

1. For 1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and Citywide percentage figures are as reported in Volume 2, Exhibit 8-1 (page 8-4) of the OMD version of the DSNY Operations Planning Evaluation Control (OPEC)'s "New York City Waste Composition Study". Percentage figures by stratum, unless otherwise noted in these footnotes, are as reported in Volume 2, Exhibits 4-4 through 4-12, (pages 4-6 through 4-14), of the OMD version of the DSNY OPEC's "New York City Waste Composition Study". In some instances, indicated in these footnotes, 2005 data, Material Groups, Material Categories, and percentage figures were combined for comparison to 1990 data.
2. 1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2005 data does not.
6. 2005 "Other Metal" data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1990's "Other Metal" ("Other Ferrous Metal" in the 1990 OPEC report).
7. 1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1990.
9. In some cases, the 1990 percentage figures do not add up to exactly 100% due to rounding
10. This is the sum of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1990 data, this includes all Paper and Metal, as well as Container Glass and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissue, waxed, coated) was included in the 1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, 1990 figures overcount designated recyclable paper. For 2005 data, totals reflect designated recyclable materials only.
11. Results are presented here excluding bulk because Volume 2 of the New York City Waste Composition Study, 1989-1990, OMD Version presented strata-specified results without bulk.

Table 1-86
Waste Composition, Spring 2005 vs. Spring 1990, Residential Results Excluding Bulk ${ }^{(11)}$

1990 Material Group ${ }^{(1)}$	1990 Material Category ${ }^{(1)}$		Citywide		High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density / Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$\begin{aligned} & \text { w } \\ & \text { 을 } \end{aligned}$	Spring 1990	Spring 2005	$\begin{gathered} \text { Spring } \\ 1990 \\ \hline \end{gathered}$	Spring 2005	Spring 1990	$\begin{gathered} \text { Spring } \\ 2005 \end{gathered}$	Spring 1990	Spring 2005	Spring 1990	Spring 2005	Spring 1990	$\begin{aligned} & \text { Spring } \\ & 2005 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005	$\begin{gathered} \text { Spring } \\ 1990 \\ \hline \end{gathered}$	$\begin{gathered} \text { Spring } \\ 2005 \end{gathered}$	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005
PAPER	Corrugated/Kraft		4.81\%	1.98\%	4.10\%	3.06\%	4.83\%	1.73\%	4.32\%	2.24\%	5.97\%	2.33\%	3.86\%	2.06\%	6.59\%	2.24\%	4.91\%	1.22\%	4.44\%	1.24\%
PAPER	Newsprint		8.39\%	7.72\%	14.96\%	15.25\%	13.41\%	8.61\%	5.02\%	5.42\%	11.72\%	11.24\%	7.88\%	6.39\%	6.03\%	6.53\%	8.55\%	7.11\%	9.09\%	5.01\%
PAPER	Office/Computer Paper		0.23\%	0.92\%	0.57\%	1.66\%	0.48\%	0.54\%	0.17\%	0.61\%	0.34\%	2.03\%	0.20\%	1.33\%	0.26\%	0.56\%	0.06\%	0.67\%	0.52\%	0.53\%
PAPER	Other Paper	2	17.52\%	17.55\%	20.74\%	24.88\%	22.73\%	18.54\%	17.67\%	14.57\%	15.27\%	22.82\%	15.97\%	17.40\%	18.25\%	15.36\%	16.01\%	16.61\%	18.27\%	15.55\%
PAPER	Books/Phone Books		0.54\%	0.74\%	1.60\%	0.99\%	0.56\%	0.73\%	0.97\%	0.45\%	0.41\%	0.75\%	0.51\%	0.79\%	0.29\%	0.87\%	0.18\%	0.75\%	0.69\%	0.65\%
PAPER Total			31.49\%	28.91\%	41.97\%	45.83\%	42.01\%	30.16\%	28.15\%	23.29\%	33.71\%	39.17\%	28.42\%	27.96\%	31.42\%	25.56\%	29.71\%	26.36\%	33.01\%	22.99\%
PLASTIC	Clear HDPE Containers		0.47\%	0.44\%	0.51\%	0.27\%	0.38\%	0.52\%	0.60\%	0.63\%	0.40\%	0.25\%	0.49\%	0.57\%	0.57\%	0.47\%	0.36\%	0.30\%	0.50\%	0.39\%
PLASTIC	Colored HDPE Containers		0.57\%	0.49\%	0.61\%	0.41\%	0.48\%	0.47\%	0.58\%	0.58\%	0.48\%	0.39\%	0.57\%	0.45\%	0.70\%	0.63\%	0.53\%	0.48\%	0.62\%	0.46\%
PLASTIC	LDPE		0.08\%	0.02\%	0.11\%	0.12\%	0.08\%	0.00\%	0.12\%	0.01\%	0.01\%	0.01\%	0.06\%	0.00\%	0.12\%	0.01\%	0.03\%	0.01\%	0.17\%	0.01\%
PLASTIC	Films/Bags		5.03\%	8.18\%	6.28\%	7.81\%	5.72\%	9.84\%	5.80\%	10.56\%	5.21\%	6.69\%	5.40\%	8.91\%	5.02\%	9.21\%	4.26\%	5.54\%	4.67\%	6.73\%
PLASTIC	PET Containers	3	0.56\%	1.18\%	0.61\%	1.24\%	0.41\%	1.09\%	0.62\%	1.35\%	0.69\%	0.99\%	0.70\%	1.14\%	0.60\%	1.47\%	0.41\%	0.96\%	0.64\%	1.19\%
PLASTIC	PVC		0.12\%	0.01\%	0.13\%	0.01\%	0.08\%	0.03\%	0.16\%	0.02\%	0.06\%	0.03\%	0.10\%	0.02\%	0.15\%	0.01\%	0.11\%	0.01\%	0.08\%	0.01\%
PLASTIC	Polypropylene		0.13\%	0.18\%	0.20\%	0.21\%	0.11\%	0.22\%	0.22\%	0.18\%	0.08\%	0.23\%	0.12\%	0.16\%	0.09\%	0.13\%	0.06\%	0.15\%	0.26\%	0.22\%
PLASTIC	Polystyrene		0.93\%	0.78\%	0.98\%	0.80\%	1.32\%	0.84\%	0.76\%	1.01\%	0.95\%	0.64\%	1.09\%	0.77\%	0.93\%	0.74\%	0.73\%	0.69\%	1.42\%	0.63\%
PLASTIC	Miscellaneous Plastic		1.27\%	3.21\%	0.92\%	2.89\%	0.95\%	3.89\%	0.92\%	3.14\%	1.55\%	3.30\%	1.03\%	3.32\%	1.14\%	3.12\%	1.87\%	3.01\%	0.60\%	3.66\%
PLASTIC Total			9.16\%	14.50\%	10.35\%	13.76\%	9.53\%	16.90\%	9.78\%	17.48\%	9.43\%	12.53\%	9.56\%	15.34\%	9.32\%	15.80\%	8.36\%	11.14\%	8.96\%	13.29\%
GLASS	Clear Glass		3.52\%	1.53\%	2.90\%	0.96\%	2.70\%	1.20\%	4.19\%	1.53\%	3.78\%	1.48\%	3.48\%	1.44\%	3.01\%	2.40\%	3.32\%	1.47\%	3.53\%	1.59\%
GLASS	Green Glass		1.05\%	0.55\%	0.62\%	1.38\%	0.71\%	0.46\%	1.61\%	0.34\%	0.80\%	1.24\%	0.92\%	0.40\%	1.18\%	0.36\%	0.88\%	0.42\%	0.91\%	0.41\%
GLASS	Brown Glass		0.94\%	0.32\%	0.65\%	0.29\%	0.53\%	0.18\%	1.23\%	0.49\%	0.75\%	0.44\%	0.67\%	0.25\%	1.02\%	0.37\%	0.88\%	0.23\%	1.22\%	0.34\%
GLASS	Miscellaneous Glass	4	0.17\%	2.09\%	0.16\%	3.24\%	0.43\%	1.84\%	0.23\%	1.68\%	0.73\%	2.92\%	0.19\%	2.77\%	0.12\%	2.05\%	0.03\%	1.28\%	0.20\%	1.78\%
GLASS Total			5.68\%	4.49\%	4.33\%	5.86\%	4.37\%	3.69\%	7.26\%	4.04\%	6.06\%	6.08\%	5.26\%	4.86\%	5.33\%	5.17\%	5.11\%	3.39\%	5.86\%	4.12\%
METAL	Aluminum Beverage Cans		0.31\%	0.18\%	0.30\%	0.17\%	0.25\%	0.21\%	0.26\%	0.23\%	0.27\%	0.15\%	0.31\%	0.16\%	0.36\%	0.22\%	0.33\%	0.13\%	0.32\%	0.17\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.59\%	0.55\%	0.54\%	0.49\%	0.61\%	0.40\%	0.60\%	0.49\%	0.53\%	0.48\%	0.63\%	0.52\%	0.65\%	0.52\%	0.53\%	0.54\%	0.64\%
METAL	Miscellaneous Aluminum		0.04\%	0.06\%	0.00\%	0.01\%	0.03\%	0.06\%	0.06\%	0.05\%	0.13\%	0.05\%	0.04\%	0.04\%	0.02\%	0.05\%	0.02\%	0.09\%	0.02\%	0.09\%
METAL	Metal Food Containers		2.09\%	1.30\%	2.08\%	0.72\%	2.19\%	1.28\%	2.45\%	1.89\%	2.11\%	0.90\%	2.05\%	1.34\%	2.03\%	1.78\%	1.66\%	0.94\%	2.81\%	1.17\%
METAL	Other Metal	6	2.78\%	2.81\%	0.95\%	2.58\%	1.90\%	2.53\%	1.87\%	3.08\%	3.48\%	2.27\%	2.31\%	3.03\%	2.39\%	2.25\%	4.28\%	2.86\%	2.41\%	3.61\%
METAL Total			5.72\%	4.93\%	3.88\%	4.03\%	4.86\%	4.68\%	5.04\%	5.85\%	6.48\%	3.90\%	5.19\%	5.19\%	5.32\%	4.95\%	6.81\%	4.55\%	6.10\%	5.68\%
YARD	Grass/Leaves		2.79\%	5.01\%	2.59\%	2.13\%	1.91\%	3.06\%	0.61\%	0.50\%	1.25\%	2.77\%	2.07\%	2.45\%	0.52\%	1.43\%	5.80\%	13.79\%	1.01\%	10.14\%
YARD	Brush/Prunings/Stumps		1.32\%	0.77\%	0.34\%	0.52\%	1.17\%	0.20\%	0.05\%	0.12\%	0.15\%	0.77\%	0.83\%	0.53\%	0.61\%	0.25\%	3.03\%	1.92\%	0.82\%	1.33\%
YARD Total			4.11\%	5.78\%	2.93\%	2.65\%	3.08\%	3.26\%	0.66\%	0.62\%	1.40\%	3.54\%	2.90\%	2.98\%	1.13\%	1.68\%	8.83\%	15.71\%	1.83\%	11.47\%
ORGANIC	Lumber		3.63\%	2.00\%	1.30\%	1.68\%	2.41\%	1.21\%	3.76\%	1.75\%	3.00\%	1.41\%	4.52\%	1.97\%	3.89\%	1.34\%	4.14\%	2.95\%	3.64\%	2.68\%
ORGANIC	Textiles		5.31\%	5.59\%	5.31\%	3.15\%	4.61\%	5.51\%	6.27\%	6.82\%	6.04\%	3.34\%	6.06\%	6.46\%	5.27\%	6.74\%	4.93\%	5.14\%	4.71\%	5.18\%
ORGANIC	Rubber		0.21\%	0.31\%	0.02\%	0.19\%	0.08\%	0.27\%	0.61\%	0.53\%	0.07\%	0.15\%	0.09\%	0.29\%	0.16\%	0.15\%	0.03\%	0.42\%	0.55\%	0.20\%
ORGANIC	Fines	5	2.98\%	4.69\%	2.70\%	3.84\%	3.36\%	4.67\%	2.93\%	5.95\%	2.35\%	3.93\%	2.74\%	4.38\%	3.31\%	5.71\%	2.96\%	3.88\%	3.01\%	4.93\%
ORGANIC	Diapers		3.80\%	3.16\%	2.86\%	2.46\%	2.73\%	3.08\%	4.49\%	4.03\%	4.87\%	2.38\%	4.33\%	3.14\%	2.73\%	3.60\%	3.81\%	2.60\%	3.90\%	3.77\%
ORGANIC	Food Waste		14.87\%	18.33\%	12.50\%	11.85\%	12.01\%	21.45\%	20.28\%	23.34\%	14.93\%	14.32\%	15.38\%	20.79\%	17.99\%	21.94\%	11.80\%	13.69\%	14.25\%	17.95\%
ORGANIC	Miscellaneous Organic		9.12\%	2.31\%	6.59\%	2.02\%	9.19\%	1.64\%	7.29\%	1.57\%	6.59\%	4.70\%	8.29\%	1.55\%	8.24\%	2.89\%	11.35\%	2.85\%	9.22\%	2.72\%
ORGANIC Tot			39.92\%	36.39\%	31.28\%	25.18\%	34.39\%	37.83\%	45.63\%	44.00\%	37.85\%	30.24\%	41.41\%	38.57\%	41.59\%	42.39	39.02\%	31.52\%	39.28	37.44\%

Table 1-86
Waste Composition, Spring 2005 vs. Spring 1990, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

1990 Material Group ${ }^{(1)}$	1990 Material Category ${ }^{(1)}$	Citywide			High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density $/$ Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$$	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005	Spring 1990	$\begin{gathered} \text { Spring } \\ 2005 \end{gathered}$	Spring 1990	Spring 2005	Spring 1990	Spring 2005	Spring 1990	Spring 2005	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005	Spring 1990	$\begin{gathered} \text { Spring } \\ 2005 \end{gathered}$	Spring 1990	Spring 2005
ORGANIC Total			39.92\%	36.39\%	31.28\%	25.18\%	34.39\%	37.83\%	45.63\%	44.00\%	37.85\%	30.24\%	41.41\%	38.57\%	41.59\%	42.39\%	39.02\%	31.52\%	39.28\%	37.44\%
INORGANIC/HHW	Non-Bulk Ceramics		0.22\%	0.41\%	0.12\%	0.41\%	0.10\%	0.44\%	0.73\%	0.27\%	0.43\%	0.42\%	0.25\%	0.31\%	0.06\%	0.51\%	0.05\%	0.52\%	0.11\%	0.36\%
INORGANIC/HHW	Miscellaneous Inorganics	5	3.16\%	3.87\%	4.98\%	1.78\%	1.34\%	2.27\%	2.45\%	3.74\%	4.45\%	3.63\%	6.64\%	4.03\%	5.39\%	2.93\%	1.25\%	6.07\%	4.03\%	4.07\%
INORGANIC/HHW	Pesticides		0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.13\%	0.05\%	0.05\%	0.08\%	0.16\%	0.00\%	0.14\%	0.00\%	0.09\%	0.01\%	0.25\%	0.12\%	0.01\%	0.12\%	0.09\%	0.00\%	0.23\%	0.03\%
INORGANIC/HHW	Dry Cell Batteries		0.02\%	0.06\%	0.01\%	0.02\%	0.01\%	0.05\%	0.02\%	0.07\%	0.02\%	0.04\%	0.03\%	0.05\%	0.02\%	0.10\%	0.04\%	0.05\%	0.01\%	0.05\%
INORGANIC/HHW	Car Batteries		0.20\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.00\%	0.27\%	0.00\%
INORGANII/HHW	Medical Waste		0.03\%	0.06\%	0.03\%	0.01\%	0.01\%	0.01\%	0.02\%	0.23\%	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	0.06\%	0.02\%	0.01\%	0.13\%	0.03\%
INORGANIC/HHW	Miscellaneous HHW	7	0.15\%	0.05\%	0.10\%	0.04\%	0.15\%	0.04\%	0.13\%	0.04\%	0.04\%	0.01\%	0.05\%	0.09\%	0.37\%	0.03\%	0.13\%	0.08\%	0.16\%	0.02\%
INORGANIC/HHW Total			3.92\%	4.50\%	5.30\%	2.34\%	1.77\%	2.81\%	3.49\%	4.36\%	5.05\%	4.15\%	7.25\%	4.62\%	5.88\%	3.74\%	1.65\%	6.74\%	4.94\%	4.55\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.50\%	0.00\%	0.34\%	0.00\%	0.68\%	0.00\%	0.36\%	0.00\%	0.40\%	0.00\%	0.47\%	0.00\%	0.71\%	0.00\%	0.57\%	0.00\%	0.46\%
APPL/ELECT. Total			0.00\%	0.50\%	0.00\%	0.34\%	0.00\%	0.68\%	0.00\%	0.36\%	0.00\%	0.40\%	0.00\%	0.47\%	0.00\%	0.71\%	0.00\%	0.57\%	0.00\%	0.46\%
GRAND TOTAL		9	100.00\%	100.00\%	100.04\%	100.00\%	100.01\%	100.00\%	100.01\%	100.00\%	99.98\%	100.00\%	99.99\%	100.00\%	99.99\%	100.00\%	99.49\%	100.00\%	99.98\%	100.00\%

1. For 1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and Citywide percentage figures are as reported in Volume 2, Exhibit 8-1 (page 8-4) of the OMD version of the DSNY Operations Planning Evaluation Control (OPEC)'s "New York City Waste Composition Study". Percentage figures by stratum, unless otherwise noted in these footnotes, are as reported in Volume 2, Exhibits $5-4$ through5-12, (pages $5-6$ through 5 -14), of the OMD version of the DSNY OPEC's "New York City Waste Composition Study". In some instances, indicated in these footnotes, 2005 data, Material Groups, Material Categories, and percentage figures were combined for comparison to 1990 data.
2. 1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper"
3. 1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2005 data does not.
6. 2005 "Other Metal" data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1990's "Other Metal" ("Other Ferrous Metal" in the 1990 OPEC report).
7. 1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1990.
9. In some cases, the 1990 percentage figures do not add up to exactly 100% due to rounding
10. This is the sum of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1990 data, this includes all Paper and Metal, as well as Container Glass and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissue, waxed, coated) was included in the 1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, 1990 figures overcount designated recyclable paper. For 2005 data, totals reflect designated recyclable materials only.
11. Results are presented here excluding bulk items because Volume 2 of the New York City Waste Composition Study, 1989-1990, OMD Version presented strata-specified results without bulk.

Table 1-87
Waste Composition, Summer 2005 vs. Summer 1989, Residential Results Excluding Bulk ${ }^{(11)}$

$\begin{aligned} & \hline 1989 \text { Material } \\ & \text { Group }^{(1)} \end{aligned}$	1989 Material Category ${ }^{(1)}$	Citywide			High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density / Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$\begin{aligned} & \text { w } \\ & \text { 을 } \end{aligned}$	Summer 1989	$\begin{gathered} \text { Summer } \\ 2005 \end{gathered}$	Summer 1989	$\begin{aligned} & \text { Summer } \\ & 2005 \end{aligned}$	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	$\begin{gathered} \text { Summer } \\ 2005 \end{gathered}$	Summer 1989	Summer 2005	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	Summer 2005	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	Summer 2005	Summer 1989	Summer 2005	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	Summer 2005	Summer 1989	Summer 2005
PAPER	Corrugated/Kraft		5.02\%	2.01\%	5.16\%	2.10\%	5.41\%	1.91\%	6.03\%	2.21\%	5.44\%	2.39\%	4.84\%	2.03\%	4.91\%	2.32\%	4.51\%	1.68\%	4.89\%	1.57\%
PAPER	Newsprint		9.48\%	7.46\%	12.64\%	14.64\%	17.36\%	9.24\%	7.58\%	5.07\%	9.54\%	10.67\%	10.17\%	6.78\%	6.70\%	4.77\%	9.17\%	7.40\%	10.43\%	5.07\%
PAPER	Office/Computer Paper		1.51\%	0.90\%	2.14\%	1.68\%	1.52\%	1.27\%	0.73\%	0.58\%	1.79\%	1.40\%	1.36\%	0.51\%	1.04\%	1.04\%	1.95\%	0.83\%	1.86\%	0.70\%
PAPER	Other Paper	2	15.17\%	19.36\%	16.02\%	26.99\%	16.71\%	19.32\%	13.46\%	16.30\%	14.09\%	24.61\%	14.80\%	18.19\%	13.63\%	16.71\%	10.05\%	20.53\%	16.65\%	16.04\%
PAPER	Books/Phone Books		1.18\%	1.23\%	0.43\%	0.85\%	4.08\%	1.11\%	1.28\%	0.88\%	0.96\%	1.10\%	1.64\%	2.55\%	0.81\%	0.63\%	2.95\%	1.18\%	0.78\%	0.92\%
PAPER Total			32.36\%	30.95\%	36.39\%	46.25\%	45.08\%	32.85\%	29.08\%	25.04\%	31.82\%	40.17\%	32.81\%	30.07\%	27.09\%	25.47\%	28.63\%	31.61\%	34.61\%	24.30\%
PLASTIC	Clear HDPE Containers		0.57\%	0.50\%	0.67\%	0.45\%	0.41\%	0.53\%	0.58\%	0.66\%	0.72\%	0.23\%	0.63\%	0.67\%	0.50\%	0.52\%	0.56\%	0.35\%	0.59\%	0.36\%
PLASTIC	Colored HDPE Containers		0.69\%	0.51\%	1.05\%	0.51\%	0.93\%	0.50\%	0.78\%	0.64\%	0.64\%	0.38\%	0.67\%	0.46\%	0.78\%	0.45\%	0.51\%	0.52\%	0.83\%	0.45\%
PLASTIC	LDPE		0.23\%	0.01\%	0.13\%	0.00\%	0.13\%	0.01\%	0.26\%	0.01\%	0.36\%	0.01\%	0.32\%	0.00\%	0.20\%	0.01\%	0.22\%	0.01\%	0.14\%	0.00\%
PLASTIC	Films/Bags		5.05\%	7.89\%	6.90\%	7.83\%	6.28\%	8.88\%	6.31\%	9.49\%	4.88\%	6.40\%	5.28\%	8.43\%	5.15\%	8.23\%	3.72\%	6.15\%	5.29\%	7.12\%
PLASTIC	PET Containers	3	0.60\%	1.50\%	0.74\%	1.42\%	0.60\%	1.49\%	0.74\%	1.55\%	0.63\%	1.18\%	0.74\%	1.52\%	0.56\%	1.94\%	0.43\%	1.37\%	0.77\%	1.28\%
PLASTIC	PVC		0.15\%	0.03\%	0.15\%	0.02\%	0.17\%	0.04\%	0.10\%	0.02\%	0.16\%	0.02\%	0.23\%	0.02\%	0.15\%	0.06\%	0.12\%	0.03\%	0.24\%	0.05\%
PLASTIC	Polypropylene		0.16\%	0.24\%	0.14\%	0.33\%	0.25\%	0.22\%	0.26\%	0.24\%	0.12\%	0.31\%	0.12\%	0.22\%	0.09\%	0.25\%	0.13\%	0.16\%	0.12\%	0.27\%
PLASTIC	Polystyrene		0.86\%	0.89\%	0.00\%	0.92\%	0.00\%	0.93\%	0.00\%	0.88\%	0.00\%	0.85\%	0.00\%	0.94\%	0.00\%	0.99\%	0.00\%	0.76\%	0.00\%	0.84\%
PLASTIC	Miscellaneous Plastic		1.59\%	3.58\%	2.24\%	3.73\%	1.93\%	4.36\%	2.54\%	3.47\%	2.48\%	3.14\%	2.13\%	3.17\%	2.15\%	3.55\%	2.51\%	3.59\%	3.27\%	4.06\%
PLASTIC Total			9.90\%	15.13\%	12.02\%	15.22\%	10.70\%	16.97\%	11.57\%	16.95\%	9.99\%	12.50\%	10.12\%	15.42\%	9.58\%	16.01\%	8.20\%	12.94\%	11.25\%	14.43\%
GLASS	Clear Glass		3.20\%	1.90\%	2.04\%	1.64\%	2.41\%	1.53\%	3.27\%	2.25\%	4.05\%	1.69\%	3.71\%	1.74\%	2.59\%	2.51\%	3.23\%	1.76\%	3.26\%	1.70\%
GLASS	Green Glass		1.18\%	0.61\%	0.95\%	1.36\%	0.87\%	0.53\%	1.59\%	0.48\%	1.21\%	1.05\%	1.31\%	0.49\%	1.38\%	0.57\%	0.98\%	0.45\%	0.93\%	0.40\%
GLASS	Brown Glass		0.97\%	0.49\%	0.72\%	0.47\%	0.58\%	0.32\%	1.24\%	0.53\%	1.27\%	0.55\%	1.21\%	0.62\%	1.08\%	0.63\%	0.75\%	0.34\%	0.83\%	0.38\%
GLASS	Miscellaneous Glass	4	0.47\%	2.53\%	0.41\%	3.50\%	0.65\%	2.38\%	0.91\%	2.56\%	0.12\%	3.08\%	0.26\%	2.82\%	0.36\%	2.29\%	0.26\%	1.82\%	0.79\%	2.55\%
GLASS Total			5.82\%	5.53\%	4.12\%	6.97\%	4.51\%	4.76\%	7.01\%	5.82\%	6.65\%	6.37\%	6.49\%	5.66\%	5.41\%	5.99\%	5.22\%	4.37\%	5.81\%	5.02\%
METAL	Aluminum Beverage Cans		0.35\%	0.30\%	0.31\%	0.25\%	0.44\%	0.27\%	0.35\%	0.43\%	0.43\%	0.17\%	0.37\%	0.26\%	0.29\%	0.31\%	0.37\%	0.29\%	0.31\%	0.24\%
METAL	Aluminum Food Containers/Foil		0.46\%	0.63\%	0.91\%	0.59\%	0.37\%	0.54\%	0.61\%	0.59\%	0.36\%	0.59\%	0.40\%	0.66\%	0.44\%	0.73\%	0.33\%	0.65\%	0.57\%	0.60\%
METAL	Miscellaneous Aluminum		0.21\%	0.07\%	0.27\%	0.04\%	0.17\%	0.06\%	0.29\%	0.03\%	0.13\%	0.04\%	0.36\%	0.09\%	0.27\%	0.04\%	0.06\%	0.06\%	0.31\%	0.28\%
METAL	Metal Food Containers		1.97\%	1.14\%	2.36\%	0.80\%	2.06\%	1.11\%	2.28\%	1.64\%	2.00\%	0.80\%	2.09\%	1.31\%	1.64\%	1.22\%	1.74\%	0.89\%	1.90\%	0.93\%
METAL	Other Metal	6	1.94\%	2.46\%	1.26\%	1.98\%	0.79\%	2.31\%	2.76\%	2.38\%	2.24\%	3.27\%	2.04\%	2.40\%	3.86\%	2.36\%	1.10\%	2.34\%	2.09\%	3.77\%
METAL Total			4.93\%	4.61\%	5.11\%	3.66\%	3.83\%	4.29\%	6.29\%	5.06\%	5.16\%	4.88\%	5.26\%	4.72\%	6.50\%	4.66\%	3.60\%	4.23\%	5.18\%	5.82\%
YARD	Grass/Leaves		2.80\%	3.25\%	1.04\%	0.44\%	0.05\%	2.74\%	0.04\%	0.77\%	4.11\%	1.87\%	1.49\%	2.08\%	1.10\%	1.82\%	5.74\%	8.12\%	2.20\%	6.26\%
YARD	Brush/Prunings/Stumps		1.86\%	0.78\%	0.02\%	0.28\%	0.02\%	0.29\%	0.02\%	0.11\%	0.85\%	1.14\%	0.40\%	0.32\%	1.68\%	1.18\%	4.79\%	1.72\%	0.73\%	1.07\%
YARD Total			4.66\%	4.03\%	1.06\%	0.72\%	0.07\%	3.03\%	0.06\%	0.87\%	4.96\%	3.02\%	1.89\%	2.40\%	2.78\%	3.01\%	10.53\%	9.84\%	2.93\%	7.33\%
ORGANIC	Lumber		2.87\%	1.62\%	0.94\%	0.83\%	2.19\%	1.06\%	3.27\%	1.03\%	1.83\%	1.05\%	2.46\%	1.34\%	4.43\%	1.83\%	3.28\%	2.47\%	2.11\%	2.97\%
ORGANIC	Textiles		6.71\%	6.16\%	6.38\%	4.50\%	4.04\%	6.21\%	8.61\%	9.14\%	5.82\%	3.51\%	6.59\%	5.85\%	8.22\%	6.90\%	6.37\%	4.80\%	4.20\%	6.53\%
ORGANIC	Rubber		0.22\%	0.24\%	0.07\%	0.17\%	0.03\%	0.22\%	0.30\%	0.21\%	0.02\%	0.23\%	0.17\%	0.29\%	0.07\%	0.40\%	0.31\%	0.19\%	0.41\%	0.16\%
ORGANIC	Fines	5	2.49\%	3.93\%	3.77\%	3.12\%	2.80\%	3.58\%	3.37\%	4.08\%	1.70\%	3.15\%	1.84\%	3.90\%	2.08\%	5.62\%	2.01\%	3.33\%	3.04\%	4.26\%
ORGANIC	Diapers		3.84\%	3.44\%	3.29\%	2.85\%	3.11\%	3.05\%	4.22\%	3.94\%	4.25\%	2.99\%	2.92\%	4.00\%	3.66\%	3.52\%	4.36\%	3.05\%	3.06\%	3.38\%
ORGANIC	Food Waste		14.18\%	16.85\%	11.03\%	9.88\%	10.40\%	17.47\%	12.96\%	22.04\%	20.75\%	12.90\%	18.87\%	18.98\%	14.78\%	17.84\%	12.86\%	15.12\%	15.28\%	15.11\%
ORGANIC	Miscellaneous Organic		9.35\%	2.99\%	14.71\%	3.60\%	10.96\%	2.62\%	10.05\%	1.91\%	6.53\%	4.05\%	9.83\%	2.96\%	8.11\%	3.71\%	9.40\%	2.89\%	8.30\%	3.31\%
ORGANIC Total			39.66\%	35.22\%	40.19\%	24.95\%	33.53\%	34.22\%	42.78\%	42.35\%	40.90\%	27.89\%	42.68\%	37.33\%	41.35\%	39.81\%	38.59\%	31.85\%	36.40\%	35.72\%

Table 1-87
Waste Composition, Summer 2005 vs. Summer 1989, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

1989 Material Group ${ }^{(1)}$	1989 Material Category ${ }^{(1)}$	Citywide			High Density / High Income		High Density / Medium Income		High Density / Low Income		Medium Density / High Income		Medium Density $/$ Medium Income		Medium Density / Low Income		Low Density / High Income		Low Density / Medium Income	
		$\begin{aligned} & \text { س山 } \\ & \stackrel{0}{2} \end{aligned}$	Summer	Summer 2005	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	Summer 2005	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	$\begin{aligned} & \text { Summer } \\ & 2005 \end{aligned}$	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	Summer 2005	Summer 1989	Summer 2005	Summer 1989	$\begin{gathered} \text { Summer } \\ 2005 \end{gathered}$	Summer 1989	$\begin{aligned} & \text { Summer } \\ & 2005 \end{aligned}$	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	$\begin{aligned} & \text { Summer } \\ & 2005 \end{aligned}$	Summer 1989	$\begin{aligned} & \text { Summer } \\ & 2005 \end{aligned}$
INORGANIC/HHW	Non-Bulk Ceramics		0.05\%	0.45\%	0.03\%	0.22\%	0.19\%	0.34\%	0.02\%	0.33\%	0.04\%	0.81\%	0.02\%	0.36\%	0.08\%	0.26\%	0.06\%	0.76\%	0.00\%	0.67\%
INORGANIC/HHW	Miscellaneous Inorganics	5	2.24\%	2.99\%	0.86\%	1.12\%	1.76\%	2.64\%	2.67\%	2.55\%	0.38\%	2.59\%	0.56\%	2.99\%	6.83\%	3.28\%	0.85\%	3.59\%	3.73\%	5.18\%
INORGANIC/HHW	Pesticides		0.02\%	0.01\%	0.01\%	0.01\%	0.04\%	0.00\%	2.70\%	0.01\%	0.02\%	0.00\%	0.03\%	0.01\%	0.01\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Paint/Solvent/Fuel		0.04\%	0.07\%	0.04\%	0.02\%	0.01\%	0.05\%	0.06\%	0.05\%	0.00\%	0.12\%	0.02\%	0.08\%	0.06\%	0.02\%	0.03\%	0.08\%	0.01\%	0.24\%
INORGANIC/HHW	Dry Cell Batteries		0.05\%	0.08\%	0.03\%	0.09\%	0.04\%	0.10\%	0.05\%	0.07\%	0.01\%	0.07\%	0.03\%	0.07\%	0.14\%	0.11\%	0.05\%	0.06\%	0.01\%	0.04\%
INORGANIC/HHW	Car Batteries		0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.29\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.01\%	0.08\%	0.00\%	0.18\%	0.03\%	0.05\%	0.02\%	0.09\%	0.03\%	0.02\%	0.02\%	0.11\%	0.00\%	0.07\%	0.01\%	0.02\%	0.00\%	0.04\%
INORGANIC/HHW	Miscellaneous HHW	7	0.19\%	0.05\%	0.13\%	0.02\%	0.21\%	0.01\%	0.26\%	0.16\%	0.06\%	0.02\%	0.11\%	0.03\%	0.16\%	0.03\%	0.23\%	0.01\%	0.07\%	0.05\%
INORGANIC/HHW Total			2.69\%	3.71\%	1.10\%	1.66\%	2.28\%	3.21\%	5.78\%	3.25\%	0.54\%	3.64\%	0.79\%	3.64\%	7.28\%	3.76\%	1.55\%	4.53\%	3.82\%	6.21\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.83\%	0.00\%	0.57\%	0.00\%	0.68\%	0.00\%	0.64\%	0.00\%	1.54\%	0.00\%	0.76\%	0.00\%	1.30\%	0.00\%	0.64\%	0.00\%	1.17\%
APPL/ELECT. Total			0.00\%	0.83\%	0.00\%	0.57\%	0.00\%	0.68\%	0.00\%	0.64\%	0.00\%	1.54\%	0.00\%	0.76\%	0.00\%	1.30\%	0.00\%	0.64\%	0.00\%	1.17\%
GRAND TOTAL		9	100.02\%	100.00\%	99.99\%	100.00\%	100.00\%	100.00\%	102.57\%	100.00\%	100.02\%	100.00\%	100.04\%	100.00\%	99.99\%	100.00\%	96.32\%	100.00\%	100.00\%	100.00\%

1. For 1989 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and Citywide percentage figures are as reported in Volume 2, Exhibit 8-1 (page 8-4) of the OMD version of the DSNY Operations Planning Evaluation Control (OPEC)'s "New York City Waste Composition Study". Percentage figures by stratum, unless otherwise noted in these footnotes, are as reported in Volume 2, Exhibits 2-4 through 2-12, (pages 2-7 through 2-15), of the OMD version of the DSNY OPEC"s "New York City Waste Composition Study". In some instances, indicated in these footnotes, 2005 data, Material Groups, Material Categories, and percentage figures were combined for comparison to 1989 data.
2. 1989 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2005 data does not.
6. 2005 "Other Metal" data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989 's "Other Metal" ("Other Ferrous Metal" in the 1989 OPEC report).
7. 1989 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989.
9. In some cases, the 1989 percentage figures do not add up to exactly 100% due to rounding.
10. This is the sum of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989 data, this includes all Paper and Metal, as well as Container Glass and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissue, waxed, coated) was included in the 1989 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, 1989 figures overcount designated recyclable paper. For 2005 data, totals reflect designated recyclable materials only.
11. Results are presented here excluding bulk items because Volume 2 of the New York City Waste Composition Study, 1989-1990, OMD Version presented strata-specified results without bulk.

3.4 Details on Results without Bulk

The results of the WCS included Bulk Items that were acquired as a part of the samples. However, the 1989/1990 Study specifically excluded bulk waste. Therefore, in order to make comparisons between the WCS and the 1989/1990 Study, the results of the WCS were calculated without Bulk Items. Further details on bulk composition, methodology, itemized lists and comparisons to the 1989-1990 Study can be found in Section 6, Bulk and Durable Results, in this Volume.

Most Bulk Items acquired in the WCS sample units were appliances and furniture. When Bulk Items are excluded from the composition calculations, the average percent composition of a particular material category changes slightly. The average percent composition of Material Categories which include Bulk Items, such as "Wood Furniture/Pieces of Furniture" or "Appliances: Ferrous" decreases when bulk is excluded. Because the sum of the percentages must add to 100 percent, percentages of materials with no bulk, such as "Paper" and "Food Waste" increase. Tables 1-88 through Table 1-93 summarize the results of the PWCS and WCS without Bulk Items.

The results without bulk are only shown for Waste, and not the other streams, because the purpose of this analysis was to compare the results of the PWCS and WCS with the 1989/1990 Study. The 1989/1990 Study did not include the sampling and sorting of Recycling because the City's Recycling program was just getting underway.

These tables are useful for understanding the calculations for comparisons with the 1989/1990 Study (which did not include bulk calculations), and for understanding the composition of the non-bulk waste stream.

Table 1-88

Preliminary Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Citywide Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper		7.34\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		3.29\%	R Paper
Paper	Mixed Paper	High Grade Paper		1.02\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		8.91\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.83\%	R Paper
Paper	Mixed Paper	Paper Bags		0.57\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.54\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		6.40\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.44\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.74\%	NR_Paper
Paper Total				30.07\%	
Plastic	PET Bottles	PET Bottles		1.25\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.44\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.51\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.02\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.08\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.23\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.06\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.07\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.16\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.60\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.62\%	PR_Plastics
Plastic	Film	Plastic Bags		2.45\%	PR_Plastics
Plastic	Film	Other Film		4.66\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		0.67\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		1.63\%	NR_Plastics
Plastic Total				13.56\%	
Glass	Container Glass	Clear Container Glass		1.59\%	R Glass
Glass	Container Glass	Green Container Glass		0.52\%	R Glass
Glass	Container Glass	Brown Container Glass		0.37\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		1.88\%	R Glass
Glass	Container Glass	Other Container Glass		0.21\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	PR_Glass
Glass Total				4.57\%	
Metal	Aluminum	Aluminum Cans		0.22\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.58\%	R Metal
Metal	Aluminum	Other Aluminum		0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.07\%	R Metal
Metal	Ferrous	Tin Food Cans		1.26\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.15\%	R Metal
Metal	Ferrous	Other Ferrous		1.72\%	R Metal
Metal	Other Metal	Mixed Metals		0.40\%	R Metal
Metal Total				4.46\%	

Table 1-88
Preliminary Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Citywide Waste Stream	Recycling Subindicator
Organics	Yard	Leaves and Grass		5.33\%	NR_Other
Organics	Yard	Prunings		2.53\%	NR_Other
Organics	Wood	Stumps/Limbs		0.46\%	NR_Other
Organics	Food	Food		13.69\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.12\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		1.47\%	NR_Other
Organics	Textiles	Clothing Textiles		3.15\%	NR_Other
Organics	Textiles	Carpet/Upholstery		0.95\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		3.25\%	NR_Other
Organics	Misc. Organic	Animal By-Products		1.06\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.27\%	NR_Other
Organics	Textiles	Shoes		0.58\%	NR_Other
Organics	Textiles	Other Leather Products		0.02\%	NR_Other
Organics	Misc. Organic	Fines		3.69\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		3.37\%	NR_Other
Organics Total				39.96\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.30\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.21\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.04\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.18\%	NR_Other
Appliance/Electronic Total				0.83\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.29\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		2.41\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap		0.98\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		0.51\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		1.39\%	NR_Other
C \& D Debris Total				5.59\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.22\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.36\%	NR_Other
Miscellaneous Inorganics Total				0.58\%	
HHW	HHW	Oil Filters		0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.06\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.09\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.06\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.07\%	NR_Other
HHW Total				0.39\%	
				100.00\%	

Table 1-88
Preliminary Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued) SUBTOTALS BY RECYCLING DESIGNATION

Recycling Designation	$\%$ of Waste Stream
Designated Paper	21.95%
Designated Beverage Cartons	0.54%
Designated Plastic	2.20%
Designated Metal	4.46%
Designated Glass	4.57%
Designated MGP Subtotal	11.76%
Potentially Designated Plastic	8.99%
Potentially Designated Glass	0.00%
Potentially Designated Materials Subtotal	8.99%
Nondesignated Paper	7.58%
Nondesignated Plastic	2.37%
Other Nondesignated	47.35%
Nondesignated Materials Subtotal	57.29%
Designated for Recycling Total	33.71%
Potentially or Not Designated for Recycling Total	66.29%

AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(6)}$

Material Group	Waste
Paper Total $^{(7)}$	$14,900.57$
Plastic Total $^{(7)}$	$6,721.45$
Glass Total $^{(7)}$	$2,264.26$
Metal Total $^{(8)}$	$2,208.25$
Organics Total	$19,802.82$
Appliance/Electronic Total	409.46
C \& D Debris Total	$2,768.73$
Miscellaneous Inorganics Total	289.21
HHW Total	193.53
Grand Total	$49,558.29$

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category.
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period of May and June 2004 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 .
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

For further information about revisions to the Material Sort Categories, refer to Section 3 of this Volume, Tables 1-87 and 1-88.

Table 1-89
Housing Density and Income Details, Fall 2004 Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Density/ High Income \%	$\begin{gathered} \text { High Densityl/ } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	Medium Density/ High Income $\%$	Medium Density/ Medium Income Medium Income \%	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Low Densityl } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$
Paper	ONP	Newspaper	7.60\%	R Paper	12.68\%	7.90\%	6.18\%	11.04\%	5.83\%	4.93\%	9.08\%	5.34\%
Paper	OCC	Plain OCC/Kraft Paper	3.10\%	R Paper	4.25\%	3.01\%	1.90\%	2.61\%	3.93\%	2.95\%	3.13\%	2.32\%
Paper	Mixed Paper	High Grade Paper	0.90\%	R Paper	1.25\%	1.01\%	0.57\%	1.67\%	1.24\%	0.77\%	0.62\%	0.58\%
Paper	Mixed Paper	Mixed Low Grade Paper	10.27\%	R Paper	18.36\%	10.37\%	7.47\%	15.94\%	9.26\%	7.02\%	10.33\%	7.96\%
Paper	Mixed Paper	Phone Books/Paperbacks	0.81\%	R Paper	2.01\%	1.07\%	0.63\%	0.84\%	0.47\%	0.81\%	0.48\%	0.60\%
Paper	Mixed Paper	Paper Bags	0.59\%	R Paper	1.26\%	0.53\%	0.54\%	0.76\%	0.57\%	0.43\%	0.43\%	0.33\%
Paper	Bev Cartons	Polycoated Paper Containers	0.51\%	R Bev Cartons	0.62\%	0.57\%	0.57\%	0.63\%	0.56\%	0.49\%	0.37\%	0.37\%
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	7.09\%	NR_Paper	8.65\%	6.99\%	7.67\%	5.94\%	7.05\%	5.77\%	6.97\%	7.00\%
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.48\%	NR_Paper	0.65\%	0.49\%	0.27\%	0.49\%	0.39\%	0.25\%	0.73\%	0.65\%
Paper	Other Paper	Other Nonrecyclable Paper	0.62\%	NR_Paper	0.55\%	0.73\%	0.60\%	0.90\%	0.63\%	0.51\%	0.68\%	0.56\%
Paper Total			31.97\%		50.28\%	32.67\%	26.40\%	40.81\%	29.93\%	23.92\%	32.80\%	25.71\%
Plastic	PET Bottles	PET Bottles	1.06\%	R Plastics	1.14\%	0.98\%	1.19\%	0.84\%	1.02\%	1.14\%	0.98\%	1.05\%
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.49\%	R Plastics	0.22\%	0.46\%	0.61\%	0.22\%	0.47\%	0.47\%	0.70\%	0.44\%
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.50\%	R Plastics	0.43\%	0.53\%	0.57\%	0.37\%	0.53\%	0.45\%	0.52\%	0.52\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	PR_Plastics	0.12\%	0.13\%	0.02\%	0.04\%	0.04\%	0.07\%	0.03\%	0.04\%
Plastic	\#3.\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%	0.03\%
Plastic	\#3.\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	PR_Plastics	0.05\%	0.11\%	0.05\%	0.05\%	0.08\%	0.04\%	0.04\%	0.05\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	PR_Plastics	0.25\%	0.17\%	0.21\%	0.21\%	0.16\%	0.10\%	0.19\%	0.14\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.04\%	0.03\%	0.02\%	0.05\%	0.03\%	0.02\%	0.04\%	0.07\%
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%
Plastic	Other Plastic Products	Other PVC	0.02\%	NR_Plastics	0.01\%	0.01\%	0.02\%	0.00\%	0.02\%	0.02\%	0.04\%	0.00\%
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	PR_Plastics	0.44\%	0.27\%	0.25\%	0.27\%	0.21\%	0.18\%	0.23\%	0.20\%
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.56\%	PR_Plastics	0.43\%	0.50\%	0.70\%	0.46\%	0.59\%	0.72\%	0.43\%	0.54\%
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.69\%	PR_Plastics	1.04\%	0.98\%	0.57\%	0.77\%	0.70\%	0.48\%	0.61\%	0.67\%
Plastic	Film	Plastic Bags	2.47\%	PR_Plastics	2.30\%	3.25\%	3.21\%	1.89\%	2.67\%	2.35\%	1.84\%	2.10\%
Plastic	Film	Other Film	5.02\%	PR_Plastics	5.55\%	5.90\%	5.60\%	4.29\%	5.37\%	4.84\%	4.11\%	4.33\%
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	0.47\%	NR_Plastics	0.41\%	0.38\%	0.42\%	0.30\%	0.39\%	0.51\%	0.64\%	0.56\%
Plastic	Other Plastic Products	Other Plastics Materials	1.69\%	NR_Plastics	1.01\%	1.43\%	1.61\%	1.19\%	1.89\%	1.91\%	2.01\%	1.85\%
Plastic Total			13.62\%		13.47\%	15.20\%	15.12\%	11.02\%	14.21\%	13.38\%	12.46\%	12.62\%
Glass	Container Glass	Clear Container Glass	1.49\%	R Glass	1.40\%	1.17\%	1.63\%	1.33\%	1.30\%	1.96\%	1.39\%	1.56\%
Glass	Container Glass	Green Container Glass	0.52\%	R Glass	1.23\%	0.48\%	0.34\%	1.17\%	0.43\%	0.36\%	0.36\%	0.29\%
Glass	Container Glass	Brown Container Glass	0.40\%	R Glass	0.27\%	0.37\%	0.58\%	0.62\%	0.33\%	0.45\%	0.30\%	0.38\%
Glass	Mixed Cullet	Mixed Cullet	1.64\%	R Glass	2.53\%	1.44\%	1.42\%	2.33\%	1.79\%	1.52\%	1.30\%	1.12\%
Glass	Container Glass	Other Container Glass	0.03\%	R Glass	0.02\%	0.02\%	0.01\%	0.05\%	0.05\%	0.04\%	0.04\%	0.02\%
Glass	Other Glass	Other Glass	0.14\%	PR_Glass	0.08\%	0.12\%	0.17\%	0.10\%	0.13\%	0.12\%	0.18\%	0.25\%
Glass Total			4.22\%		5.53\%	3.61\%	4.16\%	5.59\%	4.02\%	4.45\%	3.58\%	3.61\%
Metal	Aluminum	Aluminum Cans	0.18\%	R Metal	0.17\%	0.21\%	0.23\%	0.20\%	0.14\%	0.20\%	0.16\%	0.13\%
Metal	Aluminum	Aluminum Foil/Containers	0.51\%	R Metal	0.48\%	0.43\%	0.54\%	0.51\%	0.53\%	0.55\%	0.47\%	0.56\%
Metal	Aluminum	Other Aluminum	0.06\%	R Metal	0.03\%	0.06\%	0.03\%	0.10\%	0.01\%	0.16\%	0.09\%	0.02\%
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	R Metal	0.11\%	0.18\%	0.19\%	0.11\%	0.10\%	0.05\%	0.13\%	0.16\%
Metal	Ferrous	Tin Food Cans	1.27\%	R Metal	0.73\%	1.27\%	1.93\%	0.94\%	1.23\%	1.45\%	1.02\%	1.30\%
Metal	Ferrous	Empty Aerosol Cans	0.15\%	R Metal	0.14\%	0.14\%	0.20\%	0.10\%	0.15\%	0.14\%	0.14\%	0.18\%
Metal	Ferrous	Other Ferrous	1.67\%	R Metal	1.51\%	1.73\%	1.22\%	1.36\%	1.56\%	2.20\%	1.79\%	2.04\%
Metal	Other Metal	Mixed Metals	0.64\%	R Metal	0.36\%	0.49\%	0.60\%	0.51\%	0.32\%	1.24\%	0.80\%	0.61\%
Metal Total			4.61\%		3.54\%	4.51\%	4.93\%	3.83\%	4.04\%	5.99\%	4.61\%	5.00\%

Table 1-89
Housing Density and Income Details, Fall 2004 Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	Medium Density/ High Income \%	Medium Density/ Medium Income \%	Medium Densityl Low Income $\%$	Low Density/ High Income \%	$\begin{aligned} & \hline \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Organics	Yard	Leaves and Grass	4.36\%	NR_Other	1.29\%	2.57\%	1.48\%	2.54\%	4.24\%	4.61\%	8.55\%	7.77\%
Organics	Yard	Prunings	0.90\%	NR_Other	0.26\%	0.61\%	0.02\%	1.09\%	0.94\%	0.23\%	2.36\%	1.51\%
Organics	Wood	Stumps/Limbs	0.11\%	NR_Other	0.00\%	0.13\%	0.00\%	0.04\%	0.11\%	0.00\%	0.36\%	0.05\%
Organics	Food	Food	18.81\%	NR_Other	11.95\%	19.73\%	25.22\%	16.02\%	21.14\%	20.88\%	14.63\%	18.02\%
Organics	Wood	Wood Furniture/Furniture Pieces	0.76\%	NR_Other	0.54\%	0.36\%	0.63\%	0.54\%	0.69\%	1.22\%	0.77\%	1.26\%
Organics	Wood	Non-C\&D Untreated Wood	0.04\%	NR_Other	0.02\%	0.03\%	0.06\%	0.07\%	0.05\%	0.02\%	0.02\%	0.06\%
Organics	Textiles	Non-Clothing Textiles	1.30\%	NR_Other	0.84\%	1.21\%	1.49\%	0.92\%	1.44\%	1.19\%	1.57\%	1.15\%
Organics	Textiles	Clothing Textiles	2.59\%	NR_Other	1.32\%	3.13\%	3.98\%	1.07\%	2.19\%	3.18\%	2.19\%	2.89\%
Organics	Textiles	Carpet/Upholstery	0.66\%	NR_Other	0.74\%	0.50\%	0.38\%	0.60\%	0.56\%	0.50\%	0.87\%	1.45\%
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.37\%	NR_Other	2.20\%	3.16\%	4.39\%	3.36\%	3.33\%	3.96\%	2.65\%	4.17\%
Organics	Misc. Organic	Animal By-Products	1.05\%	NR_Other	0.96\%	1.22\%	0.73\%	2.75\%	1.23\%	0.74\%	0.80\%	1.49\%
Organics	Misc. Organic	Rubber Products	0.26\%	NR_Other	0.27\%	0.23\%	0.19\%	0.19\%	0.22\%	0.27\%	0.40\%	0.16\%
Organics	Textiles	Shoes	0.57\%	NR_Other	0.26\%	0.52\%	0.61\%	0.47\%	0.53\%	0.88\%	0.46\%	0.87\%
Organics	Textiles	Other Leather Products	0.12\%	NR_Other	0.03\%	0.19\%	0.15\%	0.04\%	0.25\%	0.09\%	0.07\%	0.03\%
Organics	Misc. Organic	Fines	2.96\%	NR_Other	2.55\%	2.97\%	3.70\%	2.41\%	2.74\%	3.41\%	2.50\%	3.29\%
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.16\%	NR_Other	0.07\%	0.24\%	0.08\%	0.23\%	0.00\%	0.63\%	0.11\%	0.00\%
Organics	Misc. Organic	Miscellaneous Organics	0.51\%	NR_Other	0.27\%	0.46\%	0.70\%	0.98\%	0.36\%	0.37\%	0.63\%	0.58\%
Organics Total			38.54\%		23.56\%	37.24\%	43.80\%	33.33\%	40.04\%	42.19\%	38.95\%	44.74\%
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.44\%	R Metal	0.29\%	0.42\%	0.64\%	0.72\%	0.39\%	0.65\%	0.26\%	0.25\%
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.06\%	0.03\%	0.04\%	0.02\%	0.01\%	0.05\%	0.06\%	0.08\%
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.25\%	NR_Other	0.19\%	0.38\%	0.31\%	0.17\%	0.18\%	0.27\%	0.29\%	0.21\%
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	NR_Other	0.00\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	0.21\%	NR_Other	0.09\%	0.11\%	0.28\%	0.10\%	0.27\%	0.21\%	0.20\%	0.28\%
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.12\%	0.04\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.09\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	0.00\%	0.11\%	0.30\%
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	NR_Other	0.24\%	0.35\%	0.10\%	0.13\%	0.27\%	0.23\%	0.11\%	0.23\%
Appliance/Electronic Total			1.25\%		0.88\%	1.30\%	1.39\%	1.26\%	1.41\%	1.42\%	1.04\%	1.35\%
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.28\%	NR_Other	0.07\%	0.48\%	0.11\%	0.24\%	0.10\%	0.14\%	0.74\%	0.40\%
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.44\%	NR_Other	0.44\%	1.34\%	1.09\%	1.50\%	1.50\%	2.03\%	1.69\%	1.98\%
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.21\%	NR_Other	0.50\%	1.46\%	0.57\%	0.30\%	1.57\%	2.29\%	0.80\%	2.37\%
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.59\%	NR_Other	0.22\%	0.51\%	0.73\%	0.27\%	0.61\%	1.20\%	0.40\%	0.42\%
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	1.46\%	NR_Other	1.14\%	0.95\%	1.06\%	0.96\%	1.90\%	1.90\%	1.82\%	0.79\%
C \& D Debris Total			4.98\%		2.37\%	4.76\%	3.56\%	3.27\%	5.68\%	7.56\%	5.44\%	5.96\%
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.13\%	NR_Other	0.11\%	0.05\%	0.09\%	0.08\%	0.10\%	0.23\%	0.16\%	0.24\%
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.41\%	NR_Other	0.07\%	0.44\%	0.31\%	0.54\%	0.32\%	0.58\%	0.61\%	0.39\%
Miscellaneous Inorganics Total			0.54\%		0.18\%	0.49\%	0.40\%	0.62\%	0.42\%	0.81\%	0.77\%	0.63\%
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.10\%	NR_Other	0.06\%	0.02\%	0.04\%	0.10\%	0.09\%	0.08\%	0.20\%	0.24\%
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.05\%	0.01\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.02\%
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%
HHW	HHW	Dry-Cell Batteries	0.07\%	NR_Other	0.03\%	0.12\%	0.09\%	0.08\%	0.06\%	0.11\%	0.06\%	0.04\%
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Home Medical Products	0.04\%	NR_Other	0.03\%	0.03\%	0.06\%	0.07\%	0.04\%	0.03\%	0.02\%	0.02\%
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.01\%	0.04\%	0.03\%	0.02\%	0.01\%	0.05\%	0.05\%	0.04\%
HHW Total			0.27\%		0.19\%	0.23\%	0.23\%	0.27\%	0.25\%	0.28\%	0.35\%	0.37\%
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

Table 1-89
Housing Density and Income Details, Fall 2004 Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued) SUBTOTALS BY RECYCLING DESIGNATION

Recycling Designation	\% of Citywide	High Density/ High Income $\%$	$\begin{gathered} \hline \text { High Density/ } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { High Income } \\ \% \end{gathered}$	$\begin{aligned} & \text { Medium Density/ } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Density/ High Income \%	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$
Designated Paper	23.27\%	39.81\%	23.88\%	17.29\%	32.86\%	21.30\%	16.91\%	24.06\%	17.13\%
Designated Beverage Cartons	0.51\%	0.62\%	0.57\%	0.57\%	0.63\%	0.56\%	0.49\%	0.37\%	0.37\%
Designated Plastic	2.06\%	1.79\%	1.98\%	2.36\%	1.44\%	2.02\%	2.06\%	2.20\%	2.01\%
Designated Metal	5.09\%	3.89\%	4.96\%	5.61\%	4.58\%	4.44\%	6.69\%	4.93\%	5.34\%
Designated Glass	4.08\%	5.45\%	3.48\%	4.00\%	5.49\%	3.89\%	4.33\%	3.39\%	3.37\%
Designated MGP Subtotal	11.74\%	11.76\%	10.99\%	12.54\%	12.13\%	10.92\%	13.57\%	10.89\%	11.08\%
Potentially Designated Plastic	9.38\%	10.25\%	11.40\%	10.71\%	8.10\%	9.89\%	8.88\%	7.58\%	8.19\%
Potentially Designated Glass	0.14\%	0.08\%	0.12\%	0.17\%	0.10\%	0.13\%	0.12\%	0.18\%	0.25\%
Potentially Designated Materials Subtotal	9.52\%	10.33\%	11.52\%	10.87\%	8.20\%	10.01\%	9.00\%	7.76\%	8.44\%
Nondesignated Paper	8.19\%	9.85\%	8.22\%	8.55\%	7.32\%	8.06\%	6.52\%	8.37\%	8.21\%
Nondesignated Plastic	2.18\%	1.43\%	1.82\%	2.05\%	1.49\%	2.30\%	2.43\%	2.69\%	2.42\%
Other Nondesignated	45.10\%	26.82\%	43.56\%	48.70\%	38.00\%	47.41\%	51.56\%	46.23\%	52.72\%
Nondesignated Materials Subtotal	55.47\%	38.10\%	53.60\%	59.30\%	46.82\%	57.77\%	60.52\%	57.29\%	63.35\%
Designated for Recycling Total	35.01\%	51.57\%	34.88\%	29.83\%	44.99\%	32.22\%	30.48\%	34.95\%	28.21\%
Potentially or Not Designated for Recycling Total	64.99\%	48.43\%	65.12\%	70.17\%	55.01\%	67.78\%	69.52\%	65.05\%	71.79\%
AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$									
Material Group	Citywide	Densityl High Income	Medium Income	$\begin{gathered} \text { Densityl } \\ \text { Low Income } \end{gathered}$	Density/ High Income	Densityl Medium	Densityl Low Income	$\begin{gathered} \text { Densityl } \\ \text { High } \end{gathered}$	Medium Income
Paper Total ${ }^{(2)}$	18,480.93	3,210.84	1,328.46	2,875.97	942.09	3,085.68	2,126.75	3,548.29	1,062.13
Plastic Total ${ }^{(2)}$	7,872.54	860.25	617.96	1,646.94	254.44	1,465.06	1,189.42	1,347.63	521.49
Glass Total ${ }^{(2)}$	2,439.45	353.25	146.61	453.56	129.11	414.47	395.57	386.89	149.33
Metal Total ${ }^{(3)}$	2,663.44	226.15	183.26	537.48	88.50	416.62	532.17	498.51	206.76
Organics Total	22,277.71	1,504.33	1,514.03	4,770.90	769.39	4,128.84	3,751.00	4,213.67	1,848.62
Appliance/Electronic Total	722.56	55.98	52.68	151.46	29.10	145.35	126.19	112.62	55.86
C \& D Debris Total	2,876.53	151.37	193.34	387.69	75.46	585.37	672.34	588.23	246.23
Miscellaneous Inorganics Total	312.87	11.39	19.89	43.63	14.36	43.76	72.00	83.32	26.07
HHW Total	156.20	11.93	9.54	24.65	6.16	26.09	24.71	37.71	15.33
Grand Total	57,802.24	6,385.50	4,065.77	10,892.30	2,308.62	10,311.24	8,890.15	10,816.85	4,131.82

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from September 2004 through November 2004 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-90
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Density/ Low Income \%	Medium Density/ High Income $\%$	$\begin{aligned} & \text { Medium Density/ } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Paper	ONP	Newspaper	8.10\%	R Paper	11.76\%	9.08\%	5.14\%	10.45\%	8.43\%	5.24\%	10.11\%	5.80\%
Paper	OCC	Plain OCC/Kraft Paper	2.51\%	R Paper	2.08\%	2.26\%	2.37\%	2.50\%	2.55\%	2.84\%	2.92\%	2.17\%
Paper	Mixed Paper	High Grade Paper	1.04\%	R Paper	2.10\%	1.13\%	1.23\%	1.31\%	0.54\%	0.69\%	0.87\%	0.62\%
Paper	Mixed Paper	Mixed Low Grade Paper	11.80\%	R Paper	20.84\%	12.05\%	8.11\%	14.39\%	10.62\%	8.80\%	12.60\%	9.22\%
Paper	Mixed Paper	Phone Books/Paperbacks	1.09\%	R Paper	1.79\%	1.93\%	0.45\%	3.97\%	0.75\%	1.20\%	0.67\%	0.44\%
Paper	Mixed Paper	Paper Bags	0.65\%	R Paper	1.22\%	0.55\%	0.65\%	0.77\%	0.62\%	0.49\%	0.45\%	0.51\%
Paper	Bev Cartons	Polycoated Paper Containers	0.55\%	R Bev Cartons	0.58\%	0.57\%	0.52\%	0.73\%	0.51\%	0.52\%	0.62\%	0.44\%
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.73\%	NR_Paper	5.78\%	5.42\%	5.34\%	6.00\%	5.84\%	5.14\%	6.36\%	6.09\%
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.43\%	NR_Paper	0.58\%	0.28\%	0.23\%	0.49\%	0.33\%	0.21\%	0.82\%	0.54\%
Paper	Other Paper	Other Nonrecyclable Paper	0.63\%	NR_Paper	0.54\%	0.56\%	0.68\%	0.65\%	0.44\%	0.58\%	0.92\%	0.63\%
Paper Total			32.54\%		47.27\%	33.84\%	24.71\%	41.27\%	30.63\%	25.70\%	36.34\%	26.46\%
Plastic	PET Bottles	PET Bottles	1.39\%	R Plastics	1.29\%	1.23\%	1.61\%	1.08\%	1.31\%	1.47\%	1.40\%	1.32\%
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.50\%	R Plastics	0.33\%	0.58\%	0.63\%	0.25\%	0.62\%	0.53\%	0.41\%	0.46\%
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.53\%	R Plastics	0.47\%	0.54\%	0.51\%	0.49\%	0.60\%	0.48\%	0.59\%	0.47\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	PR_Plastics	0.03\%	0.08\%	0.08\%	0.05\%	0.07\%	0.06\%	0.05\%	0.04\%
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	PR_Plastics	0.05\%	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.02\%	0.03\%	0.01\%	0.02\%	0.02\%	0.03\%	0.05\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	PR_Plastics	0.10\%	0.08\%	0.07\%	0.05\%	0.06\%	0.07\%	0.08\%	0.10\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	PR_Plastics	0.21\%	0.21\%	0.17\%	0.24\%	0.18\%	0.12\%	0.20\%	0.17\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	PR_Plastics	0.05\%	0.06\%	0.01\%	0.06\%	0.03\%	0.02\%	0.03\%	0.02\%
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	PR_Plastics	0.00\%	0.02\%	0.03\%	0.00\%	0.00\%	0.02\%	0.00\%	0.03\%
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	PR_Plastics	0.38\%	0.25\%	0.21\%	0.37\%	0.21\%	0.20\%	0.24\%	0.23\%
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.57\%	PR_Plastics	0.34\%	0.63\%	0.66\%	0.51\%	0.57\%	0.65\%	0.55\%	0.60\%
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.72\%	PR_Plastics	1.13\%	0.66\%	0.59\%	0.84\%	0.75\%	0.44\%	0.78\%	0.60\%
Plastic	Film	Plastic Bags	2.96\%	PR_Plastics	2.59\%	3.75\%	3.34\%	2.30\%	3.05\%	3.22\%	2.53\%	2.61\%
Plastic	Film	Other Film	5.00\%	PR_Plastics	5.69\%	5.65\%	5.76\%	4.24\%	4.91\%	5.39\%	3.59\%	4.67\%
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.53\%	NR_Plastics	0.39\%	0.59\%	0.42\%	0.42\%	0.39\%	0.59\%	0.80\%	0.63\%
Plastic	Other Plastic Products	Other Plastics Materials	1.80\%	NR_Plastics	1.13\%	1.42\%	2.16\%	1.16\%	1.59\%	2.12\%	2.21\%	1.75\%
Plastic Total			14.66\%		14.21\%	15.80\%	16.29\%	12.08\%	14.39\%	15.44\%	13.53\%	13.78\%
Glass	Container Glass	Clear Container Glass	1.73\%	R Glass	1.20\%	1.54\%	1.94\%	1.90\%	1.54\%	2.08\%	1.82\%	1.91\%
Glass	Container Glass	Green Container Glass	0.65\%	R Glass	1.58\%	0.60\%	0.42\%	1.73\%	0.49\%	0.36\%	0.43\%	0.42\%
Glass	Container Glass	Brown Container Glass	0.41\%	R Glass	0.35\%	0.29\%	0.51\%	0.59\%	0.51\%	0.42\%	0.30\%	0.30\%
Glass	Mixed Cullet	Mixed Cullet	1.83\%	R Glass	2.84\%	1.76\%	1.57\%	2.19\%	2.19\%	1.40\%	1.38\%	1.42\%
Glass	Container Glass	Other Container Glass	0.02\%	R Glass	0.02\%	0.01\%	0.01\%	0.03\%	0.01\%	0.04\%	0.02\%	0.03\%
Glass	Other Glass	Other Glass	0.16\%	PR_Glass	0.10\%	0.15\%	0.12\%	0.24\%	0.19\%	0.20\%	0.16\%	0.15\%
Glass Total			4.80\%		6.08\%	4.35\%	4.57\%	6.67\%	4.94\%	4.51\%	4.11\%	4.22\%
Metal	Aluminum	Aluminum Cans	0.24\%	R Metal	0.29\%	0.23\%	0.23\%	0.14\%	0.20\%	0.20\%	0.30\%	0.23\%
Metal	Aluminum	Aluminum Foil/Containers	0.54\%	R Metal	0.46\%	0.50\%	0.56\%	0.55\%	0.49\%	0.57\%	0.61\%	0.47\%
Metal	Aluminum	Other Aluminum	0.02\%	R Metal	0.01\%	0.00\%	0.01\%	0.02\%	0.05\%	0.00\%	0.02\%	0.05\%
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	R Metal	0.08\%	0.18\%	0.12\%	0.03\%	0.09\%	0.12\%	0.17\%	0.15\%
Metal	Ferrous	Tin Food Cans	1.39\%	R Metal	0.78\%	1.42\%	1.80\%	1.14\%	1.48\%	1.55\%	1.24\%	1.42\%
Metal	Ferrous	Empty Aerosol Cans	0.16\%	R Metal	0.17\%	0.09\%	0.11\%	0.16\%	0.22\%	0.15\%	0.17\%	0.16\%
Metal	Ferrous	Other Ferrous	1.50\%	R Metal	1.33\%	1.40\%	1.56\%	1.45\%	1.33\%	1.68\%	1.53\%	1.83\%
Metal	Other Metal	Mixed Metals	0.81\%	R Metal	1.36\%	0.66\%	1.09\%	0.48\%	0.54\%	0.86\%	0.50\%	0.87\%
Metal Total			4.77\%		4.47\%	4.48\%	5.48\%	3.96\%	4.40\%	5.13\%	4.54\%	5.17\%

Table 1-90
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	$\begin{gathered} \text { High Densityl } \\ \text { High Income } \\ \% \end{gathered}$	High Densityl Medium Income $\%$	$\begin{aligned} & \hline \text { High Densityl } \\ & \text { Low Income } \end{aligned}$ $\%$	$\begin{gathered} \hline \begin{array}{c} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$	$\begin{gathered} \text { Medium Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	Low Density/ High Income \%	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$
Organics	Yard	Leaves and Grass	0.94\%	NR_Other	0.18\%	0.66\%	0.26\%	1.23\%	0.47\%	0.73\%	2.61\%	1.58\%
Organics	Yard	Prunings	0.40\%	NR_Other	0.83\%	0.21\%	0.15\%	0.62\%	0.08\%	0.14\%	0.75\%	0.84\%
Organics	Wood	Stumps/Limbs	0.02\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.07\%	0.05\%
Organics	Food	Food	20.68\%	NR_Other	12.57\%	20.86\%	24.81\%	15.46\%	23.76\%	23.41\%	18.09\%	21.65\%
Organics	Wood	Wood Furniture/Furniture Pieces	0.94\%	NR_Other	0.57\%	0.79\%	1.10\%	0.60\%	0.70\%	1.62\%	0.87\%	1.11\%
Organics	Wood	Non-C\&D Untreated Wood	0.20\%	NR_Other	0.09\%	0.12\%	0.54\%	0.15\%	0.20\%	0.07\%	0.09\%	0.20\%
Organics	Textiles	Non-Clothing Textiles	1.35\%	NR_Other	1.20\%	1.49\%	1.25\%	1.29\%	1.41\%	1.61\%	1.02\%	2.02\%
Organics	Textiles	Clothing Textiles	2.31\%	NR_Other	1.01\%	2.30\%	3.46\%	0.97\%	2.37\%	2.61\%	2.05\%	2.61\%
Organics	Textiles	Carpet/Upholstery	0.46\%	NR_Other	0.20\%	0.16\%	0.38\%	0.36\%	0.57\%	0.35\%	0.74\%	0.83\%
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.52\%	NR_Other	2.28\%	3.17\%	4.05\%	3.09\%	3.66\%	3.86\%	3.46\%	4.27\%
Organics	Misc. Organic	Animal By-Products	1.35\%	NR_Other	1.59\%	0.67\%	0.56\%	2.51\%	1.44\%	0.83\%	2.05\%	1.98\%
Organics	Misc. Organic	Rubber Products	0.21\%	NR_Other	0.11\%	0.17\%	0.27\%	0.25\%	0.22\%	0.28\%	0.16\%	0.14\%
Organics	Textiles	Shoes	0.67\%	NR_Other	0.26\%	0.79\%	0.85\%	0.40\%	0.79\%	0.80\%	0.65\%	0.46\%
Organics	Textiles	Other Leather Products	0.07\%	NR_Other	0.01\%	0.07\%	0.15\%	0.06\%	0.01\%	0.13\%	0.06\%	0.03\%
Organics	Misc. Organic	Fines	3.63\%	NR_Other	2.66\%	3.74\%	4.43\%	3.64\%	3.30\%	4.28\%	3.09\%	4.26\%
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.08\%	NR_Other	0.14\%	0.12\%	0.15\%	0.15\%	0.02\%	0.04\%	0.03\%	0.15\%
Organics	Misc. Organic	Miscellaneous Organics	0.65\%	NR_Other	0.53\%	0.64\%	0.34\%	0.98\%	0.65\%	0.77\%	0.84\%	0.72\%
Organics Total			37.48\%		24.23\%	35.94\%	42.78\%	31.75\%	39.63\%	41.52\%	36.62\%	42.90\%
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.27\%	R Metal	0.02\%	0.23\%	0.49\%	0.22\%	0.11\%	0.66\%	0.16\%	0.20\%
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	R Metal	0.01\%	0.05\%	0.01\%	0.01\%	0.01\%	0.05\%	0.00\%	0.01\%
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.18\%	NR_Other	0.26\%	0.11\%	0.11\%	0.12\%	0.27\%	0.17\%	0.20\%	0.12\%
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%
Appliance/Electronic	Electroni/AV/Computer	AudioNisual Equipment: Other	0.16\%	NR_Other	0.14\%	0.11\%	0.26\%	0.10\%	0.12\%	0.09\%	0.24\%	0.05\%
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.07\%	NR_Other	0.09\%	0.00\%	0.00\%	0.00\%	0.29\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.01\%	NR_Other	0.00\%	0.00\%	0.00\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Electroni/AV/Computer	Other Computer Equipment	0.09\%	NR_Other	0.08\%	0.20\%	0.10\%	0.13\%	0.05\%	0.08\%	0.07\%	0.14\%
Appliance/Electronic Total			0.80\%		0.61\%	0.71\%	0.96\%	0.77\%	0.86\%	1.05\%	0.69\%	0.52\%
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.20\%	NR_Other	0.18\%	0.23\%	0.09\%	0.25\%	0.19\%	0.30\%	0.11\%	0.49\%
C \& D Debris	Wood	Treated/Contaminated Wood	1.35\%	NR_Other	0.81\%	1.90\%	1.44\%	1.02\%	0.90\%	2.01\%	1.04\%	2.50\%
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.01\%	NR_Other	0.67\%	0.59\%	1.42\%	0.52\%	0.87\%	1.61\%	0.92\%	0.68\%
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.39\%	NR_Other	0.06\%	0.15\%	0.61\%	0.19\%	0.93\%	0.33\%	0.12\%	0.17\%
C\&D Debris	Inorganic C\&D	Other Construction Debris	1.08\%	NR_Other	0.71\%	1.36\%	0.56\%	1.01\%	1.06\%	1.66\%	0.93\%	2.19\%
C \& D Debris Total			4.01\%		2.42\%	4.23\%	4.12\%	3.00\%	3.95\%	5.92\%	3.12\%	6.03\%
Miscellaneous Inorganic	Misc. Inorganic	Miscellaneous Inorganics	0.19\%	NR_Other	0.32\%	0.09\%	0.13\%	0.04\%	0.14\%	0.16\%	0.26\%	0.27\%
Miscellaneous Inorganic	Misc. Inorganic	Ceramics	0.49\%	NR_Other	0.20\%	0.22\%	0.67\%	0.21\%	0.67\%	0.42\%	0.57\%	0.50\%
Miscellaneous Inorganics Total			0.68\%		0.51\%	0.31\%	0.80\%	0.25\%	0.81\%	0.58\%	0.83\%	0.77\%
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%
HHw	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	NR_Other	0.07\%	0.08\%	0.03\%	0.04\%	0.08\%	0.01\%	0.02\%	0.00\%
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.04\%	NR_Other	0.03\%	0.04\%	0.01\%	0.00\%	0.13\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	NR_Other	0.00\%	0.02\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%
HHw	HHW	Dry-Cell Batteries	0.09\%	NR_Other	0.05\%	0.11\%	0.10\%	0.10\%	0.12\%	0.10\%	0.05\%	0.08\%
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	NR_Other	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Home Medical Products	0.03\%	NR_Other	0.02\%	0.05\%	0.05\%	0.02\%	0.02\%	0.01\%	0.04\%	0.02\%
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.00\%	0.00\%	0.06\%	0.08\%	0.01\%	0.01\%	0.06\%	0.02\%
HHW Total			0.25\%		0.18\%	0.34\%	0.28\%	0.24\%	0.39\%	0.14\%	0.22\%	0.14\%
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

Table 1-90
Housing Density and Income Details, Winter 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued) SUBTOTALS By RECYCLIG DESGMATON

Recycling Designation	\% of Citywide Waste Stream	$\begin{gathered} \hline \text { High Density/ } \\ \text { High Income } \\ \% \end{gathered}$	High Density/ Medium Income Medium	High Density/ Low Income \%	$\begin{gathered} \hline \begin{array}{c} \text { Medium Densityl } \\ \text { High Income } \\ \% \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Medium Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	$\begin{gathered} \hline \text { Medium Density/ } \\ \text { Low Income } \\ \% \end{gathered}$	Low Density/ High Income \%	$\begin{gathered} \hline \begin{array}{c} \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{array} \\ \hline \end{gathered}$
Designated Paper	25.19\%	39.79\%	27.00\%	17.94\%	33.39\%	23.51\%	19.26\%	27.62\%	18.77\%
Designated Beverage Cartons	0.55\%	0.58\%	0.57\%	0.52\%	0.73\%	0.51\%	0.52\%	0.62\%	0.44\%
Designated Plastic	2.42\%	2.10\%	2.36\%	2.75\%	1.82\%	2.54\%	2.48\%	2.40\%	2.25\%
Designated Metal	5.06\%	4.50\%	4.76\%	5.98\%	4.19\%	4.53\%	5.84\%	4.70\%	5.38\%
Designated Glass	4.64\%	5.99\%	4.20\%	4.45\%	6.43\%	4.74\%	4.31\%	3.95\%	4.06\%
Designated MGP Subtotal	12.68\%	13.17\%	11.89\%	13.69\%	13.17\%	12.32\%	13.15\%	11.67\%	12.14\%
Potentially Designated Plastic	9.91\%	10.59\%	11.43\%	10.97\%	8.68\%	9.87\%	10.24\%	8.10\%	9.14\%
Potentially Designated Glass	0.16\%	0.10\%	0.15\%	0.12\%	0.24\%	0.19\%	0.20\%	0.16\%	0.15\%
Potentially Designated Materials Subtotal	10.07\%	10.69\%	11.59\%	11.09\%	8.92\%	10.06\%	10.44\%	8.26\%	9.29\%
Nondesignated Paper	6.80\%	6.90\%	6.26\%	6.25\%	7.15\%	6.60\%	5.92\%	8.10\%	7.25\%
Nondesignated Plastic	2.34\%	1.53\%	2.01\%	2.58\%	1.58\%	1.98\%	2.72\%	3.03\%	2.39\%
Other Nondesignated	42.94\%	27.93\%	41.25\%	48.45\%	35.78\%	45.52\%	48.51\%	41.31\%	50.16\%
Nondesignated Materials Subtotal	52.07\%	36.35\%	49.52\%	57.28\%	44.51\%	54.10\%	57.15\%	52.44\%	59.81\%
Designated for Recycling Total	37.87\%	52.96\%	38.89\%	31.63\%	46.56\%	35.83\%	32.41\%	39.29\%	30.91\%
Potentially or Not Designated for Recycling Total	62.13\%	47.04\%	61.11\%	68.37\%	53.44\%	64.17\%	67.59\%	60.71\%	69.09\%
AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$									
Material Group	Citywide	Density/ High Income	Medium Income	Densityl Low Income	Density/ High Income	Density/ Medium	Densityl Low Income	Density/ High	Medium Income
Paper Total ${ }^{(2)}$	17,379.62	2,684.26	1,335.28	2,541.45	831.52	3,108.39	2,046.31	3,599.17	920.52
Plastic Total ${ }^{(2)}$	7,832.40	807.07	623.43	1,675.41	243.48	1,460.73	1,228.92	1,340.06	479.33
Glass Total ${ }^{(2)}$	2,565.11	345.52	171.74	469.72	134.44	500.98	359.04	407.23	146.64
Metal Total ${ }^{(3)}$	2,548.79	254.09	176.95	563.95	79.83	446.58	408.22	450.06	179.98
Organics Total	20,020.50	1,376.16	1,418.29	4,399.04	639.73	4,022.63	3,305.48	3,626.48	1,492.13
Appliance/Electronic Total	429.86	34.83	27.82	98.91	15.57	87.18	83.76	67.92	18.16
C \& D Debris Total	2,143.82	137.44	166.78	423.94	60.42	400.65	471.59	309.10	209.80
Miscellaneous Inorganics Total	361.93	29.08	12.16	82.25	5.05	82.41	46.31	82.61	26.86
HHW Total	132.93	10.04	13.34	28.56	4.81	39.64	11.15	21.56	4.97
Grand Total	53,414.95	5,678.49	3,945.80	10,283.23	2,014.87	10,149.20	7,960.77	9,904.19	3,478.40

1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from January 2005 through March 2005 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-91
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	$\begin{aligned} & \text { High Densityl } \\ & \text { High Income } \\ & \% \end{aligned}$	High Density/ Medium Income	$\begin{gathered} \hline \text { High Densityl } \\ \text { Low Income } \\ \% \end{gathered}$	$\begin{aligned} & \hline \text { Medium Densityl } \\ & \text { High Income } \\ & \% \end{aligned}$	Medium Density/ Medium Income \%	$\begin{aligned} & \hline \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\underset{\substack{\text { Low Densityl } \\ \text { Medium Income } \\ \%}}{\text { \% }}$
Paper	ONP	Newspaper	7.72\%	R Paper	15.25\%	8.61\%	5.42\%	11.24\%	6.39\%	6.53\%	7.11\%	5.01\%
Paper	OCC	Plain OCC/Kraft Paper	1.98\%	R Paper	3.06\%	1.73\%	2.24\%	2.33\%	2.06\%	2.24\%	1.22\%	1.24\%
Paper	Mixed Paper	High Grade Paper	0.92\%	R Paper	1.66\%	0.54\%	0.61\%	2.03\%	1.33\%	0.56\%	0.67\%	0.53\%
Paper	Mixed Paper	Mixed Low Grade Paper	10.03\%	R Paper	16.28\%	10.11\%	7.75\%	13.91\%	9.53\%	8.69\%	9.52\%	7.87\%
Paper	Mixed Paper	Phone Books/Paperbacks	0.74\%	R Paper	0.99\%	0.73\%	0.45\%	0.75\%	0.79\%	0.87\%	0.75\%	0.65\%
Paper	Mixed Paper	Paper Bags	0.58\%	R Paper	1.21\%	0.56\%	0.58\%	0.73\%	0.51\%	0.50\%	0.37\%	0.44\%
Paper	Bev Cartons	Polycoated Paper Containers	0.53\%	R Bev Cartons	0.58\%	0.87\%	0.57\%	0.68\%	0.49\%	0.63\%	0.37\%	0.35\%
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.49\%	NR_Paper	5.91\%	6.18\%	4.81\%	6.16\%	5.82\%	4.90\%	5.42\%	5.90\%
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.38\%	NR_Paper	0.44\%	0.30\%	0.22\%	0.54\%	0.37\%	0.20\%	0.50\%	0.59\%
Paper	Other Paper	Other Nonrecyclable Paper	0.54\%	NR_Paper	0.44\%	0.52\%	0.65\%	0.80\%	0.69\%	0.44\%	0.43\%	0.41\%
Paper Total			28.91\%		45.83\%	30.16\%	23.29\%	39.17\%	27.96\%	25.56\%	26.36\%	22.99\%
Plastic	PET Bottles	PET Bottles	1.18\%	R Plastics	1.24\%	1.09\%	1.35\%	0.99\%	1.14\%	1.47\%	0.96\%	1.19\%
Plastic	HDPE Botlles	HDPE Bottles: Natural	0.44\%	R Plastics	0.27\%	0.52\%	0.63\%	0.25\%	0.57\%	0.47\%	0.30\%	0.39\%
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.49\%	R Plastics	0.41\%	0.47\%	0.58\%	0.39\%	0.45\%	0.63\%	0.48\%	0.46\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.01\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.07\%	PR_Plastics	0.05\%	0.17\%	0.11\%	0.05\%	0.07\%	0.08\%	0.02\%	0.03\%
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.01\%	0.03\%	0.02\%	0.01\%	0.02\%	0.01\%	0.01\%	0.00\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.02\%	0.02\%	0.01\%	0.01\%	0.02\%	0.02\%	0.02\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	PR_Plastics	0.06\%	0.08\%	0.10\%	0.08\%	0.07\%	0.09\%	0.07\%	0.06\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	PR_Plastics	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.16\%	PR_Plastics	0.20\%	0.21\%	0.16\%	0.22\%	0.14\%	0.11\%	0.13\%	0.21\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	PR_Plastics	0.09\%	0.05\%	0.07\%	0.11\%	0.04\%	0.04\%	0.04\%	0.05\%
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.01\%	0.03\%	0.05\%	0.02\%	0.01\%	0.01\%	0.01\%	0.07\%
Plastic	Other Plastic Products	Other PVC	0.00\%	NR_Plastics	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	PR_Plastics	0.40\%	0.27\%	0.36\%	0.28\%	0.22\%	0.17\%	0.20\%	0.18\%
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.52\%	PR_Plastics	0.40\%	0.56\%	0.65\%	0.36\%	0.55\%	0.57\%	0.49\%	0.45\%
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.77\%	PR_Plastics	1.17\%	0.82\%	0.68\%	1.09\%	0.79\%	0.55\%	0.69\%	0.72\%
Plastic	Film	Plastic Bags	3.29\%	PR_Plastics	3.07\%	3.97\%	4.31\%	2.69\%	3.78\%	3.63\%	2.14\%	2.64\%
Plastic	Film	Other Film	4.89\%	PR_Plastics	4.74\%	5.88\%	6.25\%	4.00\%	5.13\%	5.58\%	3.40\%	4.09\%
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.50\%	NR_Plastics	0.40\%	0.51\%	0.40\%	0.45\%	0.50\%	0.64\%	0.51\%	0.67\%
Plastic	Other Plastic Products	Other Plastics Materials	1.71\%	NR_Plastics	1.11\%	2.22\%	1.73\%	1.50\%	1.83\%	1.71\%	1.66\%	2.07\%
Plastic Total			14.50\%		13.76\%	16.90\%	17.48\%	12.53\%	15.34\%	15.80\%	11.14\%	13.29\%
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	1.53\%	R Glass	0.96\%	1.20\%	1.53\%	1.48\%	1.44\%	2.40\%	1.47\%	1.59\%
Glass	Container Glass	Green Container Glass	0.55\%	R Glass	1.38\%	0.46\%	0.34\%	1.24\%	0.40\%	0.36\%	0.42\%	0.41\%
Glass	Container Glass	Brown Container Glass	0.32\%	R Glass	0.29\%	0.18\%	0.49\%	0.44\%	0.25\%	0.37\%	0.23\%	0.34\%
Glass	Mixed Cullet	Mixed Cullet	1.82\%	R Glass	3.08\%	1.64\%	1.46\%	2.77\%	2.41\%	1.63\%	1.00\%	1.56\%
Glass	Container Glass	Other Container Glass	0.05\%	R Glass	0.04\%	0.04\%	0.04\%	0.04\%	0.04\%	0.08\%	0.04\%	0.05\%
Glass	Other Glass	Other Glass	0.23\%	PR_Glass	0.13\%	0.16\%	0.18\%	0.12\%	0.32\%	0.34\%	0.24\%	0.17\%
Glass Total			4.49\%		5.86\%	3.69\%	4.04\%	6.08\%	4.86\%	5.17\%	3.39\%	4.12\%
Metal	Aluminum	Aluminum Cans	0.18\%	R Metal	0.17\%	0.21\%	0.23\%	0.15\%	0.16\%	0.22\%	0.13\%	0.17\%
Metal	Aluminum	Aluminum Foil/Containers	0.59\%	R M etal	0.54\%	0.61\%	0.60\%	0.53\%	0.63\%	0.65\%	0.53\%	0.64\%
Metal	Aluminum	Other Aluminum	0.06\%	R Metal	0.01\%	0.06\%	0.05\%	0.05\%	0.04\%	0.05\%	0.09\%	0.09\%
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	R M etal	0.08\%	0.10\%	0.12\%	0.10\%	0.08\%	0.13\%	0.17\%	0.23\%
Metal	Ferrous	Tin Food Cans	1.30\%	R Metal	0.72\%	1.28\%	1.89\%	0.90\%	1.34\%	1.78\%	0.94\%	1.17\%
Metal	Ferrous	Empty Aerosol Cans	0.15\%	R Metal	0.14\%	0.17\%	0.14\%	0.11\%	0.19\%	0.16\%	0.13\%	0.16\%
Metal	Ferrous	Other Ferrous	1.52\%	R Metal	1.38\%	1.47\%	1.83\%	1.37\%	1.46\%	1.12\%	1.65\%	1.64\%
Metal	Other Metal	Mixed Metals	0.65\%	R Metal	0.83\%	0.59\%	0.72\%	0.46\%	0.82\%	0.48\%	0.46\%	0.90\%
Metal Total			4.57\%		3.87\%	4.48\%	5.58\%	3.66\%	4.72\%	4.59\%	4.11\%	5.00\%

Table 1-91
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	$\begin{gathered} \text { High Densityl } \\ \text { High Income } \\ \% \end{gathered}$	High Density/ Medium Income $\%$	High Density/ Low Income \%	Medium Density/ High Income $\%$	Medium Density/ Medium Income \%	$\begin{aligned} & \text { Medium Densityl } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Organics	Yard	Leaves and Grass	5.01\%	NR_Other	2.13\%	3.06\%	0.50\%	2.77\%	2.45\%	1.43\%	13.79\%	10.14\%
Organics	Yard	Prunings	0.60\%	NR_Other	0.48\%	0.07\%	0.08\%	0.33\%	0.32\%	0.22\%	1.60\%	1.06\%
Organics	Wood	Stumps/Limbs	0.17\%	NR_Other	0.04\%	0.13\%	0.03\%	0.43\%	0.21\%	0.02\%	0.32\%	0.27\%
Organics	Food	Food	18.33\%	NR_Other	11.85\%	21.45\%	23.34\%	14.32\%	20.79\%	21.94\%	13.69\%	17.95\%
Organics	Wood	Wood Furniture/Furniture Pieces	0.48\%	NR_Other	0.39\%	0.36\%	0.52\%	0.39\%	0.27\%	0.82\%	0.58\%	0.29\%
Organics	Wood	Non-C\&D Untreated Wood	0.18\%	NR_Other	0.04\%	0.07\%	0.12\%	0.29\%	0.56\%	0.06\%	0.10\%	0.09\%
Organics	Textiles	Non-Clothing Textiles	1.07\%	NR_Other	0.83\%	1.27\%	1.25\%	0.95\%	1.19\%	1.46\%	0.71\%	1.03\%
Organics	Textiles	Clothing Textiles	2.76\%	NR_Other	1.45\%	3.13\%	3.71\%	1.60\%	3.16\%	3.81\%	1.82\%	2.93\%
Organics	Texiles	CarpetUpholstery	0.86\%	NR_Other	0.45\%	0.20\%	0.63\%	0.35\%	1.03\%	0.49\%	1.80\%	0.49\%
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.16\%	NR_Other	2.46\%	3.08\%	4.03\%	2.38\%	3.14\%	3.60\%	2.60\%	3.77\%
Organics	Misc. Organic	Animal By-Products	1.07\%	NR_Other	1.05\%	0.90\%	0.62\%	2.87\%	0.89\%	1.46\%	1.05\%	0.99\%
Organics	Misc. Organic	Rubber Products	0.31\%	NR_Other	0.19\%	0.27\%	0.53\%	0.15\%	0.29\%	0.15\%	0.42\%	0.20\%
Organics	Textiles	Shoes	0.62\%	NR_Other	0.32\%	0.80\%	0.99\%	0.40\%	0.80\%	0.79\%	0.32\%	0.40\%
Organics	Textiles	Other Leather Products	0.13\%	NR_Other	0.05\%	0.05\%	0.10\%	0.04\%	0.12\%	0.14\%	0.25\%	0.04\%
Organics	Misc. Organic	Fines	4.69\%	NR_Other	3.84\%	4.67\%	5.95\%	3.93\%	4.38\%	5.71\%	3.88\%	4.93\%
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.14\%	NR_Other	0.05\%	0.06\%	0.16\%	0.01\%	0.15\%	0.05\%	0.24\%	0.28\%
Organics	Misc. Organic	Miscellaneous Organics	0.75\%	NR_Other	0.58\%	0.38\%	0.44\%	1.44\%	0.38\%	0.60\%	1.22\%	1.44\%
Organics Total			40.35\%		26.20\%	39.94\%	42.99\%	32.66\%	40.14\%	42.78\%	44.39\%	46.30\%
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.32\%	R Metal	0.15\%	0.18\%	0.25\%	0.19\%	0.31\%	0.34\%	0.43\%	0.67\%
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.00\%	0.02\%	0.02\%	0.05\%	0.17\%	0.02\%	0.02\%	0.01\%
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.23\%	NR_Other	0.12\%	0.22\%	0.23\%	0.26\%	0.18\%	0.36\%	0.24\%	0.24\%
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.19\%	NR_Other	0.09\%	0.18\%	0.09\%	0.03\%	0.24\%	0.32\%	0.27\%	0.13\%
Appliance/Electronic	Electronic/Av/Computer	Computer Monitors	0.01\%	NR_Other	0.04\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.07\%	NR_Other	0.09\%	0.24\%	0.04\%	0.11\%	0.06\%	0.03\%	0.06\%	0.01\%
Appliance/Electronic Total			0.87\%		0.50\%	0.87\%	0.63\%	0.63\%	0.94\%	1.07\%	1.02\%	1.15\%
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.49\%	NR_Other	0.62\%	0.32\%	0.33\%	0.49\%	0.25\%	0.23\%	0.83\%	0.91\%
C \& D Debris	Wood	Treated/Contaminated Wood	1.33\%	NR_Other	1.02\%	0.82\%	1.30\%	0.63\%	1.16\%	1.05\%	2.01\%	1.69\%
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.98\%	NR_Other	0.43\%	0.80\%	0.96\%	0.33\%	1.55\%	0.54\%	1.32\%	0.84\%
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.07\%	NR_Other	0.21\%	0.25\%	0.91\%	0.59\%	0.58\%	1.54\%	1.89\%	1.82\%
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.50\%	NR_Other	0.84\%	0.97\%	1.79\%	2.22\%	1.66\%	0.65\%	2.27\%	0.89\%
C \& D Debris Total			5.37\%		3.12\%	3.16\%	5.29\%	4.26\%	5.19\%	4.02\%	8.33\%	6.15\%
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.32\%	NR_Other	0.29\%	0.24\%	0.08\%	0.49\%	0.25\%	0.19\%	0.59\%	0.52\%
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.41\%	NR_Other	0.41\%	0.44\%	0.27\%	0.42\%	0.31\%	0.51\%	0.52\%	0.36\%
Miscellaneous Inorganics Total			0.73\%		0.71\%	0.69\%	0.35\%	0.91\%	0.56\%	0.70\%	1.11\%	0.88\%
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.01\%
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	NR_Other	0.08\%	0.00\%	0.00\%	0.01\%	0.11\%	0.01\%	0.00\%	0.01\%
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.11\%	0.00\%	0.02\%
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Dry-Cell Batteries	0.06\%	NR_Other	0.02\%	0.05\%	0.07\%	0.04\%	0.05\%	0.10\%	0.05\%	0.05\%
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Home Medical Products	0.06\%	NR_Other	0.01\%	0.01\%	0.23\%	0.02\%	0.02\%	0.06\%	0.01\%	0.03\%
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	NR_Other	0.04\%	0.03\%	0.03\%	0.01\%	0.09\%	0.03\%	0.05\%	0.01\%
HHW Total			0.22\%		0.15\%	0.10\%	0.35\%	0.09\%	0.28\%	0.31\%	0.15\%	0.12\%
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

Table 1-91
Housing Density and Income Details, Spring 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued) SUBTOTALS BY RECYCLING DESICNATION

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from April 2005 through June 2005 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-92
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items

Material Group	Material Subgroup	Material Category: Subcategory	$\%$ of Citywide Waste Stream	Recycling Subindicator	High Density/ High Income $\%$	High Density/ Medium Income \%	High Density/ Low Income \%	Medium Density/ High Income $\%$	Medium Densityl Medium Income \%	$\begin{gathered} \text { Medium Density/ } \\ \text { Low Income } \\ \% \end{gathered}$	Low Density/ High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Paper	ONP	Newspaper	7.46\%	R Paper	14.64\%	9.24\%	5.07\%	10.67\%	6.78\%	4.77\%	7.40\%	5.07\%
Paper	OCC	Plain OCC/Kraft Paper	2.01\%	R Paper	2.10\%	1.91\%	2.21\%	2.39\%	2.03\%	2.32\%	1.68\%	1.57\%
Paper	Mixed Paper	High Grade Paper	0.90\%	R Paper	1.68\%	1.27\%	0.58\%	1.40\%	0.51\%	1.04\%	0.83\%	0.70\%
Paper	Mixed Paper	Mixed Low Grade Paper	11.10\%	R Paper	17.89\%	11.36\%	9.18\%	16.30\%	8.95\%	9.46\%	11.87\%	7.89\%
Paper	Mixed Paper	Phone Books/Paperbacks	1.23\%	R Paper	0.85\%	1.11\%	0.88\%	1.10\%	2.55\%	0.63\%	1.18\%	0.92\%
Paper	Mixed Paper	Paper Bags	0.78\%	R Paper	1.34\%	0.74\%	0.76\%	0.97\%	0.75\%	0.75\%	0.60\%	0.55\%
Paper	Bev Cartons	Polycoated Paper Containers	0.50\%	R Bev Cartons	0.62\%	0.55\%	0.45\%	0.59\%	0.56\%	0.63\%	0.37\%	0.34\%
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.32\%	NR_Paper	5.36\%	5.27\%	4.36\%	5.17\%	6.35\%	4.56\%	5.80\%	5.26\%
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.54\%	NR_Paper	0.41\%	0.44\%	0.36\%	0.59\%	0.36\%	0.37\%	0.94\%	0.89\%
Paper	Other Paper	Other Nonrecyclable Paper	1.10\%	NR_Paper	1.38\%	0.95\%	1.19\%	1.00\%	1.22\%	0.94\%	0.94\%	1.12\%
Paper Total			30.95\%		46.25\%	32.85\%	25.04\%	40.17\%	30.07\%	25.47\%	31.61\%	24.30\%
Plastic	PET Bottles	PET Bottles	1.50\%	R Plastics	1.42\%	1.49\%	1.55\%	1.18\%	1.52\%	1.94\%	1.37\%	1.28\%
Plastic	HDPE Botlles	HDPE Botlles: Natural	0.50\%	R Plastics	0.45\%	0.53\%	0.66\%	0.23\%	0.67\%	0.52\%	0.35\%	0.36\%
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.51\%	R Plastics	0.51\%	0.50\%	0.64\%	0.38\%	0.46\%	0.45\%	0.52\%	0.45\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	PR_Plastics	0.07\%	0.07\%	0.03\%	0.03\%	0.02\%	0.07\%	0.03\%	0.05\%
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%
Plastic	\#3.\#7 Bottles	\#3 Through \#7 Botlles: \#5 PP	0.02\%	PR_Plastics	0.02\%	0.02\%	0.04\%	0.02\%	0.02\%	0.03\%	0.02\%	0.02\%
Plastic	\#3.\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.09\%	PR_Plastics	0.05\%	0.06\%	0.07\%	0.04\%	0.05\%	0.08\%	0.19\%	0.07\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.21\%	PR_Plastics	0.32\%	0.21\%	0.20\%	0.29\%	0.20\%	0.23\%	0.15\%	0.24\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	PR_Plastics	0.08\%	0.07\%	0.05\%	0.05\%	0.03\%	0.05\%	0.04\%	0.04\%
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.01\%	0.02\%	0.03\%	0.01\%	0.01\%	0.04\%	0.00\%	0.00\%
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.04\%	0.01\%	0.04\%
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.27\%	PR_Plastics	0.53\%	0.24\%	0.20\%	0.34\%	0.26\%	0.22\%	0.24\%	0.23\%
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.62\%	PR_Plastics	0.40\%	0.69\%	0.68\%	0.51\%	0.68\%	0.77\%	0.53\%	0.61\%
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.98\%	PR_Plastics	1.31\%	1.02\%	0.89\%	1.09\%	0.92\%	0.82\%	0.98\%	0.96\%
Plastic	Film	Plastic Bags	2.77\%	PR_Plastics	2.54\%	3.26\%	3.53\%	2.23\%	3.27\%	2.90\%	1.88\%	2.28\%
Plastic	Film	Other Film	5.11\%	PR_Plastics	5.28\%	5.62\%	5.96\%	4.17\%	5.16\%	5.33\%	4.26\%	4.84\%
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.67\%	NR_Plastics	0.56\%	0.72\%	0.56\%	0.50\%	0.51\%	0.83\%	0.80\%	0.90\%
Plastic	Other Plastic Products	Other Plastics Materials	1.73\%	NR_Plastics	1.64\%	2.38\%	1.84\%	1.43\%	1.62\%	1.66\%	1.54\%	2.03\%
Plastic Total			15.13\%		15.22\%	16.97\%	16.95\%	12.50\%	15.42\%	16.01\%	12.94\%	14.43\%
Glass	Container Glass	Clear Container Glass	1.90\%	R Glass	1.64\%	1.53\%	2.25\%	1.69\%	1.74\%	2.51\%	1.76\%	1.70\%
Glass	Container Glass	Green Container Glass	0.61\%	R Glass	1.36\%	0.53\%	0.48\%	1.05\%	0.49\%	0.57\%	0.45\%	0.40\%
Glass	Container Glass	Brown Container Glass	0.49\%	R Glass	0.47\%	0.32\%	0.53\%	0.55\%	0.62\%	0.63\%	0.34\%	0.38\%
Glass	Mixed Cullet	Mixed Cullet	2.21\%	R Glass	3.14\%	1.96\%	2.26\%	2.87\%	2.51\%	1.93\%	1.59\%	2.09\%
Glass	Container Glass	Other Container Glass	0.02\%	R Glass	0.03\%	0.02\%	0.01\%	0.04\%	0.03\%	0.04\%	0.02\%	0.02\%
Glass	Other Glass	Other Glass	0.29\%	PR_Glass	0.33\%	0.39\%	0.28\%	0.18\%	0.28\%	0.31\%	0.21\%	0.44\%
Glass Total			5.53\%		6.97\%	4.76\%	5.82\%	6.37\%	5.66\%	5.99\%	4.37\%	5.02\%
Metal	Aluminum	Aluminum Cans	0.30\%	R Metal	0.25\%	0.27\%	0.43\%	0.17\%	0.26\%	0.31\%	0.29\%	0.24\%
Metal	Aluminum	Aluminum Foil/Containers	0.63\%	R Metal	0.59\%	0.54\%	0.59\%	0.59\%	0.66\%	0.73\%	0.65\%	0.60\%
Metal	Aluminum	Other Aluminum	0.07\%	R Metal	0.04\%	0.06\%	0.03\%	0.04\%	0.09\%	0.04\%	0.06\%	0.28\%
Metal	Non-Ferrous	Other Non-Ferrous	0.15\%	R Metal	0.19\%	0.21\%	0.16\%	0.20\%	0.10\%	0.13\%	0.15\%	0.18\%
Metal	Ferrous	Tin Food Cans	1.14\%	R Metal	0.80\%	1.11\%	1.64\%	0.80\%	1.31\%	1.22\%	0.89\%	0.93\%
Metal	Ferrous	Empty Aerosol Cans	0.20\%	R Metal	0.17\%	0.12\%	0.25\%	0.15\%	0.23\%	0.20\%	0.22\%	0.16\%
Metal	Ferrous	Other Ferrous	1.21\%	R Metal	1.25\%	1.07\%	0.90\%	1.60\%	1.07\%	1.22\%	1.23\%	1.98\%
Metal	Other Metal	Mixed Metals	0.65\%	R Metal	0.24\%	0.47\%	0.88\%	0.83\%	0.66\%	0.69\%	0.59\%	0.84\%
Metal Total			4.35\%		3.52\%	3.86\%	4.88\%	4.39\%	4.37\%	4.54\%	4.09\%	5.20\%

Table 1-92
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	$\begin{gathered} \hline \text { High Densityl } \\ \text { High Income } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	$\begin{aligned} & \text { Medium Density/ } \\ & \text { High Income } \\ & \% \end{aligned}$	Medium Density/ Medium Income \%	$\begin{gathered} \hline \begin{array}{c} \text { Medium Density/ } \\ \text { Low Income } \\ \% \end{array} \\ \hline \end{gathered}$	Low Density/ High Income \%	Low Densityl Medium Income $\%$
Organics	Yard	Leaves and Grass	3.25\%	NR_Other	0.44\%	2.74\%	0.77\%	1.87\%	2.08\%	1.82\%	8.12\%	6.26\%
Organics	Yard	Prunings	0.72\%	NR_Other	0.27\%	0.22\%	0.07\%	1.14\%	0.32\%	0.95\%	1.70\%	0.97\%
Organics	Wood	Stumps/Limbs	0.05\%	NR_Other	0.00\%	0.08\%	0.04\%	0.01\%	0.00\%	0.23\%	0.02\%	0.10\%
Organics	Food	Food	16.85\%	NR_Other	9.88\%	17.47\%	22.04\%	12.90\%	18.98\%	17.84\%	15.12\%	15.11\%
Organics	Wood	Wood Furniture/Furniture Pieces	0.81\%	NR_Other	1.08\%	0.94\%	0.68\%	0.41\%	0.79\%	0.94\%	0.83\%	0.53\%
Organics	Wood	Non-C\&D Untreated Wood	0.10\%	NR_Other	0.05\%	0.14\%	0.13\%	0.10\%	0.10\%	0.08\%	0.12\%	0.04\%
Organics	Textiles	Non-Clothing Textiles	1.91\%	NR_Other	1.46\%	1.70\%	2.61\%	1.13\%	2.15\%	1.76\%	1.60\%	2.25\%
Organics	Textiles	Clothing Textiles	2.79\%	NR_Other	1.59\%	3.15\%	4.51\%	1.31\%	2.45\%	3.13\%	2.40\%	2.48\%
Organics	Textiles	Carpet/Upholstery	0.65\%	NR_Other	0.81\%	0.57\%	0.99\%	0.65\%	0.47\%	0.84\%	0.25\%	0.85\%
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.44\%	NR_Other	2.85\%	3.05\%	3.94\%	2.99\%	4.00\%	3.52\%	3.05\%	3.38\%
Organics	Misc. Organic	Animal By-Products	1.09\%	NR_Other	1.22\%	1.08\%	0.67\%	2.81\%	1.39\%	0.61\%	0.94\%	1.43\%
Organics	Misc. Organic	Rubber Products	0.24\%	NR_Other	0.17\%	0.22\%	0.21\%	0.23\%	0.29\%	0.40\%	0.19\%	0.16\%
Organics	Textiles	Shoes	0.68\%	NR_Other	0.61\%	0.54\%	0.94\%	0.40\%	0.61\%	0.94\%	0.44\%	0.82\%
Organics	Textiles	Other Leather Products	0.07\%	NR_Other	0.03\%	0.14\%	0.05\%	0.03\%	0.15\%	0.07\%	0.02\%	0.07\%
Organics	Misc. Organic	Fines	3.93\%	NR_Other	3.12\%	3.58\%	4.08\%	3.15\%	3.90\%	5.62\%	3.33\%	4.26\%
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.06\%	NR_Other	0.00\%	0.11\%	0.05\%	0.00\%	0.02\%	0.16\%	0.08\%	0.06\%
Organics	Misc. Organic	Miscellaneous Organics	1.09\%	NR_Other	1.30\%	0.60\%	0.56\%	0.83\%	0.78\%	2.15\%	1.13\%	1.36\%
Organics Total			37.72\%		24.88\%	36.33\%	42.33\%	29.96\%	38.49\%	41.07\%	39.33\%	40.12\%
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.21\%	R Metal	0.11\%	0.35\%	0.17\%	0.38\%	0.33\%	0.08\%	0.08\%	0.59\%
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.02\%	0.08\%	0.02\%	0.11\%	0.01\%	0.04\%	0.07\%	0.03\%
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.25\%	NR_Other	0.23\%	0.24\%	0.28\%	0.19\%	0.26\%	0.26\%	0.29\%	0.16\%
Appliance/Electronic	Electronic/Av/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	NR_Other	0.01\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
Appliance/Electronic	Electronic/Av/Computer	Audio/Visual Equipment: Other	0.31\%	NR_Other	0.22\%	0.35\%	0.26\%	0.16\%	0.32\%	0.47\%	0.27\%	0.35\%
Appliance/Electronic	Electronic/Av/Computer	Computer Monitors	0.07\%	NR_Other	0.03\%	0.00\%	0.00\%	0.85\%	0.00\%	0.08\%	0.00\%	0.21\%
Appliance/Electronic	Electronic/Av/Computer	Televisions	0.08\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.41\%	0.00\%	0.32\%
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.11\%	NR_Other	0.09\%	0.08\%	0.08\%	0.33\%	0.18\%	0.07\%	0.08\%	0.13\%
Appliance/Electronic Total			1.08\%		0.70\%	1.11\%	0.83\%	2.03\%	1.11\%	1.43\%	0.79\%	1.78\%
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.28\%	NR_Other	0.03\%	0.06\%	0.31\%	0.20\%	0.22\%	0.30\%	0.44\%	0.47\%
C \& D Debris	Wood	Treated/Contaminated Wood	1.24\%	NR_Other	0.75\%	0.86\%	0.58\%	0.75\%	1.02\%	1.44\%	1.91\%	2.46\%
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.61\%	NR_Other	0.08\%	0.79\%	0.31\%	0.28\%	0.56\%	0.71\%	0.77\%	1.65\%
$C \& D$ debris	Inorganic C\&D	Rock/Concrete/Bricks	0.64\%	NR_Other	0.16\%	0.10\%	1.12\%	0.78\%	1.11\%	0.64\%	0.27\%	0.57\%
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.59\%	NR_Other	0.74\%	1.52\%	1.03\%	1.34\%	1.17\%	1.76\%	2.40\%	2.76\%
C \& D Debris Total			4.36\%		1.76\%	3.33\%	3.36\%	3.35\%	4.08\%	4.86\%	5.79\%	7.91\%
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.15\%	NR_Other	0.14\%	0.24\%	0.09\%	0.19\%	0.15\%	0.16\%	0.14\%	0.19\%
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.45\%	NR_Other	0.22\%	0.34\%	0.33\%	0.81\%	0.36\%	0.26\%	0.76\%	0.67\%
Miscellaneous Inorganics Total			0.60\%		0.36\%	0.58\%	0.41\%	0.99\%	0.50\%	0.42\%	0.90\%	0.86\%
HHW	HHW	Oil Filters	0.01\%	NR_Other	0.01\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
HHW	HHW	Antifreze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Gasolin//Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	NR_Other	0.01\%	0.03\%	0.01\%	0.02\%	0.07\%	0.01\%	0.02\%	0.13\%
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	NR_Other	0.01\%	0.01\%	0.03\%	0.10\%	0.01\%	0.00\%	0.05\%	0.10\%
HHw	HHw	Pesticides/Herbicides/Rodenticides	0.01\%	NR_Other	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Dry-Cell Batteries	0.08\%	NR_Other	0.09\%	0.10\%	0.07\%	0.07\%	0.07\%	0.11\%	0.06\%	0.04\%
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHw	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.00\%	0.00\%	0.08\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Home Medical Products	0.08\%	NR_Other	0.18\%	0.05\%	0.09\%	0.02\%	0.11\%	0.07\%	0.02\%	0.04\%
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	NR_Other	0.01\%	0.00\%	0.02\%	0.01\%	0.03\%	0.03\%	0.01\%	0.04\%
HHW Total			0.28\%		0.32\%	0.22\%	0.37\%	0.24\%	0.30\%	0.23\%	0.18\%	0.37\%
Grand Total			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

Table 1-92
Housing Density and Income Details, Summer 2005, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued) SUBTOTALS BY RECYCLING DESIGNATION

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Material Group	Citywide	Densityl High Income	Medium Income	Densityl Low Income	$\begin{gathered} \text { Densityl } \\ \text { High Income } \end{gathered}$	Density/ Medium	$\begin{gathered} \text { Densityl } \\ \text { Low Income } \end{gathered}$	$\begin{gathered} \hline \text { Densityl } \\ \text { High } \end{gathered}$	Medium Income
Paper Total ${ }^{[2]}$	17,083.01	2,642.36	1,315.11	2,678.75	890.70	2,838.33	1,953.34	3,456.48	1,097.07
Plastic Total ${ }^{(2)}$	8,351.06	869.41	679.37	1,813.77	277.17	1,455.92	1,227.60	1,414.81	651.16
Glass Total ${ }^{(2)}$	3,050.78	398.27	190.45	62.79	141.12	534.63	459.02	477.89	226.66
Metal Total ${ }^{(3)}$	2,401.30	201.29	154.49	521.55	97.34	412.79	347.93	446.88	234.86
Organics Total	20,820.23	1,421.55	1,454.73	4,528.26	664.21	3,633.61	3,149.72	4,301.25	1,810.93
Appliance/Electronic Total	596.32	40.26	44.39	88.86	44.97	104.34	109.30	85.90	80.40
C \& D Debris Total	2,404.53	100.79	133.30	359.57	74.25	385.02	372.59	633.52	357.21
Miscellaneous Inorganics Total	330.49	20.81	23.28	44.32	22.01	47.59	32.07	98.66	38.97
HHW Total	152.67	18.23	8.78	39.93	5.33	28.21	17.90	19.54	16.53
Grand Total	55,190.38	5,712.98	4,003.89	10,697.80	2,217.09	9,440.42	7,669.47	10,934.94	4,513.79

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from July 2005 through September 2005 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used estimate generation can be found in Section 2.26 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-93
Housing Density and Income, Annual, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk ltems

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Densityl High Income \%	$\begin{gathered} \hline \text { High Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$	High Densityl Low Income \%	Medium Density/ High Income $\%$	$\begin{gathered} \text { Medium Densityl\| } \\ \text { Medium Income } \\ \% \end{gathered}$	Medium Density/ Low Income $\%$	Low Density/ High Income \%	$\begin{aligned} & \text { Low Densityl } \\ & \text { Medium Income } \\ & \% \end{aligned}$
Paper	ONP	Newspaper	7.71\%	R Paper	13.56\%	8.70\%	5.45\%	10.86\%	6.82\%	5.37\%	8.30\%	5.28\%
Paper	OCC	Plain OCC/Kraft Paper	2.40\%	R Paper	2.90\%	2.22\%	2.18\%	2.46\%	2.65\%	2.59\%	2.17\%	1.80\%
Paper	Mixed Paper	High Grade Paper	0.94\%	R Paper	1.67\%	0.99\%	0.74\%	1.61\%	0.91\%	0.77\%	0.74\%	0.61\%
Paper	Mixed Paper	Mixed Low Grade Paper	10.77\%	R Paper	18.35\%	10.95\%	8.13\%	15.14\%	9.57\%	8.46\%	10.98\%	8.18\%
Paper	Mixed Paper	Phone Books/Paperbacks	0.96\%	R Paper	1.42\%	1.20\%	0.60\%	1.61\%	1.14\%	0.87\%	0.78\%	0.67\%
Paper	Mixed Paper	Paper Bags	0.65\%	R Paper	1.26\%	0.60\%	0.63\%	0.81\%	0.61\%	0.54\%	0.46\%	0.46\%
Paper	Bev Cartons	Polycoated Paper Containers	0.52\%	R Bev Cartons	0.60\%	0.64\%	0.53\%	0.66\%	0.53\%	0.57\%	0.42\%	0.37\%
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.91\%	NR_Paper	6.46\%	5.98\%	5.54\%	5.82\%	6.27\%	5.10\%	6.10\%	6.04\%
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.46\%	NR_Paper	0.52\%	0.38\%	0.27\%	0.53\%	0.36\%	0.25\%	0.74\%	0.67\%
Paper	Other Paper	Other Nonrecyclable Paper	0.72\%	NR_Paper	0.72\%	0.69\%	0.78\%	0.84\%	0.75\%	0.61\%	0.73\%	0.69\%
Paper Total			31.05\%		47.45\%	32.34\%	24.86\%	40.33\%	29.62\%	25.14\%	31.41\%	24.76\%
Plastic	PET Bottles	PET Bottles	1.28\%	R Plastics	1.27\%	1.20\%	1.42\%	1.02\%	1.24\%	1.50\%	1.16\%	1.21\%
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.48\%	R Plastics	0.32\%	0.52\%	0.63\%	0.24\%	0.58\%	0.50\%	0.43\%	0.41\%
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.51\%	R Plastics	0.45\%	0.51\%	0.58\%	0.41\%	0.51\%	0.50\%	0.52\%	0.47\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	PR_Plastics	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	PR_Plastics	0.07\%	0.12\%	0.06\%	0.04\%	0.05\%	0.07\%	0.03\%	0.04\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	PR_Plastics	0.02\%	0.02\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.01\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	PR_Plastics	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#5 PP	0.02\%	PR_Plastics	0.01\%	0.02\%	0.03\%	0.01\%	0.02\%	0.02\%	0.02\%	0.03\%
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	PR_Plastics	0.07\%	0.08\%	0.07\%	0.05\%	0.07\%	0.07\%	0.10\%	0.07\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	PR_Plastics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	PR_Plastics	0.03\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	PR_Plastics	0.24\%	0.20\%	0.18\%	0.24\%	0.17\%	0.14\%	0.16\%	0.19\%
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	PR_Plastics	0.06\%	0.05\%	0.04\%	0.07\%	0.03\%	0.03\%	0.04\%	0.05\%
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	PR_Plastics	0.00\%	0.02\%	0.03\%	0.02\%	0.01\%	0.02\%	0.00\%	0.03\%
Plastic	Other Plastic Products	Other PVC	0.01\%	NR_Plastics	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	PR_Plastics	0.44\%	0.26\%	0.26\%	0.31\%	0.22\%	0.19\%	0.22\%	0.21\%
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.57\%	PR_Plastics	0.39\%	0.59\%	0.67\%	0.45\%	0.60\%	0.67\%	0.50\%	0.55\%
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.79\%	PR_Plastics	1.16\%	0.88\%	0.68\%	0.95\%	0.79\%	0.58\%	0.76\%	0.75\%
Plastic	Film	Plastic Bags	2.87\%	PR_Plastics	2.63\%	3.55\%	3.60\%	2.28\%	3.19\%	3.02\%	2.08\%	2.40\%
Plastic	Film	Other Film	5.01\%	PR_Plastics	5.32\%	5.76\%	5.90\%	4.17\%	5.15\%	5.28\%	3.84\%	4.48\%
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.54\%	NR_Plastics	0.44\%	0.55\%	0.45\%	0.42\%	0.45\%	0.64\%	0.68\%	0.70\%
Plastic	Other Plastic Products	Other Plastics Materials	1.73\%	NR_Plastics	1.22\%	1.88\%	1.84\%	1.32\%	1.73\%	1.85\%	1.83\%	1.94\%
Plastic Total			14.47\%		14.14\%	16.23\%	16.47\%	12.03\%	14.84\%	15.13\%	12.44\%	13.54\%
Glass	Container Glass	Clear Container Glass	1.66\%	R Glass	1.29\%	1.36\%	1.84\%	1.59\%	1.50\%	2.24\%	1.60\%	1.68\%
Glass	Container Glass	Green Container Glass	0.58\%	R Glass	1.38\%	0.52\%	0.40\%	1.29\%	0.45\%	0.41\%	0.41\%	0.38\%
Glass	Container Glass	Brown Container Glass	0.40\%	R Glass	0.34\%	0.29\%	0.53\%	0.55\%	0.42\%	0.46\%	0.29\%	0.35\%
Glass	Mixed Cullet	Mixed Cullet	1.87\%	R Glass	2.89\%	1.70\%	1.68\%	2.54\%	2.22\%	1.62\%	1.31\%	1.56\%
Glass	Container Glass	Other Container Glass	0.03\%	R Glass	0.03\%	0.02\%	0.02\%	0.04\%	0.03\%	0.05\%	0.03\%	0.03\%
Glass	Other Glass	Other Glass	0.21\%	PR_Glass	0.15\%	0.21\%	0.19\%	0.16\%	0.23\%	0.24\%	0.20\%	0.26\%
Glass Total			4.75\%		6.09\%	4.10\%	4.65\%	6.16\%	4.86\%	5.03\%	3.84\%	4.26\%
Metal	Aluminum	Aluminum Cans	0.22\%	R Metal	0.22\%	0.23\%	0.28\%	0.16\%	0.19\%	0.23\%	0.22\%	0.19\%
Metal	Aluminum	Aluminum Foil/Containers	0.57\%	R Metal	0.52\%	0.52\%	0.58\%	0.54\%	0.58\%	0.63\%	0.56\%	0.57\%
Metal	Aluminum	Other Aluminum	0.05\%	R Metal	0.02\%	0.05\%	0.03\%	0.06\%	0.05\%	0.06\%	0.07\%	0.12\%
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	R Metal	0.12\%	0.17\%	0.15\%	0.11\%	0.09\%	0.10\%	0.15\%	0.18\%
Metal	Ferrous	Tin Food Cans	1.27\%	R Metal	0.76\%	1.27\%	1.81\%	0.94\%	1.33\%	1.50\%	1.01\%	1.19\%
Metal	Ferrous	Empty Aerosol Cans	0.17\%	R Metal	0.15\%	0.13\%	0.17\%	0.13\%	0.20\%	0.16\%	0.17\%	0.16\%
Metal	Ferrous	Other Ferrous	1.47\%	R Metal	1.37\%	1.41\%	1.38\%	1.44\%	1.36\%	1.56\%	1.55\%	1.87\%
Metal	Other Metal	Mixed Metals	0.68\%	R Metal	0.70\%	0.55\%	0.82\%	0.57\%	0.59\%	0.82\%	0.59\%	0.80\%
Metal Total			4.57\%		3.85\%	4.33\%	5.22\%	3.96\%	4.38\%	5.07\%	4.32\%	5.09\%

Table 1-93
Housing Density and Income, Annual, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Citywide Waste Stream	Recycling Subindicator	High Density/ High Income \%	High Density/ Medium Income \%	High Densityl Low Income \%	Medium Density High Income $\%$	Medium Density/ Medium Income Medium Income \%	$\begin{aligned} & \text { Medium Density/ } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Densityl High Income \%	$\begin{gathered} \text { Low Densityl\| } \\ \text { Medium Income } \\ \% \end{gathered}$
Organics	Yard	Leaves and Grass	3.46\%	NR_Other	1.03\%	2.29\%	0.75\%	2.13\%	2.36\%	2.20\%	8.68\%	6.6\%
Organics	Yard	Prunings	0.66\%	NR_Other	0.46\%	0.28\%	0.08\%	0.79\%	0.43\%	0.38\%	1.64\%	1.10\%
Organics	Wood	Stumps/Limbs	0.09\%	NR_Other	0.01\%	0.09\%	0.02\%	0.13\%	0.08\%	0.06\%	0.20\%	0.12\%
Organics	Food	Food	18.62\%	NR_Other	11.59\%	19.85\%	23.84\%	14.68\%	21.12\%	21.00\%	15.21\%	17.97\%
Organics	Wood	Wood Furniture/Furniture Pieces	0.74\%	NR_Other	0.64\%	0.61\%	0.73\%	0.48\%	0.61\%	1.14\%	0.75\%	0.77\%
Organics	Wood	Non-C\&D Untreated Wood	0.13\%	NR_Other	0.05\%	0.09\%	0.21\%	0.16\%	0.23\%	0.06\%	0.08\%	0.09\%
Organics	Textiles	Non-Clothing Textiles	1.41\%	NR_Other	1.07\%	1.42\%	1.65\%	1.07\%	1.55\%	1.50\%	1.22\%	1.60\%
Organics	Textiles	Clothing Textiles	2.62\%	NR_Other	1.34\%	2.94\%	3.91\%	1.24\%	2.55\%	3.20\%	2.11\%	2.73\%
Organics	Textiles	Carpet/Upholstery	0.66\%	NR_Other	0.55\%	0.36\%	0.60\%	0.49\%	0.66\%	0.54\%	0.94\%	0.90\%
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.37\%	NR_Other	2.44\%	3.11\%	4.10\%	2.95\%	3.53\%	3.74\%	2.91\%	3.87\%
Organics	Misc. Organic	Animal By-Products	1.13\%	NR_Other	1.20\%	0.98\%	0.64\%	2.74\%	1.23\%	0.92\%	1.17\%	1.45\%
Organics	Misc. Organic	Rubber Products	0.26\%	NR_Other	0.19\%	0.22\%	0.30\%	0.20\%	0.25\%	0.27\%	0.30\%	0.17\%
Organics	Textiles	Shoes	0.63\%	NR_Other	0.36\%	0.66\%	0.85\%	0.42\%	0.68\%	0.85\%	0.46\%	0.65\%
Organics	Textiles	Other Leather Products	0.10\%	NR_Other	0.03\%	0.11\%	0.11\%	0.04\%	0.14\%	0.11\%	0.11\%	0.04\%
Organics	Misc. Organic	Fines	3.81\%	NR_Other	3.04\%	3.74\%	4.55\%	3.27\%	3.58\%	4.75\%	3.23\%	4.19\%
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.11\%	NR_Other	0.07\%	0.13\%	0.11\%	0.10\%	0.05\%	0.23\%	0.12\%	0.12\%
Organics	Misc. Organic	Miscellaneous Organics	0.75\%	NR_Other	0.66\%	0.52\%	0.51\%	1.06\%	0.54\%	0.96\%	0.97\%	1.05\%
Organics Total			38.56\%		24.71\%	37.40\%	42.97\%	31.96\%	39.58\%	41.91\%	40.10\%	43.51\%
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.31\%	R Metal	0.15\%	0.29\%	0.39\%	0.38\%	0.29\%	0.43\%	0.24\%	0.44\%
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	R Metal	0.02\%	0.05\%	0.02\%	0.05\%	0.05\%	0.04\%	0.04\%	0.03\%
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.23\%	NR_Other	0.20\%	0.24\%	0.23\%	0.18\%	0.22\%	0.27\%	0.26\%	0.18\%
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	NR_Other	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.22\%	NR_Other	0.13\%	0.19\%	0.22\%	0.10\%	0.24\%	0.27\%	0.25\%	0.21\%
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	NR_Other	0.04\%	0.01\%	0.00\%	0.24\%	0.08\%	0.02\%	0.00\%	0.08\%
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.04\%	NR_Other	0.00\%	0.00\%	0.00\%	0.04\%	0.06\%	0.10\%	0.03\%	0.16\%
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.12\%	NR_Other	0.13\%	0.22\%	0.08\%	0.18\%	0.14\%	0.11\%	0.08\%	0.13\%
Appliance/Electronic Total			1.00\%		0.67\%	1.00\%	0.95\%	1.17\%	1.09\%	1.24\%	0.89\%	1.24\%
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.32\%	NR_Other	0.23\%	0.27\%	0.21\%	0.30\%	0.19\%	0.24\%	0.55\%	0.57\%
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.34\%	NR_Other	0.75\%	1.21\%	1.10\%	0.98\%	1.15\%	1.63\%	1.70\%	2.14\%
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.95\%	NR_Other	0.43\%	0.92\%	0.81\%	0.35\%	1.15\%	1.29\%	0.96\%	1.41\%
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.68\%	NR_Other	0.16\%	0.25\%	0.85\%	0.46\%	0.80\%	0.95\%	0.73\%	0.78\%
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.42\%	NR_Other	0.86\%	1.20\%	1.11\%	1.39\%	1.46\%	1.49\%	1.91\%	1.65\%
C \& D Debris Total			4.70\%		2.43\%	3.85\%	4.09\%	3.48\%	4.75\%	5.60\%	5.86\%	6.56\%
Miscellaneous Inorga	Misc. Inorganic	Miscellaneous Inorganics	0.20\%	NR_Other	0.21\%	0.16\%	0.10\%	0.20\%	0.16\%	0.19\%	0.30\%	0.31\%
Miscellaneous Inorga	Misc. Inorganic	Ceramics	0.44\%	NR_Other	0.23\%	0.36\%	0.39\%	0.50\%	0.41\%	0.44\%	0.62\%	0.48\%
Miscellaneous Inorganics Total			0.64\%		0.44\%	0.52\%	0.49\%	0.70\%	0.57\%	0.63\%	0.91\%	0.79\%
HHW	HHW	Oil Filters	0.00\%	NR_Other	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Antifreeze	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Wet-Cell Batteries	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	NR_Other	0.05\%	0.03\%	0.02\%	0.04\%	0.09\%	0.03\%	0.06\%	0.10\%
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	NR_Other	0.02\%	0.02\%	0.01\%	0.03\%	0.04\%	0.03\%	0.02\%	0.04\%
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	NR_Other	0.00\%	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Dry-Cell Batteries	0.07\%	NR_Other	0.05\%	0.09\%	0.08\%	0.07\%	0.07\%	0.10\%	0.05\%	0.05\%
HHW	HHW	Fluorescent Tubes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Mercury-Laden Wastes	0.00\%	NR_Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	NR_Other	0.00\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%
HHW	HHW	Home Medical Products	0.05\%	NR_Other	0.06\%	0.04\%	0.11\%	0.04\%	0.05\%	0.04\%	0.02\%	0.02\%
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	NR_Other	0.02\%	0.02\%	0.03\%	0.03\%	0.04\%	0.03\%	0.04\%	0.03\%
$\frac{\text { HHW Total }}{\text { Grand Total }}$			0.25\%		0.21\%	0.22\%	0.31\%	0.21\%	0.30\%	0.24\%	0.22\%	0.25\%
			100.00\%		100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

Table 1-93
Housing Density and Income, Annual, Waste Characterization Study, Waste (Refuse and Recycling), Excluding Bulk Items (continued) SUBTOTALS BY RECYCLING DESIGNATION

Recycling Designation	\% of Citywide Waste Stream	High Density/ High Income $\%$	High Densityl Medium Income \%	High Density/ Low Income \%	Medium Density/ High Income \%	Medium Density/ Medium Income \%	$\begin{aligned} & \hline \text { Medium Density/ } \\ & \text { Low Income } \\ & \% \end{aligned}$	Low Density/ High Income \%	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \% \end{gathered}$
Designated Paper	23.43\%	39.15\%	24.65\%	17.74\%	32.49\%	21.71\%	18.61\%	23.43\%	16.99\%
Designated Beverage Cartons	0.52\%	0.60\%	0.64\%	0.53\%	0.66\%	0.53\%	0.57\%	0.42\%	0.37\%
Designated Plastic	2.27\%	2.04\%	2.23\%	2.63\%	1.66\%	2.33\%	2.50\%	2.12\%	2.09\%
Designated Metal	4.92\%	4.02\%	4.67\%	5.62\%	4.38\%	4.72\%	5.54\%	4.60\%	5.57\%
Designated Glass	4.55\%	5.94\%	3.89\%	4.46\%	6.00\%	4.63\%	4.79\%	3.64\%	4.00\%
Designated MGP Subtotal	12.26\%	12.60\%	11.43\%	13.24\%	12.71\%	12.22\%	13.39\%	10.78\%	12.03\%
Potentially Designated Plastic	9.91\%	10.44\%	11.56\%	11.55\%	8.62\%	10.32\%	10.13\%	7.79\%	8.80\%
Potentially Designated Glass	0.21\%	0.15\%	0.21\%	0.19\%	0.16\%	0.23\%	0.24\%	0.20\%	0.26\%
Potentially Designated Materials Subtotal	10.12\%	10.60\%	11.77\%	11.73\%	8.78\%	10.55\%	10.37\%	7.99\%	9.06\%
Nondesignated Paper	7.09\%	7.70\%	7.05\%	6.59\%	7.19\%	7.38\%	5.97\%	7.57\%	7.40\%
Nondesignated Plastic	2.28\%	1.66\%	2.44\%	2.29\%	1.74\%	2.19\%	2.50\%	2.53\%	2.65\%
Other Nondesignated	44.81\%	28.29\%	42.66\%	48.40\%	37.09\%	45.95\%	49.16\%	47.71\%	51.87\%
Nondesignated Materials Subtotal	54.19\%	37.65\%	52.15\%	57.28\%	46.02\%	55.53\%	57.63\%	57.81\%	61.92\%
Designated for Recycling Total	35.69\%	51.75\%	36.09\%	30.98\%	45.20\%	33.93\%	32.00\%	34.20\%	29.02\%
Potentially or Not Designated for Recycling Total	64.31\%	48.25\%	63.91\%	69.02\%	54.80\%	66.07\%	68.00\%	65.80\%	70.98\%
AVERAGE WEEKLY GENERATION TONNAGE ${ }^{(1)}$									
Material Group	Citywide	$\begin{gathered} \hline \text { Densityl } \\ \text { High Income } \end{gathered}$	Medium Income	$\begin{gathered} \hline \text { Densityl } \\ \text { Low Income } \end{gathered}$	Density/ High Income	Density/ Medium	$\begin{gathered} \hline \text { Densityl } \\ \text { Low Income } \end{gathered}$	Density/ High	Medium Income
Paper Total ${ }^{(2)}$	17,512.80	2,843.35	1,304.13	2,647.99	955.56	2,961.41	2,106.03	3,414.66	1,020.42
Plastic Total ${ }^{(2)}$	8,163.11	847.29	654.56	1,754.05	284.90	1,483.80	1,267.22	1,351.81	557.78
Glass Total ${ }^{(2)}$	2,681.54	365.10	165.31	495.39	145.97	485.84	421.11	417.70	175.49
Metal Total ${ }^{(3)}$	2,578.42	230.98	174.53	555.88	93.71	437.97	424.69	469.47	209.88
Organics Total	21,753.21	1,480.50	1,508.01	4,577.50	757.08	3,957.08	3,510.86	4,358.50	1,792.89
Appliance/Electronic Total	566.64	40.41	40.37	101.34	27.78	108.50	104.27	97.18	51.08
C \& D Debris Total	2,651.72	145.69	155.38	435.24	82.52	474.76	468.99	637.24	270.18
Miscellaneous Inorganics Total	358.87	26.34	21.02	52.02	16.61	57.05	52.92	99.34	32.60
HHW Total	143.07	12.40	8.90	32.77	4.95	30.34	20.32	23.92	10.50
Grand Total	56,409.37	5,992.06	4,032.22	10,652.18	2,369.08	9,996.77	8,376.41	10,869.84	4,120.81

1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from September 2004 through September 2005 less the percentage of bukk items as determined in the study. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.
[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1 Section 4: Results and Comparisons by Borough
[This page intentionally left blank.]

Section 4 Results and Comparisons by Borough

4.1 Introduction

Another way to examine the character of the Waste is to compare the composition of Waste among the City's five Boroughs. It has already been pointed out that the Populations of the Boroughs vary by housing density and income. However, most of the Waste management planning for the City is carried out at the Borough level. The WCS does not classify Boroughs by housing density and income, although Staten Island, Manhattan, and the Bronx, are relatively more homogeneous than Brooklyn and Queens.

The PWCS, which used the Boroughs as the primary criterion for sampling, provides a single-season comparison of the Boroughs.

The WCS used strata based on housing density and income as the criterion for sampling. However, Borough by Borough comparisons can be calculated by multiplying composition estimates by the generation rates for each strata, and weighting these by each Borough's mix of strata.

This section of Volume 1 reports the residential results of the PWCS and WCS for each of the City's Borough in five ways.

4.2 Boroughwide Results at a Glance, PWCS

Tables 1-94 through 1-98 present the results of the PWCS for New York City's five Boroughs. Each table shows the percentage of each material in the Refuse, MGP, Paper, and Waste streams for a Borough. These tables are useful for comparing the material composition of different streams at the Borough level.

Table 1-94
Manhattan Results at a Glance, Preliminary Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	$\begin{gathered} \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper		5.42\%	39.23\%	0.52\%	8.52\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		1.39\%	15.92\%	0.06\%	2.78\%	R Paper
Paper	Mixed Paper	High Grade Paper		1.33\%	5.24\%	0.01\%	1.63\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		10.50\%	26.36\%	1.36\%	11.49\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.10\%	6.74\%	0.00\%	0.77\%	R Paper
Paper	Mixed Paper	Paper Bags		1.01\%	0.39\%	0.00\%	0.88\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.71\%	0.18\%	1.08\%	0.68\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		9.26\%	0.10\%	0.14\%	7.71\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.76\%	0.01\%	0.01\%	0.63\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.63\%	2.91\%	0.30\%	0.84\%	NR_Paper
Paper Total				31.11\%	97.08\%	3.49\%	35.94\%	
Plastic	PET Bottles	PET Bottles		1.29\%	0.09\%	5.27\%	1.44\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.30\%	0.02\%	1.70\%	0.37\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.37\%	0.01\%	1.71\%	0.42\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.05\%	0.00\%	0.00\%	0.04\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.02\%	0.00\%	0.03\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.00\%	0.00\%	0.07\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.05\%	0.00\%	0.01\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.23\%	0.00\%	0.22\%	0.20\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.09\%	0.00\%	0.12\%	0.08\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.10\%	0.00\%	0.00\%	0.08\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.11\%	0.00\%	0.00\%	0.09\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.35\%	0.00\%	0.27\%	0.31\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.64\%	0.01\%	0.06\%	0.54\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.76\%	0.02\%	0.71\%	0.68\%	PR_Plastics
Plastic	Film	Plastic Bags		2.99\%	0.16\%	0.80\%	2.55\%	PR_Plastics
Plastic	Film	Other Film		6.48\%	0.89\%	2.72\%	5.66\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		0.57\%	0.01\%	0.08\%	0.48\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		1.13\%	0.07\%	2.80\%	1.13\%	NR_Plastics
Plastic Total				15.51\%	1.29\%	16.56\%	14.13\%	
Glass	Container Glass	Clear Container Glass		1.45\%	0.06\%	6.29\%	1.64\%	R Glass
Glass	Container Glass	Green Container Glass		0.56\%	0.00\%	9.58\%	1.11\%	R Glass
Glass	Container Glass	Brown Container Glass		0.43\%	0.00\%	1.92\%	0.49\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		0.59\%	0.07\%	25.79\%	2.25\%	R Glass
Glass	Container Glass	Other Container Glass		0.12\%	0.01\%	0.60\%	0.14\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	0.00\%	0.00\%	0.00\%	PR_Glass
Glass Total				3.14\%	0.13\%	44.17\%	5.63\%	

Table 1-94
Manhattan Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans		0.28\%	0.00\%	0.62\%	0.28\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.66\%	0.04\%	0.38\%	0.58\%	R Metal
Metal	Aluminum	Other Aluminum		0.05\%	0.01\%	0.10\%	0.05\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.06\%	0.00\%	0.01\%	0.05\%	R Metal
Metal	Ferrous	Tin Food Cans		1.00\%	0.05\%	3.91\%	1.10\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.12\%	0.00\%	0.33\%	0.12\%	R Metal
Metal	Ferrous	Other Ferrous		1.02\%	0.03\%	22.97\%	2.42\%	R Metal
Metal	Other Metal	Mixed Metals		0.18\%	0.02\%	0.50\%	0.18\%	R Metal
Metal Total				3.38\%	0.16\%	28.83\%	4.78\%	
Organics	Yard	Leaves and Grass		1.31\%	0.00\%	0.00\%	1.08\%	NR_Other
Organics	Yard	Prunings		0.32\%	0.00\%	0.08\%	0.27\%	NR_Other
Organics	Wood	Stumps/Limbs		0.48\%	0.00\%	0.00\%	0.40\%	NR_Other
Organics	Food	Food		15.58\%	0.60\%	0.35\%	13.02\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.46\%	0.00\%	0.06\%	0.39\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		2.34\%	0.08\%	0.13\%	1.96\%	NR_Other
Organics	Textiles	Clothing Textiles		3.25\%	0.00\%	0.04\%	2.70\%	NR_Other
Organics	Textiles	Carpet/Upholstery		1.24\%	0.00\%	0.00\%	1.03\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		2.67\%	0.02\%	0.02\%	2.22\%	NR_Other
Organics	Misc. Organic	Animal By-Products		0.87\%	0.00\%	0.00\%	0.73\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.53\%	0.05\%	0.24\%	0.46\%	NR_Other
Organics	Textiles	Shoes		0.47\%	0.04\%	0.02\%	0.39\%	NR_Other
Organics	Textiles	Other Leather Products		0.01\%	0.00\%	0.07\%	0.02\%	NR_Other
Organics	Misc. Organic	Fines		4.64\%	0.36\%	3.23\%	4.11\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		3.70\%	0.00\%	0.10\%	3.08\%	NR_Other
Organics Total				37.88\%	1.15\%	4.34\%	31.87\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.03\%	0.01\%	0.60\%	0.07\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.00\%	0.01\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.21\%	0.00\%	0.77\%	0.22\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.07\%	0.00\%	0.92\%	0.12\%	NR_Other
Appliance/Electronic Total				0.31\%	0.02\%	2.28\%	0.41\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.30\%	0.06\%	0.01\%	0.25\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		2.01\%	0.07\%	0.08\%	1.68\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap		1.07\%	0.00\%	0.00\%	0.89\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		0.38\%	0.00\%	0.00\%	0.32\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		3.68\%	0.05\%	0.00\%	3.06\%	NR_Other
C \& D Debris Total				7.44\%	0.17\%	0.09\%	6.20\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.28\%	0.00\%	0.00\%	0.23\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.54\%	0.00\%	0.20\%	0.46\%	NR_Other
Miscellaneous Inorganics Total				0.81\%	0.00\%	0.21\%	0.69\%	

Table 1-94
Manhattan Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.15\%	0.00\%	0.00\%	0.13\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.06\%	0.00\%	0.00\%	0.05\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.13\%	0.00\%	0.03\%	0.11\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.02\%	0.00\%	0.00\%	0.02\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.02\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.03\%	0.00\%	0.00\%	0.02\%	NR_Other
HHW Total				0.41\%	0.00\%	0.03\%	0.34\%	
Grand Total				100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(6)}$								
Material Group			Notes	Refuse	Paper	MGP	Waste	
Paper Total			7	3,118.41	1,713.01	29.91	4,545.00	
Plastic Total			7	1,554.18	22.73	141.99	1,786.96	
Glass Total			7	315.23	2.32	378.84	711.70	
Metal Total			8	338.97	2.77	247.29	605.01	
Organics Total				3,796.93	20.28	37.21	4,029.49	
Appliance/Elec				30.82	0.31	19.59	52.15	
C \& D Debris T				746.15	2.99	0.76	784.55	
Miscellaneous	Total			81.38	0.00	1.77	87.02	
HHW Total				41.30	0.07	0.26	43.58	
Grand Total				10,023.37	1,764.49	857.63	12,645.49	
Subtotals by Recycling Designation								
Recycling Designation				\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper				19.75\%	93.88\%	1.95\%	26.08\%	
Percent Designated MGP				9.20\%	0.59\%	82.77\%	13.32\%	
Percent Designated Recycling				28.94\%	94.47\%	84.71\%	39.40\%	

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through June 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-95
Bronx Results at a Glance, Preliminary Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper		3.64\%	30.70\%	0.14\%	6.15\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		1.50\%	24.43\%	0.01\%	3.73\%	R Paper
Paper	Mixed Paper	High Grade Paper		0.59\%	5.04\%	0.00\%	1.00\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		6.15\%	24.18\%	1.10\%	7.64\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.69\%	10.94\%	0.00\%	1.69\%	R Paper
Paper	Mixed Paper	Paper Bags		0.47\%	0.92\%	0.00\%	0.48\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.52\%	0.30\%	1.10\%	0.54\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		6.91\%	0.02\%	0.27\%	5.76\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.35\%	0.02\%	0.01\%	0.30\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.66\%	1.00\%	0.71\%	0.70\%	NR_Paper
Paper Total				21.48\%	97.55\%	3.35\%	27.99\%	
Plastic	PET Bottles	PET Bottles		1.15\%	0.04\%	5.66\%	1.34\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.44\%	0.03\%	3.04\%	0.58\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.53\%	0.00\%	2.47\%	0.61\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.03\%	0.00\%	0.00\%	0.03\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.01\%	0.00\%	0.07\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.02\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.15\%	0.00\%	0.43\%	0.16\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.05\%	0.00\%	0.07\%	0.05\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.01\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.05\%	0.00\%	0.00\%	0.04\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.08\%	0.00\%	0.20\%	0.08\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.64\%	0.04\%	0.08\%	0.54\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.43\%	0.00\%	1.93\%	0.49\%	PR_Plastics
Plastic	Film	Plastic Bags		3.24\%	0.13\%	0.77\%	2.76\%	PR_Plastics
Plastic	Film	Other Film		5.16\%	0.75\%	3.18\%	4.58\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		0.69\%	0.00\%	0.22\%	0.59\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		1.82\%	0.44\%	5.06\%	1.90\%	NR_Plastics
Plastic Total				14.53\%	1.43\%	23.21\%	13.79\%	
Glass	Container Glass	Clear Container Glass		1.62\%	0.07\%	4.09\%	1.63\%	R Glass
Glass	Container Glass	Green Container Glass		0.52\%	0.00\%	1.23\%	0.52\%	R Glass
Glass	Container Glass	Brown Container Glass		0.54\%	0.00\%	0.84\%	0.50\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		0.66\%	0.09\%	22.64\%	2.09\%	R Glass
Glass	Container Glass	Other Container Glass		0.23\%	0.00\%	0.76\%	0.24\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	0.00\%	0.00\%	0.00\%	PR_Glass
Glass Total				3.57\%	0.16\%	29.55\%	4.99\%	

Table 1-95
Bronx Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans		0.26\%	0.00\%	0.45\%	0.24\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.71\%	0.00\%	0.91\%	0.66\%	R Metal
Metal	Aluminum	Other Aluminum		0.02\%	0.00\%	0.05\%	0.02\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.10\%	0.02\%	0.06\%	0.09\%	R Metal
Metal	Ferrous	Tin Food Cans		1.48\%	0.01\%	8.95\%	1.84\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.13\%	0.00\%	0.82\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous		0.66\%	0.04\%	21.46\%	2.01\%	R Metal
Metal	Other Metal	Mixed Metals		0.16\%	0.09\%	0.44\%	0.17\%	R Metal
Metal Total				3.53\%	0.17\%	33.15\%	5.20\%	
Organics	Yard	Leaves and Grass		3.11\%	0.00\%	0.00\%	2.58\%	NR_Other
Organics	Yard	Prunings		3.53\%	0.00\%	0.00\%	2.93\%	NR_Other
Organics	Wood	Stumps/Limbs		0.04\%	0.00\%	0.00\%	0.03\%	NR_Other
Organics	Food	Food		17.36\%	0.03\%	1.24\%	14.51\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.06\%	0.02\%	0.12\%	0.06\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		2.36\%	0.12\%	0.06\%	1.98\%	NR_Other
Organics	Textiles	Clothing Textiles		5.60\%	0.00\%	0.10\%	4.66\%	NR_Other
Organics	Textiles	Carpet/Upholstery		0.69\%	0.00\%	0.00\%	0.57\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		4.39\%	0.00\%	0.03\%	3.65\%	NR_Other
Organics	Misc. Organic	Animal By-Products		0.91\%	0.00\%	0.00\%	0.75\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.32\%	0.00\%	0.09\%	0.27\%	NR_Other
Organics	Textiles	Shoes		0.70\%	0.00\%	0.02\%	0.58\%	NR_Other
Organics	Textiles	Other Leather Products		0.03\%	0.00\%	0.00\%	0.02\%	NR_Other
Organics	Misc. Organic	Fines		4.06\%	0.38\%	0.37\%	3.44\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		6.10\%	0.06\%	0.10\%	5.08\%	NR_Other
Organics Total				49.24\%	0.61\%	2.13\%	41.10\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.27\%	0.00\%	2.61\%	0.40\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.09\%	0.00\%	1.20\%	0.16\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.16\%	0.00\%	0.00\%	0.13\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.38\%	0.00\%	2.38\%	0.48\%	NR_Other
Appliance/Electronic Total				0.90\%	0.00\%	6.18\%	1.17\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.45\%	0.02\%	0.46\%	0.41\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		3.06\%	0.02\%	0.16\%	2.55\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap		0.65\%	0.00\%	0.00\%	0.54\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		1.19\%	0.00\%	0.00\%	0.99\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		0.97\%	0.02\%	0.02\%	0.81\%	NR_Other
C \& D Debris Total				6.32\%	0.06\%	0.63\%	5.29\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.11\%	0.00\%	1.08\%	0.16\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.12\%	0.02\%	0.69\%	0.15\%	NR_Other
Miscellaneous Inorganics Total				0.23\%	0.02\%	1.77\%	0.31\%	

Table 1-95
Bronx Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{gathered} \% \text { of Paper } \\ \text { Stream } \end{gathered}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.06\%	0.00\%	0.00\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.05\%	0.00\%	0.03\%	0.04\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.05\%	0.00\%	0.00\%	0.04\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.03\%	0.00\%	0.01\%	0.03\%	NR_Other
HHW Total				0.20\%	0.00\%	0.04\%	0.16\%	
Grand Total				100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(6)}$								
Material Group			Notes	Refuse	Paper	MGP	Waste	
Paper Total			7	1,959.22	650.28	23.27	2,933.34	
Plastic Total			7	1,325.45	9.54	161.43	1,445.59	
Glass Total			7	325.29	1.07	205.58	522.77	
Metal Total			8	321.90	1.13	230.59	545.26	
Organics Tota				4,490.80	4.06	14.82	4,307.47	
Appliance/Ele				82.37	0.00	43.01	122.68	
C \& D Debris				575.94	0.38	4.41	554.79	
Miscellaneous	Total			20.57	0.16	12.28	32.48	
HHW Total				17.81	0.00	0.24	17.24	
Grand Total				9,119.35	666.62	695.61	10,481.58	
Subtotals by Recycling Designation								
Recycling Designation				\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{gathered} \text { \% of Waste } \\ \text { Stream } \end{gathered}$	
Percent Designated Paper				13.04\%	96.21\%	1.25\%	20.69\%	
Percent Designated MGP				9.74\%	0.70\%	74.96\%	13.25\%	
Percent Designated Recycling				22.77\%	96.91\%	76.22\%	33.95\%	

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through June 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-96
Brooklyn Results at a Glance, Preliminary Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	$\begin{gathered} \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper		3.94\%	39.20\%	0.54\%	7.29\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		1.51\%	22.63\%	0.58\%	3.60\%	R Paper
Paper	Mixed Paper	High Grade Paper		0.45\%	4.19\%	0.05\%	0.80\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		7.77\%	26.47\%	0.98\%	9.21\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.22\%	2.56\%	0.05\%	0.45\%	R Paper
Paper	Mixed Paper	Paper Bags		0.57\%	0.43\%	0.18\%	0.53\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.45\%	0.34\%	1.50\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		7.72\%	0.02\%	0.35\%	6.44\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.39\%	0.01\%	0.03\%	0.33\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.74\%	0.73\%	0.81\%	0.74\%	NR_Paper
Paper Total				23.75\%	96.58\%	5.06\%	29.88\%	
Plastic	PET Bottles	PET Bottles		1.02\%	0.05\%	5.56\%	1.23\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.33\%	0.04\%	2.35\%	0.44\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.49\%	0.00\%	2.19\%	0.56\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.02\%	0.00\%	0.00\%	0.02\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.07\%	0.00\%	0.13\%	0.07\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.25\%	0.00\%	1.21\%	0.29\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.07\%	0.00\%	0.07\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.08\%	0.00\%	0.21\%	0.08\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.12\%	0.00\%	0.00\%	0.10\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.13\%	0.00\%	0.45\%	0.14\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.89\%	0.03\%	0.19\%	0.76\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.63\%	0.00\%	1.71\%	0.64\%	PR_Plastics
Plastic	Film	Plastic Bags		3.16\%	0.20\%	0.55\%	2.68\%	PR_Plastics
Plastic	Film	Other Film		5.35\%	0.78\%	2.11\%	4.66\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		1.02\%	0.00\%	0.14\%	0.85\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		1.98\%	0.20\%	3.79\%	1.92\%	NR_Plastics
Plastic Total				15.62\%	1.31\%	20.67\%	14.51\%	
Glass	Container Glass	Clear Container Glass		1.60\%	0.10\%	8.20\%	1.90\%	R Glass
Glass	Container Glass	Green Container Glass		0.22\%	0.00\%	2.40\%	0.35\%	R Glass
Glass	Container Glass	Brown Container Glass		0.28\%	0.00\%	1.13\%	0.31\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		0.64\%	0.03\%	18.72\%	1.81\%	R Glass
Glass	Container Glass	Other Container Glass		0.20\%	0.00\%	0.51\%	0.20\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	0.00\%	0.00\%	0.00\%	PR_Glass
Glass Total				2.96\%	0.13\%	30.97\%	4.57\%	

Table 1-96
Brooklyn Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans		0.18\%	0.02\%	0.69\%	0.20\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.67\%	0.01\%	1.42\%	0.65\%	R Metal
Metal	Aluminum	Other Aluminum		0.05\%	0.04\%	0.32\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.04\%	0.00\%	0.31\%	0.05\%	R Metal
Metal	Ferrous	Tin Food Cans		0.99\%	0.07\%	6.87\%	1.30\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.14\%	0.00\%	0.74\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous		1.03\%	0.00\%	22.58\%	2.39\%	R Metal
Metal	Other Metal	Mixed Metals		0.68\%	0.07\%	1.05\%	0.65\%	R Metal
Metal Total				3.77\%	0.22\%	34.00\%	5.47\%	
Organics	Yard	Leaves and Grass		2.80\%	0.00\%	0.00\%	2.33\%	NR_Other
Organics	Yard	Prunings		2.25\%	0.00\%	0.00\%	1.86\%	NR_Other
Organics	Wood	Stumps/Limbs		0.81\%	0.00\%	0.00\%	0.67\%	NR_Other
Organics	Food	Food		17.37\%	0.51\%	0.74\%	14.53\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.09\%	0.00\%	0.04\%	0.08\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		1.98\%	0.25\%	0.43\%	1.69\%	NR_Other
Organics	Textiles	Clothing Textiles		3.43\%	0.06\%	0.02\%	2.86\%	NR_Other
Organics	Textiles	Carpet/Upholstery		1.00\%	0.00\%	0.00\%	0.83\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		3.90\%	0.04\%	0.25\%	3.26\%	NR_Other
Organics	Misc. Organic	Animal By-Products		1.35\%	0.09\%	0.01\%	1.13\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.28\%	0.00\%	0.29\%	0.25\%	NR_Other
Organics	Textiles	Shoes		0.77\%	0.04\%	0.03\%	0.65\%	NR_Other
Organics	Textiles	Other Leather Products		0.14\%	0.01\%	0.00\%	0.12\%	NR_Other
Organics	Misc. Organic	Fines		4.46\%	0.42\%	0.62\%	3.79\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		4.18\%	0.00\%	0.09\%	3.48\%	NR_Other
Organics Total				44.81\%	1.42\%	2.51\%	37.52\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.20\%	0.03\%	5.08\%	0.51\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.21\%	0.00\%	0.26\%	0.19\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.24\%	0.00\%	0.00\%	0.20\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.22\%	0.00\%	0.58\%	0.22\%	NR_Other
Appliance/Electronic Total				0.88\%	0.03\%	5.92\%	1.14\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.32\%	0.04\%	0.14\%	0.28\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		3.52\%	0.00\%	0.13\%	2.93\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap		1.28\%	0.00\%	0.00\%	1.07\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		0.61\%	0.00\%	0.00\%	0.50\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		1.73\%	0.24\%	0.02\%	1.46\%	NR_Other
C \& D Debris Total				7.46\%	0.28\%	0.30\%	6.24\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.37\%	0.03\%	0.12\%	0.32\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.13\%	0.00\%	0.34\%	0.13\%	NR_Other
Miscellaneous Inorganics Total				0.50\%	0.03\%	0.47\%	0.45\%	

Table 1-96
Brooklyn Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.08\%	0.00\%	0.03\%	0.07\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.04\%	0.00\%	0.03\%	0.04\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	0.00\%	0.04\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.03\%	0.01\%	0.00\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.10\%	0.00\%	0.00\%	0.08\%	NR_Other
HHW Total				0.25\%	0.01\%	0.11\%	0.22\%	
Grand Total				100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(6)}$								
Material Group			Notes	Refuse	Paper	MGP	Waste	
Paper Total			7	2,179.36	966.16	36.58	3,257.49	
Plastic Total			7	1,433.73	13.06	149.57	1,581.77	
Glass Total			7	271.36	1.30	224.07	498.63	
Metal Total			8	346.19	2.16	245.97	595.82	
Organics Total				4,111.97	14.22	18.17	4,090.00	
Appliance/Elec				81.14	0.30	42.83	124.23	
C \& D Debris T				684.27	2.80	2.17	680.22	
Miscellaneous	Total			45.70	0.27	3.37	48.83	
HHW Total				22.97	0.14	0.77	23.60	
Grand Total				9,176.69	1,000.41	723.48	10,900.58	
Subtotals by Recycling Designation								
Recycling Designation				\% of Refuse Stream	\% of Paper Stream	$\begin{gathered} \hline \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	
Percent Designated Paper				14.45\%	95.47\%	2.37\%	21.87\%	
Percent Designated MGP				9.01\%	0.78\%	76.56\%	12.77\%	
Percent Designated Recycling				23.47\%	96.25\%	78.93\%	34.64\%	

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category.
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through June 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-97
Queens Results at a Glance, Preliminary Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper		2.85\%	39.96\%	1.01\%	6.50\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		1.21\%	22.49\%	0.16\%	3.31\%	R Paper
Paper	Mixed Paper	High Grade Paper		0.42\%	3.57\%	0.11\%	0.72\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		5.86\%	24.03\%	0.99\%	7.38\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.57\%	3.57\%	0.11\%	0.85\%	R Paper
Paper	Mixed Paper	Paper Bags		0.53\%	0.69\%	0.01\%	0.51\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.38\%	0.31\%	2.36\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		6.71\%	0.27\%	0.50\%	5.63\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.51\%	0.00\%	0.02\%	0.43\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.54\%	1.04\%	0.66\%	0.60\%	NR_Paper
Paper Total				19.59\%	95.93\%	5.93\%	26.42\%	
Plastic	PET Bottles	PET Bottles		0.73\%	0.05\%	5.85\%	1.01\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.25\%	0.01\%	3.14\%	0.43\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.47\%	0.07\%	3.17\%	0.61\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.02\%	0.00\%	0.00\%	0.02\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.17\%	0.00\%	0.13\%	0.15\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.02\%	0.00\%	0.05\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.00\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.22\%	0.01\%	0.61\%	0.23\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.06\%	0.01\%	0.33\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.05\%	0.00\%	0.15\%	0.05\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.01\%	0.00\%	0.21\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.14\%	0.00\%	0.52\%	0.15\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.57\%	0.08\%	0.09\%	0.49\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.58\%	0.00\%	1.52\%	0.58\%	PR_Plastics
Plastic	Film	Plastic Bags		2.35\%	0.23\%	0.92\%	2.04\%	PR_Plastics
Plastic	Film	Other Film		4.69\%	1.00\%	2.39\%	4.16\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		0.75\%	0.03\%	0.14\%	0.63\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		1.29\%	0.48\%	2.64\%	1.30\%	NR_Plastics
Plastic Total				12.38\%	1.98\%	21.90\%	11.97\%	
Glass	Container Glass	Clear Container Glass		0.72\%	0.07\%	7.49\%	1.12\%	R Glass
Glass	Container Glass	Green Container Glass		0.17\%	0.00\%	2.79\%	0.33\%	R Glass
Glass	Container Glass	Brown Container Glass		0.14\%	0.01\%	1.47\%	0.22\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		0.30\%	0.04\%	22.03\%	1.75\%	R Glass
Glass	Container Glass	Other Container Glass		0.22\%	0.00\%	0.62\%	0.23\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	0.00\%	0.00\%	0.00\%	PR_Glass
Glass Total				1.55\%	0.13\%	34.41\%	3.64\%	

Table 1-97
Queens Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans		0.15\%	0.01\%	0.87\%	0.18\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.49\%	0.00\%	0.93\%	0.47\%	R Metal
Metal	Aluminum	Other Aluminum		0.07\%	0.01\%	0.16\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.06\%	0.00\%	0.31\%	0.07\%	R Metal
Metal	Ferrous	Tin Food Cans		0.57\%	0.01\%	7.34\%	0.98\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.10\%	0.00\%	0.60\%	0.12\%	R Metal
Metal	Ferrous	Other Ferrous		1.10\%	0.04\%	19.10\%	2.22\%	R Metal
Metal	Other Metal	Mixed Metals		0.71\%	0.20\%	1.27\%	0.70\%	R Metal
Metal Total				3.25\%	0.27\%	30.58\%	4.81\%	
Organics	Yard	Leaves and Grass		11.91\%	0.00\%	0.08\%	9.89\%	NR_Other
Organics	Yard	Prunings		3.97\%	0.00\%	0.04\%	3.30\%	NR_Other
Organics	Wood	Stumps/Limbs		1.21\%	0.00\%	0.00\%	1.00\%	NR_Other
Organics	Food	Food		15.83\%	0.35\%	1.59\%	13.29\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.90\%	0.01\%	0.07\%	0.75\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		2.11\%	0.12\%	0.00\%	1.77\%	NR_Other
Organics	Textiles	Clothing Textiles		2.84\%	0.27\%	0.07\%	2.39\%	NR_Other
Organics	Textiles	Carpet/Upholstery		1.52\%	0.04\%	0.00\%	1.27\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		4.47\%	0.17\%	0.02\%	3.73\%	NR_Other
Organics	Misc. Organic	Animal By-Products		1.21\%	0.00\%	0.03\%	1.01\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.21\%	0.01\%	0.07\%	0.18\%	NR_Other
Organics	Textiles	Shoes		0.54\%	0.00\%	0.03\%	0.45\%	NR_Other
Organics	Textiles	Other Leather Products		0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
Organics	Misc. Organic	Fines		3.91\%	0.36\%	1.13\%	3.36\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		2.73\%	0.00\%	0.39\%	2.29\%	NR_Other
Organics Total				53.38\%	1.31\%	3.52\%	44.69\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.49\%	0.15\%	0.97\%	0.49\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.01\%	0.00\%	0.01\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.43\%	0.00\%	0.83\%	0.41\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.18\%	0.00\%	0.00\%	0.15\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.19\%	0.00\%	0.41\%	0.19\%	NR_Other
Appliance/Electronic Total				1.30\%	0.15\%	2.21\%	1.25\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.82\%	0.02\%	0.06\%	0.69\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		3.21\%	0.00\%	0.00\%	2.67\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap		1.27\%	0.04\%	0.00\%	1.05\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		0.49\%	0.00\%	0.12\%	0.42\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		1.32\%	0.12\%	0.00\%	1.11\%	NR_Other
C \& D Debris Total				7.11\%	0.17\%	0.18\%	5.94\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.11\%	0.01\%	0.66\%	0.14\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.71\%	0.03\%	0.54\%	0.63\%	NR_Other
Miscellaneous Inorganics Total				0.83\%	0.04\%	1.20\%	0.77\%	

Table 1-97
Queens Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\%$ of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.19\%	0.00\%	0.00\%	0.16\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.20\%	0.00\%	0.00\%	0.17\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.06\%	0.00\%	0.06\%	0.05\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.06\%	0.00\%	0.00\%	0.05\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.10\%	0.00\%	0.00\%	0.09\%	NR_Other
HHW Total				0.62\%	0.01\%	0.06\%	0.52\%	
Grand Total				100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(6)}$								
Material Group			Notes	Refuse	Paper	MGP	Waste	
Paper Total			7	1,689.40	1,035.66	44.47	2,762.40	
Plastic Total			7	1,067.61	21.41	164.31	1,251.27	
Glass Total			7	133.80	1.37	258.21	380.62	
Metal Total			8	280.31	2.96	229.45	502.40	
Organics Total				4,603.74	14.20	26.45	4,672.64	
Appliance/Elec				112.17	1.62	16.61	130.23	
C \& D Debris T				613.55	1.87	1.39	620.68	
Miscellaneous	Total			71.41	0.40	9.01	80.81	
HHW Total				53.22	0.07	0.48	54.10	
Grand Total				8,625.22	1,079.58	750.41	10,455.21	
Subtotals by Recycling Designation								
Recycling Designation				\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\begin{gathered} \text { \% of Waste } \\ \text { Stream } \end{gathered}$	
Percent Designated Paper				11.45\%	94.31\%	2.39\%	19.26\%	
Percent Designated MGP				6.63\%	0.84\%	79.50\%	11.00\%	
Percent Designated Recycling				18.08\%	95.15\%	81.89\%	30.25\%	

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through June 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-98
Staten Island Results at a Glance, Preliminary Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper		1.92\%	50.78\%	0.79\%	6.81\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper		0.77\%	17.15\%	0.22\%	2.40\%	R Paper
Paper	Mixed Paper	High Grade Paper		1.06\%	3.23\%	0.34\%	1.23\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		5.68\%	22.18\%	0.76\%	7.02\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		0.78\%	1.65\%	0.00\%	0.81\%	R Paper
Paper	Mixed Paper	Paper Bags		0.30\%	0.22\%	0.00\%	0.27\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers		0.19\%	0.16\%	1.08\%	0.24\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		6.25\%	0.16\%	0.09\%	5.21\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		0.77\%	0.01\%	0.00\%	0.64\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper		0.70\%	0.73\%	0.34\%	0.68\%	NR_Paper
Paper Total				18.40\%	96.28\%	3.62\%	25.32\%	
Plastic	PET Bottles	PET Bottles		0.59\%	0.06\%	7.24\%	0.99\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural		0.15\%	0.01\%	2.18\%	0.27\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored		0.26\%	0.00\%	3.80\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET		0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE		0.01\%	0.00\%	0.15\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC		0.00\%	0.00\%	0.14\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE		0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP		0.24\%	0.01\%	0.22\%	0.22\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other		0.08\%	0.00\%	0.05\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		0.01\%	0.00\%	0.20\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC		0.04\%	0.00\%	0.12\%	0.04\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		0.09\%	0.01\%	0.33\%	0.10\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		0.47\%	0.08\%	0.00\%	0.40\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		0.63\%	0.00\%	1.52\%	0.63\%	PR_Plastics
Plastic	Film	Plastic Bags		1.46\%	0.48\%	0.63\%	1.30\%	PR_Plastics
Plastic	Film	Other Film		3.57\%	0.67\%	1.29\%	3.12\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		0.58\%	0.01\%	0.32\%	0.51\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials		2.69\%	0.51\%	4.23\%	2.57\%	NR_Plastics
Plastic Total				10.89\%	1.84\%	22.43\%	10.75\%	
Glass	Container Glass	Clear Container Glass		0.77\%	0.13\%	6.55\%	1.10\%	R Glass
Glass	Container Glass	Green Container Glass		0.16\%	0.00\%	1.32\%	0.22\%	R Glass
Glass	Container Glass	Brown Container Glass		0.28\%	0.00\%	1.47\%	0.33\%	R Glass
Glass	Mixed Cullet	Mixed Cullet		0.14\%	0.00\%	19.01\%	1.41\%	R Glass
Glass	Container Glass	Other Container Glass		0.24\%	0.00\%	0.46\%	0.23\%	R Glass
Glass	Other Glass	Other Glass	2	0.00\%	0.00\%	0.00\%	0.00\%	PR_Glass
Glass Total				1.60\%	0.13\%	28.81\%	3.30\%	

Table 1-98
Staten Island Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\%$ of Paper	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans		0.13\%	0.01\%	1.43\%	0.21\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers		0.33\%	0.07\%	0.59\%	0.32\%	R Metal
Metal	Aluminum	Other Aluminum		0.03\%	0.00\%	0.34\%	0.04\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous		0.08\%	0.00\%	0.92\%	0.13\%	R Metal
Metal	Ferrous	Tin Food Cans		0.42\%	0.05\%	7.63\%	0.87\%	R Metal
Metal	Ferrous	Empty Aerosol Cans		0.16\%	0.00\%	0.49\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous		1.55\%	0.15\%	28.28\%	3.22\%	R Metal
Metal	Other Metal	Mixed Metals		1.23\%	0.00\%	0.12\%	1.03\%	R Metal
Metal Total				3.92\%	0.28\%	39.78\%	5.98\%	
Organics	Yard	Leaves and Grass		18.23\%	0.00\%	0.00\%	15.14\%	NR_Other
Organics	Yard	Prunings		8.37\%	0.00\%	0.00\%	6.95\%	NR_Other
Organics	Wood	Stumps/Limbs		0.04\%	0.00\%	0.00\%	0.03\%	NR_Other
Organics	Food	Food		8.52\%	0.18\%	0.63\%	7.14\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood		0.22\%	0.00\%	0.10\%	0.19\%	NR_Other
Organics	Textiles	Non-Clothing Textiles		1.14\%	0.46\%	0.00\%	0.99\%	NR_Other
Organics	Textiles	Clothing Textiles		4.93\%	0.17\%	0.03\%	4.12\%	NR_Other
Organics	Textiles	Carpet/Upholstery		2.66\%	0.00\%	0.00\%	2.21\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products		2.67\%	0.06\%	0.00\%	2.23\%	NR_Other
Organics	Misc. Organic	Animal By-Products		2.46\%	0.00\%	0.00\%	2.04\%	NR_Other
Organics	Misc. Organic	Rubber Products		0.35\%	0.00\%	0.05\%	0.30\%	NR_Other
Organics	Textiles	Shoes		1.05\%	0.00\%	0.57\%	0.91\%	NR_Other
Organics	Textiles	Other Leather Products		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Fines		3.38\%	0.34\%	0.95\%	2.91\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics		3.76\%	0.00\%	0.07\%	3.13\%	NR_Other
Organics Total				57.81\%	1.22\%	2.41\%	48.28\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	4	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5	0.00\%	0.00\%	0.00\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic		0.38\%	0.03\%	1.08\%	0.40\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other		0.05\%	0.00\%	0.34\%	0.07\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment		0.00\%	0.00\%	0.19\%	0.01\%	NR_Other
Appliance/Electronic Total				0.44\%	0.03\%	1.61\%	0.48\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		0.08\%	0.23\%	0.09\%	0.10\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood		2.24\%	0.00\%	0.00\%	1.86\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap		1.55\%	0.00\%	0.00\%	1.29\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks		0.07\%	0.00\%	0.22\%	0.08\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris		1.25\%	0.00\%	0.00\%	1.04\%	NR_Other
C \& D Debris Total				5.20\%	0.23\%	0.31\%	4.36\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		0.23\%	0.00\%	0.00\%	0.19\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics		0.21\%	0.00\%	0.28\%	0.19\%	NR_Other
Miscellaneous Inorganics Total				0.43\%	0.00\%	0.28\%	0.38\%	

Table 1-98
Staten Island Results at a Glance, Preliminary Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Notes	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries		0.92\%	0.00\%	0.00\%	0.76\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		0.01\%	0.00\%	0.74\%	0.06\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries		0.08\%	0.00\%	0.01\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products		0.04\%	0.00\%	0.00\%	0.04\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes		0.24\%	0.00\%	0.00\%	0.20\%	NR_Other
HHW Total				1.31\%	0.00\%	0.74\%	1.14\%	
Grand Total				100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(6)}$								
Material Group			Notes	Refuse	Paper	MGP	Waste	
Paper Total			7	936.01	684.87	14.72	1,570.53	
Plastic Total			7	553.86	13.08	91.06	667.12	
Glass Total			7	81.59	0.92	116.96	204.95	
Metal Total			8	199.13	2.02	161.51	371.25	
Organics Total				2,939.93	8.65	9.78	2,995.21	
Appliance/Elec				22.37	0.21	6.52	29.61	
C \& D Debris T				264.28	1.61	1.28	270.40	
Miscellaneous	Total			22.11	0.00	1.14	23.57	
HHW Total				66.64	0.01	3.01	70.62	
Grand Total				5,085.92	711.36	405.99	6,203.27	
Subtotals by Recycling Designation								
Recycling Designation				$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper				10.50\%	95.20\%	2.12\%	18.54\%	
Percent Designated MGP				6.71\%	0.64\%	82.89\%	11.27\%	
Percent Designated Recycling				17.21\%	95.84\%	85.01\%	29.81\%	

(1) In the PWCS, no distinction was made between \#3 through \#7 plastic bottles and tubs. PWCS results are shown here in the \#3 through \#7 bottle categories.
(2) In the PWCS, "Other Container Glass" was grouped with "Other Glass," and is shown here in the "Other Container Glass" category.
(3) In the PWCS, furniture and parts of furniture did not have their own categories. They were included in wood, textiles, or miscellaneous organic categories.
(4) In the PWCS, there was no category for "Appliances: Ferrous." PWCS results are shown here in the "Other Ferrous" category.
(5) In the PWCS, there was no category for "Appliances: Non-Ferrous." PWCS results are shown here in the "Other Non-Ferrous" category.
(6) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through June 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(7) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling.
(8) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

4.3 Boroughwide Results at a Glance, WCS Seasonal

Tables 1-99 through 1-118 present the results of the WCS for New York City's five Boroughs by season. They show the percentage of each material in the Refuse, MGP, Paper, and Waste streams in each of the four seasons (fall, winter, spring, and summer). These tables are useful for comparing the material composition of different streams at the Borough level from season to season.

Table 1-99

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	4.98\%	42.08\%	0.16\%	10.28\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.46\%	15.36\%	0.25\%	3.49\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.96\%	1.63\%	0.05\%	1.00\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	12.14\%	29.38\%	1.02\%	14.00\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.55\%	7.13\%	0.01\%	1.51\%	R Paper
Paper	Mixed Paper	Paper Bags	1.13\%	0.29\%	0.05\%	0.93\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.53\%	0.29\%	1.63\%	0.57\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	10.13\%	0.26\%	0.23\%	7.95\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.64\%	0.00\%	0.04\%	0.50\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.64\%	0.41\%	0.25\%	0.58\%	NR_Paper
Paper Total			33.17\%	96.83\%	3.70\%	40.82\%	
Plastic	PET Bottles	PET Bottles	1.00\%	0.03\%	4.50\%	1.09\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.25\%	0.00\%	2.17\%	0.34\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.37\%	0.00\%	2.38\%	0.45\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.09\%	0.00\%	0.22\%	0.09\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.07\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.00\%	0.26\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.21\%	0.00\%	0.81\%	0.22\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.00\%	0.07\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.01\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.44\%	0.00\%	0.16\%	0.35\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.64\%	0.08\%	0.06\%	0.51\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.97\%	0.04\%	1.29\%	0.85\%	PR_Plastics
Plastic	Film	Plastic Bags	3.24\%	0.41\%	0.54\%	2.63\%	PR_Plastics
Plastic	Film	Other Film	6.42\%	1.28\%	3.96\%	5.47\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.51\%	0.00\%	0.08\%	0.40\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.27\%	0.24\%	3.16\%	1.24\%	NR_Plastics
Plastic Total			15.54\%	2.09\%	19.84\%	13.79\%	
Glass	Container Glass	Clear Container Glass	1.19\%	0.01\%	7.00\%	1.41\%	R Glass
Glass	Container Glass	Green Container Glass	0.36\%	0.01\%	7.90\%	0.82\%	R Glass
Glass	Container Glass	Brown Container Glass	0.33\%	0.00\%	1.67\%	0.37\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.82\%	0.09\%	18.91\%	1.94\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.17\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.09\%	0.05\%	0.43\%	0.11\%	PR_Glass
Glass Total			2.79\%	0.16\%	36.08\%	4.66\%	

Table 1-99
Manhattan Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.21\%	0.00\%	0.32\%	0.19\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.56\%	0.00\%	0.62\%	0.48\%	R Metal
Metal	Aluminum	Other Aluminum	0.02\%	0.00\%	0.23\%	0.03\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.00\%	0.62\%	0.14\%	R Metal
Metal	Ferrous	Tin Food Cans	0.99\%	0.00\%	4.97\%	1.12\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.14\%	0.01\%	0.66\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	0.96\%	0.02\%	15.45\%	1.80\%	R Metal
Metal	Other Metal	Mixed Metals	0.33\%	0.00\%	2.79\%	0.45\%	R Metal
Metal Total			3.34\%	0.04\%	25.66\%	4.36\%	
Organics	Yard	Leaves and Grass	1.98\%	0.00\%	0.02\%	1.54\%	NR_Other
Organics	Yard	Prunings	0.28\%	0.00\%	0.00\%	0.22\%	NR_Other
Organics	Wood	Stumps/Limbs	0.02\%	0.00\%	0.00\%	0.01\%	NR_Other
Organics	Food	Food	21.32\%	0.06\%	0.63\%	16.68\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.72\%	0.11\%	0.16\%	0.59\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.04\%	0.00\%	0.02\%	0.03\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.36\%	0.01\%	0.15\%	1.07\%	NR_Other
Organics	Textiles	Clothing Textiles	2.95\%	0.03\%	0.09\%	2.31\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.03\%	0.00\%	0.00\%	0.80\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.79\%	0.01\%	0.02\%	2.96\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.16\%	0.00\%	0.01\%	0.90\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.29\%	0.00\%	0.07\%	0.23\%	NR_Other
Organics	Textiles	Shoes	0.51\%	0.00\%	0.02\%	0.40\%	NR_Other
Organics	Textiles	Other Leather Products	0.10\%	0.00\%	0.01\%	0.08\%	NR_Other
Organics	Misc. Organic	Fines	3.66\%	0.27\%	0.16\%	2.91\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.21\%	0.00\%	0.14\%	0.18\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.52\%	0.00\%	0.12\%	0.42\%	NR_Other
Organics Total			39.94\%	0.48\%	1.64\%	31.33\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.17\%	0.00\%	9.79\%	0.80\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.00\%	0.24\%	0.05\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.18\%	0.00\%	1.47\%	0.24\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.18\%	0.00\%	0.18\%	0.15\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	0.00\%	0.02\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.25\%	0.00\%	0.16\%	0.21\%	NR_Other
Appliance/Electronic Total			0.83\%	0.00\%	11.88\%	1.46\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.14\%	0.10\%	0.00\%	0.13\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	0.95\%	0.01\%	0.29\%	0.76\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.80\%	0.00\%	0.04\%	0.63\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.54\%	0.01\%	0.04\%	0.42\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.38\%	0.26\%	0.30\%	1.14\%	NR_Other
C \& D Debris Total			3.81\%	0.38\%	0.68\%	3.08\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.12\%	0.01\%	0.03\%	0.10\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.22\%	0.00\%	0.29\%	0.19\%	NR_Other
Miscellaneous Inorganics Total			0.34\%	0.01\%	0.31\%	0.29\%	

Table 1-99
Manhattan Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	0.00\%	0.13\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.04\%	0.00\%	0.01\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.00\%	0.03\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.05\%	0.00\%	0.01\%	0.04\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.01\%	0.02\%	NR_Other
HHW Total			0.24\%	0.00\%	0.21\%	0.20\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,163.25	1,798.34	30.90	4,992.49	
Plastic Tota			1,481.98	38.82	165.66	1,686.46	
Glass Total			265.92	2.97	301.23	570.12	
Metal Total			318.57	0.76	214.28	533.62	
Organics To			3,809.08	8.99	13.68	3,831.76	
Appliance/E			79.57	0.00	99.16	178.74	
C \& D Debris			363.55	7.01	5.65	376.21	
Miscellaneo	Total		32.24	0.23	2.63	35.10	
HHW Total			22.98	0.02	1.74	24.74	
Grand Tota			9,537.15	1,857.15	834.93	12,229.24	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			21.23\%	95.87\%	1.54\%	31.22\%	
Percent Designated MGP			8.41\%	0.47\%	82.03\%	12.23\%	
Percent Designated Recycling			29.64\%	96.34\%	83.57\%	43.45\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-100

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\begin{gathered} \hline \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.93\%	39.74\%	0.38\%	6.19\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.03\%	21.24\%	0.30\%	2.39\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.58\%	3.39\%	0.07\%	0.74\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.51\%	26.63\%	1.13\%	8.42\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.40\%	4.38\%	0.05\%	0.65\%	R Paper
Paper	Mixed Paper	Paper Bags	0.59\%	0.30\%	0.03\%	0.53\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.42\%	0.22\%	2.03\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.18\%	0.72\%	0.27\%	7.13\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.44\%	0.02\%	0.04\%	0.38\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.62\%	0.59\%	0.40\%	0.61\%	NR_Paper
Paper Total			23.70\%	97.24\%	4.69\%	27.55\%	
Plastic	PET Bottles	PET Bottles	0.87\%	0.03\%	4.76\%	1.07\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.35\%	0.01\%	3.17\%	0.51\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.36\%	0.01\%	3.03\%	0.51\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.30\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.10\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.00\%	0.24\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	0.00\%	0.30\%	0.18\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.00\%	0.08\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.03\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	0.01\%	0.21\%	0.24\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.70\%	0.04\%	0.10\%	0.61\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.63\%	0.07\%	1.26\%	0.64\%	PR_Plastics
Plastic	Film	Plastic Bags	3.15\%	0.13\%	0.61\%	2.77\%	PR_Plastics
Plastic	Film	Other Film	5.72\%	0.75\%	3.42\%	5.22\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.51\%	0.01\%	0.10\%	0.45\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.76\%	0.17\%	3.81\%	1.79\%	NR_Plastics
Plastic Total			14.65\%	1.24\%	21.69\%	14.19\%	
Glass	Container Glass	Clear Container Glass	1.28\%	0.05\%	6.14\%	1.51\%	R Glass
Glass	Container Glass	Green Container Glass	0.29\%	0.01\%	2.42\%	0.41\%	R Glass
Glass	Container Glass	Brown Container Glass	0.42\%	0.02\%	1.40\%	0.46\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.67\%	0.02\%	13.26\%	1.46\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.18\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.13\%	0.14\%	0.42\%	0.15\%	PR_Glass
Glass Total			2.80\%	0.23\%	23.81\%	4.02\%	

Table 1-100
Bronx Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.19\%	0.01\%	0.44\%	0.19\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.02\%	0.95\%	0.52\%	R Metal
Metal	Aluminum	Other Aluminum	0.05\%	0.00\%	0.15\%	0.05\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.04\%	0.61\%	0.15\%	R Metal
Metal	Ferrous	Tin Food Cans	1.15\%	0.02\%	7.44\%	1.49\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.14\%	0.02\%	0.70\%	0.17\%	R Metal
Metal	Ferrous	Other Ferrous	1.06\%	0.02\%	18.15\%	2.13\%	R Metal
Metal	Other Metal	Mixed Metals	0.47\%	0.03\%	3.38\%	0.63\%	R Metal
Metal Total			3.71\%	0.16\%	31.82\%	5.33\%	
Organics	Yard	Leaves and Grass	3.83\%	0.00\%	0.03\%	3.31\%	NR_Other
Organics	Yard	Prunings	0.71\%	0.00\%	0.01\%	0.61\%	NR_Other
Organics	Wood	Stumps/Limbs	0.08\%	0.00\%	0.00\%	0.07\%	NR_Other
Organics	Food	Food	24.72\%	0.17\%	1.04\%	21.44\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.96\%	0.01\%	0.25\%	0.85\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.06\%	0.00\%	0.02\%	0.05\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.57\%	0.05\%	0.19\%	1.37\%	NR_Other
Organics	Textiles	Clothing Textiles	3.65\%	0.13\%	0.08\%	3.17\%	NR_Other
Organics	Textiles	Carpet/Upholstery	0.97\%	0.00\%	0.00\%	0.84\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.37\%	0.07\%	0.06\%	3.79\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.09\%	0.00\%	0.01\%	0.94\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.26\%	0.00\%	0.08\%	0.23\%	NR_Other
Organics	Textiles	Shoes	0.69\%	0.01\%	0.06\%	0.60\%	NR_Other
Organics	Textiles	Other Leather Products	0.16\%	0.00\%	0.00\%	0.14\%	NR_Other
Organics	Misc. Organic	Fines	3.73\%	0.27\%	0.14\%	3.25\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.59\%	0.00\%	0.23\%	0.53\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.65\%	0.02\%	0.11\%	0.57\%	NR_Other
Organics Total			48.08\%	0.75\%	2.33\%	41.75\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.17\%	0.00\%	11.48\%	0.91\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.00\%	0.12\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.19\%	0.03\%	1.72\%	0.28\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.26\%	0.00\%	0.37\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.03\%	0.00\%	0.02\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.06\%	0.00\%	0.00\%	0.06\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.17\%	0.00\%	0.42\%	0.18\%	NR_Other
Appliance/Electronic Total			0.93\%	0.03\%	14.15\%	1.74\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.26\%	0.01\%	0.01\%	0.23\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.56\%	0.14\%	0.30\%	1.38\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.27\%	0.00\%	0.00\%	1.10\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.77\%	0.03\%	0.13\%	0.68\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.46\%	0.08\%	0.36\%	1.29\%	NR_Other
C \& D Debris Total			5.32\%	0.25\%	0.80\%	4.67\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.13\%	0.00\%	0.04\%	0.12\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.41\%	0.04\%	0.41\%	0.38\%	NR_Other
Miscellaneous Inorganics Total			0.54\%	0.04\%	0.45\%	0.50\%	

Table 1-100
Bronx Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.08\%	0.03\%	0.09\%	0.07\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.06\%	0.01\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.10\%	0.01\%	0.04\%	0.09\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.05\%	0.00\%	0.01\%	0.04\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.03\%	0.03\%	NR_Other
HHW Total			0.27\%	0.04\%	0.26\%	0.25\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			1,931.38	638.01	29.43	2,598.82	
Plastic Total			1,194.19	8.16	135.99	1,338.35	
Glass Total			227.94	1.52	149.32	378.79	
Metal Total			302.17	1.08	199.53	502.77	
Organics To			3,918.74	4.93	14.60	3,938.26	
Appliance/E			75.55	0.22	88.70	164.46	
C \& D Debris			433.47	1.66	4.99	440.13	
Miscellaneo	Total		44.24	0.29	2.81	47.35	
HHW Total			21.95	0.25	1.65	23.86	
Grand Tota			8,149.63	656.13	627.02	9,432.77	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	$\begin{aligned} & \hline \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	
Percent Designated Paper			14.04\%	95.68\%	1.95\%	18.92\%	
Percent Designated MGP			8.58\%	0.52\%	79.81\%	12.75\%	
Percent Designated Recycling			22.62\%	96.20\%	81.76\%	31.67\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-101

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{gathered} \hline \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.32\%	35.26\%	0.60\%	6.35\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.01\%	22.70\%	0.30\%	3.15\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.57\%	4.36\%	0.09\%	0.92\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	6.82\%	29.58\%	1.42\%	8.75\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.43\%	3.01\%	0.11\%	0.66\%	R Paper
Paper	Mixed Paper	Paper Bags	0.56\%	0.35\%	0.03\%	0.50\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.39\%	0.20\%	2.17\%	0.49\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	7.63\%	0.81\%	0.26\%	6.46\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.44\%	0.03\%	0.04\%	0.37\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.61\%	0.54\%	0.44\%	0.59\%	NR_Paper
Paper Total			21.78\%	96.85\%	5.46\%	28.25\%	
Plastic	PET Bottles	PET Bottles	0.77\%	0.03\%	5.41\%	1.00\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.31\%	0.01\%	3.10\%	0.46\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.32\%	0.01\%	3.10\%	0.47\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.26\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.00\%	0.24\%	0.05\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.00\%	0.30\%	0.14\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.00\%	0.09\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.01\%	0.08\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	0.00\%	0.19\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.71\%	0.05\%	0.12\%	0.60\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.59\%	0.09\%	1.35\%	0.59\%	PR_Plastics
Plastic	Film	Plastic Bags	2.84\%	0.09\%	0.67\%	2.42\%	PR_Plastics
Plastic	Film	Other Film	5.49\%	0.64\%	3.41\%	4.87\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.53\%	0.02\%	0.12\%	0.45\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.03\%	0.21\%	3.68\%	1.96\%	NR_Plastics
Plastic Total			14.12\%	1.17\%	22.35\%	13.37\%	
Glass	Container Glass	Clear Container Glass	1.26\%	0.05\%	6.87\%	1.51\%	R Glass
Glass	Container Glass	Green Container Glass	0.29\%	0.00\%	2.65\%	0.41\%	R Glass
Glass	Container Glass	Brown Container Glass	0.34\%	0.01\%	1.66\%	0.39\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.64\%	0.01\%	14.43\%	1.50\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.28\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.11\%	0.04\%	0.49\%	0.13\%	PR_Glass
Glass Total			2.65\%	0.10\%	26.38\%	3.97\%	

Table 1-101
Brooklyn Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.16\%	0.01\%	0.49\%	0.17\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.03\%	1.13\%	0.51\%	R Metal
Metal	Aluminum	Other Aluminum	0.08\%	0.01\%	0.10\%	0.08\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.07\%	0.07\%	0.50\%	0.10\%	R Metal
Metal	Ferrous	Tin Food Cans	0.86\%	0.01\%	8.30\%	1.27\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.02\%	0.67\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.16\%	0.03\%	16.67\%	2.08\%	R Metal
Metal	Other Metal	Mixed Metals	0.65\%	0.06\%	2.74\%	0.73\%	R Metal
Metal Total			3.63\%	0.23\%	30.60\%	5.09\%	
Organics	Yard	Leaves and Grass	5.17\%	0.00\%	0.03\%	4.31\%	NR_Other
Organics	Yard	Prunings	0.95\%	0.00\%	0.01\%	0.79\%	NR_Other
Organics	Wood	Stumps/Limbs	0.09\%	0.00\%	0.00\%	0.08\%	NR_Other
Organics	Food	Food	23.66\%	0.29\%	1.14\%	19.80\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.34\%	0.00\%	0.15\%	1.12\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.05\%	0.00\%	0.03\%	0.04\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.53\%	0.05\%	0.16\%	1.29\%	NR_Other
Organics	Textiles	Clothing Textiles	3.15\%	0.24\%	0.10\%	2.65\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.51\%	0.00\%	0.01\%	1.26\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.21\%	0.11\%	0.07\%	3.53\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.23\%	0.00\%	0.01\%	1.03\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.28\%	0.01\%	0.06\%	0.24\%	NR_Other
Organics	Textiles	Shoes	0.76\%	0.01\%	0.07\%	0.64\%	NR_Other
Organics	Textiles	Other Leather Products	0.16\%	0.00\%	0.00\%	0.14\%	NR_Other
Organics	Misc. Organic	Fines	3.55\%	0.35\%	0.15\%	3.00\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.96\%	0.00\%	0.06\%	0.81\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.56\%	0.03\%	0.14\%	0.48\%	NR_Other
Organics Total			49.18\%	1.09\%	2.19\%	41.21\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.21\%	0.00\%	9.32\%	0.79\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.00\%	0.05\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.18\%	0.02\%	1.43\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.29\%	0.00\%	0.26\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.07\%	0.00\%	0.01\%	0.06\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.11\%	0.00\%	0.00\%	0.09\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	0.00\%	0.50\%	0.20\%	NR_Other
Appliance/Electronic Total			1.11\%	0.02\%	11.59\%	1.70\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.25\%	0.00\%	0.02\%	0.21\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.89\%	0.30\%	0.12\%	1.61\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.80\%	0.00\%	0.00\%	1.50\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.89\%	0.03\%	0.23\%	0.76\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.76\%	0.07\%	0.20\%	1.49\%	NR_Other
C \& D Debris Total			6.59\%	0.40\%	0.57\%	5.57\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.18\%	0.01\%	0.04\%	0.15\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.48\%	0.08\%	0.48\%	0.44\%	NR_Other
Miscellaneous Inorganics Total			0.65\%	0.09\%	0.52\%	0.59\%	

Table 1-101
Brooklyn Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.02\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.10\%	0.03\%	0.12\%	0.09\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.08\%	0.01\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.01\%	0.05\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.00\%	0.01\%	0.04\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.04\%	0.03\%	NR_Other
HHW Total			0.29\%	0.04\%	0.34\%	0.26\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,710.01	1,993.34	74.48	5,777.82	
Plastic Tota			2,404.53	24.08	304.89	2,733.50	
Glass Total			450.80	2.14	359.78	812.72	
Metal Total			618.45	4.74	417.29	1,040.47	
Organics To			8,375.86	22.49	29.82	8,428.17	
Appliance/E			188.83	0.51	158.01	347.35	
C \& D Debri			1,122.20	8.24	7.81	1,138.25	
Miscellaneo	Total		111.24	1.78	7.10	120.11	
HHW Total			48.56	0.83	4.69	54.08	
Grand Tota			17,030.48	2,058.15	1,363.85	20,452.48	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste	
Percent Designated Paper			12.71\%	95.26\%	2.55\%	20.34\%	
Percent Designated MGP			8.20\%	0.55\%	79.63\%	12.19\%	
Percent Designated Recycling			20.91\%	95.81\%	82.18\%	32.53\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-102
Queens Results at a Glance, Fall 2004 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{gathered} \hline \text { \% of Waste } \\ \text { Stream } \end{gathered}$	Recycling Subindicator
Paper	ONP	Newspaper	3.10\%	40.87\%	0.65\%	7.37\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.08\%	18.30\%	0.42\%	3.06\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.57\%	3.49\%	0.10\%	0.88\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.62\%	30.28\%	1.49\%	9.85\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.38\%	2.68\%	0.06\%	0.63\%	R Paper
Paper	Mixed Paper	Paper Bags	0.57\%	0.35\%	0.04\%	0.51\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.35\%	0.15\%	2.12\%	0.45\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.37\%	0.79\%	0.27\%	6.89\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.67\%	0.03\%	0.04\%	0.55\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.68\%	0.46\%	0.42\%	0.64\%	NR_Paper
Paper Total			23.39\%	97.41\%	5.61\%	30.82\%	
Plastic	PET Bottles	PET Bottles	0.63\%	0.04\%	5.89\%	0.94\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.36\%	0.01\%	2.92\%	0.50\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.29\%	0.01\%	3.43\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.31\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.06\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.00\%	0.27\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.00\%	0.36\%	0.16\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.10\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.02\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	0.01\%	0.29\%	0.23\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.61\%	0.06\%	0.11\%	0.51\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.69\%	0.07\%	1.38\%	0.67\%	PR_Plastics
Plastic	Film	Plastic Bags	2.70\%	0.09\%	0.78\%	2.25\%	PR_Plastics
Plastic	Film	Other Film	5.42\%	0.61\%	3.24\%	4.69\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.59\%	0.01\%	0.14\%	0.49\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.17\%	0.25\%	3.61\%	2.04\%	NR_Plastics
Plastic Total			14.05\%	1.16\%	23.14\%	13.19\%	
Glass	Container Glass	Clear Container Glass	0.92\%	0.03\%	8.17\%	1.34\%	R Glass
Glass	Container Glass	Green Container Glass	0.22\%	0.01\%	3.56\%	0.44\%	R Glass
Glass	Container Glass	Brown Container Glass	0.22\%	0.02\%	2.25\%	0.34\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.50\%	0.01\%	14.09\%	1.44\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.20\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.13\%	0.02\%	0.56\%	0.15\%	PR_Glass
Glass Total			2.01\%	0.09\%	28.84\%	3.74\%	

Table 1-102
Queens Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.13\%	0.01\%	0.65\%	0.16\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.50\%	0.04\%	1.14\%	0.49\%	R Metal
Metal	Aluminum	Other Aluminum	0.06\%	0.01\%	0.14\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.09\%	0.04\%	0.62\%	0.12\%	R Metal
Metal	Ferrous	Tin Food Cans	0.63\%	0.03\%	8.01\%	1.10\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.11\%	0.01\%	0.70\%	0.14\%	R Metal
Metal	Ferrous	Other Ferrous	0.99\%	0.03\%	14.34\%	1.85\%	R Metal
Metal	Other Metal	Mixed Metals	0.47\%	0.04\%	2.74\%	0.58\%	R Metal
Metal Total			2.98\%	0.21\%	28.33\%	4.50\%	
Organics	Yard	Leaves and Grass	7.01\%	0.00\%	0.03\%	5.68\%	NR_Other
Organics	Yard	Prunings	2.01\%	0.00\%	0.02\%	1.63\%	NR_Other
Organics	Wood	Stumps/Limbs	0.23\%	0.00\%	0.00\%	0.19\%	NR_Other
Organics	Food	Food	21.48\%	0.21\%	1.34\%	17.51\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.08\%	0.01\%	0.09\%	0.88\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.08\%	0.00\%	0.01\%	0.06\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.65\%	0.09\%	0.17\%	1.36\%	NR_Other
Organics	Textiles	Clothing Textiles	2.88\%	0.12\%	0.07\%	2.35\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.30\%	0.00\%	0.01\%	1.05\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.92\%	0.07\%	0.10\%	3.19\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.44\%	0.00\%	0.01\%	1.17\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.33\%	0.00\%	0.07\%	0.27\%	NR_Other
Organics	Textiles	Shoes	0.67\%	0.01\%	0.09\%	0.55\%	NR_Other
Organics	Textiles	Other Leather Products	0.15\%	0.00\%	0.01\%	0.12\%	NR_Other
Organics	Misc. Organic	Fines	3.35\%	0.26\%	0.14\%	2.75\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.99\%	0.00\%	0.01\%	0.80\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.64\%	0.02\%	0.14\%	0.53\%	NR_Other
Organics Total			49.21\%	0.80\%	2.31\%	40.09\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.11\%	0.00\%	8.34\%	0.70\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.05\%	0.00\%	0.06\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.19\%	0.05\%	1.13\%	0.24\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.25\%	0.00\%	0.17\%	0.21\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.03\%	0.00\%	0.00\%	0.02\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.17\%	0.00\%	0.01\%	0.13\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	0.00\%	0.54\%	0.20\%	NR_Other
Appliance/Electronic Total			0.98\%	0.06\%	10.28\%	1.55\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.50\%	0.01\%	0.01\%	0.41\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.97\%	0.10\%	0.07\%	1.61\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.59\%	0.00\%	0.00\%	1.29\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.59\%	0.00\%	0.10\%	0.49\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.74\%	0.04\%	0.28\%	1.43\%	NR_Other
C \& D Debris Total			6.40\%	0.15\%	0.47\%	5.23\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.17\%	0.00\%	0.03\%	0.14\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.50\%	0.05\%	0.54\%	0.45\%	NR_Other
Miscellaneous Inorganics Total			0.67\%	0.05\%	0.57\%	0.59\%	

Table 1-102
Queens Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.02\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.03\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.14\%	0.08\%	0.13\%	0.13\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.10\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.03\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.00\%	0.05\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.03\%	0.00\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.05\%	0.03\%	NR_Other
HHW Total			0.31\%	0.08\%	0.43\%	0.29\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,552.23	2,152.68	76.72	5,781.64	
Plastic Tota			2,133.73	25.56	316.30	2,475.59	
Glass Total			305.06	1.92	394.18	701.16	
Metal Total			452.21	4.54	387.25	844.00	
Organics To			7,472.20	17.57	31.62	7,521.39	
Appliance/E			149.56	1.31	140.50	291.37	
C \& D Debris			971.68	3.38	6.41	981.46	
Miscellaneo	Total		101.92	1.02	7.86	110.80	
HHW Total			46.69	1.85	5.87	54.42	
Grand Tota			15,185.28	2,209.83	1,366.71	18,761.82	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			13.32\%	95.98\%	2.76\%	22.28\%	
Percent Designated MGP			6.64\%	0.48\%	79.39\%	11.21\%	
Percent Designated Recycling			19.95\%	96.46\%	82.14\%	33.50\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2005. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-103
Staten Island Results at a Glance, Fall 2004 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	2.67\%	47.84\%	0.75\%	8.95\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.05\%	16.87\%	0.47\%	3.26\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.48\%	2.29\%	0.07\%	0.70\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.58\%	28.26\%	1.41\%	10.07\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.44\%	1.22\%	0.02\%	0.52\%	R Paper
Paper	Mixed Paper	Paper Bags	0.49\%	0.24\%	0.05\%	0.42\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.30\%	0.08\%	1.80\%	0.38\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.33\%	0.69\%	0.27\%	6.66\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.81\%	0.02\%	0.05\%	0.64\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.69\%	0.45\%	0.39\%	0.63\%	NR_Paper
Paper Total			22.84\%	97.94\%	5.27\%	32.24\%	
Plastic	PET Bottles	PET Bottles	0.52\%	0.05\%	6.51\%	0.89\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.55\%	0.01\%	2.48\%	0.62\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.27\%	0.00\%	3.73\%	0.49\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.06\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.02\%	0.00\%	0.31\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.07\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.00\%	0.22\%	0.04\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	0.01\%	0.33\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.09\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.04\%	0.00\%	0.03\%	0.03\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.24\%	0.00\%	0.31\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.54\%	0.07\%	0.07\%	0.44\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.60\%	0.03\%	1.25\%	0.57\%	PR_Plastics
Plastic	Film	Plastic Bags	2.25\%	0.03\%	0.78\%	1.83\%	PR_Plastics
Plastic	Film	Other Film	4.87\%	0.47\%	2.66\%	4.08\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.71\%	0.00\%	0.14\%	0.57\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.68\%	0.31\%	3.86\%	2.42\%	NR_Plastics
Plastic Total			13.60\%	0.99\%	23.04\%	12.49\%	
Glass	Container Glass	Clear Container Glass	0.88\%	0.01\%	9.02\%	1.35\%	R Glass
Glass	Container Glass	Green Container Glass	0.14\%	0.00\%	3.46\%	0.36\%	R Glass
Glass	Container Glass	Brown Container Glass	0.13\%	0.01\%	2.77\%	0.30\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.45\%	0.00\%	12.45\%	1.26\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.00\%	0.15\%	0.04\%	R Glass
Glass	Other Glass	Other Glass	0.16\%	0.01\%	0.48\%	0.16\%	PR_Glass
Glass Total			1.79\%	0.04\%	28.33\%	3.47\%	

Table 1-103
Staten Island Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.11\%	0.01\%	0.89\%	0.15\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.47\%	0.04\%	1.20\%	0.46\%	R Metal
Metal	Aluminum	Other Aluminum	0.09\%	0.00\%	0.12\%	0.08\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.09\%	0.01\%	0.58\%	0.11\%	R Metal
Metal	Ferrous	Tin Food Cans	0.51\%	0.04\%	8.05\%	0.99\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.11\%	0.01\%	0.69\%	0.14\%	R Metal
Metal	Ferrous	Other Ferrous	0.98\%	0.03\%	14.12\%	1.80\%	R Metal
Metal	Other Metal	Mixed Metals	0.61\%	0.02\%	3.28\%	0.72\%	R Metal
Metal Total			2.96\%	0.14\%	28.95\%	4.46\%	
Organics	Yard	Leaves and Grass	9.41\%	0.00\%	0.01\%	7.39\%	NR_Other
Organics	Yard	Prunings	3.20\%	0.00\%	0.01\%	2.51\%	NR_Other
Organics	Wood	Stumps/Limbs	0.38\%	0.00\%	0.00\%	0.30\%	NR_Other
Organics	Food	Food	18.67\%	0.10\%	1.66\%	14.79\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.21\%	0.00\%	0.10\%	0.96\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.10\%	0.00\%	0.01\%	0.08\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.79\%	0.16\%	0.13\%	1.44\%	NR_Other
Organics	Textiles	Clothing Textiles	2.76\%	0.14\%	0.04\%	2.19\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.61\%	0.00\%	0.00\%	1.27\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.54\%	0.07\%	0.14\%	2.80\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.16\%	0.00\%	0.00\%	0.91\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.43\%	0.00\%	0.05\%	0.34\%	NR_Other
Organics	Textiles	Shoes	0.62\%	0.01\%	0.05\%	0.49\%	NR_Other
Organics	Textiles	Other Leather Products	0.09\%	0.00\%	0.00\%	0.07\%	NR_Other
Organics	Misc. Organic	Fines	3.15\%	0.14\%	0.13\%	2.50\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.11\%	0.00\%	0.00\%	0.87\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.73\%	0.00\%	0.15\%	0.58\%	NR_Other
Organics Total			49.97\%	0.63\%	2.49\%	39.49\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.11\%	0.00\%	8.61\%	0.72\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.07\%	0.00\%	0.02\%	0.06\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.24\%	0.03\%	0.95\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.24\%	0.00\%	0.19\%	0.20\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.14\%	0.00\%	0.01\%	0.11\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.10\%	0.00\%	0.72\%	0.13\%	NR_Other
Appliance/Electronic Total			0.92\%	0.03\%	10.49\%	1.49\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.78\%	0.00\%	0.00\%	0.62\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.10\%	0.03\%	0.05\%	1.66\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.27\%	0.00\%	0.00\%	1.00\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.51\%	0.00\%	0.14\%	0.41\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.09\%	0.01\%	0.06\%	1.65\%	NR_Other
C \& D Debris Total			6.76\%	0.05\%	0.26\%	5.33\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.19\%	0.00\%	0.05\%	0.15\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.64\%	0.01\%	0.67\%	0.55\%	NR_Other
Miscellaneous Inorganics Total			0.83\%	0.01\%	0.72\%	0.71\%	

Table 1-103
Staten Island Results at a Glance, Fall 2004 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.04\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.18\%	0.17\%	0.10\%	0.17\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.09\%	0.01\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.06\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.00\%	0.06\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.02\%	0.00\%	0.02\%	0.02\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.00\%	0.10\%	0.04\%	NR_Other
HHW Total			0.33\%	0.17\%	0.46\%	0.32\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			922.93	717.71	19.77	1,660.40	
Plastic Tota			549.45	7.24	86.46	643.15	
Glass Total			72.15	0.28	106.32	178.74	
Metal Total			119.78	1.06	108.65	229.50	
Organics To			2,019.63	4.62	9.35	2,033.61	
Appliance/E			37.11	0.24	39.38	76.73	
C \& D Debris			273.33	0.37	0.96	274.66	
Miscellaneo	Total		33.56	0.08	2.71	36.35	
HHW Total			13.35	1.24	1.72	16.31	
Grand Tota			4,041.30	732.83	375.32	5,149.44	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			12.70\%	96.71\%	2.76\%	23.93\%	
Percent Designated MGP			6.43\%	0.31\%	79.95\%	10.92\%	
Percent Designated Recycling			19.13\%	97.02\%	82.71\%	34.85\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-104
Manhattan Results at a Glance, Winter 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	4.81\%	39.12\%	0.29\%	9.29\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.38\%	8.47\%	0.10\%	2.28\%	R Paper
Paper	Mixed Paper	High Grade Paper	1.29\%	4.88\%	0.02\%	1.70\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	12.55\%	38.40\%	1.09\%	15.35\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.80\%	5.37\%	0.04\%	1.38\%	R Paper
Paper	Mixed Paper	Paper Bags	1.06\%	0.58\%	0.04\%	0.92\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.46\%	0.20\%	1.72\%	0.52\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.69\%	0.09\%	0.20\%	5.29\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.52\%	0.02\%	0.06\%	0.41\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.66\%	0.09\%	0.29\%	0.56\%	NR_Paper
Paper Total			30.21\%	97.23\%	3.85\%	37.70\%	
Plastic	PET Bottles	PET Bottles	1.14\%	0.03\%	5.34\%	1.29\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.28\%	0.01\%	2.46\%	0.40\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.34\%	0.00\%	2.61\%	0.46\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.02\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	0.01\%	0.17\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.00\%	0.04\%	0.03\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.04\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.00\%	0.33\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.19\%	0.00\%	0.42\%	0.18\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.03\%	0.03\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.11\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.34\%	0.01\%	0.27\%	0.29\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.56\%	0.03\%	0.06\%	0.45\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.96\%	0.02\%	1.18\%	0.84\%	PR_Plastics
Plastic	Film	Plastic Bags	3.42\%	0.17\%	0.60\%	2.76\%	PR_Plastics
Plastic	Film	Other Film	6.25\%	1.11\%	3.86\%	5.35\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.49\%	0.00\%	0.12\%	0.39\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.55\%	0.26\%	3.08\%	1.48\%	NR_Plastics
Plastic Total			15.71\%	1.67\%	20.75\%	14.11\%	
Glass	Container Glass	Clear Container Glass	1.19\%	0.10\%	6.01\%	1.38\%	R Glass
Glass	Container Glass	Green Container Glass	0.56\%	0.00\%	7.84\%	1.00\%	R Glass
Glass	Container Glass	Brown Container Glass	0.28\%	0.02\%	1.87\%	0.36\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.71\%	0.00\%	21.54\%	2.11\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.09\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.11\%	0.00\%	0.24\%	0.11\%	PR_Glass
Glass Total			2.86\%	0.13\%	37.60\%	4.98\%	

Table 1-104
Manhattan Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.28\%	0.00\%	0.40\%	0.25\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.54\%	0.00\%	0.57\%	0.46\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.01\%	0.02\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.14\%	0.00\%	0.58\%	0.15\%	R Metal
Metal	Ferrous	Tin Food Cans	0.89\%	0.01\%	5.13\%	1.07\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.11\%	0.00\%	0.61\%	0.13\%	R Metal
Metal	Ferrous	Other Ferrous	1.41\%	0.03\%	12.93\%	2.05\%	R Metal
Metal	Other Metal	Mixed Metals	1.03\%	0.01\%	4.11\%	1.11\%	R Metal
Metal Total			4.43\%	0.06\%	24.35\%	5.25\%	
Organics	Yard	Leaves and Grass	0.33\%	0.00\%	0.01\%	0.26\%	NR_Other
Organics	Yard	Prunings	0.66\%	0.00\%	0.00\%	0.52\%	NR_Other
Organics	Wood	Stumps/Limbs	0.02\%	0.00\%	0.00\%	0.01\%	NR_Other
Organics	Food	Food	20.76\%	0.19\%	0.98\%	16.45\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.09\%	0.00\%	0.13\%	0.87\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.47\%	0.06\%	0.08\%	0.38\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.55\%	0.02\%	0.11\%	1.23\%	NR_Other
Organics	Textiles	Clothing Textiles	2.29\%	0.08\%	0.11\%	1.82\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.85\%	0.00\%	0.00\%	1.46\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.50\%	0.02\%	0.01\%	2.76\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.42\%	0.00\%	0.00\%	1.12\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.18\%	0.15\%	0.03\%	0.17\%	NR_Other
Organics	Textiles	Shoes	0.61\%	0.00\%	0.04\%	0.48\%	NR_Other
Organics	Textiles	Other Leather Products	0.08\%	0.00\%	0.00\%	0.06\%	NR_Other
Organics	Misc. Organic	Fines	3.96\%	0.32\%	0.15\%	3.17\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.77\%	0.00\%	0.13\%	1.40\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.60\%	0.00\%	0.05\%	0.47\%	NR_Other
Organics Total			41.12\%	0.85\%	1.83\%	32.64\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.21\%	0.00\%	7.84\%	0.74\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.00\%	0.02\%	0.01\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.15\%	0.00\%	0.67\%	0.17\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.18\%	0.00\%	0.31\%	0.17\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	0.00\%	0.76\%	0.05\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.02\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.10\%	0.00\%	0.84\%	0.14\%	NR_Other
Appliance/Electronic Total			0.68\%	0.00\%	10.44\%	1.29\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.36\%	0.00\%	0.00\%	0.29\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.61\%	0.00\%	0.08\%	1.27\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.97\%	0.00\%	0.04\%	0.77\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.30\%	0.00\%	0.02\%	0.24\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	0.86\%	0.03\%	0.16\%	0.69\%	NR_Other
C \& D Debris Total			4.10\%	0.03\%	0.29\%	3.26\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.29\%	0.02\%	0.10\%	0.23\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.39\%	0.00\%	0.31\%	0.33\%	NR_Other
Miscellaneous Inorganics Total			0.67\%	0.02\%	0.41\%	0.56\%	

Table 1-104
Manhattan Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.02\%	0.00\%	0.37\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.00\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.00\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.05\%	0.02\%	NR_Other
HHW Total			0.22\%	0.00\%	0.49\%	0.21\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			2,799.01	1,602.28	32.68	4,433.97	
Plastic Total			1,455.79	27.59	176.12	1,659.49	
Glass Total			264.81	2.09	319.18	586.08	
Metal Total			410.08	0.98	206.69	617.75	
Organics To			3,809.82	14.00	15.52	3,839.34	
Appliance/E			63.02	0.03	88.60	151.66	
C \& D Debris			380.16	0.52	2.45	383.14	
Miscellaneo	Total		62.48	0.37	3.49	66.34	
HHW Total			20.18	0.01	4.16	24.35	
Grand Total			9,265.36	1,647.86	848.89	11,762.12	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			21.88\%	96.83\%	1.57\%	30.92\%	
Percent Designated MGP			9.62\%	0.43\%	81.71\%	13.53\%	
Percent Designated Recycling			31.50\%	97.27\%	83.28\%	44.45\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate eneration can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-105

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	4.01\%	37.02\%	0.73\%	6.04\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.35\%	17.87\%	0.28\%	2.40\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.76\%	4.33\%	0.02\%	0.96\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.97\%	30.10\%	1.10\%	9.02\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.46\%	5.50\%	0.07\%	0.78\%	R Paper
Paper	Mixed Paper	Paper Bags	0.65\%	0.31\%	0.04\%	0.59\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.38\%	0.49\%	1.91\%	0.49\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.07\%	0.26\%	0.28\%	5.30\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.35\%	0.03\%	0.06\%	0.31\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.66\%	0.24\%	0.37\%	0.61\%	NR_Paper
Paper Total			22.67\%	96.15\%	4.87\%	26.49\%	
Plastic	PET Bottles	PET Bottles	1.16\%	0.12\%	5.41\%	1.37\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.34\%	0.01\%	3.47\%	0.52\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.33\%	0.01\%	3.07\%	0.49\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.01\%	0.04\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	0.00\%	0.23\%	0.07\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.09\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.00\%	0.20\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.16\%	0.00\%	0.38\%	0.16\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.02\%	0.01\%	0.04\%	0.02\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.20\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.00\%	0.00\%	0.01\%	0.00\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	0.02\%	0.24\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.66\%	0.07\%	0.10\%	0.59\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.60\%	0.04\%	1.22\%	0.61\%	PR_Plastics
Plastic	Film	Plastic Bags	3.42\%	0.30\%	0.71\%	3.03\%	PR_Plastics
Plastic	Film	Other Film	5.54\%	0.83\%	3.06\%	5.06\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.52\%	0.03\%	0.14\%	0.47\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.01\%	0.49\%	3.48\%	2.00\%	NR_Plastics
Plastic Total			15.18\%	1.93\%	22.14\%	14.74\%	
Glass	Container Glass	Clear Container Glass	1.49\%	0.06\%	6.66\%	1.73\%	R Glass
Glass	Container Glass	Green Container Glass	0.31\%	0.00\%	2.87\%	0.46\%	R Glass
Glass	Container Glass	Brown Container Glass	0.37\%	0.01\%	1.51\%	0.42\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.63\%	0.00\%	15.66\%	1.57\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.09\%	0.01\%	R Glass
Glass	Other Glass	Other Glass	0.13\%	0.01\%	0.41\%	0.14\%	PR_Glass
Glass Total			2.95\%	0.08\%	27.21\%	4.33\%	

Table 1-105
Bronx Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.22\%	0.01\%	0.44\%	0.22\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.53\%	0.03\%	0.87\%	0.52\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.00\%	0.06\%	0.04\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.18\%	0.01\%	1.05\%	0.22\%	R Metal
Metal	Ferrous	Tin Food Cans	1.12\%	0.05\%	7.65\%	1.47\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.11\%	0.01\%	0.55\%	0.13\%	R Metal
Metal	Ferrous	Other Ferrous	1.43\%	0.04\%	14.89\%	2.21\%	R Metal
Metal	Other Metal	Mixed Metals	0.50\%	0.01\%	5.57\%	0.80\%	R Metal
Metal Total			4.12\%	0.16\%	31.09\%	5.61\%	
Organics	Yard	Leaves and Grass	0.75\%	0.00\%	0.00\%	0.65\%	NR_Other
Organics	Yard	Prunings	0.40\%	0.00\%	0.00\%	0.35\%	NR_Other
Organics	Wood	Stumps/Limbs	0.09\%	0.00\%	0.00\%	0.08\%	NR_Other
Organics	Food	Food	25.07\%	0.36\%	1.46\%	21.86\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.55\%	0.01\%	0.15\%	1.36\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.38\%	0.08\%	0.12\%	0.35\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.57\%	0.02\%	0.15\%	1.37\%	NR_Other
Organics	Textiles	Clothing Textiles	3.08\%	0.03\%	0.13\%	2.68\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.49\%	0.00\%	0.00\%	1.29\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.14\%	0.01\%	0.04\%	3.60\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.08\%	0.00\%	0.02\%	0.93\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.24\%	0.38\%	0.04\%	0.24\%	NR_Other
Organics	Textiles	Shoes	0.84\%	0.06\%	0.06\%	0.73\%	NR_Other
Organics	Textiles	Other Leather Products	0.11\%	0.00\%	0.00\%	0.10\%	NR_Other
Organics	Misc. Organic	Fines	4.36\%	0.59\%	0.18\%	3.83\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	2.11\%	0.00\%	0.06\%	1.84\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.62\%	0.00\%	0.02\%	0.54\%	NR_Other
Organics Total			47.89\%	1.55\%	2.44\%	41.79\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.40\%	0.00\%	9.27\%	0.95\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	0.00\%	0.04\%	0.02\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.11\%	0.00\%	0.69\%	0.14\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.19\%	0.01\%	0.23\%	0.18\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.04\%	0.00\%	0.05\%	0.04\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.17\%	0.00\%	0.01\%	0.15\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.05\%	0.01\%	0.92\%	0.11\%	NR_Other
Appliance/Electronic Total			0.98\%	0.02\%	11.20\%	1.58\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.36\%	0.01\%	0.00\%	0.31\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.08\%	0.00\%	0.06\%	1.81\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.11\%	0.00\%	0.05\%	0.97\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.56\%	0.00\%	0.02\%	0.48\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.04\%	0.08\%	0.25\%	0.93\%	NR_Other
C \& D Debris Total			5.15\%	0.10\%	0.39\%	4.49\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.19\%	0.01\%	0.08\%	0.17\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.59\%	0.01\%	0.37\%	0.53\%	NR_Other
Miscellaneous Inorganics Total			0.78\%	0.02\%	0.45\%	0.71\%	

Table 1-105
Bronx Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.07\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.04\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02\%	0.00\%	0.00\%	0.02\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.10\%	0.00\%	0.04\%	0.09\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.00\%	0.02\%	0.04\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.00\%	0.05\%	0.04\%	NR_Other
HHW Total			0.28\%	0.00\%	0.22\%	0.26\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			1,730.55	573.21	27.91	2,331.66	
Plastic Tota			1,158.66	11.52	126.93	1,297.11	
Glass Total			225.07	0.46	155.98	381.52	
Metal Total			314.18	0.94	178.25	493.37	
Organics To			3,654.90	9.24	13.97	3,678.11	
Appliance/E			75.05	0.10	64.23	139.38	
C \& D Debris			392.85	0.57	2.21	395.63	
Miscellaneo	Total		59.48	0.11	2.60	62.19	
HHW Total			21.29	0.03	1.27	22.60	
Grand Tota			7,632.04	596.17	573.35	8,801.56	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	$\begin{aligned} & \hline \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	
Percent Designated Paper			15.21\%	95.13\%	2.25\%	19.78\%	
Percent Designated MGP			9.56\%	0.86\%	81.05\%	13.63\%	
Percent Designated Recycling			24.77\%	95.99\%	83.30\%	33.41\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-106
Brooklyn Results at a Glance, Winter 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.75\%	36.71\%	1.10\%	6.95\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.24\%	17.86\%	0.33\%	2.88\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.59\%	2.64\%	0.03\%	0.76\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.58\%	31.81\%	1.23\%	9.64\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.48\%	6.61\%	0.13\%	1.09\%	R Paper
Paper	Mixed Paper	Paper Bags	0.60\%	0.34\%	0.05\%	0.54\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.37\%	0.39\%	2.27\%	0.50\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.25\%	0.24\%	0.34\%	5.23\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.37\%	0.04\%	0.07\%	0.31\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.61\%	0.23\%	0.46\%	0.56\%	NR_Paper
Paper Total			21.83\%	96.89\%	6.01\%	28.45\%	
Plastic	PET Bottles	PET Bottles	1.03\%	0.11\%	6.28\%	1.29\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.28\%	0.01\%	3.78\%	0.49\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.30\%	0.00\%	3.48\%	0.49\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.01\%	0.02\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.00\%	0.24\%	0.06\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.11\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.00\%	0.23\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.00\%	0.38\%	0.15\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.02\%	0.00\%	0.06\%	0.02\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.09\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.00\%	0.00\%	0.03\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	0.01\%	0.29\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.67\%	0.06\%	0.11\%	0.57\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.60\%	0.03\%	1.31\%	0.59\%	PR_Plastics
Plastic	Film	Plastic Bags	3.32\%	0.31\%	0.93\%	2.85\%	PR_Plastics
Plastic	Film	Other Film	5.34\%	0.72\%	3.13\%	4.72\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.56\%	0.03\%	0.18\%	0.48\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.96\%	0.24\%	3.05\%	1.86\%	NR_Plastics
Plastic Total			14.62\%	1.55\%	23.76\%	13.90\%	
Glass	Container Glass	Clear Container Glass	1.41\%	0.03\%	7.78\%	1.70\%	R Glass
Glass	Container Glass	Green Container Glass	0.31\%	0.00\%	3.09\%	0.47\%	R Glass
Glass	Container Glass	Brown Container Glass	0.32\%	0.00\%	2.02\%	0.41\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.56\%	0.00\%	16.68\%	1.60\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.12\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.16\%	0.01\%	0.50\%	0.17\%	PR_Glass
Glass Total			2.79\%	0.05\%	30.19\%	4.36\%	

Table 1-106
Brooklyn Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.19\%	0.01\%	0.49\%	0.20\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.03\%	1.07\%	0.50\%	R Metal
Metal	Aluminum	Other Aluminum	0.02\%	0.00\%	0.10\%	0.03\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.21\%	0.03\%	1.05\%	0.25\%	R Metal
Metal	Ferrous	Tin Food Cans	0.95\%	0.05\%	8.66\%	1.38\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.01\%	0.68\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.42\%	0.08\%	13.40\%	2.09\%	R Metal
Metal	Other Metal	Mixed Metals	0.55\%	0.00\%	3.27\%	0.68\%	R Metal
Metal Total			3.99\%	0.20\%	28.72\%	5.28\%	
Organics	Yard	Leaves and Grass	0.95\%	0.00\%	0.01\%	0.79\%	NR_Other
Organics	Yard	Prunings	0.41\%	0.00\%	0.00\%	0.34\%	NR_Other
Organics	Wood	Stumps/Limbs	0.09\%	0.00\%	0.00\%	0.08\%	NR_Other
Organics	Food	Food	25.29\%	0.31\%	1.74\%	21.13\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.83\%	0.02\%	0.14\%	1.53\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.23\%	0.06\%	0.12\%	0.21\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.66\%	0.01\%	0.09\%	1.38\%	NR_Other
Organics	Textiles	Clothing Textiles	2.80\%	0.03\%	0.11\%	2.34\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.55\%	0.00\%	0.01\%	1.29\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.22\%	0.00\%	0.06\%	3.51\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.38\%	0.00\%	0.04\%	1.14\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.31\%	0.10\%	0.05\%	0.27\%	NR_Other
Organics	Textiles	Shoes	0.82\%	0.10\%	0.10\%	0.70\%	NR_Other
Organics	Textiles	Other Leather Products	0.09\%	0.00\%	0.00\%	0.08\%	NR_Other
Organics	Misc. Organic	Fines	4.27\%	0.56\%	0.21\%	3.61\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.77\%	0.00\%	0.02\%	1.47\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.80\%	0.01\%	0.03\%	0.67\%	NR_Other
Organics Total			48.46\%	1.21\%	2.72\%	40.52\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.39\%	0.00\%	6.02\%	0.73\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.03\%	0.00\%	0.03\%	0.02\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.18\%	0.00\%	0.59\%	0.19\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.14\%	0.01\%	0.19\%	0.13\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.09\%	0.00\%	0.01\%	0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.43\%	0.00\%	0.02\%	0.35\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.05\%	0.01\%	0.56\%	0.08\%	NR_Other
Appliance/Electronic Total			1.31\%	0.03\%	7.42\%	1.59\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.37\%	0.02\%	0.00\%	0.30\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.22\%	0.00\%	0.04\%	1.85\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.27\%	0.00\%	0.02\%	1.05\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.60\%	0.00\%	0.02\%	0.50\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.50\%	0.05\%	0.24\%	1.27\%	NR_Other
C \& D Debris Total			5.95\%	0.06\%	0.33\%	4.97\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.23\%	0.00\%	0.09\%	0.19\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.57\%	0.01\%	0.42\%	0.50\%	NR_Other
Miscellaneous Inorganics Total			0.79\%	0.01\%	0.52\%	0.69\%	

Table 1-106
Brooklyn Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.10\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.04\%	0.00\%	0.07\%	0.04\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.11\%	0.00\%	0.05\%	0.09\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.02\%	0.00\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.07\%	0.02\%	NR_Other
HHW Total			0.26\%	0.00\%	0.33\%	0.24\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,327.85	1,825.04	74.92	5,227.82	
Plastic Tota			2,229.48	29.13	295.93	2,554.54	
Glass Total			424.79	0.90	376.08	801.78	
Metal Total			608.57	3.85	357.81	970.22	
Organics To			7,388.85	22.73	33.89	7,445.46	
Appliance/E			199.07	0.47	92.48	292.02	
C \& D Debris			907.88	1.16	4.12	913.16	
Miscellaneo	Total		120.84	0.26	6.44	127.54	
HHW Total			39.46	0.06	4.09	43.61	
Grand Tota			15,246.80	1,883.60	1,245.76	18,376.16	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			14.24\%	95.99\%	2.87\%	21.85\%	
Percent Designated MGP			9.01\%	0.76\%	80.28\%	13.00\%	
Percent Designated Recycling			23.25\%	96.75\%	83.15\%	34.85\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-107
Queens Results at a Glance, Winter 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{gathered} \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.65\%	41.13\%	1.11\%	8.18\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.14\%	14.85\%	0.36\%	2.81\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.76\%	1.62\%	0.03\%	0.81\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.38\%	32.34\%	1.37\%	10.85\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.52\%	4.70\%	0.12\%	1.02\%	R Paper
Paper	Mixed Paper	Paper Bags	0.61\%	0.33\%	0.06\%	0.53\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.35\%	0.55\%	2.19\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.92\%	0.34\%	0.31\%	5.58\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.60\%	0.03\%	0.08\%	0.49\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.67\%	0.43\%	0.41\%	0.62\%	NR_Paper
Paper Total			23.59\%	96.33\%	6.03\%	31.40\%	
Plastic	PET Bottles	PET Bottles	0.84\%	0.26\%	6.60\%	1.22\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.20\%	0.01\%	3.48\%	0.43\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.29\%	0.00\%	3.39\%	0.50\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.01\%	0.02\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.01\%	0.18\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.24\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	0.00\%	0.40\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.01\%	0.03\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.02\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	0.02\%	0.32\%	0.22\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.64\%	0.07\%	0.13\%	0.53\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.72\%	0.03\%	1.31\%	0.68\%	PR_Plastics
Plastic	Film	Plastic Bags	3.20\%	0.34\%	0.91\%	2.66\%	PR_Plastics
Plastic	Film	Other Film	4.96\%	0.68\%	2.79\%	4.25\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.66\%	0.04\%	0.18\%	0.54\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.86\%	0.15\%	3.05\%	1.73\%	NR_Plastics
Plastic Total			14.01\%	1.62\%	23.28\%	13.16\%	
Glass	Container Glass	Clear Container Glass	1.09\%	0.09\%	9.09\%	1.58\%	R Glass
Glass	Container Glass	Green Container Glass	0.29\%	0.00\%	3.87\%	0.53\%	R Glass
Glass	Container Glass	Brown Container Glass	0.23\%	0.01\%	2.05\%	0.34\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.45\%	0.00\%	15.78\%	1.58\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.17\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.14\%	0.02\%	0.60\%	0.16\%	PR_Glass
Glass Total			2.20\%	0.12\%	31.56\%	4.22\%	

Table 1-107
Queens Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.21\%	0.01\%	0.68\%	0.22\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.51\%	0.04\%	1.06\%	0.49\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.07\%	0.03\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.24\%	0.00\%	0.93\%	0.27\%	R Metal
Metal	Ferrous	Tin Food Cans	0.73\%	0.10\%	8.26\%	1.23\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.00\%	0.63\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.53\%	0.04\%	13.93\%	2.30\%	R Metal
Metal	Other Metal	Mixed Metals	0.46\%	0.00\%	2.79\%	0.59\%	R Metal
Metal Total			3.84\%	0.20\%	28.37\%	5.28\%	
Organics	Yard	Leaves and Grass	1.70\%	0.00\%	0.00\%	1.36\%	NR_Other
Organics	Yard	Prunings	0.96\%	0.00\%	0.00\%	0.76\%	NR_Other
Organics	Wood	Stumps/Limbs	0.33\%	0.00\%	0.00\%	0.26\%	NR_Other
Organics	Food	Food	23.75\%	0.67\%	1.65\%	19.12\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.66\%	0.01\%	0.09\%	1.33\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.25\%	0.04\%	0.08\%	0.21\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.70\%	0.02\%	0.10\%	1.36\%	NR_Other
Organics	Textiles	Clothing Textiles	2.56\%	0.04\%	0.12\%	2.05\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.99\%	0.00\%	0.00\%	1.58\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.19\%	0.00\%	0.07\%	3.34\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.90\%	0.00\%	0.03\%	1.52\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.25\%	0.02\%	0.04\%	0.21\%	NR_Other
Organics	Textiles	Shoes	0.75\%	0.10\%	0.08\%	0.62\%	NR_Other
Organics	Textiles	Other Leather Products	0.06\%	0.00\%	0.00\%	0.05\%	NR_Other
Organics	Misc. Organic	Fines	3.94\%	0.73\%	0.22\%	3.24\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.74\%	0.00\%	0.02\%	1.39\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.90\%	0.00\%	0.03\%	0.72\%	NR_Other
Organics Total			48.61\%	1.65\%	2.56\%	39.11\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.26\%	0.00\%	5.38\%	0.63\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.00\%	0.02\%	0.01\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.17\%	0.00\%	0.72\%	0.19\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.17\%	0.01\%	0.26\%	0.16\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.09\%	0.00\%	0.04\%	0.07\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.27\%	0.00\%	0.00\%	0.21\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.07\%	0.01\%	0.56\%	0.10\%	NR_Other
Appliance/Electronic Total			1.04\%	0.02\%	6.99\%	1.38\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.51\%	0.01\%	0.00\%	0.40\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.12\%	0.00\%	0.03\%	1.69\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.97\%	0.00\%	0.03\%	0.78\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.44\%	0.00\%	0.03\%	0.35\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.58\%	0.02\%	0.18\%	1.28\%	NR_Other
C \& D Debris Total			5.62\%	0.04\%	0.26\%	4.50\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.26\%	0.00\%	0.12\%	0.22\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.55\%	0.02\%	0.54\%	0.48\%	NR_Other
Miscellaneous Inorganics Total			0.82\%	0.02\%	0.66\%	0.70\%	

Table 1-107
Queens Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.07\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.04\%	0.00\%	0.06\%	0.04\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.00\%	0.05\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.03\%	0.00\%	0.03\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.07\%	0.03\%	NR_Other
HHW Total			0.28\%	0.01\%	0.28\%	0.24\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,078.98	1,990.75	76.68	5,146.41	
Plastic Tota			1,827.86	33.52	296.26	2,157.63	
Glass Total			286.98	2.46	401.56	691.00	
Metal Total			500.82	4.11	360.97	865.90	
Organics To			6,343.95	34.02	32.59	6,410.57	
Appliance/E			136.24	0.41	89.00	225.66	
C \& D Debris			733.71	0.79	3.32	737.82	
Miscellaneo	Total		106.61	0.39	8.43	115.42	
HHW Total			36.14	0.18	3.57	39.89	
Grand Tota			13,051.30	2,066.62	1,272.39	16,390.31	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			15.06\%	94.98\%	3.05\%	24.20\%	
Percent Designated MGP			7.85\%	1.12\%	80.39\%	12.64\%	
Percent Designated Recycling			22.91\%	96.10\%	83.44\%	36.84\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-108
Staten Island Results at a Glance, Winter 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.24\%	43.95\%	1.51\%	9.36\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.27\%	14.89\%	0.39\%	3.30\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.88\%	0.77\%	0.02\%	0.79\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.50\%	30.61\%	1.32\%	11.33\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.49\%	2.52\%	0.10\%	0.77\%	R Paper
Paper	Mixed Paper	Paper Bags	0.52\%	0.24\%	0.06\%	0.44\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.34\%	0.87\%	1.89\%	0.55\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	7.28\%	0.49\%	0.34\%	5.69\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.84\%	0.01\%	0.06\%	0.65\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.84\%	0.60\%	0.37\%	0.77\%	NR_Paper
Paper Total			24.20\%	94.94\%	6.05\%	33.65\%	
Plastic	PET Bottles	PET Bottles	0.76\%	0.53\%	7.09\%	1.23\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.15\%	0.01\%	3.08\%	0.36\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.29\%	0.00\%	3.47\%	0.50\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.01\%	0.12\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.06\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.15\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.01\%	0.23\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	0.00\%	0.44\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.02\%	0.02\%	0.04\%	0.02\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.03\%	0.00\%	0.01\%	0.03\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	0.03\%	0.37\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.62\%	0.09\%	0.16\%	0.50\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.75\%	0.02\%	1.19\%	0.67\%	PR_Plastics
Plastic	Film	Plastic Bags	2.90\%	0.49\%	0.95\%	2.38\%	PR_Plastics
Plastic	Film	Other Film	4.26\%	0.53\%	2.30\%	3.53\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.84\%	0.05\%	0.18\%	0.66\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.24\%	0.07\%	2.93\%	1.96\%	NR_Plastics
Plastic Total			13.45\%	1.86\%	22.81\%	12.41\%	
Glass	Container Glass	Clear Container Glass	1.00\%	0.16\%	10.58\%	1.63\%	R Glass
Glass	Container Glass	Green Container Glass	0.19\%	0.00\%	3.60\%	0.43\%	R Glass
Glass	Container Glass	Brown Container Glass	0.16\%	0.02\%	2.02\%	0.29\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.32\%	0.00\%	13.17\%	1.29\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.18\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.13\%	0.03\%	0.67\%	0.15\%	PR_Glass
Glass Total			1.80\%	0.21\%	30.23\%	3.81\%	

Table 1-108
Staten Island Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.23\%	0.01\%	0.95\%	0.25\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.55\%	0.06\%	1.16\%	0.52\%	R Metal
Metal	Aluminum	Other Aluminum	0.02\%	0.01\%	0.05\%	0.02\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.29\%	0.00\%	1.05\%	0.30\%	R Metal
Metal	Ferrous	Tin Food Cans	0.60\%	0.19\%	8.21\%	1.14\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.00\%	0.57\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.57\%	0.04\%	16.05\%	2.48\%	R Metal
Metal	Other Metal	Mixed Metals	0.41\%	0.00\%	2.40\%	0.51\%	R Metal
Metal Total			3.80\%	0.31\%	30.42\%	5.37\%	
Organics	Yard	Leaves and Grass	2.84\%	0.00\%	0.00\%	2.18\%	NR_Other
Organics	Yard	Prunings	1.38\%	0.00\%	0.00\%	1.06\%	NR_Other
Organics	Wood	Stumps/Limbs	0.73\%	0.00\%	0.00\%	0.56\%	NR_Other
Organics	Food	Food	22.00\%	1.29\%	1.50\%	17.19\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	2.08\%	0.00\%	0.09\%	1.60\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.24\%	0.01\%	0.04\%	0.19\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.54\%	0.01\%	0.09\%	1.19\%	NR_Other
Organics	Textiles	Clothing Textiles	2.45\%	0.06\%	0.06\%	1.89\%	NR_Other
Organics	Textiles	Carpet/Upholstery	2.40\%	0.00\%	0.01\%	1.84\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.18\%	0.00\%	0.09\%	3.22\%	NR_Other
Organics	Misc. Organic	Animal By-Products	2.22\%	0.00\%	0.01\%	1.70\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.20\%	0.00\%	0.03\%	0.16\%	NR_Other
Organics	Textiles	Shoes	0.74\%	0.11\%	0.05\%	0.59\%	NR_Other
Organics	Textiles	Other Leather Products	0.07\%	0.00\%	0.01\%	0.05\%	NR_Other
Organics	Misc. Organic	Fines	3.63\%	1.12\%	0.19\%	2.97\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.63\%	0.00\%	0.03\%	1.25\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.98\%	0.00\%	0.04\%	0.75\%	NR_Other
Organics Total			49.31\%	2.61\%	2.24\%	38.41\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.23\%	0.00\%	5.00\%	0.57\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.00\%	0.01\%	0.00\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.14\%	0.00\%	0.93\%	0.18\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.23\%	0.00\%	0.36\%	0.20\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.02\%	0.00\%	0.00\%	0.02\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.21\%	0.00\%	0.00\%	0.16\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.02\%	0.02\%	0.71\%	0.08\%	NR_Other
Appliance/Electronic Total			0.86\%	0.02\%	7.02\%	1.22\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.71\%	0.00\%	0.00\%	0.54\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.92\%	0.00\%	0.01\%	1.47\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.02\%	0.00\%	0.01\%	0.79\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.22\%	0.00\%	0.02\%	0.17\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.60\%	0.00\%	0.04\%	1.23\%	NR_Other
C \& D Debris Total			5.48\%	0.01\%	0.07\%	4.21\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.28\%	0.00\%	0.14\%	0.23\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.59\%	0.02\%	0.74\%	0.51\%	NR_Other
Miscellaneous Inorganics Total			0.87\%	0.02\%	0.88\%	0.74\%	

Table 1-108
Staten Island Results at a Glance, Winter 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.02\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.02\%	0.00\%	0.07\%	0.02\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.06\%	0.00\%	0.03\%	0.05\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.01\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.01\%	0.03\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.05\%	0.00\%	0.12\%	0.05\%	NR_Other
HHW Total			0.23\%	0.01\%	0.27\%	0.20\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			807.74	635.50	20.84	1,464.08	
Plastic Total			448.73	12.48	78.55	539.75	
Glass Total			60.13	1.39	104.08	165.59	
Metal Total			126.96	2.09	104.76	233.81	
Organics To			1,645.82	17.50	7.72	1,671.03	
Appliance/E			28.68	0.12	24.17	52.96	
C \& D Debris			182.76	0.04	0.24	183.04	
Miscellaneo	Total		29.00	0.15	3.03	32.18	
HHW Total			7.57	0.08	0.94	8.59	
Grand Tota			3,337.37	669.34	344.33	4,351.04	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	
Percent Designated Paper			14.90\%	92.97\%	3.39\%	26.00\%	
Percent Designated MGP			7.27\%	1.90\%	80.53\%	12.24\%	
Percent Designated Recycling			22.17\%	94.88\%	83.92\%	38.24\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-109
Manhattan Results at a Glance, Spring 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	5.58\%	50.41\%	0.36\%	11.49\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.60\%	12.20\%	0.09\%	2.98\%	R Paper
Paper	Mixed Paper	High Grade Paper	1.11\%	2.06\%	0.06\%	1.17\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	10.44\%	30.87\%	1.28\%	12.65\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.78\%	1.17\%	0.03\%	0.78\%	R Paper
Paper	Mixed Paper	Paper Bags	1.04\%	0.50\%	0.05\%	0.89\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.58\%	0.15\%	1.59\%	0.59\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.64\%	0.46\%	0.22\%	5.32\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.42\%	0.02\%	0.04\%	0.33\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.57\%	0.25\%	0.20\%	0.50\%	NR_Paper
Paper Total			28.74\%	98.11\%	3.92\%	36.70\%	
Plastic	PET Bottles	PET Bottles	1.03\%	0.01\%	5.52\%	1.21\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.30\%	0.00\%	2.28\%	0.40\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.32\%	0.00\%	2.81\%	0.45\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.08\%	0.00\%	0.15\%	0.07\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.00\%	0.10\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.08\%	0.00\%	0.00\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.20\%	0.00\%	0.29\%	0.18\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.09\%	0.00\%	0.04\%	0.07\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	0.00\%	0.07\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.42\%	0.00\%	0.28\%	0.35\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.59\%	0.02\%	0.07\%	0.48\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.04\%	0.01\%	1.34\%	0.92\%	PR_Plastics
Plastic	Film	Plastic Bags	4.21\%	0.15\%	0.66\%	3.39\%	PR_Plastics
Plastic	Film	Other Film	6.03\%	0.49\%	3.78\%	5.09\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.47\%	0.00\%	0.15\%	0.39\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.59\%	0.16\%	3.47\%	1.52\%	NR_Plastics
Plastic Total			16.58\%	0.84\%	21.08\%	14.70\%	
Glass	Container Glass	Clear Container Glass	0.84\%	0.00\%	6.83\%	1.15\%	R Glass
Glass	Container Glass	Green Container Glass	0.37\%	0.00\%	8.88\%	0.92\%	R Glass
Glass	Container Glass	Brown Container Glass	0.27\%	0.00\%	1.55\%	0.33\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.63\%	0.00\%	26.24\%	2.37\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.00\%	0.21\%	0.04\%	R Glass
Glass	Other Glass	Other Glass	0.17\%	0.00\%	0.12\%	0.14\%	PR_Glass
Glass Total			2.31\%	0.01\%	43.82\%	4.95\%	

Table 1-109

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.20\%	0.00\%	0.32\%	0.18\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.64\%	0.00\%	0.60\%	0.54\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.00\%	0.60\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	0.00\%	0.42\%	0.13\%	R Metal
Metal	Ferrous	Tin Food Cans	0.94\%	0.00\%	5.41\%	1.13\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.00\%	0.61\%	0.14\%	R Metal
Metal	Ferrous	Other Ferrous	1.21\%	0.01\%	11.07\%	1.74\%	R Metal
Metal	Other Metal	Mixed Metals	0.59\%	0.00\%	3.82\%	0.74\%	R Metal
Metal Total			3.86\%	0.02\%	22.84\%	4.68\%	
Organics	Yard	Leaves and Grass	2.01\%	0.00\%	0.01\%	1.59\%	NR_Other
Organics	Yard	Prunings	0.46\%	0.00\%	0.00\%	0.36\%	NR_Other
Organics	Wood	Stumps/Limbs	0.06\%	0.00\%	0.00\%	0.05\%	NR_Other
Organics	Food	Food	19.93\%	0.06\%	1.46\%	15.83\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.90\%	0.00\%	0.04\%	0.71\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.10\%	0.00\%	0.00\%	0.08\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.25\%	0.39\%	0.04\%	1.04\%	NR_Other
Organics	Textiles	Clothing Textiles	2.88\%	0.01\%	0.05\%	2.27\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.21\%	0.00\%	0.00\%	0.95\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.68\%	0.01\%	0.02\%	2.90\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.11\%	0.01\%	0.02\%	0.87\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.47\%	0.00\%	0.08\%	0.38\%	NR_Other
Organics	Textiles	Shoes	0.69\%	0.00\%	0.07\%	0.55\%	NR_Other
Organics	Textiles	Other Leather Products	0.08\%	0.00\%	0.00\%	0.07\%	NR_Other
Organics	Misc. Organic	Fines	5.51\%	0.20\%	0.21\%	4.39\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.29\%	0.00\%	0.36\%	1.04\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.62\%	0.00\%	0.12\%	0.50\%	NR_Other
Organics Total			42.25\%	0.68\%	2.50\%	33.59\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.18\%	0.00\%	2.41\%	0.31\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.00\%	0.01\%	0.01\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.16\%	0.00\%	0.91\%	0.19\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.10\%	0.00\%	0.26\%	0.10\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	0.00\%	0.37\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.10\%	0.15\%	0.51\%	0.13\%	NR_Other
Appliance/Electronic Total			0.56\%	0.15\%	4.48\%	0.78\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.73\%	0.00\%	0.06\%	0.58\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.39\%	0.00\%	0.09\%	1.10\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.75\%	0.00\%	0.01\%	0.59\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.55\%	0.00\%	0.21\%	0.45\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.37\%	0.18\%	0.24\%	1.12\%	NR_Other
C \& D Debris Total			4.79\%	0.18\%	0.61\%	3.85\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.26\%	0.00\%	0.08\%	0.21\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.41\%	0.00\%	0.37\%	0.35\%	NR_Other
Miscellaneous Inorganics Total			0.67\%	0.00\%	0.45\%	0.56\%	

Table 1-109
Manhattan Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.11\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.05\%	0.00\%	0.01\%	0.04\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.07\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.10\%	0.00\%	0.03\%	0.08\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.00\%	0.05\%	0.03\%	NR_Other
HHW Total			0.23\%	0.00\%	0.30\%	0.21\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			2,722.03	1,651.71	33.59	4,407.33	
Plastic Tota			1,570.69	14.18	180.43	1,765.31	
Glass Total			219.13	0.18	375.10	594.41	
Metal Total			365.76	0.39	195.55	561.70	
Organics To			4,001.12	11.43	21.40	4,033.95	
Appliance/E			52.61	2.51	38.35	93.47	
C \& D Debris			453.65	3.11	5.22	461.98	
Miscellaneo	Total		63.69	0.00	3.82	67.51	
HHW Total			22.21	0.02	2.55	24.79	
Grand Tota			9,470.90	1,683.54	856.02	12,010.45	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			20.54\%	97.22\%	1.87\%	29.96\%	
Percent Designated MGP			8.42\%	0.19\%	81.16\%	12.45\%	
Percent Designated Recycling			28.96\%	97.41\%	83.03\%	42.41\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-110

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{gathered} \hline \text { \% of Waste } \\ \text { Stream } \end{gathered}$	Recycling Subindicator
Paper	ONP	Newspaper	4.02\%	39.01\%	0.38\%	6.04\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.04\%	15.80\%	0.18\%	1.93\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.54\%	3.50\%	0.04\%	0.70\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.11\%	31.63\%	1.53\%	8.33\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.45\%	2.90\%	0.04\%	0.58\%	R Paper
Paper	Mixed Paper	Paper Bags	0.58\%	0.35\%	0.04\%	0.53\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.47\%	0.41\%	1.75\%	0.55\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.63\%	2.56\%	0.24\%	5.08\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.33\%	0.02\%	0.04\%	0.29\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.55\%	0.79\%	0.34\%	0.55\%	NR_Paper
Paper Total			20.72\%	96.97\%	4.60\%	24.60\%	
Plastic	PET Bottles	PET Bottles	0.95\%	0.03\%	5.84\%	1.21\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.32\%	0.01\%	3.47\%	0.51\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.33\%	0.01\%	3.41\%	0.51\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.08\%	0.00\%	0.20\%	0.08\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.03\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.07\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.09\%	0.00\%	0.13\%	0.08\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.00\%	0.38\%	0.15\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06\%	0.00\%	0.05\%	0.05\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.03\%	0.00\%	0.09\%	0.03\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.00\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.29\%	0.01\%	0.31\%	0.27\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.63\%	0.02\%	0.10\%	0.56\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.70\%	0.04\%	1.29\%	0.70\%	PR_Plastics
Plastic	Film	Plastic Bags	4.08\%	0.19\%	0.85\%	3.62\%	PR_Plastics
Plastic	Film	Other Film	5.78\%	0.75\%	3.15\%	5.28\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.52\%	0.02\%	0.19\%	0.46\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.74\%	0.44\%	4.38\%	1.83\%	NR_Plastics
Plastic Total			15.80\%	1.52\%	23.97\%	15.41\%	
Glass	Container Glass	Clear Container Glass	1.15\%	0.03\%	7.95\%	1.52\%	R Glass
Glass	Container Glass	Green Container Glass	0.25\%	0.00\%	3.12\%	0.42\%	R Glass
Glass	Container Glass	Brown Container Glass	0.30\%	0.00\%	1.48\%	0.36\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.54\%	0.03\%	17.72\%	1.63\%	R Glass
Glass	Container Glass	Other Container Glass	0.04\%	0.00\%	0.18\%	0.04\%	R Glass
Glass	Other Glass	Other Glass	0.22\%	0.02\%	0.24\%	0.21\%	PR_Glass
Glass Total			2.50\%	0.08\%	30.70\%	4.18\%	

Table 1-110
Bronx Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.19\%	0.00\%	0.52\%	0.20\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.60\%	0.01\%	0.90\%	0.58\%	R Metal
Metal	Aluminum	Other Aluminum	0.05\%	0.00\%	1.07\%	0.12\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.10\%	0.00\%	0.77\%	0.14\%	R Metal
Metal	Ferrous	Tin Food Cans	1.15\%	0.03\%	7.73\%	1.51\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.01\%	0.66\%	0.14\%	R Metal
Metal	Ferrous	Other Ferrous	1.28\%	0.04\%	14.25\%	2.04\%	R Metal
Metal	Other Metal	Mixed Metals	0.45\%	0.02\%	4.26\%	0.67\%	R Metal
Metal Total			3.93\%	0.10\%	30.16\%	5.40\%	
Organics	Yard	Leaves and Grass	3.35\%	0.00\%	0.01\%	2.92\%	NR_Other
Organics	Yard	Prunings	0.60\%	0.00\%	0.01\%	0.52\%	NR_Other
Organics	Wood	Stumps/Limbs	0.18\%	0.00\%	0.00\%	0.16\%	NR_Other
Organics	Food	Food	22.93\%	0.35\%	1.72\%	20.09\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.99\%	0.00\%	0.07\%	0.87\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.21\%	0.01\%	0.04\%	0.19\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.37\%	0.11\%	0.06\%	1.21\%	NR_Other
Organics	Textiles	Clothing Textiles	3.62\%	0.03\%	0.08\%	3.16\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.17\%	0.00\%	0.00\%	1.01\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.90\%	0.05\%	0.06\%	3.40\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.02\%	0.00\%	0.02\%	0.89\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.57\%	0.00\%	0.14\%	0.50\%	NR_Other
Organics	Textiles	Shoes	0.86\%	0.00\%	0.10\%	0.75\%	NR_Other
Organics	Textiles	Other Leather Products	0.14\%	0.00\%	0.01\%	0.13\%	NR_Other
Organics	Misc. Organic	Fines	5.73\%	0.27\%	0.19\%	5.02\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.40\%	0.00\%	0.19\%	1.23\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.68\%	0.00\%	0.07\%	0.59\%	NR_Other
Organics Total			48.74\%	0.82\%	2.77\%	42.64\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.28\%	0.00\%	4.57\%	0.55\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.00\%	0.04\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.27\%	0.01\%	0.72\%	0.28\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.18\%	0.00\%	0.24\%	0.17\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.02\%	0.00\%	0.05\%	0.02\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.12\%	0.01\%	0.50\%	0.14\%	NR_Other
Appliance/Electronic Total			0.91\%	0.03\%	6.14\%	1.19\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.88\%	0.00\%	0.02\%	0.77\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1.76\%	0.01\%	0.15\%	1.54\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.08\%	0.01\%	0.03\%	0.94\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.10\%	0.00\%	0.18\%	0.97\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.70\%	0.45\%	0.35\%	1.53\%	NR_Other
C \& D Debris Total			6.53\%	0.48\%	0.73\%	5.76\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.24\%	0.00\%	0.12\%	0.22\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.36\%	0.00\%	0.47\%	0.34\%	NR_Other
Miscellaneous Inorganics Total			0.60\%	0.00\%	0.60\%	0.56\%	

Table 1-110
Bronx Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.02\%	0.00\%	0.04\%	0.02\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.06\%	0.01\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.01\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.09\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.13\%	0.00\%	0.03\%	0.12\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.00\%	0.10\%	0.04\%	NR_Other
HHW Total			0.27\%	0.01\%	0.34\%	0.26\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			1,742.17	605.65	29.00	2,376.82	
Plastic Total			1,327.81	9.46	151.16	1,488.44	
Glass Total			209.77	0.53	193.60	403.90	
Metal Total			330.77	0.66	190.19	521.61	
Organics To			4,096.89	5.11	17.44	4,119.44	
Appliance/E			76.54	0.16	38.72	115.42	
C \& D Debris			548.85	2.97	4.61	556.43	
Miscellaneo	Total		50.60	0.02	3.76	54.37	
HHW Total			23.07	0.04	2.14	25.25	
Grand Tota			8,406.47	624.61	630.61	9,661.69	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			13.74\%	93.19\%	2.22\%	18.12\%	
Percent Designated MGP			8.60\%	0.63\%	79.70\%	12.73\%	
Percent Designated Recycling			22.34\%	93.81\%	81.92\%	30.85\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-111
Brooklyn Results at a Glance, Spring 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.63\%	39.30\%	0.51\%	6.77\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.04\%	13.06\%	0.22\%	2.12\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.51\%	4.87\%	0.05\%	0.89\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.04\%	32.44\%	1.83\%	9.07\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.50\%	3.28\%	0.05\%	0.73\%	R Paper
Paper	Mixed Paper	Paper Bags	0.54\%	0.47\%	0.04\%	0.50\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.43\%	0.24\%	2.14\%	0.53\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.84\%	2.61\%	0.28\%	5.15\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.36\%	0.01\%	0.06\%	0.31\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.51\%	0.96\%	0.37\%	0.54\%	NR_Paper
Paper Total			20.42\%	97.23\%	5.53\%	26.61\%	
Plastic	PET Bottles	PET Bottles	0.90\%	0.03\%	6.43\%	1.20\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.27\%	0.01\%	3.46\%	0.46\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.31\%	0.00\%	3.46\%	0.50\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.07\%	0.00\%	0.15\%	0.07\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.09\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.00\%	0.14\%	0.08\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.02\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.13\%	0.00\%	0.38\%	0.14\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	0.00\%	0.04\%	0.05\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.10\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.00\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.22\%	0.01\%	0.37\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.61\%	0.03\%	0.11\%	0.52\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.68\%	0.05\%	1.42\%	0.68\%	PR_Plastics
Plastic	Film	Plastic Bags	3.92\%	0.21\%	0.87\%	3.36\%	PR_Plastics
Plastic	Film	Other Film	5.53\%	0.74\%	3.21\%	4.92\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.59\%	0.02\%	0.20\%	0.51\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.76\%	0.31\%	3.98\%	1.78\%	NR_Plastics
Plastic Total			15.19\%	1.41\%	24.47\%	14.54\%	
Glass	Container Glass	Clear Container Glass	1.29\%	0.04\%	8.97\%	1.70\%	R Glass
Glass	Container Glass	Green Container Glass	0.23\%	0.00\%	3.40\%	0.43\%	R Glass
Glass	Container Glass	Brown Container Glass	0.24\%	0.01\%	1.81\%	0.32\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.63\%	0.05\%	18.22\%	1.80\%	R Glass
Glass	Container Glass	Other Container Glass	0.05\%	0.00\%	0.17\%	0.05\%	R Glass
Glass	Other Glass	Other Glass	0.28\%	0.01\%	0.34\%	0.26\%	PR_Glass
Glass Total			2.72\%	0.12\%	32.92\%	4.57\%	

Table 1-111
Brooklyn Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.17\%	0.00\%	0.58\%	0.18\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.62\%	0.01\%	1.01\%	0.59\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.62\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.10\%	0.00\%	0.71\%	0.14\%	R Metal
Metal	Ferrous	Tin Food Cans	1.01\%	0.03\%	8.29\%	1.42\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.00\%	0.73\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.09\%	0.03\%	12.18\%	1.76\%	R Metal
Metal	Other Metal	Mixed Metals	0.41\%	0.03\%	3.93\%	0.62\%	R Metal
Metal Total			3.55\%	0.10\%	28.06\%	4.93\%	
Organics	Yard	Leaves and Grass	3.88\%	0.00\%	0.01\%	3.24\%	NR_Other
Organics	Yard	Prunings	0.66\%	0.00\%	0.00\%	0.55\%	NR_Other
Organics	Wood	Stumps/Limbs	0.22\%	0.00\%	0.00\%	0.18\%	NR_Other
Organics	Food	Food	22.73\%	0.47\%	1.74\%	19.18\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.92\%	0.00\%	0.06\%	0.77\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.30\%	0.01\%	0.07\%	0.26\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.43\%	0.08\%	0.06\%	1.21\%	NR_Other
Organics	Textiles	Clothing Textiles	3.69\%	0.04\%	0.06\%	3.10\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.30\%	0.00\%	0.00\%	1.09\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.77\%	0.06\%	0.06\%	3.16\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.38\%	0.00\%	0.02\%	1.15\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.35\%	0.00\%	0.12\%	0.30\%	NR_Other
Organics	Textiles	Shoes	0.82\%	0.00\%	0.09\%	0.69\%	NR_Other
Organics	Textiles	Other Leather Products	0.18\%	0.00\%	0.00\%	0.15\%	NR_Other
Organics	Misc. Organic	Fines	5.64\%	0.26\%	0.23\%	4.76\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.19\%	0.00\%	0.31\%	1.02\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.78\%	0.00\%	0.05\%	0.65\%	NR_Other
Organics Total			49.23\%	0.94\%	2.89\%	41.47\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.30\%	0.00\%	3.21\%	0.47\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.07\%	0.00\%	0.06\%	0.06\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.28\%	0.02\%	0.78\%	0.29\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.26\%	0.00\%	0.22\%	0.23\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.02\%	0.00\%	0.01\%	0.02\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.07\%	0.00\%	0.47\%	0.09\%	NR_Other
Appliance/Electronic Total			1.00\%	0.03\%	4.76\%	1.17\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.94\%	0.00\%	0.02\%	0.79\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.86\%	0.02\%	0.08\%	1.56\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.20\%	0.02\%	0.03\%	1.01\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.30\%	0.00\%	0.06\%	1.09\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.60\%	0.11\%	0.17\%	1.36\%	NR_Other
C \& D Debris Total			6.90\%	0.15\%	0.36\%	5.81\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.31\%	0.00\%	0.07\%	0.26\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.43\%	0.00\%	0.48\%	0.39\%	NR_Other
Miscellaneous Inorganics Total			0.74\%	0.00\%	0.55\%	0.65\%	

Table 1-111
Brooklyn Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.07\%	0.03\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.15\%	0.04\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.01\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.03\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.07\%	0.00\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.04\%	0.00\%	0.18\%	0.05\%	NR_Other
HHW Total			0.26\%	0.01\%	0.47\%	0.25\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,485.59	1,866.11	78.49	5,430.20	
Plastic Tota			2,593.62	27.03	347.16	2,967.81	
Glass Total			463.69	2.25	467.00	932.95	
Metal Total			606.01	1.97	398.05	1,006.04	
Organics To			8,404.77	18.11	41.00	8,463.88	
Appliance/E			170.88	0.52	67.51	238.91	
C \& D Debris			1,177.80	2.97	5.08	1,185.84	
Miscellaneo	Total		125.54	0.09	7.78	133.41	
HHW Total			44.30	0.13	6.60	51.03	
Grand Tota			17,072.19	1,919.20	1,418.67	20,410.06	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			13.27\%	93.41\%	2.69\%	20.07\%	
Percent Designated MGP			8.26\%	0.49\%	79.39\%	12.47\%	
Percent Designated Recycling			21.53\%	93.91\%	82.08\%	32.55\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-112
Queens Results at a Glance, Spring 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	2.99\%	41.23\%	0.59\%	6.89\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	0.84\%	9.03\%	0.23\%	1.67\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.48\%	4.18\%	0.05\%	0.85\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	6.52\%	35.00\%	1.98\%	9.21\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.46\%	3.08\%	0.04\%	0.71\%	R Paper
Paper	Mixed Paper	Paper Bags	0.51\%	0.44\%	0.05\%	0.47\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.35\%	0.17\%	2.03\%	0.46\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.07\%	3.71\%	0.30\%	5.38\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.50\%	0.02\%	0.07\%	0.41\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.48\%	0.79\%	0.33\%	0.50\%	NR_Paper
Paper Total			19.19\%	97.65\%	5.67\%	26.54\%	
Plastic	PET Bottles	PET Bottles	0.64\%	0.04\%	6.68\%	1.04\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.17\%	0.01\%	3.27\%	0.39\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.21\%	0.01\%	3.61\%	0.44\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.00\%	0.19\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.09\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.13\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.14\%	0.00\%	0.45\%	0.15\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	0.00\%	0.09\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.11\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.01\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.22\%	0.01\%	0.44\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.57\%	0.02\%	0.10\%	0.48\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.74\%	0.04\%	1.51\%	0.72\%	PR_Plastics
Plastic	Film	Plastic Bags	3.32\%	0.26\%	0.98\%	2.81\%	PR_Plastics
Plastic	Film	Other Film	4.78\%	0.64\%	2.68\%	4.18\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.59\%	0.02\%	0.24\%	0.50\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.78\%	0.12\%	3.97\%	1.77\%	NR_Plastics
Plastic Total			13.38\%	1.19\%	24.59\%	12.93\%	
Glass	Container Glass	Clear Container Glass	0.80\%	0.05\%	9.89\%	1.41\%	R Glass
Glass	Container Glass	Green Container Glass	0.19\%	0.00\%	4.07\%	0.47\%	R Glass
Glass	Container Glass	Brown Container Glass	0.15\%	0.01\%	1.88\%	0.26\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.39\%	0.02\%	17.07\%	1.62\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.00\%	0.22\%	0.04\%	R Glass
Glass	Other Glass	Other Glass	0.23\%	0.03\%	0.30\%	0.22\%	PR_Glass
Glass Total			1.80\%	0.11\%	33.43\%	4.03\%	

Table 1-112
Queens Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.13\%	0.00\%	0.68\%	0.15\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.58\%	0.02\%	1.10\%	0.56\%	R Metal
Metal	Aluminum	Other Aluminum	0.01\%	0.00\%	0.66\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	0.00\%	0.78\%	0.16\%	R Metal
Metal	Ferrous	Tin Food Cans	0.62\%	0.04\%	7.70\%	1.10\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.12\%	0.00\%	0.69\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.17\%	0.05\%	12.39\%	1.90\%	R Metal
Metal	Other Metal	Mixed Metals	0.43\%	0.02\%	3.96\%	0.66\%	R Metal
Metal Total			3.18\%	0.14\%	27.95\%	4.74\%	
Organics	Yard	Leaves and Grass	8.84\%	0.00\%	0.02\%	7.22\%	NR_Other
Organics	Yard	Prunings	1.42\%	0.00\%	0.01\%	1.16\%	NR_Other
Organics	Wood	Stumps/Limbs	0.44\%	0.00\%	0.00\%	0.36\%	NR_Other
Organics	Food	Food	19.81\%	0.36\%	1.89\%	16.37\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.00\%	0.00\%	0.07\%	0.83\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.31\%	0.01\%	0.05\%	0.26\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.24\%	0.10\%	0.05\%	1.03\%	NR_Other
Organics	Textiles	Clothing Textiles	2.98\%	0.06\%	0.08\%	2.45\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.59\%	0.00\%	0.00\%	1.30\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.46\%	0.05\%	0.08\%	2.84\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.30\%	0.00\%	0.04\%	1.06\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.34\%	0.00\%	0.18\%	0.29\%	NR_Other
Organics	Textiles	Shoes	0.62\%	0.01\%	0.07\%	0.51\%	NR_Other
Organics	Textiles	Other Leather Products	0.21\%	0.00\%	0.01\%	0.17\%	NR_Other
Organics	Misc. Organic	Fines	5.01\%	0.24\%	0.20\%	4.14\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.07\%	0.00\%	0.05\%	0.88\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.11\%	0.00\%	0.06\%	0.91\%	NR_Other
Organics Total			50.76\%	0.83\%	2.86\%	41.78\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.55\%	0.00\%	3.07\%	0.68\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.06\%	0.00\%	0.06\%	0.05\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.36\%	0.00\%	0.56\%	0.34\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.30\%	0.01\%	0.27\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.06\%	0.00\%	0.04\%	0.05\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.07\%	0.01\%	0.45\%	0.10\%	NR_Other
Appliance/Electronic Total			1.40\%	0.02\%	4.45\%	1.49\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.70\%	0.00\%	0.03\%	1.39\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.49\%	0.02\%	0.08\%	2.04\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.36\%	0.01\%	0.02\%	1.12\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.47\%	0.00\%	0.05\%	1.21\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.13\%	0.02\%	0.10\%	1.75\%	NR_Other
C \& D Debris Total			9.16\%	0.05\%	0.28\%	7.51\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.49\%	0.00\%	0.10\%	0.41\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.45\%	0.00\%	0.47\%	0.40\%	NR_Other
Miscellaneous Inorganics Total			0.94\%	0.00\%	0.57\%	0.81\%	

Table 1-112
Queens Results at a Glance, Spring 2005 Waste Characterization Study (continued)

				Mater Material Group	Material Subgroup

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-113
Staten Island Results at a Glance, Spring 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{gathered} \text { \% of Paper } \\ \text { Stream } \end{gathered}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	2.32\%	43.07\%	0.55\%	7.08\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	0.81\%	6.21\%	0.29\%	1.42\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.36\%	3.26\%	0.06\%	0.69\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	5.78\%	35.84\%	2.47\%	9.15\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.40\%	3.32\%	0.03\%	0.72\%	R Paper
Paper	Mixed Paper	Paper Bags	0.42\%	0.27\%	0.06\%	0.38\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.25\%	0.16\%	1.98\%	0.36\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.54\%	5.12\%	0.38\%	5.12\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.53\%	0.01\%	0.08\%	0.44\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.42\%	0.59\%	0.30\%	0.43\%	NR_Paper
Paper Total			16.83\%	97.85\%	6.20\%	25.80\%	
Plastic	PET Bottles	PET Bottles	0.48\%	0.05\%	7.29\%	0.91\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.12\%	0.01\%	2.92\%	0.30\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.18\%	0.02\%	3.99\%	0.43\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.02\%	0.01\%	0.17\%	0.03\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.11\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.01\%	0.13\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.04\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.11\%	0.00\%	0.48\%	0.12\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.00\%	0.09\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.11\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.05\%	0.00\%	0.00\%	0.04\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.18\%	0.01\%	0.47\%	0.18\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.55\%	0.02\%	0.09\%	0.46\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.67\%	0.03\%	1.46\%	0.65\%	PR_Plastics
Plastic	Film	Plastic Bags	2.57\%	0.33\%	1.02\%	2.19\%	PR_Plastics
Plastic	Film	Other Film	3.94\%	0.58\%	2.21\%	3.41\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.57\%	0.01\%	0.24\%	0.48\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.57\%	0.12\%	4.00\%	1.57\%	NR_Plastics
Plastic Total			11.13\%	1.20\%	24.85\%	10.92\%	
Glass	Container Glass	Clear Container Glass	0.62\%	0.08\%	12.03\%	1.37\%	R Glass
Glass	Container Glass	Green Container Glass	0.16\%	0.00\%	3.73\%	0.39\%	R Glass
Glass	Container Glass	Brown Container Glass	0.10\%	0.00\%	2.09\%	0.23\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.25\%	0.01\%	12.41\%	1.08\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.00\%	0.29\%	0.04\%	R Glass
Glass	Other Glass	Other Glass	0.24\%	0.06\%	0.29\%	0.22\%	PR_Glass
Glass Total			1.39\%	0.14\%	30.84\%	3.34\%	

Table 1-113
Staten Island Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.09\%	0.00\%	0.82\%	0.13\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.52\%	0.03\%	1.24\%	0.51\%	R Metal
Metal	Aluminum	Other Aluminum	0.01\%	0.00\%	0.71\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.10\%	0.00\%	1.15\%	0.16\%	R Metal
Metal	Ferrous	Tin Food Cans	0.45\%	0.05\%	7.76\%	0.93\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.10\%	0.00\%	0.68\%	0.13\%	R Metal
Metal	Ferrous	Other Ferrous	1.20\%	0.07\%	13.33\%	1.93\%	R Metal
Metal	Other Metal	Mixed Metals	0.41\%	0.01\%	2.97\%	0.54\%	R Metal
Metal Total			2.88\%	0.17\%	28.67\%	4.39\%	
Organics	Yard	Leaves and Grass	13.86\%	0.00\%	0.04\%	11.21\%	NR_Other
Organics	Yard	Prunings	2.41\%	0.00\%	0.00\%	1.95\%	NR_Other
Organics	Wood	Stumps/Limbs	0.50\%	0.00\%	0.01\%	0.40\%	NR_Other
Organics	Food	Food	16.66\%	0.13\%	2.34\%	13.65\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.24\%	0.00\%	0.05\%	1.01\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.23\%	0.02\%	0.02\%	0.19\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	0.99\%	0.05\%	0.03\%	0.81\%	NR_Other
Organics	Textiles	Clothing Textiles	2.40\%	0.11\%	0.10\%	1.96\%	NR_Other
Organics	Textiles	Carpet/Upholstery	2.18\%	0.00\%	0.00\%	1.76\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.10\%	0.01\%	0.13\%	2.52\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.28\%	0.00\%	0.07\%	1.04\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.39\%	0.00\%	0.17\%	0.33\%	NR_Other
Organics	Textiles	Shoes	0.43\%	0.02\%	0.04\%	0.35\%	NR_Other
Organics	Textiles	Other Leather Products	0.22\%	0.00\%	0.01\%	0.18\%	NR_Other
Organics	Misc. Organic	Fines	4.62\%	0.24\%	0.18\%	3.78\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.93\%	0.00\%	0.03\%	0.76\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.40\%	0.00\%	0.08\%	1.14\%	NR_Other
Organics Total			52.84\%	0.58\%	3.30\%	43.04\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.82\%	0.00\%	3.58\%	0.92\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	0.00\%	0.08\%	0.02\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.50\%	0.00\%	0.45\%	0.43\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.44\%	0.02\%	0.37\%	0.38\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.10\%	0.00\%	0.00\%	0.08\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.03\%	0.00\%	0.53\%	0.06\%	NR_Other
Appliance/Electronic Total			1.92\%	0.02\%	5.02\%	1.91\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	2.19\%	0.00\%	0.02\%	1.78\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	3.31\%	0.02\%	0.09\%	2.69\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.38\%	0.00\%	0.01\%	1.12\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	2.08\%	0.00\%	0.03\%	1.68\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.72\%	0.00\%	0.05\%	2.20\%	NR_Other
C \& D Debris Total			11.69\%	0.02\%	0.20\%	9.47\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.66\%	0.00\%	0.11\%	0.54\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.51\%	0.00\%	0.61\%	0.46\%	NR_Other
Miscellaneous Inorganics Total			1.17\%	0.00\%	0.72\%	1.00\%	

Table 1-113
Staten Island Results at a Glance, Spring 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.05\%	0.01\%	0.02\%	0.05\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.02\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.05\%	0.00\%	0.11\%	0.04\%	NR_Other
HHW Total			0.16\%	0.01\%	0.21\%	0.14\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			790.04	681.72	25.64	1,497.40	
Plastic Total			522.57	8.35	102.75	633.68	
Glass Total			65.10	1.01	127.52	193.63	
Metal Total			135.33	1.17	118.56	255.07	
Organics To			2,480.40	4.07	13.65	2,498.11	
Appliance/E			89.94	0.13	20.75	110.82	
C \& D Debris			548.78	0.15	0.82	549.75	
Miscellaneo	Total		54.91	0.03	2.99	57.94	
HHW Total			7.46	0.07	0.85	8.38	
Grand Tota			4,694.52	696.70	413.55	5,804.77	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	
Percent Designated Paper			10.09\%	91.96\%	3.46\%	19.44\%	
Percent Designated MGP			5.90\%	0.50\%	79.06\%	10.47\%	
Percent Designated Recycling			15.99\%	92.47\%	82.52\%	29.91\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-114
Manhattan Results at a Glance, Summer 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	4.49\%	55.77\%	0.35\%	10.99\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.47\%	7.24\%	0.16\%	2.14\%	R Paper
Paper	Mixed Paper	High Grade Paper	1.05\%	2.96\%	0.01\%	1.23\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	12.90\%	24.88\%	1.07\%	13.63\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.54\%	3.31\%	0.08\%	0.87\%	R Paper
Paper	Mixed Paper	Paper Bags	1.22\%	0.29\%	0.07\%	1.01\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.50\%	0.10\%	1.61\%	0.53\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.72\%	0.86\%	0.49\%	4.70\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.46\%	0.01\%	0.04\%	0.37\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	1.14\%	2.14\%	0.36\%	1.21\%	NR_Paper
Paper Total			29.48\%	97.55\%	4.24\%	36.68\%	
Plastic	PET Bottles	PET Bottles	1.19\%	0.01\%	6.40\%	1.41\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.40\%	0.00\%	2.50\%	0.50\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.41\%	0.01\%	2.82\%	0.53\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	0.00\%	0.32\%	0.06\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.11\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.07\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.00\%	0.16\%	0.05\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.27\%	0.00\%	0.48\%	0.25\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.07\%	0.00\%	0.03\%	0.06\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.05\%	0.00\%	0.02\%	0.04\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.44\%	0.01\%	0.27\%	0.37\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.62\%	0.01\%	0.07\%	0.50\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.21\%	0.03\%	1.32\%	1.06\%	PR_Plastics
Plastic	Film	Plastic Bags	3.33\%	0.18\%	1.41\%	2.77\%	PR_Plastics
Plastic	Film	Other Film	6.02\%	0.84\%	3.87\%	5.18\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.66\%	0.02\%	0.28\%	0.55\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.33\%	0.21\%	3.73\%	2.15\%	NR_Plastics
Plastic Total			17.15\%	1.32\%	23.98\%	15.55\%	
Glass	Container Glass	Clear Container Glass	1.53\%	0.01\%	6.66\%	1.70\%	R Glass
Glass	Container Glass	Green Container Glass	0.55\%	0.00\%	6.54\%	0.91\%	R Glass
Glass	Container Glass	Brown Container Glass	0.35\%	0.00\%	2.46\%	0.46\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	1.02\%	0.01\%	25.13\%	2.64\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.15\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.28\%	0.00\%	0.69\%	0.27\%	PR_Glass
Glass Total			3.73\%	0.02\%	41.63\%	6.00\%	

Table 1-114
Manhattan Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.32\%	0.00\%	0.57\%	0.29\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.65\%	0.01\%	0.57\%	0.56\%	R Metal
Metal	Aluminum	Other Aluminum	0.02\%	0.01\%	0.26\%	0.04\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.00\%	1.26\%	0.19\%	R Metal
Metal	Ferrous	Tin Food Cans	0.87\%	0.00\%	4.94\%	1.05\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.17\%	0.01\%	0.56\%	0.18\%	R Metal
Metal	Ferrous	Other Ferrous	0.87\%	0.19\%	8.90\%	1.36\%	R Metal
Metal	Other Metal	Mixed Metals	0.30\%	0.00\%	3.13\%	0.47\%	R Metal
Metal Total			3.32\%	0.22\%	20.19\%	4.14\%	
Organics	Yard	Leaves and Grass	0.97\%	0.00\%	0.00\%	0.77\%	NR_Other
Organics	Yard	Prunings	0.27\%	0.02\%	0.00\%	0.22\%	NR_Other
Organics	Wood	Stumps/Limbs	0.05\%	0.00\%	0.02\%	0.04\%	NR_Other
Organics	Food	Food	17.32\%	0.14\%	1.83\%	13.92\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.89\%	0.00\%	0.20\%	1.52\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.12\%	0.01\%	0.02\%	0.10\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	2.12\%	0.04\%	0.15\%	1.70\%	NR_Other
Organics	Textiles	Clothing Textiles	3.26\%	0.01\%	0.11\%	2.60\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.62\%	0.00\%	0.00\%	1.29\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.84\%	0.06\%	0.05\%	3.06\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.15\%	0.00\%	0.12\%	0.92\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.25\%	0.00\%	0.07\%	0.20\%	NR_Other
Organics	Textiles	Shoes	0.82\%	0.20\%	0.04\%	0.68\%	NR_Other
Organics	Textiles	Other Leather Products	0.05\%	0.00\%	0.02\%	0.04\%	NR_Other
Organics	Misc. Organic	Fines	4.03\%	0.24\%	0.32\%	3.26\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.50\%	0.00\%	0.06\%	0.40\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.19\%	0.08\%	0.04\%	0.96\%	NR_Other
Organics Total			39.48\%	0.82\%	3.05\%	31.70\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.58\%	0.00\%	3.38\%	0.71\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.00\%	0.26\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.54\%	0.00\%	0.81\%	0.49\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.31\%	0.04\%	0.29\%	0.27\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.02\%	0.00\%	0.22\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.11\%	0.00\%	0.00\%	0.09\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.32\%	0.00\%	0.61\%	0.30\%	NR_Other
Appliance/Electronic Total			1.90\%	0.04\%	5.57\%	1.92\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.65\%	0.00\%	0.00\%	0.52\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.54\%	0.00\%	0.19\%	1.24\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.27\%	0.00\%	0.01\%	0.21\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.55\%	0.00\%	0.03\%	0.44\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.13\%	0.00\%	0.30\%	0.92\%	NR_Other
C \& D Debris Total			4.15\%	0.00\%	0.53\%	3.33\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.15\%	0.00\%	0.16\%	0.13\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.26\%	0.01\%	0.37\%	0.24\%	NR_Other
Miscellaneous Inorganics Total			0.41\%	0.01\%	0.53\%	0.36\%	

Table 1-114
Manhattan Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.03\%	0.00\%	0.00\%	0.02\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.01\%	0.01\%	0.13\%	0.01\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.00\%	0.07\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.01\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.04\%	0.00\%	0.00\%	0.03\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.03\%	0.00\%	0.01\%	0.03\%	NR_Other
HHW	HHW	Home Medical Products	0.16\%	0.00\%	0.01\%	0.12\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.01\%	0.01\%	0.03\%	0.01\%	NR_Other
HHW Total			0.38\%	0.02\%	0.28\%	0.33\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			2,691.37	1,487.17	35.45	4,213.99	
Plastic Total			1,565.24	20.19	200.55	1,785.98	
Glass Total			340.66	0.25	348.13	689.03	
Metal Total			303.25	3.34	168.84	475.43	
Organics To			3,604.10	12.45	25.51	3,642.06	
Appliance/E			173.30	0.57	46.58	220.45	
C \& D Debri			378.46	0.00	4.40	382.86	
Miscellaneo	Total		37.24	0.12	4.44	41.81	
HHW Total			34.64	0.37	2.33	37.35	
Grand Tota			9,128.27	1,524.45	836.23	11,488.95	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			21.67\%	94.45\%	1.74\%	29.88\%	
Percent Designated MGP			9.87\%	0.36\%	78.10\%	13.57\%	
Percent Designated Recycling			31.53\%	94.81\%	79.84\%	43.45\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-115
Bronx Results at a Glance, Summer 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.64\%	40.85\%	0.51\%	5.74\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.28\%	12.76\%	0.24\%	1.92\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.64\%	2.33\%	0.07\%	0.71\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.52\%	28.06\%	0.90\%	9.22\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.55\%	8.05\%	0.14\%	0.99\%	R Paper
Paper	Mixed Paper	Paper Bags	0.79\%	0.24\%	0.05\%	0.71\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.39\%	0.22\%	1.70\%	0.47\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.15\%	2.41\%	0.42\%	4.67\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.49\%	0.01\%	0.06\%	0.43\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.99\%	2.24\%	0.59\%	1.04\%	NR_Paper
Paper Total			22.45\%	97.16\%	4.68\%	25.89\%	
Plastic	PET Bottles	PET Bottles	1.13\%	0.05\%	7.40\%	1.49\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.35\%	0.01\%	3.62\%	0.55\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.36\%	0.01\%	3.36\%	0.54\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.22\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.10\%	0.03\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.16\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.19\%	0.00\%	0.50\%	0.20\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.05\%	0.00\%	0.05\%	0.05\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.06\%	0.00\%	0.08\%	0.06\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.24\%	0.04\%	0.17\%	0.22\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.70\%	0.02\%	0.10\%	0.62\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.92\%	0.01\%	1.34\%	0.89\%	PR_Plastics
Plastic	Film	Plastic Bags	3.29\%	0.22\%	1.19\%	2.96\%	PR_Plastics
Plastic	Film	Other Film	5.66\%	0.67\%	2.91\%	5.16\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.67\%	0.03\%	0.34\%	0.61\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.18\%	0.23\%	4.25\%	2.20\%	NR_Plastics
Plastic Total			15.95\%	1.30\%	26.00\%	15.72\%	
Glass	Container Glass	Clear Container Glass	1.69\%	0.04\%	6.79\%	1.93\%	R Glass
Glass	Container Glass	Green Container Glass	0.39\%	0.02\%	2.55\%	0.51\%	R Glass
Glass	Container Glass	Brown Container Glass	0.41\%	0.01\%	1.92\%	0.49\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.81\%	0.01\%	21.71\%	2.16\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.14\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.29\%	0.00\%	0.38\%	0.28\%	PR_Glass
Glass Total			3.60\%	0.08\%	33.50\%	5.38\%	

Table 1-115
Bronx Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.31\%	0.00\%	0.82\%	0.33\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.61\%	0.01\%	0.82\%	0.58\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.03\%	0.49\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.01\%	0.93\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	0.95\%	0.01\%	6.93\%	1.29\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.18\%	0.00\%	0.76\%	0.20\%	R Metal
Metal	Ferrous	Other Ferrous	1.01\%	0.03\%	10.11\%	1.56\%	R Metal
Metal	Other Metal	Mixed Metals	0.48\%	0.01\%	4.23\%	0.71\%	R Metal
Metal Total			3.69\%	0.10\%	25.10\%	4.90\%	
Organics	Yard	Leaves and Grass	2.49\%	0.04\%	0.00\%	2.17\%	NR_Other
Organics	Yard	Prunings	0.50\%	0.05\%	0.00\%	0.44\%	NR_Other
Organics	Wood	Stumps/Limbs	0.15\%	0.00\%	0.00\%	0.13\%	NR_Other
Organics	Food	Food	20.60\%	0.24\%	1.77\%	18.08\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.69\%	0.01\%	0.14\%	1.48\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.23\%	0.05\%	0.04\%	0.21\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	2.30\%	0.04\%	0.17\%	2.01\%	NR_Other
Organics	Textiles	Clothing Textiles	3.78\%	0.05\%	0.10\%	3.30\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.47\%	0.00\%	0.01\%	1.28\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.94\%	0.05\%	0.09\%	3.44\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.10\%	0.00\%	0.04\%	0.96\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.32\%	0.00\%	0.14\%	0.29\%	NR_Other
Organics	Textiles	Shoes	0.83\%	0.04\%	0.04\%	0.73\%	NR_Other
Organics	Textiles	Other Leather Products	0.08\%	0.00\%	0.03\%	0.07\%	NR_Other
Organics	Misc. Organic	Fines	4.33\%	0.44\%	0.39\%	3.82\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.78\%	0.00\%	0.13\%	0.69\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.96\%	0.20\%	0.14\%	0.85\%	NR_Other
Organics Total			45.53\%	1.20\%	3.23\%	39.95\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.45\%	0.00\%	3.22\%	0.61\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.01\%	0.34\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.31\%	0.00\%	1.03\%	0.34\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.40\%	0.07\%	0.50\%	0.38\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.13\%	0.00\%	0.02\%	0.11\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.23\%	0.00\%	0.00\%	0.20\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.52\%	0.00\%	0.76\%	0.50\%	NR_Other
Appliance/Electronic Total			2.06\%	0.08\%	5.86\%	2.19\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.07\%	0.00\%	0.01\%	0.93\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.73\%	0.00\%	0.19\%	1.52\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.56\%	0.00\%	0.02\%	0.49\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.89\%	0.00\%	0.06\%	0.78\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.58\%	0.00\%	0.33\%	1.40\%	NR_Other
C \& D Debris Total			5.83\%	0.00\%	0.60\%	5.12\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.16\%	0.02\%	0.14\%	0.15\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.38\%	0.03\%	0.58\%	0.37\%	NR_Other
Miscellaneous Inorganics Total			0.54\%	0.05\%	0.72\%	0.52\%	

Table 1-115
Bronx Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.03\%	0.00\%	0.00\%	0.03\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.02\%	0.02\%	0.13\%	0.03\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.05\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.08\%	0.01\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.03\%	0.00\%	0.00\%	0.03\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.04\%	0.00\%	0.02\%	0.04\%	NR_Other
HHW	HHW	Home Medical Products	0.09\%	0.00\%	0.01\%	0.08\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.02\%	0.06\%	0.02\%	NR_Other
HHW Total			0.35\%	0.04\%	0.31\%	0.33\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	

Weekly Generation Tonnage ${ }^{(1)}$

Material Group	Refuse	Paper	MGP	Waste
Paper Total ${ }^{(2)}$	1,858.23	572.90	29.83	2,460.96
Plastic Total ${ }^{(2)}$	1,320.59	7.65	165.70	1,493.94
Glass Total ${ }^{(2)}$	297.70	0.48	213.51	511.69
Metal Total ${ }^{(3)}$	305.23	0.56	159.94	465.73
Organics Total	3,768.85	7.07	20.56	3,796.48
Appliance/Electronic Total	170.10	0.45	37.37	207.92
C \& D Debris Total	482.76	0.00	3.84	486.60
Miscellaneous Inorganics Total	44.96	0.30	4.57	49.83
HHW Total	28.72	0.25	1.98	30.95
Grand Total	8,277.14	589.65	637.32	9,504.11

Subtotals by Recycling Designation			
Recycling Designation	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream
Percent Designated Paper	\% of Waste Stream		
Percent Designated MGP	15.42%	92.29%	1.90%
Percent Designated Recycling	19.28%		

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate eneration can be found in Section 2.2.6 in Volume 2 .
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-116
Brooklyn Results at a Glance, Summer 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	3.11\%	38.60\%	0.59\%	6.12\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.18\%	11.60\%	0.30\%	2.06\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.61\%	2.81\%	0.09\%	0.77\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.04\%	29.34\%	1.12\%	9.46\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.45\%	10.35\%	0.12\%	1.32\%	R Paper
Paper	Mixed Paper	Paper Bags	0.79\%	0.28\%	0.07\%	0.69\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.41\%	0.22\%	1.99\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	5.50\%	2.53\%	0.46\%	4.87\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.50\%	0.02\%	0.08\%	0.43\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.97\%	1.65\%	0.63\%	1.01\%	NR_Paper
Paper Total			21.56\%	97.39\%	5.47\%	27.23\%	
Plastic	PET Bottles	PET Bottles	1.11\%	0.09\%	8.12\%	1.52\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.30\%	0.01\%	3.65\%	0.51\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.27\%	0.01\%	3.25\%	0.46\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.18\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.18\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.02\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.19\%	0.01\%	0.50\%	0.20\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.04\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	0.00\%	0.08\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.03\%	0.00\%	0.14\%	0.03\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	0.04\%	0.19\%	0.23\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.73\%	0.03\%	0.11\%	0.62\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.91\%	0.01\%	1.35\%	0.86\%	PR_Plastics
Plastic	Film	Plastic Bags	3.09\%	0.25\%	1.29\%	2.71\%	PR_Plastics
Plastic	Film	Other Film	5.40\%	0.66\%	2.80\%	4.79\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.71\%	0.02\%	0.39\%	0.63\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.87\%	0.15\%	3.59\%	1.84\%	NR_Plastics
Plastic Total			15.05\%	1.28\%	26.08\%	14.60\%	
Glass	Container Glass	Clear Container Glass	1.57\%	0.08\%	8.06\%	1.90\%	R Glass
Glass	Container Glass	Green Container Glass	0.35\%	0.03\%	2.90\%	0.51\%	R Glass
Glass	Container Glass	Brown Container Glass	0.42\%	0.01\%	2.26\%	0.52\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.69\%	0.00\%	21.31\%	2.12\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.17\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.29\%	0.00\%	0.35\%	0.27\%	PR_Glass
Glass Total			3.34\%	0.13\%	35.05\%	5.34\%	

Table 1-116

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.26\%	0.01\%	0.87\%	0.28\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.64\%	0.01\%	1.00\%	0.61\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.01\%	0.56\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.11\%	0.00\%	0.69\%	0.14\%	R Metal
Metal	Ferrous	Tin Food Cans	0.78\%	0.01\%	6.97\%	1.16\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.16\%	0.00\%	0.84\%	0.20\%	R Metal
Metal	Ferrous	Other Ferrous	1.23\%	0.02\%	9.60\%	1.73\%	R Metal
Metal	Other Metal	Mixed Metals	0.52\%	0.00\%	2.80\%	0.64\%	R Metal
Metal Total			3.73\%	0.06\%	23.35\%	4.81\%	
Organics	Yard	Leaves and Grass	2.96\%	0.07\%	0.01\%	2.48\%	NR_Other
Organics	Yard	Prunings	0.82\%	0.02\%	0.00\%	0.69\%	NR_Other
Organics	Wood	Stumps/Limbs	0.20\%	0.00\%	0.00\%	0.17\%	NR_Other
Organics	Food	Food	19.58\%	0.39\%	1.78\%	16.57\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	2.16\%	0.01\%	0.17\%	1.82\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.46\%	0.06\%	0.02\%	0.39\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	2.09\%	0.05\%	0.11\%	1.76\%	NR_Other
Organics	Textiles	Clothing Textiles	3.18\%	0.06\%	0.09\%	2.67\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.33\%	0.00\%	0.01\%	1.12\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.98\%	0.02\%	0.10\%	3.34\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.36\%	0.00\%	0.02\%	1.14\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.41\%	0.00\%	0.16\%	0.35\%	NR_Other
Organics	Textiles	Shoes	0.78\%	0.06\%	0.04\%	0.66\%	NR_Other
Organics	Textiles	Other Leather Products	0.09\%	0.00\%	0.03\%	0.08\%	NR_Other
Organics	Misc. Organic	Fines	4.76\%	0.26\%	0.32\%	4.03\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.72\%	0.00\%	0.07\%	0.61\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.36\%	0.05\%	0.30\%	1.17\%	NR_Other
Organics Total			46.24\%	1.04\%	3.24\%	39.06\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.88\%	0.00\%	3.43\%	0.98\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.01\%	0.02\%	0.33\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.27\%	0.00\%	0.78\%	0.28\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.60\%	0.02\%	0.44\%	0.53\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.30\%	0.00\%	0.02\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.23\%	0.00\%	0.00\%	0.19\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.55\%	0.00\%	0.46\%	0.49\%	NR_Other
Appliance/Electronic Total			2.84\%	0.04\%	5.45\%	2.78\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.97\%	0.00\%	0.01\%	0.81\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.07\%	0.00\%	0.08\%	1.74\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.66\%	0.00\%	0.01\%	0.56\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.90\%	0.00\%	0.03\%	0.76\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.78\%	0.00\%	0.19\%	1.50\%	NR_Other
C \& D Debris Total			6.38\%	0.00\%	0.31\%	5.37\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.17\%	0.02\%	0.26\%	0.17\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.41\%	0.03\%	0.46\%	0.38\%	NR_Other
Miscellaneous Inorganics Total			0.58\%	0.05\%	0.72\%	0.54\%	

Table 1-116
Brooklyn Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	0.00\%	0.15\%	0.03\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.00\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.00\%	0.02\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.03\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.09\%	0.00\%	0.01\%	0.07\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.08\%	0.02\%	NR_Other
HHW Total			0.28\%	0.01\%	0.34\%	0.26\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,542.59	1,720.97	77.62	5,341.18	
Plastic Tota			2,472.07	22.57	370.07	2,864.71	
Glass Total			548.59	2.28	497.37	1,048.23	
Metal Total			612.05	1.11	331.29	944.45	
Organics To			7,596.75	18.37	46.01	7,661.13	
Appliance/E			467.19	0.65	77.28	545.12	
C \& D Debris			1,048.12	0.00	4.43	1,052.56	
Miscellaneo	Total		95.35	0.94	10.24	106.52	
HHW Total			46.76	0.25	4.78	51.80	
Grand Tota			16,429.48	1,767.13	1,419.09	19,615.70	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	$\begin{gathered} \hline \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	
Percent Designated Paper			14.18\%	92.97\%	2.30\%	20.42\%	
Percent Designated MGP			9.74\%	0.54\%	78.81\%	13.91\%	
Percent Designated Recycling			23.92\%	93.51\%	81.11\%	34.33\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-117
Queens Results at a Glance, Summer 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	2.96\%	42.42\%	0.67\%	6.96\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.06\%	8.17\%	0.37\%	1.76\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.56\%	2.94\%	0.12\%	0.78\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	8.12\%	31.51\%	1.09\%	10.06\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.37\%	9.56\%	0.15\%	1.33\%	R Paper
Paper	Mixed Paper	Paper Bags	0.74\%	0.33\%	0.07\%	0.65\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.34\%	0.12\%	1.82\%	0.43\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.10\%	1.90\%	0.49\%	5.23\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.75\%	0.02\%	0.07\%	0.62\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.99\%	1.19\%	0.55\%	0.98\%	NR_Paper
Paper Total			21.99\%	98.14\%	5.38\%	28.79\%	
Plastic	PET Bottles	PET Bottles	0.84\%	0.05\%	8.34\%	1.32\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.21\%	0.00\%	3.32\%	0.42\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.23\%	0.00\%	3.47\%	0.45\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.15\%	0.04\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.10\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.10\%	0.00\%	0.22\%	0.10\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.02\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.18\%	0.00\%	0.44\%	0.18\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.05\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.06\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.26\%	0.04\%	0.23\%	0.24\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.67\%	0.01\%	0.10\%	0.56\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.01\%	0.01\%	1.33\%	0.93\%	PR_Plastics
Plastic	Film	Plastic Bags	2.71\%	0.26\%	1.40\%	2.36\%	PR_Plastics
Plastic	Film	Other Film	5.16\%	0.50\%	2.45\%	4.46\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.76\%	0.02\%	0.47\%	0.66\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.26\%	0.10\%	3.17\%	2.10\%	NR_Plastics
Plastic Total			14.52\%	1.00\%	25.45\%	13.91\%	
Glass	Container Glass	Clear Container Glass	1.15\%	0.02\%	9.11\%	1.63\%	R Glass
Glass	Container Glass	Green Container Glass	0.28\%	0.02\%	3.46\%	0.49\%	R Glass
Glass	Container Glass	Brown Container Glass	0.28\%	0.01\%	2.34\%	0.41\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.49\%	0.00\%	20.33\%	1.94\%	R Glass
Glass	Container Glass	Other Container Glass	0.01\%	0.00\%	0.21\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.29\%	0.01\%	0.43\%	0.27\%	PR_Glass
Glass Total			2.50\%	0.07\%	35.87\%	4.76\%	

Table 1-117
Queens Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.21\%	0.00\%	1.04\%	0.25\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.61\%	0.01\%	1.03\%	0.58\%	R Metal
Metal	Aluminum	Other Aluminum	0.05\%	0.00\%	0.66\%	0.09\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	0.00\%	0.84\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	0.58\%	0.01\%	6.55\%	0.97\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.15\%	0.00\%	0.77\%	0.18\%	R Metal
Metal	Ferrous	Other Ferrous	1.79\%	0.04\%	9.47\%	2.19\%	R Metal
Metal	Other Metal	Mixed Metals	0.46\%	0.00\%	2.97\%	0.60\%	R Metal
Metal Total			3.99\%	0.08\%	23.35\%	5.03\%	
Organics	Yard	Leaves and Grass	5.55\%	0.06\%	0.01\%	4.55\%	NR_Other
Organics	Yard	Prunings	1.12\%	0.01\%	0.01\%	0.92\%	NR_Other
Organics	Wood	Stumps/Limbs	0.23\%	0.00\%	0.00\%	0.19\%	NR_Other
Organics	Food	Food	18.24\%	0.22\%	1.76\%	15.10\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	2.19\%	0.00\%	0.14\%	1.81\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.19\%	0.03\%	0.03\%	0.16\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	2.01\%	0.04\%	0.10\%	1.65\%	NR_Other
Organics	Textiles	Clothing Textiles	2.79\%	0.01\%	0.08\%	2.29\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.62\%	0.00\%	0.02\%	1.33\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.81\%	0.03\%	0.09\%	3.13\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.58\%	0.00\%	0.06\%	1.30\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.36\%	0.00\%	0.17\%	0.31\%	NR_Other
Organics	Textiles	Shoes	0.66\%	0.02\%	0.03\%	0.54\%	NR_Other
Organics	Textiles	Other Leather Products	0.08\%	0.00\%	0.02\%	0.07\%	NR_Other
Organics	Misc. Organic	Fines	4.16\%	0.15\%	0.38\%	3.45\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.59\%	0.00\%	0.18\%	0.49\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.19\%	0.01\%	0.10\%	0.98\%	NR_Other
Organics Total			46.36\%	0.58\%	3.20\%	38.27\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.62\%	0.00\%	3.66\%	0.78\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	0.01\%	0.43\%	0.05\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.28\%	0.00\%	0.67\%	0.28\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.35\%	0.04\%	0.41\%	0.32\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.17\%	0.00\%	0.02\%	0.14\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.27\%	0.00\%	0.00\%	0.22\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.42\%	0.00\%	0.37\%	0.37\%	NR_Other
Appliance/Electronic Total			2.13\%	0.05\%	5.57\%	2.17\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.07\%	0.00\%	0.01\%	0.88\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.39\%	0.00\%	0.05\%	1.96\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.91\%	0.00\%	0.01\%	0.74\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.66\%	0.00\%	0.06\%	0.54\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.31\%	0.00\%	0.15\%	1.90\%	NR_Other
C \& D Debris Total			7.33\%	0.00\%	0.28\%	6.02\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.28\%	0.05\%	0.09\%	0.24\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.61\%	0.03\%	0.45\%	0.54\%	NR_Other
Miscellaneous Inorganics Total			0.89\%	0.08\%	0.54\%	0.77\%	

Table 1-117
Queens Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.01\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.00\%	0.17\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.05\%	0.00\%	0.03\%	0.04\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.01\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.03\%	0.00\%	0.00\%	0.03\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.03\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.07\%	0.00\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.07\%	0.02\%	NR_Other
HHW Total			0.29\%	0.01\%	0.36\%	0.27\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,463.05	1,994.41	77.86	5,535.32	
Plastic Tota			2,286.06	20.27	368.54	2,674.88	
Glass Total			393.48	1.34	519.37	914.19	
Metal Total			628.08	1.62	338.04	967.74	
Organics To			7,300.16	11.77	46.36	7,358.29	
Appliance/E			334.79	0.94	80.67	416.40	
C \& D Debris			1,153.95	0.00	4.07	1,158.02	
Miscellaneo	Total		139.35	1.62	7.81	148.78	
HHW Total			46.11	0.19	5.19	51.49	
Grand Tota			15,745.04	2,032.17	1,447.92	19,225.12	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			13.82\%	94.92\%	2.46\%	21.54\%	
Percent Designated MGP			8.45\%	0.32\%	79.83\%	12.96\%	
Percent Designated Recycling			22.26\%	95.24\%	82.30\%	34.50\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate eneration can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-118
Staten Island Results at a Glance, Summer 2005 Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	2.52\%	42.11\%	0.74\%	7.31\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	0.95\%	7.28\%	0.47\%	1.70\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.51\%	3.18\%	0.12\%	0.81\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.89\%	35.97\%	1.04\%	10.85\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.33\%	7.34\%	0.21\%	1.20\%	R Paper
Paper	Mixed Paper	Paper Bags	0.66\%	0.33\%	0.07\%	0.57\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.27\%	0.12\%	1.73\%	0.36\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.20\%	1.20\%	0.56\%	5.14\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.98\%	0.01\%	0.06\%	0.79\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.94\%	0.71\%	0.54\%	0.88\%	NR_Paper
Paper Total			21.25\%	98.24\%	5.55\%	29.61\%	
Plastic	PET Bottles	PET Bottles	0.71\%	0.08\%	9.13\%	1.29\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.14\%	0.00\%	2.91\%	0.34\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.21\%	0.00\%	3.85\%	0.47\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.14\%	0.03\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.10\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.17\%	0.00\%	0.29\%	0.16\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.00\%	0.39\%	0.15\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.06\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.10\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.24\%	0.07\%	0.22\%	0.22\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.61\%	0.01\%	0.10\%	0.50\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.00\%	0.01\%	1.29\%	0.90\%	PR_Plastics
Plastic	Film	Plastic Bags	2.16\%	0.31\%	1.39\%	1.87\%	PR_Plastics
Plastic	Film	Other Film	4.74\%	0.39\%	1.91\%	3.98\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.85\%	0.02\%	0.42\%	0.72\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.29\%	0.06\%	2.81\%	2.05\%	NR_Plastics
Plastic Total			13.39\%	0.94\%	25.20\%	12.77\%	
Glass	Container Glass	Clear Container Glass	0.98\%	0.02\%	11.11\%	1.65\%	R Glass
Glass	Container Glass	Green Container Glass	0.22\%	0.01\%	3.31\%	0.43\%	R Glass
Glass	Container Glass	Brown Container Glass	0.19\%	0.00\%	2.53\%	0.35\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.31\%	0.00\%	17.80\%	1.65\%	R Glass
Glass	Container Glass	Other Container Glass	0.00\%	0.01\%	0.21\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.24\%	0.01\%	0.40\%	0.22\%	PR_Glass
Glass Total			1.94\%	0.05\%	35.36\%	4.32\%	

Table 1-118
Staten Island Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.20\%	0.00\%	1.28\%	0.26\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.61\%	0.02\%	1.16\%	0.58\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.70\%	0.08\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.15\%	0.00\%	1.03\%	0.20\%	R Metal
Metal	Ferrous	Tin Food Cans	0.44\%	0.02\%	6.52\%	0.87\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.17\%	0.00\%	0.77\%	0.20\%	R Metal
Metal	Ferrous	Other Ferrous	1.83\%	0.06\%	10.13\%	2.26\%	R Metal
Metal	Other Metal	Mixed Metals	0.39\%	0.00\%	3.24\%	0.57\%	R Metal
Metal Total			3.83\%	0.11\%	24.83\%	5.01\%	
Organics	Yard	Leaves and Grass	8.42\%	0.02\%	0.02\%	6.71\%	NR_Other
Organics	Yard	Prunings	1.75\%	0.00\%	0.01\%	1.40\%	NR_Other
Organics	Wood	Stumps/Limbs	0.12\%	0.00\%	0.00\%	0.09\%	NR_Other
Organics	Food	Food	17.18\%	0.24\%	1.83\%	13.87\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	2.25\%	0.00\%	0.16\%	1.80\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.18\%	0.01\%	0.04\%	0.15\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.81\%	0.05\%	0.12\%	1.45\%	NR_Other
Organics	Textiles	Clothing Textiles	2.64\%	0.01\%	0.08\%	2.11\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.83\%	0.00\%	0.03\%	1.46\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.59\%	0.00\%	0.13\%	2.87\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.24\%	0.00\%	0.12\%	1.00\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.36\%	0.00\%	0.09\%	0.29\%	NR_Other
Organics	Textiles	Shoes	0.57\%	0.01\%	0.02\%	0.46\%	NR_Other
Organics	Textiles	Other Leather Products	0.04\%	0.00\%	0.02\%	0.03\%	NR_Other
Organics	Misc. Organic	Fines	3.94\%	0.18\%	0.40\%	3.20\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.75\%	0.00\%	0.14\%	0.61\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.34\%	0.00\%	0.13\%	1.08\%	NR_Other
Organics Total			48.00\%	0.53\%	3.36\%	38.59\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.82\%	0.00\%	2.41\%	0.84\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00\%	0.00\%	0.70\%	0.06\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.24\%	0.00\%	0.62\%	0.24\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.30\%	0.00\%	0.39\%	0.27\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.07\%	0.00\%	0.01\%	0.06\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.38\%	0.00\%	0.00\%	0.30\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.34\%	0.00\%	0.39\%	0.30\%	NR_Other
Appliance/Electronic Total			2.15\%	0.01\%	4.51\%	2.07\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.42\%	0.00\%	0.03\%	1.13\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.41\%	0.00\%	0.03\%	1.92\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.94\%	0.00\%	0.01\%	0.75\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.42\%	0.00\%	0.11\%	0.34\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.85\%	0.00\%	0.23\%	2.29\%	NR_Other
C \& D Debris Total			8.04\%	0.00\%	0.41\%	6.44\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.38\%	0.11\%	0.07\%	0.32\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.79\%	0.00\%	0.40\%	0.66\%	NR_Other
Miscellaneous Inorganics Total			1.17\%	0.12\%	0.48\%	0.99\%	

Table 1-118
Staten Island Results at a Glance, Summer 2005 Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	0.01\%	0.00\%	0.04\%	0.01\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.02\%	0.00\%	0.14\%	0.03\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.06\%	0.00\%	0.03\%	0.05\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.00\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.02\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.03\%	0.00\%	0.03\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.01\%	0.00\%	0.03\%	0.01\%	NR_Other
HHW Total			0.21\%	0.00\%	0.31\%	0.20\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			893.55	645.25	22.92	1,561.72	
Plastic Tota			563.00	6.16	104.18	673.33	
Glass Total			81.40	0.35	146.15	227.91	
Metal Total			161.09	0.71	102.66	264.46	
Organics To			2,018.09	3.49	13.88	2,035.46	
Appliance/E			90.52	0.04	18.64	109.19	
C \& D Debris			338.08	0.00	1.71	339.79	
Miscellaneo	Total		49.37	0.77	1.98	52.12	
HHW Total			8.98	0.03	1.28	10.29	
Grand Tota			4,204.08	656.82	413.39	5,274.28	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	
Percent Designated Paper			12.86\%	96.21\%	2.65\%	22.44\%	
Percent Designated MGP			7.68\%	0.35\%	80.52\%	12.48\%	
Percent Designated Recycling			20.54\%	96.55\%	83.17\%	34.92\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

4.4 Boroughwide Results at a Glance, WCS Annual

Tables 1-119 through 1-123 present the annualized results (four seasons aggregated into one figure) of the WCS for each of New York City's five boroughs for the Refuse, MGP, Paper, and Waste streams. Because the WCS was designed to determine Waste composition by housing density and income, the process of deriving annualized results by borough required a separate, complex analysis. (For more detail on the methodology and calculations, see Volume 2, Section 2.)

The data in this form provides a straightforward presentation of the composition of each borough's Refuse, Paper, MGP, and Waste streams, and makes simple borough comparisons and trends possible.

Table 1-119
Manhattan Results at a Glance, Annual Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	4.97\%	46.55\%	0.29\%	10.51\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.48\%	11.03\%	0.15\%	2.73\%	R Paper
Paper	Mixed Paper	High Grade Paper	1.10\%	2.84\%	0.03\%	1.27\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	12.00\%	30.95\%	1.11\%	13.90\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.67\%	4.34\%	0.04\%	1.14\%	R Paper
Paper	Mixed Paper	Paper Bags	1.11\%	0.42\%	0.05\%	0.94\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.52\%	0.19\%	1.64\%	0.55\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	7.32\%	0.40\%	0.28\%	5.84\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.51\%	0.01\%	0.05\%	0.40\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.75\%	0.69\%	0.28\%	0.71\%	NR_Paper
Paper Total			30.41\%	97.42\%	3.93\%	38.00\%	
Plastic	PET Bottles	PET Bottles	1.09\%	0.02\%	5.44\%	1.25\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.31\%	0.00\%	2.35\%	0.41\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.36\%	0.00\%	2.66\%	0.47\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	0.00\%	0.21\%	0.06\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.00\%	0.05\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.05\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.00\%	0.21\%	0.06\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.02\%	0.00\%	0.00\%	0.02\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.22\%	0.00\%	0.50\%	0.21\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06\%	0.01\%	0.04\%	0.05\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.08\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.01\%	0.01\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.41\%	0.00\%	0.25\%	0.34\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.60\%	0.04\%	0.06\%	0.48\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.04\%	0.03\%	1.28\%	0.92\%	PR_Plastics
Plastic	Film	Plastic Bags	3.55\%	0.23\%	0.80\%	2.89\%	PR_Plastics
Plastic	Film	Other Film	6.18\%	0.94\%	3.87\%	5.27\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.53\%	0.01\%	0.16\%	0.43\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.68\%	0.22\%	3.36\%	1.59\%	NR_Plastics
Plastic Total			16.24\%	1.50\%	21.41\%	14.52\%	
Glass	Container Glass	Clear Container Glass	1.18\%	0.03\%	6.62\%	1.41\%	R Glass
Glass	Container Glass	Green Container Glass	0.45\%	0.00\%	7.80\%	0.91\%	R Glass
Glass	Container Glass	Brown Container Glass	0.31\%	0.01\%	1.89\%	0.38\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.79\%	0.03\%	22.97\%	2.26\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.15\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.16\%	0.01\%	0.37\%	0.16\%	PR_Glass
Glass Total			2.92\%	0.08\%	39.80\%	5.14\%	

Table 1-119
Manhattan Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.25\%	0.00\%	0.40\%	0.23\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.60\%	0.00\%	0.59\%	0.51\%	R Metal
Metal	Aluminum	Other Aluminum	0.03\%	0.00\%	0.28\%	0.04\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	0.00\%	0.72\%	0.15\%	R Metal
Metal	Ferrous	Tin Food Cans	0.92\%	0.01\%	5.11\%	1.09\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.01\%	0.61\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.11\%	0.06\%	12.08\%	1.74\%	R Metal
Metal	Other Metal	Mixed Metals	0.56\%	0.00\%	3.47\%	0.69\%	R Metal
Metal Total			3.74\%	0.08\%	23.26\%	4.61\%	
Organics	Yard	Leaves and Grass	1.33\%	0.00\%	0.01\%	1.05\%	NR_Other
Organics	Yard	Prunings	0.42\%	0.00\%	0.00\%	0.33\%	NR_Other
Organics	Wood	Stumps/Limbs	0.03\%	0.00\%	0.01\%	0.03\%	NR_Other
Organics	Food	Food	19.85\%	0.11\%	1.23\%	15.74\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.14\%	0.03\%	0.13\%	0.91\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.18\%	0.02\%	0.03\%	0.15\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.56\%	0.11\%	0.11\%	1.26\%	NR_Other
Organics	Textiles	Clothing Textiles	2.85\%	0.03\%	0.09\%	2.25\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.42\%	0.00\%	0.00\%	1.12\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.70\%	0.02\%	0.02\%	2.92\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.21\%	0.00\%	0.04\%	0.95\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.30\%	0.04\%	0.06\%	0.25\%	NR_Other
Organics	Textiles	Shoes	0.66\%	0.05\%	0.04\%	0.53\%	NR_Other
Organics	Textiles	Other Leather Products	0.08\%	0.00\%	0.01\%	0.06\%	NR_Other
Organics	Misc. Organic	Fines	4.30\%	0.26\%	0.21\%	3.43\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.94\%	0.00\%	0.18\%	0.75\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.73\%	0.02\%	0.08\%	0.58\%	NR_Other
Organics Total			40.70\%	0.70\%	2.25\%	32.32\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.29\%	0.00\%	5.84\%	0.64\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.02\%	0.00\%	0.13\%	0.02\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.25\%	0.00\%	0.96\%	0.27\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.19\%	0.01\%	0.26\%	0.17\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.01\%	0.00\%	0.34\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.03\%	0.00\%	0.00\%	0.03\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.19\%	0.04\%	0.53\%	0.19\%	NR_Other
Appliance/Electronic Total			0.99\%	0.05\%	8.08\%	1.36\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.47\%	0.03\%	0.01\%	0.38\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.37\%	0.00\%	0.16\%	1.09\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.70\%	0.00\%	0.02\%	0.55\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.49\%	0.00\%	0.08\%	0.39\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.19\%	0.13\%	0.25\%	0.97\%	NR_Other
C \& D Debris Total			4.21\%	0.16\%	0.53\%	3.38\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.20\%	0.01\%	0.09\%	0.17\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.32\%	0.00\%	0.34\%	0.28\%	NR_Other
Miscellaneous Inorganics Total			0.52\%	0.01\%	0.43\%	0.44\%	

Table 1-119
Manhattan Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.03\%	0.00\%	0.19\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.00\%	0.03\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.00\%	0.02\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.08\%	0.00\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.02\%	0.00\%	0.04\%	0.02\%	NR_Other
HHW Total			0.27\%	0.01\%	0.32\%	0.23\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			2,843.92	1,634.88	33.15	4,511.95	
Plastic Tota			1,518.43	25.19	180.69	1,724.31	
Glass Total			272.63	1.37	335.91	609.91	
Metal Total			349.42	1.37	196.34	547.13	
Organics To			3,806.03	11.72	19.03	3,836.78	
Appliance/E			92.13	0.78	68.17	161.08	
C \& D Debri			393.96	2.66	4.43	401.05	
Miscellaneo	Total		48.91	0.18	3.59	52.69	
HHW Total			25.01	0.10	2.70	27.81	
Grand Tota			9,350.42	1,678.25	844.02	11,872.69	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	$\begin{gathered} \text { \% of Paper } \\ \text { Stream } \end{gathered}$	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			21.32\%	96.12\%	1.68\%	30.50\%	
Percent Designated MGP			9.07\%	0.37\%	80.76\%	12.93\%	
Percent Designated Recycling			30.39\%	96.49\%	82.44\%	43.43\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-120
Bronx Results at a Glance, Annual Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.90\%	39.16\%	0.50\%	6.00\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.17\%	17.02\%	0.25\%	2.15\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.63\%	3.39\%	0.05\%	0.77\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.77\%	29.08\%	1.17\%	8.74\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.47\%	5.15\%	0.08\%	0.75\%	R Paper
Paper	Mixed Paper	Paper Bags	0.65\%	0.30\%	0.04\%	0.59\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.42\%	0.33\%	1.85\%	0.50\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.25\%	1.48\%	0.31\%	5.54\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.41\%	0.02\%	0.05\%	0.36\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.71\%	0.95\%	0.43\%	0.71\%	NR_Paper
Paper Total			22.37\%	96.89\%	4.71\%	26.12\%	
Plastic	PET Bottles	PET Bottles	1.03\%	0.06\%	5.87\%	1.28\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.34\%	0.01\%	3.43\%	0.52\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.34\%	0.01\%	3.22\%	0.51\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.02\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.00\%	0.24\%	0.06\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.00\%	0.09\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.18\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.00\%	0.39\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.06\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	0.00\%	0.11\%	0.02\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.03\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.25\%	0.02\%	0.23\%	0.24\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.67\%	0.04\%	0.10\%	0.59\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.72\%	0.04\%	1.28\%	0.71\%	PR_Plastics
Plastic	Film	Plastic Bags	3.49\%	0.21\%	0.84\%	3.10\%	PR_Plastics
Plastic	Film	Other Film	5.68\%	0.75\%	3.14\%	5.19\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.56\%	0.02\%	0.20\%	0.50\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.92\%	0.33\%	3.99\%	1.95\%	NR_Plastics
Plastic Total			15.40\%	1.49\%	23.49\%	15.02\%	
Glass	Container Glass	Clear Container Glass	1.40\%	0.04\%	6.89\%	1.67\%	R Glass
Glass	Container Glass	Green Container Glass	0.31\%	0.01\%	2.74\%	0.45\%	R Glass
Glass	Container Glass	Brown Container Glass	0.37\%	0.01\%	1.58\%	0.43\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.66\%	0.02\%	17.14\%	1.71\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.15\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.19\%	0.04\%	0.36\%	0.20\%	PR_Glass
Glass Total			2.96\%	0.12\%	28.86\%	4.48\%	

Table 1-120
Bronx Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.23\%	0.01\%	0.56\%	0.23\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.57\%	0.02\%	0.89\%	0.55\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.01\%	0.45\%	0.07\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.13\%	0.01\%	0.84\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	1.09\%	0.03\%	7.43\%	1.44\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.14\%	0.01\%	0.67\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous	1.19\%	0.03\%	14.32\%	1.98\%	R Metal
Metal	Other Metal	Mixed Metals	0.48\%	0.02\%	4.33\%	0.70\%	R Metal
Metal Total			3.86\%	0.13\%	29.49\%	5.30\%	
Organics	Yard	Leaves and Grass	2.64\%	0.01\%	0.01\%	2.29\%	NR_Other
Organics	Yard	Prunings	0.56\%	0.01\%	0.00\%	0.48\%	NR_Other
Organics	Wood	Stumps/Limbs	0.13\%	0.00\%	0.00\%	0.11\%	NR_Other
Organics	Food	Food	23.29\%	0.28\%	1.50\%	20.33\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.29\%	0.01\%	0.15\%	1.13\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.22\%	0.03\%	0.05\%	0.20\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.70\%	0.05\%	0.14\%	1.49\%	NR_Other
Organics	Textiles	Clothing Textiles	3.54\%	0.06\%	0.10\%	3.08\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.27\%	0.00\%	0.00\%	1.10\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.09\%	0.04\%	0.06\%	3.55\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.07\%	0.00\%	0.02\%	0.93\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.35\%	0.09\%	0.10\%	0.32\%	NR_Other
Organics	Textiles	Shoes	0.80\%	0.03\%	0.07\%	0.70\%	NR_Other
Organics	Textiles	Other Leather Products	0.12\%	0.00\%	0.01\%	0.11\%	NR_Other
Organics	Misc. Organic	Fines	4.55\%	0.39\%	0.23\%	3.99\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.21\%	0.00\%	0.15\%	1.06\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.73\%	0.05\%	0.09\%	0.64\%	NR_Other
Organics Total			47.56\%	1.07\%	2.70\%	41.53\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.32\%	0.00\%	7.07\%	0.75\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.03\%	0.00\%	0.14\%	0.03\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.22\%	0.01\%	1.05\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.26\%	0.02\%	0.34\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.05\%	0.00\%	0.04\%	0.05\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.12\%	0.00\%	0.01\%	0.10\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.22\%	0.01\%	0.64\%	0.23\%	NR_Other
Appliance/Electronic Total			1.22\%	0.04\%	9.28\%	1.68\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.65\%	0.01\%	0.01\%	0.57\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1.78\%	0.04\%	0.18\%	1.56\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.00\%	0.00\%	0.02\%	0.87\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.84\%	0.01\%	0.10\%	0.73\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.46\%	0.16\%	0.32\%	1.30\%	NR_Other
C \& D Debris Total			5.72\%	0.21\%	0.63\%	5.02\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.18\%	0.01\%	0.10\%	0.17\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.43\%	0.02\%	0.46\%	0.41\%	NR_Other
Miscellaneous Inorganics Total			0.61\%	0.03\%	0.56\%	0.57\%	

Table 1-120
Bronx Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.04\%	0.01\%	0.08\%	0.04\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.00\%	0.05\%	0.02\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.01\%	0.03\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.01\%	0.00\%	0.03\%	0.01\%	NR_Other
HHW	HHW	Home Medical Products	0.08\%	0.00\%	0.02\%	0.07\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.06\%	0.03\%	NR_Other
HHW Total			0.29\%	0.02\%	0.29\%	0.27\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			1,815.58	597.44	29.04	2,442.07	
Plastic Tota			1,250.31	9.20	144.95	1,404.46	
Glass Total			240.12	0.75	178.10	418.97	
Metal Total			313.09	0.81	181.98	495.87	
Organics To			3,859.84	6.58	16.64	3,883.07	
Appliance/E			99.31	0.23	57.25	156.79	
C \& D Debris			464.48	1.30	3.91	469.70	
Miscellaneo	Total		49.82	0.18	3.43	53.43	
HHW Total			23.76	0.14	1.76	25.66	
Grand Tota			8,116.32	616.64	617.07	9,350.03	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			14.59\%	94.10\%	2.08\%	19.01\%	
Percent Designated MGP			9.10\%	0.62\%	79.57\%	13.19\%	
Percent Designated Recycling			23.68\%	94.72\%	81.64\%	32.19\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-121
Brooklyn Results at a Glance, Annual Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.45\%	37.41\%	0.69\%	6.54\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.12\%	16.51\%	0.29\%	2.55\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.57\%	3.70\%	0.07\%	0.84\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.36\%	30.80\%	1.40\%	9.22\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.47\%	5.67\%	0.10\%	0.94\%	R Paper
Paper	Mixed Paper	Paper Bags	0.62\%	0.36\%	0.05\%	0.56\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.40\%	0.26\%	2.14\%	0.51\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.31\%	1.52\%	0.33\%	5.44\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.42\%	0.03\%	0.06\%	0.36\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.67\%	0.83\%	0.48\%	0.67\%	NR_Paper
Paper Total			21.38\%	97.08\%	5.61\%	27.62\%	
Plastic	PET Bottles	PET Bottles	0.95\%	0.06\%	6.58\%	1.25\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.29\%	0.01\%	3.49\%	0.48\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.30\%	0.01\%	3.32\%	0.48\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.02\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.05\%	0.00\%	0.21\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.11\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.00\%	0.19\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.16\%	0.00\%	0.39\%	0.16\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.06\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.07\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.01\%	0.00\%	0.06\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.23\%	0.02\%	0.26\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.68\%	0.04\%	0.11\%	0.58\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.69\%	0.05\%	1.36\%	0.68\%	PR_Plastics
Plastic	Film	Plastic Bags	3.29\%	0.21\%	0.94\%	2.83\%	PR_Plastics
Plastic	Film	Other Film	5.44\%	0.69\%	3.13\%	4.82\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.60\%	0.02\%	0.23\%	0.52\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.90\%	0.23\%	3.59\%	1.86\%	NR_Plastics
Plastic Total			14.75\%	1.35\%	24.20\%	14.10\%	
Glass	Container Glass	Clear Container Glass	1.38\%	0.05\%	7.94\%	1.70\%	R Glass
Glass	Container Glass	Green Container Glass	0.29\%	0.01\%	3.01\%	0.45\%	R Glass
Glass	Container Glass	Brown Container Glass	0.33\%	0.01\%	1.94\%	0.41\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.63\%	0.02\%	17.72\%	1.75\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.00\%	0.19\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.21\%	0.02\%	0.42\%	0.21\%	PR_Glass
Glass Total			2.87\%	0.10\%	31.21\%	4.56\%	

Table 1-121
Brooklyn Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \hline \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	\% of MGP Stream	$\begin{aligned} & \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.20\%	0.01\%	0.61\%	0.21\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.58\%	0.02\%	1.05\%	0.55\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.00\%	0.36\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.12\%	0.03\%	0.73\%	0.15\%	R Metal
Metal	Ferrous	Tin Food Cans	0.90\%	0.03\%	8.03\%	1.31\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.01\%	0.73\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous	1.22\%	0.04\%	12.91\%	1.91\%	R Metal
Metal	Other Metal	Mixed Metals	0.53\%	0.02\%	3.19\%	0.67\%	R Metal
Metal Total			3.72\%	0.15\%	27.62\%	5.02\%	
Organics	Yard	Leaves and Grass	3.30\%	0.02\%	0.02\%	2.76\%	NR_Other
Organics	Yard	Prunings	0.72\%	0.00\%	0.00\%	0.60\%	NR_Other
Organics	Wood	Stumps/Limbs	0.15\%	0.00\%	0.00\%	0.13\%	NR_Other
Organics	Food	Food	22.78\%	0.36\%	1.60\%	19.15\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.55\%	0.01\%	0.13\%	1.30\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.26\%	0.03\%	0.06\%	0.22\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.67\%	0.05\%	0.11\%	1.41\%	NR_Other
Organics	Textiles	Clothing Textiles	3.22\%	0.10\%	0.09\%	2.70\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.42\%	0.00\%	0.01\%	1.19\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.04\%	0.05\%	0.07\%	3.38\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.34\%	0.00\%	0.02\%	1.12\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.34\%	0.03\%	0.10\%	0.29\%	NR_Other
Organics	Textiles	Shoes	0.80\%	0.04\%	0.07\%	0.67\%	NR_Other
Organics	Textiles	Other Leather Products	0.13\%	0.00\%	0.01\%	0.11\%	NR_Other
Organics	Misc. Organic	Fines	4.56\%	0.36\%	0.23\%	3.85\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.15\%	0.00\%	0.12\%	0.97\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.87\%	0.02\%	0.13\%	0.74\%	NR_Other
Organics Total			48.29\%	1.07\%	2.77\%	40.58\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.44\%	0.00\%	5.44\%	0.74\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.04\%	0.00\%	0.12\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.23\%	0.01\%	0.90\%	0.25\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.32\%	0.01\%	0.28\%	0.29\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.12\%	0.00\%	0.01\%	0.10\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.18\%	0.00\%	0.01\%	0.15\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.22\%	0.00\%	0.50\%	0.22\%	NR_Other
Appliance/Electronic Total			1.56\%	0.03\%	7.26\%	1.81\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.63\%	0.00\%	0.01\%	0.53\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	2.00\%	0.09\%	0.08\%	1.68\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.24\%	0.00\%	0.02\%	1.03\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.93\%	0.01\%	0.09\%	0.78\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.67\%	0.06\%	0.20\%	1.41\%	NR_Other
C \& D Debris Total			6.47\%	0.16\%	0.39\%	5.44\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.22\%	0.01\%	0.12\%	0.19\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.47\%	0.03\%	0.46\%	0.43\%	NR_Other
Miscellaneous Inorganics Total			0.69\%	0.04\%	0.58\%	0.62\%	

Table 1-121
Brooklyn Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.05\%	0.01\%	0.11\%	0.05\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.08\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.01\%	0.04\%	0.08\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.06\%	0.00\%	0.02\%	0.05\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.09\%	0.03\%	NR_Other
HHW Total			0.27\%	0.02\%	0.37\%	0.25\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,516.51	1,851.37	76.38	5,444.25	
Plastic Tota			2,424.93	25.70	329.51	2,780.14	
Glass Total			471.97	1.89	425.06	898.92	
Metal Total			611.27	2.92	376.11	990.30	
Organics To			7,941.56	20.42	37.68	7,999.66	
Appliance/E			256.49	0.54	98.82	355.85	
C \& D Debri			1,064.00	3.09	5.36	1,072.45	
Miscellaneo	Total		113.24	0.77	7.89	121.90	
HHW Total			44.77	0.32	5.04	50.13	
Grand Tota			16,444.74	1,907.02	1,361.84	19,713.60	
Subtotals by Recycling Designation							
Recycling Designation			\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	
Percent Designated Paper			13.58\%	94.45\%	2.60\%	20.64\%	
Percent Designated MGP			8.79\%	0.58\%	79.50\%	12.88\%	
Percent Designated Recycling			22.37\%	95.03\%	82.10\%	33.52\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-122
Queens Results at a Glance, Annual Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	$\begin{gathered} \hline \text { \% of MGP } \\ \text { Stream } \end{gathered}$	\% of Waste Stream	Recycling Subindicator
Paper	ONP	Newspaper	3.15\%	41.40\%	0.74\%	7.32\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.02\%	12.69\%	0.34\%	2.30\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.58\%	3.07\%	0.08\%	0.83\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.62\%	32.26\%	1.49\%	9.96\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.43\%	4.94\%	0.09\%	0.92\%	R Paper
Paper	Mixed Paper	Paper Bags	0.61\%	0.36\%	0.05\%	0.54\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.35\%	0.25\%	2.03\%	0.46\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.84\%	1.68\%	0.34\%	5.77\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.63\%	0.02\%	0.06\%	0.52\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.71\%	0.71\%	0.43\%	0.69\%	NR_Paper
Paper Total			21.95\%	97.38\%	5.66\%	29.28\%	
Plastic	PET Bottles	PET Bottles	0.73\%	0.10\%	6.90\%	1.13\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.23\%	0.01\%	3.25\%	0.44\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.25\%	0.01\%	3.48\%	0.47\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.04\%	0.00\%	0.21\%	0.05\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.04\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.11\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.00\%	0.21\%	0.07\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.00\%	0.41\%	0.17\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.00\%	0.07\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.01\%	0.00\%	0.06\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.02\%	0.00\%	0.03\%	0.02\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.24\%	0.02\%	0.32\%	0.22\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.62\%	0.04\%	0.11\%	0.52\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.79\%	0.04\%	1.39\%	0.75\%	PR_Plastics
Plastic	Film	Plastic Bags	2.98\%	0.23\%	1.02\%	2.52\%	PR_Plastics
Plastic	Film	Other Film	5.08\%	0.61\%	2.78\%	4.40\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.65\%	0.02\%	0.26\%	0.55\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.02\%	0.15\%	3.46\%	1.92\%	NR_Plastics
Plastic Total			13.98\%	1.24\%	24.16\%	13.31\%	
Glass	Container Glass	Clear Container Glass	0.98\%	0.05\%	9.09\%	1.49\%	R Glass
Glass	Container Glass	Green Container Glass	0.24\%	0.01\%	3.74\%	0.48\%	R Glass
Glass	Container Glass	Brown Container Glass	0.22\%	0.01\%	2.13\%	0.34\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.46\%	0.01\%	16.89\%	1.65\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.20\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.20\%	0.02\%	0.47\%	0.20\%	PR_Glass
Glass Total			2.12\%	0.09\%	32.51\%	4.18\%	

Table 1-122
Queens Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.17\%	0.01\%	0.76\%	0.19\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.55\%	0.03\%	1.08\%	0.53\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.00\%	0.40\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.14\%	0.01\%	0.79\%	0.18\%	R Metal
Metal	Ferrous	Tin Food Cans	0.64\%	0.04\%	7.61\%	1.09\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.01\%	0.70\%	0.16\%	R Metal
Metal	Ferrous	Other Ferrous	1.36\%	0.04\%	12.46\%	2.05\%	R Metal
Metal	Other Metal	Mixed Metals	0.45\%	0.02\%	3.14\%	0.61\%	R Metal
Metal Total			3.48\%	0.16\%	26.95\%	4.88\%	
Organics	Yard	Leaves and Grass	5.96\%	0.01\%	0.02\%	4.84\%	NR_Other
Organics	Yard	Prunings	1.39\%	0.00\%	0.01\%	1.13\%	NR_Other
Organics	Wood	Stumps/Limbs	0.31\%	0.00\%	0.00\%	0.25\%	NR_Other
Organics	Food	Food	20.68\%	0.36\%	1.67\%	16.94\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.48\%	0.01\%	0.10\%	1.21\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.21\%	0.02\%	0.04\%	0.17\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.64\%	0.06\%	0.11\%	1.35\%	NR_Other
Organics	Textiles	Clothing Textiles	2.81\%	0.06\%	0.09\%	2.29\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.61\%	0.00\%	0.01\%	1.31\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.83\%	0.04\%	0.09\%	3.11\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.54\%	0.00\%	0.04\%	1.25\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.32\%	0.01\%	0.12\%	0.27\%	NR_Other
Organics	Textiles	Shoes	0.67\%	0.03\%	0.07\%	0.55\%	NR_Other
Organics	Textiles	Other Leather Products	0.13\%	0.00\%	0.01\%	0.10\%	NR_Other
Organics	Misc. Organic	Fines	4.14\%	0.35\%	0.24\%	3.41\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.07\%	0.00\%	0.07\%	0.87\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.97\%	0.01\%	0.08\%	0.79\%	NR_Other
Organics Total			48.75\%	0.96\%	2.75\%	39.85\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.39\%	0.00\%	5.04\%	0.70\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.03\%	0.00\%	0.15\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.25\%	0.01\%	0.77\%	0.26\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.27\%	0.01\%	0.28\%	0.24\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.09\%	0.00\%	0.03\%	0.07\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.17\%	0.00\%	0.01\%	0.14\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.20\%	0.01\%	0.48\%	0.20\%	NR_Other
Appliance/Electronic Total			1.41\%	0.04\%	6.75\%	1.66\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.98\%	0.00\%	0.01\%	0.79\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.25\%	0.03\%	0.06\%	1.83\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.22\%	0.00\%	0.01\%	0.99\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.81\%	0.00\%	0.06\%	0.66\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.96\%	0.02\%	0.18\%	1.60\%	NR_Other
C \& D Debris Total			7.21\%	0.06\%	0.32\%	5.88\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.30\%	0.02\%	0.09\%	0.25\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.53\%	0.02\%	0.50\%	0.47\%	NR_Other
Miscellaneous Inorganics Total			0.83\%	0.04\%	0.58\%	0.72\%	

Table 1-122
Queens Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	\% of Waste Stream	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.07\%	0.02\%	0.10\%	0.06\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.03\%	0.00\%	0.05\%	0.03\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.00\%	0.01\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.07\%	0.00\%	0.03\%	0.06\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.01\%	0.00\%	0.00\%	0.01\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.04\%	0.00\%	0.02\%	0.03\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.03\%	0.00\%	0.08\%	0.03\%	NR_Other
HHW Total			0.27\%	0.03\%	0.32\%	0.24\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$							
Material Group			Refuse	Paper	MGP	Waste	
Paper Total			3,295.17	2,047.77	79.06	5,421.99	
Plastic Tota			2,099.84	26.10	337.47	2,463.42	
Glass Total			318.70	1.99	454.11	774.79	
Metal Total			523.06	3.30	376.35	902.71	
Organics To			7,319.62	20.18	38.37	7,378.18	
Appliance/E			211.58	0.77	94.24	306.59	
C \& D Debris			1,082.89	1.31	4.48	1,088.68	
Miscellaneo	Total		124.77	0.78	8.14	133.70	
HHW Total			39.82	0.59	4.44	44.85	
Grand Tota			15,015.45	2,102.80	1,396.65	18,514.90	
Subtotals by Recycling Designation							
Recycling Designation			$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \text { \% of Paper } \\ & \text { Stream } \end{aligned}$	$\begin{gathered} \hline \text { \% of MGP } \\ \text { Stream } \end{gathered}$	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	
Percent Designated Paper			13.42\%	94.72\%	2.80\%	21.85\%	
Percent Designated MGP			7.40\%	0.59\%	79.84\%	12.09\%	
Percent Designated Recycling			20.82\%	95.32\%	82.63\%	33.94\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to stimate generation can be found in Section 226 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

Table 1-123
Staten Island Results at a Glance, Annual Waste Characterization Study

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{aligned} & \text { \% of Refuse } \\ & \text { Stream } \end{aligned}$	\% of Paper Stream	$\begin{aligned} & \hline \text { \% of MGP } \\ & \text { Stream } \end{aligned}$	$\begin{aligned} & \hline \text { \% of Waste } \\ & \text { Stream } \end{aligned}$	Recycling Subindicator
Paper	ONP	Newspaper	2.65\%	44.32\%	0.86\%	8.09\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1.00\%	11.41\%	0.40\%	2.35\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.53\%	2.38\%	0.07\%	0.74\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	7.33\%	32.59\%	1.57\%	10.28\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	0.41\%	3.52\%	0.09\%	0.80\%	R Paper
Paper	Mixed Paper	Paper Bags	0.52\%	0.27\%	0.06\%	0.45\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.29\%	0.30\%	1.85\%	0.41\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.76\%	1.88\%	0.39\%	5.63\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.78\%	0.01\%	0.06\%	0.62\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	0.71\%	0.58\%	0.40\%	0.67\%	NR_Paper
Paper Total			20.98\%	97.26\%	5.77\%	30.05\%	
Plastic	PET Bottles	PET Bottles	0.61\%	0.17\%	7.55\%	1.07\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.24\%	0.01\%	2.85\%	0.40\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.23\%	0.01\%	3.77\%	0.47\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.00\%	0.02\%	0.01\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.01\%	0.18\%	0.03\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.00\%	0.12\%	0.02\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.08\%	0.01\%	0.22\%	0.08\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.01\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.00\%	0.41\%	0.15\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.01\%	0.07\%	0.03\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.05\%	0.01\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.03\%	0.00\%	0.04\%	0.03\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.22\%	0.03\%	0.34\%	0.21\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.58\%	0.05\%	0.10\%	0.47\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.75\%	0.02\%	1.30\%	0.70\%	PR_Plastics
Plastic	Film	Plastic Bags	2.45\%	0.28\%	1.05\%	2.06\%	PR_Plastics
Plastic	Film	Other Film	4.44\%	0.49\%	2.26\%	3.75\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.73\%	0.02\%	0.25\%	0.60\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	2.17\%	0.14\%	3.41\%	1.99\%	NR_Plastics
Plastic Total			12.80\%	1.24\%	24.05\%	12.10\%	
Glass	Container Glass	Clear Container Glass	0.86\%	0.07\%	10.73\%	1.49\%	R Glass
Glass	Container Glass	Green Container Glass	0.17\%	0.00\%	3.52\%	0.40\%	R Glass
Glass	Container Glass	Brown Container Glass	0.14\%	0.01\%	2.36\%	0.29\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.33\%	0.00\%	14.03\%	1.32\%	R Glass
Glass	Container Glass	Other Container Glass	0.02\%	0.00\%	0.21\%	0.03\%	R Glass
Glass	Other Glass	Other Glass	0.19\%	0.03\%	0.45\%	0.19\%	PR_Glass
Glass Total			1.71\%	0.11\%	31.30\%	3.72\%	

Table 1-123
Staten Island Results at a Glance, Annual Waste Characterization Study (continued)

Material Group	Material Subgroup	Material Category: Subcategory	\% of Refuse Stream	\% of Paper Stream	\% of MGP Stream	\% of Waste Stream	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.15\%	0.01\%	0.99\%	0.19\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.54\%	0.04\%	1.19\%	0.52\%	R Metal
Metal	Aluminum	Other Aluminum	0.04\%	0.00\%	0.42\%	0.06\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.15\%	0.00\%	0.96\%	0.19\%	R Metal
Metal	Ferrous	Tin Food Cans	0.49\%	0.07\%	7.60\%	0.97\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.13\%	0.00\%	0.68\%	0.15\%	R Metal
Metal	Ferrous	Other Ferrous	1.39\%	0.05\%	13.27\%	2.10\%	R Metal
Metal	Other Metal	Mixed Metals	0.45\%	0.01\%	2.99\%	0.59\%	R Metal
Metal Total			3.34\%	0.18\%	28.10\%	4.78\%	
Organics	Yard	Leaves and Grass	9.09\%	0.01\%	0.02\%	7.19\%	NR_Other
Organics	Yard	Prunings	2.23\%	0.00\%	0.01\%	1.76\%	NR_Other
Organics	Wood	Stumps/Limbs	0.42\%	0.00\%	0.00\%	0.33\%	NR_Other
Organics	Food	Food	18.39\%	0.43\%	1.85\%	14.74\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.67\%	0.00\%	0.10\%	1.33\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.19\%	0.01\%	0.03\%	0.15\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.51\%	0.07\%	0.09\%	1.21\%	NR_Other
Organics	Textiles	Clothing Textiles	2.56\%	0.08\%	0.07\%	2.04\%	NR_Other
Organics	Textiles	Carpet/Upholstery	1.99\%	0.00\%	0.01\%	1.58\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.56\%	0.02\%	0.12\%	2.83\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.43\%	0.00\%	0.05\%	1.14\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.35\%	0.00\%	0.09\%	0.29\%	NR_Other
Organics	Textiles	Shoes	0.58\%	0.03\%	0.04\%	0.46\%	NR_Other
Organics	Textiles	Other Leather Products	0.11\%	0.00\%	0.01\%	0.09\%	NR_Other
Organics	Misc. Organic	Fines	3.88\%	0.41\%	0.23\%	3.14\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	1.07\%	0.00\%	0.05\%	0.85\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	1.13\%	0.00\%	0.10\%	0.90\%	NR_Other
Organics Total			50.16\%	1.08\%	2.88\%	40.03\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.52\%	0.00\%	4.81\%	0.77\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.03\%	0.00\%	0.21\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.29\%	0.01\%	0.72\%	0.29\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.31\%	0.01\%	0.33\%	0.27\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.06\%	0.00\%	0.00\%	0.04\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.17\%	0.00\%	0.00\%	0.14\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.13\%	0.00\%	0.58\%	0.14\%	NR_Other
Appliance/Electronic Total			1.51\%	0.02\%	6.66\%	1.70\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.34\%	0.00\%	0.01\%	1.06\%	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	2.49\%	0.01\%	0.05\%	1.98\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.17\%	0.00\%	0.01\%	0.92\%	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.88\%	0.00\%	0.07\%	0.70\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.37\%	0.00\%	0.10\%	1.88\%	NR_Other
C \& D Debris Total			8.25\%	0.02\%	0.24\%	6.55\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.39\%	0.03\%	0.09\%	0.32\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.63\%	0.01\%	0.60\%	0.55\%	NR_Other
Miscellaneous Inorganics Total			1.02\%	0.04\%	0.69\%	0.87\%	

Table 1-123
Staten Island Results at a Glance, Annual Waste Characterization Study (continued)

				Recycling Material Group	Material Subgroup	Material Category: Subsategory

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

4.5 Details on Drink Containers by Borough

Tables 1-124 through 1-126 present the results of the WCS Drink Container Sorts and Counts for each of New York City's five Boroughs. These tables show the percentage of each type of containers in the Refuse, MGP, and Waste streams in each Borough on an annual basis. In addition, the tables show the number of each type of container in the Refuse, MGP, Paper, and Waste streams in each Borough. These tables are useful in understanding and comparing the generation of containers by Borough.

Table 1-124
Drink Containers Sorts and Counts by Borough - Refuse

	Annual Percent of Refuse					Annual Count in Refuse ${ }^{(1)}$				
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
By Deposit Type										
Deposit										
PET Bottles	0.33\%	0.36\%	0.33\%	0.22\%	0.17\%	1,682	1,943	2,656	2,061	687
Clear Container Glass	0.30\%	0.42\%	0.41\%	0.24\%	0.19\%	165	448	585	446	137
Green Container Glass	0.22\%	0.21\%	0.19\%	0.13\%	0.10\%	257	220	357	320	65
Brown Container Glass	0.26\%	0.34\%	0.29\%	0.18\%	0.11\%	187	495	565	430	108
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	1	8	4	0
Aluminum Cans	0.22\%	0.20\%	0.17\%	0.14\%	0.12\%	2,691	2,361	3,024	3,392	1,386
Deposit Total	1.34\%	1.52\%	1.39\%	0.92\%	0.69\%	4,985	5,468	7,195	6,653	2,383
Potential Deposit										
PET Bottles	0.48\%	0.38\%	0.36\%	0.30\%	0.26\%	3,689	1,949	3,932	4,297	1,484
HDPE Bottles: Natural	0.07\%	0.09\%	0.07\%	0.04\%	0.02\%	189	643	545	476	76
HDPE Bottles: Colored	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	26	15	20	64	10
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	0	0	0	1
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	46	78	42	14
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	3	1	4	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	12	28	32	13
Clear Container Glass	0.27\%	0.28\%	0.29\%	0.21\%	0.19\%	219	289	551	444	123
Green Container Glass	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	15	7	6	11	1
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	4	4	7	0
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	3	10	0
Aluminum Cans	0.02\%	0.02\%	0.02\%	0.02\%	0.03\%	146	200	361	350	146
Potential Deposit Total	0.87\%	0.80\%	0.77\%	0.59\%	0.52\%	4,299	3,170	5,529	5,737	1,869
Non-Deposit										
PET Bottles	0.28\%	0.29\%	0.26\%	0.21\%	0.18\%	1,072	1,191	1,880	1,956	586
HDPE Bottles: Natural	0.24\%	0.25\%	0.22\%	0.20\%	0.22\%	678	1,154	1,187	1,459	392
HDPE Bottles: Colored	0.35\%	0.34\%	0.29\%	0.25\%	0.23\%	1,336	1,313	1,685	2,028	628
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	56	60	89	124	26
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	35	47	78	79	23
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.01\%	0.01\%	127	153	168	210	73
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.07\%	0.06\%	0.07\%	0.08\%	478	429	671	922	304
Clear Container Glass	0.61\%	0.70\%	0.68\%	0.54\%	0.48\%	569	710	1,211	1,194	412
Green Container Glass	0.22\%	0.09\%	0.10\%	0.10\%	0.07\%	143	41	149	129	36
Brown Container Glass	0.04\%	0.03\%	0.03\%	0.03\%	0.03\%	76	26	61	92	14
Other Container Glass	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	22	12	51	44	13
Aluminum Cans	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	36	35	64	77	18
Non-Deposit Total	1.86\%	1.82\%	1.70\%	1.44\%	1.34\%	4,628	5,171	7,294	8,314	2,525

Table 1-124
Drink Containers Sorts and Counts by Borough - Refuse (continued)

	Annual Percent of Refuse				Annual Count in Refuse ${ }^{(1)}$					
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
By Container Size										
Non-Beverage										
PET Bottles	0.19\%	0.20\%	0.19\%	0.16\%	0.14\%	798	875	1,336	1,472	464
HDPE Bottles: Natural	0.07\%	0.07\%	0.06\%	0.05\%	0.05\%	256	271	479	462	179
HDPE Bottles: Colored	0.32\%	0.31\%	0.29\%	0.23\%	0.22\%	1,155	1,235	1,568	1,773	569
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	48	60	88	117	28
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	34	21	50	48	20
\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	105	155	165	188	67
\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%	389	343	574	769	264
Non-Beverage Total	0.66\%	0.66\%	0.62\%	0.52\%	0.49\%	2,785	2,960	4,260	4,829	1,591
Single Serve										
PET Bottles	0.54\%	0.47\%	0.44\%	0.34\%	0.29\%	4,302	2,860	5,331	4,952	1,735
HDPE Bottles: Natural	0.03\%	0.04\%	0.04\%	0.02\%	0.01\%	171	526	526	385	71
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	104	62	108	218	49
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	0	2	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	68	106	71	16
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	12	2	3	15	2
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	71	89	94	143	42
Single Serve Total	0.59\%	0.53\%	0.50\%	0.38\%	0.33\%	4,664	3,607	6,168	5,786	1,915
Multi Serve										
PET Bottles	0.34\%	0.34\%	0.29\%	0.22\%	0.17\%	1,278	1,347	1,670	1,835	563
HDPE Bottles: Natural	0.18\%	0.22\%	0.18\%	0.13\%	0.09\%	436	1,071	712	1,098	217
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	47	27	35	74	17
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	1	3	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	2	1	0	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	4	3	7	4
Multi Serve Total	0.54\%	0.57\%	0.48\%	0.35\%	0.27\%	1,764	2,451	2,422	3,018	802

Table 1-124
Drink Containers Sorts and Counts by Borough - Refuse (continued)

	Annual Percent of Refuse				Annual Count in Refuse ${ }^{(1)}$					
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
Total ${ }^{(2)}$										
PET Bottles	1.09\%	1.03\%	0.95\%	0.73\%	0.61\%	6,443	5,083	8,468	8,314	2,757
HDPE Bottles: Natural	0.31\%	0.34\%	0.29\%	0.23\%	0.24\%	867	1,797	1,732	1,935	468
HDPE Bottles: Colored	0.36\%	0.34\%	0.30\%	0.25\%	0.23\%	1,362	1,328	1,705	2,092	638
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	64	60	89	124	27
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	35	93	156	121	37
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.01\%	0.01\%	0.01\%	127	156	169	214	74
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.07\%	0.06\%	0.07\%	0.09\%	482	441	699	954	317
Clear Container Glass	1.18\%	1.40\%	1.38\%	0.98\%	0.86\%	953	1,447	2,347	2,084	672
Green Container Glass	0.45\%	0.31\%	0.29\%	0.24\%	0.17\%	415	268	512	460	102
Brown Container Glass	0.31\%	0.37\%	0.33\%	0.22\%	0.14\%	266	525	630	529	122
Other Container Glass	0.02\%	0.02\%	0.03\%	0.02\%	0.02\%	25	15	62	58	13
Aluminum Cans	0.25\%	0.23\%	0.20\%	0.17\%	0.15\%	2,873	2,596	3,449	3,819	1,550
GRAND TOTAL	4.07\%	4.14\%	3.86\%	2.95\%	2.54\%	13,912	13,809	20,018	20,704	6,777

(1) Values shown are the total number of containers observed in all refuse samples sorted.
2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-125
Drink Containers Sorts and Counts by Borough - MGP
Annual Percent of MGP
Annual Count in MGP ${ }^{(1)}$

Table 1-125
Drink Containers Sorts and Counts by Borough - MGP (continued)

	Annual Percent of MGP					Annual Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
By Container Size										
Non-Beverage										
PET Bottles	0.89\%	1.23\%	1.40\%	1.40\%	1.55\%	1,886	1,712	4,532	6,713	2,677
HDPE Bottles: Natural	0.28\%	0.42\%	0.45\%	0.47\%	0.48\%	510	412	1,098	1,655	631
HDPE Bottles: Colored	2.56\%	3.05\%	3.12\%	3.26\%	3.59\%	3,121	2,767	5,527	9,008	3,910
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.04\%	0.04\%	0.05\%	0.05\%	44	39	112	203	99
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	9	12	25	30	9
\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.09\%	0.10\%	0.09\%	0.10\%	192	168	541	799	378
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.08\%	0.09\%	0.09\%	0.10\%	148	124	335	485	194
Non-Beverage Total	3.86\%	4.90\%	5.20\%	5.36\%	5.87\%	5,910	5,234	12,170	18,893	7,898
Single Serve										
PET Bottles	2.07\%	2.06\%	2.38\%	2.62\%	2.95\%	10,674	4,051	16,043	23,055	13,312
HDPE Bottles: Natural	0.08\%	0.10\%	0.13\%	0.09\%	0.08\%	322	418	933	849	295
HDPE Bottles: Colored	0.01\%	0.02\%	0.02\%	0.03\%	0.04\%	69	26	119	240	86
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	10	3	8	2	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	20	63	80	7
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	18	14	19	40	9
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.04\%	0.04\%	0.05\%	0.05\%	120	43	206	423	101
Single Serve Total	2.20\%	2.23\%	2.58\%	2.79\%	3.12\%	11,213	4,575	17,391	24,689	13,812
Multi Serve										
PET Bottles	2.39\%	2.51\%	2.76\%	2.89\%	3.11\%	5,563	2,577	7,837	10,996	6,078
HDPE Bottles: Natural	1.98\%	2.86\%	2.89\%	2.71\%	2.33\%	2,741	4,454	5,770	14,217	3,935
HDPE Bottles: Colored	0.12\%	0.17\%	0.16\%	0.18\%	0.15\%	140	142	255	667	199
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	1	4	5
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	9	2	38	12	5
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.04\%	0.04\%	0.05\%	0.05\%	30	8	55	101	60
Multi Serve Total	4.52\%	5.58\%	5.87\%	5.83\%	5.64\%	8,486	7,183	13,956	25,997	10,282

Table 1-125
Drink Containers Sorts and Counts by Borough - MGP (continued)
Annual Percent of MGP Annual Count in MGP ${ }^{(1)}$

	Annual Percent of MGP					Annual Count in MGP ${ }^{(1)}$				
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
Total ${ }^{(2)}{ }^{\text {c }}$										
PET Bottles	5.44\%	5.87\%	6.58\%	6.90\%	7.55\%	18,080	8,318	28,482	40,664	21,982
HDPE Bottles: Natural	2.35\%	3.43\%	3.49\%	3.25\%	2.85\%	3,466	5,345	8,010	17,096	4,804
HDPE Bottles: Colored	2.65\%	3.22\%	3.32\%	3.48\%	3.77\%	3,311	2,803	5,851	10,043	4,169
\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.04\%	0.04\%	0.04\%	0.05\%	88	73	124	212	86
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.01\%	0.01\%	0.01\%	9	33	96	109	19
\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.09\%	0.11\%	0.11\%	0.12\%	199	185	608	887	413
\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.18\%	0.20\%	0.21\%	0.22\%	347	176	601	1,028	363
Clear Container Glass	6.62\%	6.89\%	7.93\%	9.08\%	10.74\%	2,900	1,222	6,199	8,141	4,283
Green Container Glass	7.80\%	2.74\%	3.01\%	3.74\%	3.53\%	2,736	199	2,891	2,177	1,012
Brown Container Glass	1.89\%	1.58\%	1.94\%	2.13\%	2.35\%	1,124	299	2,228	2,006	1,083
Other Container Glass	0.15\%	0.15\%	0.19\%	0.20\%	0.21\%	60	23	166	167	71
Aluminum Cans	0.40\%	0.56\%	0.61\%	0.76\%	0.99\%	2,927	1,624	5,756	8,139	8,338
GRAND TOTAL	27.63\%	24.78\%	27.41\%	29.92\%	32.38\%	35,247	20,300	61,012	90,669	46,623

1) Values shown are the total number of containers observed in all MGP samples sorted.
2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect he statistical calculations or conclusions.

Table 1-126
Drink Containers Sorts and Counts by Borough - Waste

	Annual Percent of Waste					Annual Count in Waste ${ }^{(1)}$				
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
By Deposit Type										
Deposit										
PET Bottles	0.32\%	0.38\%	0.37\%	0.29\%	0.28\%	3,679	3,547	7,666	7,704	5,843
Clear Container Glass	0.31\%	0.44\%	0.44\%	0.30\%	0.28\%	630	777	1,803	1,726	993
Green Container Glass	0.28\%	0.23\%	0.23\%	0.19\%	0.18\%	1,175	347	1,553	1,447	594
Brown Container Glass	0.30\%	0.37\%	0.36\%	0.28\%	0.24\%	1,045	746	2,507	2,097	1,095
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	13	5	39	18	4
Aluminum Cans	0.20\%	0.19\%	0.17\%	0.16\%	0.15\%	4,972	3,402	7,321	8,939	8,729
Deposit Total	1.41\%	1.62\%	1.56\%	1.22\%	1.13\%	11,514	8,824	20,889	21,931	17,258
Potential Deposit										
PET Bottles	0.60\%	0.50\%	0.52\%	0.51\%	0.50\%	16,968	6,122	20,809	29,601	14,575
HDPE Bottles: Natural	0.11\%	0.13\%	0.13\%	0.10\%	0.08\%	1,412	2,106	2,745	4,657	945
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.00\%	70	66	78	244	20
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	11	0	5	0	4
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	54	119	94	15
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	5	10	19	8
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	28	14	103	131	59
Clear Container Glass	0.28\%	0.31\%	0.34\%	0.28\%	0.30\%	674	489	1,637	2,110	1,055
Green Container Glass	0.03\%	0.01\%	0.01\%	0.01\%	0.01\%	63	8	25	45	40
Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	6	16	12	5
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	2	6	52	7
Aluminum Cans	0.02\%	0.03\%	0.03\%	0.03\%	0.04\%	598	665	1,457	2,510	921
Potential Deposit Total	1.06\%	1.01\%	1.04\%	0.95\%	0.94\%	19,841	9,537	27,010	39,475	17,654
Non-Deposit										
PET Bottles	0.33\%	0.37\%	0.37\%	0.33\%	0.32\%	3,886	3,745	8,531	11,734	4,344
HDPE Bottles: Natural	0.30\%	0.38\%	0.36\%	0.34\%	0.34\%	2,923	5,039	7,012	14,389	4,331
HDPE Bottles: Colored	0.46\%	0.49\%	0.47\%	0.47\%	0.48\%	4,613	4,068	7,487	11,906	4,793
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	141	133	208	336	109
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	44	72	133	136	41
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	322	339	768	1,084	479
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.07\%	0.06\%	0.07\%	0.08\%	803	604	1,197	1,857	622
Clear Container Glass	0.82\%	0.89\%	0.94\%	0.91\%	0.95\%	2,553	1,406	5,125	6,399	2,912
Green Container Glass	0.60\%	0.20\%	0.22\%	0.28\%	0.22\%	1,913	112	1,829	1,147	480
Brown Container Glass	0.08\%	0.05\%	0.05\%	0.06\%	0.06\%	340	73	338	428	107
Other Container Glass	0.02\%	0.02\%	0.03\%	0.02\%	0.03\%	67	31	183	156	73
Aluminum Cans	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	239	156	438	532	240
Non-Deposit Total	2.71\%	2.51\%	2.54\%	2.53\%	2.51\%	17,844	15,778	33,249	50,104	18,531

Table 1-126
Drink Containers Sorts and Counts by Borough - Waste (continued)

	Annual Percent of Waste				Annual Count in Waste ${ }^{(1)}$					
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
By Container Size										
Non-Beverage										
PET Bottles	0.22\%	0.25\%	0.26\%	0.24\%	0.24\%	2,685	2,591	5,874	8,196	3,147
HDPE Bottles: Natural	0.07\%	0.08\%	0.08\%	0.08\%	0.08\%	767	683	1,579	2,117	812
HDPE Bottles: Colored	0.43\%	0.46\%	0.46\%	0.44\%	0.46\%	4,287	4,003	7,104	10,788	4,483
\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	92	99	200	320	127
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	43	33	75	78	29
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	299	326	707	989	445
\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.05\%	0.05\%	0.05\%	0.05\%	538	468	909	1,257	459
Non-Beverage Total	0.80\%	0.88\%	0.88\%	0.83\%	0.85\%	8,711	8,203	16,448	23,745	9,502
Single Serve										
PET Bottles	0.57\%	0.53\%	0.54\%	0.48\%	0.48\%	14,983	6,919	21,406	28,041	15,058
HDPE Bottles: Natural	0.03\%	0.04\%	0.04\%	0.02\%	0.02\%	493	944	1,462	1,234	366
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	173	88	229	463	135
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	13	3	8	4	2
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	88	169	151	23
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	30	16	22	55	11
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	192	132	300	569	143
Single Serve Total	0.63\%	0.60\%	0.60\%	0.53\%	0.52\%	15,885	8,190	23,596	30,517	15,738
Multi Serve										
PET Bottles	0.44\%	0.45\%	0.44\%	0.40\%	0.38\%	6,842	3,925	9,525	12,841	6,646
HDPE Bottles: Natural	0.28\%	0.37\%	0.35\%	0.31\%	0.26\%	3,179	5,527	6,490	15,331	4,154
HDPE Bottles: Colored	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	187	169	290	742	216
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	3	0	2	7	5
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	1	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	9	4	39	12	6
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	33	12	58	108	64
Multi Serve Total	0.74\%	0.84\%	0.81\%	0.74\%	0.65\%	10,253	9,637	16,404	29,042	11,091

Table 1-126
Drink Containers Sorts and Counts by Borough - Waste (continued)

	Annual Percent of Waste				Annual Count in Waste ${ }^{(1)}$					
Material Category: Subcategory	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Manhattan	Bronx	Brooklyn	Queens	Staten Island
Total ${ }^{(2)}$										
PET Bottles	1.25\%	1.26\%	1.25\%	1.13\%	1.09\%	24,533	13,414	37,006	49,039	24,762
HDPE Bottles: Natural	0.41\%	0.51\%	0.48\%	0.44\%	0.41\%	4,335	7,145	9,757	19,046	5,276
HDPE Bottles: Colored	0.47\%	0.50\%	0.48\%	0.47\%	0.48\%	4,683	4,134	7,565	12,150	4,813
\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.01\%	0.01\%	0.01\%	0.01\%	152	133	213	336	113
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	44	126	252	230	56
\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	328	344	778	1,103	487
\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.07\%	0.07\%	0.07\%	0.09\%	831	618	1,300	1,988	681
Clear Container Glass	1.41\%	1.64\%	1.71\%	1.50\%	1.53\%	3,857	2,672	8,565	10,235	4,960
Green Container Glass	0.90\%	0.44\%	0.45\%	0.48\%	0.41\%	3,151	467	3,407	2,639	1,114
Brown Container Glass	0.38\%	0.42\%	0.41\%	0.34\%	0.30\%	1,391	825	2,861	2,537	1,207
Other Container Glass	0.02\%	0.03\%	0.03\%	0.03\%	0.03\%	85	38	228	226	84
Aluminum Cans	0.23\%	0.23\%	0.21\%	0.19\%	0.20\%	5,809	4,223	9,216	11,981	9,890
GRAND TOTAL	5.17\%	5.13\%	5.14\%	4.70\%	4.58\%	49,199	34,139	81,148	111,510	53,443

(1) Values shown are the total number of containers observed in all refuse and recycling samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect he statistical calculations or conclusions.

4.6 Historical Comparisons by Borough

Tables 1-127 through 1-132 present a comparison of the results of the PWCS and WCS with the 1989/1990 Study in New York City's five Boroughs. The tables compare the percentage of each material in the Waste stream in five pairs of seasonal Sorting Periods, and annually:

- Spring 1990 and spring 2004 (PWCS)
- Fall 1989 and fall 2004 (WCS)
- Winter 1990 and winter 2005 (WCS)
- Spring 1990 and spring 2005 (WCS)
- Summer 1989 and summer 2005 (WCS)
- Annual 1989/1990 and annual 2004/2005 (WCS)

The citywide composition results in the 1989/1990 Study did not include Bulk items as a part of the material categories. However, in the Boroughwide composition results, the 1989/1990 Study included Bulk items as a single, separate line item. To make the historical comparison with the 1989/1990 Study in the following tables, the Bulk items in the WCS were extracted from the material categories and placed in a separate line item.

These tables are useful for comparing the material composition of Waste at the Borough level over time.

Table 1-127
Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$

		Citywide			Manhattan		Bronx		Brooklyn		Queens		Staten Island	
1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \text { (} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	Annual 2004/2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 2004/2005 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 1989/1990 } \end{gathered}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
PAPER	Corrugated/Kraft		5.08\%	2.40\%	4.90\%	2.63\%	4.90\%	2.03\%	4.50\%	2.44\%	4.60\%	2.18\%	4.10\%	2.20\%
PAPER	Newsprint		9.31\%	7.71\%	10.50\%	10.52\%	8.90\%	5.90\%	8.30\%	6.52\%	9.70\%	7.28\%	8.10\%	8.03\%
PAPER	Office/Computer Paper		0.78\%	0.94\%	0.70\%	1.27\%	0.70\%	0.77\%	0.70\%	0.85\%	1.00\%	0.83\%	0.90\%	0.75\%
PAPER	Other Paper	2	17.03\%	19.04\%	16.60\%	22.33\%	15.80\%	16.44\%	15.10\%	16.85\%	16.70\%	17.97\%	15.00\%	18.16\%
PAPER	Books/Phone Books		0.83\%	0.96\%	0.80\%	1.14\%	0.80\%	0.74\%	0.70\%	0.94\%	0.80\%	0.92\%	0.80\%	0.81\%
PAPER Total			33.03\%	31.05\%	33.50\%	37.89\%	31.10\%	25.88\%	29.30\%	27.60\%	32.80\%	29.18\%	28.90\%	29.95\%
PLASTIC	Clear HDPE Containers		0.52\%	0.48\%	0.60\%	0.39\%	0.60\%	0.51\%	0.50\%	0.48\%	0.50\%	0.43\%	0.40\%	0.40\%
PLASTIC	Colored HDPE Containers		0.53\%	0.51\%	0.70\%	0.44\%	0.60\%	0.50\%	0.80\%	0.48\%	0.60\%	0.46\%	0.50\%	0.47\%
PLASTIC	LDPE		0.13\%	0.01\%	0.10\%	0.02\%	0.20\%	0.01\%	0.20\%	0.01\%	0.10\%	0.01\%	0.10\%	0.01\%
PLASTIC	Films/Bags		5.01\%	7.88\%	5.70\%	8.14\%	5.20\%	8.29\%	4.60\%	7.69\%	4.40\%	6.90\%	3.50\%	5.81\%
PLASTIC	PET Containers	3	0.56\%	1.28\%	0.70\%	1.18\%	0.60\%	1.26\%	0.50\%	1.26\%	0.50\%	1.12\%	0.40\%	1.08\%
PLASTIC	PVC		0.13\%	0.03\%	0.20\%	0.02\%	0.20\%	0.02\%	0.10\%	0.02\%	0.10\%	0.02\%	0.10\%	0.03\%
PLASTIC	Polypropylene		0.14\%	0.20\%	0.20\%	0.22\%	0.20\%	0.19\%	0.10\%	0.18\%	0.10\%	0.19\%	0.10\%	0.17\%
PLASTIC	Polystyrene		0.86\%	0.82\%	0.90\%	0.82\%	0.90\%	0.84\%	0.80\%	0.80\%	0.80\%	0.74\%	0.60\%	0.68\%
PLASTIC	Miscellaneous Plastic		1.26\%	3.26\%	1.30\%	2.91\%	1.30\%	3.11\%	1.30\%	3.07\%	1.30\%	3.15\%	1.20\%	3.15\%
PLASTIC Total			9.14\%	14.47\%	10.40\%	14.14\%	9.80\%	14.73\%	8.90\%	13.98\%	8.40\%	13.03\%	6.90\%	11.79\%
GLASS	Clear Glass		3.29\%	1.66\%	3.00\%	1.35\%	3.10\%	1.64\%	2.90\%	1.71\%	2.90\%	1.47\%	2.70\%	1.48\%
GLASS	Green Glass		1.09\%	0.58\%	1.10\%	0.82\%	1.10\%	0.44\%	1.00\%	0.46\%	0.80\%	0.48\%	0.70\%	0.40\%
GLASS	Brown Glass		0.92\%	0.40\%	0.90\%	0.36\%	1.00\%	0.43\%	0.90\%	0.42\%	0.80\%	0.34\%	0.70\%	0.29\%
GLASS	Miscellaneous Glass	4	0.22\%	2.11\%	0.30\%	2.16\%	0.30\%	1.85\%	0.20\%	1.98\%	0.20\%	1.85\%	0.10\%	1.52\%
GLASS Total			5.52\%	4.75\%	5.30\%	4.69\%	5.50\%	4.36\%	5.00\%	4.57\%	4.70\%	4.13\%	4.20\%	3.68\%
METAL	Aluminum Beverage Cans		0.34\%	0.22\%	0.30\%	0.22\%	0.30\%	0.23\%	0.30\%	0.21\%	0.30\%	0.19\%	0.20\%	0.19\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.57\%	0.50\%	0.51\%	0.50\%	0.55\%	0.50\%	0.56\%	0.50\%	0.53\%	0.50\%	0.52\%
METAL	Miscellaneous Aluminum		0.12\%	0.05\%	0.20\%	0.03\%	0.10\%	0.04\%	0.10\%	0.05\%	0.10\%	0.06\%	0.10\%	0.07\%
METAL	Metal Food Containers		2.09\%	1.27\%	2.20\%	1.04\%	2.10\%	1.41\%	1.90\%	1.31\%	1.80\%	1.08\%	1.50\%	0.97\%
METAL	Other Metal	6	2.35\%	2.81\%	1.80\%	2.37\%	2.00\%	2.66\%	1.90\%	2.71\%	2.10\%	2.61\%	2.20\%	2.56\%
METAL Total			5.40\%	4.92\%	5.00\%	4.16\%	5.00\%	4.89\%	4.70\%	4.84\%	4.80\%	4.48\%	4.50\%	4.31\%
YARD	Grass/Leaves		4.72\%	3.46\%	1.60\%	1.06\%	2.10\%	2.31\%	2.50\%	2.75\%	5.30\%	4.84\%	6.00\%	7.09\%
YARD	Brush/Prunings/Stumps		1.07\%	0.75\%	0.30\%	0.33\%	0.40\%	0.46\%	0.60\%	0.59\%	1.10\%	1.03\%	1.50\%	1.50\%
YARD Total			5.79\%	4.21\%	1.90\%	1.39\%	2.50\%	2.77\%	3.10\%	3.34\%	6.40\%	5.87\%	7.50\%	8.59\%
ORGANIC	Lumber		2.73\%	1.78\%	2.00\%	1.20\%	2.30\%	1.65\%	2.20\%	1.71\%	2.40\%	1.91\%	2.40\%	2.12\%
ORGANIC	Textiles		5.47\%	5.54\%	5.30\%	4.67\%	5.30\%	6.07\%	4.60\%	5.61\%	4.40\%	5.05\%	4.10\%	4.73\%
ORGANIC	Rubber		0.21\%	0.26\%	0.20\%	0.22\%	0.20\%	0.26\%	0.20\%	0.25\%	0.20\%	0.24\%	0.20\%	0.26\%
ORGANIC	Fines	5	2.52\%	3.81\%	2.50\%	3.46\%	2.40\%	4.00\%	2.20\%	3.87\%	2.30\%	3.41\%	2.00\%	3.14\%
ORGANIC	Diapers		3.86\%	3.37\%	3.60\%	2.92\%	3.70\%	3.57\%	3.30\%	3.40\%	3.40\%	3.11\%	3.30\%	2.83\%
ORGANIC	Food Waste		14.31\%	18.62\%	13.10\%	15.76\%	13.60\%	20.39\%	12.90\%	19.24\%	12.20\%	16.94\%	10.70\%	14.81\%
ORGANIC	Miscellaneous Organic		8.87\%	2.63\%	8.30\%	2.17\%	8.10\%	2.27\%	7.60\%	2.60\%	7.60\%	2.65\%	7.10\%	2.70\%
ORGANIC Total			37.97\%	36.00\%	35.00\%	30.41\%	35.60\%	38.23\%	33.00\%	36.69\%	32.50\%	33.31\%	29.80\%	30.59\%

Table 1-127
Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

		Citywide			Manhattan		Bronx		Brooklyn		Queens		Staten Island	
1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { ๗ } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 1989/1990 } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & 2004 / 2005 \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ 2004 / 2005 \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 2004/2005 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 1989/1990 } \end{gathered}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 2004/2005 } \end{aligned}$
INORGANIC/HHW	Non-Bulk Ceramics		0.19\%	0.44\%	0.20\%	0.28\%	0.20\%	0.41\%	0.20\%	0.42\%	0.10\%	0.46\%	0.10\%	0.53\%
INORGANIC/HHW	Miscellaneous Inorganics	5	2.29\%	3.25\%	2.20\%	2.09\%	2.30\%	3.06\%	2.30\%	3.36\%	2.00\%	3.35\%	0.90\%	3.56\%
INORGANIC/HHW	Pesticides		0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.09\%	0.08\%	0.20\%	0.05\%	0.20\%	0.06\%	0.10\%	0.08\%	0.10\%	0.09\%	0.00\%	0.08\%
INORGANIC/HHW	Dry Cell Batteries		0.03\%	0.07\%	0.00\%	0.06\%	0.00\%	0.08\%	0.00\%	0.08\%	0.00\%	0.06\%	0.00\%	0.05\%
INORGANIC/HHW	Car Batteries		0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.02\%	0.05\%	0.00\%	0.07\%	0.00\%	0.07\%	0.00\%	0.05\%	0.00\%	0.03\%	0.00\%	0.02\%
INORGANIC/HHW	Miscellaneous HHW	7	0.12\%	0.04\%	0.10\%	0.04\%	0.10\%	0.05\%	0.10\%	0.04\%	0.10\%	0.04\%	0.20\%	0.05\%
INORGANIC/HHW Total			2.81\%	3.94\%	2.70\%	2.59\%	2.80\%	3.73\%	2.70\%	4.04\%	2.40\%	4.05\%	1.20\%	4.30\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.65\%	0.00\%	0.48\%	0.00\%	0.60\%	0.00\%	0.67\%	0.00\%	0.64\%	0.00\%	0.59\%
APPL/ELECT. Total			0.00\%	0.65\%	0.00\%	0.48\%	0.00\%	0.60\%	0.00\%	0.67\%	0.00\%	0.64\%	0.00\%	0.59\%
BULK	Bulk Items		N/A	N/A	6.40\%	4.24\%	7.90\%	4.81\%	13.30\%	4.28\%	8.10\%	5.31\%	14.70\%	6.19\%
BULK Total			N/A	N/A	6.40\%	4.24\%	7.90\%	4.81\%	13.30\%	4.28\%	8.10\%	5.31\%	14.70\%	6.19\%
GRAND TOTAL		9	99.66\%	100.00\%	100.20\%	100.00\%	100.20\%	100.00\%	100.00\%	100.00\%	100.10\%	100.00\%	97.70\%	100.00\%
Percent of Waste that is Desi	nated as Recyclable Material	10	45.34\%	35.69\%	45.50\%	41.65\%	43.10\%	30.58\%	40.60\%	32.53\%	43.70\%	32.64\%	38.80\%	32.76\%

1. For 1989/1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and Citywide percentage figures are as reported in Volume 2 , Exhibit 8 -1 (page $8-4$) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". Percentage figures by borough are as reported in Volume 1, Exhibit 5-2 (page 5-11) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". In some instances, noted in these footnotes, Material Groups and Material Categories for 2004/2005 NYC WCS have been reconfigured for comparison to the 1989/1990 data.
2. 1989/1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004/2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004/2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989/1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989/1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004/2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989/1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004/2005 data does not.
6. 2004/2005 data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989/1990's "Other Metal" ("Other Ferrous Metal" in the 1989/1990 OPEC report).
7. 1989/1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989/1990.
9. In some cases, the 1989/1990 data did not sum to 100% in the OPEC "New York City Waste Characterization Study Report" due to rounding.
10. This is the sum total of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989/1990 data, this includes all Paper, Metal, Container Glass, and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissues, waxed, coated) was included in the 1989/1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, the 1989/1990 figures overcount designated paper. For 2004/2005 data, all totals reflect designated materials only.
11. Results are presented here excluding bulk items because Volumes 1 and 2 of the New York City Waste Composition Study, 1989-1990, OMD Version presented waste composition results without bulk.

Table 1-128
Manhattan, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \stackrel{\rightharpoonup}{O} \\ & \hline \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \\ \hline \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 2004/2005 } \end{aligned}$
PAPER	Corrugated/Kraft		4.50\%	3.34\%	5.20\%	3.47\%	4.70\%	2.19\%	4.50\%	2.70\%	5.20\%	2.11\%	4.90\%	2.63\%
PAPER	Newsprint		9.70\%	9.78\%	11.90\%	10.28\%	10.30\%	9.32\%	9.70\%	11.52\%	10.30\%	10.96\%	10.50\%	10.52\%
PAPER	Office/Computer Paper		0.70\%	1.82\%	0.40\%	1.00\%	0.50\%	1.67\%	0.70\%	1.17\%	1.10\%	1.23\%	0.70\%	1.27\%
PAPER	Other Paper	2	17.20\%	22.41\%	17.20\%	24.52\%	17.40\%	22.90\%	17.20\%	20.35\%	14.80\%	21.51\%	16.60\%	22.33\%
PAPER	Books/Phone Books		1.10\%	1.02\%	0.50\%	1.51\%	0.50\%	1.38\%	1.10\%	0.78\%	1.10\%	0.88\%	0.80\%	1.14\%
PAPER Total			33.20\%	38.38\%	35.20\%	40.78\%	33.40\%	37.46\%	33.20\%	36.52\%	32.50\%	36.69\%	33.50\%	37.89\%
PLASTIC	Clear HDPE Containers		0.50\%	0.37\%	0.50\%	0.35\%	0.60\%	0.28\%	0.50\%	0.41\%	0.60\%	0.51\%	0.60\%	0.39\%
PLASTIC	Colored HDPE Containers		0.60\%	0.43\%	0.60\%	0.46\%	0.80\%	0.32\%	0.60\%	0.46\%	0.80\%	0.53\%	0.70\%	0.44\%
PLASTIC	LDPE		0.10\%	0.04\%	0.10\%	0.00\%	0.10\%	0.01\%	0.10\%	0.06\%	0.20\%	0.00\%	0.10\%	0.02\%
PLASTIC	Films/Bags		5.80\%	7.90\%	5.80\%	8.08\%	5.40\%	7.91\%	5.80\%	8.55\%	6.00\%	7.99\%	5.70\%	8.14\%
PLASTIC	PET Containers	3	0.70\%	1.44\%	0.50\%	1.09\%	0.60\%	1.01\%	0.70\%	1.23\%	0.70\%	1.41\%	0.70\%	1.18\%
PLASTIC	PVC		0.10\%	0.09\%	0.20\%	0.02\%	0.20\%	0.03\%	0.10\%	0.01\%	0.20\%	0.02\%	0.20\%	0.02\%
PLASTIC	Polypropylene		0.20\%	0.19\%	0.20\%	0.23\%	0.10\%	0.17\%	0.20\%	0.19\%	0.20\%	0.27\%	0.20\%	0.22\%
PLASTIC	Polystyrene		0.90\%	0.81\%	0.90\%	0.87\%	0.90\%	0.72\%	0.90\%	0.83\%	0.90\%	0.86\%	0.90\%	0.82\%
PLASTIC	Miscellaneous Plastic		1.30\%	2.42\%	1.00\%	2.66\%	1.10\%	2.54\%	1.30\%	2.97\%	1.90\%	3.50\%	1.30\%	2.91\%
PLASTIC Total			10.20\%	13.70\%	9.80\%	13.78\%	9.80\%	13.00\%	10.20\%	14.72\%	11.50\%	15.09\%	10.40\%	14.14\%
GLASS	Clear Glass		3.10\%	1.62\%	2.80\%	1.40\%	3.30\%	1.08\%	3.10\%	1.18\%	2.60\%	1.76\%	3.00\%	1.35\%
GLASS	Green Glass		1.10\%	1.14\%	1.10\%	0.81\%	1.00\%	0.61\%	1.10\%	0.93\%	1.20\%	0.93\%	1.10\%	0.82\%
GLASS	Brown Glass		0.90\%	0.52\%	0.90\%	0.37\%	1.00\%	0.27\%	0.90\%	0.34\%	0.90\%	0.46\%	0.90\%	0.36\%
GLASS	Miscellaneous Glass	4	0.30\%	2.45\%	0.20\%	2.05\%	0.10\%	1.08\%	0.30\%	2.58\%	0.50\%	2.94\%	0.30\%	2.16\%
GLASS Total			5.40\%	5.73\%	5.00\%	4.63\%	5.40\%	3.04\%	5.40\%	5.02\%	5.20\%	6.09\%	5.30\%	4.69\%
METAL	Aluminum Beverage Cans		0.30\%	0.27\%	0.40\%	0.19\%	0.40\%	0.22\%	0.30\%	0.19\%	0.30\%	0.29\%	0.30\%	0.22\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.56\%	0.40\%	0.48\%	0.50\%	0.44\%	0.50\%	0.55\%	0.70\%	0.56\%	0.50\%	0.51\%
METAL	Miscellaneous Aluminum		0.10\%	0.05\%	0.20\%	0.03\%	0.00\%	0.01\%	0.10\%	0.03\%	0.30\%	0.04\%	0.20\%	0.03\%
METAL	Metal Food Containers		2.10\%	1.10\%	2.20\%	1.12\%	2.40\%	0.82\%	2.10\%	1.14\%	2.10\%	1.06\%	2.20\%	1.04\%
METAL	Other Metal	6	1.60\%	1.79\%	2.00\%	2.55\%	1.80\%	2.15\%	1.60\%	2.67\%	1.90\%	2.08\%	1.80\%	2.37\%
METAL Total			4.60\%	3.77\%	5.20\%	4.38\%	5.10\%	3.63\%	4.60\%	4.58\%	5.30\%	4.03\%	5.00\%	4.16\%
YARD	Grass/Leaves		1.30\%	1.02\%	2.30\%	1.53\%	1.90\%	0.25\%	1.30\%	1.63\%	0.90\%	0.78\%	1.60\%	1.06\%
YARD	Brush/Prunings/Stumps		0.30\%	0.63\%	0.30\%	0.23\%	0.50\%	0.52\%	0.30\%	0.34\%	0.20\%	0.23\%	0.30\%	0.33\%
YARD Total			1.60\%	1.65\%	2.60\%	1.76\%	2.40\%	0.77\%	1.60\%	1.97\%	1.10\%	1.02\%	1.90\%	1.39\%
ORGANIC	Lumber		2.50\%	2.04\%	1.80\%	0.91\%	1.60\%	1.44\%	2.50\%	1.57\%	2.10\%	0.89\%	2.00\%	1.20\%
ORGANIC	Textiles		5.50\%	5.10\%	5.10\%	4.54\%	4.60\%	3.90\%	5.50\%	4.43\%	6.00\%	5.86\%	5.30\%	4.67\%
ORGANIC	Rubber		0.30\%	0.44\%	0.10\%	0.23\%	0.10\%	0.16\%	0.30\%	0.29\%	0.20\%	0.18\%	0.20\%	0.22\%
ORGANIC	Fines	5	2.80\%	3.94\%	2.20\%	2.91\%	2.20\%	3.16\%	2.80\%	4.43\%	2.80\%	3.33\%	2.50\%	3.46\%
ORGANIC	Diapers		3.50\%	2.10\%	3.50\%	2.96\%	4.00\%	2.79\%	3.50\%	2.91\%	3.40\%	3.04\%	3.60\%	2.92\%
ORGANIC	Food Waste		14.10\%	12.35\%	12.70\%	16.68\%	14.30\%	16.39\%	14.10\%	15.96\%	11.40\%	13.94\%	13.10\%	15.76\%
ORGANIC	Miscellaneous Organic		7.90\%	3.64\%	7.50\%	1.87\%	8.40\%	2.29\%	7.90\%	1.79\%	9.40\%	2.76\%	8.30\%	2.17\%
ORGANIC Total			36.60\%	29.61\%	32.90\%	30.10\%	35.20\%	30.13\%	36.60\%	31.40\%	35.30\%	30.01\%	35.00\%	30.41\%

Table 1-128
Manhattan, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

			PWCS		WCS									
1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \text { ㄹ } \\ & \text { O} \end{aligned}$	Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
INORGANIC/HHW	Non-Bulk Ceramics		3.30\%	0.55\%	0.10\%	0.19\%	0.20\%	0.31\%	3.30\%	0.36\%	0.10\%	0.26\%	0.20\%	0.28\%
INORGANIC/HHW	Miscellaneous Inorganics	5	2.70\%	3.88\%	1.90\%	2.26\%	2.40\%	2.01\%	2.70\%	2.37\%	1.80\%	1.70\%	2.20\%	2.09\%
INORGANIC/HHW	Pesticides		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.10\%	0.17\%	0.40\%	0.08\%	0.20\%	0.05\%	0.10\%	0.05\%	0.10\%	0.03\%	0.20\%	0.05\%
INORGANIC/HHW	Dry Cell Batteries		0.00\%	0.11\%	0.00\%	0.06\%	0.00\%	0.07\%	0.00\%	0.04\%	0.00\%	0.08\%	0.00\%	0.06\%
INORGANIC/HHW	Car Batteries		0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.00\%	0.01\%	0.00\%	0.04\%	0.00\%	0.03\%	0.00\%	0.08\%	0.00\%	0.12\%	0.00\%	0.07\%
INORGANIC/HHW	Miscellaneous HHW	7	0.10\%	0.04\%	0.00\%	0.03\%	0.00\%	0.02\%	0.10\%	0.04\%	0.20\%	0.06\%	0.10\%	0.04\%
INORGANIC/HHW Total			6.20\%	4.77\%	2.40\%	2.65\%	2.90\%	2.50\%	6.20\%	2.94\%	2.20\%	2.26\%	2.70\%	2.59\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.52\%	0.00\%	0.60\%	0.00\%	0.36\%	0.00\%	0.39\%	0.00\%	0.60\%	0.00\%	0.48\%
APPL/ELECT. Total			0.00\%	0.52\%	0.00\%	0.60\%	0.00\%	0.36\%	0.00\%	0.39\%	0.00\%	0.60\%	0.00\%	0.48\%
BULK	Bulk Items		5.10\%	1.87\%	7.00\%	1.31\%	8.10\%	9.10\%	5.10\%	2.48\%	7.40\%	4.22\%	6.40\%	4.24\%
BULK Total			5.10\%	1.87\%	7.00\%	1.31\%	8.10\%	9.10\%	5.10\%	2.48\%	7.40\%	4.22\%	6.40\%	4.24\%
GRAND TOTAL		9	102.90\%	100.00\%	100.10\%	100.00\%	102.30\%	100.00\%	102.90\%	100.00\%	100.50\%	100.00\%	100.20\%	100.00\%
Percent of Waste that is Desig	nated as Recyclable Material	10	44.70\%	41.27\%	46.80\%	42.58\%	45.80\%	39.45\%	44.70\%	41.90\%	44.60\%	42.65\%	45.50\%	41.65\%

1. For 1989/1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and seasonal and annual percentage figures are as reported in Volume 1, Exhibit $5-2$ (pages $5-7$ through $5-11$) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". In some instances, 2004/2005 data, Material Groups, Material Categories, and percentage figures were adjusted, as indicated in these footnotes, for comparison to the 1989/1990 data.
2. 1989/1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004/2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004/2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper"
3. 1989/1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989/1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004/2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989/1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004/2005 data does not.
6. 2004/2005 data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989/1990's "Other Metal" ("Other Ferrous Metal" in the 1989/1990 OPEC Report).
7. 1989/1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989/1990
9. In some cases, the 1989/1990 percentage figures do not sum to 100% in the OPEC "New York City Waste Composition Study" report due to rounding.
10. This is the sum total of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989/1990 data, this includes all Paper, Metal, Container Glass, and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissues, waxed, coated) was included in the 1989/1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, the 1989/1990 figures overcount designated paper. For 2004/2005 data, all totals reflect designated materials only,
11. Results are presented here excluding bulk items because Volume 1 of the New York City Waste Composition Study, 1989-1990, OMD Version presented waste composition results without bulk.

Table 1-129
Bronx, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk (11)

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \stackrel{\rightharpoonup}{O} \\ & \hline \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \\ \hline \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{aligned} & \text { Annual } \\ & \text { 2004/2005 } \end{aligned}$
PAPER	Corrugated/Kraft		4.40\%	2.85\%	5.30\%	2.34\%	4.80\%	2.18\%	4.40\%	1.78\%	5.10\%	1.84\%	4.90\%	2.03\%
PAPER	Newsprint		8.00\%	5.11\%	10.00\%	6.17\%	8.50\%	6.02\%	8.00\%	5.87\%	9.20\%	5.54\%	8.90\%	5.90\%
PAPER	Office/Computer Paper		0.60\%	0.84\%	0.60\%	0.74\%	0.50\%	0.95\%	0.60\%	0.69\%	1.10\%	0.71\%	0.70\%	0.77\%
PAPER	Other Paper	2	16.00\%	14.98\%	16.30\%	17.68\%	16.30\%	16.48\%	16.00\%	15.12\%	14.40\%	16.51\%	15.80\%	16.44\%
PAPER	Books/Phone Books		0.90\%	1.30\%	0.60\%	0.65\%	0.50\%	0.78\%	0.90\%	0.58\%	1.10\%	0.97\%	0.80\%	0.74\%
PAPER Total			29.90\%	25.08\%	32.80\%	27.58\%	30.60\%	26.41\%	29.90\%	24.04\%	30.90\%	25.58\%	31.10\%	25.88\%
PLASTIC	Clear HDPE Containers		0.50\%	0.59\%	0.60\%	0.50\%	0.60\%	0.50\%	0.50\%	0.49\%	0.60\%	0.55\%	0.60\%	0.51\%
PLASTIC	Colored HDPE Containers		0.60\%	0.63\%	0.60\%	0.50\%	0.80\%	0.47\%	0.60\%	0.49\%	0.70\%	0.53\%	0.60\%	0.50\%
PLASTIC	LDPE		0.10\%	0.01\%	0.20\%	0.01\%	0.10\%	0.01\%	0.10\%	0.01\%	0.20\%	0.01\%	0.20\%	0.01\%
PLASTIC	Films/Bags		5.10\%	7.61\%	5.20\%	8.04\%	4.90\%	8.15\%	5.10\%	8.82\%	5.40\%	8.13\%	5.20\%	8.29\%
PLASTIC	PET Containers	3	0.60\%	1.38\%	0.50\%	1.06\%	0.60\%	1.34\%	0.60\%	1.17\%	0.70\%	1.49\%	0.60\%	1.26\%
PLASTIC	PVC		0.10\%	0.06\%	0.20\%	0.03\%	0.20\%	0.02\%	0.10\%	0.02\%	0.20\%	0.03\%	0.20\%	0.02\%
PLASTIC	Polypropylene		0.20\%	0.16\%	0.20\%	0.19\%	0.10\%	0.18\%	0.20\%	0.17\%	0.20\%	0.22\%	0.20\%	0.19\%
PLASTIC	Polystyrene		0.90\%	0.65\%	0.90\%	0.86\%	0.90\%	0.81\%	0.90\%	0.83\%	0.90\%	0.85\%	0.90\%	0.84\%
PLASTIC	Miscellaneous Plastic		1.20\%	2.90\%	1.10\%	2.88\%	1.10\%	3.06\%	1.20\%	3.09\%	1.90\%	3.42\%	1.30\%	3.11\%
PLASTIC Total			9.30\%	13.99\%	9.50\%	14.07\%	9.30\%	14.53\%	9.30\%	15.08\%	10.80\%	15.23\%	9.80\%	14.73\%
GLASS	Clear Glass		3.30\%	1.68\%	2.90\%	1.48\%	3.40\%	1.68\%	3.30\%	1.47\%	2.90\%	1.95\%	3.10\%	1.64\%
GLASS	Green Glass		1.10\%	0.53\%	1.10\%	0.40\%	1.10\%	0.46\%	1.10\%	0.40\%	1.20\%	0.51\%	1.10\%	0.44\%
GLASS	Brown Glass		0.90\%	0.53\%	0.90\%	0.45\%	1.00\%	0.41\%	0.90\%	0.35\%	1.00\%	0.49\%	1.00\%	0.43\%
GLASS	Miscellaneous Glass	4	0.30\%	2.30\%	0.20\%	1.55\%	0.10\%	1.57\%	0.30\%	1.77\%	0.50\%	2.48\%	0.30\%	1.85\%
GLASS Total			5.60\%	5.04\%	5.10\%	3.89\%	5.60\%	4.11\%	5.60\%	3.99\%	5.60\%	5.43\%	5.50\%	4.36\%
METAL	Aluminum Beverage Cans		0.30\%	0.26\%	0.40\%	0.20\%	0.40\%	0.21\%	0.30\%	0.19\%	0.30\%	0.33\%	0.30\%	0.23\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.68\%	0.50\%	0.51\%	0.50\%	0.51\%	0.50\%	0.57\%	0.60\%	0.59\%	0.50\%	0.55\%
METAL	Miscellaneous Aluminum		0.10\%	0.02\%	0.20\%	0.05\%	0.00\%	0.01\%	0.10\%	0.05\%	0.20\%	0.06\%	0.10\%	0.04\%
METAL	Metal Food Containers		2.10\%	1.88\%	2.20\%	1.46\%	2.30\%	1.42\%	2.10\%	1.45\%	2.00\%	1.30\%	2.10\%	1.41\%
METAL	Other Metal	6	2.00\%	1.97\%	2.00\%	2.83\%	1.90\%	2.71\%	2.00\%	2.69\%	2.00\%	2.40\%	2.00\%	2.66\%
METAL Total			5.00\%	4.81\%	5.30\%	5.05\%	5.10\%	4.87\%	5.00\%	4.96\%	5.10\%	4.67\%	5.00\%	4.89\%
YARD	Grass/Leaves		1.40\%	2.67\%	3.00\%	3.34\%	2.60\%	0.63\%	1.40\%	2.96\%	1.50\%	2.17\%	2.10\%	2.31\%
YARD	Brush/Prunings/Stumps		0.60\%	3.10\%	0.30\%	0.62\%	0.50\%	0.27\%	0.60\%	0.45\%	0.40\%	0.49\%	0.40\%	0.46\%
YARD Total			2.00\%	5.77\%	3.30\%	3.96\%	3.10\%	0.90\%	2.00\%	3.41\%	1.90\%	2.66\%	2.50\%	2.77\%
ORGANIC	Lumber		3.00\%	2.87\%	1.90\%	1.65\%	1.70\%	1.89\%	3.00\%	1.76\%	2.50\%	1.33\%	2.30\%	1.65\%
ORGANIC	Textiles		5.30\%	7.39\%	5.10\%	6.02\%	4.60\%	5.36\%	5.30\%	5.92\%	5.90\%	6.95\%	5.30\%	6.07\%
ORGANIC	Rubber		0.30\%	0.28\%	0.10\%	0.23\%	0.20\%	0.22\%	0.30\%	0.36\%	0.20\%	0.23\%	0.20\%	0.26\%
ORGANIC	Fines	5	2.70\%	3.61\%	2.20\%	3.27\%	2.20\%	3.86\%	2.70\%	5.00\%	2.60\%	3.85\%	2.40\%	4.00\%
ORGANIC	Diapers		3.60\%	3.81\%	3.60\%	3.83\%	4.20\%	3.64\%	3.60\%	3.38\%	3.50\%	3.45\%	3.70\%	3.57\%
ORGANIC	Food Waste		14.30\%	15.15\%	13.20\%	21.69\%	14.20\%	21.98\%	14.30\%	19.95\%	12.60\%	18.08\%	13.60\%	20.39\%
ORGANIC	Miscellaneous Organic		7.90\%	6.15\%	7.80\%	2.26\%	8.30\%	2.47\%	7.90\%	1.94\%	8.80\%	2.46\%	8.10\%	2.27\%
ORGANIC Total			37.10\%	39.24\%	33.90\%	38.94\%	35.40\%	39.42\%	37.10\%	38.30\%	36.10\%	36.34\%	35.60\%	38.23\%

Table 1-129
Bronx, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \stackrel{1}{O} \\ & \hline \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \\ \hline \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ 2004 / 2005 \end{gathered}$
INORGANIC/HHW	Non-Bulk Ceramics		3.30\%	0.15\%	0.10\%	0.39\%	0.20\%	0.53\%	3.30\%	0.34\%	0.10\%	0.38\%	0.20\%	0.41\%
INORGANIC/HHW	Miscellaneous Inorganics	5	2.70\%	2.63\%	2.10\%	3.22\%	2.40\%	2.66\%	2.70\%	3.57\%	2.10\%	2.76\%	2.30\%	3.06\%
INORGANIC/HHW	Pesticides		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.10\%	0.05\%	0.40\%	0.08\%	0.20\%	0.07\%	0.10\%	0.03\%	0.10\%	0.06\%	0.20\%	0.06\%
INORGANIC/HHW	Dry Cell Batteries		0.00\%	0.04\%	0.00\%	0.09\%	0.00\%	0.09\%	0.00\%	0.06\%	0.00\%	0.07\%	0.00\%	0.08\%
INORGANIC/HHW	Car Batteries		0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.00\%	0.04\%	0.00\%	0.04\%	0.10\%	0.04\%	0.00\%	0.11\%	0.00\%	0.07\%	0.00\%	0.07\%
INORGANIC/HHW	Miscellaneous HHW	7	0.10\%	0.03\%	0.00\%	0.04\%	0.00\%	0.04\%	0.10\%	0.05\%	0.30\%	0.08\%	0.10\%	0.05\%
INORGANIC/HHW Total			6.30\%	2.95\%	2.60\%	3.86\%	2.90\%	3.44\%	6.30\%	4.16\%	2.70\%	3.43\%	2.80\%	3.73\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	1.21\%	0.00\%	0.75\%	0.00\%	0.44\%	0.00\%	0.45\%	0.00\%	0.75\%	0.00\%	0.60\%
APPL/ELECT. Total			0.00\%	1.21\%	0.00\%	0.75\%	0.00\%	0.44\%	0.00\%	0.45\%	0.00\%	0.75\%	0.00\%	0.60\%
BULK	Bulk Items		8.10\%	1.92\%	7.70\%	1.90\%	8.50\%	5.88\%	8.10\%	5.59\%	7.40\%	5.93\%	7.90\%	4.81\%
BULK Total			8.10\%	1.92\%	7.70\%	1.90\%	8.50\%	5.88\%	8.10\%	5.59\%	7.40\%	5.93\%	7.90\%	4.81\%
GRAND TOTAL		9	103.30\%	100.00\%	100.20\%	100.00\%	100.50\%	100.00\%	103.30\%	100.00\%	100.50\%	100.00\%	100.20\%	100.00\%

1. For 1989/1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and seasonal and annual percentage figures are as reported in Volume 1, Exhibit 5-2 (pages 5-7 through 5-11) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". In some instances, 2004/2005 data, Material Groups, Material Categories, and percentage figures were adjusted, as indicated in these footnotes, for comparison to the 1989/1990 data.
2. 1989/1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004/2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004/2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989/1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989/1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004/2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989/1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004/2005 data does not.
6. 2004/2005 data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989/1990's "Other Metal" ("Other Ferrous Metal" in the 1989/1990 OPEC Report).
7. 1989/1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total
8. This category was not assessed in 1989/1990.
9. In some cases, the 1989/1990 percentage figures do not sum to 100% in the OPEC "New York City Waste Composition Study" report due to rounding.
10. This is the sum total of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989/1990 data, this includes all Paper, Metal, Container Glass, and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissues, waxed, coated) was included in the 1989/1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, the 1989/1990 figures overcount designated paper. For 2004/2005 data, all totals reflect designated materials only
11. Results are presented here excluding bulk items because Volume 1 of the New York City Waste Composition Study, 1989-1990, OMD Version presented waste composition results without bulk.

Table 1-130
Brooklyn, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$

			PWCS		WCS									
1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \stackrel{4}{O} \\ & \hline \end{aligned}$	Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	Winter 1990	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	Annual 1989/1990	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
PAPER	Corrugated/Kraft		4.40\%	3.38\%	4.90\%	3.10\%	4.40\%	2.57\%	4.40\%	2.01\%	4.40\%	2.07\%	4.50\%	2.44\%
PAPER	Newsprint		7.80\%	6.94\%	9.00\%	6.29\%	7.80\%	6.96\%	7.80\%	6.71\%	8.50\%	6.16\%	8.30\%	6.52\%
PAPER	Office/Computer Paper		0.50\%	0.76\%	0.80\%	0.92\%	0.60\%	0.78\%	0.50\%	0.89\%	1.10\%	0.79\%	0.70\%	0.85\%
PAPER	Other Paper	2	15.50\%	17.67\%	15.80\%	16.96\%	15.60\%	17.05\%	15.50\%	16.12\%	13.60\%	17.29\%	15.10\%	16.85\%
PAPER	Books/Phone Books		0.70\%	0.42\%	0.60\%	0.66\%	0.40\%	1.08\%	0.70\%	0.74\%	1.10\%	1.33\%	0.70\%	0.94\%
PAPER Total			28.90\%	29.18\%	31.10\%	27.92\%	28.80\%	28.44\%	28.90\%	26.48\%	28.70\%	27.65\%	29.30\%	27.60\%
PLASTIC	Clear HDPE Containers		0.50\%	0.44\%	0.50\%	0.46\%	0.50\%	0.50\%	0.50\%	0.47\%	0.50\%	0.52\%	0.50\%	0.48\%
PLASTIC	Colored HDPE Containers		0.60\%	0.51\%	0.60\%	0.46\%	0.60\%	0.50\%	0.60\%	0.51\%	0.60\%	0.46\%	0.80\%	0.48\%
PLASTIC	LDPE		0.10\%	0.00\%	0.20\%	0.01\%	0.10\%	0.01\%	0.10\%	0.01\%	0.20\%	0.01\%	0.20\%	0.01\%
PLASTIC	Films/Bags		4.60\%	7.36\%	4.50\%	7.17\%	4.50\%	7.69\%	4.60\%	8.28\%	4.60\%	7.63\%	4.60\%	7.69\%
PLASTIC	PET Containers	3	0.60\%	1.23\%	0.50\%	1.00\%	0.60\%	1.31\%	0.60\%	1.20\%	0.50\%	1.54\%	0.50\%	1.26\%
PLASTIC	PVC		0.10\%	0.12\%	0.20\%	0.03\%	0.10\%	0.02\%	0.10\%	0.01\%	0.20\%	0.03\%	0.10\%	0.02\%
PLASTIC	Polypropylene		0.10\%	0.28\%	0.10\%	0.16\%	0.10\%	0.17\%	0.10\%	0.15\%	0.10\%	0.22\%	0.10\%	0.18\%
PLASTIC	Polystyrene		0.90\%	0.91\%	0.80\%	0.80\%	0.90\%	0.78\%	0.90\%	0.74\%	0.80\%	0.87\%	0.80\%	0.80\%
PLASTIC	Miscellaneous Plastic		1.20\%	3.61\%	1.00\%	2.88\%	1.00\%	3.03\%	1.20\%	3.09\%	1.70\%	3.27\%	1.30\%	3.07\%
PLASTIC Total			8.70\%	14.46\%	8.40\%	12.96\%	8.40\%	14.01\%	8.70\%	14.46\%	9.20\%	14.54\%	8.90\%	13.98\%
GLASS	Clear Glass		3.20\%	1.90\%	2.80\%	1.49\%	3.00\%	1.73\%	3.20\%	1.70\%	2.80\%	1.95\%	2.90\%	1.71\%
GLASS	Green Glass		1.00\%	0.35\%	1.00\%	0.41\%	1.00\%	0.49\%	1.00\%	0.43\%	1.10\%	0.52\%	1.00\%	0.46\%
GLASS	Brown Glass		0.90\%	0.31\%	0.80\%	0.40\%	0.80\%	0.42\%	0.90\%	0.32\%	0.90\%	0.53\%	0.90\%	0.42\%
GLASS	Miscellaneous Glass	4	0.30\%	1.86\%	0.10\%	1.63\%	0.10\%	1.79\%	0.30\%	2.09\%	0.40\%	2.41\%	0.20\%	1.98\%
GLASS Total			5.40\%	4.43\%	4.70\%	3.92\%	4.90\%	4.42\%	5.40\%	4.55\%	5.20\%	5.42\%	5.00\%	4.57\%
METAL	Aluminum Beverage Cans		0.30\%	0.20\%	0.30\%	0.17\%	0.30\%	0.20\%	0.30\%	0.18\%	0.20\%	0.28\%	0.30\%	0.21\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.65\%	0.40\%	0.50\%	0.50\%	0.51\%	0.50\%	0.59\%	0.50\%	0.62\%	0.50\%	0.56\%
METAL	Miscellaneous Aluminum		0.10\%	0.07\%	0.20\%	0.08\%	0.00\%	0.02\%	0.10\%	0.05\%	0.20\%	0.06\%	0.10\%	0.05\%
METAL	Metal Food Containers		2.00\%	1.27\%	1.90\%	1.26\%	2.00\%	1.39\%	2.00\%	1.42\%	1.70\%	1.17\%	1.90\%	1.31\%
METAL	Other Metal	6	2.00\%	2.12\%	2.00\%	3.07\%	1.90\%	2.75\%	2.00\%	2.62\%	1.80\%	2.38\%	1.90\%	2.71\%
METAL Total			4.90\%	4.30\%	4.80\%	5.08\%	4.70\%	4.88\%	4.90\%	4.86\%	4.40\%	4.52\%	4.70\%	4.84\%
YARD	Grass/Leaves		1.70\%	2.38\%	3.80\%	4.21\%	2.90\%	0.77\%	1.70\%	3.31\%	1.90\%	2.48\%	2.50\%	2.75\%
YARD	Brush/Prunings/Stumps		0.80\%	2.34\%	0.40\%	0.78\%	0.70\%	0.24\%	0.80\%	0.55\%	0.60\%	0.76\%	0.60\%	0.59\%
YARD Total			2.50\%	4.71\%	4.20\%	4.99\%	3.60\%	1.02\%	2.50\%	3.86\%	2.50\%	3.24\%	3.10\%	3.34\%
ORGANIC	Lumber		3.00\%	3.06\%	1.90\%	1.82\%	1.70\%	1.78\%	3.00\%	1.73\%	2.20\%	1.52\%	2.20\%	1.71\%
ORGANIC	Textiles		4.80\%	6.03\%	4.40\%	5.46\%	4.20\%	5.01\%	4.80\%	5.88\%	5.10\%	6.04\%	4.60\%	5.61\%
ORGANIC	Rubber		0.30\%	0.23\%	0.10\%	0.24\%	0.10\%	0.23\%	0.30\%	0.26\%	0.20\%	0.27\%	0.20\%	0.25\%
ORGANIC	Fines	5	2.60\%	3.82\%	2.00\%	2.95\%	2.10\%	3.65\%	2.60\%	4.76\%	2.20\%	4.12\%	2.20\%	3.87\%
ORGANIC	Diapers		3.30\%	3.30\%	3.20\%	3.49\%	3.60\%	3.54\%	3.30\%	3.18\%	3.00\%	3.40\%	3.30\%	3.40\%
ORGANIC	Food Waste		13.60\%	14.73\%	12.50\%	19.54\%	13.00\%	21.37\%	13.60\%	19.28\%	12.30\%	16.89\%	12.90\%	19.24\%
ORGANIC	Miscellaneous Organic		7.60\%	4.64\%	7.60\%	2.33\%	7.90\%	2.86\%	7.60\%	2.30\%	7.30\%	2.95\%	7.60\%	2.60\%
ORGANIC Total			35.20\%	35.81\%	31.70\%	35.84\%	32.60\%	38.43\%	35.20\%	37.40\%	32.30\%	35.19\%	33.00\%	36.69\%

Table 1-130
Brooklyn, Comparison, 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 2 \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \\ \hline \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
INORGANIC/HHW	Non-Bulk Ceramics		2.20\%	0.13\%	0.20\%	0.44\%	0.20\%	0.50\%	2.20\%	0.39\%	0.10\%	0.38\%	0.20\%	0.42\%
INORGANIC/HHW	Miscellaneous Inorganics	5	3.00\%	3.28\%	1.90\%	3.93\%	2.30\%	2.90\%	3.00\%	3.60\%	2.10\%	2.95\%	2.30\%	3.36\%
INORGANIC/HHW	Pesticides		0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.10\%	0.07\%	0.20\%	0.10\%	0.10\%	0.08\%	0.10\%	0.07\%	0.10\%	0.06\%	0.10\%	0.08\%
INORGANIC/HHW	Dry Cell Batteries		0.00\%	0.04\%	0.00\%	0.08\%	0.00\%	0.09\%	0.00\%	0.07\%	0.00\%	0.08\%	0.00\%	0.08\%
INORGANIC/HHW	Car Batteries		0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.00\%	0.03\%	0.00\%	0.04\%	0.10\%	0.02\%	0.00\%	0.06\%	0.00\%	0.07\%	0.00\%	0.05\%
INORGANIC/HHW	Miscellaneous HHW	7	0.20\%	0.08\%	0.00\%	0.03\%	0.10\%	0.03\%	0.20\%	0.05\%	0.30\%	0.04\%	0.10\%	0.04\%
INORGANIC/HHW Total			5.60\%	3.63\%	2.30\%	4.63\%	2.80\%	3.63\%	5.60\%	4.24\%	2.70\%	3.59\%	2.70\%	4.04\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.86\%	0.00\%	0.76\%	0.00\%	0.48\%	0.00\%	0.53\%	0.00\%	0.92\%	0.00\%	0.67\%
APPL/ELECT. Total			0.00\%	0.86\%	0.00\%	0.76\%	0.00\%	0.48\%	0.00\%	0.53\%	0.00\%	0.92\%	0.00\%	0.67\%
BULK	Bulk Items		10.60\%	2.62\%	12.90\%	3.92\%	14.50\%	4.70\%	10.60\%	3.63\%	15.10\%	4.94\%	13.30\%	4.28\%
BULK Total			10.60\%	2.62\%	12.90\%	3.92\%	14.50\%	4.70\%	10.60\%	3.63\%	15.10\%	4.94\%	13.30\%	4.28\%
GRAND TOTAL		9	101.80\%	100.00\%	100.10\%	100.00\%	100.30\%	100.00\%	101.80\%	100.00\%	100.10\%	100.00\%	100.00\%	100.00\%

1. For 1989/1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and seasonal and annual percentage figures are as reported in Volume 1, Exhibit $5-2$ (pages $5-7$ through $5-11$) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". In some instances, 2004/2005 data, Material Groups, Material Categories, and percentage figures were adjusted, as indicated in these footnotes, for comparison to the 1989/1990 data.
2. 1989/1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004/2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004/2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989/1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989/1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004/2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989/1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004/2005 data does not.
6. 2004/2005 data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989/1990's "Other Metal" ("Other Ferrous Metal" in the 1989/1990 OPEC Report).
7. 1989/1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989/1990
9. In some cases, the 1989/1990 percentage figures do not sum to 100% in the OPEC "New York City Waste Composition Study" report due to rounding.
10. This is the sum total of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989/1990 data, this includes all Paper, Metal, Container Glass, and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissues, waxed, coated) was included in the 1989/1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, the 1989/1990 figures overcount designated paper. For 2004/2005 data, all totals reflect designated materials only
11. Results are presented here excluding bulk items because Volume 1 of the New York City Waste Composition Study, 1989-1990, OMD Version presented waste composition results without bulk.

Table 1-131
Queens, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 2 \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	Winter 1990	Winter 2005	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	Annual 2004/2005
PAPER	Corrugated/Kraft		4.50\%	3.22\%	4.80\%	3.05\%	4.70\%	2.39\%	4.50\%	1.58\%	4.60\%	1.76\%	4.60\%	2.18\%
PAPER	Newsprint		9.40\%	6.53\%	10.90\%	7.37\%	8.70\%	8.09\%	9.40\%	6.88\%	9.90\%	6.93\%	9.70\%	7.28\%
PAPER	Office/Computer Paper		0.70\%	0.73\%	1.10\%	0.88\%	0.70\%	0.80\%	0.70\%	0.86\%	1.50\%	0.79\%	1.00\%	0.83\%
PAPER	Other Paper	2	15.90\%	15.04\%	18.50\%	18.94\%	17.50\%	18.58\%	15.90\%	16.48\%	14.80\%	18.04\%	16.70\%	17.97\%
PAPER	Books/Phone Books		0.70\%	0.86\%	1.10\%	0.63\%	0.60\%	1.00\%	0.70\%	0.71\%	1.10\%	1.34\%	0.80\%	0.92\%
PAPER Total			31.20\%	26.38\%	36.40\%	30.86\%	32.20\%	30.86\%	31.20\%	26.50\%	31.90\%	28.84\%	32.80\%	29.18\%
PLASTIC	Clear HDPE Containers		0.50\%	0.44\%	0.50\%	0.49\%	0.40\%	0.43\%	0.50\%	0.39\%	0.60\%	0.42\%	0.50\%	0.43\%
PLASTIC	Colored HDPE Containers		0.60\%	0.46\%	0.70\%	0.48\%	0.80\%	0.50\%	0.60\%	0.44\%	0.70\%	0.45\%	0.60\%	0.46\%
PLASTIC	LDPE		0.10\%	0.01\%	0.10\%	0.01\%	0.10\%	0.01\%	0.10\%	0.01\%	0.20\%	0.01\%	0.10\%	0.01\%
PLASTIC	Films/Bags		4.50\%	6.16\%	4.20\%	6.96\%	4.40\%	6.88\%	4.50\%	6.94\%	4.50\%	6.81\%	4.40\%	6.90\%
PLASTIC	PET Containers	3	0.50\%	1.03\%	0.50\%	0.95\%	0.60\%	1.21\%	0.50\%	1.03\%	0.50\%	1.31\%	0.50\%	1.12\%
PLASTIC	PVC		0.10\%	0.05\%	0.10\%	0.03\%	0.10\%	0.02\%	0.10\%	0.01\%	0.10\%	0.03\%	0.10\%	0.02\%
PLASTIC	Polypropylene		0.10\%	0.23\%	0.20\%	0.18\%	0.10\%	0.20\%	0.10\%	0.17\%	0.10\%	0.20\%	0.10\%	0.19\%
PLASTIC	Polystyrene		0.90\%	0.64\%	0.70\%	0.73\%	0.90\%	0.75\%	0.90\%	0.69\%	0.80\%	0.79\%	0.80\%	0.74\%
PLASTIC	Miscellaneous Plastic		1.40\%	2.83\%	0.90\%	3.08\%	0.90\%	3.05\%	1.40\%	3.11\%	1.90\%	3.34\%	1.30\%	3.15\%
PLASTIC Total			8.70\%	11.84\%	7.90\%	12.92\%	8.30\%	13.05\%	8.70\%	12.79\%	9.40\%	13.35\%	8.40\%	13.03\%
GLASS	Clear Glass		3.10\%	1.15\%	2.70\%	1.32\%	2.90\%	1.57\%	3.10\%	1.40\%	2.90\%	1.62\%	2.90\%	1.47\%
GLASS	Green Glass		0.80\%	0.36\%	0.70\%	0.43\%	0.90\%	0.53\%	0.80\%	0.47\%	0.90\%	0.48\%	0.80\%	0.48\%
GLASS	Brown Glass		0.80\%	0.22\%	0.70\%	0.34\%	0.70\%	0.35\%	0.80\%	0.26\%	0.80\%	0.41\%	0.80\%	0.34\%
GLASS	Miscellaneous Glass	4	0.20\%	2.06\%	0.10\%	1.59\%	0.10\%	1.72\%	0.20\%	1.86\%	0.30\%	2.19\%	0.20\%	1.85\%
GLASS Total			4.90\%	3.79\%	4.20\%	3.67\%	4.60\%	4.16\%	4.90\%	3.99\%	4.90\%	4.70\%	4.70\%	4.13\%
METAL	Aluminum Beverage Cans		0.30\%	0.19\%	0.30\%	0.16\%	0.30\%	0.22\%	0.30\%	0.15\%	0.20\%	0.25\%	0.30\%	0.19\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.47\%	0.50\%	0.49\%	0.50\%	0.49\%	0.50\%	0.55\%	0.60\%	0.58\%	0.50\%	0.53\%
METAL	Miscellaneous Aluminum		0.10\%	0.06\%	0.20\%	0.06\%	0.10\%	0.03\%	0.10\%	0.07\%	0.20\%	0.09\%	0.10\%	0.06\%
METAL	Metal Food Containers		1.90\%	1.01\%	1.70\%	1.09\%	1.90\%	1.22\%	1.90\%	1.09\%	1.60\%	0.96\%	1.80\%	1.08\%
METAL	Other Metal	6	2.50\%	2.24\%	2.20\%	2.83\%	2.00\%	2.40\%	2.50\%	2.76\%	1.70\%	2.42\%	2.10\%	2.61\%
METAL Total			5.30\%	3.97\%	4.90\%	4.62\%	4.80\%	4.36\%	5.30\%	4.63\%	4.30\%	4.30\%	4.80\%	4.48\%
YARD	Grass/Leaves		3.00\%	9.89\%	7.30\%	5.75\%	7.60\%	1.29\%	3.00\%	7.30\%	3.60\%	4.47\%	5.30\%	4.84\%
YARD	Brush/Prunings/Stumps		1.60\%	3.90\%	0.50\%	1.57\%	0.70\%	0.48\%	1.60\%	1.06\%	1.40\%	0.93\%	1.10\%	1.03\%
YARD Total			4.60\%	13.79\%	7.80\%	7.32\%	8.30\%	1.77\%	4.60\%	8.36\%	5.00\%	5.40\%	6.40\%	5.87\%
ORGANIC	Lumber		3.20\%	3.03\%	1.80\%	2.02\%	2.00\%	1.60\%	3.20\%	2.16\%	2.50\%	1.80\%	2.40\%	1.91\%
ORGANIC	Textiles		4.80\%	5.29\%	3.60\%	5.26\%	4.40\%	4.58\%	4.80\%	5.13\%	4.80\%	5.17\%	4.40\%	5.05\%
ORGANIC	Rubber		0.20\%	0.18\%	0.30\%	0.27\%	0.10\%	0.17\%	0.20\%	0.29\%	0.20\%	0.21\%	0.20\%	0.24\%
ORGANIC	Fines	5	2.60\%	3.34\%	2.00\%	2.76\%	2.20\%	3.25\%	2.60\%	4.13\%	2.20\%	3.46\%	2.30\%	3.41\%
ORGANIC	Diapers		3.50\%	3.71\%	3.00\%	3.20\%	3.50\%	3.32\%	3.50\%	2.84\%	3.40\%	3.11\%	3.40\%	3.11\%
ORGANIC	Food Waste		12.40\%	13.34\%	12.00\%	17.63\%	11.60\%	19.01\%	12.40\%	16.35\%	12.70\%	15.09\%	12.20\%	16.94\%
ORGANIC	Miscellaneous Organic		8.80\%	3.22\%	6.60\%	2.47\%	6.90\%	3.03\%	8.80\%	2.34\%	8.00\%	2.82\%	7.60\%	2.65\%
ORGANIC Total			35.50\%	32.11\%	29.30\%	33.62\%	30.70\%	34.97\%	35.50\%	33.25\%	33.80\%	31.66\%	32.50\%	33.31\%

Table 1-131
Queens, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \stackrel{\rightharpoonup}{O} \\ & \hline \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
INORGANIC/HHW	Non-Bulk Ceramics		0.10\%	0.62\%	0.20\%	0.45\%	0.20\%	0.47\%	0.10\%	0.40\%	0.10\%	0.52\%	0.10\%	0.46\%
INORGANIC/HHW	Miscellaneous Inorganics	5	2.50\%	2.51\%	1.50\%	3.40\%	2.40\%	2.43\%	2.50\%	4.23\%	1.40\%	3.18\%	2.00\%	3.35\%
INORGANIC/HHW	Pesticides		0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.10\%	0.31\%	0.10\%	0.16\%	0.10\%	0.08\%	0.10\%	0.04\%	0.00\%	0.09\%	0.10\%	0.09\%
INORGANIC/HHW	Dry Cell Batteries		0.00\%	0.05\%	0.00\%	0.07\%	0.00\%	0.08\%	0.00\%	0.05\%	0.00\%	0.06\%	0.00\%	0.06\%
INORGANIC/HHW	Car Batteries		0.20\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.20\%	0.00\%	0.20\%	0.00\%	0.10\%	0.00\%
INORGANIC/HHW	Medical Waste		0.00\%	0.05\%	0.00\%	0.03\%	0.10\%	0.03\%	0.00\%	0.02\%	0.00\%	0.05\%	0.00\%	0.03\%
INORGANIC/HHW	Miscellaneous HHW	7	0.20\%	0.08\%	0.00\%	0.03\%	0.10\%	0.04\%	0.20\%	0.06\%	0.30\%	0.03\%	0.10\%	0.04\%
INORGANIC/HHW Total			3.10\%	3.63\%	1.80\%	4.15\%	2.90\%	3.15\%	3.10\%	4.80\%	2.00\%	3.94\%	2.40\%	4.05\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	1.28\%	0.00\%	0.80\%	0.00\%	0.49\%	0.00\%	0.50\%	0.00\%	0.77\%	0.00\%	0.64\%
APPL/ELECT. Total			0.00\%	1.28\%	0.00\%	0.80\%	0.00\%	0.49\%	0.00\%	0.50\%	0.00\%	0.77\%	0.00\%	0.64\%
BULK	Bulk Items		6.90\%	3.20\%	8.10\%	2.03\%	8.70\%	7.19\%	6.90\%	5.18\%	8.60\%	7.02\%	8.10\%	5.31\%
BULK Total			6.90\%	3.20\%	8.10\%	2.03\%	8.70\%	7.19\%	6.90\%	5.18\%	8.60\%	7.02\%	8.10\%	5.31\%
GRAND TOTAL		9	100.20\%	100.00\%	100.40\%	100.00\%	100.50\%	100.00\%	100.20\%	100.00\%	99.90\%	100.00\%	100.10\%	100.00\%

1. For 1989/1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and seasonal and annual percentage figures are as reported in Volume 1, Exhibit $5-2$ (pages $5-7$ through $5-11$) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". In some instances, 2004/2005 data, Material Groups, Material Categories, and percentage figures were adjusted, as indicated in these footnotes, for comparison to the 1989/1990 data.
2. 1989/1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004/2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004/2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989/1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989/1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004/2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989/1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004/2005 data does not.
6. 2004/2005 data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989/1990's "Other Metal" ("Other Ferrous Metal" in the 1989/1990 OPEC Report).
7. 1989/1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989/1990.
9. In some cases, the 1989/1990 percentage figures do not sum to 100% in the OPEC "New York City Waste Composition Study" report due to rounding.
10. This is the sum total of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989/1990 data, this includes all Paper, Metal, Container Glass, and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissues, waxed, coated) was included in the 1989/1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, the 1989/1990 figures overcount designated paper. For 2004/2005 data, all totals reflect designated materials only.
11. Results are presented here excluding bulk items because Volume 1 of the New York City Waste Composition Study, 1989-1990, OMD Version presented waste composition results without bulk.

Table 1-132
Staten Island, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$

1989/1990 Material Group ${ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \text { 足 } \\ & \hline \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Winter } \\ 1990 \\ \hline \end{gathered}$	Winter 2005	Spring 1990	Spring 2005	Summer 1989	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
PAPER	Corrugated/Kraft		4.30\%	2.62\%	3.70\%	3.24\%	4.60\%	2.74\%	4.30\%	1.30\%	3.90\%	1.72\%	4.10\%	2.20\%
PAPER	Newsprint		7.90\%	7.45\%	9.60\%	8.94\%	7.00\%	9.25\%	7.90\%	6.94\%	8.20\%	7.33\%	8.10\%	8.03\%
PAPER	Office/Computer Paper		0.50\%	1.26\%	1.10\%	0.70\%	0.50\%	0.79\%	0.50\%	0.70\%	1.50\%	0.81\%	0.90\%	0.75\%
PAPER	Other Paper	2	13.50\%	14.22\%	17.70\%	18.81\%	16.30\%	19.73\%	13.50\%	15.79\%	12.90\%	18.86\%	15.00\%	18.16\%
PAPER	Books/Phone Books		0.40\%	0.83\%	1.40\%	0.52\%	0.70\%	0.76\%	0.40\%	0.73\%	0.80\%	1.23\%	0.80\%	0.81\%
PAPER Total			26.60\%	26.37\%	33.50\%	32.21\%	29.10\%	33.27\%	26.60\%	25.45\%	27.30\%	29.96\%	28.90\%	29.95\%
PLASTIC	Clear HDPE Containers		0.40\%	0.26\%	0.30\%	0.60\%	0.30\%	0.37\%	0.40\%	0.30\%	0.50\%	0.35\%	0.40\%	0.40\%
PLASTIC	Colored HDPE Containers		0.50\%	0.47\%	0.60\%	0.47\%	0.50\%	0.50\%	0.50\%	0.43\%	0.50\%	0.48\%	0.50\%	0.47\%
PLASTIC	LDPE		0.10\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.10\%	0.01\%	0.20\%	0.01\%	0.10\%	0.01\%
PLASTIC	Films/Bags		3.70\%	4.38\%	3.20\%	5.91\%	3.70\%	5.97\%	3.70\%	5.52\%	3.30\%	5.89\%	3.50\%	5.81\%
PLASTIC	PET Containers	3	0.40\%	0.96\%	0.30\%	0.91\%	0.50\%	1.22\%	0.40\%	0.91\%	0.40\%	1.30\%	0.40\%	1.08\%
PLASTIC	PVC		0.10\%	0.06\%	0.00\%	0.04\%	0.00\%	0.03\%	0.10\%	0.01\%	0.10\%	0.03\%	0.10\%	0.03\%
PLASTIC	Polypropylene		0.10\%	0.22\%	0.20\%	0.18\%	0.10\%	0.20\%	0.10\%	0.14\%	0.10\%	0.17\%	0.10\%	0.17\%
PLASTIC	Polystyrene		0.60\%	0.49\%	0.50\%	0.65\%	0.80\%	0.73\%	0.60\%	0.63\%	0.50\%	0.72\%	0.60\%	0.68\%
PLASTIC	Miscellaneous Plastic		1.70\%	3.77\%	0.70\%	3.14\%	0.70\%	3.42\%	1.70\%	2.83\%	1.80\%	3.29\%	1.20\%	3.15\%
PLASTIC Total			7.60\%	10.61\%	5.90\%	11.91\%	6.60\%	12.44\%	7.60\%	10.79\%	7.40\%	12.24\%	6.90\%	11.79\%
GLASS	Clear Glass		2.90\%	1.11\%	2.40\%	1.31\%	2.70\%	1.59\%	2.90\%	1.37\%	2.70\%	1.67\%	2.70\%	1.48\%
GLASS	Green Glass		0.80\%	0.22\%	0.60\%	0.35\%	0.90\%	0.40\%	0.80\%	0.40\%	0.70\%	0.44\%	0.70\%	0.40\%
GLASS	Brown Glass		0.80\%	0.33\%	0.60\%	0.29\%	0.70\%	0.29\%	0.80\%	0.23\%	0.70\%	0.35\%	0.70\%	0.29\%
GLASS	Miscellaneous Glass	4	0.10\%	1.49\%	0.10\%	1.43\%	0.00\%	1.41\%	0.10\%	1.33\%	0.20\%	1.90\%	0.10\%	1.52\%
GLASS Total			4.60\%	3.16\%	3.70\%	3.37\%	4.30\%	3.69\%	4.60\%	3.32\%	4.30\%	4.36\%	4.20\%	3.68\%
METAL	Aluminum Beverage Cans		0.20\%	0.20\%	0.30\%	0.15\%	0.30\%	0.25\%	0.20\%	0.13\%	0.10\%	0.26\%	0.20\%	0.19\%
METAL	Aluminum Food Containers/Foil		0.50\%	0.32\%	0.40\%	0.46\%	0.50\%	0.53\%	0.50\%	0.50\%	0.50\%	0.59\%	0.50\%	0.52\%
METAL	Miscellaneous Aluminum		0.00\%	0.05\%	0.20\%	0.08\%	0.10\%	0.02\%	0.00\%	0.08\%	0.10\%	0.08\%	0.10\%	0.07\%
METAL	Metal Food Containers		1.50\%	0.85\%	1.40\%	0.98\%	1.60\%	1.11\%	1.50\%	0.92\%	1.50\%	0.87\%	1.50\%	0.97\%
METAL	Other Metal	6	2.90\%	3.26\%	2.30\%	2.94\%	2.20\%	2.29\%	2.90\%	2.62\%	1.50\%	2.33\%	2.20\%	2.56\%
METAL Total			5.10\%	4.67\%	4.60\%	4.61\%	4.70\%	4.21\%	5.10\%	4.26\%	3.70\%	4.14\%	4.50\%	4.31\%
YARD	Grass/Leaves		4.50\%	14.95\%	9.90\%	7.49\%	13.10\%	2.07\%	4.50\%	11.04\%	4.90\%	6.50\%	6.00\%	7.09\%
YARD	Brush/Prunings/Stumps		2.40\%	6.90\%	0.60\%	2.25\%	0.70\%	0.68\%	2.40\%	1.55\%	2.20\%	1.39\%	1.50\%	1.50\%
YARD Total			6.90\%	21.84\%	10.50\%	9.74\%	13.80\%	2.75\%	6.90\%	12.59\%	7.10\%	7.89\%	7.50\%	8.59\%
ORGANIC	Lumber		3.20\%	2.12\%	1.60\%	2.26\%	2.40\%	1.36\%	3.20\%	2.52\%	2.50\%	2.15\%	2.40\%	2.12\%
ORGANIC	Textiles		4.70\%	8.13\%	2.00\%	5.12\%	4.30\%	4.36\%	4.70\%	4.79\%	4.70\%	4.60\%	4.10\%	4.73\%
ORGANIC	Rubber		0.00\%	0.29\%	0.50\%	0.34\%	0.20\%	0.15\%	0.00\%	0.34\%	0.20\%	0.18\%	0.20\%	0.26\%
ORGANIC	Fines	5	2.30\%	2.88\%	1.80\%	2.51\%	2.00\%	3.04\%	2.30\%	3.73\%	1.80\%	3.20\%	2.00\%	3.14\%
ORGANIC	Diapers		3.50\%	2.20\%	2.90\%	2.77\%	3.40\%	3.27\%	3.50\%	2.53\%	3.60\%	2.85\%	3.30\%	2.83\%
ORGANIC	Food Waste		10.90\%	7.05\%	11.00\%	14.93\%	9.60\%	17.45\%	10.90\%	13.53\%	11.50\%	13.95\%	10.70\%	14.81\%
ORGANIC	Miscellaneous Organic		8.80\%	5.10\%	6.20\%	2.26\%	6.00\%	3.38\%	8.80\%	2.57\%	7.30\%	2.71\%	7.10\%	2.70\%
ORGANIC Total			33.40\%	27.78\%	26.00\%	30.18\%	27.90\%	33.01\%	33.40\%	30.01\%	31.60\%	29.64\%	29.80\%	30.59\%

Table 1-132
Staten Island, Comparison 2004/2005 vs. 1989/1990, Waste Characterization Study, Residential Results Excluding Bulk ${ }^{(11)}$ (continued)

$\text { 1989/1990 Material Group }{ }^{(1)}$	1989/1990 Material Category ${ }^{(1)}$	$\begin{aligned} & \text { M } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { 2 } \end{aligned}$	PWCS		WCS									
			Spring 1990	Spring 2004	$\begin{aligned} & \text { Fall } \\ & 1989 \end{aligned}$	$\begin{aligned} & \text { Fall } \\ & 2004 \end{aligned}$	Winter 1990	Winter 2005	$\begin{gathered} \text { Spring } \\ 1990 \end{gathered}$	Spring 2005	$\begin{gathered} \text { Summer } \\ 1989 \end{gathered}$	Summer 2005	$\begin{aligned} & \text { Annual } \\ & \text { 1989/1990 } \end{aligned}$	$\begin{gathered} \text { Annual } \\ \text { 2004/2005 } \end{gathered}$
INORGANIC/HHW	Non-Bulk Ceramics		0.10\%	0.19\%	0.30\%	0.54\%	0.10\%	0.50\%	0.10\%	0.45\%	0.10\%	0.64\%	0.10\%	0.53\%
INORGANIC/HHW	Miscellaneous Inorganics	5	1.30\%	2.56\%	0.60\%	3.18\%	1.20\%	2.23\%	1.30\%	5.11\%	0.70\%	3.31\%	0.90\%	3.56\%
INORGANIC/HHW	Pesticides		0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%
INORGANIC/HHW	Paints/Solvents/Fuel		0.10\%	0.07\%	0.00\%	0.20\%	0.10\%	0.03\%	0.10\%	0.01\%	0.00\%	0.08\%	0.00\%	0.08\%
INORGANIC/HHW	Dry Cell Batteries		0.00\%	0.07\%	0.00\%	0.06\%	0.00\%	0.05\%	0.00\%	0.05\%	0.00\%	0.06\%	0.00\%	0.05\%
INORGANIC/HHW	Car Batteries		0.40\%	0.75\%	0.00\%	0.00\%	0.00\%	0.00\%	0.40\%	0.00\%	0.30\%	0.00\%	0.00\%	0.00\%
INORGANIC/HHW	Medical Waste		0.00\%	0.04\%	0.00\%	0.02\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.03\%	0.00\%	0.02\%
INORGANIC/HHW	Miscellaneous HHW	7	0.20\%	0.20\%	0.00\%	0.04\%	0.10\%	0.07\%	0.20\%	0.06\%	0.30\%	0.02\%	0.20\%	0.05\%
INORGANIC/HHW Total			2.10\%	3.87\%	0.90\%	4.05\%	1.50\%	2.94\%	2.10\%	5.71\%	1.40\%	4.14\%	1.20\%	4.30\%
APPL/ELECT.	Appliances and Electronics	8	0.00\%	0.57\%	0.00\%	0.71\%	0.00\%	0.45\%	0.00\%	0.51\%	0.00\%	0.68\%	0.00\%	0.59\%
APPL/ELECT. Total			0.00\%	0.57\%	0.00\%	0.71\%	0.00\%	0.45\%	0.00\%	0.51\%	0.00\%	0.68\%	0.00\%	0.59\%
BULK	Bulk Items		14.10\%	1.12\%	14.20\%	3.22\%	12.40\%	7.22\%	14.10\%	7.35\%	17.50\%	6.96\%	14.70\%	6.19\%
BULK Total			14.10\%	1.12\%	14.20\%	3.22\%	12.40\%	7.22\%	14.10\%	7.35\%	17.50\%	6.96\%	14.70\%	6.19\%
GRAND TOTAL		9	100.40\%	100.00\%	99.30\%	100.00\%	100.30\%	100.00\%	100.40\%	100.00\%	100.30\%	100.00\%	97.70\%	100.00\%
Percent of Waste that is Desig	nated as Recyclable Material	10	37.50\%	29.44\%	42.90\%	34.11\%	39.40\%	35.92\%	37.50\%	28.52\%	36.50\%	33.49\%	38.80\%	32.76\%

1. For 1989/1990 data, unless otherwise indicated in these footnotes, Material Groups, Material Categories, and seasonal and annual percentage figures are as reported in Volume 1, Exhibit 5-2 (pages 5-7 through 5-11) of the OMD version of the DSNY Operations Planning Evaluation and Control (OPEC)'s "New York City Waste Composition Study". In some instances, 2004/2005 data, Material Groups, Material Categories, and percentage figures were adjusted, as indicated in these footnotes, for comparison to the 1989/1990 data.
2. 1989/1990 tonnage data for "Magazines/Glossy", "Non-Corrugated Cardboard", and "Mixed" categories of paper have been combined and labeled "Other Paper". For clarity in comparison to the 2004/2005 tonnage data, a similar category, also labeled "Other Paper", has been created with the 2004/2005 data, combining "Mixed Low Grade Paper","Paper Bags", "Polycoated Containers", "Compostable/Soiled/Waxed OCC", "Single Use Paper Plates, Cups" and "Other Nonrecyclable Paper".
3. 1989/1990 tonnage data for Clear and Green "PET" plastic have been combined for clarity of comparison.
4. 1989/1990 tonnage data for "Miscellaneous Glass" does not include mixed cullet. 2004/2005 "Miscellaneous Glass" tonnage data includes "Mixed Cullet" and "Miscellaneous Glass".
5. 1989/1990 data includes mixed cullet in "Fines" and "Miscellaneous Inorganics". 2004/2005 data does not.
6. 2004/2005 data combines "Empty Aerosol Cans", "Other Ferrous", "Other Non-Ferrous", "Mixed Metals", "Appliances-Ferrous", and "Appliances-Non-Ferrous" to correspond with 1989/1990's "Other Metal" ("Other Ferrous Metal" in the 1989/1990 OPEC Report)
7. 1989/1990 tonnage data for "Non-Pesticide Poisons" has been added to "Miscellaneous HHW" tonnage total.
8. This category was not assessed in 1989/1990
9. In some cases, the 1989/1990 percentage figures do not sum to 100% in the OPEC "New York City Waste Composition Study" report due to rounding.
10. This is the sum total of designated Paper, Metal, Glass, Plastic and Beverage Cartons in all Waste (Refuse + Recycling). For 1989/1990 data, this includes all Paper, Metal, Container Glass, and HDPE/PET bottles/jugs. Because some paper that is not designated recyclable (tissues, waxed, coated) was included in the 1989/1990 "Mixed" paper category, it cannot now be excluded when calculating the sum of designated paper. Thus, the 1989/1990 figures overcount designated paper. For 2004/2005 data, all totals reflect designated materials only.
11. Results are presented here excluding bulk items because Volume 1 of the New York City Waste Composition Study, 1989-1990, OMD Version presented waste composition results without bulk.
[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1

Section 5: WCS Street Basket Results

[This page intentionally left blank.]

Section 5 WCS Street Basket Results

5.1 Introduction

The DSNY collects waste from pedestrian litter baskets (referred to as street baskets in this study) throughout the City. Some of these collections are made on dedicated routes on which only street basket waste is collected and some collections are made on mixed routes on which institutional, residential and street basket waste is collected in the same truck.

5.2 Dedicated Street Basket Routes

One facet of the WCS was a study of the composition of street basket waste from dedicated street basket routes. The number of dedicated street basket routes, as provided by DSNY, varies by season, ranging from 644 routes in the fall of 2004 to 701 routes in the summer of 2005. In areas with high pedestrian traffic, dedicated routes may be collected several times per day. The list of dedicated street basket routes during the WCS is presented in Volume 2, Section 3.

5.3 Street Basket Waste Composition

New York City does not have street basket recycling, so, for the purposes of this study, all material collected in the street basket waste is refuse. Table 1-133 shows the citywide composition of street basket waste from the WCS across the four seasons, and annually. This table is useful in comparing the composition of street basket waste over the year.

The weekly generation tonnages of street basket waste were calculated by taking the average weekly tonnages provided by DSNY, by season, for the period from September 2004 through September 2005. The schedule for the collection of street basket waste is complex because it is based on the use and capacity of the street baskets. In areas of high pedestrian traffic where street baskets are likely to fill quickly, the street baskets may be collected several times a day. In other areas, street basket waste may be collected once a day, or less frequently. For this reason, it was not possible to estimate a per-basket generation rate.

Table 1-133
Citywide Results Across Seasons, Waste Characterization Study, Street Basket

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Paper	ONP	Newspaper	15.24\%	17.36\%	17.13\%	13.11\%	15.63\%	R Paper
Paper	OCC	Plain OCC/Kraft Paper	3.94\%	3.75\%	3.99\%	3.41\%	3.77\%	R Paper
Paper	Mixed Paper	High Grade Paper	0.81\%	0.18\%	0.08\%	0.32\%	0.35\%	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	9.20\%	8.96\%	7.49\%	8.63\%	8.54\%	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	2.22\%	1.07\%	0.64\%	0.52\%	1.09\%	R Paper
Paper	Mixed Paper	Paper Bags	1.27\%	1.31\%	1.73\%	1.36\%	1.43\%	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	0.27\%	0.28\%	0.45\%	0.33\%	0.34\%	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.39\%	4.65\%	2.95\%	4.44\%	4.57\%	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	1.88\%	2.05\%	2.27\%	1.38\%	1.89\%	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	1.05\%	0.38\%	0.32\%	0.86\%	0.66\%	NR_Paper
Paper Total			42.26\%	40.00\%	37.06\%	34.36\%	38.26\%	
Plastic	PET Bottles	PET Bottles	1.90\%	1.73\%	2.47\%	2.89\%	2.28\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.25\%	0.28\%	0.21\%	0.28\%	0.25\%	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.22\%	0.18\%	0.14\%	0.18\%	0.18\%	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.00\%	0.07\%	0.01\%	0.03\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.05\%	0.04\%	0.04\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.19\%	0.14\%	0.15\%	0.21\%	0.18\%	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.08\%	0.03\%	0.05\%	0.04\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.02\%	0.17\%	0.03\%	0.03\%	0.06\%	PR_Plastics
Plastic	Other Plastic Products	Other PVC	0.17\%	0.00\%	0.00\%	0.00\%	0.04\%	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.29\%	0.35\%	0.39\%	0.33\%	0.34\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	0.39\%	0.34\%	0.46\%	0.45\%	0.41\%	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	0.46\%	0.53\%	0.81\%	0.58\%	0.60\%	PR_Plastics
Plastic	Film	Plastic Bags	2.04\%	1.88\%	3.15\%	2.04\%	2.30\%	PR_Plastics
Plastic	Film	Other Film	4.31\%	4.85\%	4.92\%	3.16\%	4.28\%	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.92\%	1.10\%	1.48\%	1.32\%	1.21\%	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1.04\%	1.13\%	0.96\%	1.42\%	1.14\%	NR_Plastics
Plastic Total			12.29\%	12.84\%	15.32\%	12.99\%	13.41\%	
Glass	Container Glass	Clear Container Glass	4.22\%	3.56\%	4.11\%	5.62\%	4.43\%	R Glass
Glass	Container Glass	Green Container Glass	1.01\%	1.28\%	1.08\%	0.81\%	1.03\%	R Glass
Glass	Container Glass	Brown Container Glass	0.90\%	0.67\%	0.57\%	0.87\%	0.75\%	R Glass
Glass	Mixed Cullet	Mixed Cullet	0.97\%	0.85\%	0.93\%	1.28\%	1.02\%	R Glass
Glass	Container Glass	Other Container Glass	0.03\%	0.07\%	0.01\%	0.00\%	0.02\%	R Glass
Glass	Other Glass	Other Glass	0.12\%	0.16\%	0.14\%	0.25\%	0.17\%	PR_Glass
Glass Total			7.25\%	6.57\%	6.84\%	8.84\%	7.42\%	

Table 1-133
Citywide Results Across Seasons, Waste Characterization Study, Street Basket (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	0.42\%	0.45\%	0.53\%	0.62\%	0.51\%	R Metal
Metal	Aluminum	Aluminum Foil/Containers	0.43\%	0.48\%	0.53\%	0.50\%	0.49\%	R Metal
Metal	Aluminum	Other Aluminum	0.05\%	0.09\%	0.04\%	0.01\%	0.04\%	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	0.10\%	0.18\%	0.30\%	0.09\%	0.17\%	R Metal
Metal	Ferrous	Tin Food Cans	0.45\%	0.54\%	0.48\%	0.59\%	0.51\%	R Metal
Metal	Ferrous	Empty Aerosol Cans	0.09\%	0.04\%	0.07\%	0.09\%	0.07\%	R Metal
Metal	Ferrous	Other Ferrous	1.40\%	3.47\%	2.23\%	3.42\%	2.61\%	R Metal
Metal	Other Metal	Mixed Metals	0.57\%	0.62\%	0.25\%	0.44\%	0.46\%	R Metal
Metal Total			3.51\%	5.86\%	4.42\%	5.76\%	4.86\%	
Organics	Yard	Leaves and Grass	2.67\%	0.11\%	0.35\%	1.66\%	1.23\%	NR_Other
Organics	Yard	Prunings	0.28\%	0.33\%	0.36\%	0.25\%	0.30\%	NR_Other
Organics	Wood	Stumps/Limbs	0.00\%	0.00\%	0.23\%	0.03\%	0.07\%	NR_Other
Organics	Food	Food	13.65\%	11.83\%	13.65\%	14.65\%	13.53\%	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	0.64\%	0.25\%	0.09\%	0.87\%	0.47\%	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.20\%	0.78\%	0.33\%	0.37\%	0.40\%	NR_Other
Organics	Textiles	Non-Clothing Textiles	1.43\%	1.13\%	0.57\%	1.00\%	1.02\%	NR_Other
Organics	Textiles	Clothing Textiles	1.16\%	1.32\%	1.37\%	1.51\%	1.35\%	NR_Other
Organics	Textiles	Carpet/Upholstery	0.04\%	0.08\%	0.10\%	0.05\%	0.07\%	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1.04\%	0.83\%	0.69\%	0.83\%	0.85\%	NR_Other
Organics	Misc. Organic	Animal By-Products	1.66\%	2.12\%	1.43\%	1.83\%	1.74\%	NR_Other
Organics	Misc. Organic	Rubber Products	0.22\%	0.14\%	0.09\%	0.16\%	0.15\%	NR_Other
Organics	Textiles	Shoes	0.38\%	0.35\%	0.36\%	0.44\%	0.38\%	NR_Other
Organics	Textiles	Other Leather Products	0.03\%	0.10\%	0.14\%	0.06\%	0.08\%	NR_Other
Organics	Misc. Organic	Fines	3.74\%	5.77\%	7.65\%	3.89\%	5.26\%	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00\%	0.72\%	0.00\%	0.10\%	0.18\%	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	0.79\%	2.63\%	1.24\%	0.90\%	1.33\%	NR_Other
Organics Total			27.93\%	28.50\%	28.64\%	28.59\%	28.42\%	
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.56\%	0.47\%	2.53\%	0.81\%	1.13\%	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.07\%	0.03\%	0.00\%	0.06\%	0.04\%	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.18\%	0.08\%	0.00\%	0.10\%	0.09\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.31\%	0.09\%	0.12\%	0.17\%	0.17\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00\%	0.00\%	0.00\%	0.22\%	0.06\%	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.26\%	0.10\%	0.08\%	0.28\%	0.18\%	NR_Other
Appliance/Electronic Total			1.38\%	0.77\%	2.73\%	1.67\%	1.69\%	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.27\%	1.55\%	1.08\%	0.43\%	0.80\%	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	0.66\%	0.86\%	0.67\%	0.78\%	0.74\%	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.42\%	0.15\%	0.28\%	2.08\%	0.77\%	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.59\%	0.36\%	0.65\%	1.47\%	1.04\%	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1.06\%	1.39\%	1.87\%	2.49\%	1.73\%	NR_Other
C \& D Debris Total			4.00\%	4.31\%	4.55\%	7.24\%	5.08\%	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.02\%	0.13\%	0.20\%	0.03\%	0.09\%	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.54\%	0.37\%	0.08\%	0.10\%	0.26\%	NR_Other
Miscellaneous Inorganics Total			0.56\%	0.49\%	0.28\%	0.13\%	0.35\%	

Table 1-133
Citywide Results Across Seasons, Waste Characterization Study, Street Basket (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	Recycling Subindicator
HHW	HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Antifreeze	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.11\%	0.01\%	0.02\%	0.06\%	0.05\%	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.25\%	0.13\%	0.03\%	0.01\%	0.10\%	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.15\%	0.04\%	0.00\%	0.14\%	0.08\%	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.02\%	0.01\%	NR_Other
HHW	HHW	Dry-Cell Batteries	0.09\%	0.28\%	0.09\%	0.16\%	0.15\%	NR_Other
HHW	HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	NR_Other
HHW	HHW	Home Medical Products	0.01\%	0.05\%	0.00\%	0.01\%	0.02\%	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	0.21\%	0.13\%	0.02\%	0.00\%	0.09\%	NR_Other
HHW Total			0.82\%	0.66\%	0.16\%	0.40\%	0.50\%	
Grand Total			100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	
Weekly Generation Tonnage ${ }^{(1)}$								
Material Group			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Paper Total			732.31	589.89	686.55	639.89	662.16	
Plastic Tota			213.02	189.40	283.81	241.97	232.05	
Glass Total			125.55	96.92	126.66	164.62	128.44	
Metal Total			60.83	86.41	81.94	107.36	84.14	
Organics To			483.96	420.35	530.43	532.52	491.81	
Appliance/E			23.85	11.29	50.56	31.18	29.22	
C \& D Debris			69.30	63.50	84.27	134.92	88.00	
Miscellaneo	Total		9.71	7.24	5.14	2.39	6.12	
HHW Total			14.23	9.75	3.03	7.54	8.64	
Grand Tota			1,732.77	1,474.75	1,852.37	1,862.37	1,730.57	
Subtotals by Recycling Designation								
Recycling Desi			Fall 2004	Winter 2005	Spring 2005	Summer 2005	Annual	
Percent Des			32.68\%	32.63\%	31.07\%	27.34\%	30.80\%	
Percent Des			13.89\%	15.24\%	16.92\%	18.91\%	16.34\%	
Percent De	ycling		46.57\%	47.88\%	47.99\%	46.25\%	47.14\%	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.
(2) The paper, plastic, and glass tonnages include the weight of materials both designated and non-designated for recycling
(3) The metal tonnages do not include the weight of metals found within the appliance/electronic material group.

5.4 Street Basket Illegal Use

One area of investigation in the Street Basket Waste Study was illegally disposed residential or commercial waste. Street baskets provide refuse disposal for pedestrians in commercial areas in the City. It is illegal to use street baskets for household or commercial waste disposal. Nevertheless, these types of refuse are routinely dropped in street baskets.

The WCS provided an opportunity to determine how much of the refuse in the street baskets might be illegal and whether there was a clear preponderance of suspected residential or commercial illegal use of the street baskets. In this study, the illegally disposed waste was determined using the following guidelines:

- Suspected illegal residential waste: addressed mail, substantial amounts of home-use products such as family-size drink containers, home and beauty aids, or other residential material, as determined by the Crew Chief of the sorting crew. (See Volume 2, Section 4.2.2.7 for a more detailed description of this procedure.)
- Suspected illegal commercial waste: retail food preparation waste (industrial-sized food or liquid containers), construction materials, substantial amounts of office paper or cardboard boxes, or other commercial material as determined by the Crew Chief of the sorting crew. (See Volume 2, Section 4.2.2.7 for a more detailed description of this procedure.)

To carry out this investigation, a special sorting protocol was developed and implemented to identify illegally disposed material in street basket waste. The protocol is described in detail in Volume 2 of the Report. Suspected illegal residential and commercial waste was found both as loose material and in bags. Bags of waste that were suspected to be illegally placed in street baskets were weighed and counted as a part of the sorting protocol. Bulk items in street basket waste, such as appliances or furniture, that were suspected of being illegally placed in street baskets were weighed and counted.

The results of this investigation are presented in Table 1-134 and include the following sections:

1. The total weight of suspected illegal residential waste, suspected illegal commercial waste, and legally disposed waste sorted during each season of the WCS, and annually.
2. The percentage of total weight of suspected illegal residential waste, suspected illegal commercial waste, and legally disposed waste sorted during each season of the WCS, and annually.
3. The total weight of only bagged waste of suspected illegal residential waste and suspected illegal commercial waste.
4. The total number of bags of suspected illegal residential waste and suspected illegal commercial waste.
5. The percentage of bags of suspected illegal residential waste and suspected illegal commercial waste.
6. The total weight of bulk items that were suspected illegal residential waste and suspected illegal commercial waste.
7. The number of bulk items that were suspected illegal residential waste and suspected illegal commercial waste.
8. The percentage of bulk items that were suspected illegal residential waste and suspected illegal commercial waste.
9. The number of samples with illegal residential waste only, with illegal commercial waste only, with a mix of illegal residential and illegal commercial waste, and with no illegal residential or illegal commercial waste.
10. The percentage of samples with illegal residential waste only, with illegal commercial waste only, with a mix of illegal residential and illegal commercial waste, and with no illegal residential or illegal commercial waste.

Table 1-134
Street Basket Waste, Suspected Illegal Use Analysis

Total Weight of Samples (pounds)	Fall	Winter	Spring	Summer	Annual
Legally Discarded Street Basket Waste	8,112.60	8,720.88	10,001.95	8,248.17	35,083.60
Suspected Illegal Residential Waste	1,986.45	1,176.73	692.37	2,139.74	5,995.29
Suspected Illegal Commercial Waste	361.66	1,131.48	954.55	756.48	3,204.17
Total	10,460.71	11,029.09	11,648.87	11,144.39	44,283.06
Percent of Total Weight of Samples	Fall	Winter	Spring	Summer	Annual
Legally Discarded Street Basket Waste	77.55\%	79.07\%	85.86\%	74.01\%	79.23\%
Suspected Illegal Residential Waste	18.99\%	10.67\%	5.94\%	19.20\%	13.54\%
Suspected Illegal Commercial Waste	3.46\%	10.26\%	8.19\%	6.79\%	7.24\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Total Weight of Bagged Waste in Samples (pounds)	Fall	Winter	Spring	Summer	Annual
Suspected Illegal Residential Waste	1,879.65	859.40	396.85	1,646.20	4,782.10
Suspected Illegal Commercial Waste	280.76	573.15	539.00	557.30	1,950.21
Total	2,160.41	1,432.55	935.85	2,203.50	6,732.31
Number of Bags in Samples	Fall	Winter	Spring	Summer	Annual
Suspected Illegal Residential Waste	130	211	59	297	697
Suspected Illegal Commercial Waste	32	60	36	61	189
Total	162	271	95	358	886
Percentage of Bags in Samples	Fall	Winter	Spring	Summer	Annual
Suspected Illegal Residential Waste	80.25\%	77.86\%	62.11\%	82.96\%	78.67\%
Suspected Illegal Commercial Waste	19.75\%	22.14\%	37.89\%	17.04\%	21.33\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Total Weight of Bulk Items in Samples (pounds)	Fall	Winter	Spring	Summer	Annual
Suspected Illegal Residential Waste	106.80	317.33	295.52	493.54	1,213.19
Suspected Illegal Commercial Waste	80.90	558.33	415.55	199.18	1,253.96
Total	187.70	875.66	711.07	692.72	2,467.15
Number of Bulk Items in Samples	Fall	Winter	Spring	Summer	Annual
Suspected Illegal Residential Waste	6	20	7	21	54
Suspected Illegal Commercial Waste	4	19	15	13	51
Total	10	39	22	34	105
Percentage of Bulk Items in Samples	Fall	Winter	Spring	Summer	Annual
Suspected Illegal Residential Waste	60.00\%	51.28\%	31.82\%	61.76\%	51.43\%
Suspected Illegal Commercial Waste	40.00\%	48.72\%	68.18\%	38.24\%	48.57\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Number of Samples	Fall	Winter	Spring	Summer	Annual
Samples with Illegal Residential Waste Only	26	10	8	21	65
Samples with Illegal Commercial Waste Only	2	2	8	2	14
Samples with Illegal Residential and Commercial Waste	17	37	17	27	98
Samples with No Illegal Residential or Commercial Waste	5	1	17	0	23
Total	50	50	50	50	200
Percent of Samples	Fall	Winter	Spring	Summer	Annual
Samples with Illegal Residential Waste Only	52.00\%	20.00\%	16.00\%	42.00\%	32.50\%
Samples with Illegal Commercial Waste Only	4.00\%	4.00\%	16.00\%	4.00\%	7.00\%
Samples with Illegal Residential and Commercial Waste	34.00\%	74.00\%	34.00\%	54.00\%	49.00\%
Samples with No Illegal Residential or Commercial Waste	10.00\%	2.00\%	34.00\%	0.00\%	11.50\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

5.5 Street Basket Container Sorts

The same subsorts and counts for drink containers were used for this waste stream that were used for the residential refuse. The results of the street basket subsorts and counts are shown in Table 1-135 and Table 1-136. More information about other drink container research and data can be found in this section in Volume 1, Section 2.

Table 1-135
Citywide Drink Container Counts and Sorts, Street Basket

	Percent of Street Basket Stream					Count in Street Basket Stream ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Deposit Type										
Deposit										
PET Bottles	0.40\%	0.40\%	0.44\%	0.43\%	0.42\%	430	459	583	590	2,062
Clear Container Glass	0.93\%	0.80\%	0.69\%	1.38\%	0.96\%	159	148	124	255	686
Green Container Glass	0.59\%	0.61\%	0.67\%	0.52\%	0.60\%	132	125	167	122	546
Brown Container Glass	0.87\%	0.59\%	0.53\%	0.83\%	0.71\%	182	122	128	178	610
Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	0	0	1	2
Aluminum Cans	0.37\%	0.31\%	0.43\%	0.46\%	0.40\%	961	875	1,260	1,293	4,389
Deposit Total	3.16\%	2.71\%	2.75\%	3.62\%	3.08\%	1,865	1,729	2,262	2,439	8,295
Potential Deposit										
PET Bottles	1.30\%	1.07\%	1.76\%	2.18\%	1.61\%	1,576	1,395	2,680	3,295	8,946
HDPE Bottles: Natural	0.06\%	0.09\%	0.07\%	0.15\%	0.09\%	97	108	120	248	573
HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	8	1	0	3	12
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1	1	1	1	4
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	1	12	7	1	21
Clear Container Glass	2.03\%	1.56\%	2.61\%	3.09\%	2.37\%	375	307	533	643	1,858
Green Container Glass	0.09\%	0.02\%	0.04\%	0.02\%	0.04\%	12	5	8	5	30
Brown Container Glass	0.00\%	0.02\%	0.00\%	0.00\%	0.01\%	0	9	1	1	11
Other Container Glass	0.00\%	0.03\%	0.00\%	0.00\%	0.01\%	0	5	0	0	5
Aluminum Cans	0.04\%	0.13\%	0.10\%	0.15\%	0.10\%	86	290	205	350	931
Potential Deposit Total	3.52\%	2.92\%	4.58\%	5.60\%	4.23\%	2,156	2,133	3,555	4,547	12,391
Non-Deposit										
PET Bottles	0.20\%	0.26\%	0.28\%	0.28\%	0.25\%	248	285	344	357	1,234
HDPE Bottles: Natural	0.19\%	0.19\%	0.14\%	0.13\%	0.16\%	154	160	170	139	623
HDPE Bottles: Colored	0.21\%	0.18\%	0.14\%	0.17\%	0.18\%	170	140	111	119	540
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	5	8	4	4	21
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	5	2	0	2	9
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	5	1	2	14
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.04\%	0.04\%	0.04\%	0.04\%	53	67	73	51	244
Clear Container Glass	1.26\%	1.20\%	0.82\%	1.16\%	1.10\%	226	207	168	224	825
Green Container Glass	0.34\%	0.65\%	0.37\%	0.27\%	0.39\%	34	58	32	33	157
Brown Container Glass	0.03\%	0.06\%	0.03\%	0.04\%	0.04\%	8	15	7	15	45
Other Container Glass	0.02\%	0.04\%	0.01\%	0.00\%	0.02\%	2	3	3	0	8
Aluminum Cans	0.01\%	0.02\%	0.01\%	0.01\%	0.01\%	13	13	26	29	81
Non-Deposit Total	2.30\%	2.65\%	1.84\%	2.11\%	2.20\%	924	963	939	975	3,801

Table 1-135
Citywide Drink Container Counts and Sorts, Street Basket (continued)

	Percent of Street Basket Stream					Count in Street Basket Stream ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
By Container Size										
Non-Beverage										
PET Bottles	0.12\%	0.10\%	0.08\%	0.07\%	0.09\%	96	89	85	76	346
HDPE Bottles: Natural	0.12\%	0.10\%	0.02\%	0.04\%	0.07\%	23	44	20	37	124
HDPE Bottles: Colored	0.19\%	0.16\%	0.12\%	0.17\%	0.16\%	153	108	93	105	459
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	5	8	4	4	21
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	1	0	1	6
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	4	3	1	2	10
\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.02\%	0.01\%	0.03\%	0.02\%	38	38	22	30	128
Non-Beverage Total	0.47\%	0.40\%	0.24\%	0.32\%	0.35\%	323	291	225	255	1,094
Single Serve										
PET Bottles	1.80\%	1.21\%	2.00\%	2.31\%	1.87\%	1,956	1,637	3,101	3,733	10,427
HDPE Bottles: Natural	0.06\%	0.06\%	0.11\%	0.12\%	0.09\%	133	121	203	267	724
HDPE Bottles: Colored	0.01\%	0.01\%	0.01\%	0.01\%	0.01\%	23	19	17	17	76
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	2	1	1	2	6
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.02\%	0.03\%	0.01\%	0.02\%	16	46	56	22	140
Single Serve Total	1.88\%	1.31\%	2.15\%	2.45\%	1.98\%	2,130	1,825	3,378	4,041	11,374
Multi Serve										
PET Bottles	0.36\%	0.32\%	0.36\%	0.46\%	0.38\%	282	251	365	435	1,333
HDPE Bottles: Natural	0.12\%	0.14\%	0.08\%	0.12\%	0.12\%	95	98	67	84	344
HDPE Bottles: Colored	0.01\%	0.01\%	0.00\%	0.00\%	0.01\%	5	7	4	0	16
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	0	0	0
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	1	0	0	1
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0	0	1	0	1
Multi Serve Total	0.49\%	0.48\%	0.45\%	0.58\%	0.50\%	382	357	437	519	1,695

Table 1-135
Citywide Drink Container Counts and Sorts, Street Basket (continued)

Percent of Street Basket Stream						Count in Street Basket Stream ${ }^{(1)}$				
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual	Fall	Winter	Spring	Summer	Annual
Total ${ }^{(2)}$										
PET Bottles	1.90\%	1.73\%	2.47\%	2.89\%	2.28\%	2,254	2,139	3,607	4,242	12,242
HDPE Bottles: Natural	0.25\%	0.28\%	0.21\%	0.28\%	0.25\%	251	268	290	387	1,196
HDPE Bottles: Colored	0.22\%	0.18\%	0.14\%	0.18\%	0.18\%	178	141	111	122	552
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	5	8	4	4	21
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	3	1	3	13
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	6	5	1	2	14
\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.05\%	0.04\%	0.04\%	54	79	80	52	265
Clear Container Glass	4.22\%	3.56\%	4.11\%	5.62\%	4.43\%	760	662	825	1,122	3,369
Green Container Glass	1.01\%	1.28\%	1.08\%	0.81\%	1.03\%	178	188	207	160	733
Brown Container Glass	0.90\%	0.67\%	0.57\%	0.87\%	0.75\%	190	146	136	194	666
Other Container Glass	0.03\%	0.07\%	0.01\%	0.00\%	0.02\%	3	8	3	1	15
Aluminum Cans	0.42\%	0.45\%	0.53\%	0.62\%	0.51\%	1,060	1,178	1,491	1,672	5,401
GRAND TOTAL	8.97\%	8.28\%	9.18\%	11.32\%	9.51\%	4,945	4,825	6,756	7,961	24,487

(1) Values shown are the total number of containers observed in all street basket samples sorted.
(2) The sum of the deposit type totals and the sum of the container size totals may vary due to differences in tare weights, inconsistencies in scale weights, or human error. None of the differences observed in the study materially effect the statistical calculations or conclusions.

Table 1-136
Citywide Drink Container Sorts, Out of All Drink Containers

Percent of All Drink Containers in Street Basket					
Material Category: Subcategory	Fall	Winter	Spring	Summer	Annual
Deposit					
PET Bottles	4.48\%	4.82\%	4.76\%	3.80\%	4.40\%
Clear Container Glass	10.34\%	9.71\%	7.47\%	12.17\%	10.07\%
Green Container Glass	6.54\%	7.38\%	7.31\%	4.60\%	6.27\%
Brown Container Glass	9.69\%	7.09\%	5.78\%	7.31\%	7.44\%
Other Container Glass	0.05\%	0.00\%	0.00\%	0.04\%	0.03\%
Aluminum Cans	4.10\%	3.73\%	4.68\%	4.03\%	4.16\%
Deposit Total	35.21\%	32.73\%	30.00\%	31.95\%	32.36\%
Potential Deposit					
PET Bottles	14.43\%	12.97\%	19.14\%	19.22\%	16.91\%
HDPE Bottles: Natural	0.64\%	1.09\%	0.78\%	1.33\%	0.98\%
HDPE Bottles: Colored	0.05\%	0.03\%	0.00\%	0.02\%	0.02\%
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Bottles: \#7 Other	0.01\%	0.08\%	0.07\%	0.00\%	0.04\%
Clear Container Glass	22.59\%	18.80\%	28.42\%	27.28\%	24.90\%
Green Container Glass	0.96\%	0.22\%	0.46\%	0.19\%	0.45\%
Brown Container Glass	0.00\%	0.21\%	0.04\%	0.03\%	0.06\%
Other Container Glass	0.00\%	0.31\%	0.00\%	0.00\%	0.06\%
Aluminum Cans	0.48\%	1.54\%	1.04\%	1.33\%	1.09\%
Potential Deposit Total	39.18\%	35.25\%	49.96\%	49.42\%	44.51\%
Non-Deposit					
PET Bottles	2.20\%	3.10\%	3.05\%	2.46\%	2.67\%
HDPE Bottles: Natural	2.14\%	2.32\%	1.52\%	1.16\%	1.70\%
HDPE Bottles: Colored	2.38\%	2.19\%	1.49\%	1.54\%	1.85\%
\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.14\%	0.04\%	0.05\%	0.06\%
\#3 Through \#7 Bottles: \#4 LDPE	0.03\%	0.01\%	0.00\%	0.01\%	0.01\%
\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.06\%	0.00\%	0.01\%	0.03\%
\#3 Through \#7 Bottles: \#7 Other	0.32\%	0.49\%	0.45\%	0.36\%	0.40\%
Clear Container Glass	14.06\%	14.48\%	8.91\%	10.22\%	11.58\%
Green Container Glass	3.75\%	7.80\%	4.02\%	2.37\%	4.13\%
Brown Container Glass	0.31\%	0.78\%	0.37\%	0.35\%	0.43\%
Other Container Glass	0.25\%	0.47\%	0.08\%	0.00\%	0.17\%
Aluminum Cans	0.08\%	0.18\%	0.11\%	0.11\%	0.12\%
Non-Deposit Total	25.61\%	32.02\%	20.04\%	18.63\%	23.13\%
Single Serve					
PET Bottles	75.90\%	67.98\%	76.96\%	76.30\%	75.12\%
HDPE Bottles: Natural	2.61\%	3.61\%	4.10\%	3.87\%	3.60\%
HDPE Bottles: Colored	0.48\%	0.46\%	0.33\%	0.34\%	0.39\%
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Bottles: \#4 LDPE	0.04\%	0.03\%	0.02\%	0.03\%	0.03\%
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.05\%	0.00\%	0.00\%	0.01\%
\#3 Through \#7 Bottles: \#7 Other	0.30\%	1.22\%	1.21\%	0.36\%	0.72\%
Single Serve Total	79.33\%	73.35\%	82.62\%	80.90\%	79.85\%
Multi Serve					
PET Bottles	15.10\%	18.11\%	13.93\%	15.13\%	15.24\%
HDPE Bottles: Natural	5.21\%	7.87\%	3.23\%	3.96\%	4.65\%
HDPE Bottles: Colored	0.36\%	0.59\%	0.17\%	0.00\%	0.22\%
\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.08\%	0.00\%	0.00\%	0.01\%
\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.05\%	0.00\%	0.01\%
Multi Serve Total	20.67\%	26.65\%	17.38\%	19.10\%	20.15\%

[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1

Section 6: Bulk and Durable Results

[This page intentionally left blank.]

Section 6 Bulk and Durables Results

6.1 Introduction

The sampling and sorting protocols of the WCS provided for the separate weighing, material categorization, and description of Bulk items, defined as items too large to fit into a 96 gallon container. The majority of such Bulk items are "durables" (such as appliances, pieces of furniture, or other household items) and other waste items such as packaging, unfinished materials, and non-putrescible waste

In addition, because the sort categories of the WCS were designed on the basis of both material and product characteristics, materials that did not qualify as "Bulk" could also be identified as durable or non-durable. For example, plastic containers, bags, and other packaging were nondurable, while "other plastics materials" were largely comprised of durable items like toys, housewares, office supplies, or hardware.

The results of the WCS therefore enable some comment on what fraction of the waste stream consists of durable goods. It should be noted that this assessment does not take into account the following additional dimensions of durables in waste:

- The extent of pre-collection scavenging;
- The reusability, reparability, or suitability of durables for spare parts.

6.2 Bulk Items

The bulk items consisted of any items that were too large to fit into the 96 -gallon containers used to collect samples. They included items such as bicycles, water heaters, and furniture that are collected with the regular collection of refuse and MGP. Special care was taken in developing the sampling and sorting protocols to account for bulk items without having them skew the results of the study.

Because of the size of the sampling units of refuse and MGP, the presence of one or more bulk items in the load had the potential to dominate certain samples. To account for this, Sample Managers could estimate the percentage of a bulk item in a sample and record this on the Sample Management Form. A full discussion of the protocol is included in Volume 2 of the Report.

In sorting bulk items in each sample, the Crew Chief recorded the type of bulk item and its weight. Therefore, a list of bulk items was developed for refuse, MGP, and waste. This research was not conducted on Paper because very few bulk items are found in the Paper stream. The Street Basket Waste sorting protocol did include the weighing and counting of bulk items and the results of this research is presented in Section 5 of this volume.

Tables 1-137 through 1-142 present the summary of residential bulk items from the PWCS and each season of the WCS. The data is organized into three sections (from left to right):

- The weight (in pounds) of bulk items in each of the three streams that were examined for bulk - Refuse, MGP, and Waste. (There is virtually no bulk waste in the Paper stream),
- That weight as a percentage of the total weight of all of that particular material estimated to exist in that stream.
- The same weight as a percentage of the weight of all materials in that stream.

For example, Table 1-137 shows that, in the PWCS, there were 608.8 lbs of Other Ferrous in the MGP stream and 32.10 lbs of Other Ferrous in the Refuse Stream for a total of 640.90 in the Waste stream. Bulk items made up 29.88 percent of Other Ferrous in the MGP stream, 6.74 percent in the Refuse stream, and 25.47 percent of the Waste stream. Finally, 6.04 percent of the MGP stream was comprised of Other Ferrous bulk items, 0.07 percent of the Refuse stream was comprised of Other Ferrous bulk items, and 0.57 percent of the Waste stream was comprised of Other Ferrous.

These tables are useful in comparing the impact of bulk items of various materials on the City's waste stream.

Table 1-137
Citywide Residential Bulk Item Summary, PWCS

	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
Material Category	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	15.60	0.00	15.60	2.49\%	0.00\%	0.51\%	0.03\%	0.00\%	0.02\%
HDPE Bottles: Colored	30.00	0.00	30.00	14.30\%	0.00\%	5.78\%	0.06\%	0.00\%	0.03\%
Other Film	10.00	0.00	10.00	0.41\%	0.00\%	0.36\%	0.02\%	0.00\%	0.02\%
Other Plastics Materials	32.80	0.00	32.80	4.19\%	0.00\%	2.66\%	0.07\%	0.00\%	0.04\%
Other Ferrous	32.10	608.80	640.90	6.74\%	29.88\%	25.47\%	0.07\%	6.04\%	0.57\%
Mixed Metals	59.40	32.00	91.40	23.55\%	31.87\%	25.20\%	0.13\%	0.29\%	0.14\%
Prunings	34.40	0.00	34.40	2.44\%	0.00\%	2.43\%	0.07\%	0.00\%	0.06\%
Stumps/Limbs	69.70	0.00	69.70	22.36\%	0.00\%	22.36\%	0.15\%	0.00\%	0.13\%
Non-C\&D Untreated Wood	113.90	0.00	113.90	63.45\%	0.00\%	60.67\%	0.24\%	0.00\%	0.19\%
Non-Clothing Textiles	190.85	0.00	190.85	19.37\%	0.00\%	18.64\%	0.40\%	0.00\%	0.33\%
Carpet/Upholstery	62.90	0.00	62.90	10.92\%	0.00\%	10.89\%	0.14\%	0.00\%	0.11\%
Rubber Products	0.00	8.00	8.00	0.00\%	46.07\%	4.80\%	0.00\%	0.08\%	0.01\%
Other Leather Products	13.70	0.00	13.70	57.08\%	0.00\%	52.14\%	0.03\%	0.00\%	0.02\%
Miscellaneous Organics	4.30	0.00	4.30	0.22\%	0.00\%	0.22\%	0.01\%	0.00\%	0.01\%
Appliances: Plastic	13.50	546.60	560.10	10.74\%	59.67\%	53.33\%	0.03\%	1.25\%	0.20\%
Other Computer Equipment	21.10	0.00	21.10	23.35\%	0.00\%	10.97\%	0.05\%	0.00\%	0.02\%
Untreated Dimension Lumber, Pallets, Crates	58.10	0.00	58.10	28.25\%	0.00\%	25.58\%	0.13\%	0.00\%	0.10\%
Treated/Contaminated Wood	81.20	0.00	81.20	5.86\%	0.00\%	5.81\%	0.18\%	0.00\%	0.14\%
Other Construction Debris	94.70	0.00	94.70	10.44\%	0.00\%	10.29\%	0.19\%	0.00\%	0.16\%
Miscellaneous Inorganics	2.80	0.00	2.80	2.49\%	0.00\%	2.49\%	0.01\%	0.00\%	0.01\%
Total	941.05	1,195.40	2,136.45				2.01\%	7.65\%	2.31\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 2.49% of all Plain OCC/Kraft Paper is bulk Plain

OCC/Kraft Paper. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table 1-138
Citywide Residential Bulk Item Summary, Fall 2004, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	0.00	0.00	35.40	0.00\%	0.00\%	1.21\%	0.00\%	0.00\%	0.04\%
HDPE Bottles: Natural	17.50	0.00	17.50	6.68\%	0.00\%	1.31\%	0.02\%	0.00\%	0.01\%
Other Plastics Materials	200.70	15.35	216.05	12.72\%	1.15\%	7.37\%	0.25\%	0.04\%	0.14\%
Other Non-Ferrous	0.00	48.80	48.80	0.00\%	19.50\%	14.39\%	0.00\%	0.11\%	0.02\%
Other Ferrous	167.69	1,690.55	1,858.24	17.11\%	27.51\%	26.07\%	0.18\%	4.32\%	0.51\%
Mixed Metals	0.00	37.30	37.30	0.00\%	3.23\%	2.40\%	0.00\%	0.09\%	0.01\%
Prunings	89.40	0.00	89.40	8.94\%	0.00\%	8.88\%	0.11\%	0.00\%	0.09\%
Stumps/Limbs	8.90	0.00	8.90	8.69\%	0.00\%	8.68\%	0.01\%	0.00\%	0.01\%
Wood Furniture/Furniture Pieces	193.51	0.00	193.51	20.31\%	0.00\%	19.10\%	0.22\%	0.00\%	0.17\%
Non-C\&D Untreated Wood	9.40	0.00	9.40	18.60\%	0.00\%	15.92\%	0.01\%	0.00\%	0.01\%
Non-Clothing Textiles	20.20	0.00	20.20	1.60\%	0.00\%	1.50\%	0.02\%	0.00\%	0.02\%
Carpet/Upholstery	423.25	0.00	423.25	36.52\%	0.00\%	36.48\%	0.47\%	0.00\%	0.38\%
Upholstered or Other Organic-Type Furniture	512.40	0.00	512.40	74.12\%	0.00\%	71.10\%	0.59\%	0.00\%	0.46\%
Appliances: Ferrous	27.74	2,372.80	2,400.54	22.22\%	54.10\%	53.22\%	0.04\%	5.04\%	0.41\%
Appliances: Plastic	0.00	79.45	79.45	0.00\%	14.49\%	11.23\%	0.00\%	0.19\%	0.03\%
Audio/Visual Equipment: Other	18.20	0.00	18.20	9.31\%	0.00\%	6.56\%	0.02\%	0.00\%	0.01\%
Computer Monitors	21.00	0.00	21.00	46.53\%	0.00\%	43.77\%	0.02\%	0.00\%	0.01\%
Untreated Dimension Lumber, Pallets, Crates	6.10	0.00	6.10	2.06\%	0.00\%	2.02\%	0.01\%	0.00\%	0.01\%
Treated/Contaminated Wood	61.67	0.00	61.67	4.09\%	0.00\%	3.91\%	0.07\%	0.00\%	0.06\%
Other Construction Debris	35.35	105.00	140.35	2.61\%	74.08\%	9.34\%	0.04\%	0.19\%	0.13\%
Total	1,813.01	4,349.25	6,197.66				2.08\%	9.99\%	2.53\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 6.68% of all HDPE Bottles: Natural is bulk HDPE Bottles: Natural. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table 1-139
Citywide Residential Bulk Item Summary, Winter 2005, WCS

	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
Material Category	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	0.00	0.00	330.60	0.00\%	0.00\%	11.13\%	0.00\%	0.00\%	0.30\%
Other PVC	2.20	0.00	2.20	33.08\%	0.00\%	16.73\%	0.00\%	0.00\%	0.00\%
Other Plastics Materials	98.70	29.45	128.15	6.18\%	2.17\%	4.29\%	0.12\%	0.07\%	0.08\%
Other Aluminum	6.60	20.50	27.10	28.45\%	56.79\%	45.56\%	0.01\%	0.04\%	0.01\%
Other Non-Ferrous	75.20	257.95	333.15	43.39\%	65.13\%	58.32\%	0.09\%	0.60\%	0.14\%
Other Ferrous	495.10	1,929.25	2,424.35	38.61\%	30.73\%	32.04\%	0.56\%	4.26\%	0.70\%
Prunings	202.65	0.00	202.65	28.66\%	0.00\%	28.65\%	0.19\%	0.00\%	0.16\%
Stumps/Limbs	112.05	0.00	112.05	84.28\%	0.00\%	84.28\%	0.15\%	0.00\%	0.12\%
Wood Furniture/Furniture Pieces	560.36	0.00	560.36	36.63\%	0.00\%	35.34\%	0.59\%	0.00\%	0.47\%
Non-C\&D Untreated Wood	73.40	0.00	73.40	27.31\%	0.00\%	23.27\%	0.08\%	0.00\%	0.06\%
Non-Clothing Textiles	79.06	0.00	79.06	5.15\%	0.00\%	4.99\%	0.08\%	0.00\%	0.07\%
Carpet/Upholstery	1,132.78	0.00	1,132.78	69.55\%	0.00\%	69.49\%	1.23\%	0.00\%	1.00\%
Rubber Products	17.80	0.00	17.80	7.84\%	0.00\%	6.63\%	0.02\%	0.00\%	0.01\%
Upholstered or Other Organic-Type Furniture	1,476.65	0.00	1,476.65	89.62\%	0.00\%	88.64\%	1.62\%	0.00\%	1.30\%
Miscellaneous Organics	23.20	0.00	23.20	2.92\%	0.00\%	2.87\%	0.02\%	0.00\%	0.02\%
Appliances: Ferrous	65.60	3,532.04	3,597.64	22.44\%	94.29\%	89.09\%	0.07\%	6.13\%	0.64\%
Appliances: Plastic	5.20	20.40	25.60	3.89\%	7.17\%	6.12\%	0.01\%	0.05\%	0.01\%
Audio/Visual Equipment: Other	16.40	0.00	16.40	11.11\%	0.00\%	6.56\%	0.02\%	0.00\%	0.01\%
Televisions	160.80	0.00	160.80	83.60\%	0.00\%	82.31\%	0.21\%	0.00\%	0.17\%
Other Computer Equipment	18.70	0.00	18.70	20.71\%	0.00\%	4.81\%	0.01\%	0.00\%	0.00\%
Untreated Dimension Lumber, Pallets, Crates	157.90	0.00	157.90	39.99\%	0.00\%	39.81\%	0.17\%	0.00\%	0.14\%
Treated/Contaminated Wood	461.96	0.00	461.96	23.23\%	0.00\%	23.06\%	0.47\%	0.00\%	0.38\%
Other Construction Debris	86.45	114.80	201.25	6.35\%	71.97\%	13.18\%	0.08\%	0.14\%	0.15\%
Miscellaneous Inorganics	36.00	0.00	36.00	17.11\%	0.00\%	14.17\%	0.04\%	0.00\%	0.03\%
Total	5,364.76	5,904.39	11,599.75				5.86\%	11.28\%	5.97\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 33.08% of all Other PVC is bulk Other PVC. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table 1-140
Citywide Residential Bulk Item Summary, Spring 2005, WCS

	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
Material Category	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	96.50	0.00	237.20	9.67\%	0.00\%	9.45\%	0.10\%	0.00\%	0.19\%
Other PVC	6.50	0.00	6.50	76.47\%	0.00\%	57.02\%	0.01\%	0.00\%	0.01\%
Other Plastics Materials	129.15	30.00	159.15	7.93\%	1.64\%	4.55\%	0.14\%	0.06\%	0.08\%
Other Aluminum	9.70	61.00	70.70	48.26\%	17.30\%	18.96\%	0.01\%	0.12\%	0.01\%
Other Non-Ferrous	74.50	0.00	74.50	48.39\%	0.00\%	15.37\%	0.06\%	0.00\%	0.02\%
Other Ferrous	368.15	701.00	1,069.15	34.23\%	11.31\%	14.70\%	0.40\%	1.40\%	0.27\%
Mixed Metals	29.70	0.00	29.70	7.23\%	0.00\%	1.31\%	0.03\%	0.00\%	0.01\%
Prunings	197.70	0.00	197.70	26.63\%	0.00\%	26.46\%	0.26\%	0.00\%	0.21\%
Stumps/Limbs	118.25	0.00	118.25	35.94\%	0.00\%	35.84\%	0.10\%	0.00\%	0.08\%
Wood Furniture/Furniture Pieces	396.50	0.00	396.50	46.59\%	0.00\%	44.84\%	0.45\%	0.00\%	0.36\%
Non-C\&D Untreated Wood	43.90	0.00	43.90	18.53\%	0.00\%	16.92\%	0.05\%	0.00\%	0.04\%
Non-Clothing Textiles	85.95	0.00	85.95	7.10\%	0.00\%	6.86\%	0.09\%	0.00\%	0.07\%
Clothing Textiles	10.20	0.00	10.20	0.36\%	0.00\%	0.35\%	0.01\%	0.00\%	0.01\%
Carpet/Upholstery	522.84	0.00	522.84	44.62\%	0.00\%	44.61\%	0.63\%	0.00\%	0.52\%
Rubber Products	34.30	0.00	34.30	11.21\%	0.00\%	9.17\%	0.05\%	0.00\%	0.03\%
Other Leather Products	41.70	0.00	41.70	29.96\%	0.00\%	29.22\%	0.05\%	0.00\%	0.04\%
Upholstered or Other Organic-Type Furniture	965.00	90.00	1,055.00	88.76\%	90.77\%	88.93\%	1.05\%	0.18\%	0.88\%
Miscellaneous Organics	29.30	0.00	29.30	3.23\%	0.00\%	3.12\%	0.03\%	0.00\%	0.02\%
Appliances: Ferrous	117.40	1,120.00	1,237.40	36.40\%	64.70\%	60.26\%	0.14\%	2.08\%	0.33\%
Appliances: Plastic	75.20	14.00	89.20	27.57\%	3.92\%	14.13\%	0.08\%	0.03\%	0.04\%
Audio/Visual Equipment: Other	26.30	0.00	26.30	14.38\%	0.00\%	8.92\%	0.04\%	0.00\%	0.02\%
Computer Monitors	22.20	0.00	22.20	69.27\%	0.00\%	24.30\%	0.02\%	0.00\%	0.01\%
Other Computer Equipment	82.10	0.00	82.10	65.08\%	0.00\%	22.44\%	0.05\%	0.00\%	0.02\%
Untreated Dimension Lumber, Pallets, Crates	670.60	0.00	670.60	56.40\%	0.00\%	55.57\%	0.68\%	0.00\%	0.56\%
Treated/Contaminated Wood	481.61	0.00	481.61	27.68\%	0.00\%	27.06\%	0.57\%	0.00\%	0.46\%
Gypsum Scrap	39.20	0.00	39.20	4.18\%	0.00\%	4.14\%	0.05\%	0.00\%	0.04\%
Other Construction Debris	61.20	31.00	92.20	3.91\%	31.78\%	5.46\%	0.07\%	0.06\%	0.08\%
Miscellaneous Inorganics	2.10	0.00	2.10	0.59\%	0.00\%	0.53\%	0.00\%	0.00\%	0.00\%
Total	4,737.75	2,047.00	6,925.45				5.23\%	3.93\%	4.43\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 9.67% of all Plain OCC/Kraft Paper is bulk Plain OCC/Kraft Paper. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table 1-141
Citywide Residential Bulk Item Summary, Summer 2005, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	0.00	0.00	105.30	0.00\%	0.00\%	4.28\%	0.00\%	0.00\%	0.08\%
Other PVC	12.80	0.00	12.80	57.17\%	0.00\%	19.60\%	0.02\%	0.00\%	0.01\%
Other Rigid Containers/Packaging	15.80	0.00	15.80	1.63\%	0.00\%	0.95\%	0.02\%	0.00\%	0.01\%
Other Plastics Materials	474.91	0.00	474.91	23.53\%	0.00\%	12.16\%	0.50\%	0.00\%	0.25\%
Other Non-Ferrous	14.80	34.11	48.91	12.15\%	7.66\%	8.62\%	0.01\%	0.07\%	0.01\%
Other Ferrous	679.71	727.70	1,407.41	48.78\%	14.75\%	22.23\%	0.65\%	1.41\%	0.40\%
Stumps/Limbs	122.00	0.00	122.00	69.26\%	0.00\%	68.16\%	0.12\%	0.00\%	0.10\%
Wood Furniture/Furniture Pieces	1,019.32	9.24	1,028.56	59.02\%	12.56\%	57.09\%	1.22\%	0.02\%	0.98\%
Non-C\&D Untreated Wood	195.30	0.00	195.30	69.02\%	0.00\%	64.11\%	0.18\%	0.00\%	0.14\%
Carpet/Upholstery	568.88	0.00	568.88	43.07\%	0.00\%	42.93\%	0.66\%	0.00\%	0.54\%
Rubber Products	86.68	0.00	86.68	27.22\%	0.00\%	20.95\%	0.09\%	0.00\%	0.06\%
Upholstered or Other Organic-Type Furniture	486.78	56.00	542.78	90.07\%	71.25\%	87.68\%	0.59\%	0.08\%	0.48\%
Appliances: Ferrous	483.70	1,068.29	1,551.99	81.21\%	51.08\%	57.76\%	0.56\%	1.73\%	0.47\%
Appliances: Plastic	111.04	4.88	115.92	36.66\%	1.24\%	16.65\%	0.12\%	0.01\%	0.05\%
Audio/Visual Equipment: Other	127.42	0.00	127.42	31.80\%	0.00\%	20.28\%	0.13\%	0.00\%	0.08\%
Computer Monitors	91.10	0.00	91.10	47.80\%	0.00\%	40.85\%	0.08\%	0.00\%	0.06\%
Televisions	135.64	0.00	135.64	65.94\%	0.00\%	65.94\%	0.15\%	0.00\%	0.13\%
Other Computer Equipment	246.37	13.74	260.11	67.74\%	5.60\%	42.70\%	0.30\%	0.03\%	0.17\%
Untreated Dimension Lumber, Pallets, Crates	496.51	0.00	496.51	65.70\%	0.00\%	65.45\%	0.65\%	0.00\%	0.54\%
Treated/Contaminated Wood	671.04	0.00	671.04	34.98\%	0.00\%	34.09\%	0.71\%	0.00\%	0.58\%
Other Construction Debris	56.82	21.75	78.57	3.30\%	22.01\%	4.32\%	0.06\%	0.05\%	0.07\%
Miscellaneous Inorganics	31.52	0.00	31.52	16.57\%	0.00\%	11.48\%	0.04\%	0.00\%	0.02\%
Fluorescent Tubes	32.80	0.00	32.80	97.33\%	0.00\%	96.19\%	0.02\%	0.00\%	0.02\%
Total	6,160.94	1,935.71	8,201.95				6.90\%	3.39\%	5.25\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 57.17% of all Other PVC is bulk Other PVC. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table 1-142
Citywide Residential Bulk Item Summary, Annual, WCS

	Total Bulk Weight (lbs)			$\%$ of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
Material Category	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	96.50	0.00	708.50	2.30\%	0.00\%	6.53\%	0.03\%	0.00\%	0.16\%
HDPE Bottles: Natural	17.50	0.00	17.50	1.89\%	0.00\%	0.27\%	0.01\%	0.00\%	0.00\%
Other PVC	21.50	0.00	21.50	44.40\%	0.00\%	18.65\%	0.01\%	0.00\%	0.00\%
Other Rigid Containers/Packaging	15.80	0.00	15.80	0.51\%	0.00\%	0.29\%	0.00\%	0.00\%	0.00\%
Other Plastics Materials	903.46	74.80	978.26	13.24\%	1.17\%	7.34\%	0.25\%	0.04\%	0.14\%
Other Aluminum	16.30	81.50	97.80	11.92\%	11.37\%	11.43\%	0.00\%	0.04\%	0.01\%
Other Non-Ferrous	164.50	340.86	505.36	30.69\%	23.96\%	25.75\%	0.04\%	0.19\%	0.04\%
Other Ferrous	1,710.65	5,048.50	6,759.15	36.16\%	21.44\%	23.88\%	0.45\%	2.75\%	0.46\%
Mixed Metals	29.70	37.30	67.00	1.64\%	0.60\%	0.83\%	0.01\%	0.02\%	0.01\%
Prunings	489.75	0.00	489.75	14.96\%	0.00\%	14.88\%	0.14\%	0.00\%	0.11\%
Stumps/Limbs	361.20	0.00	361.20	48.78\%	0.00\%	48.52\%	0.09\%	0.00\%	0.08\%
Wood Furniture/Furniture Pieces	2,169.69	9.24	2,178.93	42.88\%	4.19\%	41.23\%	0.61\%	0.01\%	0.49\%
Non-C\&D Untreated Wood	322.00	0.00	322.00	38.37\%	0.00\%	34.31\%	0.08\%	0.00\%	0.06\%
Non-Clothing Textiles	185.21	0.00	185.21	3.18\%	0.00\%	3.06\%	0.05\%	0.00\%	0.04\%
Clothing Textiles	10.20	0.00	10.20	0.10\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%
Carpet/Upholstery	2,647.75	0.00	2,647.75	50.15\%	0.00\%	50.08\%	0.75\%	0.00\%	0.61\%
Rubber Products	138.78	0.00	138.78	12.56\%	0.00\%	10.39\%	0.04\%	0.00\%	0.03\%
Other Leather Products	41.70	0.00	41.70	10.74\%	0.00\%	10.25\%	0.01\%	0.00\%	0.01\%
Upholstered or Other Organic-Type Furniture	3,440.83	146.00	3,586.83	86.75\%	64.81\%	85.57\%	0.95\%	0.07\%	0.77\%
Miscellaneous Organics	52.50	0.00	52.50	1.55\%	0.00\%	1.45\%	0.01\%	0.00\%	0.01\%
Appliances: Ferrous	694.44	8,093.13	8,787.57	52.00\%	67.70\%	66.13\%	0.20\%	3.75\%	0.47\%
Appliances: Plastic	191.44	118.73	310.17	22.24\%	7.50\%	12.64\%	0.05\%	0.07\%	0.03\%
Audio/Visual Equipment: Other	188.32	0.00	188.32	20.32\%	0.00\%	12.98\%	0.06\%	0.00\%	0.03\%
Computer Monitors	134.30	0.00	134.30	44.06\%	0.00\%	29.12\%	0.03\%	0.00\%	0.02\%
Televisions	296.44	0.00	296.44	61.79\%	0.00\%	59.75\%	0.09\%	0.00\%	0.07\%
Other Computer Equipment	347.17	13.74	360.91	45.39\%	1.46\%	21.14\%	0.09\%	0.01\%	0.04\%
Untreated Dimension Lumber, Pallets, Crates	1,331.11	0.00	1,331.11	50.50\%	0.00\%	49.96\%	0.38\%	0.00\%	0.31\%
Treated/Contaminated Wood	1,676.28	0.00	1,676.28	23.43\%	0.00\%	22.87\%	0.46\%	0.00\%	0.37\%
Gypsum Scrap	39.20	0.00	39.20	1.05\%	0.00\%	1.04\%	0.01\%	0.00\%	0.01\%
Other Construction Debris	239.82	272.55	512.37	4.00\%	54.78\%	7.84\%	0.07\%	0.11\%	0.11\%
Miscellaneous Inorganics	69.62	0.00	69.62	7.88\%	0.00\%	6.53\%	0.02\%	0.00\%	0.01\%
Fluorescent Tubes	32.80	0.00	32.80	93.31\%	0.00\%	89.54\%	0.01\%	0.00\%	0.00\%
Total	18,076.46	14,236.35	32,924.81				5.01\%	7.05\%	4.53\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 2.30% of all Plain OCC/Kraft Paper is bulk Plain OCC/Kraft Paper. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

A description, including material type, and weight of each bulk item was also recorded during the PWCS and WCS, along with the stream in which the item was found and, in the WCS, the Density/Income strata from which it came. Tables 1-143 through 1-147 present the list of bulk items found in the PWCS and each season of the WCS. These detailed tables are helpful in understanding the types of bulk items disposed and recycled each season.

Table 1-143
Bulk Item List by Material Category, PWCS

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
OCC	15.60	Plain OCC/Kraft Paper	Refuse	Citywide
HDPE Colored Container	7.40	HDPE Colored Bottles	Refuse	Citywide
HDPE Container	22.60	HDPE Colored Bottles	Refuse	Citywide
Film Plastic - TARP	10.00	Other Film	Refuse	Citywide
Child Car Seat	9.40	Other Plastics Materials	Refuse	Citywide
Plastic Broom Handle	9.10	Other Plastics Materials	Refuse	Citywide
Plastic Broom/Mop Handles	7.00	Other Plastics Materials	Refuse	Citywide
Plastic Fan	3.70	Other Plastics Materials	Refuse	Citywide
Vacuum Cleaner Part - Plastic	3.60	Other Plastics Materials	Refuse	Citywide
Baby Stroller - Metal	11.10	Other Ferrous	Refuse	Citywide
Metal Bed Frame	4.00	Other Ferrous	Refuse	Citywide
Metal Chair - Ferrous	6.00	Other Ferrous	Refuse	Citywide
Steel Hand-Cart	11.00	Other Ferrous	Refuse	Citywide
2 Metal Bed Frames	20.00	Other Ferrous	MGP	Citywide
Child's Bicycle	28.00	Other Ferrous	MGP	Citywide
Freezer Door (Part)	38.00	Other Ferrous	MGP	Citywide
Metal + Plastic Chair	16.00	Other Ferrous	MGP	Citywide
Metal Appliance Cover	5.00	Other Ferrous	MGP	Citywide
Metal Baby Stroller	22.00	Other Ferrous	MGP	Citywide
Metal Bed Frame	85.70	Other Ferrous	MGP	Citywide
Metal Cabinet	63.80	Other Ferrous	MGP	Citywide
Metal Cart, Plastic Wheels	9.00	Other Ferrous	MGP	Citywide
Metal Ceiling Fan - Parts	14.00	Other Ferrous	MGP	Citywide
Metal Chair	25.30	Other Ferrous	MGP	Citywide
Metal Chair Piece	9.00	Other Ferrous	MGP	Citywide
Metal Container	22.00	Other Ferrous	MGP	Citywide
Metal Curtain Rod	8.00	Other Ferrous	MGP	Citywide
Metal File Drawer	15.00	Other Ferrous	MGP	Citywide
Metal Folding Chair	10.00	Other Ferrous	MGP	Citywide
Metal Frame	60.50	Other Ferrous	MGP	Citywide
Metal Office Chair	20.00	Other Ferrous	MGP	Citywide
Metal Pan	5.50	Other Ferrous	MGP	Citywide
Metal Pipe	6.00	Other Ferrous	MGP	Citywide
Metal Pipes	22.00	Other Ferrous	MGP	Citywide
Metal Range Hood	10.00	Other Ferrous	MGP	Citywide
Metal Shelf	12.00	Other Ferrous	MGP	Citywide
Metal Stove Top	28.00	Other Ferrous	MGP	Citywide
Refrigerator Door	32.00	Other Ferrous	MGP	Citywide
Steel Pipes	22.00	Other Ferrous	MGP	Citywide

Table 1-143
Bulk Item List by Material Category, PWCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Baby Stroller	19.00	Mixed Metals	Refuse	Citywide
Lawn Mower	10.10	Mixed Metals	Refuse	Citywide
Radio Speaker	18.30	Mixed Metals	Refuse	Citywide
Tubular Metal Chair	12.00	Mixed Metals	Refuse	Citywide
Metal Bar	8.00	Mixed Metals	MGP	Citywide
Metal Bars	15.00	Mixed Metals	MGP	Citywide
Metal Frame	9.00	Mixed Metals	MGP	Citywide
Prunings	23.00	Prunings	Refuse	Citywide
Tree Cuttings	11.40	Prunings	Refuse	Citywide
Tree Branches	30.30	Stumps/Limbs	Refuse	Citywide
Tree limb	25.70	Stumps/Limbs	Refuse	Citywide
Tree Stumps	13.70	Stumps/Limbs	Refuse	Citywide
Wood, Non C\&D	113.90	Non-C\&D, Untreated Wood	Refuse	Citywide
Cloth Covered Sofa Seat Pads (foam core)	8.90	Non-Clothing Textiles	Refuse	Citywide
Foam Couch Cushion	5.60	Non-Clothing Textiles	Refuse	Citywide
Mattress	137.85	Non-Clothing Textiles	Refuse	Citywide
Spring Mattress (cloth covered)	38.50	Non-Clothing Textiles	Refuse	Citywide
Carpet	62.90	Carpet/Upholstery	Refuse	Citywide
Bicycle Wheels	8.00	Rubber Products	MGP	Citywide
Leather Suitcase	13.70	Other Leather Products	Refuse	Citywide
Wood Paneling (non C\&D)	4.30	Miscellaneous Organics	Refuse	Citywide
Vacuum Cleaner	13.50	Small Appliances	Refuse	Citywide
Air Conditioner	174.00	Small Appliances	MGP	Citywide
Canister Vacuum - Plastic + Metal	12.00	Small Appliances	MGP	Citywide
Dishwasher or Similar Appliance	71.00	Small Appliances	MGP	Citywide
Electric Fan (15")	8.00	Small Appliances	MGP	Citywide
Heater	14.00	Small Appliances	MGP	Citywide
Microwave	26.00	Small Appliances	MGP	Citywide
Microwave Oven	47.50	Small Appliances	MGP	Citywide
Plastic Vacuum Cleaner	10.00	Small Appliances	MGP	Citywide
Plastic Vacuum Cleaner Bottom	8.00	Small Appliances	MGP	Citywide
Stove	96.10	Small Appliances	MGP	Citywide
Washing Machine (part)	80.00	Small Appliances	MGP	Citywide
Radio	13.65	Audio/Visual Equipment: Other	Refuse	Citywide
VCR	8.50	Audio/Visual Equipment: Other	Refuse	Citywide
Computer	21.10	Other Computer Equip.	Refuse	Citywide
C\&D - Wood	11.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	Citywide
C\&D Wood	47.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Citywide
C\&D Wood	9.80	Treated/Contaminated Wood	Refuse	Citywide
C\&D Wood - Treated	18.00	Treated/Contaminated Wood	Refuse	Citywide
Contaminated Wood	20.00	Treated/Contaminated Wood	Refuse	Citywide
Treated Wood - C\&D	33.40	Treated/Contaminated Wood	Refuse	Citywide

Table 1-143
Bulk Item List by Material Category, PWCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Fiberglass Insulation	11.00	Fiberglass Insulation	Cefuse	Citywide
C\&D Wood	19.20	Other C\&D Debris	Citywide	
Plywood	43.00	Other C\&D Debris	Refuse	Citywide
Wood - C\&D	17.50	Other C\&D Debris	Refuse	Citywide
Wood C\&D	4.00	Other C\&D Debris	Refuse	Citywide
Foam Pad (egg type)	2.80	Misc. Inorganics	Refuse	Citywide

Table 1-144
Bulk Item List by Material Category, Fall 2004, WCS

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Bundle Of Cardboard	16.30	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Large Cardboard Box	19.10	Plain OCC/Kraft Paper	Paper	Medium Density / Low Income
25 Gallon Plastic Drum \#2 Plastic	17.50	HDPE Bottles: Natural	Refuse	High Density / High Income
Car Child Seat 60\% Plastic 30\% Foam \& Fabric	9.90	Other Plastics Materials	Refuse	High Density / Medium Income
Mostly Plastic Wheelbarrow With Bits Of Metal	16.00	Other Plastics Materials	Refuse	Low Density / High Income
Plastic Crate	2.05	Other Plastics Materials	Refuse	Medium Density / Medium Income
Plastic Crates	12.20	Other Plastics Materials	Refuse	Medium Density / High Income
Plastic Inflatable Swimming Pool	73.15	Other Plastics Materials	Refuse	Low Density / High Income
Plastic Outdoor Chairs A Stack Of 4	19.40	Other Plastics Materials	Refuse	Low Density / High Income
Plastic Squares From A Little Tikes Toy	7.60	Other Plastics Materials	Refuse	High Density / Medium Income
Plastic Toy Hollow Mold-Maybe A Part Of A Seat	4.20	Other Plastics Materials	Refuse	Low Density / Medium Income
Shopping Cart	40.20	Other Plastics Materials	Refuse	Medium Density / Low Income
Stroller	6.00	Other Plastics Materials	Refuse	Low Density / High Income
Vinyl Suitcase	10.00	Other Plastics Materials	Refuse	Medium Density / Medium Income
Plastic	5.90	Other Plastics Materials	MGP	Medium Density / Low Income
Plastic Baby Carriage	9.45	Other Plastics Materials	MGP	High Density / Low Income
Metal Satellite Dish	20.50	Other Non-Ferrous	MGP	High Density / Low Income
Plastic Covered Metal Ladder	28.30	Other Non-Ferrous	MGP	Medium Density / High Income
50\% - Tricycle: 60\% Plastic, 40\% Metal	3.75	Other Ferrous	Refuse	Medium Density / Low Income
Baby Stroller-Metal Frame, Plastic Wheels, Fabric	5.90	Other Ferrous	Refuse	High Density / Low Income
Box Spring	29.40	Other Ferrous	Refuse	High Density / Low Income
Box Spring	38.00	Other Ferrous	Refuse	Medium Density / High Income
Box Spring	40.20	Other Ferrous	Refuse	Medium Density / Low Income
Desk Chair Like In Elementary School, Metal Legs/Plastic	14.70	Other Ferrous	Refuse	High Density / Low Income
Metal Beams	17.40	Other Ferrous	Refuse	Medium Density / Low Income
Metal Frame Ironing Board With Foam Cover	8.64	Other Ferrous	Refuse	Medium Density / High Income
Metal Poles	2.10	Other Ferrous	Refuse	Low Density / High Income
Stainless Sink Basin	7.60	Other Ferrous	Refuse	High Density / Low Income
2" D1 Metal Pipe, 10' Long	19.65	Other Ferrous	MGP	High Density / Low Income
Appliance Parts	51.40	Other Ferrous	MGP	Medium Density / Low Income
Appliances Body	30.05	Other Ferrous	MGP	Medium Density / Medium Income
Bed Frame	26.30	Other Ferrous	MGP	High Density / High Income
Bed Frame	34.00	Other Ferrous	MGP	Medium Density / Low Income
Bed Frame / Twin	16.00	Other Ferrous	MGP	Medium Density / Low Income
Bicycle	35.00	Other Ferrous	MGP	High Density / Low Income
Chain Link Fence Fabric	45.60	Other Ferrous	MGP	Medium Density / Low Income
Exercise Cycle	12.85	Other Ferrous	MGP	Medium Density / Low Income
Metal And Plastic Exercise Bike	50.80	Other Ferrous	MGP	Medium Density / High Income
Metal Bed Frame	66.20	Other Ferrous	MGP	High Density / Low Income
Metal Bed Frame	55.80	Other Ferrous	MGP	High Density / Medium Income
Metal Bed Frame	10.35	Other Ferrous	MGP	Low Density / Medium Income
Metal Bed Frame	60.05	Other Ferrous	MGP	Medium Density / High Income

Table 1-144
Bulk Item List by Material Category, Fall 2004, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Metal Bed Frame	35.05	Other Ferrous	MGP	Medium Density / Medium Income
Metal Bed Frame W/ Cross Braces And 4 Plastic Wheels	50.60	Other Ferrous	MGP	High Density / Low Income
Metal Bed Frames	10.60	Other Ferrous	MGP	High Density / Low Income
Metal Cabinet	40.70	Other Ferrous	MGP	High Density / Low Income
Metal Chair Frame	26.60	Other Ferrous	MGP	Medium Density / Medium Income
Metal Filing Cabinet	125.75	Other Ferrous	MGP	High Density / Low Income
Metal Folding Chair	11.90	Other Ferrous	MGP	Medium Density / Low Income
Metal Frame	17.90	Other Ferrous	MGP	Medium Density / Medium Income
Metal Framing	36.40	Other Ferrous	MGP	High Density / Medium Income
Metal Framing	16.00	Other Ferrous	MGP	Medium Density / Low Income
Metal Panel From Hot Water Heater	31.00	Other Ferrous	MGP	High Density / High Income
Metal Paneling	26.00	Other Ferrous	MGP	Low Density / Medium Income
Metal Pipe, 6" Diameter Approx 5-6' Long	30.65	Other Ferrous	MGP	High Density / Low Income
Metal Sink	31.30	Other Ferrous	MGP	High Density / Low Income
Metal Table Legs	10.70	Other Ferrous	MGP	Medium Density / Medium Income
Metal With Bench (Legs)	33.90	Other Ferrous	MGP	High Density / Low Income
Misc Metal	15.55	Other Ferrous	MGP	High Density / Low Income
Part Of Car Fender	11.40	Other Ferrous	MGP	Medium Density / Low Income
Part Of Stove	48.40	Other Ferrous	MGP	Medium Density / Low Income
Part Of Weight Bench	30.90	Other Ferrous	MGP	High Density / Low Income
Sheet Metal	150.90	Other Ferrous	MGP	High Density / Medium Income
Sheet Metal	62.00	Other Ferrous	MGP	Low Density / High Income
Shopping Cart	12.90	Other Ferrous	MGP	High Density / High Income
Steel Bed Frame	36.40	Other Ferrous	MGP	Medium Density / Medium Income
Steel Frame	18.00	Other Ferrous	MGP	High Density / Medium Income
Steel Frame	25.00	Other Ferrous	MGP	Medium Density / Medium Income
Steel Framing	9.10	Other Ferrous	MGP	High Density / High Income
Steel Framing	110.40	Other Ferrous	MGP	High Density / Low Income
Steel Framing	18.70	Other Ferrous	MGP	High Density / Medium Income
Steel Framing	64.80	Other Ferrous	MGP	Medium Density / Low Income
Steel Pipe	22.50	Other Ferrous	MGP	High Density / Low Income
Wt Machine Frame	4.50	Other Ferrous	MGP	Medium Density / Low Income
Bike With Tires 90\% Metal, 10\% Plastic And Other	22.10	Other Ferrous	Street Basket	N/A
Metal Frame Of A 2 Drawer File Cabinet	16.20	Other Ferrous	Street Basket	N/A
Office Chair, Plastic Frame, Cloth Cover \& Foam	42.40	Other Ferrous	Street Basket	N/A
Small Metal Bed-Frame With Wooden Slats	22.10	Other Ferrous	Street Basket	N/A
Air Conditioner Frame-Metal Only	15.50	Mixed Metals	MGP	Medium Density / Low Income
Misc Metal	21.80	Mixed Metals	MGP	High Density / Medium Income
Bundled Branches (Yard Waste)	89.40	Prunings	Refuse	Low Density / High Income
Tree Branches	8.90	Stumps/Limbs	Refuse	Low Density / Medium Income
50 \% Piece Of Wood From Bed	1.20	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Broken Mattress Mostly The Wooden Frame	20.20	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income

Table 1-144
Bulk Item List by Material Category, Fall 2004, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Broken Wood From Desk Pressboard	60.80	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Broken Wood Pieces From Furniture Or Wall	18.40	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Part Of Baby Pen (Wood Cardboard Composite)	6.30	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income
Single Seat Recliner, Wooden Frame--Cotton Cloth	38.20	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Varnished Wood Doors Like From A Bookcase	22.90	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Wood (Wood Furniture)	10.00	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Wooden Piece From Bed Frame, 4Ft Long	3.90	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Wooden Top Of Desk 5' X 1.5'	11.61	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Piece Of Wood	6.50	Wood Furniture/Furniture Pieces	Street Basket	N/A
Front Panel Of A Speaker. Mostly Wood W/ Cloth Cover	9.40	Non-C\&D Untreated Wood	Refuse	Low Density / High Income
Old Shelf	15.10	Non-C\&D Untreated Wood	Street Basket	N/A
Soft Sided Vinyl Duffle	10.40	Non-Clothing Textiles	Refuse	Low Density / Medium Income
Suitcase-Nylon With Wheels	9.80	Non-Clothing Textiles	Refuse	High Density / Medium Income
Suit Case Cloth (8 In X 3Ft X 2Ft)	8.20	Non-Clothing Textiles	Street Basket	N / A
Bundle Of Used Carpet Tack Strips	12.00	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet	16.80	Carpet/Upholstery	Refuse	Low Density / High Income
Carpet - Shaggy	43.80	Carpet/Upholstery	Refuse	High Density / High Income
Carpet Roll	183.40	Carpet/Upholstery	Refuse	Medium Density / Low Income
Piece Of Carpet	29.00	Carpet/Upholstery	Refuse	Low Density / High Income
Piece Of Carpet	11.40	Carpet/Upholstery	Refuse	Low Density / Medium Income
Roll Of Carpet	108.00	Carpet/Upholstery	Refuse	Medium Density / Low Income
Roll Of Foam Carpet Padding	2.50	Carpet/Upholstery	Refuse	Low Density / Medium Income
Rug 4 Ft Rolled Up	7.35	Carpet/Upholstery	Refuse	Low Density / High Income
Rug With Rubber Backing	9.00	Carpet/Upholstery	Refuse	Medium Density / High Income
Cotton Futon Pad. 150-200 Lbs 6 Ft X 4Ft. Single	85.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Couch Couching 23Ft X 2Ft X 6In	10.00	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Couch Couching. Cloth Corner 2Ft X 2Ft X 6In	5.60	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Artificial Leather Couch	160.30	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Green Leather, Wood Frame, Foam, Springs	36.90	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Mattress	66.00	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Mattress Fabric-Cotton Cvr.	19.35	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Serta Queen Size Mattress	50.00	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Small Fabric Loveseat	57.60	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Sofa Mattress - Foam, Leather, Wood	21.65	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Air Conditioner Mostly Metal	17.04	Appliances: Ferrous	Refuse	Medium Density / Low Income
Enamled Steel Stove Top	10.70	Appliances: Ferrous	Refuse	High Density / Low Income
Clothes Dryer	84.00	Appliances: Ferrous	MGP	Low Density / High Income
Dishwasher	53.25	Appliances: Ferrous	MGP	Low Density / High Income
Dryer	168.40	Appliances: Ferrous	MGP	Low Density / Medium Income
Hot Water Heater	102.70	Appliances: Ferrous	MGP	High Density / High Income
Hot Water Heater	77.00	Appliances: Ferrous	MGP	High Density / Medium Income
Hot Water Heater	115.70	Appliances: Ferrous	MGP	Low Density / High Income

Table 1-144
Bulk Item List by Material Category, Fall 2004, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Hot Water Heater	125.60	Appliances: Ferrous	MGP	Low Density / Medium Income
Metal Oven	122.20	Appliances: Ferrous	MGP	Medium Density / High Income
Metal Stove	125.00	Appliances: Ferrous	MGP	High Density / Medium Income
Metal Stove (Top)	10.50	Appliances: Ferrous	MGP	Medium Density / Low Income
Metal Washing Machine	95.80	Appliances: Ferrous	MGP	High Density / Low Income
Microwave	33.60	Appliances: Ferrous	MGP	High Density / Medium Income
Mini Refrigerator	90.00	Appliances: Ferrous	MGP	High Density / Medium Income
Refrigerator	100.85	Appliances: Ferrous	MGP	High Density / High Income
Refrigerator	211.20	Appliances: Ferrous	MGP	High Density / Low Income
Refrigerator	136.00	Appliances: Ferrous	MGP	High Density / Medium Income
Refrigerator	68.00	Appliances: Ferrous	MGP	Low Density / High Income
Refrigerator	188.00	Appliances: Ferrous	MGP	Low Density / Medium Income
Refrigerator	102.30	Appliances: Ferrous	MGP	Medium Density / High Income
Refrigerator Body (Plastic Metal)	75.10	Appliances: Ferrous	MGP	Medium Density / Low Income
Store	127.30	Appliances: Ferrous	MGP	High Density / Low Income
Washing Machine	160.30	Appliances: Ferrous	MGP	Medium Density / Low Income
Emerson Microwave	32.50	Appliances: Ferrous	Street Basket	N / A
Plastic - Top Refrigerator Door	21.60	Appliances: Plastic	MGP	Medium Density / Low Income
Plastic Refrigerator Door	21.00	Appliances: Plastic	MGP	High Density / Medium Income
Plastic Stereo	14.95	Appliances: Plastic	MGP	High Density / Low Income
Refrigerator Door (Top Only)	21.90	Appliances: Plastic	MGP	Medium Density / Low Income
Vacuum Upright - Newer Model	15.40	Appliances: Plastic	Street Basket	N / A
Stereo	18.20	Audio/Visual Equipment: Other	Refuse	Medium Density / Low Income
Computer Monitor 70\% Plastic 30\% Metal/Electronics	21.00	Computer Monitors	Refuse	Medium Density / Low Income
Piece Of Wood With Nails 2Ft X 1.5Ft	6.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / High Income
Lumber	7.20	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Broken Piece Of Construction Wood	3.20	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Building Wood About 5Ft X 1Ft X 21n	13.92	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Laminated Particleboard Counter Top	8.80	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Painted Wood - Particle Board	4.35	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Piece Of Plywood	8.80	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Pressboard With Plastic	22.60	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Toilet, Porcelain	35.35	Other Construction Debris	Refuse	High Density / Medium Income
Bath Tub	105.00	Other Construction Debris	MGP	High Density / Medium Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Brown Boxes No Markings	9.20	Plain OCC/Kraft Paper	Paper	High Density / Medium Income
Brown Cardboard Boxes (Ragu Express Pizza)	21.70	Plain OCC/Kraft Paper	Paper	Medium Density / Low Income
Brown Packing Card Board	17.90	Plain OCC/Kraft Paper	Paper	Medium Density / Low Income
Card Board Bound Together	50.90	Plain OCC/Kraft Paper	Paper	Medium Density / Medium Income
Cardboard White / Brown	46.20	Plain OCC/Kraft Paper	Paper	Low Density / High Income
Dish Washer Box Brown Cardboard	18.10	Plain OCC/Kraft Paper	Paper	Low Density / Medium Income
Heavy Card Brown	41.60	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Heavy Duty Card Board Child Play Car	36.20	Plain OCC/Kraft Paper	Paper	Medium Density / Low Income
Shoe \& Moving Boxes Taped Together	38.60	Plain OCC/Kraft Paper	Paper	High Density / Medium Income
White Boxes \& Brown Held Together By Spring	50.20	Plain OCC/Kraft Paper	Paper	Low Density / Medium Income
Cardboard	18.75	Plain OCC/Kraft Paper	Street Basket	N/A
2" PVC Pipe	2.20	Other PVC	Refuse	Low Density / High Income
Child Car Seat Plastic Frame Foam Padding	0.00	Other Plastics Materials	Refuse	Low Density / Medium Income
Office Chair Padded Plastic	10.00	Other Plastics Materials	Refuse	Medium Density / Medium Income
Plastic	8.55	Other Plastics Materials	Refuse	Low Density / Medium Income
Plastic Child Car Seat W/ Fabric Cushion	9.70	Other Plastics Materials	Refuse	High Density / Low Income
Plastic Electric Powered Kids Ride-On-Top Toy Car	36.40	Other Plastics Materials	Refuse	Low Density / High Income
Plastic House Siding	11.15	Other Plastics Materials	Refuse	Low Density / Medium Income
Thick Plastic A (Barricade Leg)	7.30	Other Plastics Materials	Refuse	Medium Density / Low Income
Vertical Blinds	15.60	Other Plastics Materials	Refuse	High Density / Low Income
Plastic Barrel	22.00	Other Plastics Materials	MGP	High Density / Low Income
Plastic Milk Crates	7.45	Other Plastics Materials	MGP	High Density / Medium Income
Baby Stroller Plastic	22.00	Other Plastics Materials	Street Basket	N / A
Plastic Crate	3.70	Other Plastics Materials	Street Basket	N / A
Plastic Crates	11.70	Other Plastics Materials	Street Basket	N/A
Street Cone (Orange)	8.15	Other Plastics Materials	Street Basket	N/A
Aluminum Real Estate Sign	6.60	Other Aluminum	Refuse	High Density / Low Income
Metal Bldg Siding	20.50	Other Aluminum	MGP	Medium Density / High Income
Aluminum Gutter	8.60	Other Aluminum	Street Basket	N/A
Baby Stroller-Nonferrous, Fabric Rubber Tires	8.70	Other Non-Ferrous	Refuse	High Density / Medium Income
Brass-Non Ferrous Armchair Frames	15.50	Other Non-Ferrous	Refuse	Medium Density / Medium Income
Cardboard Tub W/ Ferrous Edges Full Of X-Mas Light	21.90	Other Non-Ferrous	Refuse	Low Density / High Income
Chair (School) Metal, Wood	10.50	Other Non-Ferrous	Refuse	Medium Density / Low Income
Non Ferrous Tubing	6.60	Other Non-Ferrous	Refuse	High Density / High Income
Walking Baby Stroller With Cloth	12.00	Other Non-Ferrous	Refuse	Medium Density / Medium Income
Bed Frame	24.00	Other Non-Ferrous	MGP	Medium Density / Low Income
Bed Frame (Non-Ferrous)	56.00	Other Non-Ferrous	MGP	Medium Density / Low Income
Metal Folding Chair	8.50	Other Non-Ferrous	MGP	Medium Density / High Income
Metal Headboard And Footboard Of Bed	21.70	Other Non-Ferrous	MGP	High Density / Low Income
Metal Table Top	24.00	Other Non-Ferrous	MGP	High Density / Medium Income
Non Ferrous Accessory Rack	14.00	Other Non-Ferrous	MGP	High Density / Medium Income
Non Ferrous Folding Chair	14.00	Other Non-Ferrous	MGP	High Density / Medium Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Non-Ferrous Hospital Bed Side Gates	23.85	Other Non-Ferrous	MGP	Low Density / Medium Income
Non-Ferrous Metal Cabinet	33.60	Other Non-Ferrous	MGP	High Density / Low Income
Nonferrous Metal Chair (2)	19.30	Other Non-Ferrous	MGP	Low Density / High Income
Nonferrous Metal Folding Chair	8.90	Other Non-Ferrous	MGP	Medium Density / Medium Income
Nonferrous Metal Shopping Cart	10.10	Other Non-Ferrous	MGP	Medium Density / Medium Income
Wire Tote Cart Wheels (Rubber Metal)	10.40	Other Non-Ferrous	Street Basket	N/A
2 Ferrous Garbage Cans	13.00	Other Ferrous	Refuse	High Density / High Income
2 Garbage Cans	5.80	Other Ferrous	Refuse	High Density / High Income
Electric Motors Blower Fan	33.00	Other Ferrous	Refuse	Low Density / Medium Income
Exercise Bike	29.30	Other Ferrous	Refuse	High Density / Low Income
Ferrous Bed Frame	31.80	Other Ferrous	Refuse	Low Density / High Income
Ferrous Clothing Display	10.00	Other Ferrous	Refuse	High Density / High Income
Ferrous Stacking Chair With Vinyl Covered Foam	13.00	Other Ferrous	Refuse	Low Density / Medium Income
Ironing Board Nonferrous Legs, Ferrous Boar	9.30	Other Ferrous	Refuse	Low Density / Medium Income
Metal	7.25	Other Ferrous	Refuse	Medium Density / High Income
Metal Bed Frame	9.65	Other Ferrous	Refuse	Medium Density / Low Income
Metal Ferrous Bed Frame	5.00	Other Ferrous	Refuse	Low Density / Medium Income
Office Chair	20.20	Other Ferrous	Refuse	High Density / Medium Income
Office Chair	43.80	Other Ferrous	Refuse	Low Density / High Income
Rubber, Metal Cart W/ Wheels	15.30	Other Ferrous	Refuse	Low Density / Medium Income
Shovel (Snow) Metal, Plastic	4.25	Other Ferrous	Refuse	Medium Density / High Income
Spare Tire On Steel Rim	33.80	Other Ferrous	Refuse	Medium Density / Medium Income
Steel Bed Frame	10.80	Other Ferrous	Refuse	High Density / Medium Income
Steel Bed Frame	45.50	Other Ferrous	Refuse	Medium Density / Medium Income
Steel Chair	11.80	Other Ferrous	Refuse	High Density / Low Income
Steel Chair Frame	0.00	Other Ferrous	Refuse	High Density / Medium Income
Steel Folding Table	20.15	Other Ferrous	Refuse	High Density / Low Income
Steel Frame, Fabric Seat, Plastic Rubber Tires	14.40	Other Ferrous	Refuse	High Density / Low Income
Steel Framed Treadmill-Home Gym Size-Rubber Belt	21.50	Other Ferrous	Refuse	High Density / High Income
Swing Fiber Fill Plastic Upholstery Outdoor	39.90	Other Ferrous	Refuse	Low Density / High Income
Tire W/ Steel Rim	37.20	Other Ferrous	Refuse	Medium Density / Medium Income
Wood \& Ferrous Metal Sleign	9.40	Other Ferrous	Refuse	Low Density / High Income
Back Panel Of Refrigerator-Ferrous	44.10	Other Ferrous	MGP	Low Density / Medium Income
Bed Frame Metal	16.40	Other Ferrous	MGP	High Density / High Income
Bed Post Metal	22.90	Other Ferrous	MGP	Medium Density / Medium Income
Bike (No Wheels)	21.10	Other Ferrous	MGP	High Density / Medium Income
Bike With Tires	22.10	Other Ferrous	MGP	High Density / Low Income
Chain Link Fence Medal	37.50	Other Ferrous	MGP	Low Density / Medium Income
Ferrous Bed Frame	9.20	Other Ferrous	MGP	Low Density / High Income
Ferrous Bed Frame	21.20	Other Ferrous	MGP	Medium Density / High Income
Ferrous Bed Frame	25.30	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Black Trash Can	34.10	Other Ferrous	MGP	Medium Density / High Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Ferrous Exercise Treadmill W/ Belt	25.80	Other Ferrous	MGP	Low Density / Medium Income
Ferrous Metal Shelving Unit	59.76	Other Ferrous	MGP	Medium Density / High Income
Ferrous Metal, Bed Frame	16.76	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Oven Door And Stove Parts	48.50	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Part Of Metal Cabinet	9.80	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Part Of Weight Bench	10.00	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Range	82.50	Other Ferrous	MGP	Low Density / High Income
Ferrous Refrigerator	127.20	Other Ferrous	MGP	Low Density / Medium Income
Ferrous Washing Machine Inside Only	65.90	Other Ferrous	MGP	High Density / Low Income
Ferrous Water Heater (40 Gal W/Foam)	118.50	Other Ferrous	MGP	Low Density / High Income
Folding Metal Chair	8.20	Other Ferrous	MGP	Medium Density / Low Income
Futon Frame Metal	111.00	Other Ferrous	MGP	High Density / Low Income
Hide Away Bed Frame From Couch W/ Fabric Ferrous	49.50	Other Ferrous	MGP	Medium Density / High Income
Hideaway Bed Frame From Couch W/ Fabric Ferrous	44.90	Other Ferrous	MGP	High Density / High Income
Ironing Board Metal Frame	11.80	Other Ferrous	MGP	High Density / High Income
Lawn Mower	41.20	Other Ferrous	MGP	Low Density / High Income
Metal Barrel	17.30	Other Ferrous	MGP	High Density / Low Income
Metal Bed Frame	7.60	Other Ferrous	MGP	High Density / Low Income
Metal Bed Frame	25.32	Other Ferrous	MGP	Medium Density / Low Income
Metal Bed Frame (Twin)	32.70	Other Ferrous	MGP	High Density / Low Income
Metal Bed Frame W/ Plastic Wheels	20.70	Other Ferrous	MGP	High Density / Low Income
Metal Bed Frame W/ Springs \& Some Fabric	88.70	Other Ferrous	MGP	High Density / High Income
Metal Bookshelf	34.32	Other Ferrous	MGP	Medium Density / Medium Income
Metal Children Bike W/ Tires	11.10	Other Ferrous	MGP	High Density / Low Income
Metal Drawer Of Cabinet	9.10	Other Ferrous	MGP	Low Density / High Income
Metal File Cabinet	167.36	Other Ferrous	MGP	High Density / High Income
Metal Filing Cabinet	47.70	Other Ferrous	MGP	Low Density / High Income
Metal Framing Pulley Garage Door	27.50	Other Ferrous	MGP	Low Density / High Income
Metal Futon Frame	22.05	Other Ferrous	MGP	High Density / Low Income
Metal Futon/Cot Frame W/ Fabric	26.70	Other Ferrous	MGP	High Density / High Income
Metal Gate (Small) Ferrous	10.00	Other Ferrous	MGP	High Density / Low Income
Metal Ironing Board No Cover	10.48	Other Ferrous	MGP	High Density / Low Income
Metal Range Ferrous	125.60	Other Ferrous	MGP	Medium Density / High Income
Metal Steps (Like Fold Out From Rv)	42.00	Other Ferrous	MGP	High Density / Low Income
Metal, Futon Frame Ferrous	44.24	Other Ferrous	MGP	High Density / Low Income
Metal-Part Of Oven	37.40	Other Ferrous	MGP	Low Density / High Income
Misc. Ferrous Metal	26.16	Other Ferrous	MGP	High Density / Low Income
Stainless Steel Sink	10.00	Other Ferrous	MGP	Low Density / High Income
Car Seat To Car Metal Fabric, Foam	35.05	Other Ferrous	Street Basket	N/A
Coat Rack Bar Metal	9.00	Other Ferrous	Street Basket	N/A
Ferrous Bucket	2.80	Other Ferrous	Street Basket	N/A
Ferrous Handcart	8.00	Other Ferrous	Street Basket	N/A

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Ferrous Retail Clothing Display Rack	13.80	Other Ferrous	Street Basket	N/A
Ferrous Sheet	21.30	Other Ferrous	Street Basket	N/A
Folding Lawn Chair	6.80	Other Ferrous	Street Basket	N/A
Metal Frame Stroller With Seat	11.60	Other Ferrous	Street Basket	N/A
Office Chair Fabric Plastic	21.00	Other Ferrous	Street Basket	N/A
Shopping Cart Ferrous	144.90	Other Ferrous	Street Basket	N/A
Steel Curtain Rods	3.50	Other Ferrous	Street Basket	N/A
Wire Wheel Cart Ferrous	16.20	Other Ferrous	Street Basket	N/A
Tree Branch	55.70	Prunings	Refuse	Low Density / Medium Income
Tree Branches	57.35	Prunings	Refuse	Low Density / Medium Income
Tree Branches (Pussy Willow)	73.00	Prunings	Refuse	Low Density / High Income
Tree Trimmings	16.60	Prunings	Refuse	Medium Density / Medium Income
Tree Branches	10.75	Stumps/Limbs	Refuse	Low Density / Medium Income
Tree Stump	96.30	Stumps/Limbs	Refuse	Low Density / High Income
Tree Trimmings	5.00	Stumps/Limbs	Refuse	High Density / Medium Income
Bed Couch Wood, Fabric, Metal, Polyester Fiber Fil	48.60	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Bed Frame (Wood)	37.95	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Box Spring	75.70	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Chair (Upholstery, Metal, Foam)	33.25	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Engineered Wood Headboard	17.80	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Furniture Sofa	59.80	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Painted Wood Bed Frame	14.40	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Painted Wood Chair	10.00	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income
Partially Wooden Bathroom Cabinet, Engineered Wood	11.60	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Particleboard	5.40	Wood Furniture/Furniture Pieces	Refuse	High Density / High Income
Plywood Table Top	15.40	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Sofa Couch, Wood Particle Board	143.86	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Twin Size Box Spring Mattress	60.00	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Wood Chair	3.20	Wood Furniture/Furniture Pieces	Refuse	High Density / High Income
Wooden Chair	23.40	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income
Folding Stool	10.20	Wood Furniture/Furniture Pieces	Street Basket	
Particle Board Speaker Box, Speaker, Wires, Fabric	7.10	Non-C\&D Untreated Wood	Refuse	Medium Density / Medium Income
Pile Of Painted Wood	5.60	Non-C\&D Untreated Wood	Refuse	High Density / Medium Income
Wood Frame Covered In Fabric Stuffed W Cotton	44.70	Non-C\&D Untreated Wood	Refuse	High Density / High Income
Wood Trunk W/ Brass Fittings And Leather Handles	16.00	Non-C\&D Untreated Wood	Refuse	Low Density / High Income
Plywood Sheet Rubber Wheels	62.70	Non-C\&D Untreated Wood	Street Basket	N/A
Wood Easel With Oil Painting On Canvas Attached	8.70	Non-C\&D Untreated Wood	Street Basket	N/A
Cloth 40\%Plastic 60\%	0.36	Non-Clothing Textiles	Refuse	Low Density / Medium Income
Foam Pillows	7.20	Non-Clothing Textiles	Refuse	High Density / High Income
Nylon Soft Sided Suitcase W/ Naugahyde Trim	12.00	Non-Clothing Textiles	Refuse	High Density / Medium Income
Nylon, Wheeled, Soft Sided Suitcase	9.90	Non-Clothing Textiles	Refuse	Medium Density / Medium Income
Soft Sided, Artificial Leather Suitcase	26.70	Non-Clothing Textiles	Refuse	Low Density / High Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Suit Case	11.00	Non-Clothing Textiles	Refuse	Medium Density / Medium Income
Wheel Carry-On Suitcase	11.90	Non-Clothing Textiles	Refuse	High Density / Low Income
Soft Sided Nylon Suitcase	25.30	Non-Clothing Textiles	Street Basket	N/A
Area Rug	22.60	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet	153.30	Carpet/Upholstery	Refuse	High Density / High Income
Carpet	61.50	Carpet/Upholstery	Refuse	High Density / Low Income
Carpet	176.70	Carpet/Upholstery	Refuse	High Density / Medium Income
Carpet	168.60	Carpet/Upholstery	Refuse	Low Density / High Income
Carpet	25.60	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet	26.30	Carpet/Upholstery	Refuse	Medium Density / High Income
Carpet	119.10	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Carpet (Roll Of)	24.38	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet (Roll) Very Large	95.20	Carpet/Upholstery	Refuse	Medium Density / Low Income
Carpet 4 Rolls	82.00	Carpet/Upholstery	Refuse	Medium Density / High Income
Carpet Oriental Rug	13.25	Carpet/Upholstery	Refuse	Medium Density / High Income
Carpet Padding	17.60	Carpet/Upholstery	Refuse	High Density / High Income
Carpet Padding	31.40	Carpet/Upholstery	Refuse	Low Density / High Income
Industrial Carpeting	13.20	Carpet/Upholstery	Refuse	High Density / High Income
Pad (Carpet)	11.65	Carpet/Upholstery	Refuse	Medium Density / High Income
Padding Carpet	32.30	Carpet/Upholstery	Refuse	High Density / High Income
Padding Carpet Padding	22.50	Carpet/Upholstery	Refuse	High Density / High Income
Rug	29.00	Carpet/Upholstery	Refuse	High Density / Low Income
Wood Carpet	6.60	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Car Tire	17.80	Rubber Products	Refuse	Medium Density / Medium Income
Baby Mattress Plastic Foam	13.60	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Cotton Filled Futon Pillow W/ Lumber Stapled To It	34.00	Upholstered or Other Organic-Type Furniture	Refuse	High Density / High Income
Couch Wood Pt Wood Foam Metal Springs Upholstery,	136.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Ferrous Legs, Artificial Leather Cover	8.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Foam Chair Padding	8.40	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Foam Cushion Fabric Cover, Steel Springs Wood Frame	40.00	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Full Mattress	63.80	Upholstered or Other Organic-Type Furniture	Refuse	High Density / High Income
Furniture-Untreated Wood Frame W/ Batting And Fabric	22.70	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Futon Mattress	40.90	Upholstered or Other Organic-Type Furniture	Refuse	High Density / High Income
Mattress	76.10	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Mattress	18.10	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Mattress	39.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Mattress Box Spring Material Metal Springs Foam	53.20	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Mattress- Springs, Fabric	53.15	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Mattress-Wood Frame W/ Metal Spring	57.50	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Old Box Spring	27.50	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Small Cushioned Chair	36.20	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Sofa	70.20	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Sofa	112.60	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Sofa	86.20	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Sofa W/ Sleeper Bed	110.20	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Sofa-Fabric Covered	70.00	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Twin Mattress	74.50	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Twin Mattress	39.70	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Twin Mattress	30.00	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Twin Mattress	31.90	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Twin Size Mattress	38.20	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Wet Queen Size Mattress	85.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Mattress Outdoor Plastic, Foam Was Frozen	45.30	Upholstered or Other Organic-Type Furniture	Street Basket	N/A
Twin Futon Mattress	42.70	Upholstered or Other Organic-Type Furniture	Street Basket	N/A
Speaker Enclousure W/ Speaker, Particle Board	23.20	Miscellaneous Organics	Refuse	Low Density / Medium Income
Portable Oil Filled Electric Heater	27.90	Appliances: Ferrous	Refuse	Low Density / Medium Income
Space Heater	37.70	Appliances: Ferrous	Refuse	Low Density / Medium Income
Clothes Dryer	80.90	Appliances: Ferrous	MGP	Low Density / High Income
Dish Washer	39.20	Appliances: Ferrous	MGP	Low Density / High Income
Dishwasher	45.00	Appliances: Ferrous	MGP	High Density / High Income
Ferrous Dishwater	72.08	Appliances: Ferrous	MGP	High Density / High Income
Ferrous Dishwater	112.20	Appliances: Ferrous	MGP	High Density / Medium Income
Ferrous Oven	90.80	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Range	19.54	Appliances: Ferrous	MGP	Low Density / Medium Income
Ferrous Refrigerator	106.20	Appliances: Ferrous	MGP	High Density / High Income
Ferrous Refrigerator	96.75	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Refrigerator	189.80	Appliances: Ferrous	MGP	Low Density / Medium Income
Ferrous Refrigerator Door W/ Foam And Plastic	18.00	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Refrigerator Door W/ Plastic	24.80	Appliances: Ferrous	MGP	Low Density / Medium Income
Ferrous Refrigerator W/ Inside Foam And Plastic	160.48	Appliances: Ferrous	MGP	Low Density / Medium Income
Ferrous Small Refrigerator	66.10	Appliances: Ferrous	MGP	High Density / Medium Income
Ferrous Stove/ Oven, Range	262.60	Appliances: Ferrous	MGP	High Density / Medium Income
Ferrous Stove/Oven	146.50	Appliances: Ferrous	MGP	High Density / Medium Income
Ferrous Stove/Range	66.80	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Stove/Range Oven	61.50	Appliances: Ferrous	MGP	Low Density / High Income
Ferrous Washing Machine	51.24	Appliances: Ferrous	MGP	Medium Density / Medium Income
Ferrous Washing Machine (Laundry)	152.20	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Water Heater	119.44	Appliances: Ferrous	MGP	Medium Density / Medium Income
Metal Dryer Ferrous	76.20	Appliances: Ferrous	MGP	High Density / High Income
Metal Microwave	51.70	Appliances: Ferrous	MGP	Low Density / Medium Income
Metal Refrigerator	138.95	Appliances: Ferrous	MGP	High Density / Low Income
Metal Refrigerator Ferrous	111.60	Appliances: Ferrous	MGP	High Density / Low Income
Metal Stove	214.20	Appliances: Ferrous	MGP	Medium Density / Low Income
Metal Water Dispense	53.00	Appliances: Ferrous	MGP	Medium Density / High Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Metal Water Heater	131.90	Appliances: Ferrous	MGP	Low Density / High Income
Microwave	69.90	Appliances: Ferrous	MGP	Medium Density / High Income
Microwave Oven	23.00	Appliances: Ferrous	MGP	Medium Density / Low Income
Old Stove Ferrous	148.90	Appliances: Ferrous	MGP	High Density / Low Income
Radiator	130.00	Appliances: Ferrous	MGP	High Density / Low Income
Range Stove Top Oven	124.80	Appliances: Ferrous	MGP	High Density / Low Income
Refrigerator Door, Ferrous	6.56	Appliances: Ferrous	MGP	Low Density / Medium Income
Refrigerator, Ferrous	71.20	Appliances: Ferrous	MGP	Medium Density / Medium Income
Single Load Washing Machine-Ferrous	51.70	Appliances: Ferrous	MGP	Medium Density / Low Income
Washing Machine Metal	98.50	Appliances: Ferrous	MGP	Medium Density / Low Income
Window Unit Air Conditioner Ferrous	47.80	Appliances: Ferrous	MGP	High Density / Medium Income
Free Standing Drinking Fountain	49.50	Appliances: Ferrous	Street Basket	N/A
Brass Indoor Light	2.50	Appliances: Non-Ferrous	Street Basket	N/A
Hoover Upright Vacuum	5.20	Appliances: Plastic	Refuse	Medium Density / Medium Income
Dishwasher Plastic	20.40	Appliances: Plastic	MGP	Low Density / Medium Income
VCR	16.40	Audio/Visual Equipment: Other	Refuse	Low Density / Medium Income
13" TV	19.80	Televisions	Refuse	Low Density / High Income
TV	66.90	Televisions	Refuse	Medium Density / Low Income
TV	74.10	Televisions	Refuse	Medium Density / Medium Income
Computer Scanner	10.00	Other Computer Equipment	Refuse	High Density / High Income
Printer	8.70	Other Computer Equipment	Refuse	High Density / Medium Income
2X4S	6.30	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income
Lumber	22.20	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / High Income
Lumber	30.80	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Lumber	15.60	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Lumber Wood	21.60	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Pile Of Cedar Planks	29.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Plywood	22.40	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Wood	10.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Medium Income
Lumber	27.20	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Plywood	8.50	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Sheet Of Plywood	16.50	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Wood 2X4	16.00	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Wood Pallet	62.60	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Engineered Wood Cabinet Doors	36.00	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Finished Wood	11.70	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Finished Wood Paneling	20.60	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Hollow Wood Door W/ Carpet Padding Stapled To It.	15.90	Treated/Contaminated Wood	Refuse	High Density / High Income
Laminated Particle Board	18.60	Treated/Contaminated Wood	Refuse	High Density / Low Income
Laminated Particle Board	4.60	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Laminated Particle Board	25.10	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Painted Particles Board	15.20	Treated/Contaminated Wood	Refuse	High Density / Low Income

Table 1-145
Bulk Item List by Material Category, Winter 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Painted Plywood	25.00	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Painted Wood	23.36	Treated/Contaminated Wood	Refuse	Low Density / High Income
Painted Wood	1.80	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Painted Wood	39.50	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Painted Wood Molding	14.60	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Painted Wood/Door Trim	20.40	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Particle Board	8.80	Treated/Contaminated Wood	Refuse	High Density / Low Income
Particle Board	39.20	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Particle Board	16.05	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Particle Board Nails	38.70	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Pile Of 2X4's	0.10	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Wood Painted	12.10	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Wood Paneling	20.00	Treated/Contaminated Wood	Refuse	Low Density / High Income
Wood Paneling	22.60	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Wood Veneer	3.60	Treated/Contaminated Wood	Refuse	Low Density / High Income
Wood, Painted C\&D Nails	11.05	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Wood-Laminated Particle Board Engineered	10.00	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Wood-Laminated Plywood	7.40	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Painted Wood Shelf (Not Solid) Pieced	11.75	Treated/Contaminated Wood	Street Basket	N/A
C\&D Materials (Roof, Walls)	21.60	Other Construction Debris	Refuse	Low Density / Medium Income
Toiler	22.00	Other Construction Debris	Refuse	Low Density / High Income
Wooden Door	15.95	Other Construction Debris	Refuse	Low Density / High Income
Wooden Door	26.90	Other Construction Debris	Refuse	Medium Density / Low Income
Two Metal Doors With Frame	114.80	Other Construction Debris	MGP	High Density / Medium Income
Ferrous Bath Tub	43.10	Other Construction Debris	Street Basket	N/A
Painted Wood And Laminate	46.20	Other Construction Debris	Street Basket	N/A
Paper Corner Finishing Strips For Drywall.	26.60	Other Construction Debris	Street Basket	N/A
Artificial X-Mas Tree	13.00	Miscellaneous Inorganics	Refuse	High Density / Medium Income
Artificial X-Mas Tree	19.80	Miscellaneous Inorganics	Refuse	Medium Density / Medium Income
Vinyl Panel	3.20	Miscellaneous Inorganics	Refuse	Medium Density / Medium Income

Table 1-146
Bulk Item List by Material Category, Spring 2005, WCS

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Bound Cardboard Boxes	80.00	Plain OCC/Kraft Paper	Refuse	High Density / High Income
Folded White Cardboard Boxes	16.50	Plain OCC/Kraft Paper	Refuse	Low Density / High Income
Brown Corrugated Paper	24.20	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Brown Heavy Card Board 6X8 Could Not Be Bent	35.10	Plain OCC/Kraft Paper	Paper	Medium Density / Low Income
Standard Brown Cardboard Tied Together	37.60	Plain OCC/Kraft Paper	Paper	High Density / Low Income
White Cardboard Boxes/Moving Boxes	17.60	Plain OCC/Kraft Paper	Paper	Medium Density / High Income
White Paper Box (Holds Chair)	26.20	Plain OCC/Kraft Paper	Paper	Low Density / Medium Income
Corrugated Cardboard	27.60	Plain OCC/Kraft Paper	Street Basket	N/A
Coleman Cooler	6.50	Other PVC	Refuse	Low Density / High Income
Baby Car Seat	3.10	Other Plastics Materials	Refuse	Low Density / Medium Income
Bowling Ball	9.00	Other Plastics Materials	Refuse	High Density / High Income
Foam Twin Size Mattress Cover	12.20	Other Plastics Materials	Refuse	Medium Density / Medium Income
Hard Plastic Dog House	7.35	Other Plastics Materials	Refuse	Low Density / High Income
Ice Cooler (Plastic, Styrofoam)	2.30	Other Plastics Materials	Refuse	Low Density / Medium Income
Milk Can (Plastic	7.00	Other Plastics Materials	Refuse	High Density / High Income
Plastic "Little Tike" Play Set Piece (Ladder)	7.50	Other Plastics Materials	Refuse	High Density / High Income
Plastic Bread Delivery Crate	25.50	Other Plastics Materials	Refuse	High Density / Medium Income
Plastic Bread Tray 16"X16"	3.40	Other Plastics Materials	Refuse	High Density / Low Income
Plastic Crates	6.20	Other Plastics Materials	Refuse	Medium Density / Medium Income
Plastic Gas Can (30-Gallon)	8.00	Other Plastics Materials	Refuse	High Density / Low Income
Plastic Gas Can (5-Gallon)	5.00	Other Plastics Materials	Refuse	High Density / Low Income
Plastic Luggage	13.60	Other Plastics Materials	Refuse	Medium Density / Low Income
Plastic Trash Can (Plastic)	2.60	Other Plastics Materials	Refuse	High Density / High Income
Portable Kennel (Plastic)	9.40	Other Plastics Materials	Refuse	Low Density / Medium Income
Trash Can (Plastic)	7.00	Other Plastics Materials	Refuse	High Density / Medium Income
Plastic Garbage Can	12.00	Other Plastics Materials	MGP	Medium Density / High Income
Plastic Refrigerator Interior Shelving	18.00	Other Plastics Materials	MGP	Medium Density / Low Income
5-Gallon Bucket (Plastic, Ferrous Metal)	2.40	Other Plastics Materials	Street Basket	N/A
Vinyl Hard Side Suitcase	26.20	Other Plastics Materials	Street Basket	N/A
Baby Crib Aluminum Frame	9.70	Other Aluminum	Refuse	High Density / Low Income
Ferrous Metal Siding	61.00	Other Aluminum	MGP	High Density / Low Income
Metal Siding	5.12	Other Aluminum	Street Basket	N/A
Black Luggage Bag	9.00	Other Non-Ferrous	Refuse	High Density / High Income
Metal Container, Possible Small Fridge	18.50	Other Non-Ferrous	Refuse	High Density / Medium Income
Work Out Bench - Nonferrous Metal	47.00	Other Non-Ferrous	Refuse	Medium Density / High Income
Large Black Suit Case	16.30	Other Non-Ferrous	Street Basket	N / A
"L" Channel Iron 2"X4" 4"L Rusted No Paint	38.40	Other Ferrous	Refuse	Low Density / Medium Income
Baby Stroller	17.60	Other Ferrous	Refuse	Low Density / Medium Income
Baby Stroller (Metal, Plastic, Cloth)	6.00	Other Ferrous	Refuse	High Density / Medium Income
Ferrous Metal	3.50	Other Ferrous	Refuse	Medium Density / Medium Income
Ferrous Metal Cart	18.50	Other Ferrous	Refuse	Low Density / Medium Income
Ferrous Metal Pipe	6.00	Other Ferrous	Refuse	Medium Density / Low Income

Table 1-146
Bulk Item List by Material Category, Spring 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Ferrous Metal Shelf Piece	10.40	Other Ferrous	Refuse	Low Density / Medium Income
Half Of Metal Hand Wagon Or Hand Truck	68.10	Other Ferrous	Refuse	Medium Density / High Income
Light Fixture, Wood And Metal	20.60	Other Ferrous	Refuse	Low Density / Medium Income
Metal Pole - Ferrous Metal	1.80	Other Ferrous	Refuse	Medium Density / Medium Income
Mini Steel Shopping Cart W/ Wheels	12.10	Other Ferrous	Refuse	High Density / Medium Income
Old Fan (HVAC/Commercial Size)	41.35	Other Ferrous	Refuse	Low Density / High Income
Painted Metal Decorative Tubing	7.20	Other Ferrous	Refuse	Low Density / High Income
Rubber Tire With Metal Wheel Base	28.40	Other Ferrous	Refuse	Medium Density / Low Income
Seat Of A Chair W/ Rotating Seat	8.80	Other Ferrous	Refuse	High Density / Low Income
Sheet Metal	41.90	Other Ferrous	Refuse	High Density / Low Income
Some Sort Of Metal Bar (Ferrous Metal)	1.90	Other Ferrous	Refuse	Medium Density / Medium Income
Steel Folding Chair With Cushion Seat	12.10	Other Ferrous	Refuse	Medium Density / Medium Income
Stroller	5.10	Other Ferrous	Refuse	High Density / Low Income
Tin Siding (Ferrous Metal)	7.70	Other Ferrous	Refuse	High Density / High Income
Tin Siding (Ferrous Metal)	10.70	Other Ferrous	Refuse	Low Density / Medium Income
Ferrous Bed Frame	25.00	Other Ferrous	MGP	High Density / High Income
Ferrous Bed Frame	30.00	Other Ferrous	MGP	High Density / Medium Income
Ferrous Cabinet	16.00	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Folding Chair	10.00	Other Ferrous	MGP	Low Density / High Income
Ferrous Metal	8.00	Other Ferrous	MGP	High Density / Low Income
Ferrous Metal Bed Frame	31.00	Other Ferrous	MGP	Low Density / Medium Income
Ferrous Metal Bed Frame	19.00	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Metal Cabinet	10.00	Other Ferrous	MGP	High Density / High Income
Ferrous Metal Cabinet	54.00	Other Ferrous	MGP	Low Density / High Income
Ferrous Metal Cabinet	20.00	Other Ferrous	MGP	Medium Density / High Income
Ferrous Metal Shelving	25.00	Other Ferrous	MGP	Low Density / High Income
Ferrous Metal Table	40.00	Other Ferrous	MGP	Medium Density / High Income
Ferrous Metal Tank	160.00	Other Ferrous	MGP	High Density / Low Income
Ferrous Metal Tubular Bed Frame	30.00	Other Ferrous	MGP	Medium Density / Low Income
Ferrous Oven Door	45.00	Other Ferrous	MGP	High Density / Low Income
Ferrous Sheet Metal	25.00	Other Ferrous	MGP	High Density / Low Income
Ferrous Shelving	10.00	Other Ferrous	MGP	Low Density / High Income
Ferrous Tubing	20.00	Other Ferrous	MGP	Medium Density / Low Income
Ferrous Tubing (Framing)	18.00	Other Ferrous	MGP	Medium Density / Medium Income
Ferrous Tubing (Square)	9.00	Other Ferrous	MGP	Medium Density / Low Income
Metal Cabinet	40.00	Other Ferrous	MGP	Low Density / Medium Income
Metal Shelving	40.00	Other Ferrous	MGP	Medium Density / Low Income
Plastic Ferrous Metal Refrigerator Door	16.00	Other Ferrous	MGP	Medium Density / Medium Income
Bike Frame (Ferrous Metal, Rubber)	16.20	Other Ferrous	Street Basket	N/A
Bottom Half Of Shopping Cart, Front Half Only	10.00	Other Ferrous	Street Basket	N/A
Desk (Ferrous Metal, Wood)	31.40	Other Ferrous	Street Basket	N/A
Metal Shelves	30.10	Other Ferrous	Street Basket	N/A

Table 1-146
Bulk Item List by Material Category, Spring 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Office Chair With Wheels	13.20	Other Ferrous	Street Basket	N/A
Shopping Cart - Plastic, Ferrous Metal	57.60	Other Ferrous	Street Basket	N/A
Baby Stroller	16.50	Mixed Metals	Refuse	Low Density / Medium Income
Small Metal Chair	13.20	Mixed Metals	Refuse	Low Density / High Income
Branches (Wood)	12.60	Prunings	Refuse	High Density / Medium Income
Branches From Bushes (Vegetation, Organic)	130.90	Prunings	Refuse	Low Density / High Income
Branches/Bush Clippings	28.10	Prunings	Refuse	Medium Density / Medium Income
Tree Branches With Leaves (Still Green)	6.00	Prunings	Refuse	Low Density / High Income
Tree Trimmings Branches	20.10	Prunings	Refuse	High Density / Low Income
Artificial Tree (Made From 2 Tree Limbs)	15.80	Stumps/Limbs	Refuse	Low Density / Medium Income
Log (Wood)	4.40	Stumps/Limbs	Refuse	Low Density / Medium Income
Tree Branch (Trimmed)	13.60	Stumps/Limbs	Refuse	Low Density / High Income
Tree Limb	30.00	Stumps/Limbs	Refuse	Low Density / Medium Income
Tree Limbs	40.45	Stumps/Limbs	Refuse	Low Density / Medium Income
Tree Limbs (2)	14.00	Stumps/Limbs	Refuse	Medium Density / High Income
1/2 Bed Frame (Wood, Cloth)	17.10	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
1/2 Of A Couch Frame	40.90	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Box Spring Mattress	38.50	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income
Chair (Wood, Ferrous Metal, Plastic/Vinyl)	11.40	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Chair Ferrous Metal, Fabric, Wood	26.60	Wood Furniture/Furniture Pieces	Refuse	High Density / High Income
Fabric, Wood, Cardboard Ferrous Metal (Part Of Cha	7.10	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Foot Rest (Fabric, Wood)	31.20	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Part Of A Couch	76.20	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Part Of Armchair Wood	11.40	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Recliner Leather And Wood	28.20	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Small Wooden Table (Varnish)	14.50	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Table Top (Wood, Plastic)	17.00	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income
Twin Size Box Spring, Wood Frame With Upholstery	60.00	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Wood Table Top With Plastic Top/Cover	16.40	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Bamboo Poles	11.60	Non-C\&D Untreated Wood	Refuse	High Density / Medium Income
Particle Board	7.30	Non-C\&D Untreated Wood	Refuse	Medium Density / Low Income
Seat Pad (Fabric, Wood)	6.00	Non-C\&D Untreated Wood	Refuse	High Density / Medium Income
Wood Step Ladder (3' Tall)	10.00	Non-C\&D Untreated Wood	Refuse	Low Density / High Income
Wood Taboggan With Metal Sliders	9.00	Non-C\&D Untreated Wood	Refuse	Low Density / Medium Income
1/4" Peg Board - Particle Board (Wood)	36.20	Non-C\&D Untreated Wood	Street Basket	N/A
Black Travel Bag "Wheelie"	7.00	Non-Clothing Textiles	Refuse	High Density / Low Income
Cloth, Luggage, Wheelie	9.40	Non-Clothing Textiles	Refuse	High Density / High Income
Green Luggage Bag - Fabric Plastic	26.75	Non-Clothing Textiles	Refuse	High Density / Medium Income
Plastic Nylon Luggage	13.40	Non-Clothing Textiles	Refuse	Medium Density / High Income
Suitcase	10.80	Non-Clothing Textiles	Refuse	Medium Density / Medium Income
Suitcase (Fabric, Plastic, Nonferrous Metal)	8.80	Non-Clothing Textiles	Refuse	Low Density / High Income
Travel Bag	9.80	Non-Clothing Textiles	Refuse	Medium Density / Medium Income

Table 1-146
Bulk Item List by Material Category, Spring 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Suitcase, Cloth	10.20	Clothing Textiles	Refuse	Low Density / High Income
Carpet	96.30	Carpet/Upholstery	Refuse	High Density / High Income
Carpet	25.60	Carpet/Upholstery	Refuse	High Density / Low Income
Carpet	36.27	Carpet/Upholstery	Refuse	Low Density / High Income
Carpet	8.52	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet	26.50	Carpet/Upholstery	Refuse	Medium Density / Low Income
Carpet	9.00	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Carpet (Fabric)	26.70	Carpet/Upholstery	Refuse	High Density / High Income
Carpet (Fabric)	19.60	Carpet/Upholstery	Refuse	Low Density / High Income
Carpet (Fabric)	23.10	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Carpet Pad	14.10	Carpet/Upholstery	Refuse	Medium Density / High Income
Carpet Padding	12.00	Carpet/Upholstery	Refuse	Medium Density / High Income
Carpeting	34.60	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpeting	32.30	Carpet/Upholstery	Refuse	Medium Density / Low Income
Carpeting (Scrap)	8.20	Carpet/Upholstery	Refuse	Low Density / High Income
Oriental Rug	61.60	Carpet/Upholstery	Refuse	Medium Density / High Income
Roll Of Carpet	40.40	Carpet/Upholstery	Refuse	Low Density / High Income
Rug (Fabric)	15.95	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Rug For Floor (4' W X 8' L)	16.10	Carpet/Upholstery	Refuse	High Density / Medium Income
Rug, Fabric	16.00	Carpet/Upholstery	Refuse	High Density / Low Income
Suitcase	34.30	Rubber Products	Refuse	High Density / Low Income
Black Leather Suit Case	31.00	Other Leather Products	Refuse	Low Density / Medium Income
Leather Suitcase	10.70	Other Leather Products	Refuse	Medium Density / Medium Income
Bed Mattress W/ Springs - Fabric Ferrous Metal	50.00	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Chair With Upholstery Internal Wood Frame	37.00	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Couch, Upholstered (Orange In Color)	67.20	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Fold Out Couch And One Cushion	88.20	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Futon Matress	31.40	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Futon Matress	54.40	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
Futon Matress	54.60	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / High Income
Leather La-Z-Boy Recliner, Black	52.10	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Matress	13.80	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Mattress	92.52	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Mattress (Box Spring)	45.50	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Mattress Springs/Wood/Cloth	30.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Mattress Twin Size	73.60	Upholstered or Other Organic-Type Furniture	Refuse	High Density / High Income
Part Of A Couch (Fabric, Ferrous Metal, Wood)	41.40	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Part Of Couch	40.68	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Part Of Pullout-Bed, Couch	42.30	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Single (Twin Size) Bed Mattress, Upholstered, Wet	74.90	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Single Bed Bottom, Box Spring Mattress	23.30	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Twin Sized Mattress	52.10	Upholstered or Other Organic-Type Furniture	Refuse	High Density / High Income

Table 1-146
Bulk Item List by Material Category, Spring 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Box Spring	25.00	Upholstered or Other Organic-Type Furniture	MGP	High Density / High Income
Metal Box Spring	65.00	Upholstered or Other Organic-Type Furniture	MGP	Medium Density / Low Income
Baby Mats	26.30	Miscellaneous Organics	Refuse	Low Density / Medium Income
Pillow	3.00	Miscellaneous Organics	Refuse	Medium Density / High Income
Air Conditioning Unit (Small, Window Mounted)	75.90	Appliances: Ferrous	Refuse	Low Density / High Income
Circular Saw (Skil $71 / 2^{\prime \prime}$ Blade $21 / 2 \mathrm{Hp}$)	9.70	Appliances: Ferrous	Refuse	Low Density / Medium Income
Electric Floor Board Heater	14.20	Appliances: Ferrous	Refuse	Low Density / High Income
Small Fridge, Plastic, Ferrous Metal, Nonferrous M	17.60	Appliances: Ferrous	Refuse	Medium Density / Medium Income
Ferrous Bed Frame	80.00	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Dishwasher W/ Foam Insulation	56.00	Appliances: Ferrous	MGP	High Density / Medium Income
Ferrous Metal Air Conditioner	63.00	Appliances: Ferrous	MGP	Medium Density / High Income
Ferrous Metal Dishwasher	40.00	Appliances: Ferrous	MGP	Low Density / High Income
Ferrous Metal Oven	156.00	Appliances: Ferrous	MGP	High Density / Low Income
Ferrous Metal Oven	50.00	Appliances: Ferrous	MGP	Low Density / High Income
Ferrous Metal Refrigerator	70.00	Appliances: Ferrous	MGP	Low Density / Medium Income
Ferrous Metal Refrigerator	100.00	Appliances: Ferrous	MGP	Medium Density / High Income
Ferrous Metal Stove	60.00	Appliances: Ferrous	MGP	Medium Density / Medium Income
Ferrous Metal Washing Machine	106.00	Appliances: Ferrous	MGP	High Density / Low Income
Refrigerator	259.00	Appliances: Ferrous	MGP	High Density / Medium Income
Tabalas Metal Bed Frame	80.00	Appliances: Ferrous	MGP	High Density / Low Income
Air Conditioner (Ferrous Metal)	70.30	Appliances: Ferrous	Street Basket	N/A
Piece Of Large Appliance	15.40	Appliances: Ferrous	Street Basket	N/A
Restaurant Stove Frame (Ferrous Metal)	99.40	Appliances: Ferrous	Street Basket	N/A
Stove (Ferrous Metal, Plastic)	146.00	Appliances: Ferrous	Street Basket	N/A
Hard Plastic Vacuum	10.30	Appliances: Plastic	Refuse	Medium Density / High Income
Vacuum Cleaner	34.60	Appliances: Plastic	Refuse	Low Density / High Income
Vacuum Cleaner (Plastic)	14.00	Appliances: Plastic	Refuse	High Density / Medium Income
Vacuum Cleaner (Plastic)	11.10	Appliances: Plastic	Refuse	Low Density / Medium Income
White Plastic Refrigerator Pieces	5.20	Appliances: Plastic	Refuse	Low Density / Medium Income
Vacuum Cleaner	14.00	Appliances: Plastic	MGP	High Density / High Income
1 Speaker (Plywood, Metal, Copper Wires)	26.30	Audio/Visual Equipment: Other	Refuse	Low Density / High Income
Computer Monitor	13.40	Computer Monitors	Refuse	Low Density / High Income
Computer Monitor	8.80	Computer Monitors	Refuse	Medium Density / High Income
Fax Machine	62.80	Other Computer Equipment	Refuse	Medium Density / High Income
Printer (HP Office Jet)	19.30	Other Computer Equipment	Refuse	High Density / Low Income
2X4	19.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / High Income
2×4 S (Wood)	16.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
2×6 Wood Piece (Wood)	15.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / High Income
2"X4" Wood Untreated Rough Cut	58.50	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
2X4 Bundle	32.50	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
2X4 Wood	6.90	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Bundle Of 2×4	28.70	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income

Table 1-146
Bulk Item List by Material Category, Spring 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Painted Lumber	110.40	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Pallet (Wood)	67.20	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Pallet Board	13.80	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income
Partial Pallet, Wood	13.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income
Pieces Of 2X4 Wood	30.60	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Pieces Of Plywood	21.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Pieces Of Wood (2X4'S)	37.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Plywood	29.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Plywood	45.30	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Plywood 2X4	26.30	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Low Income
Plywood Sheet	18.50	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Wood	16.30	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / Medium Income
Wood	12.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Low Income
Wood 2X4	10.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Low Income
Wood Scraps	43.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / High Income
Broken Pallet (Wood Ferrous Metal)	22.10	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Piece Of A Pallet	17.70	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Plywood Pieces	52.95	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Board With Latex On Top	12.40	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Fence Posts, Wood	54.10	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Ironing Board (Particle Board)	7.50	Treated/Contaminated Wood	Refuse	Low Density / High Income
Mattress, Wood	36.40	Treated/Contaminated Wood	Refuse	Low Density / High Income
Painted 2×4	28.20	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Painted 2X4'S	19.40	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Painted Wood (Shelving)	54.00	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Partial Wooden Bed Frame - Particle Board	17.40	Treated/Contaminated Wood	Refuse	High Density / Low Income
Stained Pieces Of Wood 1/2"X3"X36 Wood	16.50	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Trimmed Tree Branch	18.20	Treated/Contaminated Wood	Refuse	Low Density / High Income
Wood 2X4	21.20	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Wood 2X4 4X4 Ply	28.40	Treated/Contaminated Wood	Refuse	Low Density / High Income
Wood Case	11.80	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Wood Foot Of Bed Frame	9.90	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Wood Screen Door, Metal	60.41	Treated/Contaminated Wood	Refuse	Low Density / High Income
Wood Trim \& Molding For Interior Finish Work	35.20	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Wooden Cabinet Door	8.80	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Wooden Cabinet Doors (Varnish)	16.30	Treated/Contaminated Wood	Refuse	Low Density / High Income
Wooden Planks W/ Nails (Wood, Ferrous Metal)	25.50	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
2X4 W/ Nails - Wood, Ferrous Metal	2.80	Treated/Contaminated Wood	Street Basket	N/A
Wooden Plank W/ Nails (Ferrous Metal)	12.10	Treated/Contaminated Wood	Street Basket	N/A
Drywall	39.20	Gypsum Scrap	Refuse	Medium Density / Medium Income
Closet Doors (Wood, Ferrous Metal)	31.00	Other Construction Debris	Refuse	High Density / Medium Income
Part Of Toilet	30.20	Other Construction Debris	Refuse	Low Density / High Income
Ferrous Sink	31.00	Other Construction Debris	MGP	High Density / Low Income
Foam Boogie-Board	2.10	Miscellaneous Inorganics	Refuse	Low Density / High Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
4 Bundles Of Brown Cardboard	37.40	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Brown Cardboard Bowflex Box	9.70	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Misc Cardboard From Moving Boxes	15.10	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Plain OCC Kraft Paper Brown Cardboard	17.90	Plain OCC/Kraft Paper	Paper	Low Density / Medium Income
Thick Cardboard	25.20	Plain OCC/Kraft Paper	Paper	High Density / Low Income
Boxes (Cardboard)	25.00	Plain OCC/Kraft Paper	Street Basket	N/A
White Piping (PVC)	12.80	Other PVC	Refuse	High Density / Low Income
30 Gal Rubbermaid Garbage Can	12.00	Other Rigid Containers/Packaging	Refuse	Low Density / Medium Income
Milk Crate (Plastic)	3.80	Other Rigid Containers/Packaging	Refuse	Medium Density / Medium Income
5 Gallon Pail (Plastic)	10.00	Plastic Materials: Other	Refuse	Medium Density / High Income
Bathroom Sink (Plastic)	13.14	Plastic Materials: Other	Refuse	Low Density / Medium Income
Blinds (Plastic)	25.10	Plastic Materials: Other	Refuse	High Density / Medium Income
Car Seat	10.00	Plastic Materials: Other	Refuse	Medium Density / High Income
Chair Back Cushion (Foam, Plastic)	14.60	Plastic Materials: Other	Refuse	Medium Density / Medium Income
Cooler (Plastic)	3.00	Plastic Materials: Other	Refuse	Low Density / Medium Income
Crushed Crate (Plastic)	30.55	Plastic Materials: Other	Refuse	Low Density / High Income
Freezer Door (Plastic)	7.84	Plastic Materials: Other	Refuse	High Density / Low Income
Garden Hose	4.00	Plastic Materials: Other	Refuse	Low Density / High Income
Hard Rug (Plastic)	6.00	Plastic Materials: Other	Refuse	High Density / Medium Income
Large Barrel, No Lid (Plastic)	12.80	Plastic Materials: Other	Refuse	High Density / Low Income
Milk Crate	6.60	Plastic Materials: Other	Refuse	Medium Density / Medium Income
Office Chairs Plastic + Foam Padding - 3 Office Chairs	51.00	Plastic Materials: Other	Refuse	High Density / High Income
Plastic Barrel/Container	17.58	Plastic Materials: Other	Refuse	High Density / Medium Income
Plastic Child Table	7.00	Plastic Materials: Other	Refuse	High Density / Low Income
Plastic Lawn Chair	10.00	Plastic Materials: Other	Refuse	High Density / Low Income
Plastic Storage Container (Clothes Or Dried Goods)	12.90	Plastic Materials: Other	Refuse	High Density / Low Income
Rubber Tub (Plastic)	9.80	Plastic Materials: Other	Refuse	High Density / Medium Income
Siding (Plastic)	36.60	Plastic Materials: Other	Refuse	Low Density / Medium Income
Stroller (Plastic, Rubber Wheels)	26.60	Plastic Materials: Other	Refuse	Low Density / Medium Income
Suitcase (Cloth, Plastic)	16.00	Plastic Materials: Other	Refuse	High Density / Medium Income
Suitcases (Plastic)	27.60	Plastic Materials: Other	Refuse	High Density / Medium Income
Traffic Cone	7.60	Plastic Materials: Other	Refuse	High Density / High Income
Water Dispenser (Plastic)	18.00	Plastic Materials: Other	Refuse	Medium Density / High Income
Bucket (For Mopping) Plastic, W/ Metal Handle	7.40	Plastic Materials: Other	Street Basket	N/A
Front Car Bumper (Plastic)	10.00	Plastic Materials: Other	Street Basket	N/A
Small Crate (Plastic)	3.60	Plastic Materials: Other	Street Basket	N/A
Suitcase (Cloth, Plastic Frame)	9.40	Plastic Materials: Other	Street Basket	N/A
Suitcase (Poly Vinyl)	12.80	Plastic Materials: Other	Street Basket	N/A
Childs Big Wheel Tricycle (Plastic)	5.60	Plastic Materials: Toys/Housewares	Refuse	High Density / Low Income
Childs Play House Door (Plastic)	12.80	Plastic Materials: Toys/Housewares	Refuse	Low Density / Medium Income
Kitchen Trash Can (Plastic)	2.60	Plastic Materials: Toys/Housewares	Refuse	Low Density / High Income
Power Wheel Toy Plastic W/ Metal	49.80	Plastic Materials: Toys/Housewares	Refuse	Low Density / High Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Spring Board Child	12.00	Plastic Materials: Toys/Housewares	Refuse	Low Density / High Income
Trash Can (Wicker, Plastic)	7.80	Plastic Materials: Toys/Housewares	Refuse	High Density / Low Income
Clothing Rack (Metal)	12.20	Non-Ferrous: Other	Refuse	Low Density / High Income
Piping (Copper)	2.60	Non-Ferrous: Other	Refuse	High Density / Medium Income
Charcoal Grill (Non Ferrous)	0.72	Non-Ferrous: Other	MGP	Low Density / High Income
Helium Balloon Tank (Non Ferrous)	8.30	Non-Ferrous: Other	MGP	Low Density / Medium Income
Window Screening (Non Ferrous)	3.82	Non-Ferrous: Other	MGP	High Density / High Income
Kids Bike (Rubber Wheels, Non Ferrous Frame)	0.87	Non-Ferrous: Toys/Housewares	MGP	High Density / Low Income
Kids Mountain Bike (Non Ferrous Frame, Rubber Tire	20.40	Non-Ferrous: Toys/Housewares	MGP	High Density / Low Income
18 Speed Bike (Metal, Plastic)	32.00	Ferrous: Other	Refuse	Low Density / Medium Income
Baby Stroller	21.20	Ferrous: Other	Refuse	Medium Density / Medium Income
Bed Frame, One Side (Metal, Cloth)	8.52	Ferrous: Other	Refuse	High Density / High Income
Bottom Of Sofa Poly W/ Metal	25.60	Ferrous: Other	Refuse	Medium Density / Low Income
Car Brake (Metal)	42.43	Ferrous: Other	Refuse	Medium Density / Medium Income
Chair (Metal, Foam)	8.01	Ferrous: Other	Refuse	Low Density / High Income
Chair Base (Metal, Foam)	12.40	Ferrous: Other	Refuse	Medium Density / Medium Income
Childs Chair W/ Cushion Seat Covered In Vinyl	48.00	Ferrous: Other	Refuse	High Density / Medium Income
Cover To AC Vent (Ferrous Metal)	4.50	Ferrous: Other	Refuse	High Density / High Income
Cross Ream (Metal)	10.60	Ferrous: Other	Refuse	Medium Density / High Income
Folding Chair (Metal)	7.60	Ferrous: Other	Refuse	High Density / Medium Income
Gate (Metal)	65.00	Ferrous: Other	Refuse	Low Density / Medium Income
Golf Bag Caddy (Metal, Plastic Wheels)	7.56	Ferrous: Other	Refuse	Low Density / Medium Income
Ironing Board - Wooden Table, Ferrous Legs Cloth	10.00	Ferrous: Other	Refuse	High Density / Medium Income
Lawn Mower (Metal, Plastic)	53.40	Ferrous: Other	Refuse	Low Density / Medium Income
Light Table, Box With Light Fixtures (Metal)	7.20	Ferrous: Other	Refuse	Low Density / Medium Income
Metal (Crushed Up Filing Cabinet)	81.08	Ferrous: Other	Refuse	Low Density / Medium Income
Metal Gate	53.00	Ferrous: Other	Refuse	Low Density / High Income
Metal Piping	51.20	Ferrous: Other	Refuse	Low Density / Medium Income
Office Chair (Metal, Wool)	21.30	Ferrous: Other	Refuse	Medium Density / Low Income
Shopping Cart (Ferrous Metal)	8.76	Ferrous: Other	Refuse	Medium Density / High Income
Shopping Cart (Metal, Plastic)	61.00	Ferrous: Other	Refuse	Low Density / High Income
Small Chair Metal Foam/Vinyl Cushion	7.70	Ferrous: Other	Refuse	Low Density / Medium Income
Stroller Med Size Metal + Cloth Seating	10.80	Ferrous: Other	Refuse	Medium Density / Medium Income
Upright Grocery Cart	15.00	Ferrous: Other	Refuse	High Density / High Income
3 Fold Chair	13.05	Ferrous: Other	MGP	Medium Density / Medium Income
Air Conditioning Frame	15.70	Ferrous: Other	MGP	High Density / Medium Income
Baby Crib (Ferrous Metal)	4.90	Ferrous: Other	MGP	Medium Density / Medium Income
Bed Frame	20.10	Ferrous: Other	MGP	Low Density / High Income
Bed Frame	4.40	Ferrous: Other	MGP	Medium Density / High Income
Bed Frame	38.60	Ferrous: Other	MGP	Medium Density / Low Income
Bed Frame (Ferrous Metal)	28.20	Ferrous: Other	MGP	High Density / Medium Income
Bed Frame (Ferrous Metal)	27.50	Ferrous: Other	MGP	Medium Density / Low Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Bed Frame Part (Ferrous Metal)	15.80	Ferrous: Other	MGP	High Density / Medium Income
Bed, Head And Foot Board	1.90	Ferrous: Other	MGP	Medium Density / Medium Income
Bike - W/Wheels	16.30	Ferrous: Other	MGP	High Density / Low Income
Chair With Desk Top (Plastic, Ferrous Frame)	6.00	Ferrous: Other	MGP	High Density / Medium Income
Door Of Fridge	9.72	Ferrous: Other	MGP	High Density / High Income
Exercise Equipment (Ferrous Metal, Foam)	9.15	Ferrous: Other	MGP	High Density / High Income
Exercise Equipment (Framing, Ferrous Metal)	2.19	Ferrous: Other	MGP	Medium Density / Medium Income
File Cabinet Drawer	1.01	Ferrous: Other	MGP	Medium Density / High Income
Filing Cabinet (Ferrous Metal)	3.68	Ferrous: Other	MGP	High Density / High Income
Fill Cabinet	34.30	Ferrous: Other	MGP	High Density / Low Income
Freezer Door (Plastic, Ferrous Metal)	8.60	Ferrous: Other	MGP	Low Density / High Income
Fridge Door	13.41	Ferrous: Other	MGP	Medium Density / High Income
Fridge Door (Ferrous Metal)	11.20	Ferrous: Other	MGP	High Density / High Income
Fridge Door (Ferrous Metal)	27.91	Ferrous: Other	MGP	High Density / Medium Income
Fridge Door (Ferrous Metal, Plastic)	8.75	Ferrous: Other	MGP	High Density / High Income
Fridge Door (Ferrous, Plastic)	14.40	Ferrous: Other	MGP	Low Density / High Income
Futon Frame (Ferrous Metal)	15.03	Ferrous: Other	MGP	High Density / Low Income
Futon Frame (Ferrous Metal)	26.50	Ferrous: Other	MGP	Medium Density / Low Income
Futon Frame (Ferrous Metal)	6.45	Ferrous: Other	MGP	Medium Density / Medium Income
Lawn Mower	19.00	Ferrous: Other	MGP	Low Density / High Income
Lawn Mower With Wheels (Ferrous Metal)	27.00	Ferrous: Other	MGP	Low Density / Medium Income
Metal Scrap	8.10	Ferrous: Other	MGP	High Density / High Income
Pipe (Iron)	4.54	Ferrous: Other	MGP	Medium Density / Low Income
Rolling File Cabinet (Ferrous Metal)	12.76	Ferrous: Other	MGP	Medium Density / Low Income
Scrap (Ferrous Metal)	9.50	Ferrous: Other	MGP	Medium Density / High Income
Scrap Metal	26.00	Ferrous: Other	MGP	High Density / Low Income
Scrap Metal	5.22	Ferrous: Other	MGP	Medium Density / Low Income
Scrap Metal (Ferrous Metal)	4.28	Ferrous: Other	MGP	High Density / Medium Income
Scrap Metal (Ferrous)	40.40	Ferrous: Other	MGP	Medium Density / High Income
Shelf Unit (Metal)	10.50	Ferrous: Other	MGP	Medium Density / Low Income
Shelving (Ferrous Metal)	51.97	Ferrous: Other	MGP	High Density / High Income
Shelving Unit (Ferrous Metal)	14.70	Ferrous: Other	MGP	Low Density / High Income
Stove Drawer	2.20	Ferrous: Other	MGP	Low Density / Medium Income
Stroller	0.50	Ferrous: Other	MGP	High Density / Medium Income
Ventilation Grill (Ferrous Metal)	11.15	Ferrous: Other	MGP	Low Density / High Income
Weight Bench, Arm Equipment (Ferrous Metal)	38.00	Ferrous: Other	MGP	Low Density / High Income
Weight Bench, Bench Press (Ferrous Metal)	19.00	Ferrous: Other	MGP	Low Density / High Income
Drawer To Filing Cabinet	3.85	Ferrous: Other	Street Basket	N/A
Mail/Laundry Bin (Metal, Cloth, Rubber, Wheels)	35.20	Ferrous: Other	Street Basket	N/A
Metal Cart With Plastic Wheels	2.50	Ferrous: Other	Street Basket	N/A
Metal School Desk	34.68	Ferrous: Other	Street Basket	N/A
Metal School Desk With Chair	9.00	Ferrous: Other	Street Basket	N/A

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Minivan Seat	90.44	Ferrous: Other	Street Basket	N/A
Pipe (Steel)	9.90	Ferrous: Other	Street Basket	N/A
Piping (Ferrous Metal)	20.80	Ferrous: Other	Street Basket	N/A
Shopping Cart (Plastic, Metal)	55.00	Ferrous: Other	Street Basket	N/A
1 Ironing Board	10.00	Ferrous: Toys/Housewares	MGP	Low Density / High Income
Bicycle (Ferrous Metal)	0.49	Ferrous: Toys/Housewares	MGP	Medium Density / Medium Income
Exercise Bike (Metal Frame, Mat Seat)	2.02	Ferrous: Toys/Housewares	MGP	Medium Density / Low Income
Kids Bike	1.92	Ferrous: Toys/Housewares	MGP	Low Density / High Income
Kids Bike (Ferrous Metal)	23.70	Ferrous: Toys/Housewares	MGP	High Density / High Income
Bicycle	22.40	Ferrous: Toys/Housewares	Street Basket	N/A
Childs Bicycle	13.00	Ferrous: Toys/Housewares	Street Basket	N/A
Light Fixture	5.85	Ferrous: Hardware	Refuse	High Density / Medium Income
Limb (Wood)	20.40	Stumps/Limbs	Refuse	High Density / Medium Income
Log (Wood)	23.00	Stumps/Limbs	Refuse	Medium Density / Medium Income
Tree With Small Branches And Limbs	50.60	Stumps/Limbs	Refuse	Low Density / Medium Income
Wood Tree Stump	28.00	Stumps/Limbs	Refuse	Low Density / Medium Income
Bed Frame (Wood)	12.00	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Bed Frame Sides (Wood)	48.60	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Bed Post (Wood)	49.65	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Bed Post (Wood)	20.00	Wood Furniture/Furniture Pieces	Refuse	Medium Density / High Income
Bed Posts (Treated Wood)	3.63	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Box Spring	24.60	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income
Box Spring	14.76	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Box Spring	72.20	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Box Spring, Single	44.10	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Chair (Wood, Cloth)	19.95	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Dining Room Chair (Wood, Textile)	5.80	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Drawer (Wood)	6.20	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Dresser (Wood)	66.80	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Dresser Panels (Wood)	20.30	Wood Furniture/Furniture Pieces	Refuse	Low Density / High Income
Framing For Bunk Bed (Wood)	20.64	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Leather Couch (Wood Frame, Springs)	41.25	Wood Furniture/Furniture Pieces	Refuse	High Density / Medium Income
Love Seat / Couch Wood Frame + Cloth	89.60	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Office Table (Wood)	81.90	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Porch Chair (Wicker)	4.35	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Scraps To A Couch (Wood)	33.75	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Sides To Dresser (Wood)	17.20	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Sofa (Wood Frame, Cloth, Springs)	23.20	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Sofa (Wood Frame, Metal Springs, Cloth)	92.70	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Medium Income
Sofa Bed (Wood, Metal, Cloth, Foam)	92.04	Wood Furniture/Furniture Pieces	Refuse	High Density / High Income
Table (Wood)	52.00	Wood Furniture/Furniture Pieces	Refuse	Low Density / Medium Income
Very Small Box Spring Mattress (Wood Metal Cloth)	15.90	Wood Furniture/Furniture Pieces	Refuse	High Density / Low Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Wooden Table	46.20	Wood Furniture/Furniture Pieces	Refuse	Medium Density / Low Income
Futon Frame	2.22	Wood Furniture/Furniture Pieces	MGP	High Density / Low Income
Small Table With Wheels (Ferrous Metal)	7.02	Wood Furniture/Furniture Pieces	MGP	Low Density / High Income
Chair Seat (Wood, Cloth, Metal Springs)	24.40	Wood Furniture/Furniture Pieces	Street Basket	N/A
Dolly (Metal, Wood, Fabric)	65.30	Non-C\&D Untreated Wood	Refuse	Medium Density / High Income
Sofa - Poly W/Wood W/Metal	130.00	Non-C\&D Untreated Wood	Refuse	Medium Density / Low Income
Crate (Wood)	17.60	Non-C\&D Untreated Wood	Street Basket	N/A
Crate Lid (Wood)	17.00	Non-C\&D Untreated Wood	Street Basket	N/A
Carpet	37.20	Carpet/Upholstery	Refuse	High Density / Low Income
Carpet	97.40	Carpet/Upholstery	Refuse	Low Density / High Income
Carpet	10.08	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet	74.20	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Carpet 3Ft X 6Ft	14.80	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpet Liner (Padding)	17.30	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Carpet Rolls	28.00	Carpet/Upholstery	Refuse	High Density / High Income
Carpet Scraps	37.60	Carpet/Upholstery	Refuse	Low Density / High Income
Carpet, Full Size	23.85	Carpet/Upholstery	Refuse	Low Density / Medium Income
Carpeting Roll	19.30	Carpet/Upholstery	Refuse	High Density / High Income
Carpeting Roll	23.80	Carpet/Upholstery	Refuse	Low Density / Medium Income
Large Area Rug	15.08	Carpet/Upholstery	Refuse	Medium Density / Medium Income
Large Green Rug (Textile)	10.20	Carpet/Upholstery	Refuse	Low Density / Medium Income
Roll Of Carpet	28.40	Carpet/Upholstery	Refuse	High Density / High Income
Roll Of Carpet - 5Ft Wide, 20Ft Long	32.92	Carpet/Upholstery	Refuse	High Density / Medium Income
Roll Of Carpeting	22.00	Carpet/Upholstery	Refuse	Low Density / High Income
Rug 6 Ft Long	35.70	Carpet/Upholstery	Refuse	High Density / Medium Income
Rug Scraps	26.01	Carpet/Upholstery	Refuse	Low Density / High Income
Several Rolls Of Carpeting	15.04	Carpet/Upholstery	Refuse	High Density / Low Income
Large Roll Of Matting (Rubber)	13.28	Rubber Products	Refuse	High Density / Medium Income
Rubber Tire	14.00	Rubber Products	Refuse	Low Density / High Income
Rubber Tire	20.60	Rubber Products	Refuse	Medium Density / Low Income
Tire (Rubber)	38.80	Rubber Products	Refuse	Low Density / Medium Income
Bicycle Tire	5.00	Rubber Products	Street Basket	N/A
Couch Cushion	10.08	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Couch Cushion (Foam, Fabric)	7.40	Upholstered or Other Organic-Type Furniture	Refuse	High Density / High Income
Couch Cushion (Leather)	7.60	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Medium Income
Couch Cushion 2Ft X 2Ft Foam	6.65	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Mattress	32.80	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Mattress	41.00	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Mattress - Single	47.80	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Mattress (Foam)	60.20	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Mattress Double	67.70	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Mattress Fill	31.15	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Mattress, Full Size	55.80	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / Medium Income
One Small Box Spring Mattress	12.30	Upholstered or Other Organic-Type Furniture	Refuse	Low Density / High Income
Small Matress	55.90	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Low Income
Small Stuffed Chair (Child) - Vinyl + Cloth + Foam	8.00	Upholstered or Other Organic-Type Furniture	Refuse	High Density / Medium Income
Two Mattress'	42.40	Upholstered or Other Organic-Type Furniture	Refuse	Medium Density / Low Income
Ac Unit (Ferrous Metal)	56.00	Upholstered or Other Organic-Type Furniture	MGP	Low Density / Medium Income
Air Conditioner Metal	90.50	Appliances: Ferrous	Refuse	High Density / High Income
Dishwasher Tank	9.50	Appliances: Ferrous	Refuse	Medium Density / Medium Income
Heater - Ferrous Metal	18.80	Appliances: Ferrous	Refuse	High Density / High Income
Metal (Ferrous) Stove Top And Oven Door	24.80	Appliances: Ferrous	Refuse	Medium Density / Medium Income
Metal Fridge	87.20	Appliances: Ferrous	Refuse	Medium Density / Low Income
Washing Machine (Ferrous Metal)	21.00	Appliances: Ferrous	Refuse	Medium Density / High Income
Washing Machine (Metal)	105.30	Appliances: Ferrous	Refuse	Low Density / High Income
Water Heater (Metal)	126.60	Appliances: Ferrous	Refuse	Medium Density / Low Income
Ac Frame	8.20	Appliances: Ferrous	MGP	High Density / High Income
Ac Unit	13.95	Appliances: Ferrous	MGP	High Density / Low Income
Ac Unit	41.80	Appliances: Ferrous	MGP	Low Density / High Income
Ac Unit (Ferrous Metal)	9.50	Appliances: Ferrous	MGP	High Density / High Income
Ac Unit (Ferrous Metal)	22.85	Appliances: Ferrous	MGP	Medium Density / High Income
Ac Unit (Ferrous)	12.00	Appliances: Ferrous	MGP	Medium Density / High Income
Ac Unit, Mechanical Inside (Ferrous Metal)	4.34	Appliances: Ferrous	MGP	High Density / High Income
Air Conditioner Unit	72.70	Appliances: Ferrous	MGP	Medium Density / Low Income
Clothes Washer	19.55	Appliances: Ferrous	MGP	Low Density / High Income
Dryer	33.00	Appliances: Ferrous	MGP	Low Density / High Income
Fridge	117.00	Appliances: Ferrous	MGP	High Density / High Income
Fridge	107.04	Appliances: Ferrous	MGP	High Density / Medium Income
Hot Water Heater	44.85	Appliances: Ferrous	MGP	Low Density / Medium Income
Microwave	46.88	Appliances: Ferrous	MGP	Medium Density / High Income
Mini-Dishwasher (Ferrous Metal)	24.60	Appliances: Ferrous	MGP	High Density / High Income
Refrigerator (Ferrous Metal)	96.85	Appliances: Ferrous	MGP	Medium Density / Medium Income
Refrigerator W/O Door (Plastic, Ferrous Metal)	173.50	Appliances: Ferrous	MGP	High Density / Medium Income
Stove	7.52	Appliances: Ferrous	MGP	Medium Density / Medium Income
Stove (Ferrous Metal, Gas Line)	121.90	Appliances: Ferrous	MGP	Medium Density / Medium Income
Toaster Oven	1.32	Appliances: Ferrous	MGP	Medium Density / Low Income
Two Office Chairs (Ferrous)	2.94	Appliances: Ferrous	MGP	Medium Density / High Income
Washing Machine	86.00	Appliances: Ferrous	MGP	Medium Density / High Income
A/C Unit Metal	24.60	Appliances: Ferrous	Street Basket	N/A
Air Conditioning Unit (Ferrous Metal)	48.60	Appliances: Ferrous	Street Basket	N/A
Case To Stand-Alone A/C Unit (Plastic, Metal)	19.84	Appliances: Plastic	Refuse	High Density / High Income
Fan - No Front Cover Plastic Blades Metal Cage Around	9.80	Appliances: Plastic	Refuse	Medium Density / Medium Income
Fan Plastic Blades Metal Cage	13.40	Appliances: Plastic	Refuse	High Density / Low Income
Microwave (Plastic)	31.00	Appliances: Plastic	Refuse	High Density / Medium Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Vacuum	18.50	Appliances: Plastic	Refuse	High Density / High Income
Vacuum - Rectangular 24X8" Plastic + Metal	18.50	Appliances: Plastic	Refuse	High Density / High Income
Vacuum	4.88	Appliances: Plastic	MGP	Low Density / High Income
Fan (Plastic)	5.20	Appliances: Plastic	Street Basket	N/A
2 Ea Speakers Wood W/Metal	38.50	Audio/Visual Equipment: Other	Refuse	Medium Density / High Income
Directtv Satellite Dish (Metal, Plastic)	5.30	Audio/Visual Equipment: Other	Refuse	High Density / Low Income
Side To Speaker Cabinet - Wood W/ Black Varnish	5.20	Audio/Visual Equipment: Other	Refuse	Medium Density / Medium Income
Speakers (Two) Wood W/ Metal	72.60	Audio/Visual Equipment: Other	Refuse	Medium Density / Low Income
Transistor Radio	5.82	Audio/Visual Equipment: Other	Refuse	High Density / High Income
2Ea Computer Monitors	47.70	Computer Monitors	Refuse	Medium Density / Low Income
Apple Computer Screen	7.00	Computer Monitors	Refuse	High Density / Medium Income
Computer Screen	36.40	Computer Monitors	Refuse	Medium Density / Medium Income
10" Tv - Plastic, Glass, Metal	27.00	Televisions	Refuse	High Density / Low Income
12 Tv	26.00	Televisions	Refuse	Low Density / High Income
All Of A TV, Except The Screen	13.70	Televisions	Refuse	Medium Density / Medium Income
TV	13.42	Televisions	Refuse	High Density / Medium Income
TV (Plastic, Glass, Metal)	17.12	Televisions	Refuse	Low Density / High Income
TV Plastic 13" W/ Metal Tv	38.40	Televisions	Refuse	Medium Density / High Income
Small Tv (Plastic)	24.80	Televisions	Street Basket	N/A
Computer	22.80	Other Computer Equipment	Refuse	Medium Density / Medium Income
Computer - Metal	29.60	Other Computer Equipment	Refuse	Low Density / High Income
Computer Base	35.11	Other Computer Equipment	Refuse	High Density / Low Income
Computer Hard Drive	24.40	Other Computer Equipment	Refuse	High Density / Medium Income
Computer Hard Drive	26.46	Other Computer Equipment	Refuse	Medium Density / Medium Income
Computer -Metal	27.10	Other Computer Equipment	Refuse	High Density / Low Income
Computer Tower	20.80	Other Computer Equipment	Refuse	Medium Density / Medium Income
One Computer CPU	51.10	Other Computer Equipment	Refuse	Medium Density / Low Income
Printer	9.00	Other Computer Equipment	Refuse	High Density / Medium Income
Computer Frame (Ferrous Metal)	12.25	Other Computer Equipment	MGP	High Density / Low Income
Computer Frame (Ferrous Metal)	1.49	Other Computer Equipment	MGP	High Density / Medium Income
Computer Hard Drive (Metal)	17.40	Other Computer Equipment	Street Basket	N/A
Computer Tower (Metal)	9.20	Other Computer Equipment	Street Basket	N/A
Board	11.80	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Boards (Wood)	38.20	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Dimensional Lumber	16.15	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income
Dimensional Lumber, Plywood Shelves	25.40	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Medium Income
Lumber (Wood)	38.70	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / High Income
Plywood	13.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / High Income
Plywood	26.00	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Plywood	13.50	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income
Plywood Board	41.60	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income
Plywood Board 4Ft X 2Ft	11.60	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Medium Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Post (Wood)	20.80	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Low Income
Scraps (Wood)	22.08	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Shelving (Particle Board, Laminate)	9.80	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Medium Income
Stack Of Pallets (Wood)	52.32	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Medium Income
Various Pieces Of Scrap (Wood)	20.96	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Various Wood Pieces, Board In String	18.30	Untreated Dimension Lumber, Pallets, Crates	Refuse	High Density / Low Income
Wood Board	2.10	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Wood Plank (Plywood)	8.20	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Wood Slabs	32.60	Untreated Dimension Lumber, Pallets, Crates	Refuse	Medium Density / Low Income
Wooden Pallets	73.40	Untreated Dimension Lumber, Pallets, Crates	Refuse	Low Density / High Income
Pallet With Nails (Wood)	17.10	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Ply Wood	6.45	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
Various Pieces Of Wood	7.75	Untreated Dimension Lumber, Pallets, Crates	Street Basket	N/A
2 Wood Panels	26.04	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
3 Pieces(2'X2' Particle Board W/ Black Veneer)	28.90	Treated/Contaminated Wood	Refuse	High Density / High Income
3 Varnished Wood Pieces	6.20	Treated/Contaminated Wood	Refuse	High Density / High Income
Cabinet (Wood Panel)	8.40	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Cabinet Board 1Ft X 2Ft - Treated Wood	5.00	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Door Pieces W/ Hanger Metal	15.40	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Door Solid Wood Painted	29.40	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Fence (Wood)	24.60	Treated/Contaminated Wood	Refuse	Low Density / High Income
Fence Post (Wood)	36.00	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Painted Piece Of Wood	4.00	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Painted Wood	6.20	Treated/Contaminated Wood	Refuse	Low Density / Medium Income
Particle Board	51.80	Treated/Contaminated Wood	Refuse	High Density / High Income
Particle Board	17.00	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Particle Board	7.60	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Particle Board Doors	27.20	Treated/Contaminated Wood	Refuse	High Density / Medium Income
Particle Board Pieces	26.70	Treated/Contaminated Wood	Refuse	High Density / Low Income
Particle Board Scraps	64.00	Treated/Contaminated Wood	Refuse	Medium Density / Medium Income
Set Of Doors - Wood (Composite(Particle) W/ Metal	97.70	Treated/Contaminated Wood	Refuse	High Density / Medium Income
White Under Covered Party Board	17.10	Treated/Contaminated Wood	Refuse	High Density / Low Income
Wood Cabinet	42.80	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Wood Pieces-Baseboards	16.00	Treated/Contaminated Wood	Refuse	High Density / Low Income
Wood Slats	10.00	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Wood Slats	43.00	Treated/Contaminated Wood	Refuse	Medium Density / Low Income
Wooden Door	40.00	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Wooden Platform	20.00	Treated/Contaminated Wood	Refuse	Medium Density / High Income
Insulation (For A House)	8.32	Other Construction Debris	Refuse	Low Density / High Income
Pieces Of Cabinet Top - Particle Board + Laminated	17.70	Other Construction Debris	Refuse	High Density / Medium Income
Sink (Stainless Steel)	7.00	Other Construction Debris	Refuse	Low Density / High Income
Toilet	23.80	Other Construction Debris	Refuse	Low Density / Medium Income

Table 1-147
Bulk Item List by Material Category, Summer 2005, WCS (continued)

Bulk Item	Total Bulk Weight (lbs)	Category	Stream	Density / Income Stratum
Bath Tub	21.75	Other Construction Debris	MGP	High Density / Low Income
2 Window Frames, 1 With Glass (Aluminum)	18.45	Other Construction Debris	Street Basket	N/A
Porcelain Sink With Metal Hardware	84.20	Other Construction Debris	Street Basket	N / A
Artificial Christmas Tree Inside Of A Cardboard Box	31.52	Miscellaneous Inorganics	Refuse	Low Density / High Income
Cardboard Boxes Filled With Fluorescent Light	32.80	Fluorescent Tubes	Refuse	High Density / Medium Income

6.3 Durable Items

For the purposes of the WCS, durables included the following categories of waste, whether or not they fit the definition of "bulk" (i.e., whether they were able to fit into a 96-gallon container or not).

- Audio visual equipment/cell phones
- Televisions
- Computer monitors
- Other computer equipment
- Small appliances: plastic, ferrous, and non-ferrous
- Other plastic materials
- Wood furniture/furniture pieces
- Non C\&D untreated wood
- Upholstered/Other organic type furniture

Tables 1-148 through 1-153 present a summary of the composition of the durables in the PWCS and the WCS citywide and by borough. Each table shows the percentage of durable items for the Refuse, MGP, and Waste streams for the PWCS and each season and annually for the WCS. They also include tonnage projections by material group - plastic, metal, organic, appliance/electronics, and miscellaneous durables. These tables are useful in comparing the disposal and recycling of durable items, by material, through the seasons.

Table 1-148
Citywide, Durables Summary, PWCS and WCS

Material Category	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Other PVC	0.07\%	0.02\%	0.01\%	0.01\%	0.03\%	0.02\%	0.08\%	0.04\%	0.02\%	0.00\%	0.08\%	0.04\%	0.06\%	0.02\%	0.01\%	0.01\%	0.03\%	0.02\%
Other Plastics Materials	1.67\%	1.93\%	1.87\%	1.72\%	2.14\%	1.92\%	3.56\%	3.59\%	3.10\%	3.93\%	3.50\%	3.54\%	1.66\%	1.86\%	1.77\%	1.72\%	2.04\%	1.85\%
Plastics Durables Subtotal	1.75\%	1.95\%	1.88\%	1.73\%	2.17\%	1.93\%	3.64\%	3.63\%	3.12\%	3.94\%	3.58\%	3.58\%	1.73\%	1.87\%	1.78\%	1.73\%	2.07\%	1.86\%
Durables Plastics as \% of All Plastics	12.30\%	13.56\%	12.83\%	11.79\%	14.22\%	13.10\%	16.91\%	16.42\%	13.71\%	16.49\%	14.08\%	15.18\%	12.89\%	13.92\%	12.94\%	12.41\%	14.18\%	13.37\%
Other Aluminum	0.05\%	0.06\%	0.03\%	0.03\%	0.03\%	0.04\%	0.20\%	0.14\%	0.06\%	0.69\%	0.54\%	0.37\%	0.05\%	0.06\%	0.03\%	0.07\%	0.07\%	0.06\%
Other Non-Ferrous	0.06\%	0.09\%	0.21\%	0.11\%	0.12\%	0.13\%	0.27\%	0.58\%	0.92\%	0.72\%	0.90\%	0.78\%	0.07\%	0.12\%	0.23\%	0.15\%	0.17\%	0.17\%
Other Ferrous	1.03\%	1.05\%	1.46\%	1.17\%	1.34\%	1.25\%	20.20\%	15.71\%	13.86\%	12.39\%	9.54\%	12.82\%	2.23\%	1.95\%	2.19\%	1.85\%	1.81\%	1.94\%
Mixed Metals	0.56\%	0.51\%	0.61\%	0.45\%	0.45\%	0.50\%	0.90\%	2.87\%	3.50\%	3.88\%	3.13\%	3.35\%	0.54\%	0.62\%	0.75\%	0.65\%	0.60\%	0.65\%
Metals Durables Subtotal	1.70\%	1.71\%	2.30\%	1.76\%	1.95\%	1.92\%	21.56\%	19.30\%	18.34\%	17.69\%	14.10\%	17.32\%	2.90\%	2.75\%	3.19\%	2.72\%	2.65\%	2.82\%
Durable Metals as \% of All Metals	48.16\%	51.05\%	56.87\%	50.40\%	52.13\%	52.64\%	69.38\%	66.54\%	65.14\%	64.58\%	61.00\%	64.45\%	57.09\%	57.61\%	59.94\%	56.12\%	55.31\%	57.25\%
Non-C\&D Untreated Wood	0.38\%	0.06\%	0.31\%	0.25\%	0.27\%	0.22\%	0.07\%	0.02\%	0.09\%	0.05\%	0.03\%	0.05\%	0.32\%	0.05\%	0.26\%	0.21\%	0.23\%	0.19\%
Organics Durables Subtotal	0.38\%	0.06\%	0.31\%	0.25\%	0.27\%	0.22\%	0.07\%	0.02\%	0.09\%	0.05\%	0.03\%	0.05\%	0.32\%	0.05\%	0.26\%	0.21\%	0.23\%	0.19\%
Durable Organics as \% of All Organics	0.79\%	0.13\%	0.65\%	0.51\%	0.59\%	0.47\%	2.20\%	0.88\%	3.91\%	1.62\%	0.86\%	1.72\%	0.80\%	0.13\%	0.68\%	0.52\%	0.60\%	0.48\%
Appliances: Ferrous	0.00\%	0.16\%	0.31\%	0.39\%	0.68\%	0.39\%	0.00\%	9.32\%	6.50\%	3.21\%	3.38\%	5.54\%	0.00\%	0.78\%	0.72\%	0.55\%	0.81\%	0.71\%
Appliances: Non-Ferrous	0.00\%	0.04\%	0.02\%	0.05\%	0.01\%	0.03\%	0.00\%	0.10\%	0.02\%	0.05\%	0.38\%	0.14\%	0.00\%	0.04\%	0.02\%	0.04\%	0.04\%	0.03\%
Appliances: Plastic	0.27\%	0.19\%	0.16\%	0.30\%	0.32\%	0.24\%	2.09\%	1.34\%	0.68\%	0.70\%	0.77\%	0.87\%	0.37\%	0.25\%	0.18\%	0.30\%	0.32\%	0.26\%
Electronics Total	0.59\%	0.59\%	0.55\%	0.36\%	1.28\%	0.70\%	0.82\%	0.71\%	1.11\%	0.84\%	0.95\%	0.90\%	0.54\%	0.53\%	0.53\%	0.36\%	1.13\%	0.64\%
Appliances/Electronics Durables Subtotal	0.86\%	0.98\%	1.03\%	1.10\%	2.30\%	1.36\%	2.91\%	11.47\%	8.32\%	4.80\%	5.48\%	7.45\%	0.92\%	1.60\%	1.44\%	1.25\%	2.31\%	1.65\%
Durable Appliances/Electronics \% of All Appl/Elec	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Ceramics	0.36\%	0.44\%	0.53\%	0.43\%	0.46\%	0.46\%	0.45\%	0.47\%	0.46\%	0.47\%	0.45\%	0.46\%	0.33\%	0.40\%	0.47\%	0.39\%	0.42\%	0.42\%
Misc. Inorganic Durables Subtotal	0.36\%	0.44\%	0.53\%	0.43\%	0.46\%	0.46\%	0.45\%	0.47\%	0.46\%	0.47\%	0.45\%	0.46\%	0.33\%	0.40\%	0.47\%	0.39\%	0.42\%	0.42\%
Durable Misc. Inorganic as \% of All Misc. Inorganics	60.63\%	73.58\%	68.31\%	53.53\%	68.61\%	65.15\%	52.08\%	92.34\%	81.21\%	83.96\%	73.67\%	82.30\%	59.68\%	74.98\%	69.04\%	55.23\%	68.69\%	66.21\%
Durables Subtotal	5.04\%	5.15\%	6.05\%	5.27\%	7.15\%	5.90\%	28.63\%	34.88\%	30.33\%	26.94\%	23.64\%	28.85\%	6.19\%	6.67\%	7.14\%	6.30\%	7.67\%	6.93\%
Non-Durables Subtotal	87.95\%	88.99\%	88.60\%	87.24\%	86.55\%	87.82\%	71.09\%	64.55\%	69.38\%	72.66\%	75.97\%	70.74\%	87.95\%	88.48\%	88.48\%	87.48\%	87.10\%	87.87\%
C\&D Subtotal	7.01\%	5.86\%	5.35\%	7.49\%	6.30\%	6.28\%	0.28\%	0.56\%	0.29\%	0.41\%	0.38\%	0.41\%	5.86\%	4.86\%	4.37\%	6.22\%	5.23\%	5.20\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Tonnage Projections ${ }^{(1)}$																		
	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Plastic Durables	733.88	1,052.97	913.75	964.81	1,168.11	1,024.91	124.94	165.77	133.56	189.70	170.18	164.81	876.18	1,236.68	1,062.59	1,169.25	1,347.76	1,204.07
Metal Durables	716.10	924.21	1,115.74	983.29	1,046.49	1,017.44	740.21	881.62	786.03	852.34	670.53	797.63	1,467.89	1,813.27	1,906.41	1,839.37	1,722.47	1,820.38
Organic Durables	158.19	32.65	148.16	139.50	143.63	115.99	2.50	0.87	4.06	2.21	1.31	2.11	161.06	33.55	155.71	142.28	147.25	119.70
Appliances/Electronics Durables	360.68	530.74	501.89	610.53	1,237.92	720.27	99.99	523.77	356.44	231.15	260.60	342.99	464.70	1,056.84	859.48	845.34	1,501.22	1,065.72
Miscellaneous Inorganics Durables	151.52	237.03	258.11	238.06	249.72	245.73	15.33	21.33	19.51	22.48	21.34	21.17	167.65	261.44	278.36	260.54	272.47	268.20
Durables Subtotal	2,120.37	2,777.60	2,937.65	2,936.19	3,845.87	3,124.33	982.98	1,593.37	1,299.60	1,297.88	1,123.96	1,328.70	3,137.48	4,401.78	4,262.55	4,256.78	4,991.17	4,478.07
Non-Durables Subtotal	36,965.64	48,007.01	43,000.44	48,613.19	46,549.26	46,542.47	2,440.59	2,948.75	2,972.80	3,500.90	3,611.74	3,258.55	44,580.60	58,418.42	52,808.40	59,107.52	56,709.87	56,761.05
C\&D Subtotal	2,944.54	3,159.23	2,594.77	4,174.89	3,388.88	3,329.44	9.54	25.72	12.32	19.65	18.24	18.98	2,968.04	3,205.56	2,610.23	4,205.01	3,407.12	3,356.98
Grand Total	42,030.55	53,943.84	48,532.86	55,724.27	53,784.01	52,996.24	3,433.11	4,567.83	4,284.72	4,818.43	4,753.94	4,606.23	50,686.12	66,025.76	59,681.18	67,569.31	65,108.16	64,596.10

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table 1-149
Manhattan, Durables Summary, PWCS and WCS

Material Category	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Other PVC	0.11\%	0.01\%	0.00\%	0.00\%	0.05\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.01\%	0.09\%	0.01\%	0.00\%	0.00\%	0.04\%	0.01\%
Other Plastics Materials	1.13\%	1.27\%	1.55\%	1.59\%	2.33\%	1.68\%	2.80\%	3.16\%	3.08\%	3.47\%	3.73\%	3.36\%	1.13\%	1.24\%	1.48\%	1.52\%	2.15\%	1.59\%
Plastics Durables Subtotal	1.23\%	1.28\%	1.55\%	1.59\%	2.38\%	1.69\%	2.81\%	3.17\%	3.08\%	3.47\%	3.75\%	3.37\%	1.22\%	1.25\%	1.48\%	1.52\%	2.19\%	1.60\%
Durables Plastics as \% of All Plastics	7.94\%	8.23\%	10.00\%	10.24\%	15.32\%	10.91\%	16.95\%	19.14\%	18.63\%	20.93\%	22.65\%	20.34\%	8.63\%	8.84\%	10.47\%	10.77\%	15.48\%	11.34\%
Other Aluminum	0.05\%	0.02\%	0.03\%	0.04\%	0.02\%	0.03\%	0.10\%	0.23\%	0.01\%	0.60\%	0.26\%	0.28\%	0.05\%	0.03\%	0.02\%	0.07\%	0.04\%	0.04\%
Other Non-Ferrous	0.06\%	0.12\%	0.14\%	0.13\%	0.12\%	0.13\%	0.01\%	0.62\%	0.58\%	0.42\%	1.26\%	0.72\%	0.05\%	0.14\%	0.15\%	0.13\%	0.19\%	0.15\%
Other Ferrous	1.02\%	0.96\%	1.41\%	1.21\%	0.87\%	1.11\%	22.97\%	15.45\%	12.93\%	11.07\%	8.90\%	12.08\%	2.42\%	1.80\%	2.05\%	1.74\%	1.36\%	1.74\%
Mixed Metals	0.18\%	0.33\%	1.03\%	0.59\%	0.30\%	0.56\%	0.50\%	2.79\%	4.11\%	3.82\%	3.13\%	3.47\%	0.18\%	0.45\%	1.11\%	0.74\%	0.47\%	0.69\%
Metals Durables Subtotal	1.31\%	1.43\%	2.61\%	1.97\%	1.31\%	1.83\%	23.58\%	19.09\%	17.63\%	15.91\%	13.55\%	16.54\%	2.70\%	2.42\%	3.33\%	2.69\%	2.06\%	2.63\%
Durable Metals as \% of All Metals	38.79\%	42.37\%	77.17\%	58.21\%	38.79\%	54.13\%	81.78\%	66.20\%	61.15\%	55.18\%	46.98\%	57.38\%	56.41\%	50.66\%	69.68\%	56.19\%	42.97\%	54.91\%
Non-C\&D Untreated Wood	0.46\%	0.04\%	0.47\%	0.10\%	0.12\%	0.18\%	0.06\%	0.02\%	0.08\%	0.00\%	0.02\%	0.03\%	0.39\%	0.03\%	0.38\%	0.08\%	0.10\%	0.15\%
Organics Durables Subtotal	0.46\%	0.04\%	0.47\%	0.10\%	0.12\%	0.18\%	0.06\%	0.02\%	0.08\%	0.00\%	0.02\%	0.03\%	0.39\%	0.03\%	0.38\%	0.08\%	0.10\%	0.15\%
Durable Organics as \% of All Organics	1.22\%	0.10\%	1.23\%	0.27\%	0.32\%	0.48\%	0.15\%	0.06\%	0.22\%	0.01\%	0.06\%	0.09\%	1.02\%	0.08\%	1.01\%	0.22\%	0.26\%	0.39\%
Appliances: Ferrous	0.00\%	0.17\%	0.21\%	0.18\%	0.58\%	0.29\%	0.00\%	9.79\%	7.84\%	2.41\%	3.38\%	5.84\%	0.00\%	0.80\%	0.74\%	0.31\%	0.71\%	0.64\%
Appliances: Non-Ferrous	0.00\%	0.04\%	0.01\%	0.01\%	0.01\%	0.02\%	0.00\%	0.24\%	0.02\%	0.01\%	0.26\%	0.13\%	0.00\%	0.05\%	0.01\%	0.01\%	0.03\%	0.02\%
Appliances: Plastic	0.03\%	0.18\%	0.15\%	0.16\%	0.54\%	0.25\%	0.60\%	1.47\%	0.67\%	0.91\%	0.81\%	0.96\%	0.07\%	0.24\%	0.17\%	0.19\%	0.49\%	0.27\%
Electronics Total	0.28\%	0.44\%	0.30\%	0.20\%	0.77\%	0.43\%	1.68\%	0.37\%	1.91\%	1.15\%	1.12\%	1.14\%	0.34\%	0.37\%	0.38\%	0.26\%	0.70\%	0.42\%
Appliances/Electronics Durables Subtotal	0.31\%	0.83\%	0.68\%	0.56\%	1.90\%	0.99\%	2.28\%	11.88\%	10.44\%	4.48\%	5.57\%	8.08\%	0.41\%	1.46\%	1.29\%	0.78\%	1.92\%	1.36\%
Durable Appliances/Electronics \% of All Appl/Elec	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Ceramics	0.54\%	0.22\%	0.39\%	0.41\%	0.26\%	0.32\%	0.20\%	0.29\%	0.31\%	0.37\%	0.37\%	0.34\%	0.46\%	0.19\%	0.33\%	0.35\%	0.24\%	0.28\%
Misc. Inorganic Durables Subtotal	0.54\%	0.22\%	0.39\%	0.41\%	0.26\%	0.32\%	0.20\%	0.29\%	0.31\%	0.37\%	0.37\%	0.34\%	0.46\%	0.19\%	0.33\%	0.35\%	0.24\%	0.28\%
Durable Misc. Inorganic as \% of All Misc. Inorganics	66.09\%	64.56\%	57.70\%	60.72\%	63.88\%	60.99\%	98.95\%	90.72\%	76.21\%	82.35\%	70.53\%	78.74\%	66.76\%	66.13\%	58.36\%	61.94\%	64.68\%	62.06\%
Durables Subtotal	3.85\%	3.80\%	5.70\%	4.62\%	5.97\%	5.01\%	28.93\%	34.44\%	31.55\%	24.23\%	23.26\%	28.36\%	5.18\%	5.36\%	6.81\%	5.42\%	6.50\%	6.01\%
Non-Durables Subtotal	88.71\%	92.39\%	90.20\%	90.59\%	89.89\%	90.78\%	70.98\%	64.88\%	68.16\%	75.16\%	76.21\%	71.12\%	88.62\%	91.57\%	89.93\%	90.74\%	90.17\%	90.61\%
C\&D Subtotal	7.44\%	3.81\%	4.10\%	4.79\%	4.15\%	4.21\%	0.09\%	0.68\%	0.29\%	0.61\%	0.53\%	0.53\%	6.20\%	3.08\%	3.26\%	3.85\%	3.33\%	3.38\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Tonnage Projections ${ }^{(1)}$																		
	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Plastic Durables	123.40	121.77	143.71	150.41	216.80	158.17	24.07	26.46	26.19	29.67	31.36	28.42	154.27	152.74	174.10	182.72	251.35	190.23
Metal Durables	131.49	136.67	241.79	186.44	119.74	171.16	202.23	159.36	149.68	136.20	113.29	139.63	341.30	296.41	392.12	322.89	236.18	311.90
Organic Durables	46.14	3.57	43.15	9.78	10.90	16.85	0.48	0.20	0.69	0.03	0.18	0.27	48.82	3.77	44.78	9.81	11.30	17.42
Appliances/Electronics Durables	30.82	79.57	63.02	52.61	173.30	92.13	19.59	99.16	88.60	38.35	46.58	68.17	52.15	178.74	151.66	93.47	220.45	161.08
Miscellaneous Inorganics Durables	53.79	20.81	36.05	38.67	23.79	29.83	1.75	2.38	2.66	3.15	3.13	2.83	58.09	23.21	38.72	41.82	27.04	32.70
Durables Subtotal	385.64	362.40	527.72	437.91	544.53	468.14	248.11	287.56	267.82	207.39	194.55	239.33	654.63	654.88	801.38	650.72	746.33	713.32
Non-Durables Subtotal	8,891.58	8,811.21	8,357.48	8,579.34	8,205.28	8,488.33	608.74	541.72	578.62	643.40	637.29	600.26	11,206.29	11,198.14	10,577.60	10,897.76	10,359.76	10,758.32
C\&D Subtotal	746.15	363.55	380.16	453.65	378.46	393.96	0.76	5.65	2.45	5.22	4.40	4.43	784.55	376.21	383.14	461.98	382.86	401.05
Grand Total	10,023.37	9,537.15	9,265.36	9,470.90	9,128.27	9,350.42	857.63	834.93	848.89	856.02	836.23	844.02	12,645.49	12,229.24	11,762.12	12,010.45	11,488.95	11,872.69

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table 1-150
Bronx, Durables Summary, PWCS and WCS

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table 1-151
Brooklyn, Durables Summary, PWCS and WCS

	Refuse						MGP						Waste					
Material Category	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Other PVC	0.12\%	0.01\%	0.00\%	0.01\%	0.03\%	0.01\%	0.00\%	0.08\%	0.03\%	0.00\%	0.14\%	0.06\%	0.10\%	0.02\%	0.01\%	0.01\%	0.03\%	0.02\%
Other Plastics Materials	1.98\%	2.03\%	1.96\%	1.76\%	1.87\%	1.90\%	3.79\%	3.68\%	3.05\%	3.98\%	3.59\%	3.59\%	1.92\%	1.96\%	1.86\%	1.78\%	1.84\%	1.86\%
Plastics Durables Subtotal	2.10\%	2.04\%	1.96\%	1.77\%	1.89\%	1.92\%	3.79\%	3.75\%	3.08\%	3.98\%	3.73\%	3.65\%	2.02\%	1.97\%	1.86\%	1.79\%	1.87\%	1.87\%
Durables Plastics as \% of All Plastics	13.43\%	13.07\%	12.57\%	11.33\%	12.12\%	12.26\%	18.32\%	18.16\%	14.89\%	19.27\%	18.06\%	17.67\%	13.92\%	13.59\%	12.83\%	12.31\%	12.88\%	12.91\%
Other Aluminum	0.05\%	0.08\%	0.02\%	0.03\%	0.03\%	0.04\%	0.32\%	0.10\%	0.10\%	0.62\%	0.56\%	0.36\%	0.07\%	0.08\%	0.03\%	0.07\%	0.06\%	0.06\%
Other Non-Ferrous	0.04\%	0.07\%	0.21\%	0.10\%	0.11\%	0.12\%	0.31\%	0.50\%	1.05\%	0.71\%	0.69\%	0.73\%	0.05\%	0.10\%	0.25\%	0.14\%	0.14\%	0.15\%
Other Ferrous	1.03\%	1.16\%	1.42\%	1.09\%	1.23\%	1.22\%	22.58\%	16.67\%	13.40\%	12.18\%	9.60\%	12.91\%	2.39\%	2.08\%	2.09\%	1.76\%	1.73\%	1.91\%
Mixed Metals	0.68\%	0.65\%	0.55\%	0.41\%	0.52\%	0.53\%	1.05\%	2.74\%	3.27\%	3.93\%	2.80\%	3.19\%	0.65\%	0.73\%	0.68\%	0.62\%	0.64\%	0.67\%
Metals Durables Subtotal	1.80\%	1.97\%	2.21\%	1.63\%	1.89\%	1.91\%	24.27\%	20.01\%	17.82\%	17.45\%	13.65\%	17.19\%	3.16\%	2.99\%	3.05\%	2.58\%	2.57\%	2.79\%
Durable Metals as \% of All Metals	47.72\%	52.10\%	58.53\%	43.22\%	49.99\%	50.76\%	71.37\%	58.86\%	52.42\%	51.32\%	40.15\%	50.55\%	57.73\%	54.65\%	55.84\%	47.23\%	47.02\%	51.11\%
Non-C\&D Untreated Wood	0.09\%	0.05\%	0.23\%	0.30\%	0.46\%	0.26\%	0.04\%	0.03\%	0.12\%	0.07\%	0.02\%	0.06\%	0.08\%	0.04\%	0.21\%	0.26\%	0.39\%	0.22\%
Organics Durables Subtotal	0.09\%	0.05\%	0.23\%	0.30\%	0.46\%	0.26\%	0.04\%	0.03\%	0.12\%	0.07\%	0.02\%	0.06\%	0.08\%	0.04\%	0.21\%	0.26\%	0.39\%	0.22\%
Durable Organics as \% of All Organics	0.20\%	0.12\%	0.52\%	0.67\%	1.02\%	0.58\%	0.08\%	0.06\%	0.27\%	0.17\%	0.05\%	0.13\%	0.17\%	0.10\%	0.46\%	0.57\%	0.87\%	0.50\%
Appliances: Ferrous	0.00\%	0.21\%	0.39\%	0.30\%	0.88\%	0.44\%	0.00\%	9.32\%	6.02\%	3.21\%	3.43\%	5.44\%	0.00\%	0.79\%	0.73\%	0.47\%	0.98\%	0.74\%
Appliances: Non-Ferrous	0.00\%	0.04\%	0.03\%	0.07\%	0.01\%	0.04\%	0.00\%	0.05\%	0.03\%	0.06\%	0.33\%	0.12\%	0.00\%	0.04\%	0.02\%	0.06\%	0.03\%	0.04\%
Appliances: Plastic	0.20\%	0.18\%	0.18\%	0.28\%	0.27\%	0.23\%	5.08\%	1.43\%	0.59\%	0.78\%	0.78\%	0.90\%	0.51\%	0.25\%	0.19\%	0.29\%	0.28\%	0.25\%
Electronics Total	0.69\%	0.69\%	0.71\%	0.35\%	1.68\%	0.85\%	0.84\%	0.78\%	0.78\%	0.71\%	0.91\%	0.79\%	0.63\%	0.62\%	0.65\%	0.34\%	1.48\%	0.77\%
Appliances/Electronics Durables Subtotal	0.88\%	1.11\%	1.31\%	1.00\%	2.84\%	1.56\%	5.92\%	11.59\%	7.42\%	4.76\%	5.45\%	7.26\%	1.14\%	1.70\%	1.59\%	1.17\%	2.78\%	1.81\%
Durable Appliances/Electronics \% of All Appl/Elec	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Ceramics	0.13\%	0.48\%	0.57\%	0.43\%	0.41\%	0.47\%	0.34\%	0.48\%	0.42\%	0.48\%	0.46\%	0.46\%	0.13\%	0.44\%	0.50\%	0.39\%	0.38\%	0.43\%
Misc. Inorganic Durables Subtotal	0.13\%	0.48\%	0.57\%	0.43\%	0.41\%	0.47\%	0.34\%	0.48\%	0.42\%	0.48\%	0.46\%	0.46\%	0.13\%	0.44\%	0.50\%	0.39\%	0.38\%	0.43\%
Durable Misc. Inorganic as \% of All Misc. Inorganics	25.28\%	73.14\%	71.48\%	58.40\%	70.01\%	67.95\%	73.32\%	91.57\%	81.83\%	88.07\%	63.41\%	79.58\%	28.52\%	74.54\%	72.02\%	60.09\%	69.27\%	68.77\%
Durables Subtotal	5.00\%	5.65\%	6.28\%	5.13\%	7.48\%	6.12\%	34.35\%	35.85\%	28.87\%	26.75\%	23.31\%	28.62\%	6.52\%	7.14\%	7.21\%	6.19\%	7.98\%	7.12\%
Non-Durables Subtotal	87.55\%	87.76\%	87.77\%	87.97\%	86.14\%	87.41\%	65.35\%	63.58\%	70.80\%	72.89\%	76.38\%	70.99\%	87.24\%	87.29\%	87.82\%	88.00\%	86.65\%	87.44\%
C\&D Subtotal	7.46\%	6.59\%	5.95\%	6.90\%	6.38\%	6.47\%	0.30\%	0.57\%	0.33\%	0.36\%	0.31\%	0.39\%	6.24\%	5.57\%	4.97\%	5.81\%	5.37\%	5.44\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

Tonnage Projections ${ }^{(1)}$

	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Plastic Durables	192.56	347.78	299.36	302.18	311.10	315.10	27.40	51.19	38.34	56.52	52.97	49.76	220.21	403.46	342.14	364.62	366.64	369.22
Metal Durables	165.19	334.73	336.68	278.38	309.87	314.92	175.56	272.90	222.04	247.54	193.72	234.05	343.98	610.92	560.85	526.95	504.13	550.71
Organic Durables	8.19	8.83	35.38	51.29	74.78	42.57	0.27	0.34	1.49	1.06	0.29	0.80	8.35	9.19	38.06	52.50	76.07	43.96
Appliances/Electronics Durables	81.14	188.83	199.07	170.88	467.19	256.49	42.83	158.01	92.48	67.51	77.28	98.82	124.23	347.35	292.02	238.91	545.12	355.85
Miscellaneous Inorganics Durables	11.55	81.36	86.38	73.31	66.75	76.95	2.47	6.50	5.27	6.85	6.49	6.28	13.93	89.54	91.86	80.16	73.79	83.83
Durables Subtotal	458.63	961.53	956.88	876.04	1,229.68	1,006.03	248.53	488.94	359.62	379.47	330.77	389.70	710.70	1,460.46	1,324.94	1,263.14	1,565.74	1,403.57
Non-Durables Subtotal	8,033.80	14,946.75	13,382.04	15,018.35	14,151.68	14,374.70	472.81	867.09	882.03	1,034.12	1,083.89	966.78	9,509.69	17,853.77	16,138.06	17,961.08	16,997.40	17,237.58
C\&D Subtotal	684.27	1,122.20	907.88	1,177.80	1,048.12	1,064.00	2.17	7.81	4.12	5.08	4.43	5.36	680.22	1,138.25	913.16	1,185.84	1,052.56	1,072.45
Grand Total	9,176.69	17,030.48	15,246.80	17,072.19	16,429.48	16,444.74	723.48	1,363.85	1,245.76	1,418.67	1,419.09	1,361.84	10,900.58	20,452.48	18,376.16	20,410.06	19,615.70	19,713.60

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table 1-152
Queens, Durables Summary, PWCS and WCS

Material Category	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Other PVC	0.01\%	0.02\%	0.02\%	0.02\%	0.02\%	0.02\%	0.21\%	0.02\%	0.02\%	0.01\%	0.06\%	0.03\%	0.02\%	0.02\%	0.01\%	0.02\%	0.02\%	0.02\%
Other Plastics Materials	1.29\%	2.17\%	1.86\%	1.78\%	2.26\%	2.02\%	2.64\%	3.61\%	3.05\%	3.97\%	3.17\%	3.46\%	1.30\%	2.04\%	1.73\%	1.77\%	2.10\%	1.92\%
Plastics Durables Subtotal	1.30\%	2.19\%	1.87\%	1.80\%	2.28\%	2.04\%	2.84\%	3.63\%	3.07\%	3.97\%	3.23\%	3.49\%	1.32\%	2.06\%	1.75\%	1.79\%	2.12\%	1.93\%
Durables Plastics as \% of All Plastics	10.48\%	17.67\%	15.12\%	14.54\%	18.41\%	16.47\%	12.99\%	16.58\%	14.03\%	18.15\%	14.75\%	15.95\%	11.02\%	17.25\%	14.59\%	14.92\%	17.71\%	16.16\%
Other Aluminum	0.07\%	0.06\%	0.03\%	0.01\%	0.05\%	0.04\%	0.16\%	0.14\%	0.07\%	0.66\%	0.66\%	0.40\%	0.07\%	0.06\%	0.03\%	0.06\%	0.09\%	0.06\%
Other Non-Ferrous	0.06\%	0.09\%	0.24\%	0.13\%	0.13\%	0.14\%	0.31\%	0.62\%	0.93\%	0.78\%	0.84\%	0.79\%	0.07\%	0.12\%	0.27\%	0.16\%	0.17\%	0.18\%
Other Ferrous	1.10\%	0.99\%	1.53\%	1.17\%	1.79\%	1.36\%	19.10\%	14.34\%	13.93\%	12.39\%	9.47\%	12.46\%	2.22\%	1.85\%	2.30\%	1.90\%	2.19\%	2.05\%
Mixed Metals	0.71\%	0.47\%	0.46\%	0.43\%	0.46\%	0.45\%	1.27\%	2.74\%	2.79\%	3.96\%	2.97\%	3.14\%	0.70\%	0.58\%	0.59\%	0.66\%	0.60\%	0.61\%
Metals Durables Subtotal	1.94\%	1.60\%	2.26\%	1.74\%	2.44\%	2.00\%	20.84\%	17.84\%	17.73\%	17.79\%	13.95\%	16.79\%	3.05\%	2.61\%	3.18\%	2.78\%	3.05\%	2.90\%
Durable Metals as \% of All Metals	59.68\%	49.28\%	69.57\%	53.48\%	74.93\%	61.54\%	68.16\%	58.34\%	57.99\%	58.18\%	45.63\%	54.92\%	63.53\%	54.31\%	66.25\%	57.92\%	63.48\%	60.29\%
Non-C\&D Untreated Wood	0.90\%	0.08\%	0.25\%	0.31\%	0.19\%	0.21\%	0.07\%	0.01\%	0.08\%	0.05\%	0.03\%	0.04\%	0.75\%	0.06\%	0.21\%	0.26\%	0.16\%	0.17\%
Organics Durables Subtotal	0.90\%	0.08\%	0.25\%	0.31\%	0.19\%	0.21\%	0.07\%	0.01\%	0.08\%	0.05\%	0.03\%	0.04\%	0.75\%	0.06\%	0.21\%	0.26\%	0.16\%	0.17\%
Durable Organics as \% of All Organics	1.69\%	0.14\%	0.46\%	0.58\%	0.36\%	0.39\%	0.12\%	0.03\%	0.16\%	0.10\%	0.06\%	0.08\%	1.41\%	0.12\%	0.39\%	0.48\%	0.31\%	0.32\%
Appliances: Ferrous	0.00\%	0.11\%	0.26\%	0.55\%	0.62\%	0.39\%	0.00\%	8.34\%	5.38\%	3.07\%	3.66\%	5.04\%	0.00\%	0.70\%	0.63\%	0.68\%	0.78\%	0.70\%
Appliances: Non-Ferrous	0.00\%	0.05\%	0.01\%	0.06\%	0.02\%	0.03\%	0.00\%	0.06\%	0.02\%	0.06\%	0.43\%	0.15\%	0.00\%	0.04\%	0.01\%	0.05\%	0.05\%	0.04\%
Appliances: Plastic	0.49\%	0.19\%	0.17\%	0.36\%	0.28\%	0.25\%	0.97\%	1.13\%	0.72\%	0.56\%	0.67\%	0.77\%	0.49\%	0.24\%	0.19\%	0.34\%	0.28\%	0.26\%
Electronics Total	0.81\%	0.64\%	0.60\%	0.44\%	1.22\%	0.73\%	1.24\%	0.74\%	0.87\%	0.77\%	0.81\%	0.79\%	0.76\%	0.57\%	0.55\%	0.42\%	1.06\%	0.65\%
Appliances/Electronics Durables Subtotal	1.30\%	0.98\%	1.04\%	1.40\%	2.13\%	1.41\%	2.21\%	10.28\%	6.99\%	4.45\%	5.57\%	6.75\%	1.25\%	1.55\%	1.38\%	1.49\%	2.17\%	1.66\%
Durable Appliances/Electronics \% of All Appl/Elec	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Ceramics	0.71\%	0.50\%	0.55\%	0.45\%	0.61\%	0.53\%	0.54\%	0.54\%	0.54\%	0.47\%	0.45\%	0.50\%	0.63\%	0.45\%	0.48\%	0.40\%	0.54\%	0.47\%
Misc. Inorganic Durables Subtotal	0.71\%	0.50\%	0.55\%	0.45\%	0.61\%	0.53\%	0.54\%	0.54\%	0.54\%	0.47\%	0.45\%	0.50\%	0.63\%	0.45\%	0.48\%	0.40\%	0.54\%	0.47\%
Durable Misc. Inorganic as \% of All Misc. Inorganics	86.13\%	75.14\%	67.68\%	47.58\%	68.88\%	63.45\%	44.69\%	93.96\%	81.41\%	82.53\%	82.54\%	85.00\%	81.67\%	76.68\%	68.75\%	49.40\%	69.20\%	64.74\%
Durables Subtotal	6.15\%	5.35\%	5.98\%	5.70\%	7.64\%	6.18\%	26.50\%	32.30\%	28.42\%	26.73\%	23.23\%	27.57\%	7.00\%	6.74\%	7.00\%	6.72\%	8.04\%	7.13\%
Non-Durables Subtotal	86.73\%	88.25\%	88.40\%	85.15\%	85.03\%	86.61\%	73.31\%	67.23\%	71.32\%	72.99\%	76.49\%	72.11\%	87.06\%	88.03\%	88.50\%	85.78\%	85.94\%	86.99\%
C\&D Subtotal	7.11\%	6.40\%	5.62\%	9.16\%	7.33\%	7.21\%	0.18\%	0.47\%	0.26\%	0.28\%	0.28\%	0.32\%	5.94\%	5.23\%	4.50\%	7.51\%	6.02\%	5.88\%
Total	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Tonnage Projections ${ }^{(1)}$																		
	Refuse						MGP						Waste					
	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual	PWCS	Fall	Winter	Spring	Summer	Annual
Plastic Durables	111.93	332.18	244.18	289.33	358.73	306.11	21.34	49.63	39.08	59.61	46.76	48.77	137.94	387.39	286.27	351.40	407.42	358.12
Metal Durables	167.30	243.22	295.09	279.50	383.42	300.31	156.39	243.79	225.63	266.77	202.02	234.55	319.17	489.67	521.82	547.78	586.43	536.42
Organic Durables	77.76	11.40	32.18	49.93	30.56	31.02	0.49	0.19	1.05	0.78	0.46	0.62	78.79	11.59	34.02	50.93	31.69	32.06
Appliances/Electronics Durables	112.17	149.56	136.24	225.74	334.79	211.58	16.61	140.50	89.00	66.76	80.67	94.24	130.23	291.37	225.66	292.91	416.40	306.59
Miscellaneous Inorganics Durables	61.50	76.58	72.15	71.95	95.98	79.17	4.03	7.38	6.86	7.00	6.44	6.92	66.00	84.96	79.35	78.94	102.96	86.55
Durables Subtotal	530.67	812.96	779.84	916.45	1,203.48	928.18	198.85	441.49	361.63	400.91	336.36	385.09	732.12	1,264.99	1,147.12	1,321.96	1,544.91	1,319.74
Non-Durables Subtotal	7,481.00	13,400.65	11,537.74	13,691.50	13,387.60	13,004.37	550.14	918.81	907.44	1,094.56	1,107.50	1,007.08	9,102.34	16,515.37	14,505.37	16,882.96	16,522.20	16,106.47
C\&D Subtotal	613.55	971.68	733.71	1,472.23	1,153.95	1,082.89	1.39	6.41	3.32	4.12	4.07	4.48	620.68	981.46	737.82	1,477.43	1,158.02	1,088.68
Grand Total	8,625.22	15,185.28	13,051.30	16,080.18	15,745.04	15,015.45	750.41	1,366.71	1,272.39	1,499.59	1,447.92	1,396.65	10,455.21	18,761.82	16,390.31	19,682.34	19,225.12	18,514.90

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table 1-153
Staten Island, Durables Summary, PWCS and WCS

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from May 2004 through September 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

In the Summer Sort, a more detailed assessment of durables was carried out, with the number of sort categories increased from 91 to 103 , with the additional categories reflecting functional subsets of durables and film. Data from this exercise in comparison to less detailed data from prior seasons is presented in Tables 1-154 through 1-156. These tables identify the durable items citywide by material category for Refuse, MGP, and Waste. Each table identifies the percentage of durable items in each material category, accounting for the changes in material categories in the PWCS, WCS (fall, winter, spring), and WCS (summer). In addition, information on product counts conducted in the PWCS is presented in these tables as well. These tables are helpful in making detailed comparisons of durable items across the material categories by season, citywide.

Table 1-154
Citywide, Durables Detail, PWCS and WCS, Refuse

Material Group	PWCS Material Category	PWCS \%	Fall - Spring Material Category	Fall \%	Winter \%	Spring \%	Expanded Summer Material Category	Summer \%
Plastics	Other PVC	0.07\%	Other PVC	0.02\%	0.01\%	0.01\%	Other PVC	0.03\%
	Single Use Cameras	0.00\%						
	Disposable Razors	0.01\%						
	Other Plastics Materials	1.67\%						
							Plastic Materials: Other	1.22\%
							Plastic Materials: Personal Hygiene	0.16\%
							Plastic Materials: Toys/Housewares	0.77\%
	Other Plastics Total	1.67\%	Other Plastics Materials	1.93\%	1.87\%	1.72\%	Other Plastics Total	2.14\%
Metals							Aluminum: Other	0.01\%
							Aluminum: Toys/Housewares	0.01\%
							Aluminum: Hardware	0.02\%
	Other Aluminum	0.05\%	Other Aluminum	0.06\%	0.03\%	0.03\%	Other Aluminum Total	0.03\%
							Non-Ferrous: Other	0.05\%
							Non-Ferrous: Toys/Housewares	0.04\%
							Non-Ferrous: Hardware	0.03\%
	Other Non-Ferrous	0.06\%	Other Non-Ferrous	0.09\%	0.21\%	0.11\%	Other Non-Ferrous Total	0.12\%
							Ferrous: Other	0.95\%
							Ferrous: Toys/Housewares	0.15\%
							Ferrous: Hardware	0.23\%
	Other Ferrous	1.03\%	Other Ferrous	1.05\%	1.46\%	1.17\%	Other Ferrous Total	1.34\%
							Mixed Metals: Other	0.20\%
							Mixed Metals: Toys/Housewares	0.13\%
							Mixed Metals: Hardware	0.11\%
	Mixed Metals	0.56\%	Mixed Metals	0.51\%	0.61\%	0.45\%	Mixed Metals Total	0.45\%
Organics			Wood Furniture/Furniture Pieces	1.09\%	1.61\%	0.97\%	Wood Furniture/Furniture Pieces	2.06\%
			Non-C\&D Untreated Wood	0.06\%	0.31\%	0.25\%	Non-C\&D Untreated Wood	0.27\%
	Non-C\&D, Untreated Wood	0.38\%	Non-C\&D, Non Yard Wood Total	1.15\%	1.92\%	1.22\%	Non-C\&D, Non Yard Wood Total	2.33\%
Appliances/Elect			Appliances: Ferrous	0.16\%	0.31\%	0.39\%	Appliances: Ferrous	0.68\%
			Appliances: Non-Ferrous	0.04\%	0.02\%	0.05\%	Appliances: Non-Ferrous	0.01\%
		0.27\%	Appliances: Plastic	0.19\%	0.16\%	0.30\%	Appliances: Plastic	0.32\%
	Small Appliances		Appliances Total	0.39\%	0.48\%	0.73\%	Appliances Total	1.02\%
	Audio/Visual Equipment: Other	0.24\%	Audio/Visual Equipment: Other	0.25\%	0.17\%	0.24\%	Audio/Visual Equipment: Other	0.42\%
	Audio/Visual Equipment: Cell Phones	0.00\%	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	Audio/Visual Equipment: Cell Phones	0.01\%
	Computer Monitors	0.05\%	Computer Monitors	0.04\%	0.06\%	0.04\%	Computer Monitors	0.17\%
	Televisions	0.10\%	Televisions	0.10\%	0.25\%	0.00\%	Televisions	0.23\%
	Other Computer Equip.	0.19\%	Other Computer Equipment	0.20\%	0.06\%	0.08\%	Other Computer Equipment	0.45\%
	Electronics Total	0.59\%	Electronics Total	0.59\%	0.55\%	0.36\%	Electronics Total	1.28\%
Misc. Inorganics	Ceramics	0.36\%	Ceramics	0.44\%	0.53\%	0.43\%	Ceramics	0.46\%
C\&D	Untreated Dimension Lumber, Pallets, Crates	0.45\%	Untreated Dimension Lumber, Pallets, Crates	0.34\%	0.42\%	1.21\%	Untreated Dimension Lumber, Pallets, Crates	0.99\%
	Treated/Contaminated Wood	2.99\%	Treated/Contaminated Wood	1.71\%	2.03\%	2.05\%	Treated/Contaminated Wood	2.04\%
	Gypsum Scrap	1.16\%	Gypsum Scrap	1.45\%	1.09\%	1.16\%	Gypsum Scrap	0.67\%
	Fiberglass Insulation	0.06\%						
	Rock/Concrete/Bricks	0.58\%	Rock/Concrete/Bricks	0.70\%	0.47\%	1.25\%	Rock/Concrete/Bricks	0.73\%
	Asphaltic Roofing	0.02\%						
	Other C\&D Debris	1.74\%	Other Construction Debris	1.67\%	1.33\%	1.81\%	Other Construction Debris	1.87\%
	C\&D Total	7.01\%	C\&D Total	5.86\%	5.35\%	7.49\%	C\&D Total	6.30\%

Table 1-154
Citywide, Durables Detail, PWCS and WCS, Refuse (continued)

Material Group	PWCS Material Category	PWCS Count	Fall - Spring Material Category	$\begin{aligned} & \text { Fall } \\ & \text { Count } \end{aligned}$	Winter Count	Spring Count	Expanded Summer Material Category	Summer Count
Plastic	Single Use Cameras	0						
Plastic	Disposable Razors	212						
Organic	Shoes - Leather	234						
Organic	Shoes - Other	126						
Organic	Shoes - Rubber	158						
Appliances/Electronic	Audio/Visual Equipment: Cell Phones	7	Audio/Visual Equipment: Cell Phones	19	7	15	Audio/Visual Equipment: Cell Phones	27
Appliances/Electronic	Computer Monitor	1						
HHW	Smoke Detector	2						
GRAND TOTAL		740		19	7	15		27

Table 1-155
Citywide, Durables Detail, PWCS and WCS, MGP

Table 1-155
Citywide, Durables Detail, PWCS and WCS, MGP (continued)

Product Counts Material Group	PWCS Material Category	PWCS Count	Fall - Spring Material Category	Fall Count	Winter Count	Spring Count	Expanded Summer Material Category	Summer Count
Plastic	Single Use Cameras	0						
Plastic	Disposable Razors	1						
Organic	Shoee - Leather	1						
Organic	Shoes - Other	0						
Organic	Shoes - Rubber	7						
Appliances/Electronic	Audio/Visual Equipment: Cell Phones	2	AudioNisual Equipment: Cell Phones	9	2	3	AudioNisual Equipment: Cell Phones	0
Appliances/Electronic	Computer Monitor	0						
HHW	Smoke Detector	0						
GRAND TOTAL		11		9	2	3		0

Table 1-156
Citywide, Durables Detail, PWCS and WCS, Waste (Refuse and Recycling)

Material Group	PWCS Material Category	PWCS \%	Fall - Spring Material Category	Fall \%	Winter \%	Spring \%	Expanded Summer Material Category	Summer \%
Plastics	Other PVC	0.06\%	Other PVC	0.02\%	0.01\%	0.01\%	Other PVC	0.03\%
	Single Use Cameras	0.00\%						
	Disposable Razors	0.01\%						
	Other Plastics Materials	1.65\%						
							Plastic Materials: Other	1.17\%
							Plastic Materials: Personal Hygiene	0.13\%
							Plastic Materials: Toys/Housewares	0.73\%
	Other Plastics Materials	1.66\%	Other Plastics Materials	1.86\%	1.77\%	1.72\%	Other Plastics Total	2.04\%
Metals							Aluminum: Other	0.03\%
							Aluminum: Toys/Housewares	0.02\%
							Aluminum: Hardware	0.02\%
	Other Aluminum	0.05\%	Other Aluminum	0.06\%	0.03\%	0.07\%	Other Aluminum Total	0.07\%
							Non-Ferrous: Other	0.07\%
							Non-Ferrous: Toys/Housewares	0.06\%
							Non-Ferrous: Hardware	0.04\%
	Other Non-Ferrous	0.07\%	Other Non-Ferrous	0.12\%	0.23\%	0.15\%	Other Non-Ferrous Total	0.17\%
							Ferrous: Other	1.32\%
							Ferrous: Toys/Housewares	0.25\%
							Ferrous: Hardware	0.24\%
	Other Ferrous	2.23\%	Other Ferrous	1.95\%	2.19\%	1.85\%	Other Ferrous Total	1.81\%
							Mixed Metals: Other	0.30\%
							Mixed Metals: Toys/Housewares	0.19\%
							Mixed Metals: Hardware	0.11\%
	Mixed Metals	0.54\%	Mixed Metals	0.62\%	0.75\%	0.65\%	Mixed Metals Total	0.60\%
Organics	Mixed Metals		Wood Furniture/Furniture Pieces	0.90\%	1.32\%	0.81\%	Wood Furniture/Furniture Pieces	1.71\%
			Non-C\&D Untreated Wood	0.05\%	0.26\%	0.21\%	Non-C\&D Untreated Wood	0.23\%
	Non-C\&D, Untreated Wood	0.32\%	Non-C\&D, Non Yard Wood Total	0.95\%	1.58\%	1.02\%	Non-C\&D, Non Yard Wood Total	1.94\%
$\overline{\text { Appliances/Elect }}$			Appliances: Ferrous	0.78\%	0.72\%	0.55\%	Appliances: Ferrous	0.81\%
			Appliances: Non-Ferrous	0.04\%	0.02\%	0.04\%	Appliances: Non-Ferrous	0.04\%
			Appliances: Plastic	0.25\%	0.18\%	0.30\%	Appliances: Plastic	0.32\%
	Small Appliances	0.37\%	Appliances Total	1.07\%	0.91\%	0.89\%	Appliances Total	1.17\%
	Audio/Visual Equipment: Other	0.20\%	Audio/Visual Equipment: Other	0.22\%	0.16\%	0.22\%	Audio/Visual Equipment: Other	0.38\%
	Audio/Visual Equipment: Cell Phones	0.00\%	Audio/Visual Equipment: Cell Phones	0.01\%	0.00\%	0.00\%	Audio/Visual Equipment: Cell Phones	0.01\%
	Computer Monitors	0.04\%	Computer Monitors	0.03\%	0.06\%	0.04\%	Computer Monitors	0.15\%
	Televisions	0.08\%	Televisions	0.08\%	0.20\%	0.00\%	Televisions	0.19\%
	Other Computer Equip.	0.22\%	Other Computer Equipment	0.19\%	0.10\%	0.10\%	Other Computer Equipment	0.41\%
	Electronics Total	0.54\%	Electronics Total	0.53\%	0.53\%	0.36\%	Electronics Total	1.13\%
Misc. Inorganics	Ceramics	0.33\%	Ceramics	0.40\%	0.47\%	0.39\%	Ceramics	0.42\%
C\&D	Untreated Dimension Lumber, Pallets, Crates	0.39\%	Untreated Dimension Lumber, Pallets, Crates	0.28\%	0.35\%	1.00\%	Untreated Dimension Lumber, Pallets, Crates	0.82\%
	Treated/Contaminated Wood	2.49\%	Treated/Contaminated Wood	1.42\%	1.66\%	1.70\%	Treated/Contaminated Wood	1.69\%
	Gypsum Scrap	0.97\%	Gypsum Scrap	1.18\%	0.89\%	0.96\%	Gypsum Scrap	0.55\%
	Fiberglass Insulation	0.05\%						
	Rock/Concrete/Bricks	0.49\%	Rock/Concrete/Bricks	0.58\%	0.38\%	1.04\%	Rock/Concrete/Bricks	0.61\%
	Asphaltic Roofing	0.02\%						
	Other C\&D Debris	1.46\%	Other Construction Debris	1.39\%	1.10\%	1.52\%	Other Construction Debris	1.56\%
	C\&D Total	5.86\%	C\&D Total	4.86\%	4.37\%	6.22\%	C\&D Total	5.23\%

Table 1-156
Citywide, Durables Detail, PWCS and WCS, Waste (Refuse and Recycling) (continued)

Material Group	PWCS Material Category	PWCS Count	Fall - Spring Material Category	Fall Count	Winter Count	Spring Count	Expanded Summer Material Category	Summer Count
Plastic	Single Use Cameras	0						
Plastic	Disposable Razors	215						
Organic	Shoes - Leather	235						
Organic	Shoes - Other	126						
Organic	Shoes - Rubber	168						
Appliances/Electronic	Audio/Visual Equipment: Cell Phones	10	Audio/Visual Equipment: Cell Phones	28	10	18	Audio/Visual Equipment: Cell Phones	27
Appliances/Electronic	Computer Monitor	1						
HHW	Smoke Detector	2						
GRAND TOTAL		757		28	10	18		27

[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1
Section 7: Moisture and Particulate Testing Results
[This page intentionally left blank.]

Section 7 Moisture and Particulate Testing Results

7.1 Introduction

One factor that can influence the composition of waste is the presence of moisture or particulates. For example, the weight of a wet newspaper can be 20 percent more than the weight of a dry newspaper. Because the composition estimates in the WCS are based on weight, the presence of moisture can skew the results. Similarly, if food waste or pieces of broken glass adhere to paper or other materials, they can obscure the true percentage of that material in the waste stream.

To account for the presence of moisture or particulates, certain materials in the PWCS and the WCS were tested. Those materials for which moisture or particulates might affect their weight were selected for testing by DSNY. These materials, for the PWCS and WCS, are shown in Table 1-157. Not all materials to be tested were present in every sample.

Table 1-157
Material Categories Tested for Moisture and Particulates, PWCS and WCS

PWCS
Paper Plastics Newspaper PET Bottles Plain OCC/Kraft Paper HDPE Bottles: Natural High Grade Paper HDPE Bottles: Colored Mixed Low Grade Paper Rigid Polystyrene Containers and Packaging Phone Books Expanded Polystyrene Containers and Packaging Paperbacks Other Rigid Containers/Packaging Paper Bags Plastic Bags Polycoated Paper Containers Other Film Compostable/Soiled Paper/Waxed OCC/Kraft Single Use Plastic Plates, Cups, Cuttery, Etc. Single Use Paper Plates, Cups Metals Other Non-recyclable Paper Aluminum Cans Organics Aluminum Foil/Containers Non-Clothing Textiles Tin Food Cans Clothing Textiles

Total Categories: 25

WCS

Paper	Plastics
Newspaper	PET Bottles
Plain OCC/Kraft Paper	HDPE Bottles
High Grade Paper	Rigid Polystyrene Containers and Packaging
Mixed Low Grade Paper	Other Rigid Containers/Packaging
Phone Books/Paperbacks	Plastic Bags
Paper Bags	Other Film
Polycoated Paper Containers	Single Use Plastic Plates, Cups, Cutlery, Etc.
Compostable/Soiled Paper/Waxed OCC/Kraft	
Single Use Paper Plates, Cups	
Other Non-recyclable Paper	Metals
Organics	Aluminum Cans
Non-Clothing Textiles	Aluminum Foil/Containers
Clothing Textiles	

Total Categories: 21

7.2 Moisture and Particulate Testing and Results

During the sorting process, sampling units of Refuse and Recycling (both MGP and Paper) were randomly selected for moisture and particulate testing. For the PWCS and each season of the WCS, the samples to be tested were pre-selected using a random number generator. A list of the randomly selected samples was given to the Field Supervisors and they, in turn, notified Crew Chiefs when a selected sample was scheduled to be tested.

After all materials in the sample selected for testing had been sorted and weighed, the materials to be tested (see Table 1-157) were set aside. A one pound to two pound quantity of each material to be tested was double-bagged in plastic. These quantities were called "Moisture Testing Units" or "MTUs". MTUs were shipped overnight to a laboratory experienced in this type of analysis and tested. During the PWCS, 641 MTUs from 41 samples were tested. During the WCS, 552 MTUs from 33 samples were tested.

To assess the presence of moisture, each material was weighed as received, dried, and weighed again. To assess the presence of particulates, after moisture testing each material was carefully brushed and cleaned to separate any foreign material. Both the target material and the foreign substances were weighed.

The results of the moisture and particulate testing for the PWCS and the WCS are presented in Tables 1-158 and 1-159. These tables show the average percentage of moisture, particulates, and material for each material tested during the PWCS and the WCS. This information is useful in understanding the affect of moisture and particulates on the weight of the materials tested in the Refuse and Recycling streams.

Table 1-158
PWCS Moisture and Particulate Testing Results

Material Group	Material Category/Subcategory	Stream	Material \%	Moisture \%	Particulate \%	Total \%
Paper	Newspaper	Refuse	66\%	29\%	5\%	100\%
Paper	Plain OCC/Kraft Paper	Refuse	66\%	31\%	2\%	100\%
Paper	High Grade Paper	Refuse	85\%	13\%	2\%	100\%
Paper	Mixed Low Grade Paper	Refuse	69\%	26\%	5\%	100\%
Paper	Phone Books	Refuse	91\%	7\%	2\%	100\%
Paper	Paperbacks	Refuse	91\%	8\%	1\%	100\%
Paper	Paper Bags	Refuse	61\%	29\%	9\%	100\%
Paper	Polycoated Paper Containers	Refuse	75\%	22\%	3\%	100\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	Refuse	49\%	43\%	8\%	100\%
Paper	Single Use Paper Plates, Cups	Refuse	61\%	34\%	5\%	100\%
Paper	Other Nonrecyclable Paper	Refuse	70\%	24\%	5\%	100\%
Plastic	PET Bottles	Refuse	87\%	12\%	1\%	100\%
Plastic	HDPE Bottles: Natural	Refuse	91\%	7\%	2\%	100\%
Plastic	HDPE Bottles: Colored	Refuse	93\%	7\%	1\%	100\%
Plastic	Rigid Polystyrene Containers and Packaging	Refuse	79\%	14\%	7\%	100\%
Plastic	Expanded Polystyrene	Refuse	57\%	27\%	16\%	100\%
Plastic	Other Rigid Containers/Packaging	Refuse	80\%	12\%	8\%	100\%
Plastic	Plastic Bags	Refuse	50\%	35\%	15\%	100\%
Plastic	Other Film	Refuse	55\%	35\%	10\%	100\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	Refuse	70\%	18\%	12\%	100\%
Metal	Tin Food Cans	Refuse	87\%	10\%	3\%	100\%
Metal	Aluminum Cans	Refuse	78\%	17\%	5\%	100\%
Metal	Aluminum Foil/Containers	Refuse	61\%	27\%	12\%	100\%
Organics	Non-Clothing Textiles	Refuse	67\%	20\%	13\%	100\%
Organics	Clothing Textiles	Refuse	84\%	14\%	2\%	100\%
Paper	Newspaper	Recycling	80\%	18\%	2\%	100\%
Paper	Plain OCC/Kraft Paper	Recycling	82\%	14\%	4\%	100\%
Paper	High Grade Paper	Recycling	94\%	6\%	0\%	100\%
Paper	Mixed Low Grade Paper	Recycling	83\%	15\%	2\%	100\%
Paper	Phone Books	Recycling	92\%	8\%	0\%	100\%
Paper	Paperbacks	Recycling	92\%	8\%	0\%	100\%
Paper	Paper Bags	Recycling	74\%	7\%	19\%	100\%
Paper	Polycoated Paper Containers	Recycling	86\%	14\%	0\%	100\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	Recycling	66\%	30\%	4\%	100\%
Paper	Single Use Paper Plates, Cups	Recycling	94\%	6\%	0\%	100\%
Paper	Other Nonrecyclable Paper	Recycling	80\%	16\%	4\%	100\%
Plastic	PET Bottles	Recycling	94\%	5\%	0\%	100\%
Plastic	HDPE Bottles: Natural	Recycling	92\%	7\%	1\%	100\%
Plastic	HDPE Bottles: Colored	Recycling	97\%	3\%	1\%	100\%
Plastic	Rigid Polystyrene Containers and Packaging	Recycling	95\%	3\%	2\%	100\%
Plastic	Expanded Polystyrene	Recycling	91\%	6\%	3\%	100\%
Plastic	Other Rigid Containers/Packaging	Recycling	98\%	3\%	0\%	100\%
Plastic	Plastic Bags	Recycling	74\%	14\%	12\%	100\%
Plastic	Other Film	Recycling	79\%	10\%	11\%	100\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	Recycling	93\%	4\%	3\%	100\%
Metal	Tin Food Cans	Recycling	92\%	5\%	4\%	100\%
Metal	Aluminum Cans	Recycling	96\%	3\%	0\%	100\%
Metal	Aluminum Foil/Containers	Recycling	86\%	10\%	4\%	100\%
Organics	Non-Clothing Textiles	Recycling	90\%	10\%	0\%	100\%
Organics	Clothing Textiles	Recycling	70\%	30\%	1\%	100\%

The sum of values may not add to the total due to rounding.

Table 1-159
WCS Moisture and Particulate Testing Results

Material Group	Material Category/Subcategory	Stream	Material \%	Moisture \%	Particulate \%	Total \%
Paper	Newspaper	Refuse	68\%	32\%	0\%	100\%
Paper	Plain OCC/Kraft Paper	Refuse	77\%	23\%	0\%	100\%
Paper	High Grade Paper	Refuse	85\%	15\%	0\%	100\%
Paper	Mixed Low Grade Paper	Refuse	70\%	29\%	1\%	100\%
Paper	Phone Books/Paperbacks	Refuse	94\%	6\%	0\%	100\%
Paper	Paper Bags	Refuse	69\%	30\%	1\%	100\%
Paper	Polycoated Paper Containers	Refuse	78\%	22\%	0\%	100\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	Refuse	52\%	46\%	2\%	100\%
Paper	Single Use Paper Plates, Cups	Refuse	67\%	32\%	1\%	100\%
Paper	Other Nonrecyclable Paper	Refuse	74\%	25\%	0\%	100\%
Plastic	PET Botlles	Refuse	88\%	12\%	0\%	100\%
Plastic	HDPE Bottles: Natural	Refuse	86\%	13\%	1\%	100\%
Plastic	Rigid Polystyrene Containers and Packaging	Refuse	84\%	13\%	3\%	100\%
Plastic	Other Rigid Containers/Packaging	Refuse	86\%	13\%	1\%	100\%
Plastic	Plastic Bags	Refuse	64\%	26\%	10\%	100\%
Plastic	Other Film	Refuse	76\%	22\%	1\%	100\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	Refuse	78\%	20\%	2\%	100\%
Metal	Aluminum Cans	Refuse	88\%	11\%	1\%	100\%
Metal	Aluminum Foil/Containers	Refuse	62\%	31\%	6\%	100\%
Organics	Non-Clothing Textiles	Refuse	78\%	22\%	0\%	100\%
Organics	Clothing Textiles	Refuse	82\%	18\%	0\%	100\%
Paper	Newspaper	Recycling	73\%	27\%	0\%	100\%
Paper	Plain OCC/Kraft Paper	Recycling	85\%	15\%	0\%	100\%
Paper	High Grade Paper	Recycling	93\%	7\%	0\%	100\%
Paper	Mixed Low Grade Paper	Recycling	83\%	15\%	2\%	100\%
Paper	Phone Books/Paperbacks	Recycling	84\%	16\%	0\%	100\%
Paper	Paper Bags	Recycling	79\%	21\%	0\%	100\%
Paper	Polycoated Paper Containers	Recycling	88\%	12\%	0\%	100\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	Recycling	69\%	30\%	1\%	100\%
Paper	Single Use Paper Plates, Cups	Recycling	82\%	18\%	0\%	100\%
Paper	Other Nonrecyclable Paper	Recycling	88\%	11\%	1\%	100\%
Plastic	PET Botles	Recycling	95\%	5\%	0\%	100\%
Plastic	HDPE Bottles: Natural	Recycling	97\%	3\%	0\%	100\%
Plastic	Rigid Polystyrene Containers and Packaging	Recycling	98\%	2\%	0\%	100\%
Plastic	Other Rigid Containers/Packaging	Recycling	93\%	6\%	1\%	100\%
Plastic	Plastic Bags	Recycling	80\%	16\%	4\%	100\%
Plastic	Other Film	Recycling	76\%	19\%	5\%	100\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	Recycling	93\%	3\%	4\%	100\%
Metal	Aluminum Cans	Recycling	96\%	4\%	0\%	100\%
Metal	Aluminum Foil/Containers	Recycling	81\%	11\%	8\%	100\%
Organics	Non-Clothing Textiles	Recycling	69\%	31\%	0\%	100\%
Organics	Clothing Textiles	Recycling	82\%	18\%	0\%	100\%

The sum of values may not add to the total shown due to rounding.

7.3 Comparison of Moisture and Particulate Testing - WCS and the 1989/1990 Study

Although both the WCS and the 1989/1990 Study tested samples of waste for moisture, differences in the methodology used in each study make a comprehensive comparison of the results problematic. Their differences include:

- Analysis: The 1989/1990 Study included a series of laboratory analyses on samples of waste in order to estimate the physical and chemical properties of the materials. This analysis included an estimate of the moisture content, along with estimates of volatiles, ash, fixed carbon, and other chemical constituents. The WCS included laboratory tests on selected materials to estimate moisture content and particulates. The 1989/1990 Study did not test for particulates.
- Materials Selected for Testing: The 1989/1990 Study selected 12 materials for testing. Six of these materials were material categories: Lumber, Textiles, Rubber, Diapers, Fines, and Ceramics. The other six of these materials were material groups: Paper, Plastic, Organics, Glass, Metal, and Inorganics. In these cases, the composition of the material group was determined by taking the representative percentage of material from each material category in the group. For example, the paper sample was composed of 10 percent corrugated cardboard, 35 percent newspaper, 5 percent office paper, 10 percent magazines, 5 percent books, 10 percent cardboard, and 25 percent mixed paper.

The WCS selected 21 materials categories, most of which were not specifically tested in the 1989/1990 Study. For example, the WCS tested all paper categories individually, but did not aggregate them into a single "Paper" group.

- MTU Testing: The 1989/1990 Study tested a total of 42 MTUs each season (5 MTUs of each of the material Paper, Plastic, and Organics; 3 MTUs of each of the other 9 materials). The MTUs were tested for moisture and then tested for physical and chemical constituents. Over the four seasons, a total of 168 MTUs were tested for moisture in the 1989/1990 Study.

As noted above, during the PWCS, 641 MTUs were tested for moisture and particulates. In the WCS, a total of 552 MTUs were tested for moisture over the four seasons. The number of MTUs tested each season in each study is presented in Table 1-160.

Table 1-160
Number of Samples Tested for Moisture Content in the 1989/1990 Study and the WCS

Season	1989/1990 Study	WCS
PWCS	$\mathrm{NA}^{(1)}$	385
Fall	42	88
Winter	42	183
Spring	42	171
Summer	42	69
Total	168	511

(1) The 1989/1990 Study did not include a study comparable to the PWCS

As noted above, the 1989/1990 Study did not include particulate testing; nor did the WCS test for physical and chemical constituents. Therefore the two studies can only be compared in terms of moisture content.

The materials tested in the 1989/1990 Study and those tested in the WCS were not the same.
Table 1-161 shows the materials tested in each study.
Table 1-161
Materials Tested for Moisture Content in the 1989/1990 Study and the WCS

1989/1990 Study	WCS ${ }^{(1)}$
Paper	Newspaper (Paper)
Plastics	Plain OCC/Kraft Paper (Paper)
Organics	Mixed Low Grade Paper (Paper)
Lumber	Phone Books/Paperbacks (Paper)
Textiles	Paper Bags (Paper)
Rubber	Polycoated Paper Containers (Paper)
Diapers	Compostable/Soiled Paper/Waxed OCC (Paper)
Fines	Single Use Paper Cups, Plates (Paper)
Ceramics	Other Non-Recyclable Paper (Paper)
Glass	PET Bottles (Plastic)
Metal	HDPE Bottles - Natural (Plastic)
Inorganics	Rigid Polystyrene Containers and Packaging (Plastic)
	Other Rigid Containers/Packaging (Plastic)
	Plastic Bags (Plastic)
	Other Film (Plastic)
	Single Use Plastic Plates, Cups, Cutlery (Plastic)
	Aluminum Cans (Metal)
	Aluminum Foil/Containers (Metal)
	Non-Clothing Textiles (Organics)
	Clothing Textiles (Organics)

(1) Material Group to which category belongs is shown in parentheses

Both studies tested Paper and Plastics. However, the 1989/1990 Study combined the specific types of paper into a single sample, as described above. The WCS tested the specific types of materials individually. To adjust for these differences the average moisture content of Paper in the 1989/1990 Study is compared with the weighted average of the paper categories in the WCS Annual Residential Refuse. That is, the average moisture content of each of the ten WCS paper categories is weighted by its percentage contribution to the total percentage of Paper. For example, Paper represents an estimated 23.32 percent of the annual citywide residential refuse in the WCS. Newspaper represents 3.65 percent of the refuse, or 16 percent of the Paper. Therefore, the average moisture content of newspaper is given a 16 percent weighting. A similar calculation is made for the other paper categories and the total summed. A similar procedure is used for Plastics.

Textiles were also tested in both studies. The WCS tested two textile materials for moisture content, Clothing and Non-Clothing. In this case, each material is given proportional weighting. Clothing and Non-Clothing Textiles represent an estimated 4.67 percent of the refuse. Clothing represents 3.03 percent and Non-Clothing represents an estimated 1.64 percent. To combine them, the average moisture content of Clothing Textiles is given a 65 percent weight (3.03/4.67 $=65$ percent) and Non-Clothing is given a 35 percent weight.

Table 1-162 summarizes the way in which the results of the two studies have been adjusted to compare moisture content.

Table 1-162
Adjustments to Material Groups and Categories in the 1989/1990 Study and the WCS

1989/1990 Study	WCS
Paper	Combine 10 Paper categories ${ }^{(1)}$
Plastic	Combine 7 Plastics categories ${ }^{(1)}$
Textiles	Combine Clothing and Non-Clothing Textiles ${ }^{(2)}$

(1) Combined by using the weighted percentages from the WCS Annual Citywide Refuse results for Paper and applying the weighted percentage to the estimated moisture content.
(2) Combined by applying the weighted composition percentage of Clothing Textiles and Non-Clothing Textiles to moisture content of each category and summing the two.

Table 1-163 compares the moisture content of Paper, Plastic, Metals, and Textiles from the 1989/1990 Study and the WCS.

Table 1-163
Comparison of Moisture Content between 1989/1990 Study and WCS Refuse

Material Group/Category	2004/2005 Moisture \%	1989/1990 Moisture $\%$
Paper	33%	18%
Plastic	21%	13%
Metal	26%	12%
Textiles	19%	15%

The differences in the procedures for sampling and analysis may account for the differences in moisture content shown in Table 1-163.
[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1 Section 8: Statistical Results
[This page intentionally left blank.]

Section 8 Statistical Results

8.1 Introduction

The results of the PWCS and WCS present an estimate of the composition of the City's refuse and recycling. Because it is not possible to know the true percentage of each material, unless every ounce of the City's waste was sorted, the percentage is estimated using statistical analysis. This analysis results in four metrics.

The estimated percentage of each material in the waste is the statistical Mean. The Mean is the best, single point estimate of the true percentage of each material. For example, the Mean for newspaper in the PWCS refuse is 3.71 percent.

The Standard Deviation is a measure of the dispersion around the Mean. In all refuse sampling units sorted during the PWCS, newspaper was 3.71 percent in few, if any, of the sampling units. In some sample units, the percentage of newspaper was higher than 3.71 percent; in some sample units, the percentage of newspaper was lower than 3.71 percent. The Standard Deviation quantifies the "spread" of the percentage of newspaper in all samples.

The Confidence Interval, with its Upper Boundary and Lower Boundary, presents the range within which there is a 90 percent certainty that the true Mean (i.e., the true percentage of the material in the waste stream) resides. In the example of newspaper in the PWCS refuse, the best single estimate of the percentage of newspaper is 3.71 percent and there is 90 percent certainty that the true percentage is between 3.33 percent and 4.10 percent. Confidence Intervals can be calculated for any level of certainty, but the 90 percent level is an accepted industry standard. The use of a 90 percent confidence level instead of a 95 percent level (the standard for scientific research) does not affect the calculation of means, only the width of intervals around the means. So, for example, a mean of 5 percent for the composition of a particular material category might have a confidence interval of 4 percent to 6 percent at a 90 percent level and 3 percent to 7 percent at a 95 percent level. In reference to each statistic, we would correspondingly say that we are confident that the true mean for that material - if we were able to sample all the waste in New York City - would fall 90 percent of the time between 4 percent and 6 percent and 95 percent of the time between 3 percent and 7 percent.

For this reason, it is not applicable to say that a 95 percent confidence level is "better" than a 90 percent level; nor to expect that the results in terms of means - the statistics that primarily inform us about the make up of New York City waste - would change if a different level were applied.

8.2 Statistical Results by Material

Tables 1-164 through 1-191 present the statistical results for the PWCS and the WCS by material category for Refuse, Paper, and MGP. Each table shows the Mean, Standard Deviation, and Upper and Lower Boundaries for the PWCS and the WCS across seasons for each of the eight density/income strata, for Refuse, MGP, and Waste Streams, as well as Street Basket Waste. These results are based on the direct observation during the sampling and sorting of
these streams. These tables are useful for understanding the statistical basis for the composition estimates.

Table 1-164
Statistical Results, PWCS, Refuse

Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Confidence Interval	
				Lower Bound	Upper Bound
Paper	Newspaper	3.71\%	3.43\%	3.33\%	4.10\%
Paper	Plain OCC/Kraft Paper	1.35\%	1.34\%	1.19\%	1.52\%
Paper	High Grade Paper	0.67\%	1.26\%	0.56\%	0.79\%
Paper	Mixed Low Grade Paper	7.34\%	4.43\%	6.85\%	7.84\%
Paper	Phone Books	0.23\%	0.93\%	0.17\%	0.30\%
Paper	Paperbacks	0.18\%	0.60\%	0.14\%	0.23\%
Paper	Paper Bags	0.60\%	0.55\%	0.54\%	0.66\%
Paper	Polycoated Containers	0.47\%	0.43\%	0.42\%	0.51\%
Paper	Compostable/Soiled/ Waxed OCC	7.49\%	3.46\%	7.09\%	7.89\%
Paper	Single Use Plates, Cups	0.51\%	0.52\%	0.46\%	0.57\%
Paper	Other Nonrecyclable Paper	0.65\%	0.87\%	0.57\%	0.73\%
Paper Total		23.19\%	9.46\%	22.08\%	24.32\%
Plastic	PET Bottles: Deposit	0.33\%	0.35\%	0.29\%	0.37\%
Plastic	PET Bottles: Non-Deposit	0.64\%	0.47\%	0.59\%	0.70\%
Plastic	HDPE Natural Bottles	0.31\%	0.27\%	0.27\%	0.34\%
Plastic	HDPE Colored Bottles	0.45\%	0.91\%	0.38\%	0.52\%
Plastic	\#1-\#2 Tubs/Trays: \#1 Pet	0.03\%	0.07\%	0.02\%	0.03\%
Plastic	\#1-\#2 Tubs/Trays: \#2 HDPE	0.08\%	0.28\%	0.06\%	0.09\%
Plastic	\#3-\#7 Containers: \#3 PVC	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	\#3-\#7 Containers: \#4 LDPE	0.01\%	0.08\%	0.01\%	0.02\%
Plastic	\#3-\#7 Containers: \#5 PP	0.22\%	0.23\%	0.20\%	0.25\%
Plastic	\#3-\#7 Containers: \#7 Other	0.07\%	0.15\%	0.06\%	0.08\%
Plastic	Other PVC	0.07\%	0.43\%	0.05\%	0.09\%
Plastic	Rigid Polystyrene	0.16\%	0.19\%	0.14\%	0.18\%
Plastic	Expanded Polystyrene	0.69\%	0.84\%	0.62\%	0.76\%
Plastic	Other Rigid Containers/Packaging	0.61\%	0.48\%	0.55\%	0.67\%
Plastic	Plastic Bags	2.79\%	1.53\%	2.62\%	2.97\%
Plastic	Other Film	5.21\%	2.15\%	4.96\%	5.46\%
Plastic	Plastic Crates and Soda Bottle Carriers	0.06\%	0.29\%	0.04\%	0.08\%
Plastic	Single-Use Food Svc	0.78\%	0.88\%	0.70\%	0.87\%
Plastic	Single Use Cameras	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Disposable Razors	0.01\%	0.01\%	0.01\%	0.01\%
Plastic	Other Plastics Materials	1.67\%	1.67\%	1.50\%	1.85\%
Plastic Total		14.19\%	4.81\%	13.62\%	14.78\%
Glass	Clear Glass: Deposit	0.28\%	0.64\%	0.22\%	0.35\%
Glass	Clear Glass: Non-Deposit	1.00\%	1.00\%	0.87\%	1.13\%
Glass	Green Glass: Deposit	0.15\%	0.34\%	0.12\%	0.19\%
Glass	Green Glass: Non-Deposit	0.16\%	0.54\%	0.12\%	0.21\%
Glass	Brown Glass: Deposit	0.25\%	0.57\%	0.20\%	0.31\%
Glass	Brown Glass: Non-Deposit	0.06\%	0.15\%	0.04\%	0.07\%
Glass	Mixed Cullet	0.50\%	0.75\%	0.42\%	0.59\%
Glass	Other Glass	0.20\%	0.37\%	0.16\%	0.24\%
Glass Total		2.60\%	2.24\%	2.35\%	2.87\%

Table 1-164
Statistical Results, PWCS, Refuse (continued)

Material Group	Material ${ }^{(1)}$		Confidence Interval		
		Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans: Deposit	0.17\%	0.15\%	0.15\%	0.19\%
Metal	Aluminum Cans: Non-Deposit	0.03\%	0.06\%	0.02\%	0.03\%
Metal	Aluminum Foil/Tins	0.60\%	0.51\%	0.55\%	0.65\%
Metal	Other Aluminum	0.05\%	0.16\%	0.04\%	0.06\%
Metal	Other Non-Ferrous	0.06\%	0.20\%	0.05\%	0.08\%
Metal	Tin Food Cans	0.91\%	0.69\%	0.83\%	1.00\%
Metal	Empty Aerosol Cans	0.12\%	0.15\%	0.10\%	0.15\%
Metal	Other Ferrous	1.03\%	1.56\%	0.88\%	1.19\%
Metal	Mixed Metals	0.56\%	1.74\%	0.44\%	0.70\%
Metal Total		3.54\%	2.54\%	3.28\%	3.80\%
Organics	Leaves and Grass	6.23\%	10.54\%	4.99\%	7.59\%
Organics	Prunings	3.04\%	5.87\%	2.47\%	3.67\%
Organics	Stumps/Limbs	0.67\%	3.39\%	0.49\%	0.89\%
Organics	Food	15.93\%	8.13\%	14.92\%	16.97\%
Organics	Non-C\&D, Untreated Wood	0.38\%	1.70\%	0.28\%	0.49\%
Organics	Non-Clothing Textiles	2.07\%	3.68\%	1.75\%	2.41\%
Organics	Clothing Textiles	3.70\%	3.91\%	3.25\%	4.18\%
Organics	Carpet/Upholstery	1.27\%	3.58\%	0.96\%	1.61\%
Organics	Disposable Diapers/Sanitary Products	3.81\%	2.88\%	3.46\%	4.17\%
Organics	Animal By-Products	1.25\%	2.87\%	0.98\%	1.55\%
Organics	Rubber Products	0.32\%	0.90\%	0.26\%	0.38\%
Organics	Shoes: Leather	0.37\%	0.77\%	0.29\%	0.46\%
Organics	Shoes: Other	0.09\%	0.30\%	0.07\%	0.12\%
Organics	Shoes: Rubber	0.20\%	0.55\%	0.15\%	0.25\%
Organics	Other Leather Products	0.05\%	0.47\%	0.04\%	0.07\%
Organics	Fines	4.20\%	2.28\%	3.94\%	4.47\%
Organics	Miscellaneous Organics	3.98\%	7.01\%	3.28\%	4.73\%
Organics Total		47.56\%	13.04\%	45.97\%	49.15\%
Appliance/Electronic	Small Appliances	0.27\%	1.06\%	0.21\%	0.35\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.24\%	0.79\%	0.18\%	0.30\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.04\%	0.00\%	0.01\%
Appliance/Electronic	Computer Monitors	0.05\%	0.68\%	0.03\%	0.07\%
Appliance/Electronic	Televisions	0.10\%	1.14\%	0.07\%	0.14\%
Appliance/Electronic	Other Computer Equip.	0.19\%	0.98\%	0.14\%	0.25\%
Appliance/Electronic Total		0.86\%	2.04\%	0.68\%	1.05\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.45\%	1.69\%	0.34\%	0.57\%
C \& D Debris	Treated/Contaminated Wood	2.99\%	4.06\%	2.54\%	3.48\%
C \& D Debris	Gypsum Scrap	1.16\%	3.47\%	0.88\%	1.49\%
C \& D Debris	Fiberglass Insulation	0.06\%	0.48\%	0.04\%	0.08\%
$C \& D$ Debris	Rock/Concrete/Bricks	0.58\%	2.14\%	0.44\%	0.75\%
$C \& D$ Debris	Asphaltic Roofing	0.02\%	0.23\%	0.01\%	0.03\%
$C \& D$ Debris	Other C\&D Debris	1.74\%	5.43\%	1.34\%	2.19\%
C \& D Debris Total		7.01\%	8.41\%	6.06\%	8.01\%
Miscellaneous Inorganics	Misc. Inorganics	0.23\%	0.90\%	0.18\%	0.29\%
Miscellaneous Inorganics	Ceramics	0.36\%	1.32\%	0.28\%	0.45\%
Miscellaneous Inorganics Total		0.59\%	1.60\%	0.48\%	0.72\%

Table 1-164
Statistical Results, PWCS, Refuse (continued)

Material Group	Material ${ }^{(1)}$			Confidence Interval	
		Mean	Standard Deviation	Lower Bound	Upper Bound
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	1.48\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	1.48\%
HHW	Wet-Cell Batteries	0.07\%	1.04\%	0.05\%	0.10\%
HHW	Gasoline/Kerosene	0.00\%	0.01\%	0.00\%	0.00\%
HHW	Motor Oil/Diesel Oil	0.00\%	0.00\%	0.00\%	1.48\%
HHW	Latex Paints	0.05\%	0.57\%	0.04\%	0.07\%
HHW	Water and Solvent-Based Adhesives/glues	0.06\%	0.47\%	0.05\%	0.08\%
HHW	Oil-Based Paint/Solvent	0.07\%	0.70\%	0.05\%	0.09\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.01\%	0.00\%	0.00\%
HHW	DRY-CELL Batteries	0.07\%	0.14\%	0.05\%	0.08\%
HHW	Fluorescent Tubes	0.00\%	0.05\%	0.00\%	0.01\%
HHW	Mercury-Laden waste	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders/Fire Extinguishers	0.00\%	0.00\%	0.00\%	1.48\%
HHW	Asbestos	0.00\%	0.00\%	0.00\%	1.48\%
HHW	Explosives	0.00\%	0.00\%	0.00\%	1.48\%
HHW	Smoke Detectors	0.00\%	0.03\%	0.00\%	0.00\%
HHW	Home Medical Products	0.04\%	0.10\%	0.03\%	0.05\%
HHW	Other Potentially Harmful Wastes	0.09\%	0.54\%	0.06\%	0.11\%
HHW Total		0.45\%	1.62\%	0.36\%	0.56\%
GRAND TOTAL		100.00\%			

(1) When none of a particular material was found in any of the samples, the mean, standard deviation, and confidence interval boundaries are listed as zero percent. However, it is possible for these materials to exist in the waste stream. The level at which they may exist was not determined in this study.

Table 1-165
Statistical Results, PWCS, Paper

Material Group	Material ${ }^{(1)}$		Confidence Interval		
		Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	39.84\%	14.99\%	37.21\%	42.50\%
Paper	Plain OCC/Kraft Paper	20.64\%	14.24\%	18.24\%	23.14\%
Paper	High Grade Paper	4.22\%	4.86\%	3.50\%	5.00\%
Paper	Mixed Low Grade Paper	25.04\%	9.73\%	23.38\%	26.74\%
Paper	Phone Books	3.19\%	8.06\%	2.16\%	4.40\%
Paper	Paperbacks	1.33\%	2.34\%	0.98\%	1.73\%
Paper	Paper Bags	0.53\%	0.75\%	0.41\%	0.66\%
Paper	Polycoated Containers	0.27\%	0.38\%	0.21\%	0.35\%
Paper	Compostable/Soiled/ Waxed OCC	0.13\%	0.60\%	0.09\%	0.18\%
Paper	Single Use Plates, Cups	0.01\%	0.04\%	0.00\%	0.01\%
Paper	Other Nonrecyclable Paper	1.36\%	3.86\%	0.97\%	1.82\%
Paper Total		96.55\%	3.34\%	96.03\%	97.03\%
Plastic	PET Bottles: Deposit	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	PET Bottles: Non-Deposit	0.05\%	0.13\%	0.03\%	0.06\%
Plastic	HDPE Natural Bottles	0.02\%	0.08\%	0.01\%	0.03\%
Plastic	HDPE Colored Bottles	0.03\%	0.13\%	0.02\%	0.04\%
Plastic	\#1-\#2 Tubs/Trays: \#1 Pet	0.00\%	0.00\%	0.00\%	2.98\%
Plastic	\#1-\#2 Tubs/Trays: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3-\#7 Containers: \#3 PVC	0.00\%	0.00\%	0.00\%	2.98\%
Plastic	\#3-\#7 Containers: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3-\#7 Containers: \#5 PP	0.00\%	0.03\%	0.00\%	0.01\%
Plastic	\#3-\#7 Containers: \#7 Other	0.01\%	0.02\%	0.00\%	0.01\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	Expanded Polystyrene	0.05\%	0.13\%	0.03\%	0.06\%
Plastic	Other Rigid Containers/Packaging	0.01\%	0.05\%	0.00\%	0.01\%
Plastic	Plastic Bags	0.22\%	0.25\%	0.18\%	0.27\%
Plastic	Other Film	0.86\%	0.61\%	0.74\%	0.99\%
Plastic	Plastic Crates and Soda Bottle Carriers	0.00\%	0.00\%	0.00\%	2.98\%
Plastic	Single-Use Food Svc	0.01\%	0.08\%	0.01\%	0.02\%
Plastic	Single Use Cameras	0.00\%	0.00\%	0.00\%	2.98\%
Plastic	Disposable Razors	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	Other Plastics Materials	0.31\%	0.91\%	0.21\%	0.42\%
Plastic Total		1.58\%	1.38\%	1.37\%	1.80\%
Glass	Clear Glass: Deposit	0.03\%	0.16\%	0.02\%	0.04\%
Glass	Clear Glass: Non-Deposit	0.06\%	0.21\%	0.04\%	0.08\%
Glass	Green Glass: Deposit	0.00\%	0.00\%	0.00\%	2.98\%
Glass	Green Glass: Non-Deposit	0.00\%	0.00\%	0.00\%	2.98\%
Glass	Brown Glass: Deposit	0.00\%	0.00\%	0.00\%	2.98\%
Glass	Brown Glass: Non-Deposit	0.00\%	0.04\%	0.00\%	0.01\%
Glass	Mixed Cullet	0.04\%	0.18\%	0.03\%	0.06\%
Glass	Other Glass	0.00\%	0.01\%	0.00\%	0.00\%
Glass Total		0.13\%	0.35\%	0.09\%	0.18\%

Table 1-165
Statistical Results, PWCS, Paper (continued)

Material Group	Material ${ }^{(1)}$			Confidence Interval	
		Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans: Deposit	0.01\%	0.03\%	0.00\%	0.01\%
Metal	Aluminum Cans: Non-Deposit	0.00\%	0.01\%	0.00\%	0.00\%
Metal	Aluminum Foil/Tins	0.02\%	0.11\%	0.01\%	0.03\%
Metal	Other Aluminum	0.01\%	0.10\%	0.01\%	0.02\%
Metal	Other Non-Ferrous	0.00\%	0.02\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.04\%	0.13\%	0.03\%	0.06\%
Metal	Empty Aerosol Cans	0.00\%	0.01\%	0.00\%	0.00\%
Metal	Other Ferrous	0.04\%	0.18\%	0.03\%	0.06\%
Metal	Mixed Metals	0.09\%	0.58\%	0.06\%	0.14\%
Metal Total		0.22\%	0.65\%	0.15\%	0.28\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	2.98\%
Organics	Food	0.40\%	0.99\%	0.28\%	0.55\%
Organics	Non-C\&D, Untreated Wood	0.00\%	0.02\%	0.00\%	0.00\%
Organics	Non-Clothing Textiles	0.18\%	0.52\%	0.12\%	0.25\%
Organics	Clothing Textiles	0.12\%	0.68\%	0.07\%	0.17\%
Organics	Carpet/Upholstery	0.01\%	0.11\%	0.01\%	0.02\%
Organics	Disposable Diapers/Sanitary Products	0.07\%	0.48\%	0.05\%	0.11\%
Organics	Animal By-Products	0.02\%	0.24\%	0.01\%	0.04\%
Organics	Rubber Products	0.01\%	0.11\%	0.01\%	0.02\%
Organics	Shoes: Leather	0.00\%	0.00\%	0.00\%	2.98\%
Organics	Shoes: Other	0.00\%	0.00\%	0.00\%	2.98\%
Organics	Shoes: Rubber	0.02\%	0.13\%	0.01\%	0.03\%
Organics	Other Leather Products	0.00\%	0.03\%	0.00\%	0.00\%
Organics	Fines	0.38\%	0.49\%	0.31\%	0.45\%
Organics	Miscellaneous Organics	0.01\%	0.04\%	0.00\%	0.01\%
Organics Total		1.23\%	1.98\%	0.98\%	1.50\%
Appliance/Electronic	Small Appliances	0.06\%	0.41\%	0.04\%	0.09\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	2.98\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.03\%	0.00\%	0.00\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	2.98\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	2.98\%
Appliance/Electronic	Other Computer Equip.	0.00\%	0.00\%	0.00\%	2.98\%
Appliance/Electronic Total		0.06\%	0.42\%	0.04\%	0.09\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.06\%	0.27\%	0.03\%	0.08\%
C \& D Debris	Treated/Contaminated Wood	0.02\%	0.15\%	0.01\%	0.03\%
$C \& D$ Debris	Gypsum Scrap	0.01\%	0.11\%	0.01\%	0.02\%
$C \& D$ Debris	Fiberglass Insulation	0.00\%	0.00\%	0.00\%	2.98\%
$C \& D$ Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	2.98\%
$C \& D$ Debris	Asphaltic Roofing	0.00\%	0.00\%	0.00\%	2.98\%
C \& D Debris	Other C\&D Debris	0.11\%	0.59\%	0.07\%	0.16\%
C \& D Debris Total		0.20\%	0.69\%	0.13\%	0.28\%
Miscellaneous Inorganics	Misc. Inorganics	0.01\%	0.07\%	0.01\%	0.02\%
Miscellaneous Inorganics	Ceramics	0.01\%	0.08\%	0.01\%	0.02\%
Miscellaneous Inorganics Total		0.02\%	0.11\%	0.01\%	0.03\%

Table 1-165
Statistical Results, PWCS, Paper (continued)

(1) When none of a particular material was found in any of the samples, the mean, standard deviation, and confidence interval boundaries are listed as zero percent. However, it is possible for these materials to exist in the waste stream. The level at which they may exist was not determined in this study.

Table 1-166
Statistical Results, PWCS, MGP

Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Confidence Interval	
				Lower Bound	Upper Bound
Paper	Newspaper	0.65\%	1.38\%	0.47\%	0.87\%
Paper	Plain OCC/Kraft Paper	0.25\%	1.11\%	0.16\%	0.35\%
Paper	High Grade Paper	0.08\%	0.41\%	0.05\%	0.11\%
Paper	Mixed Low Grade Paper	1.07\%	1.44\%	0.84\%	1.32\%
Paper	Phone Books	0.04\%	0.25\%	0.02\%	0.05\%
Paper	Paperbacks	0.01\%	0.13\%	0.01\%	0.02\%
Paper	Paper Bags	0.06\%	0.50\%	0.03\%	0.08\%
Paper	Polycoated Containers	1.67\%	1.98\%	1.44\%	1.91\%
Paper	Compostable/Soiled/ Waxed OCC	0.33\%	0.66\%	0.25\%	0.42\%
Paper	Single Use Plates, Cups	0.02\%	0.05\%	0.01\%	0.03\%
Paper	Other Nonrecyclable Paper	0.63\%	0.85\%	0.51\%	0.77\%
Paper Total		4.80\%	3.65\%	4.25\%	5.39\%
Plastic	PET Bottles: Deposit	1.21\%	1.82\%	1.02\%	1.41\%
Plastic	PET Bottles: Non-Deposit	4.73\%	2.62\%	4.33\%	5.15\%
Plastic	HDPE Natural Bottles	2.69\%	1.54\%	2.43\%	2.97\%
Plastic	HDPE Colored Bottles	2.68\%	1.80\%	2.35\%	3.03\%
Plastic	\#1-\#2 Tubs/Trays: \#1 Pet	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays: \#2 HDPE	0.11\%	0.27\%	0.08\%	0.15\%
Plastic	\#3-\#7 Containers: \#3 PVC	0.06\%	0.19\%	0.04\%	0.08\%
Plastic	\#3-\#7 Containers: \#4 LDPE	0.01\%	0.14\%	0.01\%	0.02\%
Plastic	\#3-\#7 Containers: \#5 PP	0.66\%	2.78\%	0.50\%	0.84\%
Plastic	\#3-\#7 Containers: \#7 Other	0.17\%	0.53\%	0.12\%	0.22\%
Plastic	Other PVC	0.08\%	0.46\%	0.05\%	0.11\%
Plastic	Rigid Polystyrene	0.40\%	0.83\%	0.31\%	0.50\%
Plastic	Expanded Polystyrene	0.11\%	0.39\%	0.08\%	0.14\%
Plastic	Other Rigid Containers/Packaging	1.53\%	1.73\%	1.28\%	1.81\%
Plastic	Plastic Bags	0.76\%	0.71\%	0.65\%	0.87\%
Plastic	Other Film	2.46\%	1.55\%	2.20\%	2.75\%
Plastic	Plastic Crates and Soda Bottle Carriers	0.13\%	0.62\%	0.08\%	0.20\%
Plastic	Single-Use Food Svc	0.16\%	0.23\%	0.13\%	0.20\%
Plastic	Single Use Cameras	0.00\%	0.00\%	0.00\%	2.84\%
Plastic	Disposable Razors	0.07\%	0.74\%	0.04\%	0.11\%
Plastic	Other Plastics Materials	3.49\%	3.01\%	3.01\%	4.00\%
Plastic Total		21.53\%	7.04\%	20.35\%	22.73\%
Glass	Clear Glass: Deposit	1.01\%	1.71\%	0.78\%	1.28\%
Glass	Clear Glass: Non-Deposit	6.12\%	4.39\%	5.36\%	6.93\%
Glass	Green Glass: Deposit	1.09\%	1.53\%	0.83\%	1.38\%
Glass	Green Glass: Non-Deposit	2.62\%	4.43\%	1.98\%	3.35\%
Glass	Brown Glass: Deposit	1.09\%	1.36\%	0.84\%	1.37\%
Glass	Brown Glass: Non-Deposit	0.31\%	0.60\%	0.22\%	0.41\%
Glass	Mixed Cullet	22.24\%	15.76\%	19.52\%	25.09\%
Glass	Other Glass	0.62\%	1.27\%	0.45\%	0.82\%
Glass Total		35.11\%	17.49\%	32.09\%	38.18\%

Table 1-166
Statistical Results, PWCS, MGP (continued)

Material Group	Material ${ }^{(1)}$			Confidence Interval	
		Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans: Deposit	0.40\%	0.46\%	0.34\%	0.47\%
Metal	Aluminum Cans: Non-Deposit	0.39\%	0.51\%	0.31\%	0.47\%
Metal	Aluminum Foil/Tins	0.97\%	1.46\%	0.80\%	1.15\%
Metal	Other Aluminum	0.20\%	0.66\%	0.13\%	0.27\%
Metal	Other Non-Ferrous	0.27\%	0.89\%	0.18\%	0.38\%
Metal	Tin Food Cans	7.12\%	3.36\%	6.55\%	7.71\%
Metal	Empty Aerosol Cans	0.64\%	0.57\%	0.54\%	0.75\%
Metal	Other Ferrous	20.20\%	14.39\%	14.18\%	19.09\%
Metal	Mixed Metals	0.90\%	2.86\%	0.60\%	1.26\%
Metal Total		31.08\%	13.95\%	28.83\%	33.33\%
Organics	Leaves and Grass	0.03\%	0.20\%	0.02\%	0.04\%
Organics	Prunings	0.03\%	0.16\%	0.02\%	0.04\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	1.20\%	2.39\%	0.88\%	1.57\%
Organics	Non-C\&D, Untreated Wood	0.07\%	0.23\%	0.05\%	0.10\%
Organics	Non-Clothing Textiles	0.16\%	0.56\%	0.10\%	0.22\%
Organics	Clothing Textiles	0.05\%	0.19\%	0.04\%	0.08\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	2.84\%
Organics	Disposable Diapers/Sanitary Products	0.08\%	0.37\%	0.05\%	0.12\%
Organics	Animal By-Products	0.01\%	0.09\%	0.01\%	0.02\%
Organics	Rubber Products	0.17\%	0.85\%	0.11\%	0.24\%
Organics	Shoes: Leather	0.00\%	0.00\%	0.00\%	2.84\%
Organics	Shoes: Other	0.00\%	0.03\%	0.00\%	0.01\%
Organics	Shoes: Rubber	0.06\%	0.45\%	0.04\%	0.09\%
Organics	Other Leather Products	0.02\%	0.13\%	0.01\%	0.02\%
Organics	Fines	1.24\%	4.85\%	0.87\%	1.67\%
Organics	Miscellaneous Organics	0.19\%	0.83\%	0.13\%	0.26\%
Organics Total		3.31\%	5.65\%	2.65\%	4.05\%
Appliance/Electronic	Small Appliances	2.09\%	0.08\%	1.81\%	3.73\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	2.84\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.03\%	0.00\%	0.01\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	2.84\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	2.84\%
Appliance/Electronic	Other Computer Equip.	0.81\%	2.43\%	0.55\%	1.13\%
Appliance/Electronic Total		2.91\%	5.49\%	2.20\%	3.95\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.13\%	0.66\%	0.09\%	0.19\%
$C \& D$ Debris	Treated/Contaminated Wood	0.08\%	0.43\%	0.05\%	0.11\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	2.84\%
C \& D Debris	Fiberglass Insulation	0.00\%	0.01\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.06\%	0.38\%	0.04\%	0.08\%
$C \& D$ Debris	Asphaltic Roofing	0.00\%	0.00\%	0.00\%	2.84\%
$C \& D$ Debris	Other C\&D Debris	0.01\%	0.06\%	0.01\%	0.01\%
C \& D Debris Total		0.28\%	0.86\%	0.19\%	0.38\%
Miscellaneous Inorganics	Misc. Inorganics	0.41\%	2.51\%	0.26\%	0.60\%
Miscellaneous Inorganics	Ceramics	0.45\%	0.94\%	0.32\%	0.59\%
Miscellaneous Inorganics Total		0.86\%	2.65\%	0.61\%	1.14\%

Table 1-166

Statistical Results, PWCS, MGP (continued)

Material Group	Material ${ }^{(1)}$		Confidence Interval		
		Mean	Standard Deviation	Lower Bound	Upper Bound
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Gasoline/Kerosene	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Motor Oil/Diesel Oil	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Latex Paints	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Water and Solvent-Based Adhesives/glues	0.01\%	0.09\%	0.01\%	0.01\%
HHW	Oil-Based Paint/Solvent	0.06\%	0.42\%	0.03\%	0.08\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	2.84\%
HHW	DRY-CELL Batteries	0.04\%	0.14\%	0.03\%	0.06\%
HHW	Fluorescent Tubes	0.00\%	0.01\%	0.00\%	0.00\%
HHW	Mercury-Laden waste	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Compressed Gas Cylinders/Fire Extinguishers	0.01\%	0.12\%	0.01\%	0.02\%
HHW	Asbestos	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Explosives	0.00\%	0.00\%	0.00\%	2.84\%
HHW	Smoke Detectors	0.00\%	0.01\%	0.00\%	0.00\%
HHW	Home Medical Products	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Other Potentially Harmful Wastes	0.00\%	0.00\%	0.00\%	2.84\%
HHW Total		0.12\%	0.46\%	0.08\%	0.16\%
GRAND TOTAL		100.00\%			

(1) When none of a particular material was found in any of the samples, the mean, standard deviation, and confidence interval boundaries are listed as zero percent. However, it is possible for these materials to exist in the waste stream. The level at which they may exist was not determined in this study.

Table 1-167
Statistical Results, WCS Results Across Seasons, Refuse, High Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	5.39\%	3.58\%	4.56\%	6.28\%	5.31\%	3.38\%	4.63\%	6.03\%	6.54\%	4.59\%	5.57\%	7.57\%	4.83\%	3.29\%	4.08\%	5.64\%
Paper	Plain OCC/Kraft Paper	1.88\%	2.17\%	1.46\%	2.35\%	1.33\%	2.07\%	1.00\%	1.71\%	2.11\%	4.23\%	1.52\%	2.80\%	1.53\%	1.31\%	1.26\%	1.84\%
Paper	High Grade Paper	1.33\%	1.45\%	0.97\%	1.75\%	1.72\%	2.81\%	1.23\%	2.29\%	1.68\%	2.81\%	1.21\%	2.22\%	1.40\%	1.60\%	1.07\%	1.77\%
Paper	Mixed Low Grade Paper	16.49\%	4.72\%	15.37\%	17.65\%	16.90\%	5.85\%	15.51\%	18.34\%	13.61\%	5.46\%	12.33\%	14.94\%	17.26\%	5.96\%	15.84\%	18.74\%
Paper	Phone Books/Paperbacks	0.70\%	1.66\%	0.39\%	1.09\%	1.07\%	1.92\%	0.67\%	1.57\%	1.13\%	3.95\%	0.66\%	1.72\%	0.43\%	0.99\%	0.26\%	0.65\%
Paper	Paper Bags	1.66\%	0.90\%	1.47\%	1.87\%	1.44\%	0.61\%	1.30\%	1.58\%	1.46\%	0.60\%	1.32\%	1.60\%	1.66\%	0.75\%	1.49\%	1.84\%
Paper	Polycoated Paper Containers	0.61\%	0.35\%	0.52\%	0.70\%	0.52\%	0.28\%	0.45\%	0.59\%	0.59\%	0.41\%	0.51\%	0.68\%	0.60\%	0.28\%	0.53\%	0.67\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	11.95\%	4.91\%	10.77\%	13.19\%	7.59\%	3.24\%	6.90\%	8.31\%	7.84\%	2.65\%	7.20\%	8.50\%	6.78\%	2.71\%	6.12\%	7.47\%
Paper	Single Use Paper Plates, Cups	0.90\%	0.85\%	0.75\%	1.06\%	0.75\%	0.80\%	0.62\%	0.89\%	0.57\%	0.51\%	0.46\%	0.69\%	0.52\%	0.27\%	0.46\%	0.59\%
Paper	Other Nonrecyclable Paper	0.65\%	0.56\%	0.53\%	0.79\%	0.65\%	0.69\%	0.51\%	0.79\%	0.54\%	0.60\%	0.43\%	0.67\%	1.28\%	1.02\%	1.08\%	1.51\%
Paper Total		41.56\%	9.54\%	39.29\%	43.85\%	37.27\%	8.44\%	35.26\%	39.30\%	36.07\%	10.04\%	33.65\%	38.53\%	36.30\%	9.19\%	33.99\%	38.64\%
Plastic	PET Bottles	1.02\%	0.59\%	0.89\%	1.15\%	0.98\%	0.54\%	0.87\%	1.10\%	1.00\%	0.48\%	0.89\%	1.12\%	1.12\%	0.66\%	0.97\%	1.29\%
Plastic	HDPE Bottles: Natural	0.14\%	0.16\%	0.11\%	0.18\%	0.17\%	0.17\%	0.13\%	0.21\%	0.20\%	0.23\%	0.16\%	0.25\%	0.38\%	1.13\%	0.25\%	0.54\%
Plastic	HDPE Bottles: Colored	0.36\%	0.38\%	0.27\%	0.46\%	0.32\%	0.25\%	0.26\%	0.38\%	0.26\%	0.23\%	0.21\%	0.31\%	0.38\%	0.26\%	0.31\%	0.46\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.15\%	0.76\%	0.08\%	0.25\%	0.02\%	0.05\%	0.01\%	0.03\%	0.06\%	0.18\%	0.03\%	0.09\%	0.05\%	0.20\%	0.03\%	0.08\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.03\%	0.00\%	0.01\%	0.05\%	0.29\%	0.02\%	0.08\%	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.05\%	0.09\%	0.03\%	0.07\%	0.06\%	0.08\%	0.04\%	0.08\%	0.07\%	0.08\%	0.05\%	0.09\%	0.04\%	0.07\%	0.03\%	0.06\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.15\%	1.09\%	0.07\%	0.27\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.22\%	0.17\%	0.18\%	0.26\%	0.21\%	0.18\%	0.17\%	0.26\%	0.24\%	0.19\%	0.20\%	0.29\%	0.37\%	0.46\%	0.29\%	0.45\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.08\%	0.02\%	0.06\%	0.05\%	0.11\%	0.03\%	0.08\%	0.11\%	0.11\%	0.08\%	0.14\%	0.09\%	0.13\%	0.06\%	0.13\%
Plastic	Soda Crates and Bottle Carriers	0.01\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%
Plastic	Other PVC	0.01\%	0.06\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.60\%	0.97\%	0.47\%	0.74\%	0.46\%	0.33\%	0.38\%	0.54\%	0.50\%	0.59\%	0.41\%	0.60\%	0.66\%	1.33\%	0.49\%	0.86\%
Plastic	Expanded Polystyrene Containers and Packaging	0.56\%	0.50\%	0.44\%	0.70\%	0.44\%	0.42\%	0.36\%	0.53\%	0.52\%	0.60\%	0.42\%	0.64\%	0.52\%	0.35\%	0.44\%	0.61\%
Plastic	Other Rigid Containers/Packaging	1.28\%	0.66\%	1.11\%	1.46\%	1.34\%	0.84\%	1.17\%	1.52\%	1.38\%	0.59\%	1.24\%	1.52\%	1.56\%	0.58\%	1.42\%	1.70\%
Plastic	Plastic Bags	3.00\%	1.16\%	2.74\%	3.27\%	3.25\%	2.07\%	2.84\%	3.69\%	3.97\%	1.50\%	3.60\%	4.35\%	3.08\%	0.88\%	2.86\%	3.31\%
Plastic	Other Film	6.85\%	2.04\%	6.38\%	7.33\%	6.65\%	2.37\%	6.11\%	7.21\%	5.77\%	2.65\%	5.18\%	6.40\%	6.12\%	1.58\%	5.73\%	6.51\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.56\%	0.68\%	0.45\%	0.68\%	0.49\%	0.60\%	0.38\%	0.61\%	0.48\%	0.44\%	0.39\%	0.58\%	0.69\%	1.04\%	0.55\%	0.85\%
Plastic	Other Plastics Materials	1.03\%	1.16\%	0.82\%	1.25\%	1.09\%	0.97\%	0.88\%	1.32\%	1.39\%	1.74\%	1.08\%	1.74\%	2.30\%	3.86\%	1.72\%	2.97\%
Plastic Total		15.89\%	3.49\%	15.06\%	16.73\%	15.59\%	4.34\%	14.61\%	16.60\%	16.14\%	4.15\%	15.16\%	17.15\%	17.41\%	4.66\%	16.27\%	18.57\%
Glass	Clear Container Glass	1.01\%	1.29\%	0.76\%	1.30\%	0.77\%	0.78\%	0.60\%	0.96\%	0.48\%	0.42\%	0.37\%	0.61\%	1.15\%	0.97\%	0.91\%	1.42\%
Glass	Green Container Glass	0.40\%	0.54\%	0.26\%	0.57\%	0.79\%	0.83\%	0.57\%	1.04\%	0.47\%	0.62\%	0.31\%	0.66\%	0.67\%	0.87\%	0.48\%	0.91\%
Glass	Brown Container Glass	0.14\%	0.21\%	0.09\%	0.21\%	0.16\%	0.23\%	0.10\%	0.22\%	0.19\%	0.28\%	0.12\%	0.27\%	0.26\%	0.39\%	0.17\%	0.36\%
Glass	Mixed Cullet	0.89\%	1.14\%	0.62\%	1.19\%	0.69\%	0.86\%	0.51\%	0.88\%	0.70\%	0.84\%	0.52\%	0.91\%	1.09\%	1.03\%	0.86\%	1.34\%
Glass	Other Container Glass	0.01\%	0.03\%	0.00\%	0.01\%	0.02\%	0.06\%	0.01\%	0.02\%	0.03\%	0.10\%	0.01\%	0.04\%	0.02\%	0.13\%	0.01\%	0.03\%
Glass	Other Glass	0.05\%	0.14\%	0.03\%	0.08\%	0.10\%	0.38\%	0.06\%	0.16\%	0.16\%	0.26\%	0.11\%	0.22\%	0.25\%	0.59\%	0.16\%	0.36\%
Glass Total		2.50\%	2.06\%	2.03\%	3.01\%	2.51\%	1.75\%	2.14\%	2.92\%	2.02\%	1.23\%	1.73\%	2.34\%	3.43\%	2.15\%	2.97\%	3.93\%

Table 1-167
Statistical Results, WCS Results Across Seasons, Refuse, High Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.20\%	0.19\%	0.17\%	0.24\%	0.32\%	0.48\%	0.25\%	0.41\%	0.19\%	0.13\%	0.16\%	0.22\%	0.27\%	0.21\%	0.22\%	0.32\%
Metal	Aluminum Foil/Containers	0.61\%	0.39\%	0.52\%	0.69\%	0.53\%	0.27\%	0.47\%	0.60\%	0.67\%	0.38\%	0.58\%	0.76\%	0.71\%	0.37\%	0.63\%	0.80\%
Metal	Other Aluminum	0.01\%	0.05\%	0.01\%	0.02\%	0.01\%	0.06\%	0.01\%	0.02\%	0.01\%	0.07\%	0.00\%	0.02\%	0.03\%	0.20\%	0.01\%	0.05\%
Metal	Other Non-Ferrous	0.10\%	0.22\%	0.06\%	0.16\%	0.12\%	0.59\%	0.06\%	0.20\%	0.15\%	0.68\%	0.08\%	0.25\%	0.11\%	0.50\%	0.05\%	0.17\%
Metal	Tin Food Cans	0.56\%	0.40\%	0.46\%	0.68\%	0.50\%	0.32\%	0.42\%	0.58\%	0.49\%	0.36\%	0.39\%	0.59\%	0.59\%	0.72\%	0.47\%	0.72\%
Metal	Empty Aerosol Cans	0.12\%	0.16\%	0.08\%	0.17\%	0.14\%	0.16\%	0.10\%	0.18\%	0.12\%	0.12\%	0.08\%	0.15\%	0.16\%	0.16\%	0.12\%	0.22\%
Metal	Other Ferrous	0.83\%	1.07\%	0.62\%	1.06\%	1.45\%	2.54\%	1.03\%	1.96\%	1.07\%	1.81\%	0.79\%	1.39\%	1.15\%	1.43\%	0.87\%	1.47\%
Metal	Mixed Metals	0.27\%	0.76\%	0.16\%	0.41\%	1.56\%	8.75\%	0.83\%	2.53\%	0.73\%	2.87\%	0.42\%	1.12\%	0.13\%	0.27\%	0.08\%	0.20\%
Metal Total		2.71\%	1.26\%	2.42\%	3.01\%	4.65\%	8.75\%	3.53\%	5.91\%	3.42\%	3.25\%	2.88\%	4.02\%	3.14\%	1.66\%	2.79\%	3.52\%
Organics	Leaves and Grass	1.80\%	4.85\%	1.04\%	2.77\%	0.24\%	1.28\%	0.12\%	0.39\%	2.79\%	5.30\%	1.80\%	3.98\%	0.58\%	1.10\%	0.38\%	0.84\%
Organics	Prunings	0.36\%	0.71\%	0.22\%	0.54\%	1.12\%	3.57\%	0.67\%	1.68\%	0.66\%	2.26\%	0.38\%	1.02\%	0.37\%	1.76\%	0.19\%	0.61\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.05\%	0.24\%	0.02\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	16.59\%	6.60\%	15.05\%	18.18\%	16.30\%	5.75\%	14.74\%	17.92\%	15.55\%	5.22\%	14.32\%	16.82\%	12.57\%	5.51\%	11.11\%	14.10\%
Organics	Wood Furniture/Furniture Pieces	0.69\%	1.48\%	0.41\%	1.06\%	0.78\%	1.52\%	0.48\%	1.16\%	0.74\%	2.17\%	0.41\%	1.16\%	2.54\%	8.47\%	1.42\%	3.97\%
Organics	Non-C\&D Untreated Wood	0.02\%	0.06\%	0.01\%	0.03\%	0.47\%	2.77\%	0.26\%	0.75\%	0.06\%	0.18\%	0.03\%	0.09\%	0.06\%	0.13\%	0.04\%	0.09\%
Organics	Non-Clothing Textiles	1.17\%	1.55\%	0.85\%	1.53\%	1.59\%	2.06\%	1.16\%	2.07\%	1.06\%	1.29\%	0.79\%	1.37\%	1.80\%	1.83\%	1.40\%	2.24\%
Organics	Clothing Textiles	1.82\%	2.51\%	1.42\%	2.28\%	1.30\%	1.34\%	1.02\%	1.61\%	1.93\%	2.47\%	1.42\%	2.52\%	2.12\%	2.84\%	1.61\%	2.69\%
Organics	Carpet/Upholstery	1.43\%	4.10\%	0.79\%	2.27\%	2.37\%	8.15\%	1.26\%	3.80\%	1.51\%	4.71\%	0.81\%	2.43\%	1.81\%	4.04\%	1.03\%	2.80\%
Organics	Disposable Diapers and Sanitary Products	3.08\%	2.38\%	2.52\%	3.69\%	2.94\%	2.43\%	2.38\%	3.56\%	3.29\%	2.40\%	2.73\%	3.90\%	3.77\%	3.11\%	3.01\%	4.62\%
Organics	Animal By-Products	1.35\%	1.85\%	0.92\%	1.85\%	2.12\%	2.81\%	1.54\%	2.81\%	1.40\%	1.90\%	1.00\%	1.86\%	1.48\%	2.03\%	1.02\%	2.02\%
Organics	Rubber Products	0.36\%	0.86\%	0.24\%	0.51\%	0.15\%	0.23\%	0.10\%	0.20\%	0.24\%	0.51\%	0.16\%	0.33\%	0.22\%	0.32\%	0.16\%	0.29\%
Organics	Shoes	0.36\%	0.56\%	0.23\%	0.52\%	0.34\%	0.62\%	0.21\%	0.50\%	0.42\%	0.88\%	0.26\%	0.62\%	0.76\%	0.99\%	0.52\%	1.04\%
Organics	Other Leather Products	0.04\%	0.14\%	0.02\%	0.07\%	0.02\%	0.07\%	0.01\%	0.03\%	0.07\%	0.24\%	0.04\%	0.11\%	0.03\%	0.09\%	0.02\%	0.05\%
Organics	Fines	3.44\%	1.63\%	3.03\%	3.87\%	3.40\%	1.46\%	2.99\%	3.84\%	5.04\%	1.96\%	4.58\%	5.52\%	3.87\%	2.07\%	3.32\%	4.47\%
Organics	Upholstered or Other Organic-Type Furniture	0.09\%	0.66\%	0.04\%	0.16\%	1.29\%	4.82\%	0.67\%	2.10\%	0.98\%	4.52\%	0.48\%	1.65\%	0.07\%	0.49\%	0.03\%	0.12\%
Organics	Miscellaneous Organics	0.36\%	0.57\%	0.24\%	0.51\%	0.71\%	1.11\%	0.50\%	0.96\%	0.77\%	1.97\%	0.49\%	1.12\%	1.73\%	4.44\%	1.09\%	2.52\%
Organics Total		32.96\%	8.98\%	30.83\%	35.13\%	35.14\%	10.00\%	32.80\%	37.51\%	36.57\%	10.29\%	34.12\%	39.05\%	33.79\%	10.47\%	31.28\%	36.34\%
Appliance/Electronic	Appliances: Ferrous	0.17\%	0.74\%	0.09\%	0.29\%	0.01\%	0.07\%	0.00\%	0.02\%	0.19\%	0.63\%	0.10\%	0.30\%	0.99\%	5.88\%	0.46\%	1.70\%
Appliance/Electronic	Appliances: Non-Ferrous	0.05\%	0.37\%	0.02\%	0.09\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.16\%	0.38\%	0.09\%	0.25\%	0.23\%	0.73\%	0.12\%	0.37\%	0.08\%	0.29\%	0.04\%	0.13\%	0.74\%	2.21\%	0.40\%	1.17\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.01\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.12\%	0.35\%	0.07\%	0.19\%	0.16\%	0.82\%	0.08\%	0.25\%	0.09\%	0.27\%	0.05\%	0.14\%	0.28\%	0.68\%	0.16\%	0.42\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.34\%	1.30\%	0.18\%	0.55\%	0.13\%	0.69\%	0.06\%	0.21\%	0.02\%	0.14\%	0.01\%	0.04\%	0.08\%	0.28\%	0.05\%	0.14\%
Appliance/Electronic Total		0.84\%	1.79\%	0.55\%	1.20\%	0.54\%	1.24\%	0.33\%	0.81\%	0.39\%	0.70\%	0.24\%	0.57\%	2.09\%	7.26\%	1.23\%	3.17\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.07\%	0.26\%	0.03\%	0.11\%	0.42\%	1.90\%	0.22\%	0.68\%	0.98\%	2.88\%	0.54\%	1.53\%	0.16\%	0.88\%	0.08\%	0.28\%
$C \& D$ Debris	Treated/Contaminated Wood	0.59\%	1.71\%	0.34\%	0.90\%	1.20\%	2.12\%	0.77\%	1.72\%	1.35\%	3.56\%	0.84\%	1.99\%	1.70\%	4.11\%	1.05\%	2.50\%
$C \& D$ Debris	Gypsum Scrap	0.64\%	1.87\%	0.35\%	1.02\%	0.89\%	3.53\%	0.48\%	1.42\%	0.59\%	2.17\%	0.31\%	0.97\%	0.10\%	0.40\%	0.05\%	0.17\%
$C \& D$ Debris	Rock/Concrete/Bricks	0.30\%	1.52\%	0.15\%	0.50\%	0.07\%	0.39\%	0.03\%	0.12\%	0.26\%	0.93\%	0.14\%	0.43\%	0.18\%	0.78\%	0.09\%	0.30\%
C \& D Debris	Other Construction Debris	1.50\%	4.55\%	0.82\%	2.39\%	0.97\%	2.76\%	0.53\%	1.52\%	1.13\%	3.16\%	0.61\%	1.80\%	0.95\%	2.65\%	0.52\%	1.50\%
C \& D Debris Total		3.10\%	5.45\%	2.03\%	4.39\%	3.54\%	5.57\%	2.40\%	4.88\%	4.32\%	5.67\%	3.03\%	5.82\%	3.10\%	5.90\%	2.04\%	4.36\%

Table 1-167
Statistical Results, WCS Results Across Seasons, Refuse, High Density/High Income (continued)

Table 1-168
Statistical Results, WCS Results Across Seasons, Refuse, High Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	5.08\%	3.76\%	4.28\%	5.95\%	5.19\%	2.72\%	4.50\%	5.92\%	5.29\%	4.31\%	4.41\%	6.25\%	4.85\%	3.70\%	3.99\%	5.80\%
Paper	Plain OCC/Kraft Paper	1.27\%	2.12\%	0.89\%	1.71\%	1.11\%	1.35\%	0.85\%	1.41\%	0.93\%	1.02\%	0.69\%	1.19\%	1.57\%	1.62\%	1.27\%	1.91\%
Paper	High Grade Paper	0.76\%	1.61\%	0.48\%	1.09\%	1.12\%	1.51\%	0.77\%	1.53\%	0.42\%	0.63\%	0.29\%	0.57\%	1.20\%	2.79\%	0.78\%	1.70\%
Paper	Mixed Low Grade Paper	8.21\%	4.12\%	7.26\%	9.20\%	10.04\%	5.79\%	8.79\%	11.35\%	7.40\%	3.03\%	6.70\%	8.14\%	9.14\%	4.28\%	8.03\%	10.31\%
Paper	Phone Books/Paperbacks	0.43\%	0.78\%	0.25\%	0.65\%	1.29\%	3.30\%	0.72\%	2.03\%	0.60\%	1.52\%	0.34\%	0.92\%	0.49\%	0.97\%	0.31\%	0.72\%
Paper	Paper Bags	0.56\%	0.32\%	0.48\%	0.64\%	0.60\%	0.45\%	0.50\%	0.71\%	0.61\%	0.46\%	0.52\%	0.71\%	0.78\%	0.39\%	0.69\%	0.88\%
Paper	Polycoated Paper Containers	0.47\%	0.35\%	0.39\%	0.56\%	0.38\%	0.32\%	0.31\%	0.46\%	0.85\%	3.02\%	0.58\%	1.16\%	0.47\%	0.26\%	0.40\%	0.54\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.29\%	4.43\%	7.26\%	9.39\%	6.26\%	3.55\%	5.34\%	7.25\%	6.56\%	3.73\%	5.79\%	7.38\%	5.69\%	2.37\%	5.12\%	6.28\%
Paper	Single Use Paper Plates, Cups	0.58\%	0.93\%	0.43\%	0.76\%	0.32\%	0.32\%	0.25\%	0.40\%	0.33\%	0.31\%	0.27\%	0.40\%	0.46\%	0.45\%	0.37\%	0.56\%
Paper	Other Nonrecyclable Paper	0.79\%	0.97\%	0.62\%	0.99\%	0.61\%	0.83\%	0.47\%	0.77\%	0.50\%	0.45\%	0.41\%	0.60\%	1.00\%	0.63\%	0.86\%	1.16\%
Paper Total		26.44\%	8.95\%	24.29\%	28.65\%	26.92\%	8.62\%	24.88\%	29.02\%	23.48\%	8.08\%	21.59\%	25.43\%	25.65\%	7.70\%	23.81\%	27.53\%
Plastic	PET Bottles	0.82\%	0.50\%	0.71\%	0.94\%	1.00\%	0.52\%	0.88\%	1.12\%	0.86\%	0.49\%	0.75\%	0.99\%	1.17\%	0.60\%	1.02\%	1.32\%
Plastic	HDPE Bottles: Natural	0.24\%	0.16\%	0.20\%	0.29\%	0.30\%	0.22\%	0.25\%	0.35\%	0.29\%	0.29\%	0.22\%	0.36\%	0.33\%	0.25\%	0.26\%	0.40\%
Plastic	HDPE Bottles: Colored	0.34\%	0.31\%	0.26\%	0.42\%	0.37\%	0.39\%	0.28\%	0.47\%	0.28\%	0.20\%	0.23\%	0.33\%	0.32\%	0.32\%	0.25\%	0.41\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.10\%	0.51\%	0.05\%	0.16\%	0.05\%	0.35\%	0.03\%	0.09\%	0.15\%	0.49\%	0.08\%	0.23\%	0.06\%	0.22\%	0.03\%	0.09\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.05\%	0.01\%	0.03\%	0.01\%	0.02\%	0.00\%	0.01\%	0.02\%	0.05\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.00\%	0.01\%	0.02\%	0.05\%	0.01\%	0.03\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.06\%	0.08\%	0.04\%	0.09\%	0.08\%	0.14\%	0.05\%	0.11\%	0.08\%	0.11\%	0.06\%	0.11\%	0.06\%	0.06\%	0.04\%	0.08\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.15\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.17\%	0.18\%	0.13\%	0.22\%	0.22\%	0.20\%	0.17\%	0.26\%	0.20\%	0.16\%	0.16\%	0.25\%	0.19\%	0.12\%	0.15\%	0.22\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.04\%	0.02\%	0.04\%	0.06\%	0.19\%	0.03\%	0.10\%	0.05\%	0.09\%	0.03\%	0.07\%	0.08\%	0.19\%	0.04\%	0.12\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%	0.02\%	0.12\%	0.01\%	0.04\%	0.01\%	0.09\%	0.01\%	0.02\%
Plastic	Other PVC	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.21\%	0.01\%	0.05\%
Plastic	Rigid Polystyrene Containers and Packaging	0.31\%	0.34\%	0.24\%	0.38\%	0.25\%	0.21\%	0.20\%	0.31\%	0.29\%	0.29\%	0.23\%	0.35\%	0.25\%	0.23\%	0.21\%	0.30\%
Plastic	Expanded Polystyrene Containers and Packaging	0.58\%	0.32\%	0.50\%	0.66\%	0.71\%	0.67\%	0.58\%	0.84\%	0.63\%	0.43\%	0.55\%	0.72\%	0.75\%	0.52\%	0.63\%	0.88\%
Plastic	Other Rigid Containers/Packaging	1.05\%	2.67\%	0.78\%	1.35\%	0.64\%	0.45\%	0.53\%	0.76\%	0.82\%	0.33\%	0.74\%	0.90\%	1.02\%	0.48\%	0.91\%	1.14\%
Plastic	Plastic Bags	3.79\%	2.17\%	3.27\%	4.35\%	4.27\%	2.44\%	3.76\%	4.82\%	4.45\%	2.04\%	3.97\%	4.97\%	3.44\%	1.13\%	3.16\%	3.73\%
Plastic	Other Film	6.60\%	2.29\%	6.07\%	7.15\%	6.20\%	2.06\%	5.70\%	6.71\%	6.39\%	3.10\%	5.70\%	7.12\%	5.88\%	2.06\%	5.38\%	6.40\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.45\%	0.63\%	0.35\%	0.56\%	0.65\%	0.84\%	0.50\%	0.80\%	0.58\%	0.71\%	0.46\%	0.71\%	0.78\%	1.04\%	0.61\%	0.96\%
Plastic	Other Plastics Materials	1.48\%	1.69\%	1.16\%	1.84\%	1.34\%	1.24\%	1.08\%	1.62\%	2.43\%	3.43\%	1.83\%	3.12\%	3.15\%	3.72\%	2.43\%	3.95\%
Plastic Total		16.05\%	4.36\%	15.05\%	17.07\%	16.19\%	4.20\%	15.20\%	17.21\%	17.57\%	5.72\%	16.26\%	18.92\%	17.53\%	4.74\%	16.39\%	18.70\%
Glass	Clear Container Glass	0.77\%	0.77\%	0.59\%	0.98\%	1.09\%	1.05\%	0.85\%	1.35\%	0.81\%	0.69\%	0.63\%	1.01\%	1.21\%	0.99\%	0.96\%	1.49\%
Glass	Green Container Glass	0.27\%	0.45\%	0.17\%	0.39\%	0.33\%	0.55\%	0.21\%	0.47\%	0.17\%	0.29\%	0.10\%	0.26\%	0.32\%	0.56\%	0.20\%	0.47\%
Glass	Brown Container Glass	0.30\%	0.55\%	0.20\%	0.43\%	0.21\%	0.33\%	0.14\%	0.31\%	0.11\%	0.18\%	0.07\%	0.17\%	0.22\%	0.33\%	0.14\%	0.32\%
Glass	Mixed Cullet	0.71\%	0.83\%	0.51\%	0.95\%	0.78\%	1.21\%	0.55\%	1.06\%	0.47\%	0.55\%	0.34\%	0.63\%	0.80\%	0.97\%	0.58\%	1.05\%
Glass	Other Container Glass	0.01\%	0.08\%	0.01\%	0.02\%	0.01\%	0.04\%	0.00\%	0.01\%	0.04\%	0.15\%	0.02\%	0.07\%	0.00\%	0.02\%	0.00\%	0.01\%
Glass	Other Glass	0.10\%	0.25\%	0.06\%	0.15\%	0.13\%	0.25\%	0.08\%	0.20\%	0.15\%	0.31\%	0.09\%	0.22\%	0.41\%	0.74\%	0.27\%	0.57\%
Glass Total		2.16\%	1.43\%	1.79\%	2.58\%	2.55\%	2.26\%	2.10\%	3.03\%	1.76\%	1.15\%	1.48\%	2.06\%	2.97\%	1.93\%	2.52\%	3.45\%

Table 1-168
Statistical Results, WCS Results Across Seasons, Refuse, High Density/Medium Income (continued)

							Win										
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.23\%	0.31\%	0.18\%	0.29\%	0.25\%	0.24\%	0.20\%	0.30\%	0.21\%	0.14\%	0.17\%	0.25\%	0.24\%	0.17\%	0.20\%	0.29\%
Metal	Aluminum Foil/Containers	0.41\%	0.26\%	0.35\%	0.48\%	0.51\%	0.36\%	0.43\%	0.60\%	0.61\%	0.41\%	0.53\%	0.71\%	0.56\%	0.36\%	0.48\%	0.65\%
Metal	Other Aluminum	0.05\%	0.15\%	0.03\%	0.08\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.14\%	0.01\%	0.04\%
Metal	Other Non-Ferrous	0.10\%	0.28\%	0.05\%	0.15\%	0.26\%	0.78\%	0.15\%	0.41\%	0.17\%	0.88\%	0.09\%	0.28\%	0.17\%	0.37\%	0.10\%	0.26\%
Metal	Tin Food Cans	1.00\%	0.73\%	0.83\%	1.17\%	1.02\%	0.58\%	0.88\%	1.16\%	1.01\%	0.76\%	0.83\%	1.21\%	0.82\%	0.46\%	0.71\%	0.94\%
Metal	Empty Aerosol Cans	0.10\%	0.12\%	0.07\%	0.14\%	0.05\%	0.08\%	0.03\%	0.08\%	0.14\%	0.28\%	0.10\%	0.20\%	0.08\%	0.11\%	0.06\%	0.12\%
Metal	Other Ferrous	1.33\%	3.42\%	0.90\%	1.83\%	1.09\%	2.85\%	0.70\%	1.57\%	0.85\%	1.08\%	0.62\%	1.11\%	1.03\%	2.70\%	0.66\%	1.47\%
Metal	Mixed Metals	0.18\%	0.48\%	0.10\%	0.28\%	0.51\%	1.24\%	0.32\%	0.75\%	0.42\%	1.22\%	0.26\%	0.63\%	0.30\%	0.47\%	0.20\%	0.42\%
Metal Total		3.39\%	3.52\%	2.82\%	4.01\%	3.70\%	3.20\%	3.10\%	4.34\%	3.42\%	2.53\%	2.93\%	3.95\%	3.21\%	2.83\%	2.72\%	3.74\%
Organics	Leaves and Grass	3.05\%	4.60\%	1.97\%	4.35\%	0.78\%	2.35\%	0.43\%	1.24\%	3.28\%	7.41\%	1.95\%	4.93\%	2.82\%	6.63\%	1.68\%	4.24\%
Organics	Prunings	0.71\%	2.10\%	0.40\%	1.10\%	0.24\%	0.54\%	0.15\%	0.35\%	0.18\%	0.77\%	0.10\%	0.29\%	0.24\%	0.96\%	0.13\%	0.37\%
Organics	Stumps/Limbs	0.16\%	1.08\%	0.07\%	0.27\%	0.05\%	0.33\%	0.02\%	0.09\%	0.16\%	0.79\%	0.08\%	0.26\%	0.24\%	1.32\%	0.12\%	0.42\%
Organics	Food	23.39\%	8.30\%	21.47\%	25.36\%	23.96\%	7.98\%	22.05\%	25.92\%	24.41\%	8.10\%	22.43\%	26.45\%	19.12\%	6.97\%	17.44\%	20.85\%
Organics	Wood Furniture/Furniture Pieces	0.40\%	0.96\%	0.23\%	0.62\%	1.02\%	1.89\%	0.63\%	1.49\%	1.24\%	3.82\%	0.66\%	1.98\%	1.60\%	3.45\%	0.98\%	2.37\%
Organics	Non-C\&D Untreated Wood	0.03\%	0.12\%	0.01\%	0.05\%	0.18\%	0.57\%	0.11\%	0.28\%	0.24\%	0.84\%	0.14\%	0.36\%	0.14\%	0.34\%	0.09\%	0.20\%
Organics	Non-Clothing Textiles	1.47\%	1.55\%	1.10\%	1.89\%	1.78\%	1.89\%	1.36\%	2.27\%	1.66\%	2.25\%	1.21\%	2.17\%	1.91\%	1.82\%	1.51\%	2.35\%
Organics	Clothing Textiles	3.67\%	4.09\%	2.83\%	4.62\%	2.65\%	3.00\%	2.08\%	3.29\%	3.57\%	3.95\%	2.83\%	4.39\%	3.54\%	4.13\%	2.78\%	4.39\%
Organics	Carpet/Upholstery	0.60\%	2.08\%	0.32\%	0.97\%	1.76\%	5.34\%	0.94\%	2.83\%	0.36\%	1.01\%	0.21\%	0.56\%	1.25\%	3.41\%	0.70\%	1.95\%
Organics	Disposable Diapers and Sanitary Products	3.72\%	2.46\%	3.06\%	4.44\%	3.69\%	2.44\%	3.09\%	4.33\%	3.52\%	2.42\%	2.93\%	4.16\%	3.29\%	1.66\%	2.86\%	3.76\%
Organics	Animal By-Products	1.45\%	2.62\%	0.92\%	2.11\%	0.74\%	1.25\%	0.46\%	1.07\%	1.02\%	1.28\%	0.74\%	1.35\%	1.19\%	1.86\%	0.77\%	1.69\%
Organics	Rubber Products	0.26\%	0.44\%	0.18\%	0.37\%	0.19\%	0.33\%	0.14\%	0.25\%	0.29\%	0.75\%	0.18\%	0.41\%	0.35\%	1.07\%	0.23\%	0.49\%
Organics	Shoes	0.60\%	1.08\%	0.38\%	0.87\%	0.92\%	1.32\%	0.63\%	1.27\%	0.87\%	1.10\%	0.60\%	1.19\%	0.61\%	0.74\%	0.42\%	0.84\%
Organics	Other Leather Products	0.22\%	0.68\%	0.12\%	0.35\%	0.08\%	0.18\%	0.05\%	0.12\%	0.05\%	0.11\%	0.03\%	0.08\%	0.15\%	0.57\%	0.08\%	0.24\%
Organics	Fines	3.50\%	1.58\%	3.14\%	3.87\%	4.26\%	1.88\%	3.78\%	4.77\%	5.30\%	2.22\%	4.73\%	5.91\%	3.86\%	1.89\%	3.41\%	4.35\%
Organics	Upholstered or Other Organic-Type Furniture	0.61\%	2.64\%	0.31\%	1.01\%	1.06\%	4.77\%	0.52\%	1.80\%	1.38\%	5.39\%	0.70\%	2.29\%	1.06\%	4.06\%	0.55\%	1.75\%
Organics	Miscellaneous Organics	0.53\%	1.38\%	0.33\%	0.77\%	0.75\%	1.54\%	0.51\%	1.03\%	0.45\%	1.11\%	0.28\%	0.66\%	0.68\%	2.00\%	0.43\%	0.99\%
Organics Total		44.36\%	11.06\%	41.67\%	47.07\%	44.12\%	9.74\%	41.76\%	46.48\%	47.97\%	9.15\%	45.77\%	50.18\%	42.05\%	10.56\%	39.48\%	44.64\%
Appliance/Electronic	Appliances: Ferrous	0.14\%	0.67\%	0.07\%	0.24\%	0.21\%	0.81\%	0.11\%	0.35\%	0.11\%	0.45\%	0.05\%	0.18\%	0.19\%	0.91\%	0.10\%	0.32\%
Appliance/Electronic	Appliances: Non-Ferrous	0.01\%	0.06\%	0.01\%	0.02\%	0.05\%	0.26\%	0.03\%	0.09\%	0.02\%	0.11\%	0.01\%	0.03\%	0.07\%	0.46\%	0.03\%	0.11\%
Appliance/Electronic	Appliances: Plastic	0.28\%	0.60\%	0.16\%	0.44\%	0.06\%	0.21\%	0.03\%	0.10\%	0.32\%	0.96\%	0.17\%	0.51\%	0.48\%	1.92\%	0.26\%	0.76\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.04\%	0.00\%	0.01\%	0.01\%	0.04\%	0.01\%	0.02\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.12\%	0.53\%	0.07\%	0.20\%	0.09\%	0.27\%	0.05\%	0.15\%	0.18\%	0.66\%	0.09\%	0.29\%	0.32\%	1.33\%	0.18\%	0.51\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.44\%	0.03\%	0.11\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.14\%	0.96\%	0.06\%	0.24\%
Appliance/Electronic	Other Computer Equipment	0.32\%	1.61\%	0.16\%	0.54\%	0.27\%	1.19\%	0.14\%	0.45\%	0.26\%	1.08\%	0.13\%	0.43\%	0.35\%	1.62\%	0.18\%	0.58\%
Appliance/Electronic Total		0.88\%	1.82\%	0.55\%	1.29\%	0.69\%	1.51\%	0.42\%	1.02\%	0.89\%	1.66\%	0.55\%	1.31\%	1.62\%	3.02\%	1.05\%	2.30\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.58\%	1.96\%	0.30\%	0.93\%	0.33\%	0.95\%	0.18\%	0.52\%	0.37\%	0.65\%	0.23\%	0.54\%	0.89\%	3.83\%	0.46\%	1.48\%
$C \& D$ Debris	Treated/Contaminated Wood	1.68\%	2.21\%	1.12\%	2.34\%	2.35\%	4.10\%	1.56\%	3.30\%	1.20\%	2.25\%	0.80\%	1.67\%	2.11\%	5.56\%	1.32\%	3.07\%
$C \& D$ Debris	Gypsum Scrap	1.72\%	4.95\%	0.94\%	2.74\%	0.66\%	2.26\%	0.35\%	1.07\%	0.88\%	3.02\%	0.46\%	1.44\%	0.82\%	3.35\%	0.41\%	1.38\%
$C \& D$ Debris	Rock/Concrete/Bricks	0.61\%	2.22\%	0.32\%	0.99\%	0.18\%	0.72\%	0.09\%	0.30\%	0.25\%	1.10\%	0.13\%	0.41\%	0.11\%	0.42\%	0.06\%	0.18\%
C\&D Debris	Other Construction Debris	1.35\%	3.70\%	0.74\%	2.15\%	1.51\%	3.55\%	0.87\%	2.34\%	1.37\%	3.44\%	0.77\%	2.15\%	1.92\%	5.97\%	1.08\%	2.99\%
C \& D Debris Total		5.94\%	8.50\%	4.15\%	8.02\%	5.03\%	6.54\%	3.68\%	6.59\%	4.07\%	4.99\%	2.96\%	5.33\%	5.86\%	10.33\%	3.84\%	8.27\%

Table 1-168
Statistical Results, WCS Results Across Seasons, Refuse, High Density/Medium Income (continued)

Table 1-169
Statistical Results, WCS Results Across Seasons, Refuse, High Density/Low Income

Table 1-169
Statistical Results, WCS Results Across Seasons, Refuse, High Density/Low Income (continued)

			F												Sum		
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.22\%	0.16\%	0.18\%	0.27\%	0.22\%	0.15\%	0.19\%	0.26\%	0.22\%	0.18\%	0.18\%	0.27\%	0.41\%	0.36\%	0.34\%	0.49\%
Metal	Aluminum Foil/Containers	0.55\%	0.41\%	0.45\%	0.66\%	0.54\%	0.35\%	0.47\%	0.62\%	0.59\%	0.35\%	0.51\%	0.68\%	0.59\%	0.27\%	0.53\%	0.65\%
Metal	Other Aluminum	0.02\%	0.06\%	0.01\%	0.03\%	0.06\%	0.44\%	0.03\%	0.11\%	0.10\%	0.60\%	0.05\%	0.16\%	0.01\%	0.07\%	0.00\%	0.02\%
Metal	Other Non-Ferrous	0.18\%	0.62\%	0.10\%	0.28\%	0.12\%	0.43\%	0.07\%	0.19\%	0.08\%	0.18\%	0.05\%	0.12\%	0.12\%	0.34\%	0.07\%	0.18\%
Metal	Tin Food Cans	1.64\%	0.98\%	1.41\%	1.88\%	1.42\%	0.68\%	1.26\%	1.59\%	1.53\%	0.69\%	1.36\%	1.71\%	1.28\%	0.61\%	1.13\%	1.43\%
Metal	Empty Aerosol Cans	0.17\%	0.23\%	0.12\%	0.24\%	0.09\%	0.17\%	0.06\%	0.13\%	0.11\%	0.11\%	0.08\%	0.15\%	0.22\%	0.23\%	0.16\%	0.28\%
Metal	Other Ferrous	0.98\%	2.46\%	0.64\%	1.38\%	1.45\%	3.06\%	0.94\%	2.08\%	1.53\%	3.23\%	1.03\%	2.13\%	0.43\%	0.51\%	0.31\%	0.56\%
Metal	Mixed Metals	0.39\%	0.60\%	0.25\%	0.55\%	0.44\%	0.75\%	0.28\%	0.63\%	0.48\%	1.34\%	0.29\%	0.71\%	0.51\%	0.71\%	0.35\%	0.70\%
Metal Total		4.14\%	2.86\%	3.57\%	4.75\%	4.35\%	3.03\%	3.76\%	4.99\%	4.64\%	3.52\%	3.96\%	5.36\%	3.56\%	1.25\%	3.26\%	3.87\%
Organics	Leaves and Grass	1.63\%	4.21\%	0.91\%	2.56\%	0.28\%	1.57\%	0.14\%	0.47\%	0.54\%	1.85\%	0.30\%	0.85\%	0.83\%	2.32\%	0.48\%	1.28\%
Organics	Prunings	0.02\%	0.07\%	0.01\%	0.03\%	0.16\%	0.78\%	0.09\%	0.25\%	0.28\%	1.39\%	0.14\%	0.45\%	0.07\%	0.34\%	0.04\%	0.12\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.16\%	0.01\%	0.05\%	0.04\%	0.19\%	0.02\%	0.06\%	0.04\%	0.28\%	0.02\%	0.07\%
Organics	Food	27.54\%	9.06\%	25.28\%	29.87\%	25.98\%	9.69\%	23.60\%	28.44\%	24.53\%	7.66\%	22.67\%	26.44\%	23.04\%	7.66\%	21.10\%	25.04\%
Organics	Wood Furniture/Furniture Pieces	0.72\%	1.18\%	0.44\%	1.07\%	1.44\%	3.76\%	0.83\%	2.20\%	1.00\%	2.79\%	0.59\%	1.51\%	1.09\%	2.14\%	0.68\%	1.59\%
Organics	Non-C\&D Untreated Wood	0.07\%	0.34\%	0.03\%	0.11\%	0.57\%	3.25\%	0.29\%	0.93\%	0.12\%	0.66\%	0.06\%	0.20\%	0.12\%	0.34\%	0.07\%	0.18\%
Organics	Non-Clothing Textiles	1.62\%	1.74\%	1.27\%	2.01\%	1.42\%	1.95\%	1.02\%	1.89\%	1.36\%	1.28\%	1.07\%	1.69\%	2.65\%	2.30\%	2.17\%	3.17\%
Organics	Clothing Textiles	4.38\%	5.15\%	3.41\%	5.46\%	3.59\%	3.46\%	2.79\%	4.48\%	3.91\%	3.53\%	3.12\%	4.80\%	4.72\%	4.94\%	3.66\%	5.90\%
Organics	Carpet/Upholstery	0.42\%	2.60\%	0.21\%	0.72\%	1.19\%	3.53\%	0.64\%	1.90\%	1.03\%	2.76\%	0.58\%	1.62\%	1.54\%	4.83\%	0.84\%	2.45\%
Organics	Disposable Diapers and Sanitary Products	4.83\%	2.78\%	4.18\%	5.52\%	4.19\%	2.13\%	3.62\%	4.80\%	4.26\%	2.20\%	3.71\%	4.85\%	4.11\%	2.15\%	3.60\%	4.66\%
Organics	Animal By-Products	0.79\%	1.52\%	0.50\%	1.15\%	0.60\%	1.10\%	0.38\%	0.87\%	0.64\%	0.78\%	0.45\%	0.88\%	0.72\%	1.46\%	0.44\%	1.08\%
Organics	Rubber Products	0.20\%	0.39\%	0.13\%	0.29\%	0.22\%	0.27\%	0.16\%	0.29\%	0.89\%	3.02\%	0.55\%	1.33\%	0.23\%	0.34\%	0.17\%	0.30\%
Organics	Shoes	0.67\%	0.94\%	0.45\%	0.92\%	0.89\%	1.23\%	0.60\%	1.23\%	1.02\%	1.22\%	0.74\%	1.34\%	0.97\%	1.24\%	0.68\%	1.32\%
Organics	Other Leather Products	0.16\%	0.49\%	0.09\%	0.26\%	0.16\%	0.47\%	0.09\%	0.24\%	0.10\%	0.20\%	0.06\%	0.15\%	0.05\%	0.13\%	0.03\%	0.08\%
Organics	Fines	4.05\%	1.89\%	3.63\%	4.49\%	4.62\%	1.74\%	4.19\%	5.08\%	6.20\%	3.25\%	5.48\%	6.97\%	4.17\%	1.25\%	3.88\%	4.48\%
Organics	Upholstered or Other Organic-Type Furniture	0.21\%	1.29\%	0.10\%	0.36\%	2.71\%	10.17\%	1.36\%	4.51\%	1.71\%	5.42\%	0.88\%	2.79\%	0.86\%	4.03\%	0.42\%	1.45\%
Organics	Miscellaneous Organics	0.76\%	2.83\%	0.46\%	1.15\%	0.37\%	0.69\%	0.25\%	0.51\%	0.44\%	0.88\%	0.29\%	0.63\%	0.56\%	0.91\%	0.37\%	0.78\%
Organics Total		48.08\%	9.74\%	45.74\%	50.42\%	48.41\%	10.44\%	45.89\%	50.94\%	48.08\%	8.82\%	45.97\%	50.20\%	45.77\%	8.62\%	43.69\%	47.85\%
Appliance/Electronic	Appliances: Ferrous	0.17\%	0.77\%	0.09\%	0.28\%	0.48\%	2.16\%	0.24\%	0.79\%	0.19\%	0.68\%	0.10\%	0.32\%	0.08\%	0.35\%	0.04\%	0.13\%
Appliance/Electronic	Appliances: Non-Ferrous	0.03\%	0.17\%	0.02\%	0.05\%	0.00\%	0.02\%	0.00\%	0.01\%	0.02\%	0.11\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.18\%	0.46\%	0.10\%	0.29\%	0.05\%	0.20\%	0.03\%	0.09\%	0.21\%	0.55\%	0.12\%	0.33\%	0.31\%	1.01\%	0.17\%	0.50\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.03\%	0.08\%	0.01\%	0.04\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.04\%	0.01\%	0.03\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.26\%	0.60\%	0.15\%	0.39\%	0.25\%	0.67\%	0.14\%	0.40\%	0.08\%	0.24\%	0.04\%	0.13\%	0.29\%	0.72\%	0.17\%	0.44\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	1.72\%	0.11\%	0.42\%
Appliance/Electronic	Other Computer Equipment	0.10\%	0.57\%	0.05\%	0.16\%	0.01\%	0.08\%	0.01\%	0.02\%	0.16\%	1.13\%	0.07\%	0.28\%	0.60\%	2.92\%	0.29\%	1.01\%
Appliance/Electronic Total		0.77\%	1.18\%	0.51\%	1.08\%	0.81\%	2.24\%	0.48\%	1.21\%	0.66\%	1.40\%	0.40\%	0.99\%	1.54\%	3.66\%	0.95\%	2.27\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.12\%	0.64\%	0.06\%	0.20\%	0.30\%	1.43\%	0.15\%	0.49\%	0.50\%	1.32\%	0.30\%	0.75\%	1.22\%	3.04\%	0.67\%	1.94\%
C \& D Debris	Treated/Contaminated Wood	1.15\%	2.78\%	0.69\%	1.72\%	1.90\%	2.94\%	1.27\%	2.65\%	1.48\%	2.19\%	1.02\%	2.03\%	1.12\%	3.07\%	0.68\%	1.68\%
C \& D Debris	Gypsum Scrap	0.64\%	3.42\%	0.31\%	1.07\%	1.14\%	4.21\%	0.59\%	1.86\%	0.95\%	2.99\%	0.51\%	1.52\%	0.29\%	1.36\%	0.14\%	0.48\%
C \& D Debris	Rock/Concrete/Bricks	0.80\%	4.64\%	0.39\%	1.35\%	0.67\%	2.83\%	0.33\%	1.12\%	0.95\%	4.84\%	0.49\%	1.57\%	1.17\%	3.84\%	0.63\%	1.85\%
C \& D Debris	Other Construction Debris	1.16\%	3.08\%	0.66\%	1.79\%	0.42\%	1.17\%	0.24\%	0.66\%	1.75\%	3.68\%	1.02\%	2.67\%	1.07\%	3.57\%	0.60\%	1.68\%
C \& D Debris Total		3.86\%	6.79\%	2.56\%	5.41\%	4.42\%	5.92\%	3.13\%	5.92\%	5.63\%	7.57\%	4.02\%	7.50\%	4.87\%	7.29\%	3.33\%	6.68\%

Table 1-169
Statistical Results, WCS Results Across Seasons, Refuse, High Density/Low Income (continued)

Table 1-170
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	3.63\%	2.90\%	2.99\%	4.33\%	2.79\%	1.78\%	2.41\%	3.20\%	3.46\%	2.36\%	2.95\%	4.01\%	3.09\%	2.59\%	2.55\%	3.67\%
Paper	Plain OCC/Kraft Paper	0.93\%	1.38\%	0.68\%	1.23\%	0.85\%	1.30\%	0.62\%	1.11\%	0.89\%	1.19\%	0.63\%	1.18\%	1.01\%	1.10\%	0.82\%	1.23\%
Paper	High Grade Paper	0.99\%	2.04\%	0.66\%	1.38\%	0.79\%	1.00\%	0.58\%	1.04\%	1.45\%	2.25\%	1.04\%	1.93\%	0.81\%	0.93\%	0.61\%	1.03\%
Paper	Mixed Low Grade Paper	8.86\%	3.63\%	8.03\%	9.73\%	9.51\%	4.11\%	8.58\%	10.48\%	8.48\%	3.91\%	7.56\%	9.45\%	11.27\%	4.25\%	10.24\%	12.34\%
Paper	Phone Books/Paperbacks	0.42\%	0.77\%	0.25\%	0.64\%	0.69\%	1.60\%	0.41\%	1.04\%	0.14\%	0.34\%	0.07\%	0.22\%	0.31\%	0.56\%	0.19\%	0.46\%
Paper	Paper Bags	0.97\%	0.55\%	0.85\%	1.09\%	0.97\%	0.51\%	0.85\%	1.10\%	0.86\%	0.36\%	0.77\%	0.94\%	1.15\%	0.43\%	1.05\%	1.26\%
Paper	Polycoated Paper Containers	0.45\%	0.25\%	0.39\%	0.52\%	0.54\%	0.39\%	0.45\%	0.64\%	0.55\%	0.45\%	0.47\%	0.65\%	0.45\%	0.26\%	0.38\%	0.52\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.29\%	3.45\%	7.50\%	9.13\%	8.07\%	3.26\%	7.37\%	8.81\%	7.68\%	4.06\%	6.80\%	8.62\%	6.75\%	2.22\%	6.16\%	7.36\%
Paper	Single Use Paper Plates, Cups	0.67\%	0.34\%	0.59\%	0.75\%	0.68\%	0.45\%	0.58\%	0.78\%	0.72\%	0.59\%	0.59\%	0.85\%	0.80\%	0.79\%	0.65\%	0.96\%
Paper	Other Nonrecyclable Paper	0.93\%	1.18\%	0.73\%	1.15\%	0.82\%	1.16\%	0.63\%	1.03\%	0.85\%	1.44\%	0.64\%	1.07\%	1.17\%	0.90\%	1.00\%	1.36\%
Paper Total		26.16\%	7.71\%	24.35\%	28.01\%	25.71\%	6.48\%	24.19\%	27.26\%	25.07\%	8.55\%	23.02\%	27.19\%	26.81\%	6.72\%	25.15\%	28.51\%
Plastic	PET Botlles	0.67\%	0.58\%	0.55\%	0.80\%	0.80\%	0.44\%	0.70\%	0.91\%	0.72\%	0.44\%	0.62\%	0.82\%	0.79\%	0.39\%	0.69\%	0.90\%
Plastic	HDPE Bottles: Natural	0.16\%	0.19\%	0.11\%	0.21\%	0.11\%	0.12\%	0.08\%	0.15\%	0.12\%	0.12\%	0.08\%	0.15\%	0.12\%	0.10\%	0.09\%	0.15\%
Plastic	HDPE Bottles: Colored	0.29\%	0.27\%	0.22\%	0.36\%	0.35\%	0.81\%	0.24\%	0.47\%	0.21\%	0.20\%	0.17\%	0.27\%	0.25\%	0.19\%	0.21\%	0.30\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	0.26\%	0.03\%	0.09\%	0.05\%	0.17\%	0.03\%	0.08\%	0.01\%	0.05\%	0.01\%	0.02\%	0.02\%	0.04\%	0.01\%	0.03\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	0.02\%	0.02\%	0.05\%	0.01\%	0.03\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.04\%	0.06\%	0.02\%	0.06\%	0.05\%	0.08\%	0.03\%	0.07\%	0.07\%	0.07\%	0.05\%	0.09\%	0.04\%	0.05\%	0.03\%	0.05\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.12\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.27\%	0.32\%	0.21\%	0.33\%	0.27\%	0.25\%	0.22\%	0.32\%	0.25\%	0.24\%	0.19\%	0.30\%	0.33\%	0.27\%	0.27\%	0.40\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.05\%	0.07\%	0.03\%	0.07\%	0.08\%	0.18\%	0.05\%	0.12\%	0.14\%	0.31\%	0.09\%	0.20\%	0.07\%	0.10\%	0.05\%	0.10\%
Plastic	Soda Crates and Bottle Carriers	0.05\%	0.35\%	0.02\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.12\%	0.01\%	0.03\%	0.01\%	0.04\%	0.00\%	0.01\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.10\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.37\%	0.26\%	0.30\%	0.44\%	0.47\%	0.35\%	0.38\%	0.56\%	0.34\%	0.22\%	0.29\%	0.39\%	0.45\%	0.61\%	0.36\%	0.55\%
Plastic	Expanded Polystyrene Containers and Packaging	0.58\%	0.48\%	0.49\%	0.67\%	0.67\%	0.55\%	0.56\%	0.79\%	0.46\%	0.29\%	0.39\%	0.53\%	0.68\%	0.41\%	0.59\%	0.78\%
Plastic	Other Rigid Containers/Packaging	0.92\%	0.42\%	0.82\%	1.02\%	1.01\%	0.63\%	0.84\%	1.19\%	1.34\%	1.03\%	1.13\%	1.58\%	1.36\%	0.60\%	1.21\%	1.53\%
Plastic	Plastic Bags	2.55\%	1.28\%	2.26\%	2.85\%	2.96\%	1.64\%	2.63\%	3.30\%	3.55\%	2.08\%	3.11\%	4.01\%	2.88\%	0.97\%	2.63\%	3.14\%
Plastic	Other Film	5.64\%	2.00\%	5.16\%	6.15\%	5.36\%	2.21\%	4.85\%	5.89\%	4.89\%	2.50\%	4.35\%	5.46\%	5.26\%	1.95\%	4.82\%	5.72\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.40\%	0.25\%	0.34\%	0.46\%	0.56\%	0.43\%	0.47\%	0.67\%	0.58\%	0.75\%	0.47\%	0.71\%	0.65\%	0.41\%	0.55\%	0.74\%
Plastic	Other Plastics Materials	1.42\%	1.46\%	1.12\%	1.76\%	1.29\%	1.08\%	1.06\%	1.53\%	1.67\%	1.86\%	1.32\%	2.07\%	2.04\%	2.65\%	1.57\%	2.56\%
Plastic Total		13.47\%	3.22\%	12.72\%	14.24\%	14.05\%	4.15\%	13.05\%	15.07\%	14.42\%	4.94\%	13.27\%	15.62\%	14.98\%	4.36\%	13.88\%	16.12\%
Glass	Clear Container Glass	1.03\%	0.76\%	0.84\%	1.25\%	1.17\%	0.98\%	0.93\%	1.43\%	1.05\%	1.17\%	0.82\%	1.30\%	1.29\%	0.89\%	1.07\%	1.52\%
Glass	Green Container Glass	0.36\%	0.66\%	0.23\%	0.53\%	0.65\%	1.47\%	0.43\%	0.92\%	0.51\%	0.68\%	0.34\%	0.73\%	0.40\%	0.59\%	0.26\%	0.57\%
Glass	Brown Container Glass	0.40\%	0.72\%	0.25\%	0.57\%	0.30\%	0.40\%	0.20\%	0.42\%	0.28\%	0.44\%	0.17\%	0.40\%	0.31\%	0.47\%	0.21\%	0.44\%
Glass	Mixed Cullet	0.60\%	0.97\%	0.39\%	0.84\%	0.50\%	0.85\%	0.34\%	0.69\%	0.53\%	0.90\%	0.37\%	0.73\%	0.50\%	0.52\%	0.37\%	0.65\%
Glass	Other Container Glass	0.05\%	0.28\%	0.02\%	0.08\%	0.00\%	0.02\%	0.00\%	0.01\%	0.03\%	0.13\%	0.01\%	0.05\%	0.00\%	0.03\%	0.00\%	0.01\%
Glass	Other Glass	0.10\%	0.19\%	0.06\%	0.15\%	0.29\%	0.97\%	0.18\%	0.44\%	0.12\%	0.21\%	0.08\%	0.18\%	0.24\%	0.43\%	0.16\%	0.33\%
Glass Total		2.54\%	1.70\%	2.16\%	2.94\%	2.91\%	2.53\%	2.43\%	3.44\%	2.52\%	2.06\%	2.07\%	3.03\%	2.74\%	1.66\%	2.33\%	3.18\%

Table 1-170
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.22\%	0.50\%	0.15\%	0.30\%	0.14\%	0.15\%	0.11\%	0.18\%	0.13\%	0.12\%	0.10\%	0.17\%	0.15\%	0.11\%	0.12\%	0.18\%
Metal	Aluminum Foil/Containers	0.59\%	0.40\%	0.51\%	0.68\%	0.62\%	0.34\%	0.53\%	0.71\%	0.63\%	0.52\%	0.52\%	0.74\%	0.68\%	0.33\%	0.60\%	0.76\%
Metal	Other Aluminum	0.09\%	0.29\%	0.05\%	0.15\%	0.02\%	0.09\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.15\%	0.02\%	0.06\%
Metal	Other Non-Ferrous	0.06\%	0.19\%	0.03\%	0.10\%	0.03\%	0.07\%	0.01\%	0.04\%	0.55\%	3.27\%	0.28\%	0.93\%	0.23\%	1.17\%	0.12\%	0.37\%
Metal	Tin Food Cans	0.61\%	0.53\%	0.50\%	0.74\%	0.64\%	0.37\%	0.55\%	0.73\%	0.45\%	0.36\%	0.36\%	0.54\%	0.45\%	0.35\%	0.37\%	0.53\%
Metal	Empty Aerosol Cans	0.09\%	0.12\%	0.06\%	0.13\%	0.15\%	0.17\%	0.11\%	0.20\%	0.10\%	0.10\%	0.07\%	0.14\%	0.15\%	0.18\%	0.11\%	0.20\%
Metal	Other Ferrous	1.24\%	2.78\%	0.81\%	1.77\%	1.04\%	2.00\%	0.71\%	1.42\%	1.17\%	3.67\%	0.73\%	1.71\%	1.56\%	3.36\%	1.06\%	2.15\%
Metal	Mixed Metals	0.39\%	1.12\%	0.23\%	0.58\%	0.46\%	1.08\%	0.28\%	0.69\%	0.25\%	0.54\%	0.15\%	0.36\%	0.77\%	1.62\%	0.48\%	1.13\%
Metal Total		3.30\%	3.11\%	2.71\%	3.94\%	3.10\%	2.26\%	2.66\%	3.57\%	3.28\%	4.71\%	2.56\%	4.08\%	4.02\%	3.80\%	3.33\%	4.79\%
Organics	Leaves and Grass	3.66\%	5.50\%	2.38\%	5.20\%	1.58\%	3.06\%	0.95\%	2.37\%	3.64\%	5.46\%	2.44\%	5.06\%	2.40\%	3.81\%	1.58\%	3.38\%
Organics	Prunings	1.56\%	3.06\%	1.00\%	2.23\%	0.87\%	2.01\%	0.53\%	1.28\%	0.41\%	1.27\%	0.24\%	0.63\%	1.58\%	3.72\%	0.92\%	2.40\%
Organics	Stumps/Limbs	0.05\%	0.38\%	0.03\%	0.09\%	0.00\%	0.02\%	0.00\%	0.00\%	0.74\%	3.83\%	0.37\%	1.24\%	0.01\%	0.05\%	0.00\%	0.02\%
Organics	Food	22.51\%	6.28\%	21.01\%	24.04\%	21.30\%	6.87\%	19.65\%	23.01\%	19.24\%	6.89\%	17.33\%	21.22\%	17.44\%	5.07\%	16.07\%	18.86\%
Organics	Wood Furniture/Furniture Pieces	1.30\%	2.43\%	0.79\%	1.94\%	2.32\%	8.96\%	1.31\%	3.62\%	0.51\%	1.12\%	0.31\%	0.77\%	0.74\%	1.64\%	0.44\%	1.12\%
Organics	Non-C\&D Untreated Wood	0.10\%	0.29\%	0.05\%	0.15\%	0.18\%	0.43\%	0.11\%	0.26\%	0.37\%	1.16\%	0.21\%	0.57\%	0.91\%	5.96\%	0.46\%	1.52\%
Organics	Non-Clothing Textiles	1.27\%	1.43\%	0.94\%	1.66\%	1.71\%	2.16\%	1.28\%	2.20\%	1.38\%	2.23\%	1.00\%	1.82\%	1.56\%	1.45\%	1.23\%	1.92\%
Organics	Clothing Textiles	1.42\%	1.44\%	1.11\%	1.78\%	1.36\%	1.04\%	1.10\%	1.63\%	2.13\%	1.98\%	1.66\%	2.65\%	1.80\%	1.95\%	1.39\%	2.27\%
Organics	Carpet/Upholstery	0.96\%	2.71\%	0.52\%	1.54\%	1.61\%	5.20\%	0.88\%	2.55\%	1.26\%	4.14\%	0.71\%	1.98\%	0.91\%	2.15\%	0.52\%	1.40\%
Organics	Disposable Diapers and Sanitary Products	4.74\%	3.31\%	3.94\%	5.61\%	4.35\%	3.11\%	3.57\%	5.20\%	3.25\%	2.76\%	2.60\%	3.96\%	4.10\%	2.93\%	3.46\%	4.79\%
Organics	Animal By-Products	3.90\%	3.60\%	3.00\%	4.91\%	3.59\%	3.40\%	2.76\%	4.53\%	3.91\%	3.51\%	3.02\%	4.91\%	3.84\%	3.63\%	2.95\%	4.84\%
Organics	Rubber Products	0.26\%	0.43\%	0.18\%	0.36\%	0.35\%	0.70\%	0.23\%	0.49\%	0.20\%	0.43\%	0.13\%	0.28\%	0.29\%	0.57\%	0.19\%	0.40\%
Organics	Shoes	0.66\%	1.04\%	0.41\%	0.96\%	0.53\%	0.61\%	0.36\%	0.73\%	0.56\%	0.77\%	0.37\%	0.78\%	0.56\%	0.71\%	0.37\%	0.78\%
Organics	Other Leather Products	0.06\%	0.22\%	0.03\%	0.09\%	0.09\%	0.46\%	0.04\%	0.14\%	0.05\%	0.20\%	0.03\%	0.08\%	0.03\%	0.13\%	0.02\%	0.05\%
Organics	Fines	3.33\%	1.87\%	2.91\%	3.79\%	4.96\%	2.56\%	4.37\%	5.59\%	5.23\%	2.93\%	4.54\%	5.96\%	4.27\%	2.41\%	3.77\%	4.81\%
Organics	Upholstered or Other Organic-Type Furniture	0.84\%	4.07\%	0.41\%	1.43\%	2.40\%	9.98\%	1.20\%	3.99\%	0.49\%	3.37\%	0.23\%	0.85\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	1.24\%	5.58\%	0.72\%	1.90\%	1.39\%	3.44\%	0.95\%	1.91\%	2.01\%	4.01\%	1.27\%	2.90\%	1.16\%	1.97\%	0.79\%	1.61\%
Organics Total		47.86\%	9.49\%	45.58\%	50.15\%	48.57\%	10.83\%	45.96\%	51.19\%	45.36\%	10.01\%	42.93\%	47.81\%	41.60\%	7.84\%	39.69\%	43.53\%
Appliance/Electronic	Appliances: Ferrous	0.09\%	0.31\%	0.05\%	0.15\%	0.21\%	0.75\%	0.11\%	0.35\%	0.19\%	0.81\%	0.10\%	0.32\%	0.33\%	1.93\%	0.16\%	0.56\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%	0.06\%	0.40\%	0.03\%	0.10\%	0.11\%	0.80\%	0.05\%	0.20\%
Appliance/Electronic	Appliances: Plastic	0.11\%	0.30\%	0.06\%	0.18\%	0.08\%	0.23\%	0.04\%	0.13\%	0.37\%	1.26\%	0.20\%	0.60\%	0.19\%	0.44\%	0.11\%	0.30\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.14\%	0.70\%	0.07\%	0.23\%	0.12\%	0.29\%	0.07\%	0.19\%	0.03\%	0.08\%	0.01\%	0.04\%	0.49\%	2.25\%	0.26\%	0.78\%
Appliance/Electronic	Computer Monitors	0.17\%	1.24\%	0.08\%	0.30\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.58\%	0.04\%	0.14\%	0.58\%	3.02\%	0.28\%	1.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.26\%	1.32\%	0.13\%	0.44\%	0.00\%	0.00\%	0.00\%	0.00\%	0.30\%	2.10\%	0.14\%	0.52\%
Appliance/Electronic	Other Computer Equipment	0.16\%	0.56\%	0.08\%	0.26\%	0.16\%	0.52\%	0.08\%	0.26\%	0.53\%	3.50\%	0.25\%	0.91\%	0.38\%	1.68\%	0.20\%	0.62\%
Appliance/Electronic Total		0.68\%	1.57\%	0.41\%	1.01\%	0.85\%	1.64\%	0.55\%	1.21\%	1.26\%	3.88\%	0.72\%	1.94\%	2.39\%	5.84\%	1.47\%	3.53\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.38\%	1.67\%	0.20\%	0.63\%	0.36\%	0.98\%	0.19\%	0.56\%	1.20\%	3.53\%	0.69\%	1.85\%	0.62\%	2.79\%	0.31\%	1.02\%
$C \& D$ Debris	Treated/Contaminated Wood	2.24\%	3.34\%	1.54\%	3.06\%	1.55\%	3.16\%	0.97\%	2.26\%	1.45\%	3.66\%	0.94\%	2.06\%	2.02\%	5.06\%	1.27\%	2.95\%
$C \& D$ Debris	Gypsum Scrap	0.43\%	2.38\%	0.21\%	0.71\%	0.74\%	2.77\%	0.38\%	1.20\%	0.47\%	2.01\%	0.24\%	0.77\%	0.40\%	1.58\%	0.20\%	0.65\%
C \& D Debris	Rock/Concrete/Bricks	0.39\%	2.25\%	0.19\%	0.65\%	0.21\%	1.05\%	0.11\%	0.34\%	0.83\%	2.90\%	0.44\%	1.34\%	1.06\%	3.04\%	0.57\%	1.71\%
C \& D Debris	Other Construction Debris	1.31\%	3.67\%	0.74\%	2.06\%	1.39\%	5.16\%	0.78\%	2.17\%	2.90\%	5.13\%	1.83\%	4.22\%	1.70\%	5.17\%	0.98\%	2.60\%
C \& D Debris Total		4.75\%	5.68\%	3.42\%	6.30\%	4.24\%	7.30\%	2.87\%	5.86\%	6.85\%	7.49\%	5.07\%	8.87\%	5.80\%	9.54\%	3.96\%	7.96\%

Table 1-170
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/High Income (continued)

Table 1-171
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	2.56\%	2.09\%	2.07\%	3.09\%	3.84\%	3.70\%	3.05\%	4.72\%	2.98\%	2.91\%	2.38\%	3.65\%	2.74\%	2.28\%	2.29\%	3.24\%
Paper	Plain OCC/Kraft Paper	0.75\%	0.92\%	0.55\%	0.99\%	0.91\%	0.65\%	0.75\%	1.08\%	0.60\%	0.68\%	0.45\%	0.78\%	0.96\%	0.81\%	0.76\%	1.17\%
Paper	High Grade Paper	0.58\%	0.83\%	0.38\%	0.81\%	0.36\%	0.53\%	0.24\%	0.50\%	0.42\%	0.59\%	0.29\%	0.58\%	0.32\%	0.64\%	0.23\%	0.44\%
Paper	Mixed Low Grade Paper	6.70\%	3.07\%	5.98\%	7.46\%	6.63\%	3.21\%	5.81\%	7.51\%	6.52\%	3.19\%	5.79\%	7.28\%	7.17\%	2.56\%	6.57\%	7.79\%
Paper	Phone Books/Paperbacks	0.15\%	0.52\%	0.08\%	0.24\%	0.21\%	0.84\%	0.11\%	0.34\%	0.51\%	1.18\%	0.30\%	0.77\%	0.31\%	0.76\%	0.18\%	0.48\%
Paper	Paper Bags	0.61\%	0.36\%	0.53\%	0.71\%	0.62\%	0.50\%	0.52\%	0.73\%	0.48\%	0.29\%	0.41\%	0.56\%	0.82\%	0.46\%	0.72\%	0.93\%
Paper	Polycoated Paper Containers	0.36\%	0.24\%	0.30\%	0.43\%	0.29\%	0.23\%	0.23\%	0.35\%	0.31\%	0.25\%	0.25\%	0.38\%	0.43\%	0.36\%	0.34\%	0.53\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	8.52\%	4.49\%	7.50\%	9.60\%	6.78\%	3.03\%	6.01\%	7.59\%	6.56\%	2.20\%	6.05\%	7.10\%	6.61\%	2.26\%	6.06\%	7.18\%
Paper	Single Use Paper Plates, Cups	0.46\%	0.36\%	0.38\%	0.55\%	0.35\%	0.29\%	0.29\%	0.43\%	0.43\%	0.44\%	0.33\%	0.55\%	0.41\%	0.33\%	0.34\%	0.49\%
Paper	Other Nonrecyclable Paper	0.68\%	0.81\%	0.54\%	0.83\%	0.44\%	0.36\%	0.35\%	0.53\%	0.55\%	0.57\%	0.43\%	0.68\%	1.06\%	1.19\%	0.85\%	1.29\%
Paper Total		21.37\%	7.21\%	19.64\%	23.16\%	20.43\%	6.43\%	18.87\%	22.04\%	19.37\%	6.65\%	17.83\%	20.96\%	20.83\%	5.41\%	19.53\%	22.16\%
Plastic	PET Botlles	0.65\%	0.37\%	0.56\%	0.75\%	0.87\%	1.60\%	0.67\%	1.09\%	0.70\%	0.62\%	0.57\%	0.85\%	0.88\%	0.56\%	0.74\%	1.02\%
Plastic	HDPE Bottles: Natural	0.18\%	0.16\%	0.14\%	0.22\%	0.26\%	0.34\%	0.20\%	0.32\%	0.22\%	0.21\%	0.17\%	0.28\%	0.27\%	0.30\%	0.21\%	0.35\%
Plastic	HDPE Bottles: Colored	0.28\%	0.42\%	0.21\%	0.37\%	0.29\%	0.35\%	0.22\%	0.37\%	0.20\%	0.21\%	0.15\%	0.25\%	0.19\%	0.18\%	0.15\%	0.24\%
Plastic	\#1 \#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.01\%	0.03\%	0.01\%	0.02\%	0.07\%	0.46\%	0.03\%	0.12\%	0.08\%	0.36\%	0.04\%	0.12\%	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.01\%	0.03\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.04\%	0.01\%	0.03\%	0.01\%	0.02\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.02\%	0.00\%	0.01\%	0.02\%	0.05\%	0.01\%	0.03\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.07\%	0.24\%	0.04\%	0.11\%	0.04\%	0.06\%	0.03\%	0.06\%	0.08\%	0.09\%	0.06\%	0.11\%	0.04\%	0.05\%	0.03\%	0.06\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.15\%	0.14\%	0.11\%	0.19\%	0.16\%	0.14\%	0.13\%	0.20\%	0.14\%	0.12\%	0.11\%	0.17\%	0.17\%	0.16\%	0.13\%	0.22\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.02\%	0.05\%	0.01\%	0.03\%	0.03\%	0.11\%	0.01\%	0.05\%	0.05\%	0.09\%	0.03\%	0.08\%	0.03\%	0.05\%	0.02\%	0.04\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	Other PVC	0.02\%	0.12\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.23\%	0.19\%	0.19\%	0.28\%	0.22\%	0.17\%	0.18\%	0.27\%	0.21\%	0.17\%	0.17\%	0.25\%	0.26\%	0.22\%	0.22\%	0.32\%
Plastic	Expanded Polystyrene Containers and Packaging	0.71\%	0.37\%	0.63\%	0.80\%	0.66\%	0.42\%	0.55\%	0.77\%	0.65\%	0.31\%	0.57\%	0.73\%	0.77\%	0.37\%	0.69\%	0.87\%
Plastic	Other Rigid Containers/Packaging	0.68\%	0.35\%	0.59\%	0.77\%	0.71\%	0.72\%	0.57\%	0.87\%	0.76\%	0.45\%	0.67\%	0.87\%	0.94\%	0.49\%	0.83\%	1.05\%
Plastic	Plastic Bags	3.21\%	1.65\%	2.82\%	3.61\%	3.45\%	1.76\%	3.06\%	3.86\%	4.44\%	1.94\%	4.00\%	4.90\%	3.56\%	1.08\%	3.32\%	3.81\%
Plastic	Other Film	6.14\%	2.24\%	5.59\%	6.71\%	5.30\%	2.15\%	4.84\%	5.78\%	5.77\%	2.29\%	5.25\%	6.31\%	5.53\%	1.48\%	5.18\%	5.90\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.47\%	0.51\%	0.39\%	0.57\%	0.41\%	0.39\%	0.33\%	0.50\%	0.57\%	0.72\%	0.46\%	0.70\%	0.53\%	0.32\%	0.47\%	0.61\%
Plastic	Other Plastics Materials	2.00\%	2.57\%	1.52\%	2.55\%	1.61\%	1.47\%	1.29\%	1.96\%	1.90\%	1.65\%	1.56\%	2.27\%	1.68\%	1.44\%	1.38\%	2.01\%
Plastic Total		14.87\%	4.37\%	13.78\%	16.00\%	14.10\%	4.37\%	13.08\%	15.16\%	15.81\%	4.49\%	14.78\%	16.88\%	14.92\%	3.21\%	14.14\%	15.72\%
Glass	Clear Container Glass	0.91\%	0.98\%	0.67\%	1.17\%	1.11\%	0.95\%	0.89\%	1.37\%	0.97\%	1.15\%	0.71\%	1.27\%	1.32\%	1.15\%	1.05\%	1.64\%
Glass	Green Container Glass	0.34\%	0.50\%	0.21\%	0.50\%	0.35\%	0.62\%	0.22\%	0.51\%	0.19\%	0.35\%	0.11\%	0.28\%	0.34\%	0.60\%	0.21\%	0.50\%
Glass	Brown Container Glass	0.28\%	0.41\%	0.18\%	0.40\%	0.31\%	0.50\%	0.20\%	0.45\%	0.15\%	0.26\%	0.09\%	0.23\%	0.47\%	1.35\%	0.30\%	0.68\%
Glass	Mixed Cullet	0.47\%	0.83\%	0.31\%	0.67\%	0.48\%	0.48\%	0.35\%	0.62\%	0.63\%	1.42\%	0.42\%	0.89\%	0.58\%	0.81\%	0.42\%	0.77\%
Glass	Other Container Glass	0.03\%	0.12\%	0.01\%	0.04\%	0.01\%	0.03\%	0.00\%	0.01\%	0.04\%	0.14\%	0.02\%	0.06\%	0.02\%	0.09\%	0.01\%	0.03\%
Glass	Other Glass	0.10\%	0.16\%	0.07\%	0.15\%	0.16\%	0.42\%	0.10\%	0.24\%	0.34\%	0.90\%	0.22\%	0.50\%	0.27\%	0.46\%	0.18\%	0.39\%
Glass Total		2.13\%	1.62\%	1.77\%	2.52\%	2.42\%	1.62\%	2.04\%	2.83\%	2.33\%	2.26\%	1.85\%	2.87\%	3.01\%	2.77\%	2.45\%	3.62\%

Table 1-171
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.12\%	0.11\%	0.09\%	0.15\%	0.18\%	0.24\%	0.14\%	0.23\%	0.15\%	0.12\%	0.12\%	0.18\%	0.22\%	0.23\%	0.17\%	0.28\%
Metal	Aluminum Foil/Containers	0.53\%	0.37\%	0.45\%	0.62\%	0.45\%	0.28\%	0.38\%	0.53\%	0.66\%	0.35\%	0.58\%	0.74\%	0.65\%	0.31\%	0.57\%	0.74\%
Metal	Other Aluminum	0.01\%	0.05\%	0.01\%	0.02\%	0.02\%	0.15\%	0.01\%	0.04\%	0.01\%	0.06\%	0.01\%	0.02\%	0.03\%	0.11\%	0.02\%	0.05\%
Metal	Other Non-Ferrous	0.04\%	0.10\%	0.02\%	0.06\%	0.29\%	1.25\%	0.15\%	0.47\%	0.06\%	0.15\%	0.04\%	0.09\%	0.07\%	0.18\%	0.04\%	0.10\%
Metal	Tin Food Cans	0.60\%	0.36\%	0.51\%	0.70\%	0.81\%	0.95\%	0.65\%	0.98\%	0.72\%	0.77\%	0.57\%	0.89\%	0.73\%	0.57\%	0.59\%	0.88\%
Metal	Empty Aerosol Cans	0.10\%	0.13\%	0.07\%	0.14\%	0.17\%	0.32\%	0.11\%	0.23\%	0.14\%	0.20\%	0.09\%	0.19\%	0.16\%	0.18\%	0.12\%	0.22\%
Metal	Other Ferrous	0.69\%	0.90\%	0.50\%	0.92\%	1.78\%	4.56\%	1.11\%	2.61\%	0.97\%	1.40\%	0.69\%	1.29\%	1.14\%	3.14\%	0.72\%	1.66\%
Metal	Mixed Metals	0.23\%	0.40\%	0.15\%	0.34\%	0.42\%	0.60\%	0.28\%	0.59\%	0.43\%	0.82\%	0.28\%	0.61\%	0.50\%	0.78\%	0.32\%	0.72\%
Metal Total		2.33\%	1.26\%	2.03\%	2.65\%	4.13\%	4.67\%	3.31\%	5.04\%	3.14\%	1.88\%	2.73\%	3.58\%	3.50\%	3.23\%	2.93\%	4.12\%
Organics	Leaves and Grass	5.33\%	5.79\%	3.79\%	7.12\%	0.58\%	2.05\%	0.33\%	0.90\%	2.97\%	4.94\%	1.95\%	4.21\%	2.48\%	4.95\%	1.55\%	3.62\%
Organics	Prunings	1.18\%	3.22\%	0.68\%	1.82\%	0.25\%	1.11\%	0.14\%	0.40\%	0.56\%	1.76\%	0.31\%	0.88\%	0.40\%	1.65\%	0.21\%	0.64\%
Organics	Stumps/Limbs	0.14\%	0.93\%	0.07\%	0.24\%	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	1.68\%	0.11\%	0.41\%	0.22\%	1.53\%	0.10\%	0.37\%
Organics	Food	26.08\%	9.83\%	23.66\%	28.58\%	27.93\%	9.52\%	25.65\%	30.27\%	24.90\%	9.36\%	22.69\%	27.18\%	21.65\%	7.32\%	19.85\%	23.50\%
Organics	Wood Furniture/Furniture Pieces	0.85\%	2.00\%	0.50\%	1.29\%	0.98\%	1.98\%	0.59\%	1.47\%	0.39\%	1.01\%	0.22\%	0.61\%	2.52\%	6.75\%	1.48\%	3.82\%
Organics	Non-C\&D Untreated Wood	0.06\%	0.38\%	0.03\%	0.10\%	0.26\%	0.89\%	0.14\%	0.41\%	0.68\%	2.97\%	0.36\%	1.11\%	0.12\%	0.40\%	0.07\%	0.19\%
Organics	Non-Clothing Texiles	1.78\%	2.44\%	1.29\%	2.33\%	1.81\%	1.69\%	1.40\%	2.27\%	1.63\%	1.95\%	1.22\%	2.09\%	2.40\%	2.92\%	1.78\%	3.11\%
Organics	Clothing Textiles	2.70\%	2.75\%	2.14\%	3.33\%	2.79\%	2.66\%	2.24\%	3.41\%	4.02\%	3.77\%	3.18\%	4.96\%	2.79\%	2.80\%	2.24\%	3.39\%
Organics	Carpet/Upholstery	0.65\%	2.04\%	0.35\%	1.03\%	1.76\%	4.30\%	1.01\%	2.72\%	1.46\%	5.70\%	0.79\%	2.33\%	1.51\%	3.93\%	0.84\%	2.36\%
Organics	Disposable Diapers and Sanitary Products	4.07\%	2.59\%	3.44\%	4.75\%	4.31\%	2.61\%	3.63\%	5.05\%	3.79\%	2.56\%	3.15\%	4.49\%	4.58\%	2.70\%	3.86\%	5.36\%
Organics	Animal By-Products	1.51\%	2.72\%	0.98\%	2.16\%	1.64\%	2.53\%	1.12\%	2.26\%	1.06\%	1.35\%	0.75\%	1.44\%	2.30\%	5.14\%	1.49\%	3.27\%
Organics	Rubber Products	0.27\%	0.53\%	0.18\%	0.38\%	0.42\%	1.26\%	0.27\%	0.61\%	0.33\%	0.91\%	0.22\%	0.46\%	0.30\%	0.69\%	0.20\%	0.41\%
Organics	Shoes	0.65\%	0.81\%	0.44\%	0.89\%	0.87\%	1.67\%	0.56\%	1.25\%	0.97\%	1.38\%	0.68\%	1.31\%	0.67\%	0.71\%	0.48\%	0.90\%
Organics	Other Leather Products	0.32\%	1.01\%	0.18\%	0.51\%	0.01\%	0.04\%	0.01\%	0.02\%	0.24\%	0.79\%	0.13\%	0.38\%	0.15\%	0.57\%	0.08\%	0.25\%
Organics	Fines	3.31\%	1.91\%	2.80\%	3.86\%	3.77\%	1.64\%	3.34\%	4.22\%	5.28\%	1.94\%	4.84\%	5.74\%	4.46\%	2.20\%	4.00\%	4.94\%
Organics	Upholstered or Other Organic-Type Furniture	1.63\%	8.79\%	0.75\%	2.84\%	2.19\%	8.23\%	1.10\%	3.64\%	1.09\%	4.77\%	0.55\%	1.81\%	0.10\%	0.53\%	0.05\%	0.16\%
Organics	Miscellaneous Organics	0.43\%	0.75\%	0.29\%	0.61\%	0.79\%	1.36\%	0.53\%	1.09\%	0.46\%	0.86\%	0.30\%	0.65\%	0.88\%	1.43\%	0.60\%	1.22\%
Organics Total		50.97\%	10.05\%	48.53\%	53.41\%	50.36\%	10.46\%	47.77\%	52.95\%	50.06\%	11.33\%	47.35\%	52.78\%	47.52\%	9.57\%	45.20\%	49.84\%
Appliance/Electronic	Appliances: Ferrous	0.06\%	0.29\%	0.03\%	0.09\%	0.06\%	0.26\%	0.03\%	0.09\%	0.30\%	0.90\%	0.16\%	0.49\%	0.50\%	2.25\%	0.25\%	0.83\%
Appliance/Electronic	Appliances: Non-Ferrous	0.01\%	0.06\%	0.01\%	0.02\%	0.01\%	0.04\%	0.00\%	0.01\%	0.21\%	1.32\%	0.10\%	0.35\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.11\%	0.28\%	0.06\%	0.17\%	0.33\%	0.73\%	0.18\%	0.51\%	0.15\%	0.35\%	0.08\%	0.23\%	0.30\%	0.95\%	0.16\%	0.48\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.30\%	1.10\%	0.16\%	0.48\%	0.11\%	0.27\%	0.06\%	0.17\%	0.24\%	0.99\%	0.13\%	0.38\%	0.38\%	0.80\%	0.23\%	0.56\%
Appliance/Electronic	Computer Monitors	0.05\%	0.33\%	0.02\%	0.08\%	0.34\%	2.42\%	0.16\%	0.59\%	0.00\%	0.00\%	0.00\%	0.00\%	0.31\%	2.22\%	0.15\%	0.55\%
Appliance/Electronic	Televisions	0.31\%	1.51\%	0.15\%	0.52\%	0.67\%	4.79\%	0.31\%	1.17\%	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.86\%	0.06\%	0.21\%
Appliance/Electronic	Other Computer Equipment	0.30\%	1.18\%	0.15\%	0.49\%	0.03\%	0.19\%	0.02\%	0.06\%	0.04\%	0.18\%	0.02\%	0.06\%	0.82\%	2.68\%	0.43\%	1.34\%
Appliance/Electronic Total		1.13\%	2.13\%	0.70\%	1.66\%	1.55\%	5.34\%	0.89\%	2.37\%	0.93\%	1.96\%	0.60\%	1.34\%	2.44\%	4.06\%	1.63\%	3.41\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.12\%	0.35\%	0.06\%	0.19\%	0.28\%	1.16\%	0.15\%	0.46\%	0.54\%	1.52\%	0.31\%	0.85\%	1.00\%	3.10\%	0.54\%	1.58\%
$C \& D$ Debris	Treated/Contaminated Wood	1.85\%	3.60\%	1.19\%	2.66\%	1.66\%	2.90\%	1.06\%	2.38\%	1.84\%	2.83\%	1.26\%	2.53\%	2.48\%	5.22\%	1.56\%	3.61\%
$C \& D$ Debris	Gypsum Scrap	1.96\%	4.40\%	1.12\%	3.03\%	1.08\%	2.78\%	0.61\%	1.68\%	2.27\%	5.55\%	1.25\%	3.58\%	0.78\%	3.65\%	0.39\%	1.30\%
C \& D Debris	Rock/Concrete/Bricks	0.76\%	3.76\%	0.37\%	1.28\%	1.17\%	6.99\%	0.57\%	1.99\%	0.72\%	4.16\%	0.36\%	1.20\%	1.34\%	4.86\%	0.72\%	2.15\%
C\&D Debris	Other Construction Debris	1.80\%	4.84\%	1.04\%	2.77\%	1.29\%	4.46\%	0.70\%	2.05\%	2.02\%	4.46\%	1.19\%	3.06\%	1.34\%	3.15\%	0.77\%	2.07\%
C \& D Debris Total		6.49\%	9.55\%	4.54\%	8.76\%	5.47\%	11.26\%	3.63\%	7.66\%	7.39\%	9.33\%	5.28\%	9.81\%	6.94\%	8.32\%	4.92\%	9.27\%

Table 1-171
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Medium Income (continued)

Material Group Material	Fall				Winter				Spring				Summer			
	Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics Miscellaneous Inorganics	0.12\%	0.47\%	0.07\%	0.20\%	0.36\%	1.22\%	0.22\%	0.54\%	0.30\%	0.96\%	0.18\%	0.45\%	0.16\%	0.36\%	0.10\%	0.24\%
Miscellaneous Inorganics Ceramics	0.32\%	0.70\%	0.21\%	0.46\%	0.75\%	1.84\%	0.46\%	1.12\%	0.35\%	1.28\%	0.20\%	0.53\%	0.37\%	0.73\%	0.23\%	0.53\%
Miscellaneous Inorganics Total	0.45\%	0.81\%	0.30\%	0.62\%	1.11\%	2.30\%	0.73\%	1.57\%	0.65\%	1.55\%	0.42\%	0.93\%	0.53\%	0.87\%	0.37\%	0.72\%
HHW Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Latex Paints/Water-Based Adhesives/Glues	0.10\%	0.50\%	0.05\%	0.16\%	0.10\%	0.54\%	0.05\%	0.18\%	0.13\%	0.85\%	0.06\%	0.22\%	0.07\%	0.38\%	0.03\%	0.12\%
HHW Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.11\%	0.01\%	0.03\%	0.14\%	0.69\%	0.07\%	0.23\%	0.01\%	0.10\%	0.01\%	0.02\%	0.01\%	0.04\%	0.00\%	0.01\%
HHW Pesticides/Herbicides/Rodenticides	0.01\%	0.04\%	0.01\%	0.02\%	0.03\%	0.07\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%
HHW Dry-Cell Batteries	0.07\%	0.12\%	0.05\%	0.11\%	0.13\%	0.32\%	0.08\%	0.19\%	0.06\%	0.09\%	0.04\%	0.09\%	0.07\%	0.14\%	0.04\%	0.10\%
HHW Fluorescent Tubes	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Home Medical Products	0.05\%	0.12\%	0.03\%	0.07\%	0.02\%	0.06\%	0.01\%	0.03\%	0.02\%	0.05\%	0.01\%	0.03\%	0.14\%	0.53\%	0.07\%	0.22\%
HHW Other Potentially Harmful Wastes	0.01\%	0.04\%	0.01\%	0.02\%	0.01\%	0.08\%	0.01\%	0.02\%	0.09\%	0.48\%	0.05\%	0.15\%	0.01\%	0.06\%	0.01\%	0.02\%
HHW Total	0.26\%	0.58\%	0.17\%	0.36\%	0.43\%	1.13\%	0.28\%	0.62\%	0.31\%	1.00\%	0.19\%	0.46\%	0.31\%	0.65\%	0.19\%	0.45\%
GRAND TOTAL	100.00\%				100.00\%				100.00\%				100.00\%			
(1) When none of a particular material was found in any of the samples, the mean, standard deviation, and confidence interval boundaries are listed as zero percent. However, it is possible for these materials to exist in the waste stream. The level at which theymay exist was not determined in this study.																

Table 1-172
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Low Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	3.48\%	2.59\%	2.84\%	4.18\%	3.74\%	2.80\%	3.12\%	4.42\%	4.28\%	2.92\%	3.60\%	5.03\%	3.08\%	2.13\%	2.59\%	3.61\%
Paper	Plain OCC/Kraft Paper	1.17\%	1.27\%	0.90\%	1.48\%	1.42\%	1.32\%	1.13\%	1.75\%	1.49\%	2.00\%	1.13\%	1.89\%	1.38\%	1.11\%	1.12\%	1.67\%
Paper	High Grade Paper	0.56\%	1.58\%	0.35\%	0.81\%	0.50\%	0.73\%	0.34\%	0.68\%	0.46\%	0.75\%	0.32\%	0.63\%	0.83\%	1.60\%	0.57\%	1.14\%
Paper	Mixed Low Grade Paper	5.82\%	3.32\%	5.10\%	6.59\%	7.48\%	3.39\%	6.71\%	8.29\%	7.66\%	3.41\%	6.85\%	8.50\%	7.91\%	3.28\%	7.01\%	8.87\%
Paper	Phone Books/Paperbacks	0.65\%	1.48\%	0.37\%	1.01\%	0.70\%	2.17\%	0.40\%	1.08\%	0.65\%	1.29\%	0.39\%	0.97\%	0.52\%	0.94\%	0.32\%	0.77\%
Paper	Paper Bags	0.46\%	0.36\%	0.37\%	0.56\%	0.51\%	0.29\%	0.43\%	0.60\%	0.54\%	0.32\%	0.46\%	0.63\%	0.76\%	0.43\%	0.65\%	0.88\%
Paper	Polycoated Paper Containers	0.41\%	0.35\%	0.34\%	0.49\%	0.39\%	0.28\%	0.32\%	0.47\%	0.55\%	0.78\%	0.41\%	0.70\%	0.46\%	0.31\%	0.39\%	0.55\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.19\%	3.68\%	5.34\%	7.09\%	5.49\%	2.54\%	4.92\%	6.10\%	5.32\%	2.55\%	4.75\%	5.92\%	4.62\%	2.12\%	4.13\%	5.13\%
Paper	Single Use Paper Plates, Cups	0.26\%	0.24\%	0.21\%	0.33\%	0.22\%	0.22\%	0.17\%	0.27\%	0.21\%	0.16\%	0.17\%	0.26\%	0.37\%	0.35\%	0.30\%	0.46\%
Paper	Other Nonrecyclable Paper	0.48\%	0.46\%	0.38\%	0.59\%	0.59\%	0.75\%	0.45\%	0.74\%	0.43\%	0.49\%	0.33\%	0.55\%	0.85\%	0.80\%	0.69\%	1.03\%
Paper Total		19.49\%	7.38\%	17.70\%	21.35\%	21.05\%	7.33\%	19.38\%	22.76\%	21.59\%	6.37\%	20.09\%	23.12\%	20.80\%	6.78\%	19.15\%	22.50\%
Plastic	PET Botlles	0.85\%	0.54\%	0.72\%	0.99\%	1.14\%	0.71\%	0.97\%	1.32\%	1.17\%	0.58\%	1.03\%	1.32\%	1.46\%	0.84\%	1.27\%	1.66\%
Plastic	HDPE Bottles: Natural	0.32\%	0.32\%	0.25\%	0.40\%	0.31\%	0.30\%	0.25\%	0.39\%	0.32\%	0.20\%	0.27\%	0.38\%	0.34\%	0.23\%	0.28\%	0.40\%
Plastic	HDPE Bottles: Colored	0.32\%	0.56\%	0.23\%	0.44\%	0.29\%	0.34\%	0.21\%	0.38\%	0.44\%	0.48\%	0.34\%	0.54\%	0.26\%	0.22\%	0.20\%	0.32\%
Plastic	\#1 \#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.03\%	0.00\%	0.01\%	0.01\%	0.06\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.06\%	0.24\%	0.03\%	0.10\%	0.04\%	0.14\%	0.02\%	0.06\%	0.09\%	0.36\%	0.05\%	0.14\%	0.04\%	0.18\%	0.02\%	0.06\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.02\%	0.06\%	0.01\%	0.03\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.02\%	0.04\%	0.01\%	0.03\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.02\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.02\%	0.05\%	0.01\%	0.03\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.02\%	0.04\%	0.01\%	0.04\%	0.06\%	0.09\%	0.04\%	0.09\%	0.08\%	0.09\%	0.06\%	0.11\%	0.07\%	0.14\%	0.05\%	0.10\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.09\%	0.12\%	0.06\%	0.12\%	0.10\%	0.09\%	0.08\%	0.13\%	0.10\%	0.11\%	0.07\%	0.13\%	0.20\%	0.37\%	0.14\%	0.27\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.01\%	0.04\%	0.01\%	0.02\%	0.01\%	0.02\%	0.00\%	0.01\%	0.04\%	0.08\%	0.03\%	0.06\%	0.05\%	0.17\%	0.03\%	0.07\%
Plastic	Soda Crates and Bottle Carriers	0.02\%	0.09\%	0.01\%	0.03\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.03\%	0.20\%	0.02\%	0.06\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.06\%	0.01\%	0.02\%
Plastic	Rigid Polystyrene Containers and Packaging	0.19\%	0.32\%	0.13\%	0.26\%	0.19\%	0.31\%	0.15\%	0.25\%	0.18\%	0.17\%	0.14\%	0.21\%	0.22\%	0.41\%	0.17\%	0.29\%
Plastic	Expanded Polystyrene Containers and Packaging	0.77\%	0.61\%	0.65\%	0.90\%	0.69\%	0.44\%	0.57\%	0.81\%	0.61\%	0.31\%	0.53\%	0.70\%	0.77\%	0.42\%	0.67\%	0.87\%
Plastic	Other Rigid Containers/Packaging	0.44\%	0.22\%	0.37\%	0.51\%	0.42\%	0.27\%	0.35\%	0.49\%	0.53\%	0.30\%	0.45\%	0.61\%	0.77\%	0.36\%	0.69\%	0.86\%
Plastic	Plastic Bags	2.50\%	1.37\%	2.20\%	2.82\%	3.33\%	1.54\%	2.98\%	3.70\%	3.92\%	2.01\%	3.49\%	4.37\%	2.91\%	0.98\%	2.65\%	3.17\%
Plastic	Other Film	5.01\%	2.56\%	4.43\%	5.63\%	5.49\%	1.77\%	5.07\%	5.92\%	5.79\%	2.36\%	5.26\%	6.33\%	5.30\%	1.90\%	4.85\%	5.78\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.55\%	0.44\%	0.45\%	0.65\%	0.64\%	0.42\%	0.54\%	0.74\%	0.68\%	0.57\%	0.56\%	0.81\%	0.85\%	0.54\%	0.73\%	0.98\%
Plastic	Other Plastics Materials	2.21\%	3.02\%	1.73\%	2.75\%	2.20\%	1.87\%	1.80\%	2.63\%	1.75\%	1.91\%	1.42\%	2.12\%	1.50\%	1.37\%	1.22\%	1.81\%
Plastic Total		13.43\%	5.01\%	12.23\%	14.67\%	14.96\%	3.73\%	14.07\%	15.87\%	15.73\%	4.27\%	14.72\%	16.77\%	14.83\%	4.07\%	13.81\%	15.89\%
Glass	Clear Container Glass	1.65\%	1.52\%	1.30\%	2.04\%	1.71\%	1.54\%	1.36\%	2.10\%	1.92\%	1.77\%	1.51\%	2.38\%	1.87\%	1.56\%	1.52\%	2.26\%
Glass	Green Container Glass	0.28\%	0.65\%	0.17\%	0.43\%	0.26\%	0.49\%	0.16\%	0.39\%	0.24\%	0.45\%	0.15\%	0.35\%	0.38\%	0.59\%	0.25\%	0.54\%
Glass	Brown Container Glass	0.36\%	0.38\%	0.26\%	0.48\%	0.34\%	0.49\%	0.23\%	0.47\%	0.27\%	0.31\%	0.19\%	0.37\%	0.48\%	0.56\%	0.34\%	0.65\%
Glass	Mixed Cullet	0.82\%	1.21\%	0.57\%	1.11\%	0.63\%	0.72\%	0.47\%	0.81\%	0.87\%	1.01\%	0.65\%	1.11\%	0.81\%	1.13\%	0.60\%	1.05\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.12\%	0.02\%	0.06\%	0.07\%	0.24\%	0.04\%	0.12\%	0.04\%	0.24\%	0.02\%	0.07\%
Glass	Other Glass	0.08\%	0.22\%	0.05\%	0.13\%	0.19\%	0.36\%	0.11\%	0.28\%	0.35\%	0.64\%	0.22\%	0.50\%	0.32\%	1.02\%	0.20\%	0.47\%
Glass Total		3.19\%	2.45\%	2.62\%	3.81\%	3.16\%	2.18\%	2.68\%	3.68\%	3.71\%	2.49\%	3.10\%	4.37\%	3.91\%	2.77\%	3.28\%	4.59\%

Table 1-172
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Low Income (continued)

				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.19\%	0.21\%	0.14\%	0.23\%	0.18\%	0.20\%	0.14\%	0.23\%	0.21\%	0.16\%	0.17\%	0.25\%	0.26\%	0.17\%	0.22\%	0.31\%
Metal	Aluminum Foil/Containers	0.51\%	0.43\%	0.41\%	0.62\%	0.54\%	0.35\%	0.46\%	0.62\%	0.64\%	0.50\%	0.53\%	0.76\%	0.68\%	0.63\%	0.57\%	0.80\%
Metal	Other Aluminum	0.17\%	0.72\%	0.09\%	0.29\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.15\%	0.01\%	0.04\%	0.01\%	0.06\%	0.00\%	0.01\%
Metal	Other Non-Ferrous	0.04\%	0.10\%	0.02\%	0.06\%	0.20\%	0.72\%	0.11\%	0.32\%	0.07\%	0.24\%	0.04\%	0.11\%	0.09\%	0.34\%	0.05\%	0.15\%
Metal	Tin Food Cans	0.93\%	0.61\%	0.77\%	1.10\%	1.03\%	0.59\%	0.89\%	1.18\%	1.36\%	1.03\%	1.17\%	1.57\%	0.81\%	0.49\%	0.69\%	0.94\%
Metal	Empty Aerosol Cans	0.12\%	0.25\%	0.07\%	0.18\%	0.10\%	0.13\%	0.07\%	0.14\%	0.13\%	0.15\%	0.09\%	0.18\%	0.14\%	0.15\%	0.10\%	0.19\%
Metal	Other Ferrous	1.63\%	3.25\%	1.10\%	2.26\%	1.15\%	2.14\%	0.76\%	1.61\%	0.91\%	2.04\%	0.61\%	1.28\%	1.12\%	2.28\%	0.76\%	1.53\%
Metal	Mixed Metals	1.18\%	4.35\%	0.67\%	1.84\%	0.77\%	1.54\%	0.47\%	1.13\%	0.36\%	0.58\%	0.24\%	0.52\%	0.57\%	1.43\%	0.35\%	0.85\%
Metal Total		4.76\%	5.53\%	3.79\%	5.84\%	3.97\%	2.89\%	3.37\%	4.62\%	3.71\%	2.50\%	3.23\%	4.22\%	3.69\%	2.62\%	3.18\%	4.23\%
Organics	Leaves and Grass	5.16\%	10.42\%	3.13\%	7.65\%	0.81\%	3.00\%	0.42\%	1.32\%	1.56\%	2.98\%	0.94\%	2.34\%	1.96\%	3.75\%	1.21\%	2.88\%
Organics	Prunings	0.25\%	0.97\%	0.13\%	0.41\%	0.15\%	0.73\%	0.08\%	0.25\%	0.25\%	1.03\%	0.14\%	0.40\%	1.06\%	3.83\%	0.55\%	1.73\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.07\%	0.01\%	0.04\%	0.26\%	1.83\%	0.12\%	0.45\%
Organics	Food	22.50\%	10.02\%	20.09\%	25.01\%	24.97\%	9.15\%	22.83\%	27.16\%	23.58\%	8.76\%	21.52\%	25.70\%	18.19\%	7.88\%	16.19\%	20.29\%
Organics	Wood Furniture/Furniture Pieces	2.07\%	4.61\%	1.23\%	3.14\%	2.58\%	4.73\%	1.71\%	3.61\%	1.17\%	1.83\%	0.78\%	1.65\%	2.54\%	6.78\%	1.47\%	3.90\%
Organics	Non-C\&D Untreated Wood	0.02\%	0.12\%	0.01\%	0.03\%	0.07\%	0.16\%	0.04\%	0.10\%	0.13\%	0.51\%	0.07\%	0.20\%	0.97\%	6.38\%	0.46\%	1.67\%
Organics	Non-Clothing Textiles	1.28\%	1.55\%	0.94\%	1.68\%	1.63\%	1.95\%	1.22\%	2.10\%	1.50\%	1.67\%	1.15\%	1.90\%	1.78\%	2.72\%	1.35\%	2.27\%
Organics	Clothing Textiles	3.35\%	4.21\%	2.48\%	4.34\%	2.81\%	2.76\%	2.27\%	3.41\%	4.18\%	4.62\%	3.30\%	5.17\%	3.26\%	3.42\%	2.50\%	4.11\%
Organics	Carpet/Upholstery	2.69\%	11.38\%	1.35\%	4.47\%	1.25\%	6.26\%	0.63\%	2.08\%	1.06\%	2.71\%	0.61\%	1.64\%	0.93\%	2.93\%	0.50\%	1.50\%
Organics	Disposable Diapers and Sanitary Products	4.24\%	2.97\%	3.49\%	5.06\%	4.18\%	2.28\%	3.64\%	4.76\%	3.88\%	2.93\%	3.26\%	4.55\%	3.68\%	2.62\%	2.99\%	4.43\%
Organics	Animal By-Products	0.77\%	1.48\%	0.49\%	1.12\%	0.90\%	1.39\%	0.58\%	1.29\%	1.63\%	2.84\%	1.07\%	2.31\%	0.56\%	1.09\%	0.35\%	0.82\%
Organics	Rubber Products	0.29\%	0.83\%	0.18\%	0.43\%	0.31\%	0.64\%	0.21\%	0.42\%	0.17\%	0.32\%	0.11\%	0.23\%	0.61\%	1.82\%	0.39\%	0.89\%
Organics	Shoes	0.94\%	1.78\%	0.61\%	1.34\%	0.84\%	1.10\%	0.58\%	1.15\%	0.86\%	1.27\%	0.58\%	1.20\%	0.90\%	1.14\%	0.63\%	1.22\%
Organics	Other Leather Products	0.10\%	0.40\%	0.05\%	0.16\%	0.14\%	0.32\%	0.09\%	0.22\%	0.16\%	0.38\%	0.09\%	0.24\%	0.08\%	0.26\%	0.04\%	0.13\%
Organics	Fines	3.68\%	1.88\%	3.26\%	4.13\%	4.60\%	2.51\%	4.00\%	5.23\%	6.20\%	3.19\%	5.40\%	7.05\%	5.76\%	5.45\%	4.82\%	6.77\%
Organics	Upholstered or Other Organic-Type Furniture	0.84\%	5.10\%	0.39\%	1.45\%	1.04\%	5.00\%	0.51\%	1.76\%	1.25\%	6.64\%	0.59\%	2.14\%	1.26\%	4.64\%	0.64\%	2.08\%
Organics	Miscellaneous Organics	0.40\%	1.15\%	0.24\%	0.61\%	0.85\%	2.58\%	0.54\%	1.25\%	0.67\%	1.59\%	0.42\%	0.98\%	2.18\%	5.18\%	1.37\%	3.18\%
Organics Total		48.58\%	11.74\%	45.70\%	51.46\%	47.13\%	11.50\%	44.37\%	49.89\%	48.28\%	9.76\%	45.92\%	50.65\%	46.00\%	12.14\%	42.99\%	49.02\%
Appliance/Electronic	Appliances: Ferrous	0.40\%	2.02\%	0.19\%	0.68\%	0.67\%	3.22\%	0.35\%	1.10\%	0.14\%	0.67\%	0.07\%	0.23\%	1.74\%	8.45\%	0.83\%	2.98\%
Appliance/Electronic	Appliances: Non-Ferrous	0.05\%	0.24\%	0.03\%	0.09\%	0.06\%	0.43\%	0.03\%	0.10\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.22\%	0.45\%	0.13\%	0.34\%	0.16\%	0.35\%	0.09\%	0.25\%	0.31\%	1.17\%	0.16\%	0.51\%	0.24\%	0.76\%	0.14\%	0.38\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.36\%	1.33\%	0.19\%	0.57\%	0.09\%	0.32\%	0.05\%	0.14\%	0.33\%	0.90\%	0.19\%	0.52\%	1.09\%	4.45\%	0.60\%	1.71\%
Appliance/Electronic	Computer Monitors	0.14\%	0.99\%	0.07\%	0.24\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.51\%	3.04\%	0.24\%	0.88\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.60\%	4.26\%	0.28\%	1.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	1.72\%	0.11\%	0.42\%
Appliance/Electronic	Other Computer Equipment	0.20\%	0.78\%	0.11\%	0.33\%	0.05\%	0.35\%	0.02\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.48\%	3.36\%	0.22\%	0.83\%
Appliance/Electronic Total		1.38\%	2.89\%	0.85\%	2.03\%	1.63\%	5.24\%	0.95\%	2.49\%	0.80\%	1.51\%	0.49\%	1.18\%	4.31\%	12.09\%	2.50\%	6.59\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.15\%	0.56\%	0.08\%	0.25\%	0.34\%	0.93\%	0.19\%	0.53\%	0.68\%	1.91\%	0.39\%	1.05\%	0.78\%	2.54\%	0.42\%	1.24\%
$C \& D$ Debris	Treated/Contaminated Wood	2.08\%	2.91\%	1.39\%	2.90\%	2.87\%	5.05\%	1.87\%	4.08\%	1.53\%	2.01\%	1.06\%	2.08\%	1.94\%	3.88\%	1.29\%	2.72\%
C \& D Debris	Gypsum Scrap	2.48\%	6.67\%	1.36\%	3.92\%	1.72\%	4.48\%	0.96\%	2.70\%	0.60\%	1.56\%	0.34\%	0.93\%	0.58\%	2.31\%	0.30\%	0.95\%
C \& D Debris	Rock/Concrete/Bricks	1.30\%	3.48\%	0.71\%	2.07\%	0.37\%	1.94\%	0.19\%	0.62\%	1.68\%	5.49\%	0.90\%	2.71\%	0.71\%	2.12\%	0.39\%	1.13\%
C\&D Debris	Other Construction Debris	2.04\%	5.36\%	1.17\%	3.14\%	2.06\%	3.86\%	1.26\%	3.05\%	0.69\%	1.91\%	0.39\%	1.06\%	1.91\%	4.06\%	1.15\%	2.84\%
C \& D Debris Total		8.05\%	9.10\%	5.90\%	10.51\%	7.36\%	9.70\%	5.20\%	9.87\%	5.18\%	6.92\%	3.76\%	6.82\%	5.91\%	6.99\%	4.35\%	7.71\%

Table 1-172
Statistical Results, WCS Results Across Seasons, Refuse, Medium Density/Low Income (continued)

Table 1-173
Statistical Results, WCS Results Across Seasons, Refuse, Low Density/High Income

Table 1-173
Statistical Results, WCS Results Across Seasons, Refuse, Low Density/High Income (continued)

			F														
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.10\%	0.15\%	0.07\%	0.14\%	0.24\%	0.71\%	0.16\%	0.34\%	0.07\%	0.08\%	0.05\%	0.09\%	0.20\%	0.31\%	0.15\%	0.26\%
Metal	Aluminum Foil/Containers	0.45\%	0.30\%	0.38\%	0.53\%	0.58\%	0.39\%	0.48\%	0.68\%	0.49\%	0.43\%	0.39\%	0.59\%	0.62\%	0.40\%	0.53\%	0.71\%
Metal	Other Aluminum	0.10\%	0.63\%	0.05\%	0.17\%	0.02\%	0.13\%	0.01\%	0.04\%	0.01\%	0.06\%	0.01\%	0.02\%	0.01\%	0.04\%	0.00\%	0.01\%
Metal	Other Non-Ferrous	0.09\%	0.21\%	0.05\%	0.13\%	0.32\%	1.46\%	0.17\%	0.52\%	0.07\%	0.17\%	0.04\%	0.12\%	0.16\%	0.76\%	0.08\%	0.26\%
Metal	Tin Food Cans	0.45\%	0.35\%	0.36\%	0.55\%	0.55\%	0.43\%	0.44\%	0.67\%	0.38\%	0.39\%	0.29\%	0.48\%	0.40\%	0.28\%	0.33\%	0.47\%
Metal	Empty Aerosol Cans	0.11\%	0.17\%	0.07\%	0.16\%	0.14\%	0.13\%	0.10\%	0.18\%	0.09\%	0.13\%	0.06\%	0.13\%	0.18\%	0.23\%	0.13\%	0.25\%
Metal	Other Ferrous	0.93\%	1.40\%	0.66\%	1.24\%	1.60\%	5.01\%	1.01\%	2.33\%	1.19\%	2.74\%	0.80\%	1.67\%	1.67\%	4.83\%	1.06\%	2.42\%
Metal	Mixed Metals	0.62\%	1.44\%	0.38\%	0.93\%	0.39\%	0.96\%	0.25\%	0.57\%	0.40\%	1.04\%	0.24\%	0.61\%	0.33\%	0.80\%	0.20\%	0.49\%
Metal Total		2.86\%	2.58\%	2.39\%	3.37\%	3.84\%	5.29\%	3.02\%	4.75\%	2.72\%	3.61\%	2.15\%	3.35\%	3.56\%	4.80\%	2.82\%	4.38\%
Organics	Leaves and Grass	10.31\%	10.98\%	7.69\%	13.27\%	3.37\%	9.11\%	1.93\%	5.19\%	15.94\%	14.97\%	12.10\%	20.21\%	9.64\%	13.92\%	6.52\%	13.29\%
Organics	Prunings	3.79\%	7.99\%	2.31\%	5.62\%	1.53\%	4.86\%	0.90\%	2.32\%	2.87\%	9.22\%	1.58\%	4.53\%	1.99\%	4.52\%	1.17\%	3.02\%
Organics	Stumps/Limbs	0.46\%	2.69\%	0.22\%	0.79\%	0.95\%	6.30\%	0.45\%	1.63\%	0.48\%	1.94\%	0.25\%	0.78\%	0.02\%	0.10\%	0.01\%	0.03\%
Organics	Food	17.48\%	7.88\%	15.53\%	19.51\%	21.14\%	8.50\%	18.91\%	23.46\%	15.39\%	7.65\%	13.50\%	17.39\%	16.96\%	6.35\%	15.30\%	18.68\%
Organics	Wood Furniture/Furniture Pieces	1.16\%	2.82\%	0.67\%	1.79\%	2.17\%	5.97\%	1.30\%	3.25\%	1.33\%	4.29\%	0.77\%	2.04\%	2.23\%	4.32\%	1.39\%	3.26%
Organics	Non-C\&D Untreated Wood	0.11\%	0.65\%	0.06\%	0.19\%	0.25\%	1.08\%	0.14\%	0.39\%	0.21\%	0.71\%	0.11\%	0.33\%	0.14\%	0.78\%	0.07\%	0.23\%
Organics	Non-Clothing Textiles	1.89\%	2.21\%	1.39\%	2.47\%	1.43\%	2.15\%	1.06\%	1.86\%	0.89\%	1.06\%	0.66\%	1.15\%	1.72\%	2.38\%	1.27\%	2.24\%
Organics	Clothing Textiles	2.69\%	3.42\%	2.00\%	3.48\%	2.38\%	3.31\%	1.77\%	3.08\%	2.13\%	2.68\%	1.54\%	2.82\%	2.61\%	3.53\%	1.93\%	3.38\%
Organics	Carpet/Upholstery	1.61\%	3.61\%	0.92\%	2.50\%	2.66\%	8.64\%	1.49\%	4.17\%	2.47\%	5.38\%	1.41\%	3.80\%	1.95\%	4.48\%	1.11\%	3.02\%
Organics	Disposable Diapers and Sanitary Products	3.26\%	2.56\%	2.61\%	3.98\%	4.11\%	3.03\%	3.45\%	4.83\%	2.89\%	2.26\%	2.37\%	3.47\%	3.51\%	2.91\%	2.85\%	4.23\%
Organics	Animal By-Products	1.01\%	1.82\%	0.64\%	1.46\%	2.33\%	3.59\%	1.57\%	3.24\%	1.23\%	2.34\%	0.78\%	1.79\%	1.10\%	1.77\%	0.73\%	1.54\%
Organics	Rubber Products	0.49\%	1.00\%	0.31\%	0.71\%	0.18\%	0.45\%	0.12\%	0.25\%	0.43\%	1.25\%	0.26\%	0.64\%	0.34\%	0.99\%	0.22\%	0.48\%
Organics	Shoes	0.56\%	0.83\%	0.37\%	0.79\%	0.76\%	1.38\%	0.48\%	1.10\%	0.36\%	0.66\%	0.22\%	0.53\%	0.51\%	0.87\%	0.34\%	0.72\%
Organics	Other Leather Products	0.09\%	0.44\%	0.05\%	0.14\%	0.07\%	0.28\%	0.04\%	0.12\%	0.22\%	1.18\%	0.11\%	0.36\%	0.02\%	0.08\%	0.01\%	0.03\%
Organics	Fines	3.02\%	1.70\%	2.56\%	3.52\%	3.38\%	1.30\%	3.09\%	3.69\%	4.41\%	2.52\%	3.77\%	5.09\%	3.75\%	2.16\%	3.32\%	4.20\%
Organics	Upholstered or Other Organic-Type Furniture	1.22\%	5.50\%	0.61\%	2.05\%	1.61\%	5.02\%	0.85\%	2.63\%	0.87\%	3.25\%	0.44\%	1.44\%	0.81\%	3.94\%	0.40\%	1.35\%
Organics	Miscellaneous Organics	0.77\%	2.53\%	0.46\%	1.14\%	0.99\%	1.78\%	0.70\%	1.32\%	1.45\%	4.28\%	0.88\%	2.18\%	1.33\%	2.80\%	0.89\%	1.86\%
Organics Total		49.93\%	12.96\%	46.76\%	53.09\%	49.32\%	11.66\%	46.53\%	52.11\%	53.57\%	13.30\%	50.30\%	56.83\%	48.61\%	14.66\%	44.98\%	52.26\%
Appliance/Electronic	Appliances: Ferrous	0.10\%	0.56\%	0.05\%	0.17\%	0.15\%	1.06\%	0.07\%	0.25\%	0.94\%	4.19\%	0.47\%	1.56\%	0.87\%	5.73\%	0.40\%	1.51\%
Appliance/Electronic	Appliances: Non-Ferrous	0.08\%	0.31\%	0.04\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.09\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.27\%	0.94\%	0.15\%	0.43\%	0.13\%	0.55\%	0.07\%	0.21\%	0.55\%	1.59\%	0.31\%	0.85\%	0.25\%	0.52\%	0.15\%	0.39\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.23\%	0.67\%	0.13\%	0.36\%	0.26\%	0.90\%	0.15\%	0.40\%	0.51\%	1.93\%	0.27\%	0.82\%	0.24\%	0.57\%	0.14\%	0.37\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.85\%	0.06\%	0.21\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.11\%	0.81\%	0.05\%	0.20\%	0.17\%	1.26\%	0.08\%	0.30\%	0.00\%	0.00\%	0.00\%	0.00\%	0.41\%	2.07\%	0.20\%	0.70\%
Appliance/Electronic	Other Computer Equipment	0.06\%	0.26\%	0.03\%	0.09\%	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.07\%	0.01\%	0.03\%	0.32\%	2.19\%	0.15\%	0.55\%
Appliance/Electronic Total		0.85\%	1.47\%	0.55\%	1.22\%	0.72\%	1.90\%	0.43\%	1.09\%	2.14\%	5.10\%	1.30\%	3.19\%	2.10\%	6.49\%	1.23\%	3.18\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.93\%	3.83\%	0.50\%	1.49\%	0.80\%	2.92\%	0.42\%	1.30\%	2.25\%	5.73\%	1.30\%	3.45\%	1.63\%	5.41\%	0.89\%	2.57\%
C \& D Debris	Treated/Contaminated Wood	2.09\%	3.78\%	1.38\%	2.94\%	1.63\%	3.10\%	1.08\%	2.28\%	3.67\%	5.66\%	2.51\%	5.03\%	2.38\%	4.41\%	1.60\%	3.31\%
C \& D Debris	Gypsum Scrap	1.00\%	3.62\%	0.53\%	1.61\%	1.02\%	3.73\%	0.54\%	1.65\%	1.46\%	3.80\%	0.81\%	2.30\%	0.91\%	3.35\%	0.47\%	1.49\%
C \& D Debris	Rock/Concrete/Bricks	0.45\%	1.99\%	0.23\%	0.75\%	0.15\%	0.55\%	0.08\%	0.24\%	2.25\%	6.52\%	1.26\%	3.51\%	0.30\%	0.82\%	0.17\%	0.48\%
C \& D Debris	Other Construction Debris	2.30\%	5.58\%	1.33\%	3.52\%	1.48\%	3.40\%	0.86\%	2.25\%	3.08\%	6.65\%	1.83\%	4.64\%	3.02\%	5.49\%	1.91\%	4.37\%
C \& D Debris Total		6.77\%	10.00\%	4.76\%	9.10\%	5.08\%	6.71\%	3.58\%	6.81\%	12.71\%	11.01\%	9.92\%	15.80\%	8.23\%	10.52\%	5.95\%	10.84\%

Table 1-173
Statistical Results, WCS Results Across Seasons, Refuse, Low Density/High Income (continued)

Table 1-174
Statistical Results, WCS Results Across Seasons, Refuse, Low Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	2.89\%	2.27\%	2.38\%	3.44\%	3.05\%	2.72\%	2.45\%	3.71\%	2.20\%	1.95\%	1.73\%	2.72\%	2.69\%	2.86\%	2.12\%	3.33\%
Paper	Plain OCC/Kraft Paper	1.53\%	3.04\%	1.02\%	2.15\%	1.05\%	0.98\%	0.82\%	1.30\%	0.77\%	1.09\%	0.55\%	1.02\%	1.01\%	1.12\%	0.77\%	1.27\%
Paper	High Grade Paper	0.38\%	0.75\%	0.25\%	0.55\%	0.60\%	1.22\%	0.42\%	0.82\%	0.48\%	1.38\%	0.30\%	0.69\%	0.32\%	0.49\%	0.23\%	0.43\%
Paper	Mixed Low Grade Paper	6.87\%	3.91\%	6.02\%	7.77\%	7.53\%	3.61\%	6.73\%	8.38\%	5.95\%	3.21\%	5.18\%	6.77\%	6.63\%	3.59\%	5.80\%	7.50\%
Paper	Phone Books/Paperbacks	0.38\%	1.02\%	0.20\%	0.60\%	0.38\%	1.10\%	0.21\%	0.59\%	0.44\%	1.51\%	0.23\%	0.71\%	0.43\%	0.91\%	0.25\%	0.64\%
Paper	Paper Bags	0.37\%	0.29\%	0.31\%	0.45\%	0.53\%	0.40\%	0.43\%	0.64\%	0.44\%	0.31\%	0.35\%	0.53\%	0.55\%	0.34\%	0.47\%	0.63\%
Paper	Polycoated Paper Containers	0.26\%	0.16\%	0.21\%	0.32\%	0.27\%	0.22\%	0.22\%	0.33\%	0.24\%	0.21\%	0.18\%	0.30\%	0.23\%	0.15\%	0.19\%	0.27\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	7.96\%	4.46\%	6.82\%	9.17\%	6.59\%	2.63\%	5.95\%	7.26\%	6.28\%	3.53\%	5.46\%	7.16\%	5.51\%	2.37\%	4.96\%	6.08\%
Paper	Single Use Paper Plates, Cups	0.75\%	0.67\%	0.59\%	0.92\%	0.59\%	0.68\%	0.44\%	0.75\%	0.64\%	0.83\%	0.47\%	0.83\%	0.90\%	0.91\%	0.70\%	1.13\%
Paper	Other Nonrecyclable Paper	0.57\%	0.56\%	0.45\%	0.71\%	0.53\%	0.67\%	0.42\%	0.66\%	0.38\%	0.35\%	0.30\%	0.47\%	0.96\%	0.70\%	0.81\%	1.12\%
Paper Total		21.96\%	7.59\%	20.09\%	23.89\%	21.11\%	7.12\%	19.38\%	22.90\%	17.80\%	7.25\%	16.03\%	19.64\%	19.21\%	6.65\%	17.64\%	20.83\%
Plastic	PET Botlles	0.56\%	0.31\%	0.49\%	0.63\%	0.69\%	1.02\%	0.54\%	0.86\%	0.62\%	0.39\%	0.53\%	0.71\%	0.69\%	0.54\%	0.58\%	0.81\%
Plastic	HDPE Bottles: Natural	0.18\%	0.15\%	0.14\%	0.23\%	0.12\%	0.12\%	0.08\%	0.15\%	0.14\%	0.13\%	0.11\%	0.17\%	0.12\%	0.14\%	0.09\%	0.16\%
Plastic	HDPE Bottles: Colored	0.26\%	0.46\%	0.18\%	0.36\%	0.15\%	0.16\%	0.11\%	0.20\%	0.16\%	0.22\%	0.11\%	0.22\%	0.17\%	0.20\%	0.13\%	0.22\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.15\%	0.01\%	0.04\%	0.02\%	0.08\%	0.01\%	0.03\%	0.01\%	0.02\%	0.00\%	0.01\%	0.05\%	0.21\%	0.03\%	0.08\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.03\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.02\%	0.04\%	0.01\%	0.02\%	0.02\%	0.09\%	0.01\%	0.04\%	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.02\%	0.04\%	0.09\%	0.14\%	0.06\%	0.13\%	0.05\%	0.06\%	0.04\%	0.07\%	0.05\%	0.07\%	0.04\%	0.07\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.12\%	0.12\%	0.10\%	0.15\%	0.15\%	0.19\%	0.11\%	0.20\%	0.17\%	0.33\%	0.12\%	0.23\%	0.21\%	0.53\%	0.15\%	0.29\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.06\%	0.30\%	0.03\%	0.11\%	0.02\%	0.08\%	0.01\%	0.04\%	0.02\%	0.04\%	0.01\%	0.03\%	0.04\%	0.08\%	0.02\%	0.06\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.17\%	0.01\%	0.04\%	0.06\%	0.35\%	0.03\%	0.11\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.11\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.04\%	0.26\%	0.02\%	0.07\%
Plastic	Rigid Polystyrene Containers and Packaging	0.18\%	0.15\%	0.14\%	0.21\%	0.22\%	0.18\%	0.18\%	0.27\%	0.17\%	0.14\%	0.13\%	0.21\%	0.22\%	0.22\%	0.18\%	0.26\%
Plastic	Expanded Polystyrene Containers and Packaging	0.61\%	0.38\%	0.52\%	0.70\%	0.64\%	0.38\%	0.54\%	0.74\%	0.46\%	0.30\%	0.40\%	0.54\%	0.64\%	0.53\%	0.54\%	0.74\%
Plastic	Other Rigid Containers/Packaging	0.62\%	0.56\%	0.52\%	0.73\%	0.51\%	0.39\%	0.43\%	0.61\%	0.62\%	0.42\%	0.52\%	0.72\%	1.03\%	0.98\%	0.86\%	1.21\%
Plastic	Plastic Bags	2.34\%	1.00\%	2.11\%	2.58\%	2.80\%	1.49\%	2.47\%	3.15\%	2.71\%	1.58\%	2.37\%	3.09\%	2.29\%	0.99\%	2.06\%	2.53\%
Plastic	Other Film	4.66\%	1.82\%	4.17\%	5.18\%	4.67\%	1.80\%	4.28\%	5.08\%	4.17\%	2.22\%	3.66\%	4.71\%	4.97\%	3.79\%	4.34\%	5.65\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.63\%	0.33\%	0.55\%	0.71\%	0.67\%	0.49\%	0.56\%	0.79\%	0.70\%	0.74\%	0.55\%	0.87\%	0.87\%	0.61\%	0.75\%	1.01\%
Plastic	Other Plastics Materials	1.88\%	1.68\%	1.54\%	2.26\%	1.71\%	2.23\%	1.34\%	2.12\%	2.02\%	2.29\%	1.57\%	2.53\%	2.66\%	3.21\%	2.09\%	3.30\%
Plastic Total		12.19\%	3.00\%	11.47\%	12.92\%	12.55\%	3.65\%	11.70\%	13.43\%	12.11\%	4.76\%	10.99\%	13.27\%	14.09\%	4.95\%	13.00\%	15.21\%
Glass	Clear Container Glass	0.80\%	0.89\%	0.59\%	1.04\%	1.04\%	1.78\%	0.75\%	1.37\%	0.77\%	1.00\%	0.57\%	1.01\%	1.01\%	1.14\%	0.77\%	1.30\%
Glass	Green Container Glass	0.07\%	0.16\%	0.04\%	0.11\%	0.19\%	0.37\%	0.11\%	0.28\%	0.16\%	0.40\%	0.09\%	0.25\%	0.18\%	0.33\%	0.11\%	0.28\%
Glass	Brown Container Glass	0.19\%	0.51\%	0.11\%	0.30\%	0.19\%	0.45\%	0.11\%	0.28\%	0.20\%	0.59\%	0.11\%	0.31\%	0.23\%	0.58\%	0.14\%	0.35\%
Glass	Mixed Cullet	0.32\%	0.61\%	0.20\%	0.47\%	0.36\%	0.51\%	0.25\%	0.50\%	0.23\%	0.36\%	0.15\%	0.32\%	0.43\%	0.78\%	0.28\%	0.61\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.17\%	0.01\%	0.05\%	0.01\%	0.04\%	0.00\%	0.01\%
Glass	Other Glass	0.16\%	0.57\%	0.09\%	0.25\%	0.10\%	0.22\%	0.06\%	0.14\%	0.15\%	0.28\%	0.10\%	0.22\%	0.42\%	1.00\%	0.28\%	0.60\%
Glass Total		1.54\%	1.55\%	1.19\%	1.94\%	1.87\%	1.96\%	1.47\%	2.32\%	1.54\%	1.52\%	1.18\%	1.95\%	2.29\%	2.17\%	1.83\%	2.80\%

Table 1-174
Statistical Results, WCS Results Across Seasons, Refuse, Low Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.09\%	0.12\%	0.06\%	0.12\%	0.16\%	0.18\%	0.12\%	0.21\%	0.11\%	0.10\%	0.08\%	0.14\%	0.15\%	0.13\%	0.12\%	0.19\%
Metal	Aluminum Foil/Containers	0.52\%	0.49\%	0.42\%	0.63\%	0.40\%	0.23\%	0.34\%	0.47\%	0.58\%	0.55\%	0.48\%	0.69\%	0.53\%	0.40\%	0.43\%	0.64\%
Metal	Other Aluminum	0.01\%	0.02\%	0.00\%	0.01\%	0.06\%	0.24\%	0.03\%	0.10\%	0.01\%	0.05\%	0.01\%	0.02\%	0.23\%	1.35\%	0.12\%	0.39\%
Metal	Other Non-Ferrous	0.17\%	0.76\%	0.09\%	0.27\%	0.15\%	0.36\%	0.08\%	0.23\%	0.18\%	0.73\%	0.10\%	0.29\%	0.14\%	0.37\%	0.08\%	0.21\%
Metal	Tin Food Cans	0.56\%	0.35\%	0.46\%	0.66\%	0.57\%	0.42\%	0.47\%	0.68\%	0.51\%	0.37\%	0.41\%	0.62\%	0.44\%	0.35\%	0.36\%	0.53\%
Metal	Empty Aerosol Cans	0.13\%	0.23\%	0.09\%	0.19\%	0.12\%	0.23\%	0.07\%	0.17\%	0.13\%	0.19\%	0.08\%	0.18\%	0.12\%	0.14\%	0.08\%	0.16\%
Metal	Other Ferrous	1.11\%	1.56\%	0.78\%	1.51\%	1.61\%	2.87\%	1.08\%	2.24\%	1.61\%	3.11\%	1.04\%	2.29\%	4.01\%	8.79\%	2.55\%	5.79\%
Metal	Mixed Metals	0.54\%	2.08\%	0.30\%	0.84\%	0.33\%	0.77\%	0.20\%	0.49\%	0.52\%	1.27\%	0.32\%	0.78\%	0.68\%	1.39\%	0.43\%	0.98\%
Metal Total		3.13\%	2.66\%	2.61\%	3.70\%	3.39\%	3.15\%	2.77\%	4.08\%	3.65\%	3.28\%	2.97\%	4.38\%	6.31\%	8.66\%	4.75\%	8.07\%
Organics	Leaves and Grass	8.95\%	8.02\%	6.77\%	11.41\%	1.81\%	4.67\%	0.98\%	2.87\%	10.90\%	12.23\%	7.89\%	14.32\%	6.59\%	6.79\%	4.90\%	8.52\%
Organics	Prunings	1.72\%	3.89\%	0.99\%	2.64\%	1.93\%	7.40\%	1.03\%	3.09\%	1.13\%	2.94\%	0.65\%	1.75\%	1.05\%	2.97\%	0.58\%	1.67\%
Organics	Stumps/Limbs	0.14\%	0.68\%	0.07\%	0.24\%	0.15\%	0.76\%	0.07\%	0.25\%	1.00\%	3.14\%	0.54\%	1.59\%	0.81\%	3.85\%	0.40\%	1.38\%
Organics	Food	20.68\%	8.13\%	18.77\%	22.66\%	23.59\%	8.47\%	21.45\%	25.80\%	18.70\%	7.14\%	16.97\%	20.49\%	15.94\%	6.23\%	14.48\%	17.46\%
Organics	Wood Furniture/Furniture Pieces	1.45\%	2.21\%	0.94\%	2.07\%	1.90\%	5.36\%	1.13\%	2.86\%	1.17\%	4.55\%	0.64\%	1.86\%	2.57\%	7.79\%	1.42\%	4.03\%
Organics	Non-C\&D Untreated Wood	0.07\%	0.19\%	0.04\%	0.11\%	0.22\%	0.82\%	0.12\%	0.35\%	0.17\%	0.57\%	0.10\%	0.27\%	0.04\%	0.09\%	0.03\%	0.07\%
Organics	Non-Clothing Textiles	1.40\%	1.87\%	1.01\%	1.85\%	2.11\%	3.74\%	1.50\%	2.81\%	1.12\%	1.21\%	0.83\%	1.45\%	2.24\%	2.17\%	1.77\%	2.76\%
Organics	Clothing Textiles	3.32\%	4.90\%	2.46\%	4.30\%	2.87\%	3.00\%	2.15\%	3.68\%	3.02\%	4.01\%	2.23\%	3.92\%	2.63\%	3.08\%	1.98\%	3.37\%
Organics	Carpet/Upholstery	1.94\%	4.15\%	1.13\%	2.96\%	1.62\%	3.20\%	0.99\%	2.40\%	0.92\%	2.82\%	0.51\%	1.46\%	1.71\%	3.86\%	0.98\%	2.63\%
Organics	Disposable Diapers and Sanitary Products	4.81\%	3.47\%	3.98\%	5.71\%	4.73\%	2.64\%	4.09\%	5.41\%	4.10\%	2.97\%	3.38\%	4.88\%	3.58\%	2.42\%	3.01\%	4.19\%
Organics	Animal By-Products	1.71\%	2.97\%	1.10\%	2.46\%	2.25\%	3.16\%	1.54\%	3.09\%	1.06\%	1.79\%	0.69\%	1.50\%	1.55\%	2.11\%	1.03\%	2.18\%
Organics	Rubber Products	0.17\%	0.33\%	0.11\%	0.25\%	0.15\%	0.22\%	0.10\%	0.20\%	0.19\%	0.38\%	0.12\%	0.27\%	0.49\%	2.42\%	0.28\%	0.75\%
Organics	Shoes	0.98\%	1.28\%	0.66\%	1.35\%	0.50\%	0.73\%	0.33\%	0.72\%	0.45\%	0.85\%	0.28\%	0.66\%	0.86\%	1.49\%	0.54\%	1.25\%
Organics	Other Leather Products	0.03\%	0.08\%	0.02\%	0.05\%	0.03\%	0.14\%	0.02\%	0.05\%	0.38\%	2.43\%	0.19\%	0.64\%	0.08\%	0.25\%	0.04\%	0.12\%
Organics	Fines	3.78\%	2.00\%	3.30\%	4.29\%	4.47\%	2.06\%	4.03\%	4.93\%	5.19\%	2.73\%	4.47\%	5.96\%	4.40\%	1.73\%	4.02\%	4.81\%
Organics	Upholstered or Other Organic-Type Furniture	0.16\%	0.79\%	0.07\%	0.27\%	1.57\%	6.94\%	0.77\%	2.65\%	1.35\%	5.34\%	0.67\%	2.24\%	0.56\%	2.49\%	0.28\%	0.93\%
Organics	Miscellaneous Organics	0.65\%	1.53\%	0.41\%	0.95\%	1.02\%	3.03\%	0.62\%	1.50\%	1.70\%	6.44\%	0.96\%	2.64\%	1.40\%	2.75\%	0.90\%	2.00\%
Organics Total		51.96\%	10.81\%	49.29\%	54.64\%	50.90\%	9.64\%	48.57\%	53.22\%	52.53\%	13.97\%	49.10\%	55.96\%	46.50\%	11.01\%	43.82\%	49.18\%
Appliance/Electronic	Appliances: Ferrous	0.08\%	0.42\%	0.04\%	0.14\%	0.77\%	2.98\%	0.39\%	1.27\%	0.64\%	2.33\%	0.34\%	1.04\%	0.39\%	1.68\%	0.20\%	0.64\%
Appliance/Electronic	Appliances: Non-Ferrous	0.08\%	0.39\%	0.04\%	0.14\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.07\%	0.01\%	0.02\%
Appliance/Electronic	Appliances: Plastic	0.09\%	0.26\%	0.05\%	0.15\%	0.11\%	0.29\%	0.06\%	0.17\%	0.36\%	0.91\%	0.20\%	0.57\%	0.13\%	0.31\%	0.07\%	0.20\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.01\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.30\%	0.75\%	0.17\%	0.47\%	0.19\%	1.00\%	0.10\%	0.32\%	0.13\%	0.60\%	0.07\%	0.21\%	0.32\%	1.02\%	0.18\%	0.51\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.65\%	0.04\%	0.16\%	0.21\%	1.45\%	0.10\%	0.36\%
Appliance/Electronic	Televisions	0.34\%	2.37\%	0.16\%	0.59\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.34\%	2.42\%	0.16\%	0.59\%
Appliance/Electronic	Other Computer Equipment	0.27\%	1.04\%	0.14\%	0.44\%	0.11\%	0.53\%	0.05\%	0.18\%	0.00\%	0.02\%	0.00\%	0.00\%	0.14\%	0.65\%	0.07\%	0.23\%
Appliance/Electronic Total		1.17\%	3.13\%	0.72\%	1.73\%	1.19\%	3.12\%	0.69\%	1.81\%	1.23\%	2.60\%	0.77\%	1.80\%	1.54\%	3.38\%	0.96\%	2.26\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.46\%	1.31\%	0.25\%	0.74\%	0.58\%	1.76\%	0.31\%	0.93\%	3.78\%	9.36\%	2.23\%	5.73\%	0.49\%	1.13\%	0.29\%	0.74\%
$C \& D$ Debris	Treated/Contaminated Wood	2.38\%	3.61\%	1.54\%	3.41\%	3.98\%	5.54\%	2.80\%	5.35\%	2.53\%	4.87\%	1.69\%	3.53\%	3.01\%	5.39\%	2.00\%	4.23\%
C \& D Debris	Gypsum Scrap	2.74\%	7.59\%	1.49\%	4.36\%	0.75\%	2.43\%	0.40\%	1.21\%	0.88\%	2.63\%	0.48\%	1.40\%	1.63\%	3.94\%	0.89\%	2.57\%
C \& D Debris	Rock/Concrete/Bricks	0.49\%	2.62\%	0.24\%	0.83\%	0.16\%	0.61\%	0.09\%	0.27\%	2.03\%	6.10\%	1.11\%	3.20\%	0.62\%	1.82\%	0.34\%	0.98\%
C \& D Debris	Other Construction Debris	0.90\%	2.78\%	0.51\%	1.40\%	2.67\%	4.88\%	1.67\%	3.90\%	0.93\%	2.47\%	0.53\%	1.44\%	3.14\%	5.19\%	2.01\%	4.50\%
C \& D Debris Total		6.98\%	9.14\%	4.93\%	9.35\%	8.15\%	8.04\%	6.17\%	10.38\%	10.15\%	12.48\%	7.37\%	13.31\%	8.88\%	8.77\%	6.77\%	11.25\%

Table 1-174
Statistical Results, WCS Results Across Seasons, Refuse, Low Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics	Miscellaneous Inorganics	0.27\%	0.82\%	0.16\%	0.41\%	0.18\%	0.70\%	0.10\%	0.28\%	0.50\%	2.20\%	0.27\%	0.81\%	0.19\%	0.47\%	0.12\%	0.28\%
Miscellaneous Inorganics	Ceramics	0.42\%	1.11\%	0.25\%	0.63\%	0.52\%	1.42\%	0.32\%	0.78\%	0.37\%	1.13\%	0.22\%	0.55\%	0.64\%	1.20\%	0.40\%	0.93\%
Miscellaneous Inorganics Total		0.69\%	1.43\%	0.43\%	0.99\%	0.70\%	1.54\%	0.45\%	1.00\%	0.87\%	2.45\%	0.53\%	1.30\%	0.83\%	1.31\%	0.56\%	1.15\%
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.01\%	0.04\%	0.00\%	0.01\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.10\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Latex Paints/Water-Based Adhesives/Glues	0.26\%	1.82\%	0.12\%	0.45\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.10\%	0.01\%	0.02\%	0.13\%	0.93\%	0.06\%	0.23\%
HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02\%	0.10\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.13\%	0.01\%	0.03\%	0.09\%	0.63\%	0.04\%	0.15\%
HHW	Pesticides/Herbicides/Rodenticides	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Dry-Cell Batteries	0.04\%	0.09\%	0.02\%	0.06\%	0.09\%	0.14\%	0.06\%	0.12\%	0.05\%	0.13\%	0.03\%	0.08\%	0.05\%	0.09\%	0.03\%	0.07\%
HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Home Medical Products	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.03\%	0.01\%	0.02\%	0.03\%	0.11\%	0.01\%	0.04\%	0.04\%	0.09\%	0.02\%	0.06\%
HHW	Other Potentially Harmful Wastes	0.04\%	0.20\%	0.02\%	0.07\%	0.02\%	0.10\%	0.01\%	0.04\%	0.01\%	0.04\%	0.00\%	0.01\%	0.04\%	0.26\%	0.02\%	0.07\%
HHW Total		0.38\%	1.83\%	0.22\%	0.60\%	0.14\%	0.21\%	0.10\%	0.19\%	0.12\%	0.33\%	0.08\%	0.19\%	0.36\%	1.15\%	0.22\%	0.53\%
GRAND TOTAL		100.00\%				100.00\%				100.00\%				100.00\%			

Table 1-175
Statistical Results, WCS Results Across Seasons, Paper, High Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	42.30\%	12.24\%	35.00\%	49.77\%	40.18\%	13.02\%	32.89\%	47.70\%	53.76\%	10.71\%	47.39\%	60.06\%	59.45\%	8.94\%	54.22\%	64.57\%
Paper	Plain OCC/Kraft Paper	13.81\%	11.79\%	7.31\%	21.96\%	5.61\%	3.33\%	3.85\%	7.69\%	9.91\%	7.53\%	5.44\%	15.53\%	5.00\%	3.30\%	3.20\%	7.18\%
Paper	High Grade Paper	1.36\%	1.48\%	0.50\%	2.63\%	4.39\%	5.61\%	1.66\%	8.34\%	2.11\%	3.03\%	0.83\%	3.94\%	3.36\%	5.01\%	1.04\%	6.94\%
Paper	Mixed Low Grade Paper	30.76\%	12.33\%	23.51\%	38.53\%	41.32\%	13.50\%	33.87\%	48.97\%	31.13\%	10.24\%	25.16\%	37.44\%	24.43\%	5.93\%	21.11\%	27.92\%
Paper	Phone Books/Paperbacks	7.27\%	11.06\%	1.72\%	16.21\%	5.15\%	8.31\%	1.81\%	10.05\%	0.84\%	1.58\%	0.14\%	2.13\%	2.86\%	4.70\%	0.74\%	6.29\%
Paper	Paper Bags	0.30\%	0.30\%	0.13\%	0.53\%	0.67\%	0.49\%	0.35\%	1.10\%	0.59\%	0.85\%	0.18\%	1.23\%	0.33\%	0.41\%	0.11\%	0.67\%
Paper	Polycoated Paper Containers	0.29\%	0.89\%	0.03\%	0.84\%	0.13\%	0.23\%	0.03\%	0.29\%	0.03\%	0.07\%	0.00\%	0.08\%	0.06\%	0.11\%	0.01\%	0.15\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.21\%	0.55\%	0.03\%	0.52\%	0.06\%	0.09\%	0.02\%	0.12\%	0.01\%	0.03\%	0.00\%	0.04\%	0.45\%	0.63\%	0.12\%	0.98\%
Paper	Single Use Paper Plates, Cups	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.08\%	0.00\%	0.06\%	0.01\%	0.03\%	0.00\%	0.04\%	0.01\%	0.02\%	0.00\%	0.02\%
Paper	Other Nonrecyclable Paper	0.34\%	0.68\%	0.06\%	0.84\%	0.09\%	0.19\%	0.02\%	0.21\%	0.15\%	0.43\%	0.02\%	0.41\%	1.94\%	5.17\%	0.25\%	5.19\%
Paper Total		96.64\%	2.34\%	94.97\%	97.97\%	97.62\%	1.13\%	96.84\%	98.29\%	98.55\%	2.10\%	97.24\%	99.44\%	97.89\%	2.20\%	96.36\%	99.00\%
Plastic	PET Botlles	0.03\%	0.05\%	0.00\%	0.07\%	0.03\%	0.09\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Plastic	HDPE Bottles: Natural	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.07\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Expanded Polystyrene Containers and Packaging	0.09\%	0.17\%	0.02\%	0.23\%	0.02\%	0.03\%	0.00\%	0.04\%	0.02\%	0.06\%	0.00\%	0.06\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	Other Rigid Containers/Packaging	0.04\%	0.09\%	0.00\%	0.10\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.03\%	0.10\%	0.00\%	0.10\%
Plastic	Plastic Bags	0.47\%	0.86\%	0.12\%	1.07\%	0.14\%	0.17\%	0.05\%	0.28\%	0.16\%	0.20\%	0.05\%	0.35\%	0.18\%	0.25\%	0.05\%	0.39\%
Plastic	Other Film	1.37\%	1.02\%	0.82\%	2.07\%	1.14\%	0.77\%	0.69\%	1.71\%	0.40\%	0.37\%	0.16\%	0.73\%	0.87\%	0.63\%	0.47\%	1.39\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%
Plastic	Other Plastics Materials	0.28\%	0.63\%	0.04\%	0.76\%	0.10\%	0.30\%	0.01\%	0.28\%	0.02\%	0.03\%	0.00\%	0.05\%	0.16\%	0.39\%	0.02\%	0.41\%
Plastic Total		2.29\%	1.75\%	1.38\%	3.44\%	1.50\%	0.85\%	0.93\%	2.21\%	0.61\%	0.51\%	0.26\%	1.09\%	1.29\%	1.10\%	0.67\%	2.09\%
Glass	Clear Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.11\%	0.19\%	0.02\%	0.26\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.10\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.11\%	0.32\%	0.01\%	0.30\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass Total		0.11\%	0.32\%	0.01\%	0.30\%	0.14\%	0.26\%	0.03\%	0.34\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-175
Statistical Results, WCS Results Across Seasons, Paper, High Density/High Income (continued)

															Sum		
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Aluminum Foil/Containers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Empty Aerosol Cans	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Metal	Other Ferrous	0.02\%	0.06\%	0.00\%	0.06\%	0.03\%	0.06\%	0.00\%	0.07\%	0.00\%	0.01\%	0.00\%	0.01\%	0.24\%	0.75\%	0.02\%	0.69\%
Metal	Mixed Metals	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.03\%	0.06\%	0.01\%	0.08\%	0.05\%	0.08\%	0.01\%	0.11\%	0.00\%	0.01\%	0.00\%	0.01\%	0.25\%	0.77\%	0.02\%	0.71\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.06\%	0.20\%	0.01\%	0.19\%	0.20\%	0.53\%	0.03\%	0.53\%	0.00\%	0.00\%	0.00\%	0.00\%	0.13\%	0.25\%	0.02\%	0.34\%
Organics	Wood Furniture/Furniture Pieces	0.13\%	0.41\%	0.01\%	0.38\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.15\%	0.00\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-Clothing Textiles	0.01\%	0.02\%	0.00\%	0.02\%	0.02\%	0.07\%	0.00\%	0.06\%	0.46\%	1.39\%	0.06\%	1.25\%	0.04\%	0.06\%	0.01\%	0.09\%
Organics	Clothing Textiles	0.01\%	0.03\%	0.00\%	0.04\%	0.10\%	0.23\%	0.02\%	0.26\%	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.08\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.12\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Shoes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	0.77\%	0.02\%	0.72\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.28\%	0.42\%	0.08\%	0.61\%	0.28\%	0.09\%	0.23\%	0.33\%	0.18\%	0.27\%	0.05\%	0.37\%	0.12\%	0.18\%	0.03\%	0.27\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics Total		0.49\%	0.54\%	0.19\%	0.93\%	0.67\%	0.61\%	0.40\%	1.01\%	0.66\%	1.70\%	0.15\%	1.54\%	0.57\%	0.80\%	0.18\%	1.18\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.18\%	0.58\%	0.01\%	0.54\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.18\%	0.58\%	0.01\%	0.54\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.12\%	0.38\%	0.01\%	0.35\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.30\%	0.96\%	0.02\%	0.90\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.42\%	1.00\%	0.05\%	1.15\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-175
Statistical Results, WCS Results Across Seasons, Paper, High Density/High Income (continued)

Table 1-176
Statistical Results, WCS Results Across Seasons, Paper, High Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	35.18\%	11.55\%	28.35\%	42.33\%	41.54\%	16.29\%	31.02\%	52.47\%	41.86\%	23.38\%	26.79\%	57.75\%	51.32\%	25.42\%	34.13\%	68.35\%
Paper	Plain OCC/Kraft Paper	18.74\%	10.16\%	12.89\%	25.40\%	16.50\%	9.68\%	11.51\%	22.19\%	9.22\%	6.63\%	5.44\%	13.88\%	4.99\%	3.92\%	2.67\%	8.00\%
Paper	High Grade Paper	3.59\%	2.50\%	2.12\%	5.43\%	1.55\%	1.30\%	0.86\%	2.43\%	1.84\%	2.18\%	0.69\%	3.54\%	1.55\%	2.03\%	0.54\%	3.09\%
Paper	Mixed Low Grade Paper	32.74\%	13.96\%	24.30\%	41.78\%	29.64\%	11.60\%	23.00\%	36.75\%	37.13\%	19.49\%	25.74\%	49.31\%	31.92\%	21.11\%	17.83\%	47.94\%
Paper	Phone Books/Paperbacks	6.91\%	11.42\%	1.73\%	15.17\%	7.61\%	9.70\%	2.52\%	15.13\%	2.05\%	3.58\%	0.50\%	4.64\%	7.01\%	10.82\%	2.05\%	14.62\%
Paper	Paper Bags	0.52\%	1.02\%	0.13\%	1.17\%	0.22\%	0.36\%	0.07\%	0.46\%	0.28\%	0.23\%	0.11\%	0.52\%	0.20\%	0.25\%	0.06\%	0.42\%
Paper	Polycoated Paper Containers	0.12\%	0.16\%	0.03\%	0.27\%	0.32\%	0.54\%	0.09\%	0.70\%	0.11\%	0.12\%	0.04\%	0.23\%	0.04\%	0.09\%	0.01\%	0.11\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.07\%	0.11\%	0.01\%	0.16\%	0.16\%	0.30\%	0.04\%	0.37\%	4.43\%	12.89\%	0.58\%	11.61\%	0.67\%	1.71\%	0.11\%	1.69\%
Paper	Single Use Paper Plates, Cups	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.02\%	0.00\%	0.02\%	0.07\%	0.19\%	0.01\%	0.19\%	0.01\%	0.02\%	0.00\%	0.03\%
Paper	Other Nonrecyclable Paper	0.43\%	0.65\%	0.12\%	0.93\%	0.04\%	0.08\%	0.00\%	0.10\%	0.61\%	0.94\%	0.16\%	1.35\%	0.08\%	0.17\%	0.01\%	0.21\%
Paper Total		98.30\%	0.94\%	97.75\%	98.77\%	97.59\%	1.99\%	96.42\%	98.54\%	97.61\%	1.63\%	96.53\%	98.50\%	97.80\%	2.94\%	95.96\%	99.10\%
Plastic	PET Bottles	0.02\%	0.05\%	0.00\%	0.05\%	0.01\%	0.02\%	0.00\%	0.02\%	0.10\%	0.12\%	0.03\%	0.22\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Natural	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.05\%	0.01\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.05\%	0.00\%	0.06\%
Plastic	Expanded Polystyrene Containers and Packaging	0.03\%	0.08\%	0.00\%	0.08\%	0.13\%	0.36\%	0.02\%	0.35\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other Rigid Containers/Packaging	0.07\%	0.22\%	0.01\%	0.21\%	0.07\%	0.21\%	0.01\%	0.20\%	0.02\%	0.05\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Plastic Bags	0.12\%	0.12\%	0.04\%	0.23\%	0.28\%	0.32\%	0.12\%	0.52\%	0.18\%	0.18\%	0.08\%	0.31\%	0.31\%	0.49\%	0.07\%	0.73\%
Plastic	Other Film	0.77\%	0.29\%	0.61\%	0.94\%	0.82\%	0.56\%	0.46\%	1.28\%	0.75\%	0.52\%	0.48\%	1.08\%	0.32\%	0.27\%	0.17\%	0.52\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.03\%
Plastic	Other Plastics Materials	0.08\%	0.17\%	0.02\%	0.19\%	0.32\%	0.83\%	0.04\%	0.88\%	0.01\%	0.02\%	0.00\%	0.03\%	0.32\%	0.95\%	0.04\%	0.89\%
Plastic Total		1.09\%	0.46\%	0.86\%	1.35\%	1.68\%	1.78\%	0.94\%	2.63\%	1.07\%	0.58\%	0.74\%	1.47\%	0.98\%	1.01\%	0.47\%	1.69\%
Glass	Clear Container Glass	0.04\%	0.13\%	0.00\%	0.12\%	0.14\%	0.46\%	0.01\%	0.42\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.12\%
Glass	Green Container Glass	0.08\%	0.24\%	0.01\%	0.22\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.17\%	0.00\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass Total		0.12\%	0.37\%	0.01\%	0.34\%	0.14\%	0.46\%	0.01\%	0.42\%	0.05\%	0.17\%	0.00\%	0.15\%	0.04\%	0.13\%	0.00\%	0.13\%

Table 1-176
Statistical Results, WCS Results Across Seasons, Paper, High Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Aluminum Foil/Containers	0.02\%	0.08\%	0.00\%	0.07\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.12\%	0.00\%	0.11\%
Metal	Tin Food Cans	0.03\%	0.09\%	0.00\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.04\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Empty Aerosol Cans	0.02\%	0.05\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.11\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Ferrous	0.02\%	0.05\%	0.00\%	0.06\%	0.00\%	0.01\%	0.00\%	0.01\%	0.14\%	0.43\%	0.01\%	0.40\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Mixed Metals	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.12\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.10\%	0.14\%	0.02\%	0.23\%	0.07\%	0.13\%	0.01\%	0.15\%	0.20\%	0.56\%	0.03\%	0.53\%	0.05\%	0.12\%	0.01\%	0.12\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.02\%	0.05\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.65\%	1.17\%	0.11\%	1.64\%	0.14\%	0.29\%	0.02\%	0.37\%
Organics	Wood Furniture/Furniture Pieces	0.03\%	0.08\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-Clothing Texiles	0.01\%	0.02\%	0.00\%	0.02\%	0.03\%	0.09\%	0.00\%	0.09\%	0.07\%	0.11\%	0.02\%	0.16\%	0.05\%	0.07\%	0.01\%	0.12\%
Organics	Clothing Textiles	0.03\%	0.08\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.03\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.11\%	0.34\%	0.01\%	0.32\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.22\%	0.01\%	0.21\%	0.27\%	0.85\%	0.02\%	0.79\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.05\%	0.00\%	0.05\%
Organics	Shoes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Other Leather Products	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%
Organics	Fines	0.19\%	0.19\%	0.08\%	0.34\%	0.35\%	0.23\%	0.24\%	0.50\%	0.26\%	0.24\%	0.13\%	0.43\%	0.08\%	0.11\%	0.02\%	0.18\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics Total		0.39\%	0.35\%	0.19\%	0.65\%	0.41\%	0.26\%	0.27\%	0.57\%	1.05\%	1.40\%	0.42\%	1.98\%	0.59\%	1.08\%	0.19\%	1.22\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.40\%	1.25\%	0.03\%	1.16\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.40\%	1.25\%	0.03\%	1.16\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.14\%	0.00\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.20\%	0.01\%	0.19\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.00\%	0.00\%	0.00\%	0.00\%	0.11\%	0.23\%	0.01\%	0.29\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-176
Statistical Results, WCS Results Across Seasons, Paper, High Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval				Confidence Interval			Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics	Miscellaneous Inorganics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Miscellaneous Inorganics	Ceramics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.29\%	0.01\%	0.27\%
Miscellaneous Inorganics Total		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.29\%	0.01\%	0.27\%
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Latex Paints/Water-Based Adhesives/Glues	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Dry-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.04\%	0.13\%	0.00\%	0.12\%
HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Home Medical Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Other Potentially Harmful Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Total		0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.04\%	0.13\%	0.00\%	0.12\%
GRAND TOTAL		100.00\%				100.00\%				100.00\%				100.00\%			

Table 1-177
Statistical Results, WCS Results Across Seasons, Paper, High Density/Low Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	47.21\%	19.02\%	35.30\%	59.28\%	29.30\%	22.34\%	16.27\%	44.36\%	29.88\%	14.83\%	21.38\%	39.13\%	32.81\%	23.41\%	17.37\%	50.45\%
Paper	Plain OCC/Kraft Paper	24.96\%	14.17\%	17.01\%	33.86\%	24.75\%	16.93\%	16.15\%	34.51\%	33.51\%	16.12\%	24.15\%	43.57\%	26.27\%	24.24\%	13.36\%	41.70\%
Paper	High Grade Paper	2.14\%	3.52\%	0.61\%	4.57\%	12.25\%	23.82\%	2.57\%	27.71\%	1.69\%	2.72\%	0.39\%	3.86\%	0.59\%	0.79\%	0.18\%	1.24\%
Paper	Mixed Low Grade Paper	14.03\%	5.94\%	10.75\%	17.67\%	21.58\%	13.06\%	15.20\%	28.74\%	23.97\%	11.77\%	17.34\%	31.31\%	20.85\%	12.51\%	14.30\%	28.26\%
Paper	Phone Books/Paperbacks	6.82\%	14.93\%	1.18\%	16.62\%	4.31\%	4.75\%	1.79\%	7.87\%	2.81\%	4.76\%	0.57\%	6.68\%	3.92\%	4.35\%	1.33\%	7.80\%
Paper	Paper Bags	0.08\%	0.11\%	0.02\%	0.16\%	0.16\%	0.20\%	0.05\%	0.34\%	0.01\%	0.02\%	0.00\%	0.02\%	0.05\%	0.12\%	0.01\%	0.14\%
Paper	Polycoated Paper Containers	0.37\%	0.59\%	0.08\%	0.89\%	0.79\%	1.09\%	0.25\%	1.61\%	1.23\%	2.32\%	0.30\%	2.79\%	0.43\%	0.62\%	0.12\%	0.92\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.87\%	2.12\%	0.13\%	2.28\%	0.27\%	0.43\%	0.07\%	0.61\%	1.00\%	1.03\%	0.39\%	1.89\%	4.36\%	9.04\%	1.15\%	9.51\%
Paper	Single Use Paper Plates, Cups	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.03\%	0.06\%	0.01\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%
Paper	Other Nonrecyclable Paper	1.03\%	2.87\%	0.14\%	2.72\%	0.10\%	0.32\%	0.01\%	0.27\%	0.79\%	1.76\%	0.12\%	2.03\%	5.67\%	8.48\%	1.79\%	11.55\%
Paper Total		97.52\%	2.29\%	96.04\%	98.66\%	93.53\%	9.89\%	88.39\%	97.25\%	94.92\%	7.25\%	90.82\%	97.86\%	94.94\%	5.44\%	91.80\%	97.35\%
Plastic	PET Botlles	0.01\%	0.03\%	0.00\%	0.04\%	0.04\%	0.09\%	0.01\%	0.09\%	0.01\%	0.04\%	0.00\%	0.04\%	0.02\%	0.05\%	0.00\%	0.06\%
Plastic	HDPE Bottles: Natural	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.03\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.05\%	0.00\%	0.05\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.01\%	0.03\%	0.00\%	0.03\%	0.03\%	0.06\%	0.01\%	0.08\%	0.01\%	0.03\%	0.00\%	0.02\%	0.03\%	0.10\%	0.00\%	0.10\%
Plastic	Expanded Polystyrene Containers and Packaging	0.01\%	0.02\%	0.00\%	0.02\%	0.09\%	0.16\%	0.02\%	0.21\%	0.00\%	0.01\%	0.00\%	0.01\%	0.06\%	0.14\%	0.01\%	0.14\%
Plastic	Other Rigid Containers/Packaging	0.06\%	0.09\%	0.01\%	0.13\%	0.06\%	0.13\%	0.01\%	0.15\%	0.06\%	0.11\%	0.01\%	0.14\%	0.01\%	0.02\%	0.00\%	0.03\%
Plastic	Plastic Bags	0.14\%	0.30\%	0.03\%	0.33\%	0.28\%	0.32\%	0.11\%	0.54\%	0.05\%	0.05\%	0.01\%	0.10\%	0.10\%	0.11\%	0.03\%	0.19\%
Plastic	Other Film	0.96\%	0.91\%	0.56\%	1.47\%	1.13\%	0.95\%	0.55\%	1.91\%	0.99\%	0.39\%	0.78\%	1.23\%	1.03\%	0.40\%	0.80\%	1.28\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.01\%	0.02\%	0.00\%	0.03\%	0.03\%	0.07\%	0.00\%	0.08\%	0.03\%	0.06\%	0.00\%	0.07\%	0.08\%	0.16\%	0.02\%	0.19\%
Plastic	Other Plastics Materials	0.04\%	0.07\%	0.01\%	0.11\%	1.56\%	4.11\%	0.30\%	3.77\%	1.37\%	4.06\%	0.16\%	3.73\%	0.52\%	1.13\%	0.10\%	1.25\%
Plastic Total		1.25\%	1.19\%	0.72\%	1.92\%	3.25\%	4.67\%	1.52\%	5.61\%	2.53\%	3.86\%	1.18\%	4.36\%	1.87\%	1.05\%	1.34\%	2.48\%
Glass	Clear Container Glass	0.07\%	0.16\%	0.01\%	0.18\%	0.03\%	0.10\%	0.00\%	0.09\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Brown Container Glass	0.04\%	0.13\%	0.00\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.03\%	0.10\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.09\%	0.00\%	0.08\%	0.06\%	0.20\%	0.01\%	0.18\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.54\%	1.71\%	0.04\%	1.59\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Glass Total		0.68\%	1.67\%	0.13\%	1.68\%	0.03\%	0.10\%	0.00\%	0.09\%	0.04\%	0.09\%	0.00\%	0.10\%	0.07\%	0.19\%	0.01\%	0.19\%

Table 1-177
Statistical Results, WCS Results Across Seasons, Paper, High Density/Low Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.01\%	0.02\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Aluminum Foil/Containers	0.01\%	0.03\%	0.00\%	0.03\%	0.02\%	0.04\%	0.00\%	0.06\%	0.01\%	0.02\%	0.00\%	0.02\%	0.02\%	0.03\%	0.00\%	0.04\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.11\%	0.36\%	0.01\%	0.34\%
Metal	Other Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.02\%	0.04\%	0.00\%	0.05\%	0.02\%	0.04\%	0.00\%	0.05\%	0.02\%	0.06\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Empty Aerosol Cans	0.02\%	0.06\%	0.00\%	0.05\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Mixed Metals	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%
Metal Total		0.06\%	0.12\%	0.01\%	0.15\%	0.09\%	0.09\%	0.03\%	0.18\%	0.05\%	0.10\%	0.01\%	0.11\%	0.16\%	0.43\%	0.02\%	0.40\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.18\%	0.56\%	0.01\%	0.52\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.05\%	0.13\%	0.01\%	0.13\%	0.22\%	0.47\%	0.04\%	0.55\%	0.08\%	0.12\%	0.02\%	0.18\%	0.08\%	0.17\%	0.01\%	0.22\%
Organics	Wood Furniture/Furniture Pieces	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.20\%	0.47\%	0.03\%	0.53\%	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.28\%	0.02\%	0.34\%
Organics	Non-Clothing Texiles	0.02\%	0.04\%	0.00\%	0.05\%	0.04\%	0.14\%	0.01\%	0.12\%	0.07\%	0.17\%	0.01\%	0.18\%	0.00\%	0.01\%	0.00\%	0.01\%
Organics	Clothing Textiles	0.03\%	0.09\%	0.00\%	0.09\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.11\%	0.28\%	0.02\%	0.28\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%	0.03\%	0.10\%	0.00\%	0.10\%	0.02\%	0.06\%	0.00\%	0.06\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.00\%	0.00\%	0.00\%	0.00\%	1.64\%	5.45\%	0.16\%	4.63\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Organics	Shoes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.19\%	0.33\%	0.06\%	0.40\%	0.64\%	0.67\%	0.28\%	1.15\%	0.36\%	0.70\%	0.09\%	0.80\%	1.38\%	3.52\%	0.25\%	3.40\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.02\%	0.04\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.86\%	2.71\%	0.07\%	2.52\%
Organics Total		0.31\%	0.47\%	0.13\%	0.57\%	2.79\%	5.27\%	0.93\%	5.61\%	0.55\%	0.67\%	0.23\%	0.99\%	2.78\%	4.85\%	0.78\%	5.94\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.15\%	0.00\%	0.14\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.15\%	0.00\%	0.14\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& Debris	Treated/Contaminated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.06\%	0.18\%	0.00\%	0.16\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C\&D Debris	Other Construction Debris	0.12\%	0.31\%	0.01\%	0.34\%	0.25\%	0.82\%	0.03\%	0.69\%	1.91\%	6.05\%	0.14\%	5.62\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.18\%	0.38\%	0.02\%	0.48\%	0.25\%	0.82\%	0.03\%	0.69\%	1.92\%	6.04\%	0.15\%	5.59\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-177
Statistical Results, WCS Results Across Seasons, Paper, High Density/Low Income (continued)

Material Group Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
	Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics Miscellaneous Inorganics	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.12\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Miscellaneous Inorganics Ceramics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Miscellaneous Inorganics Total	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.12\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Latex Paints/Water-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.22\%	0.01\%	0.21\%
HHW Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Dry-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Home Medical Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
HHW Other Potentially Harmful Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.23\%	0.01\%	0.21\%
HHW Total	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.03\%	0.15\%	0.30\%	0.02\%	0.38\%
GRAND TOTAL	100.00\%				100.00\%				100.00\%				100.00\%			
(1) When none of a particular material was found in any of the samples, the mean, standard deviation, and confidence interval boundaries are listed as zero percent. However, it is possible for these materials to exist in the waste stream. The level at which they may exist was not determined in this study.																

Table 1-178
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/ High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	37.86\%	15.20\%	28.86\%	47.30\%	37.05\%	11.59\%	30.43\%	43.93\%	41.42\%	15.44\%	32.43\%	50.69\%	40.31\%	10.43\%	34.22\%	46.54\%
Paper	Plain OCC/Kraft Paper	8.73\%	5.75\%	5.05\%	13.30\%	8.33\%	6.28\%	5.17\%	12.18\%	9.33\%	6.62\%	5.72\%	13.70\%	7.74\%	5.80\%	4.77\%	11.36\%
Paper	High Grade Paper	4.36\%	3.99\%	2.45\%	6.79\%	3.32\%	6.90\%	0.97\%	7.00\%	4.54\%	4.26\%	2.00\%	8.06\%	3.95\%	3.90\%	2.08\%	6.39\%
Paper	Mixed Low Grade Paper	42.98\%	11.89\%	36.06\%	50.04\%	32.74\%	10.57\%	26.91\%	38.85\%	36.31\%	13.59\%	28.68\%	44.31\%	38.46\%	5.84\%	35.07\%	41.91\%
Paper	Phone Books/Paperbacks	2.38\%	4.47\%	0.63\%	5.22\%	15.32\%	11.73\%	7.91\%	24.62\%	2.90\%	5.13\%	0.64\%	6.72\%	4.26\%	7.17\%	1.02\%	9.60\%
Paper	Paper Bags	0.33\%	0.37\%	0.13\%	0.60\%	0.32\%	0.38\%	0.13\%	0.59\%	0.40\%	0.35\%	0.19\%	0.69\%	0.62\%	0.38\%	0.42\%	0.87\%
Paper	Polycoated Paper Containers	0.19\%	0.32\%	0.05\%	0.42\%	0.19\%	0.25\%	0.05\%	0.42\%	0.11\%	0.13\%	0.03\%	0.23\%	0.09\%	0.16\%	0.02\%	0.21\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.23\%	0.32\%	0.06\%	0.51\%	0.35\%	0.61\%	0.08\%	0.81\%	2.54\%	5.88\%	0.73\%	5.39\%	1.20\%	0.76\%	0.78\%	1.70\%
Paper	Single Use Paper Plates, Cups	0.03\%	0.06\%	0.01\%	0.07\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.03\%	0.03\%	0.05\%	0.01\%	0.07\%
Paper	Other Nonrecyclable Paper	0.92\%	2.33\%	0.15\%	2.36\%	0.26\%	0.76\%	0.03\%	0.73\%	0.71\%	2.13\%	0.09\%	1.92\%	0.53\%	0.48\%	0.30\%	0.82\%
Paper Total		98.00\%	1.33\%	97.23\%	98.66\%	97.89\%	1.49\%	96.93\%	98.67\%	98.26\%	0.53\%	97.91\%	98.57\%	97.20\%	2.60\%	95.47\%	98.52\%
Plastic	PET Botlles	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.05\%	0.07\%	0.01\%	0.11\%	0.02\%	0.04\%	0.00\%	0.05\%
Plastic	HDPE Bottles: Natural	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Plastic	HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.06\%	0.00\%	0.07\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.08\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	Expanded Polystyrene Containers and Packaging	0.09\%	0.19\%	0.02\%	0.22\%	0.08\%	0.20\%	0.01\%	0.21\%	0.07\%	0.20\%	0.01\%	0.20\%	0.01\%	0.02\%	0.00\%	0.02\%
Plastic	Other Rigid Containers/Packaging	0.09\%	0.27\%	0.01\%	0.26\%	0.07\%	0.14\%	0.01\%	0.18\%	0.03\%	0.09\%	0.00\%	0.09\%	0.05\%	0.10\%	0.01\%	0.12\%
Plastic	Plastic Bags	0.02\%	0.04\%	0.00\%	0.06\%	0.11\%	0.16\%	0.03\%	0.26\%	0.07\%	0.09\%	0.02\%	0.16\%	0.15\%	0.13\%	0.07\%	0.26\%
Plastic	Other Film	0.40\%	0.25\%	0.23\%	0.61\%	0.67\%	0.35\%	0.48\%	0.88\%	0.66\%	0.25\%	0.53\%	0.81\%	0.58\%	0.40\%	0.33\%	0.89\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.04\%	0.12\%	0.00\%	0.11\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	Other Plastics Materials	0.20\%	0.32\%	0.04\%	0.47\%	0.08\%	0.14\%	0.01\%	0.19\%	0.09\%	0.22\%	0.01\%	0.23\%	0.03\%	0.06\%	0.01\%	0.08\%
Plastic Total		0.87\%	0.55\%	0.57\%	1.24\%	1.03\%	0.67\%	0.71\%	1.41\%	1.00\%	0.36\%	0.79\%	1.22\%	0.87\%	0.56\%	0.60\%	1.20\%
Glass	Clear Container Glass	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.16\%	0.02\%	0.25\%	0.08\%	0.24\%	0.01\%	0.23\%
Glass	Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.09\%	0.00\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.17\%	0.55\%	0.01\%	0.51\%
Glass	Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.28\%	0.01\%	0.26\%
Glass	Mixed Cullet	0.02\%	0.08\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass Total		0.04\%	0.08\%	0.00\%	0.10\%	0.03\%	0.09\%	0.00\%	0.09\%	0.10\%	0.16\%	0.02\%	0.25\%	0.34\%	1.07\%	0.03\%	1.00\%

Table 1-178
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/ High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.03\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Aluminum Foil/Containers	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.04\%	0.01\%	0.03\%	0.00\%	0.03\%
Metal	Other Aluminum	0.04\%	0.14\%	0.00\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.01\%	0.02\%	0.00\%	0.01\%	0.04\%	0.14\%	0.00\%	0.13\%	0.04\%	0.08\%	0.01\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Empty Aerosol Cans	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Ferrous	0.03\%	0.07\%	0.00\%	0.08\%	0.17\%	0.50\%	0.02\%	0.48\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%
Metal	Mixed Metals	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.12\%	0.15\%	0.03\%	0.24\%	0.22\%	0.51\%	0.03\%	0.58\%	0.08\%	0.09\%	0.03\%	0.16\%	0.03\%	0.06\%	0.00\%	0.07\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.47\%	1.48\%	0.04\%	1.38\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.15\%	0.41\%	0.02\%	0.40\%	0.17\%	0.53\%	0.01\%	0.49\%	0.20\%	0.31\%	0.04\%	0.48\%	0.58\%	1.25\%	0.07\%	1.55\%
Organics	Wood Furniture/Furniture Pieces	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.06\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.22\%	0.01\%	0.21\%	0.00\%	0.00\%	0.00\%	0.00\%	0.26\%	0.83\%	0.02\%	0.77\%
Organics	Non-Clothing Texiles	0.01\%	0.03\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.06\%	0.01\%	0.07\%	0.02\%	0.03\%	0.00\%	0.04\%
Organics	Clothing Textiles	0.28\%	0.50\%	0.05\%	0.71\%	0.04\%	0.14\%	0.00\%	0.13\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.05\%	0.00\%	0.06\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.04\%	0.12\%	0.00\%	0.11\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%
Organics	Rubber Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Shoes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.06\%
Organics	Fines	0.21\%	0.22\%	0.08\%	0.40\%	0.41\%	0.28\%	0.27\%	0.59\%	0.32\%	0.23\%	0.17\%	0.51\%	0.09\%	0.10\%	0.03\%	0.19\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.03\%	0.10\%	0.00\%	0.09\%	0.04\%	0.12\%	0.00\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics Total		0.70\%	0.73\%	0.29\%	1.30\%	0.74\%	0.99\%	0.34\%	1.28\%	0.56\%	0.35\%	0.35\%	0.82\%	1.55\%	1.75\%	0.56\%	3.02\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.01\%	0.03\%	0.00\%	0.03\%	0.05\%	0.16\%	0.00\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.01\%	0.03\%	0.00\%	0.03\%	0.05\%	0.16\%	0.00\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.05\%	0.15\%	0.00\%	0.14\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.20\%	0.64\%	0.02\%	0.59\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.25\%	0.64\%	0.03\%	0.68\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-178
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/ High Income (continued)

Table 1-179
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	29.30\%	16.80\%	20.19\%	39.34\%	38.36\%	12.68\%	31.33\%	45.65\%	32.86\%	16.28\%	23.09\%	43.43\%	37.74\%	18.08\%	27.37\%	48.70\%
Paper	Plain OCC/Kraft Paper	26.13\%	19.66\%	14.54\%	39.71\%	16.43\%	14.38\%	9.67\%	24.57\%	12.99\%	6.46\%	9.31\%	17.18\%	10.12\%	3.16\%	8.36\%	12.03\%
Paper	High Grade Paper	6.06\%	7.34\%	2.58\%	10.89\%	1.66\%	1.33\%	0.96\%	2.56\%	8.15\%	6.32\%	4.47\%	12.79\%	1.49\%	2.02\%	0.43\%	3.18\%
Paper	Mixed Low Grade Paper	29.40\%	18.31\%	19.43\%	40.48\%	35.75\%	11.61\%	29.52\%	42.23\%	33.99\%	11.73\%	27.25\%	41.07\%	22.40\%	9.50\%	16.64\%	28.74\%
Paper	Phone Books/Paperbacks	2.69\%	2.86\%	0.97\%	5.22\%	4.21\%	4.72\%	1.78\%	7.60\%	3.13\%	3.79\%	0.84\%	6.81\%	19.59\%	14.00\%	11.11\%	29.76\%
Paper	Paper Bags	0.63\%	1.01\%	0.20\%	1.28\%	0.52\%	0.43\%	0.23\%	0.91\%	0.90\%	1.22\%	0.29\%	1.87\%	0.24\%	0.15\%	0.16\%	0.35\%
Paper	Polycoated Paper Containers	0.26\%	0.29\%	0.10\%	0.50\%	0.32\%	0.36\%	0.11\%	0.64\%	0.24\%	0.37\%	0.07\%	0.53\%	0.07\%	0.10\%	0.02\%	0.15\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	1.48\%	2.40\%	0.42\%	3.17\%	0.14\%	0.23\%	0.03\%	0.31\%	2.97\%	6.47\%	0.73\%	6.66\%	4.81\%	9.25\%	1.01\%	11.22\%
Paper	Single Use Paper Plates, Cups	0.07\%	0.13\%	0.01\%	0.17\%	0.09\%	0.19\%	0.02\%	0.22\%	0.00\%	0.01\%	0.00\%	0.01\%	0.03\%	0.07\%	0.01\%	0.08\%
Paper	Other Nonrecyclable Paper	0.36\%	0.30\%	0.17\%	0.64\%	0.11\%	0.22\%	0.02\%	0.27\%	1.58\%	3.31\%	0.35\%	3.66\%	2.06\%	2.03\%	0.75\%	4.00\%
Paper Total		96.38\%	2.69\%	94.66\%	97.77\%	97.59\%	1.51\%	96.81\%	98.26\%	96.81\%	4.00\%	94.71\%	98.40\%	98.54\%	0.82\%	98.02\%	98.98\%
Plastic	PET Bottles	0.01\%	0.04\%	0.00\%	0.04\%	0.02\%	0.05\%	0.00\%	0.06\%	0.01\%	0.02\%	0.00\%	0.02\%	0.05\%	0.16\%	0.00\%	0.15\%
Plastic	HDPE Bottles: Natural	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Colored	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.12\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.03\%	0.07\%	0.00\%	0.08\%
Plastic	Expanded Polystyrene Containers and Packaging	0.03\%	0.08\%	0.00\%	0.08\%	0.01\%	0.02\%	0.00\%	0.02\%	0.02\%	0.06\%	0.00\%	0.07\%	0.02\%	0.03\%	0.00\%	0.05\%
Plastic	Other Rigid Containers/Packaging	0.14\%	0.20\%	0.04\%	0.31\%	0.03\%	0.06\%	0.01\%	0.08\%	0.08\%	0.17\%	0.01\%	0.21\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	Plastic Bags	0.13\%	0.17\%	0.04\%	0.27\%	0.19\%	0.32\%	0.06\%	0.40\%	0.26\%	0.17\%	0.17\%	0.37\%	0.22\%	0.24\%	0.08\%	0.41\%
Plastic	Other Film	0.75\%	0.39\%	0.51\%	1.02\%	0.87\%	0.46\%	0.55\%	1.27\%	0.83\%	0.56\%	0.55\%	1.17\%	0.68\%	0.42\%	0.43\%	1.00\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.02\%	0.02\%	0.01\%	0.05\%	0.05\%	0.15\%	0.01\%	0.14\%	0.05\%	0.15\%	0.01\%	0.15\%	0.03\%	0.05\%	0.00\%	0.07\%
Plastic	Other Plastics Materials	0.28\%	0.46\%	0.08\%	0.58\%	0.20\%	0.40\%	0.06\%	0.43\%	0.06\%	0.11\%	0.01\%	0.15\%	0.10\%	0.19\%	0.02\%	0.24\%
Plastic Total		1.38\%	0.61\%	1.02\%	1.80\%	1.43\%	0.67\%	1.09\%	1.82\%	1.35\%	0.82\%	0.89\%	1.90\%	1.13\%	0.55\%	0.80\%	1.52\%
Glass	Clear Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.15\%	0.00\%	0.14\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass Total		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.16\%	0.01\%	0.19\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-179
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Medium Income (continued)

							Win										
				Confider	Interval			Confide	Interval			Confiden	Interval			Confiden	Interval
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.03\%	0.05\%	0.00\%	0.07\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Aluminum Foil/Containers	0.03\%	0.06\%	0.01\%	0.09\%	0.03\%	0.05\%	0.01\%	0.07\%	0.01\%	0.02\%	0.00\%	0.02\%	0.01\%	0.03\%	0.00\%	0.03\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.17\%	0.54\%	0.01\%	0.50\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.08\%	0.00\%	0.09\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Empty Aerosol Cans	0.02\%	0.06\%	0.00\%	0.06\%	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Ferrous	0.03\%	0.08\%	0.00\%	0.09\%	0.01\%	0.03\%	0.00\%	0.03\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Mixed Metals	0.14\%	0.44\%	0.01\%	0.41\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.19\%	0.01\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.42\%	0.70\%	0.09\%	0.99\%	0.06\%	0.08\%	0.02\%	0.13\%	0.13\%	0.21\%	0.03\%	0.30\%	0.02\%	0.04\%	0.00\%	0.06\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.58\%	1.47\%	0.10\%	1.44\%	0.06\%	0.19\%	0.01\%	0.16\%	0.99\%	2.56\%	0.12\%	2.69\%	0.09\%	0.28\%	0.01\%	0.26\%
Organics	Wood Furniture/Furniture Pieces	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.26\%	0.01\%	0.22\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-Clothing Texiles	0.04\%	0.06\%	0.01\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.13\%	0.30\%	0.02\%	0.33\%	0.02\%	0.04\%	0.00\%	0.05\%
Organics	Clothing Textiles	0.02\%	0.06\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.05\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.09\%	0.23\%	0.01\%	0.24\%	0.00\%	0.00\%	0.00\%	0.00\%	0.15\%	0.46\%	0.02\%	0.44\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.01\%	0.03\%	0.00\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Shoes	0.00\%	0.00\%	0.00\%	0.00\%	0.22\%	0.73\%	0.02\%	0.62\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.54\%	1.13\%	0.13\%	1.22\%	0.39\%	0.27\%	0.26\%	0.55\%	0.23\%	0.25\%	0.10\%	0.40\%	0.07\%	0.08\%	0.02\%	0.14\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.05\%	0.13\%	0.01\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics Total		1.33\%	1.75\%	0.53\%	2.49\%	0.79\%	0.98\%	0.40\%	1.30\%	1.52\%	3.28\%	0.44\%	3.26\%	0.18\%	0.27\%	0.06\%	0.37\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.12\%
Appliance/Electronic	Appliances: Plastic	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.09\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.00\%	0.01\%	0.00\%	0.01\%	0.03\%	0.09\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.12\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.13\%	0.00\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.30\%	0.93\%	0.02\%	0.87\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.16\%	0.00\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.16\%	0.00\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.22\%	0.01\%	0.19\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.30\%	0.93\%	0.02\%	0.87\%	0.10\%	0.24\%	0.02\%	0.27\%	0.10\%	0.21\%	0.01\%	0.27\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-179
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Medium Income (continued)

Table 1-180
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Low Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	28.71\%	15.76\%	20.17\%	38.10\%	27.81\%	16.63\%	19.20\%	37.33\%	46.99\%	19.90\%	35.00\%	59.15\%	33.49\%	15.44\%	24.54\%	43.09\%
Paper	Plain OCC/Kraft Paper	32.81\%	22.30\%	19.40\%	47.82\%	28.90\%	17.94\%	19.55\%	39.25\%	16.89\%	15.45\%	8.34\%	27.68\%	18.59\%	10.08\%	12.93\%	25.00\%
Paper	High Grade Paper	4.06\%	3.79\%	2.01\%	6.78\%	2.98\%	3.49\%	1.09\%	5.78\%	2.38\%	1.63\%	1.29\%	3.80\%	4.61\%	4.16\%	2.12\%	8.02\%
Paper	Mixed Low Grade Paper	25.56\%	11.16\%	16.44\%	35.92\%	27.52\%	14.16\%	20.18\%	35.52\%	25.60\%	13.86\%	17.72\%	34.37\%	32.70\%	14.01\%	24.52\%	41.46\%
Paper	Phone Books/Paperbacks	3.52\%	3.82\%	1.20\%	7.00\%	9.58\%	8.79\%	4.50\%	16.30\%	4.20\%	6.52\%	1.00\%	9.47\%	2.91\%	4.06\%	0.70\%	6.56\%
Paper	Paper Bags	0.05\%	0.08\%	0.01\%	0.11\%	0.19\%	0.37\%	0.05\%	0.43\%	0.05\%	0.07\%	0.01\%	0.12\%	0.08\%	0.16\%	0.01\%	0.19\%
Paper	Polycoated Paper Containers	0.15\%	0.26\%	0.03\%	0.37\%	0.18\%	0.25\%	0.05\%	0.39\%	0.15\%	0.23\%	0.04\%	0.33\%	0.70\%	0.67\%	0.31\%	1.23\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.18\%	0.35\%	0.04\%	0.42\%	0.14\%	0.30\%	0.03\%	0.34\%	0.40\%	0.78\%	0.07\%	1.00\%	0.42\%	0.69\%	0.11\%	0.94\%
Paper	Single Use Paper Plates, Cups	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.01\%	0.03\%	0.00\%	0.03\%
Paper	Other Nonrecyclable Paper	0.60\%	0.89\%	0.17\%	1.28\%	0.05\%	0.12\%	0.01\%	0.12\%	0.52\%	1.16\%	0.07\%	1.39\%	1.41\%	1.73\%	0.48\%	2.83\%
Paper Total		95.64\%	5.35\%	92.58\%	97.92\%	97.36\%	2.24\%	96.02\%	98.42\%	97.19\%	1.84\%	95.89\%	98.26\%	94.93\%	3.37\%	92.76\%	96.73\%
Plastic	PET Bottles	0.07\%	0.15\%	0.01\%	0.19\%	0.03\%	0.08\%	0.01\%	0.09\%	0.01\%	0.02\%	0.00\%	0.02\%	0.29\%	0.42\%	0.08\%	0.62\%
Plastic	HDPE Bottles: Natural	0.02\%	0.05\%	0.00\%	0.05\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.19\%	0.00\%	0.18\%
Plastic	HDPE Bottles: Colored	0.03\%	0.10\%	0.00\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.05\%	0.16\%	0.01\%	0.15\%
Plastic	\#1 \#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.05\%	0.17\%	0.00\%	0.15\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.17\%	0.01\%	0.19\%
Plastic	Expanded Polystyrene Containers and Packaging	0.06\%	0.10\%	0.01\%	0.16\%	0.12\%	0.22\%	0.03\%	0.28\%	0.02\%	0.04\%	0.00\%	0.04\%	0.07\%	0.18\%	0.01\%	0.18\%
Plastic	Other Rigid Containers/Packaging	0.04\%	0.06\%	0.01\%	0.10\%	0.01\%	0.02\%	0.00\%	0.02\%	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Plastic Bags	0.08\%	0.14\%	0.02\%	0.20\%	0.53\%	1.04\%	0.18\%	1.05\%	0.17\%	0.19\%	0.06\%	0.32\%	0.41\%	0.42\%	0.19\%	0.71\%
Plastic	Other Film	0.60\%	0.40\%	0.43\%	0.82\%	0.48\%	0.18\%	0.39\%	0.59\%	0.74\%	0.44\%	0.46\%	1.08\%	0.88\%	0.76\%	0.49\%	1.37\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.03\%
Plastic	Other Plastics Materials	0.08\%	0.19\%	0.01\%	0.20\%	0.17\%	0.42\%	0.03\%	0.42\%	0.84\%	1.73\%	0.14\%	2.12\%	0.28\%	0.41\%	0.08\%	0.60\%
Plastic Total		1.05\%	0.82\%	0.67\%	1.53\%	1.38\%	1.16\%	0.84\%	2.05\%	1.79\%	1.70\%	0.96\%	2.86\%	2.13\%	1.48\%	1.36\%	3.05\%
Glass	Clear Container Glass	0.17\%	0.52\%	0.01\%	0.49\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.18\%	0.00\%	0.17\%	0.31\%	0.43\%	0.08\%	0.70\%
Glass	Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.11\%	0.00\%	0.10\%
Glass	Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.18\%	0.45\%	0.02\%	0.49\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass Total		0.17\%	0.52\%	0.01\%	0.49\%	0.00\%	0.00\%	0.00\%	0.00\%	0.24\%	0.51\%	0.03\%	0.64\%	0.35\%	0.53\%	0.09\%	0.78\%

Table 1-180
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Low Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.07\%	0.01\%	0.09\%
Metal	Aluminum Foil/Containers	0.01\%	0.03\%	0.00\%	0.04\%	0.03\%	0.05\%	0.00\%	0.06\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.03\%	0.00\%	0.04\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.03\%	0.08\%	0.00\%	0.07\%	0.13\%	0.43\%	0.01\%	0.36\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.02\%	0.05\%	0.00\%	0.05\%	0.04\%	0.07\%	0.01\%	0.10\%	0.01\%	0.04\%	0.00\%	0.03\%	0.02\%	0.04\%	0.00\%	0.05\%
Metal	Empty Aerosol Cans	0.02\%	0.05\%	0.00\%	0.05\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Other Ferrous	0.03\%	0.09\%	0.00\%	0.08\%	0.23\%	0.77\%	0.02\%	0.66\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%
Metal	Mixed Metals	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.10\%	0.22\%	0.02\%	0.26\%	0.45\%	1.25\%	0.08\%	1.10\%	0.02\%	0.05\%	0.00\%	0.06\%	0.09\%	0.07\%	0.04\%	0.16\%
Organics	Leaves and Grass	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.06\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.16\%	0.39\%	0.02\%	0.44\%	0.07\%	0.20\%	0.01\%	0.20\%	0.18\%	0.56\%	0.02\%	0.52\%	1.18\%	2.59\%	0.20\%	2.98\%
Organics	Wood Furniture/Furniture Pieces	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.10\%	0.01\%	0.11\%	0.00\%	0.01\%	0.00\%	0.01\%	0.05\%	0.16\%	0.00\%	0.15\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.01\%	0.00\%	0.01\%	0.04\%	0.13\%	0.00\%	0.11\%	0.02\%	0.05\%	0.00\%	0.05\%	0.05\%	0.16\%	0.00\%	0.15\%
Organics	Non-Clothing Textiles	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.03\%	0.06\%	0.01\%	0.08\%	0.13\%	0.34\%	0.02\%	0.35\%
Organics	Clothing Textiles	0.81\%	2.55\%	0.07\%	2.36\%	0.07\%	0.22\%	0.01\%	0.20\%	0.08\%	0.17\%	0.01\%	0.22\%	0.25\%	0.60\%	0.03\%	0.66\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.31\%	0.84\%	0.03\%	0.85\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Shoes	0.05\%	0.17\%	0.00\%	0.16\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.27\%	0.87\%	0.02\%	0.81\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.35\%	0.41\%	0.14\%	0.66\%	0.53\%	0.30\%	0.37\%	0.73\%	0.30\%	0.27\%	0.13\%	0.54\%	0.52\%	0.39\%	0.27\%	0.84\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.02\%	0.03\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics Total		1.72\%	3.91\%	0.45\%	3.79\%	0.78\%	0.52\%	0.50\%	1.12\%	0.64\%	0.54\%	0.38\%	0.97\%	2.47\%	2.83\%	1.06\%	4.46\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.01\%	0.04\%	0.00\%	0.04\%	0.02\%	0.06\%	0.00\%	0.05\%	0.11\%	0.34\%	0.01\%	0.32\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.08\%	0.00\%	0.08\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.01\%	0.04\%	0.00\%	0.04\%	0.02\%	0.06\%	0.00\%	0.05\%	0.11\%	0.34\%	0.01\%	0.32\%	0.03\%	0.08\%	0.00\%	0.08\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Treated/Contaminated Wood	0.88\%	2.77\%	0.07\%	2.57\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.16\%	0.49\%	0.01\%	0.46\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.13\%	0.29\%	0.02\%	0.35\%	0.02\%	0.07\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		1.16\%	2.77\%	0.16\%	3.06\%	0.02\%	0.07\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-180
Statistical Results, WCS Results Across Seasons, Paper, Medium Density/Low Income (continued)

Table 1-181
Statistical Results, WCS Results Across Seasons, Paper, Low Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	50.32\%	8.22\%	45.52\%	55.11\%	45.23\%	17.30\%	34.76\%	55.92\%	43.47\%	14.51\%	34.81\%	52.34\%	42.48\%	17.03\%	32.51\%	52.78\%
Paper	Plain OCC/Kraft Paper	16.51\%	9.01\%	11.22\%	22.58\%	14.56\%	11.71\%	8.52\%	21.88\%	5.16\%	2.35\%	3.88\%	6.61\%	6.67\%	4.70\%	4.28\%	9.54\%
Paper	High Grade Paper	1.82\%	1.91\%	0.89\%	3.07\%	0.47\%	0.56\%	0.13\%	1.03\%	3.02\%	3.13\%	1.36\%	5.31\%	3.05\%	3.86\%	1.02\%	6.11\%
Paper	Mixed Low Grade Paper	27.37\%	8.00\%	22.97\%	32.01\%	30.25\%	10.17\%	24.41\%	36.42\%	36.26\%	15.19\%	27.66\%	45.32\%	37.31\%	14.96\%	28.67\%	46.37\%
Paper	Phone Books/Paperbacks	0.79\%	1.20\%	0.17\%	1.87\%	1.55\%	2.19\%	0.38\%	3.50\%	3.29\%	4.12\%	0.92\%	7.07\%	6.82\%	8.55\%	2.22\%	13.67\%
Paper	Paper Bags	0.22\%	0.34\%	0.05\%	0.51\%	0.22\%	0.24\%	0.08\%	0.42\%	0.22\%	0.37\%	0.07\%	0.45\%	0.33\%	0.33\%	0.13\%	0.61\%
Paper	Polycoated Paper Containers	0.05\%	0.11\%	0.01\%	0.13\%	1.00\%	2.36\%	0.22\%	2.32\%	0.16\%	0.19\%	0.05\%	0.34\%	0.10\%	0.17\%	0.02\%	0.25\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.64\%	0.76\%	0.20\%	1.33\%	0.53\%	0.81\%	0.15\%	1.15\%	5.75\%	9.83\%	1.71\%	11.98\%	1.05\%	1.15\%	0.45\%	1.88\%
Paper	Single Use Paper Plates, Cups	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%
Paper	Other Nonrecyclable Paper	0.44\%	1.03\%	0.05\%	1.19\%	0.62\%	1.67\%	0.09\%	1.59\%	0.54\%	1.08\%	0.14\%	1.19\%	0.51\%	0.87\%	0.12\%	1.18\%
Paper Total		98.17\%	1.32\%	97.36\%	98.84\%	94.42\%	7.24\%	90.10\%	97.56\%	97.89\%	1.37\%	97.00\%	98.63\%	98.31\%	1.29\%	97.43\%	99.01\%
Plastic	PET Bottles	0.04\%	0.07\%	0.01\%	0.11\%	0.63\%	1.72\%	0.08\%	1.71\%	0.06\%	0.17\%	0.01\%	0.16\%	0.08\%	0.22\%	0.01\%	0.22\%
Plastic	HDPE Bottles: Natural	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Colored	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.07\%	0.00\%	0.09\%	0.01\%	0.02\%	0.00\%	0.02\%	0.07\%	0.14\%	0.01\%	0.19\%
Plastic	Expanded Polystyrene Containers and Packaging	0.07\%	0.12\%	0.01\%	0.17\%	0.10\%	0.17\%	0.03\%	0.20\%	0.01\%	0.04\%	0.00\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	Other Rigid Containers/Packaging	0.01\%	0.03\%	0.00\%	0.04\%	0.02\%	0.05\%	0.00\%	0.05\%	0.03\%	0.05\%	0.01\%	0.08\%	0.01\%	0.03\%	0.00\%	0.03\%
Plastic	Plastic Bags	0.02\%	0.03\%	0.00\%	0.04\%	0.54\%	0.86\%	0.18\%	1.09\%	0.35\%	0.69\%	0.11\%	0.71\%	0.33\%	0.27\%	0.18\%	0.51\%
Plastic	Other Film	0.45\%	0.40\%	0.22\%	0.77\%	0.49\%	0.37\%	0.27\%	0.79\%	0.56\%	0.26\%	0.40\%	0.74\%	0.35\%	0.26\%	0.19\%	0.56\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.11\%	0.01\%	0.14\%	0.01\%	0.02\%	0.00\%	0.02\%	0.01\%	0.04\%	0.00\%	0.04\%
Plastic	Other Plastics Materials	0.34\%	0.78\%	0.07\%	0.81\%	0.05\%	0.11\%	0.01\%	0.14\%	0.11\%	0.22\%	0.02\%	0.25\%	0.05\%	0.10\%	0.01\%	0.12\%
Plastic Total		0.96\%	0.89\%	0.56\%	1.46\%	1.98\%	2.74\%	0.85\%	3.57\%	1.19\%	0.66\%	0.85\%	1.58\%	0.92\%	0.56\%	0.63\%	1.27\%
Glass	Clear Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.19\%	0.59\%	0.02\%	0.55\%	0.09\%	0.22\%	0.01\%	0.25\%	0.01\%	0.05\%	0.00\%	0.04\%
Glass	Green Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Brown Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Glass	Other Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.09\%	0.00\%	0.10\%	0.06\%	0.14\%	0.01\%	0.17\%	0.02\%	0.05\%	0.00\%	0.04\%
Glass Total		0.00\%	0.00\%	0.00\%	0.00\%	0.25\%	0.62\%	0.03\%	0.65\%	0.15\%	0.23\%	0.03\%	0.36\%	0.04\%	0.06\%	0.01\%	0.09\%

Table 1-181
Statistical Results, WCS Results Across Seasons, Paper, Low Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Aluminum Foil/Containers	0.04\%	0.13\%	0.00\%	0.12\%	0.07\%	0.13\%	0.01\%	0.18\%	0.03\%	0.08\%	0.00\%	0.09\%	0.02\%	0.07\%	0.00\%	0.07\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.04\%	0.08\%	0.00\%	0.10\%	0.22\%	0.59\%	0.03\%	0.61\%	0.05\%	0.14\%	0.01\%	0.14\%	0.02\%	0.04\%	0.00\%	0.05\%
Metal	Empty Aerosol Cans	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Ferrous	0.03\%	0.08\%	0.00\%	0.08\%	0.04\%	0.08\%	0.00\%	0.09\%	0.08\%	0.18\%	0.01\%	0.21\%	0.07\%	0.24\%	0.01\%	0.22\%
Metal	Mixed Metals	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.12\%	0.15\%	0.04\%	0.26\%	0.34\%	0.67\%	0.07\%	0.84\%	0.18\%	0.40\%	0.04\%	0.43\%	0.12\%	0.23\%	0.02\%	0.30\%
Organics	Leaves and Grass	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.06\%	0.13\%	0.01\%	0.17\%	1.51\%	3.12\%	0.31\%	3.58\%	0.07\%	0.13\%	0.01\%	0.17\%	0.22\%	0.57\%	0.03\%	0.61\%
Organics	Wood Furniture/Furniture Pieces	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.08\%	0.00\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-Clothing Texiles	0.19\%	0.51\%	0.02\%	0.50\%	0.01\%	0.03\%	0.00\%	0.03\%	0.05\%	0.06\%	0.01\%	0.09\%	0.05\%	0.10\%	0.01\%	0.13\%
Organics	Clothing Textiles	0.12\%	0.34\%	0.01\%	0.34\%	0.06\%	0.20\%	0.01\%	0.19\%	0.13\%	0.34\%	0.02\%	0.35\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.07\%	0.12\%	0.01\%	0.17\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Shoes	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.38\%	0.01\%	0.35\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.11\%	0.07\%	0.05\%	0.18\%	1.25\%	1.51\%	0.60\%	2.15\%	0.23\%	0.18\%	0.12\%	0.38\%	0.19\%	0.34\%	0.04\%	0.44\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Organics Total		0.55\%	0.64\%	0.25\%	0.96\%	2.96\%	3.79\%	1.30\%	5.27\%	0.53\%	0.53\%	0.25\%	0.92\%	0.47\%	0.71\%	0.13\%	1.02\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.05\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.05\%	0.00\%	0.05\%	0.02\%	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& Debris	Treated/Contaminated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C\&D Debris	Other Construction Debris	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-181
Statistical Results, WCS Results Across Seasons, Paper, Low Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics	Miscellaneous Inorganics	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.14\%	0.43\%	0.01\%	0.40\%
Miscellaneous Inorganics	Ceramics	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Miscellaneous Inorganic	cs Total	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.07\%	0.00\%	0.07\%	0.00\%	0.01\%	0.00\%	0.01\%	0.14\%	0.43\%	0.01\%	0.40\%
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Latex Paints/Water-Based Adhesives/Glues	0.20\%	0.64\%	0.02\%	0.59\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Dry-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Home Medical Products	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
HHW	Other Potentially Harmful Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW Total		0.20\%	0.64\%	0.02\%	0.59\%	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%
GRAND TOTAL		100.00\%				100.00\%				100.00\%				100.00\%			

Table 1-182
Statistical Results, WCS Results Across Seasons, Paper, Low Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	43.72\%	18.99\%	28.71\%	59.35\%	40.72\%	17.18\%	31.40\%	50.39\%	47.04\%	16.65\%	37.21\%	56.98\%	43.01\%	14.87\%	34.03\%	52.23\%
Paper	Plain OCC/Kraft Paper	14.41\%	5.91\%	11.16\%	18.01\%	20.79\%	15.05\%	12.76\%	30.18\%	9.86\%	7.70\%	6.14\%	14.33\%	10.74\%	7.64\%	5.77\%	17.03\%
Paper	High Grade Paper	3.50\%	2.41\%	2.14\%	5.17\%	1.24\%	1.64\%	0.47\%	2.39\%	1.65\%	2.12\%	0.74\%	2.92\%	6.42\%	11.15\%	1.92\%	13.30\%
Paper	Mixed Low Grade Paper	28.42\%	18.60\%	18.50\%	39.54\%	30.59\%	11.67\%	24.45\%	37.08\%	33.91\%	9.81\%	28.23\%	39.82\%	26.14\%	9.77\%	20.36\%	32.37\%
Paper	Phone Books/Paperbacks	4.14\%	5.22\%	1.05\%	9.12\%	1.44\%	1.89\%	0.44\%	3.02\%	4.35\%	6.08\%	0.99\%	9.92\%	8.68\%	12.29\%	2.46\%	18.19\%
Paper	Paper Bags	0.13\%	0.14\%	0.05\%	0.27\%	0.25\%	0.27\%	0.10\%	0.46\%	0.38\%	0.34\%	0.16\%	0.70\%	0.43\%	0.61\%	0.16\%	0.82\%
Paper	Polycoated Paper Containers	0.15\%	0.24\%	0.03\%	0.36\%	0.19\%	0.25\%	0.06\%	0.41\%	0.11\%	0.17\%	0.03\%	0.26\%	0.32\%	0.64\%	0.07\%	0.77\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	1.44\%	1.88\%	0.47\%	2.94\%	0.49\%	0.73\%	0.15\%	1.03\%	0.40\%	0.59\%	0.13\%	0.81\%	0.39\%	0.27\%	0.21\%	0.62\%
Paper	Single Use Paper Plates, Cups	0.05\%	0.07\%	0.01\%	0.11\%	0.02\%	0.03\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.03\%	0.00\%	0.05\%
Paper	Other Nonrecyclable Paper	0.17\%	0.32\%	0.04\%	0.40\%	1.61\%	3.27\%	0.36\%	3.75\%	0.43\%	1.03\%	0.07\%	1.10\%	2.90\%	7.44\%	0.52\%	7.10\%
Paper Total		96.14\%	5.27\%	93.16\%	98.30\%	97.34\%	1.97\%	96.19\%	98.28\%	98.13\%	0.92\%	97.51\%	98.66\%	99.06\%	0.37\%	98.82\%	99.26\%
Plastic	PET Bottles	0.15\%	0.23\%	0.04\%	0.33\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.11\%	0.02\%	0.17\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Natural	0.04\%	0.06\%	0.01\%	0.09\%	0.01\%	0.02\%	0.00\%	0.02\%	0.07\%	0.14\%	0.01\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	HDPE Bottles: Colored	0.05\%	0.13\%	0.01\%	0.15\%	0.01\%	0.05\%	0.00\%	0.04\%	0.02\%	0.03\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Botlles: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.10\%	0.00\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.03\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.05\%	0.07\%	0.01\%	0.11\%	0.02\%	0.05\%	0.00\%	0.06\%	0.01\%	0.04\%	0.00\%	0.04\%	0.03\%	0.10\%	0.00\%	0.09\%
Plastic	Expanded Polystyrene Containers and Packaging	0.02\%	0.03\%	0.00\%	0.05\%	0.05\%	0.06\%	0.02\%	0.10\%	0.02\%	0.04\%	0.00\%	0.05\%	0.01\%	0.02\%	0.00\%	0.03\%
Plastic	Other Rigid Containers/Packaging	0.07\%	0.14\%	0.01\%	0.18\%	0.06\%	0.14\%	0.01\%	0.15\%	0.02\%	0.04\%	0.00\%	0.04\%	0.01\%	0.02\%	0.00\%	0.03\%
Plastic	Plastic Bags	0.18\%	0.33\%	0.04\%	0.43\%	0.25\%	0.20\%	0.13\%	0.40\%	0.30\%	0.34\%	0.12\%	0.56\%	0.16\%	0.16\%	0.06\%	0.30\%
Plastic	Other Film	0.47\%	0.32\%	0.33\%	0.64\%	0.59\%	0.29\%	0.38\%	0.84\%	0.45\%	0.22\%	0.31\%	0.60\%	0.36\%	0.23\%	0.20\%	0.57\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.01\%	0.03\%	0.00\%	0.03\%	0.01\%	0.04\%	0.00\%	0.03\%	0.01\%	0.02\%	0.00\%	0.02\%	0.02\%	0.05\%	0.00\%	0.05\%
Plastic	Other Plastics Materials	0.05\%	0.08\%	0.01\%	0.11\%	0.19\%	0.45\%	0.04\%	0.45\%	0.23\%	0.53\%	0.03\%	0.60\%	0.02\%	0.03\%	0.01\%	0.05\%
Plastic Total		1.13\%	1.21\%	0.63\%	1.79\%	1.20\%	0.78\%	0.82\%	1.66\%	1.19\%	0.57\%	0.87\%	1.56\%	0.62\%	0.30\%	0.46\%	0.80\%
Glass	Clear Container Glass	0.23\%	0.49\%	0.03\%	0.62\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.12\%	0.00\%	0.11\%	0.01\%	0.02\%	0.00\%	0.02\%
Glass	Green Container Glass	0.07\%	0.23\%	0.01\%	0.21\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Brown Container Glass	0.21\%	0.55\%	0.02\%	0.57\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Mixed Cullet	0.04\%	0.14\%	0.00\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Container Glass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Glass	Other Glass	0.19\%	0.60\%	0.02\%	0.55\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.17\%	0.00\%	0.16\%	0.00\%	0.01\%	0.00\%	0.01\%
Glass Total		0.75\%	1.25\%	0.13\%	1.87\%	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.19\%	0.01\%	0.24\%	0.01\%	0.03\%	0.00\%	0.03\%

Table 1-182
Statistical Results, WCS Results Across Seasons, Paper, Low Density/Medium Income (continued)

							Win										
				Confider	Interval			Confide	Interval			Confiden	Interval			Confiden	Interval
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Metal	Aluminum Foil/Containers	0.08\%	0.16\%	0.01\%	0.21\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.03\%
Metal	Other Aluminum	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Tin Food Cans	0.11\%	0.23\%	0.02\%	0.27\%	0.06\%	0.12\%	0.01\%	0.14\%	0.11\%	0.33\%	0.01\%	0.32\%	0.03\%	0.09\%	0.00\%	0.09\%
Metal	Empty Aerosol Cans	0.07\%	0.16\%	0.01\%	0.19\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal	Other Ferrous	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%
Metal	Mixed Metals	0.06\%	0.15\%	0.01\%	0.16\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Metal Total		0.33\%	0.54\%	0.09\%	0.74\%	0.07\%	0.13\%	0.02\%	0.17\%	0.13\%	0.33\%	0.02\%	0.34\%	0.05\%	0.13\%	0.01\%	0.13\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.14\%	0.00\%	0.13\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.14\%	0.29\%	0.02\%	0.36\%	0.49\%	0.86\%	0.13\%	1.09\%	0.11\%	0.34\%	0.01\%	0.32\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Wood Furniture/Furniture Pieces	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.21\%	0.01\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-Clothing Textiles	0.02\%	0.02\%	0.00\%	0.04\%	0.17\%	0.50\%	0.03\%	0.44\%	0.13\%	0.35\%	0.02\%	0.34\%	0.02\%	0.05\%	0.00\%	0.05\%
Organics	Clothing Textiles	0.19\%	0.36\%	0.03\%	0.47\%	0.03\%	0.08\%	0.00\%	0.07\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.12\%	0.37\%	0.01\%	0.35\%	0.02\%	0.08\%	0.00\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Shoes	0.12\%	0.39\%	0.01\%	0.36\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Other Leather Products	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.26\%	0.45\%	0.09\%	0.53\%	0.51\%	0.27\%	0.38\%	0.66\%	0.22\%	0.15\%	0.12\%	0.34\%	0.19\%	0.23\%	0.09\%	0.34\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics Total		0.87\%	1.09\%	0.38\%	1.56\%	1.29\%	1.16\%	0.75\%	1.96\%	0.45\%	0.41\%	0.23\%	0.75\%	0.26\%	0.29\%	0.11\%	0.45\%
Appliance/Electronic	Appliances: Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Appliances: Plastic	0.69\%	2.19\%	0.05\%	2.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.06\%	0.18\%	0.00\%	0.16\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic Total		0.75\%	2.36\%	0.06\%	2.20\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris Total		0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 1-182
Statistical Results, WCS Results Across Seasons, Paper, Low Density/Medium Income (continued)

Table 1-183
Statistical Results, WCS Results Across Seasons, MGP, High Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	0.17\%	0.79\%	0.08\%	0.30\%	0.26\%	0.53\%	0.14\%	0.41\%	0.44\%	1.10\%	0.23\%	0.71\%	0.29\%	0.53\%	0.16\%	0.46\%
Paper	Plain OCC/Kraft Paper	0.27\%	0.70\%	0.14\%	0.44\%	0.05\%	0.13\%	0.02\%	0.08\%	0.06\%	0.13\%	0.03\%	0.10\%	0.16\%	0.35\%	0.09\%	0.26\%
Paper	High Grade Paper	0.06\%	0.20\%	0.03\%	0.10\%	0.02\%	0.11\%	0.01\%	0.03\%	0.07\%	0.23\%	0.04\%	0.13\%	0.01\%	0.03\%	0.00\%	0.01\%
Paper	Mixed Low Grade Paper	1.14\%	0.97\%	0.85\%	1.48\%	1.12\%	1.00\%	0.87\%	1.41\%	1.34\%	1.21\%	1.04\%	1.67\%	1.28\%	1.75\%	0.94\%	1.68\%
Paper	Phone Books/Paperbacks	0.01\%	0.06\%	0.01\%	0.02\%	0.04\%	0.28\%	0.02\%	0.08\%	0.03\%	0.14\%	0.01\%	0.05\%	0.05\%	0.18\%	0.02\%	0.09\%
Paper	Paper Bags	0.07\%	0.11\%	0.04\%	0.10\%	0.04\%	0.11\%	0.02\%	0.07\%	0.06\%	0.09\%	0.04\%	0.09\%	0.10\%	0.15\%	0.06\%	0.15\%
Paper	Polycoated Paper Containers	1.46\%	0.87\%	1.20\%	1.74\%	1.72\%	1.08\%	1.47\%	1.99\%	1.67\%	1.00\%	1.42\%	1.94\%	1.65\%	0.76\%	1.42\%	1.90\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.21\%	0.35\%	0.13\%	0.30\%	0.19\%	0.24\%	0.13\%	0.26\%	0.23\%	0.27\%	0.16\%	0.31\%	0.55\%	0.88\%	0.38\%	0.76\%
Paper	Single Use Paper Plates, Cups	0.04\%	0.15\%	0.02\%	0.07\%	0.06\%	0.16\%	0.04\%	0.10\%	0.05\%	0.08\%	0.03\%	0.07\%	0.04\%	0.10\%	0.02\%	0.07\%
Paper	Other Nonrecyclable Paper	0.18\%	0.36\%	0.12\%	0.26\%	0.28\%	0.65\%	0.19\%	0.40\%	0.13\%	0.13\%	0.09\%	0.17\%	0.23\%	0.27\%	0.16\%	0.31\%
Paper Total		3.60\%	2.62\%	2.94\%	4.33\%	3.79\%	1.90\%	3.30\%	4.31\%	4.07\%	2.46\%	3.46\%	4.73\%	4.37\%	2.74\%	3.73\%	5.05\%
Plastic	PET Bottles	4.94\%	1.98\%	4.25\%	5.69\%	5.88\%	2.36\%	5.26\%	6.53\%	5.84\%	1.98\%	5.30\%	6.41\%	6.36\%	1.91\%	5.85\%	6.89\%
Plastic	HDPE Bottles: Natural	1.50\%	0.79\%	1.25\%	1.78\%	1.99\%	1.16\%	1.68\%	2.32\%	1.52\%	0.67\%	1.32\%	1.73\%	1.76\%	0.93\%	1.52\%	2.03\%
Plastic	HDPE Bottles: Colored	2.13\%	1.45\%	1.66\%	2.66\%	2.56\%	1.45\%	2.15\%	3.00\%	2.54\%	1.25\%	2.21\%	2.88\%	2.51\%	1.19\%	2.12\%	2.92\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.01\%	0.01\%	0.03\%	0.01\%	0.02\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.15\%	0.56\%	0.07\%	0.25\%	0.11\%	0.46\%	0.06\%	0.19\%	0.08\%	0.31\%	0.04\%	0.14\%	0.34\%	1.14\%	0.16\%	0.58\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.08\%	0.02\%	0.05\%	0.04\%	0.11\%	0.02\%	0.06\%	0.00\%	0.02\%	0.00\%	0.01\%	0.16\%	0.83\%	0.07\%	0.27\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.06\%	0.13\%	0.03\%	0.09\%	0.03\%	0.08\%	0.02\%	0.05\%	0.02\%	0.05\%	0.01\%	0.04\%	0.06\%	0.08\%	0.04\%	0.08\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.24\%	0.49\%	0.14\%	0.36\%	0.43\%	2.02\%	0.23\%	0.68\%	0.08\%	0.12\%	0.05\%	0.11\%	0.18\%	0.33\%	0.11\%	0.26\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	1.14\%	5.98\%	0.57\%	1.91\%	0.45\%	0.89\%	0.31\%	0.62\%	0.26\%	0.21\%	0.20\%	0.32\%	0.44\%	0.41\%	0.34\%	0.54\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.08\%	0.17\%	0.04\%	0.13\%	0.02\%	0.07\%	0.01\%	0.03\%	0.06\%	0.32\%	0.03\%	0.11\%	0.02\%	0.05\%	0.01\%	0.03\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.06\%	0.28\%	0.03\%	0.11\%	0.08\%	0.33\%	0.04\%	0.14\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.16\%	0.20\%	0.11\%	0.23\%	0.32\%	0.25\%	0.25\%	0.40\%	0.31\%	0.26\%	0.25\%	0.39\%	0.36\%	0.37\%	0.28\%	0.45\%
Plastic	Expanded Polystyrene Containers and Packaging	0.04\%	0.09\%	0.02\%	0.06\%	0.05\%	0.07\%	0.03\%	0.07\%	0.06\%	0.15\%	0.04\%	0.10\%	0.05\%	0.08\%	0.03\%	0.07\%
Plastic	Other Rigid Containers/Packaging	1.39\%	0.96\%	1.12\%	1.69\%	1.19\%	0.69\%	1.00\%	1.39\%	1.47\%	1.01\%	1.19\%	1.77\%	1.31\%	0.74\%	1.14\%	1.50\%
Plastic	Plastic Bags	0.56\%	0.51\%	0.43\%	0.72\%	0.63\%	0.54\%	0.49\%	0.79\%	0.58\%	0.39\%	0.48\%	0.69\%	1.62\%	1.90\%	1.23\%	2.07\%
Plastic	Other Film	4.24\%	2.43\%	3.53\%	5.02\%	4.22\%	1.88\%	3.75\%	4.72\%	4.00\%	1.50\%	3.62\%	4.41\%	4.26\%	2.42\%	3.57\%	5.00\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.08\%	0.31\%	0.05\%	0.13\%	0.13\%	0.22\%	0.08\%	0.18\%	0.15\%	0.16\%	0.11\%	0.20\%	0.30\%	0.49\%	0.22\%	0.40\%
Plastic	Other Plastics Materials	2.67\%	2.55\%	2.00\%	3.44\%	2.66\%	3.11\%	1.98\%	3.45\%	2.74\%	2.27\%	2.15\%	3.40\%	2.86\%	2.14\%	2.33\%	3.43\%
Plastic Total		19.45\%	8.96\%	16.60\%	22.46\%	20.71\%	6.46\%	19.03\%	22.45\%	19.78\%	5.47\%	18.32\%	21.29\%	22.66\%	6.43\%	20.96\%	24.41\%
Glass	Clear Container Glass	8.29\%	6.65\%	6.39\%	10.42\%	6.43\%	4.83\%	5.09\%	7.92\%	7.07\%	5.67\%	5.60\%	8.70\%	7.70\%	5.65\%	6.09\%	9.49\%
Glass	Green Container Glass	11.48\%	9.30\%	8.85\%	14.40\%	10.64\%	6.98\%	8.65\%	12.81\%	12.39\%	8.38\%	10.19\%	14.77\%	9.23\%	6.37\%	7.45\%	11.17\%
Glass	Brown Container Glass	2.11\%	2.29\%	1.48\%	2.86\%	2.33\%	2.41\%	1.69\%	3.07\%	1.80\%	2.08\%	1.30\%	2.37\%	3.03\%	3.70\%	2.12\%	4.09\%
Glass	Mixed Cullet	22.97\%	16.65\%	18.23\%	28.07\%	25.05\%	14.61\%	20.94\%	29.40\%	31.04\%	17.46\%	26.27\%	36.03\%	26.91\%	18.34\%	21.37\%	32.84\%
Glass	Other Container Glass	0.20\%	0.53\%	0.10\%	0.34\%	0.12\%	0.34\%	0.06\%	0.20\%	0.23\%	0.37\%	0.13\%	0.36\%	0.17\%	0.39\%	0.09\%	0.28\%
Glass	Other Glass	0.51\%	1.53\%	0.28\%	0.80\%	0.22\%	0.35\%	0.13\%	0.33\%	0.09\%	0.30\%	0.04\%	0.16\%	0.90\%	4.28\%	0.44\%	1.52\%
Glass Total		45.57\%	17.72\%	39.63\%	51.57\%	44.79\%	14.83\%	40.70\%	48.91\%	52.62\%	12.30\%	49.23\%	55.99\%	47.94\%	13.46\%	44.14\%	51.75\%

Table 1-183
Statistical Results, WCS Results Across Seasons, MGP, High Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.33\%	0.23\%	0.26\%	0.41\%	0.47\%	0.44\%	0.37\%	0.58\%	0.27\%	0.19\%	0.22\%	0.34\%	0.51\%	0.39\%	0.42\%	0.60\%
Metal	Aluminum Foil/Containers	0.51\%	0.63\%	0.39\%	0.66\%	0.52\%	0.37\%	0.43\%	0.62\%	0.51\%	0.35\%	0.42\%	0.61\%	0.57\%	0.37\%	0.48\%	0.67\%
Metal	Other Aluminum	0.25\%	0.89\%	0.12\%	0.42\%	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.39\%	0.04\%	0.15\%	0.19\%	0.77\%	0.09\%	0.33\%
Metal	Other Non-Ferrous	0.54\%	1.43\%	0.28\%	0.88\%	0.28\%	0.64\%	0.14\%	0.45\%	0.18\%	0.63\%	0.09\%	0.31\%	1.35\%	3.85\%	0.74\%	2.12\%
Metal	Tin Food Cans	4.06\%	2.39\%	3.36\%	4.83\%	4.22\%	2.63\%	3.62\%	4.87\%	4.38\%	3.18\%	3.69\%	5.12\%	3.71\%	2.15\%	3.22\%	4.24\%
Metal	Empty Aerosol Cans	0.65\%	0.83\%	0.46\%	0.87\%	0.70\%	0.96\%	0.51\%	0.91\%	0.61\%	0.45\%	0.48\%	0.76\%	0.47\%	0.43\%	0.36\%	0.61\%
Metal	Other Ferrous	12.70\%	11.92\%	9.51\%	16.27\%	11.46\%	14.07\%	8.26\%	15.09\%	8.18\%	8.15\%	6.18\%	10.43\%	7.68\%	7.60\%	5.89\%	9.69\%
Metal	Mixed Metals	1.90\%	4.00\%	1.05\%	3.01\%	2.21\%	4.44\%	1.30\%	3.35\%	3.53\%	8.16\%	2.00\%	5.46\%	1.68\%	3.32\%	0.97\%	2.58\%
Metal Total		20.95\%	13.34\%	17.12\%	25.05\%	19.84\%	13.41\%	16.60\%	23.30\%	17.75\%	10.48\%	15.10\%	20.56\%	16.16\%	8.90\%	13.95\%	18.50\%
Organics	Leaves and Grass	0.01\%	0.07\%	0.01\%	0.03\%	0.01\%	0.08\%	0.01\%	0.02\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.23\%	0.02\%	0.07\%
Organics	Food	0.53\%	0.74\%	0.32\%	0.79\%	0.83\%	1.22\%	0.55\%	1.18\%	1.35\%	1.72\%	0.88\%	1.93\%	1.87\%	2.77\%	1.22\%	2.66\%
Organics	Wood Furniture/Furniture Pieces	0.02\%	0.08\%	0.01\%	0.04\%	0.11\%	0.37\%	0.05\%	0.18\%	0.01\%	0.06\%	0.01\%	0.03\%	0.25\%	0.88\%	0.13\%	0.43\%
Organics	Non-C\&D Untreated Wood	0.03\%	0.08\%	0.01\%	0.05\%	0.05\%	0.14\%	0.02\%	0.08\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Non-Clothing Textiles	0.09\%	0.24\%	0.05\%	0.15\%	0.06\%	0.17\%	0.03\%	0.10\%	0.04\%	0.14\%	0.02\%	0.06\%	0.10\%	0.29\%	0.05\%	0.17\%
Organics	Clothing Textiles	0.09\%	0.34\%	0.04\%	0.16\%	0.08\%	0.23\%	0.04\%	0.14\%	0.02\%	0.11\%	0.01\%	0.04\%	0.11\%	0.32\%	0.06\%	0.19\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.03\%	0.10\%	0.01\%	0.05\%
Organics	Animal By-Products	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.03\%	0.20\%	0.01\%	0.06\%	0.18\%	1.13\%	0.08\%	0.33\%
Organics	Rubber Products	0.06\%	0.23\%	0.03\%	0.11\%	0.02\%	0.06\%	0.01\%	0.03\%	0.04\%	0.17\%	0.02\%	0.08\%	0.03\%	0.08\%	0.02\%	0.06\%
Organics	Shoes	0.01\%	0.03\%	0.00\%	0.01\%	0.04\%	0.16\%	0.02\%	0.07\%	0.03\%	0.18\%	0.01\%	0.05\%	0.02\%	0.10\%	0.01\%	0.04\%
Organics	Other Leather Products	0.01\%	0.08\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%
Organics	Fines	0.18\%	0.38\%	0.11\%	0.26\%	0.13\%	0.14\%	0.10\%	0.17\%	0.24\%	0.22\%	0.18\%	0.31\%	0.22\%	0.15\%	0.17\%	0.28\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.16\%	1.01\%	0.07\%	0.28\%	0.46\%	2.88\%	0.19\%	0.84\%	0.03\%	0.22\%	0.01\%	0.06\%
Organics	Miscellaneous Organics	0.13\%	0.40\%	0.07\%	0.22\%	0.06\%	0.35\%	0.03\%	0.11\%	0.15\%	0.71\%	0.07\%	0.26\%	0.02\%	0.10\%	0.01\%	0.04\%
Organics Total		1.18\%	1.07\%	0.89\%	1.50\%	1.57\%	1.80\%	1.17\%	2.02\%	2.38\%	3.45\%	1.67\%	3.21\%	2.94\%	3.17\%	2.23\%	3.74\%
Appliance/Electronic	Appliances: Ferrous	7.07\%	23.69\%	2.63\%	13.45\%	5.32\%	16.25\%	2.46\%	9.19\%	0.19\%	0.81\%	0.09\%	0.34\%	3.46\%	9.36\%	1.79\%	5.64\%
Appliance/Electronic	Appliances: Non-Ferrous	0.28\%	1.17\%	0.13\%	0.50\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.22\%	1.38\%	0.09\%	0.40\%
Appliance/Electronic	Appliances: Plastic	1.02\%	3.14\%	0.52\%	1.68\%	0.65\%	2.05\%	0.33\%	1.07\%	1.00\%	2.47\%	0.52\%	1.64\%	0.50\%	1.71\%	0.24\%	0.85\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.00\%	0.01\%	0.00\%	0.00\%	0.34\%	1.09\%	0.17\%	0.58\%	0.26\%	1.66\%	0.11\%	0.48\%	0.13\%	0.52\%	0.06\%	0.23\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	1.13\%	5.36\%	0.50\%	2.02\%	0.52\%	3.26\%	0.21\%	0.95\%	0.34\%	2.16\%	0.14\%	0.63\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.02\%	0.09\%	0.01\%	0.03\%	0.61\%	2.31\%	0.29\%	1.06\%	0.48\%	1.35\%	0.23\%	0.81\%	0.33\%	1.23\%	0.16\%	0.57\%
Appliance/Electronic Total		8.40\%	23.57\%	3.68\%	14.80\%	8.05\%	16.42\%	4.56\%	12.42\%	2.46\%	4.99\%	1.41\%	3.78\%	4.97\%	9.51\%	3.01\%	7.40\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.34\%	0.04\%	0.14\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.19\%	0.81\%	0.09\%	0.33\%	0.08\%	0.51\%	0.03\%	0.14\%	0.02\%	0.08\%	0.01\%	0.03\%	0.11\%	0.41\%	0.06\%	0.19\%
$C \& D$ Debris	Gypsum Scrap	0.06\%	0.37\%	0.02\%	0.11\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.02\%	0.08\%	0.01\%	0.03\%	0.02\%	0.14\%	0.01\%	0.04\%	0.15\%	0.62\%	0.07\%	0.27\%	0.00\%	0.00\%	0.00\%	0.00\%
C\&D Debris	Other Construction Debris	0.06\%	0.39\%	0.03\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.42\%	0.03\%	0.13\%	0.20\%	0.46\%	0.10\%	0.33\%
C \& D Debris Total		0.33\%	1.01\%	0.16\%	0.55\%	0.10\%	0.53\%	0.05\%	0.18\%	0.33\%	0.79\%	0.17\%	0.54\%	0.31\%	0.63\%	0.17\%	0.50\%

Table 1-183
Statistical Results, WCS Results Across Seasons, MGP, High Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganic	Miscellaneous Inorganics	0.02\%	0.07\%	0.01\%	0.03\%	0.12\%	0.67\%	0.06\%	0.21\%	0.04\%	0.17\%	0.02\%	0.07\%	0.19\%	0.50\%	0.10\%	0.31\%
Miscellaneous Inorganic	Ceramics	0.27\%	0.55\%	0.16\%	0.42\%	0.34\%	0.93\%	0.19\%	0.54\%	0.29\%	0.55\%	0.16\%	0.45\%	0.19\%	0.33\%	0.11\%	0.28\%
Miscellaneous Inorganics Total		0.29\%	0.55\%	0.17\%	0.44\%	0.46\%	1.17\%	0.26\%	0.73\%	0.33\%	0.61\%	0.19\%	0.51\%	0.38\%	0.58\%	0.24\%	0.55\%
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Latex Paints/Water-Based Adhesives/Glues	0.16\%	1.04\%	0.07\%	0.30\%	0.55\%	2.74\%	0.24\%	0.97\%	0.16\%	1.01\%	0.07\%	0.29\%	0.12\%	0.41\%	0.05\%	0.20\%
HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.01\%	0.03\%	0.00\%	0.01\%	0.03\%	0.21\%	0.01\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%	0.07\%	0.25\%	0.03\%	0.12\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Dry-Cell Batteries	0.03\%	0.07\%	0.01\%	0.05\%	0.02\%	0.05\%	0.01\%	0.03\%	0.01\%	0.05\%	0.01\%	0.02\%	0.02\%	0.08\%	0.01\%	0.04\%
HHW	Fluorescent Tubes	0.02\%	0.10\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.11\%	0.01\%	0.03\%	0.01\%	0.07\%	0.00\%	0.02\%
HHW	Home Medical Products	0.02\%	0.11\%	0.01\%	0.03\%	0.02\%	0.07\%	0.01\%	0.03\%	0.04\%	0.19\%	0.02\%	0.06\%	0.02\%	0.07\%	0.01\%	0.03\%
HHW	Other Potentially Harmful Wastes	0.01\%	0.05\%	0.00\%	0.01\%	0.06\%	0.29\%	0.03\%	0.10\%	0.06\%	0.28\%	0.03\%	0.10\%	0.03\%	0.16\%	0.01\%	0.05\%
HHW Total		0.24\%	1.09\%	0.12\%	0.41\%	0.68\%	2.79\%	0.34\%	1.14\%	0.29\%	1.05\%	0.14\%	0.48\%	0.26\%	0.65\%	0.14\%	0.42\%
GRAND TOTAL		100.00\%				100.00\%				100.00\%				100.00\%			

Table 1-184
Statistical Results, WCS Results Across Seasons, MGP, High Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	0.31\%	0.73\%	0.17\%	0.49\%	0.48\%	0.91\%	0.29\%	0.73\%	0.54\%	1.36\%	0.29\%	0.88\%	1.03\%	2.56\%	0.55\%	1.65\%
Paper	Plain OCC/Kraft Paper	0.17\%	0.36\%	0.09\%	0.28\%	0.20\%	0.60\%	0.10\%	0.33\%	0.31\%	0.51\%	0.18\%	0.47\%	0.36\%	0.80\%	0.20\%	0.55\%
Paper	High Grade Paper	0.07\%	0.31\%	0.03\%	0.12\%	0.05\%	0.14\%	0.02\%	0.08\%	0.06\%	0.20\%	0.03\%	0.09\%	0.06\%	0.25\%	0.03\%	0.11\%
Paper	Mixed Low Grade Paper	1.44\%	1.25\%	1.09\%	1.83\%	2.20\%	3.27\%	1.60\%	2.88\%	1.57\%	1.70\%	1.17\%	2.04\%	1.06\%	1.05\%	0.79\%	1.37\%
Paper	Phone Books/Paperbacks	0.01\%	0.04\%	0.00\%	0.01\%	0.06\%	0.21\%	0.03\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.09\%	0.01\%	0.03\%
Paper	Paper Bags	0.04\%	0.09\%	0.02\%	0.07\%	0.05\%	0.10\%	0.03\%	0.08\%	0.04\%	0.10\%	0.02\%	0.06\%	0.04\%	0.06\%	0.02\%	0.06\%
Paper	Polycoated Paper Containers	2.13\%	1.93\%	1.65\%	2.67\%	2.82\%	2.56\%	2.30\%	3.39\%	1.93\%	1.46\%	1.58\%	2.32\%	1.79\%	1.13\%	1.43\%	2.18\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.26\%	0.36\%	0.17\%	0.37\%	0.20\%	0.18\%	0.16\%	0.26\%	0.15\%	0.22\%	0.10\%	0.20\%	0.42\%	0.38\%	0.32\%	0.54\%
Paper	Single Use Paper Plates, Cups	0.05\%	0.16\%	0.02\%	0.08\%	0.06\%	0.08\%	0.04\%	0.08\%	0.05\%	0.06\%	0.03\%	0.07\%	0.04\%	0.11\%	0.02\%	0.07\%
Paper	Other Nonrecyclable Paper	0.34\%	0.39\%	0.22\%	0.48\%	0.42\%	0.37\%	0.32\%	0.53\%	0.35\%	0.30\%	0.26\%	0.46\%	0.53\%	0.38\%	0.41\%	0.66\%
Paper Total		4.81\%	3.03\%	3.86\%	5.85\%	6.53\%	4.43\%	5.45\%	7.71\%	5.00\%	3.13\%	4.16\%	5.92\%	5.34\%	3.46\%	4.39\%	6.37\%
Plastic	PET Bottles	3.79\%	2.09\%	3.07\%	4.57\%	5.07\%	2.55\%	4.31\%	5.88\%	4.91\%	1.90\%	4.30\%	5.56\%	6.55\%	2.29\%	5.78\%	7.37\%
Plastic	HDPE Bottles: Natural	3.35\%	2.03\%	2.68\%	4.10\%	4.20\%	2.24\%	3.56\%	4.89\%	4.03\%	1.82\%	3.47\%	4.63\%	3.52\%	1.77\%	3.02\%	4.05\%
Plastic	HDPE Bottles: Colored	3.30\%	3.80\%	2.52\%	4.18\%	2.94\%	1.61\%	2.40\%	3.54\%	3.42\%	1.51\%	2.94\%	3.93\%	3.17\%	1.79\%	2.68\%	3.69\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.02\%	0.07\%	0.01\%	0.03\%	0.02\%	0.06\%	0.01\%	0.03\%	0.04\%	0.19\%	0.02\%	0.08\%	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.60\%	1.68\%	0.31\%	0.99\%	0.51\%	2.47\%	0.25\%	0.87\%	0.43\%	1.23\%	0.21\%	0.72\%	0.36\%	0.83\%	0.19\%	0.57\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.06\%	0.11\%	0.03\%	0.09\%	0.05\%	0.10\%	0.03\%	0.08\%	0.15\%	0.95\%	0.07\%	0.28\%	0.03\%	0.08\%	0.02\%	0.05\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.04\%	0.00\%	0.01\%	0.01\%	0.05\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.10\%	0.15\%	0.06\%	0.14\%	0.07\%	0.10\%	0.04\%	0.10\%	0.05\%	0.11\%	0.03\%	0.08\%	0.08\%	0.12\%	0.05\%	0.12\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.83\%	2.47\%	0.46\%	1.29\%	0.20\%	0.21\%	0.14\%	0.27\%	0.11\%	0.18\%	0.07\%	0.17\%	0.14\%	0.20\%	0.09\%	0.20\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.08\%	0.01\%	0.04\%	0.03\%	0.19\%	0.01\%	0.05\%	0.01\%	0.05\%	0.00\%	0.02\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.05\%	0.34\%	0.02\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.10\%	0.01\%	0.03\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.26\%	0.25\%	0.19\%	0.35\%	0.30\%	0.24\%	0.24\%	0.38\%	0.46\%	0.40\%	0.36\%	0.59\%	0.58\%	0.55\%	0.44\%	0.74\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.11\%	0.22\%	0.06\%	0.17\%	0.04\%	0.16\%	0.02\%	0.08\%	0.04\%	0.21\%	0.02\%	0.07\%	0.02\%	0.06\%	0.01\%	0.03\%
Plastic	Soda Crates and Bottle Carriers	0.13\%	0.79\%	0.05\%	0.23\%	0.14\%	0.61\%	0.06\%	0.25\%	0.18\%	0.67\%	0.08\%	0.31\%	0.14\%	0.87\%	0.06\%	0.25\%
Plastic	Other PVC	0.02\%	0.14\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.13\%	0.17\%	0.09\%	0.17\%	0.28\%	0.41\%	0.19\%	0.38\%	0.34\%	0.41\%	0.25\%	0.45\%	0.23\%	0.25\%	0.16\%	0.31\%
Plastic	Expanded Polystyrene Containers and Packaging	0.11\%	0.26\%	0.07\%	0.17\%	0.11\%	0.10\%	0.08\%	0.14\%	0.11\%	0.09\%	0.08\%	0.14\%	0.11\%	0.12\%	0.08\%	0.15\%
Plastic	Other Rigid Containers/Packaging	1.23\%	0.80\%	0.96\%	1.53\%	1.40\%	0.86\%	1.15\%	1.68\%	1.41\%	0.67\%	1.21\%	1.62\%	1.34\%	0.90\%	1.11\%	1.59\%
Plastic	Plastic Bags	0.77\%	0.70\%	0.58\%	1.00\%	0.81\%	0.58\%	0.63\%	1.01\%	1.16\%	0.81\%	0.94\%	1.39\%	1.54\%	1.40\%	1.20\%	1.92\%
Plastic	Other Film	3.60\%	2.28\%	2.91\%	4.36\%	3.47\%	1.99\%	2.91\%	4.09\%	3.47\%	1.52\%	2.99\%	3.99\%	3.38\%	1.99\%	2.73\%	4.10\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.10\%	0.14\%	0.06\%	0.14\%	0.13\%	0.22\%	0.09\%	0.19\%	0.19\%	0.30\%	0.13\%	0.26\%	0.31\%	0.53\%	0.22\%	0.42\%
Plastic	Other Plastics Materials	3.74\%	3.14\%	2.85\%	4.74\%	3.52\%	2.79\%	2.77\%	4.36\%	4.01\%	2.73\%	3.25\%	4.84\%	4.68\%	3.71\%	3.70\%	5.77\%
Plastic Total		22.30\%	11.24\%	18.47\%	26.38\%	23.31\%	10.14\%	20.20\%	26.57\%	24.54\%	8.51\%	21.79\%	27.39\%	26.21\%	8.92\%	23.39\%	29.15\%
Glass	Clear Container Glass	7.13\%	5.80\%	5.31\%	9.18\%	8.17\%	6.42\%	6.36\%	10.19\%	7.49\%	4.96\%	6.06\%	9.05\%	6.10\%	4.00\%	4.88\%	7.44\%
Glass	Green Container Glass	3.26\%	3.43\%	2.33\%	4.35\%	4.31\%	3.70\%	3.12\%	5.67\%	4.78\%	4.21\%	3.61\%	6.10\%	3.85\%	3.43\%	2.85\%	4.99\%
Glass	Brown Container Glass	1.59\%	2.56\%	1.00\%	2.31\%	1.31\%	1.53\%	0.90\%	1.79\%	1.33\%	1.46\%	0.95\%	1.76\%	1.72\%	1.64\%	1.26\%	2.25\%
Glass	Mixed Cullet	11.35\%	11.15\%	8.56\%	14.49\%	15.17\%	11.04\%	12.05\%	18.58\%	18.91\%	12.34\%	15.33\%	22.77\%	18.33\%	10.20\%	15.24\%	21.65\%
Glass	Other Container Glass	0.09\%	0.35\%	0.04\%	0.16\%	0.09\%	0.26\%	0.05\%	0.15\%	0.13\%	0.32\%	0.06\%	0.21\%	0.28\%	1.25\%	0.14\%	0.47\%
Glass	Other Glass	0.59\%	0.83\%	0.37\%	0.86\%	0.55\%	1.88\%	0.30\%	0.88\%	0.27\%	0.65\%	0.14\%	0.44\%	0.23\%	0.78\%	0.12\%	0.38\%
Glass Total		24.01\%	14.94\%	19.30\%	29.07\%	29.60\%	15.65\%	24.95\%	34.47\%	32.90\%	14.04\%	28.71\%	37.23\%	30.51\%	12.50\%	26.63\%	34.54\%

Table 1-184
Statistical Results, WCS Results Across Seasons, MGP, High Density/Medium Income (continued)

							Win								Sum		
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.26\%	0.27\%	0.18\%	0.34\%	0.29\%	0.30\%	0.21\%	0.38\%	0.38\%	0.30\%	0.30\%	0.46\%	0.74\%	0.52\%	0.60\%	0.90\%
Metal	Aluminum Foil/Containers	1.12\%	1.33\%	0.83\%	1.46\%	0.70\%	0.44\%	0.55\%	0.87\%	1.00\%	2.18\%	0.67\%	1.39\%	0.54\%	0.46\%	0.42\%	0.67\%
Metal	Other Aluminum	0.29\%	1.25\%	0.14\%	0.50\%	0.00\%	0.00\%	0.00\%	0.00\%	0.94\%	3.86\%	0.45\%	1.59\%	0.68\%	1.58\%	0.35\%	1.10\%
Metal	Other Non-Ferrous	1.37\%	3.65\%	0.71\%	2.25\%	1.47\%	5.23\%	0.70\%	2.53\%	0.86\%	2.04\%	0.48\%	1.36\%	1.20\%	2.31\%	0.71\%	1.82\%
Metal	Tin Food Cans	5.67\%	3.37\%	4.49\%	6.96\%	7.31\%	3.53\%	6.27\%	8.42\%	5.86\%	2.79\%	5.04\%	6.74\%	5.62\%	3.01\%	4.80\%	6.49\%
Metal	Empty Aerosol Cans	0.64\%	0.57\%	0.47\%	0.84\%	0.65\%	0.52\%	0.49\%	0.83\%	0.70\%	0.60\%	0.51\%	0.91\%	0.67\%	0.51\%	0.51\%	0.85\%
Metal	Other Ferrous	12.38\%	17.23\%	8.28\%	17.16\%	10.73\%	13.46\%	7.56\%	14.38\%	12.78\%	10.11\%	9.87\%	16.00\%	11.57\%	9.39\%	8.99\%	14.44\%
Metal	Mixed Metals	5.09\%	12.34\%	2.77\%	8.05\%	3.16\%	5.77\%	1.89\%	4.74\%	3.29\%	4.99\%	1.98\%	4.91\%	3.24\%	5.94\%	1.93\%	4.87\%
Metal Total		26.81\%	19.28\%	21.10\%	32.93\%	24.30\%	16.07\%	19.88\%	29.02\%	25.80\%	12.20\%	22.21\%	29.56\%	24.26\%	11.80\%	20.79\%	27.90\%
Organics	Leaves and Grass	0.01\%	0.05\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.29\%	0.02\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.68\%	0.96\%	0.42\%	1.00\%	1.79\%	2.26\%	1.22\%	2.45\%	1.93\%	2.14\%	1.34\%	2.62\%	1.76\%	1.89\%	1.23\%	2.39\%
Organics	Wood Furniture/Furniture Pieces	0.26\%	0.95\%	0.13\%	0.45\%	0.15\%	0.69\%	0.07\%	0.27\%	0.16\%	0.66\%	0.08\%	0.28\%	0.04\%	0.09\%	0.02\%	0.06\%
Organics	Non-C\&D Untreated Wood	0.02\%	0.06\%	0.01\%	0.03\%	0.18\%	0.66\%	0.09\%	0.29\%	0.01\%	0.04\%	0.00\%	0.01\%	0.12\%	0.49\%	0.06\%	0.21\%
Organics	Non-Clothing Textiles	0.54\%	1.78\%	0.28\%	0.88\%	0.18\%	0.76\%	0.09\%	0.31\%	0.08\%	0.23\%	0.04\%	0.14\%	0.11\%	0.35\%	0.05\%	0.19\%
Organics	Clothing Textiles	0.18\%	0.38\%	0.10\%	0.29\%	0.39\%	1.68\%	0.19\%	0.66\%	0.12\%	0.25\%	0.06\%	0.19\%	0.13\%	0.29\%	0.07\%	0.21\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.09\%	0.24\%	0.04\%	0.14\%	0.01\%	0.05\%	0.01\%	0.02\%	0.01\%	0.04\%	0.01\%	0.02\%	0.01\%	0.09\%	0.01\%	0.03\%
Organics	Animal By-Products	0.09\%	0.56\%	0.04\%	0.16\%	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.08\%	0.26\%	0.04\%	0.14\%	0.11\%	0.38\%	0.05\%	0.19\%	0.29\%	0.74\%	0.15\%	0.46\%	0.31\%	0.71\%	0.17\%	0.49\%
Organics	Shoes	0.16\%	0.53\%	0.07\%	0.27\%	0.10\%	0.53\%	0.04\%	0.18\%	0.20\%	0.51\%	0.10\%	0.32\%	0.08\%	0.25\%	0.04\%	0.14\%
Organics	Other Leather Products	0.02\%	0.09\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.01\%	0.04\%	0.21\%	0.02\%	0.08\%	0.02\%	0.14\%	0.01\%	0.04\%
Organics	Fines	0.06\%	0.06\%	0.04\%	0.08\%	0.34\%	0.84\%	0.23\%	0.48\%	0.20\%	0.21\%	0.15\%	0.26\%	0.84\%	3.91\%	0.44\%	1.35\%
Organics	Upholstered or Other Organic-Type Furniture	0.02\%	0.12\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.75\%	0.05\%	0.22\%
Organics	Miscellaneous Organics	0.20\%	0.88\%	0.10\%	0.34\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.01\%	0.03\%	0.02\%	0.06\%	0.01\%	0.04\%
Organics Total		2.40\%	2.76\%	1.69\%	3.24\%	3.26\%	3.32\%	2.43\%	4.22\%	3.10\%	2.81\%	2.35\%	3.96\%	3.57\%	4.95\%	2.52\%	4.78\%
Appliance/Electronic	Appliances: Ferrous	12.40\%	27.01\%	5.69\%	21.21\%	8.78\%	24.94\%	3.74\%	15.65\%	5.79\%	18.55\%	2.39\%	10.54\%	6.68\%	19.88\%	2.95\%	11.75\%
Appliance/Electronic	Appliances: Non-Ferrous	0.22\%	0.71\%	0.10\%	0.38\%	0.06\%	0.41\%	0.03\%	0.12\%	0.01\%	0.07\%	0.00\%	0.02\%	0.43\%	1.17\%	0.21\%	0.73\%
Appliance/Electronic	Appliances: Plastic	2.34\%	3.71\%	1.39\%	3.53\%	0.48\%	0.96\%	0.26\%	0.76\%	0.54\%	1.59\%	0.28\%	0.90\%	0.85\%	1.70\%	0.48\%	1.32\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.09\%	0.41\%	0.04\%	0.16\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.07\%	0.27\%	0.03\%	0.12\%	0.42\%	1.21\%	0.21\%	0.70\%	0.35\%	1.61\%	0.16\%	0.61\%	0.34\%	1.24\%	0.16\%	0.59\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%	0.32\%	1.66\%	0.14\%	0.58\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.13\%	0.80\%	0.05\%	0.23\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	1.08\%	4.00\%	0.50\%	1.87\%	0.90\%	2.18\%	0.47\%	1.46\%	0.44\%	1.37\%	0.21\%	0.75\%	0.45\%	1.21\%	0.22\%	0.75\%
Appliance/Electronic Total		16.20\%	26.46\%	9.18\%	24.75\%	10.65\%	24.84\%	5.40\%	17.39\%	7.58\%	18.38\%	3.84\%	12.43\%	8.74\%	19.54\%	4.74\%	13.81\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%
$C \& D$ Debris	Treated/Contaminated Wood	0.08\%	0.39\%	0.04\%	0.14\%	0.01\%	0.06\%	0.00\%	0.02\%	0.08\%	0.28\%	0.04\%	0.13\%	0.14\%	0.58\%	0.06\%	0.24\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.21\%	1.28\%	0.09\%	0.38\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.22\%	0.71\%	0.10\%	0.38\%	0.00\%	0.00\%	0.00\%	0.00\%
C\&D Debris	Other Construction Debris	2.52\%	15.81\%	0.75\%	5.31\%	1.60\%	10.15\%	0.64\%	2.99\%	0.02\%	0.07\%	0.01\%	0.03\%	0.08\%	0.31\%	0.04\%	0.14\%
C \& D Debris Total		2.61\%	15.80\%	0.81\%	5.40\%	1.82\%	10.20\%	0.76\%	3.32\%	0.31\%	0.75\%	0.16\%	0.51\%	0.22\%	0.65\%	0.11\%	0.37\%

Table 1-184
Statistical Results, WCS Results Across Seasons, MGP, High Density/Medium Income (continued)

Table 1-185
Statistical Results, WCS Results Across Seasons, MGP, High Density/Low Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	0.04\%	0.14\%	0.02\%	0.07\%	0.20\%	0.82\%	0.10\%	0.34\%	0.03\%	0.12\%	0.02\%	0.06\%	0.19\%	0.42\%	0.10\%	0.31\%
Paper	Plain OCC/Kraft Paper	0.21\%	0.63\%	0.11\%	0.35\%	0.19\%	0.40\%	0.10\%	0.29\%	0.09\%	0.28\%	0.04\%	0.15\%	0.04\%	0.09\%	0.02\%	0.07\%
Paper	High Grade Paper	0.01\%	0.07\%	0.00\%	0.02\%	0.01\%	0.03\%	0.00\%	0.02\%	0.02\%	0.06\%	0.01\%	0.03\%	0.00\%	0.03\%	0.00\%	0.01\%
Paper	Mixed Low Grade Paper	0.52\%	0.62\%	0.35\%	0.71\%	0.51\%	0.75\%	0.35\%	0.70\%	0.90\%	0.98\%	0.66\%	1.17\%	0.47\%	0.89\%	0.28\%	0.70\%
Paper	Phone Books/Paperbacks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.05\%	0.21\%	0.02\%	0.09\%	0.18\%	1.12\%	0.07\%	0.32\%
Paper	Paper Bags	0.01\%	0.03\%	0.00\%	0.01\%	0.02\%	0.04\%	0.01\%	0.03\%	0.02\%	0.05\%	0.01\%	0.04\%	0.03\%	0.05\%	0.01\%	0.04\%
Paper	Polycoated Paper Containers	1.91\%	4.05\%	1.26\%	2.69\%	1.24\%	1.21\%	0.91\%	1.62\%	1.16\%	2.02\%	0.85\%	1.52\%	1.35\%	0.77\%	1.12\%	1.61\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.29\%	0.50\%	0.18\%	0.42\%	0.22\%	0.33\%	0.14\%	0.32\%	0.20\%	0.20\%	0.14\%	0.26\%	0.33\%	0.44\%	0.23\%	0.45\%
Paper	Single Use Paper Plates, Cups	0.03\%	0.07\%	0.02\%	0.05\%	0.04\%	0.07\%	0.02\%	0.06\%	0.01\%	0.03\%	0.01\%	0.02\%	0.04\%	0.08\%	0.02\%	0.06\%
Paper	Other Nonrecyclable Paper	0.38\%	0.34\%	0.28\%	0.51\%	0.24\%	0.28\%	0.17\%	0.33\%	0.35\%	0.36\%	0.25\%	0.47\%	0.61\%	0.44\%	0.47\%	0.77\%
Paper Total		3.40\%	4.40\%	2.49\%	4.44\%	2.66\%	2.25\%	2.05\%	3.35\%	2.83\%	2.29\%	2.33\%	3.38\%	3.24\%	2.00\%	2.73\%	3.80\%
Plastic	PET Botlles	3.53\%	2.12\%	2.85\%	4.28\%	3.74\%	2.24\%	2.99\%	4.57\%	4.82\%	2.14\%	4.19\%	5.49\%	6.26\%	3.01\%	5.59\%	6.97\%
Plastic	HDPE Bottles: Natural	3.47\%	1.85\%	2.85\%	4.17\%	3.09\%	2.09\%	2.41\%	3.86\%	3.73\%	1.63\%	3.28\%	4.20\%	3.99\%	1.56\%	3.59\%	4.41\%
Plastic	HDPE Bottles: Colored	2.69\%	1.82\%	2.09\%	3.36\%	2.54\%	2.12\%	1.91\%	3.26\%	3.29\%	1.98\%	2.76\%	3.86\%	3.50\%	1.44\%	3.11\%	3.91\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.02\%	0.00\%	0.01\%	0.08\%	0.52\%	0.03\%	0.14\%	0.02\%	0.06\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.27\%	1.04\%	0.14\%	0.46\%	0.19\%	1.09\%	0.09\%	0.32\%	0.22\%	1.29\%	0.10\%	0.40\%	0.27\%	0.61\%	0.15\%	0.43\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.03\%	0.05\%	0.01\%	0.04\%	0.03\%	0.06\%	0.01\%	0.04\%	0.02\%	0.06\%	0.01\%	0.03\%	0.03\%	0.07\%	0.02\%	0.05\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.05\%	0.00\%	0.02\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.08\%	0.10\%	0.05\%	0.12\%	0.05\%	0.09\%	0.03\%	0.08\%	0.05\%	0.08\%	0.03\%	0.08\%	0.09\%	0.12\%	0.06\%	0.13\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.10\%	0.18\%	0.06\%	0.15\%	0.12\%	0.19\%	0.08\%	0.18\%	0.14\%	0.33\%	0.08\%	0.22\%	0.10\%	0.12\%	0.06\%	0.14\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	0.06\%	0.00\%	0.02\%	0.01\%	0.06\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.21\%	0.36\%	0.13\%	0.30\%	0.37\%	0.77\%	0.23\%	0.54\%	0.30\%	0.22\%	0.23\%	0.39\%	0.54\%	0.44\%	0.42\%	0.66\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.04\%	0.09\%	0.02\%	0.07\%	0.03\%	0.09\%	0.01\%	0.04\%	0.01\%	0.04\%	0.00\%	0.01\%	0.08\%	0.24\%	0.04\%	0.14\%
Plastic	Soda Crates and Bottle Carriers	0.08\%	0.47\%	0.03\%	0.14\%	0.43\%	1.55\%	0.21\%	0.72\%	0.05\%	0.29\%	0.02\%	0.09\%	0.21\%	0.61\%	0.10\%	0.36\%
Plastic	Other PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.34\%	0.02\%	0.10\%
Plastic	Rigid Polystyrene Containers and Packaging	0.19\%	0.57\%	0.11\%	0.30\%	0.11\%	0.14\%	0.07\%	0.16\%	0.16\%	0.30\%	0.09\%	0.24\%	0.06\%	0.14\%	0.03\%	0.10\%
Plastic	Expanded Polystyrene Containers and Packaging	0.07\%	0.25\%	0.04\%	0.12\%	0.06\%	0.10\%	0.04\%	0.09\%	0.08\%	0.11\%	0.05\%	0.12\%	0.09\%	0.13\%	0.06\%	0.13\%
Plastic	Other Rigid Containers/Packaging	1.08\%	1.23\%	0.77\%	1.44\%	1.06\%	1.02\%	0.79\%	1.36\%	0.96\%	0.63\%	0.79\%	1.16\%	1.35\%	1.27\%	1.13\%	1.60\%
Plastic	Plastic Bags	0.41\%	0.46\%	0.29\%	0.56\%	0.36\%	0.41\%	0.26\%	0.49\%	0.69\%	0.77\%	0.51\%	0.90\%	0.81\%	0.84\%	0.59\%	1.05\%
Plastic	Other Film	3.45\%	2.04\%	2.81\%	4.15\%	2.97\%	2.05\%	2.34\%	3.67\%	3.33\%	1.71\%	2.83\%	3.86\%	3.16\%	1.76\%	2.65\%	3.71\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.05\%	0.08\%	0.03\%	0.08\%	0.08\%	0.10\%	0.06\%	0.12\%	0.14\%	0.13\%	0.10\%	0.18\%	0.20\%	0.20\%	0.15\%	0.26\%
Plastic	Other Plastics Materials	4.21\%	3.74\%	3.19\%	5.36\%	4.22\%	4.80\%	3.11\%	5.49\%	5.37\%	4.03\%	4.24\%	6.61\%	5.69\%	3.95\%	4.60\%	6.88\%
Plastic Total		20.00\%	10.12\%	16.77\%	23.44\%	19.55\%	11.56\%	15.76\%	23.64\%	23.37\%	8.76\%	20.86\%	25.98\%	26.49\%	7.07\%	24.58\%	28.45\%
Glass	Clear Container Glass	3.55\%	3.98\%	2.42\%	4.90\%	3.58\%	4.14\%	2.51\%	4.83\%	5.60\%	4.52\%	4.40\%	6.95\%	3.87\%	3.05\%	3.07\%	4.76\%
Glass	Green Container Glass	0.69\%	1.19\%	0.41\%	1.05\%	1.22\%	1.93\%	0.73\%	1.82\%	1.10\%	1.58\%	0.69\%	1.62\%	0.84\%	1.12\%	0.55\%	1.20\%
Glass	Brown Container Glass	0.50\%	0.84\%	0.30\%	0.75\%	0.70\%	1.19\%	0.44\%	1.02\%	0.88\%	1.08\%	0.58\%	1.24\%	1.26\%	1.12\%	0.91\%	1.66\%
Glass	Mixed Cullet	11.57\%	11.36\%	8.62\%	14.90\%	14.16\%	11.19\%	10.94\%	17.72\%	16.75\%	9.47\%	14.19\%	19.46\%	23.59\%	14.08\%	19.66\%	27.75\%
Glass	Other Container Glass	0.08\%	0.47\%	0.04\%	0.15\%	0.01\%	0.06\%	0.01\%	0.02\%	0.18\%	0.69\%	0.09\%	0.32\%	0.04\%	0.19\%	0.02\%	0.07\%
Glass	Other Glass	0.16\%	0.29\%	0.09\%	0.25\%	0.18\%	0.49\%	0.10\%	0.30\%	0.10\%	0.29\%	0.05\%	0.17\%	0.36\%	0.74\%	0.20\%	0.55\%
Glass Total		16.57\%	13.29\%	12.82\%	20.69\%	19.85\%	14.00\%	15.55\%	24.53\%	24.62\%	11.46\%	21.37\%	28.01\%	29.95\%	13.60\%	26.14\%	33.91\%

Table 1-185
Statistical Results, WCS Results Across Seasons, MGP, High Density/Low Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.31\%	0.44\%	0.22\%	0.42\%	0.25\%	0.26\%	0.18\%	0.33\%	0.38\%	0.33\%	0.30\%	0.48\%	0.65\%	0.31\%	0.58\%	0.73\%
Metal	Aluminum Foil/Containers	0.64\%	0.80\%	0.45\%	0.87\%	0.63\%	0.82\%	0.45\%	0.85\%	0.63\%	0.57\%	0.47\%	0.82\%	0.54\%	0.50\%	0.43\%	0.67\%
Metal	Other Aluminum	0.17\%	0.57\%	0.08\%	0.29\%	0.05\%	0.33\%	0.02\%	0.09\%	2.00\%	7.71\%	0.94\%	3.45\%	0.25\%	0.72\%	0.13\%	0.42\%
Metal	Other Non-Ferrous	0.58\%	2.14\%	0.29\%	0.98\%	1.10\%	4.45\%	0.54\%	1.86\%	0.87\%	2.27\%	0.47\%	1.39\%	1.15\%	2.75\%	0.69\%	1.71\%
Metal	Tin Food Cans	6.75\%	5.78\%	5.27\%	8.40\%	6.57\%	4.50\%	5.16\%	8.13\%	7.88\%	4.77\%	6.59\%	9.28\%	7.70\%	4.59\%	6.69\%	8.76\%
Metal	Empty Aerosol Cans	0.73\%	2.28\%	0.43\%	1.11\%	0.34\%	0.32\%	0.25\%	0.44\%	0.50\%	0.46\%	0.36\%	0.65\%	0.72\%	0.41\%	0.60\%	0.85\%
Metal	Other Ferrous	23.74\%	21.07\%	17.81\%	30.24\%	18.22\%	18.15\%	13.55\%	23.41\%	18.98\%	21.59\%	13.45\%	25.21\%	10.88\%	8.93\%	8.64\%	13.34\%
Metal	Mixed Metals	4.20\%	6.49\%	2.59\%	6.16\%	10.34\%	13.39\%	6.77\%	14.57\%	5.10\%	9.06\%	2.98\%	7.75\%	7.05\%	10.49\%	4.62\%	9.93\%
Metal Total		37.12\%	20.42\%	30.98\%	43.48\%	37.50\%	20.61\%	31.23\%	43.98\%	36.35\%	21.22\%	30.36\%	42.57\%	28.93\%	12.97\%	25.57\%	32.41\%
Organics	Leaves and Grass	0.04\%	0.20\%	0.02\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.85\%	1.26\%	0.55\%	1.23\%	1.01\%	1.61\%	0.65\%	1.45\%	1.54\%	1.87\%	1.06\%	2.12\%	1.73\%	1.55\%	1.30\%	2.22\%
Organics	Wood Furniture/Furniture Pieces	0.48\%	1.59\%	0.23\%	0.82\%	0.19\%	0.71\%	0.09\%	0.31\%	0.05\%	0.14\%	0.03\%	0.09\%	0.11\%	0.27\%	0.05\%	0.18\%
Organics	Non-C\&D Untreated Wood	0.01\%	0.05\%	0.01\%	0.02\%	0.15\%	0.50\%	0.08\%	0.24\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.18\%	0.02\%	0.07\%
Organics	Non-Clothing Texiles	0.17\%	0.48\%	0.09\%	0.27\%	0.22\%	1.14\%	0.11\%	0.37\%	0.06\%	0.16\%	0.03\%	0.09\%	0.31\%	0.80\%	0.16\%	0.51\%
Organics	Clothing Textiles	0.05\%	0.15\%	0.02\%	0.09\%	0.09\%	0.34\%	0.05\%	0.15\%	0.11\%	0.32\%	0.05\%	0.18\%	0.11\%	0.35\%	0.06\%	0.18\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.04\%	0.15\%	0.02\%	0.07\%	0.01\%	0.07\%	0.01\%	0.02\%	0.07\%	0.16\%	0.04\%	0.12\%	0.10\%	0.22\%	0.05\%	0.16\%
Organics	Animal By-Products	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.10\%	0.01\%	0.03\%	0.03\%	0.18\%	0.01\%	0.05\%
Organics	Rubber Products	0.10\%	0.22\%	0.05\%	0.15\%	0.02\%	0.05\%	0.01\%	0.03\%	0.07\%	0.16\%	0.03\%	0.11\%	0.06\%	0.14\%	0.03\%	0.09\%
Organics	Shoes	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.52\%	0.05\%	0.22\%	0.05\%	0.19\%	0.02\%	0.09\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.10\%	0.01\%	0.05\%
Organics	Fines	0.14\%	0.23\%	0.09\%	0.21\%	0.11\%	0.10\%	0.08\%	0.14\%	0.14\%	0.12\%	0.11\%	0.19\%	0.37\%	0.31\%	0.29\%	0.46\%
Organics	Upholstered or Other Organic-Type Furniture	0.59\%	2.87\%	0.26\%	1.06\%	0.13\%	0.62\%	0.06\%	0.22\%	0.18\%	0.83\%	0.08\%	0.32\%	0.12\%	0.54\%	0.05\%	0.22\%
Organics	Miscellaneous Organics	0.05\%	0.15\%	0.03\%	0.09\%	0.01\%	0.04\%	0.00\%	0.01\%	0.10\%	0.30\%	0.05\%	0.17\%	0.02\%	0.07\%	0.01\%	0.03\%
Organics Total		2.54\%	3.34\%	1.82\%	3.37\%	1.94\%	2.17\%	1.40\%	2.57\%	2.46\%	2.32\%	1.89\%	3.10\%	3.07\%	2.02\%	2.56\%	3.62\%
Appliance/Electronic	Appliances: Ferrous	15.76\%	28.89\%	8.07\%	25.42\%	15.37\%	32.16\%	7.30\%	25.75\%	6.02\%	16.46\%	2.84\%	10.27\%	1.95\%	4.92\%	0.99\%	3.23\%
Appliance/Electronic	Appliances: Non-Ferrous	0.18\%	0.82\%	0.08\%	0.32\%	0.05\%	0.26\%	0.02\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.29\%	1.05\%	0.13\%	0.50\%
Appliance/Electronic	Appliances: Plastic	2.31\%	5.67\%	1.28\%	3.63\%	0.82\%	2.29\%	0.44\%	1.32\%	0.81\%	1.35\%	0.45\%	1.27\%	1.64\%	4.87\%	0.87\%	2.64\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.69\%	2.09\%	0.34\%	1.16\%	0.20\%	0.68\%	0.10\%	0.34\%	0.24\%	1.05\%	0.11\%	0.43\%	0.68\%	1.94\%	0.33\%	1.16\%
Appliance/Electronic	Computer Monitors	0.06\%	0.41\%	0.03\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.17\%	0.91\%	0.07\%	0.30\%	1.52\%	3.75\%	0.81\%	2.45\%	0.63\%	3.06\%	0.28\%	1.14\%	1.45\%	3.78\%	0.73\%	2.42\%
Appliance/Electronic Total		19.16\%	28.08\%	11.52\%	28.20\%	17.97\%	31.34\%	9.84\%	27.89\%	7.71\%	16.17\%	4.43\%	11.80\%	6.01\%	8.42\%	3.92\%	8.52\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.09\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Treated/Contaminated Wood	0.69\%	3.57\%	0.31\%	1.20\%	0.11\%	0.54\%	0.05\%	0.18\%	0.31\%	0.73\%	0.16\%	0.50\%	0.43\%	1.09\%	0.23\%	0.68\%
C \& D Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.43\%	0.03\%	0.12\%	0.06\%	0.24\%	0.03\%	0.10\%	0.03\%	0.13\%	0.01\%	0.05\%
C \& D Debris	Rock/Concrete/Bricks	0.07\%	0.42\%	0.03\%	0.12\%	0.02\%	0.16\%	0.01\%	0.04\%	0.40\%	2.07\%	0.17\%	0.72\%	0.12\%	0.78\%	0.05\%	0.22\%
C \& D Debris	Other Construction Debris	0.11\%	0.43\%	0.05\%	0.19\%	0.01\%	0.09\%	0.01\%	0.02\%	0.84\%	3.63\%	0.37\%	1.50\%	0.67\%	2.81\%	0.30\%	1.17\%
C \& D Debris Total		0.87\%	3.59\%	0.43\%	1.45\%	0.21\%	0.69\%	0.10\%	0.35\%	1.62\%	4.08\%	0.89\%	2.58\%	1.24\%	3.03\%	0.69\%	1.96\%

Table 1-185
Statistical Results, WCS Results Across Seasons, MGP, High Density/Low Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval				Confidence Interval			Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics	Miscellaneous Inorganics	0.05\%	0.19\%	0.03\%	0.09\%	0.02\%	0.12\%	0.01\%	0.03\%	0.22\%	1.11\%	0.10\%	0.38\%	0.05\%	0.17\%	0.03\%	0.09\%
Miscellaneous Inorganics	Ceramics	0.25\%	0.49\%	0.14\%	0.40\%	0.24\%	0.54\%	0.14\%	0.37\%	0.45\%	0.69\%	0.27\%	0.68\%	0.82\%	1.20\%	0.55\%	1.15\%
Miscellaneous Inorganics Total		0.31\%	0.54\%	0.17\%	0.48\%	0.26\%	0.55\%	0.15\%	0.40\%	0.67\%	1.29\%	0.40\%	1.01\%	0.88\%	1.22\%	0.60\%	1.21\%
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Antifreeze	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Latex Paints/Water-Based Adhesives/Glues	0.01\%	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%	0.02\%	0.10\%	0.01\%	0.03\%
HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.49\%	0.04\%	0.15\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.06\%	0.01\%	0.02\%
HHW	Dry-Cell Batteries	0.03\%	0.11\%	0.02\%	0.05\%	0.01\%	0.04\%	0.01\%	0.02\%	0.01\%	0.04\%	0.01\%	0.02\%	0.03\%	0.11\%	0.01\%	0.05\%
HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.26\%	1.65\%	0.11\%	0.49\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Home Medical Products	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.03\%	0.16\%	0.02\%	0.06\%	0.01\%	0.04\%	0.00\%	0.02\%
HHW	Other Potentially Harmful Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.25\%	0.02\%	0.07\%	0.03\%	0.14\%	0.01\%	0.06\%	0.03\%	0.16\%	0.01\%	0.06\%
HHW Total		0.04\%	0.12\%	0.02\%	0.07\%	0.06\%	0.25\%	0.03\%	0.10\%	0.37\%	1.65\%	0.18\%	0.63\%	0.18\%	0.52\%	0.10\%	0.29\%
GRAND TOTAL		100.00\%				100.00\%				100.00\%				100.00\%			

Table 1-186
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Mean	Confidence Interval			Mean	Confidence Interval			Mean	Confidence Interval			Mean	Standard Deviation	Confidence Interval	
			Standard Deviation	Lower Bound	Upper Bound		Standard Deviation	Lower Bound	Upper Bound		Standard Deviation	Lower Bound	Upper Bound			Lower Bound	Upper Bound
Paper	Newspaper	0.57\%	1.18\%	0.33\%	0.87\%	0.79\%	1.11\%	0.51\%	1.13\%	1.01\%	1.81\%	0.61\%	1.51\%	0.63\%	1.83\%	0.37\%	0.97\%
Paper	Plain OCC/Kraft Paper	0.10\%	0.21\%	0.05\%	0.16\%	0.10\%	0.26\%	0.05\%	0.16\%	0.13\%	0.29\%	0.07\%	0.20\%	0.17\%	0.36\%	0.10\%	0.27\%
Paper	High Grade Paper	0.09\%	0.44\%	0.04\%	0.16\%	0.04\%	0.22\%	0.02\%	0.07\%	0.03\%	0.16\%	0.01\%	0.05\%	0.01\%	0.03\%	0.01\%	0.02\%
Paper	Mixed Low Grade Paper	1.34\%	1.71\%	0.96\%	1.78\%	1.22\%	1.17\%	0.94\%	1.54\%	1.57\%	1.21\%	1.30\%	1.86\%	1.27\%	0.97\%	0.98\%	1.60\%
Paper	Phone Books/Paperbacks	0.15\%	0.62\%	0.07\%	0.27\%	0.34\%	1.00\%	0.16\%	0.57\%	0.14\%	0.61\%	0.06\%	0.25\%	0.04\%	0.17\%	0.02\%	0.08\%
Paper	Paper Bags	0.07\%	0.17\%	0.04\%	0.11\%	0.05\%	0.10\%	0.03\%	0.07\%	0.08\%	0.11\%	0.05\%	0.12\%	0.09\%	0.13\%	0.05\%	0.14\%
Paper	Polycoated Paper Containers	2.83\%	1.37\%	2.33\%	3.37\%	3.13\%	1.34\%	2.72\%	3.56\%	2.66\%	0.94\%	2.40\%	2.94\%	2.68\%	0.93\%	2.38\%	3.00\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.27\%	0.37\%	0.18\%	0.38\%	0.27\%	0.29\%	0.20\%	0.36\%	0.22\%	0.20\%	0.17\%	0.28\%	0.33\%	0.31\%	0.24\%	0.43\%
Paper	Single Use Paper Plates, Cups	0.03\%	0.05\%	0.02\%	0.05\%	0.07\%	0.08\%	0.05\%	0.10\%	0.06\%	0.06\%	0.04\%	0.09\%	0.04\%	0.06\%	0.02\%	0.06\%
Paper	Other Nonrecyclable Paper	0.40\%	1.52\%	0.22\%	0.63\%	0.15\%	0.13\%	0.11\%	0.20\%	0.20\%	0.24\%	0.14\%	0.27\%	0.23\%	0.24\%	0.16\%	0.31\%
Paper Total		5.85\%	3.82\%	4.76\%	7.04\%	6.16\%	2.69\%	5.36\%	7.01\%	6.09\%	3.00\%	5.34\%	6.89\%	5.50\%	2.77\%	4.79\%	6.25\%
Plastic	PET Bottles	4.00\%	1.82\%	3.34\%	4.72\%	5.09\%	1.90\%	4.48\%	5.73\%	4.93\%	1.49\%	4.54\%	5.34\%	6.61\%	1.75\%	6.16\%	7.07\%
Plastic	HDPE Bottles: Natural	1.24\%	0.86\%	0.99\%	1.51\%	1.76\%	0.91\%	1.50\%	2.05\%	1.77\%	0.67\%	1.59\%	1.96\%	1.56\%	0.61\%	1.40\%	1.73\%
Plastic	HDPE Bottles: Colored	1.87\%	1.25\%	1.47\%	2.32\%	2.52\%	1.16\%	2.18\%	2.88\%	2.46\%	1.35\%	2.08\%	2.87\%	2.14\%	0.82\%	1.93\%	2.37\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.02\%	0.06\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.02\%	0.05\%	0.01\%	0.03\%	0.12\%	0.43\%	0.06\%	0.20\%	0.49\%	1.75\%	0.24\%	0.84\%	0.12\%	0.35\%	0.06\%	0.20\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.05\%	0.14\%	0.03\%	0.08\%	0.07\%	0.27\%	0.03\%	0.11\%	0.00\%	0.01\%	0.00\%	0.00\%	0.03\%	0.07\%	0.02\%	0.06\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.05\%	0.11\%	0.03\%	0.08\%	0.08\%	0.13\%	0.05\%	0.11\%	0.06\%	0.08\%	0.04\%	0.08\%	0.07\%	0.08\%	0.04\%	0.09\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.18\%	0.33\%	0.11\%	0.27\%	0.14\%	0.20\%	0.09\%	0.20\%	0.30\%	1.41\%	0.16\%	0.50\%	0.12\%	0.17\%	0.07\%	0.17\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.05\%	0.22\%	0.02\%	0.08\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.01\%	0.06\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.16\%	0.01\%	0.05\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.24\%	0.20\%	0.18\%	0.31\%	0.31\%	0.28\%	0.23\%	0.39\%	0.42\%	0.41\%	0.33\%	0.53\%	0.49\%	0.50\%	0.38\%	0.60\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.08\%	0.20\%	0.05\%	0.13\%	0.01\%	0.03\%	0.00\%	0.01\%	0.08\%	0.41\%	0.03\%	0.14\%	0.02\%	0.05\%	0.01\%	0.03\%
Plastic	Soda Crates and Bottle Carriers	0.02\%	0.10\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.01\%	0.03\%	0.21\%	0.01\%	0.06\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.01\%	0.08\%	0.01\%	0.02\%	0.04\%	0.28\%	0.02\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.13\%	0.22\%	0.09\%	0.18\%	0.35\%	0.29\%	0.27\%	0.44\%	0.33\%	0.25\%	0.26\%	0.40\%	0.24\%	0.19\%	0.18\%	0.30\%
Plastic	Expanded Polystyrene Containers and Packaging	0.33\%	1.72\%	0.16\%	0.57\%	0.09\%	0.12\%	0.06\%	0.13\%	0.06\%	0.10\%	0.04\%	0.09\%	0.08\%	0.11\%	0.05\%	0.12\%
Plastic	Other Rigid Containers/Packaging	1.16\%	0.65\%	0.94\%	1.41\%	1.07\%	0.83\%	0.86\%	1.29\%	1.25\%	0.56\%	1.10\%	1.41\%	1.06\%	0.63\%	0.88\%	1.26\%
Plastic	Plastic Bags	0.92\%	1.20\%	0.67\%	1.22\%	1.03\%	1.08\%	0.83\%	1.25\%	1.00\%	0.43\%	0.88\%	1.12\%	1.21\%	0.61\%	1.05\%	1.38\%
Plastic	Other Film	2.60\%	1.63\%	2.09\%	3.15\%	2.56\%	1.34\%	2.19\%	2.95\%	2.81\%	1.01\%	2.54\%	3.09\%	2.44\%	1.50\%	2.06\%	2.85\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.15\%	0.62\%	0.08\%	0.24\%	0.11\%	0.15\%	0.07\%	0.15\%	0.17\%	0.13\%	0.14\%	0.21\%	0.28\%	0.19\%	0.23\%	0.34\%
Plastic	Other Plastics Materials	2.41\%	3.54\%	1.69\%	3.24\%	2.34\%	2.54\%	1.71\%	3.07\%	3.01\%	2.56\%	2.41\%	3.67\%	2.29\%	1.90\%	1.78\%	2.86\%
Plastic Total		15.50\%	7.25\%	12.98\%	18.20\%	17.67\%	5.88\%	15.75\%	19.68\%	19.18\%	5.12\%	17.87\%	20.53\%	18.83\%	4.14\%	17.73\%	19.95\%
Glass	Clear Container Glass	6.54\%	4.82\%	5.13\%	8.10\%	10.84\%	5.65\%	9.21\%	12.59\%	7.00\%	4.05\%	5.86\%	8.23\%	8.20\%	5.56\%	6.58\%	9.97\%
Glass	Green Container Glass	10.00\%	7.15\%	7.90\%	12.32\%	12.81\%	7.33\%	10.56\%	15.25\%	9.28\%	6.08\%	7.50\%	11.23\%	8.05\%	5.89\%	6.43\%	9.83\%
Glass	Brown Container Glass	3.61\%	4.49\%	2.56\%	4.83\%	3.62\%	3.35\%	2.78\%	4.57\%	2.70\%	2.69\%	1.99\%	3.53\%	3.31\%	2.91\%	2.53\%	4.20\%
Glass	Mixed Cullet	20.84\%	11.91\%	17.10\%	24.85\%	18.72\%	11.44\%	15.53\%	22.14\%	26.22\%	9.70\%	23.47\%	29.06\%	27.48\%	11.60\%	24.32\%	30.76\%
Glass	Other Container Glass	0.15\%	0.40\%	0.07\%	0.25\%	0.23\%	0.43\%	0.12\%	0.36\%	0.16\%	0.30\%	0.09\%	0.25\%	0.42\%	1.61\%	0.21\%	0.70\%
Glass	Other Glass	0.35\%	0.55\%	0.20\%	0.53\%	0.33\%	0.88\%	0.17\%	0.54\%	0.24\%	0.62\%	0.12\%	0.40\%	0.07\%	0.18\%	0.04\%	0.12\%
Glass Total		41.49\%	17.91\%	35.44\%	47.66\%	46.55\%	15.09\%	41.78\%	51.34\%	45.60\%	12.71\%	42.09\%	49.13\%	47.53\%	12.77\%	44.06\%	51.02\%

Table 1-186
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/High Income (continued)

			F												Sum		
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.37\%	0.29\%	0.29\%	0.46\%	0.39\%	0.25\%	0.31\%	0.47\%	0.46\%	0.33\%	0.39\%	0.55\%	0.64\%	0.33\%	0.56\%	0.73\%
Metal	Aluminum Foil/Containers	1.00\%	0.63\%	0.81\%	1.22\%	1.03\%	0.73\%	0.85\%	1.21\%	0.77\%	0.55\%	0.63\%	0.92\%	0.65\%	0.44\%	0.53\%	0.78\%
Metal	Other Aluminum	0.23\%	1.18\%	0.10\%	0.41\%	0.29\%	1.87\%	0.12\%	0.53\%	0.53\%	1.67\%	0.27\%	0.87\%	0.19\%	0.57\%	0.09\%	0.32\%
Metal	Other Non-Ferrous	1.17\%	3.56\%	0.59\%	1.94\%	0.24\%	1.07\%	0.12\%	0.42\%	0.33\%	0.75\%	0.18\%	0.53\%	0.40\%	0.80\%	0.22\%	0.62\%
Metal	Tin Food Cans	5.60\%	2.80\%	4.57\%	6.73\%	6.96\%	3.25\%	5.91\%	8.09\%	6.03\%	2.21\%	5.43\%	6.66\%	5.27\%	3.02\%	4.61\%	5.98\%
Metal	Empty Aerosol Cans	0.34\%	0.35\%	0.23\%	0.46\%	0.46\%	0.68\%	0.33\%	0.61\%	0.34\%	0.26\%	0.26\%	0.44\%	0.42\%	0.41\%	0.32\%	0.54\%
Metal	Other Ferrous	10.36\%	11.01\%	7.44\%	13.72\%	12.62\%	21.18\%	7.78\%	18.43\%	10.69\%	10.45\%	7.97\%	13.75\%	7.14\%	7.19\%	5.29\%	9.25\%
Metal	Mixed Metals	2.43\%	6.52\%	1.32\%	3.85\%	1.69\%	3.03\%	1.02\%	2.53\%	2.94\%	8.63\%	1.49\%	4.86\%	3.07\%	6.07\%	1.83\%	4.62\%
Metal Total		21.50\%	15.46\%	17.15\%	26.20\%	23.68\%	19.69\%	18.32\%	29.50\%	22.10\%	12.06\%	19.00\%	25.37\%	17.79\%	9.47\%	15.34\%	20.38\%
Organics	Leaves and Grass	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.08\%	0.01\%	0.02\%	0.03\%	0.16\%	0.01\%	0.05\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	0.72\%	1.19\%	0.43\%	1.07\%	1.37\%	2.13\%	0.87\%	2.00\%	1.10\%	1.69\%	0.68\%	1.61\%	0.90\%	1.09\%	0.61\%	1.26\%
Organics	Wood Furniture/Furniture Pieces	0.03\%	0.13\%	0.01\%	0.05\%	0.07\%	0.37\%	0.03\%	0.12\%	0.09\%	0.47\%	0.04\%	0.16\%	0.05\%	0.22\%	0.03\%	0.09\%
Organics	Non-C\&D Untreated Wood	0.06\%	0.29\%	0.03\%	0.10\%	0.08\%	0.20\%	0.04\%	0.13\%	0.12\%	0.70\%	0.05\%	0.22\%	0.00\%	0.02\%	0.00\%	0.01\%
Organics	Non-Clothing Textiles	0.07\%	0.17\%	0.04\%	0.12\%	0.00\%	0.01\%	0.00\%	0.01\%	0.06\%	0.32\%	0.03\%	0.11\%	0.04\%	0.10\%	0.02\%	0.06\%
Organics	Clothing Textiles	0.11\%	0.44\%	0.05\%	0.19\%	0.05\%	0.33\%	0.02\%	0.10\%	0.01\%	0.04\%	0.01\%	0.02\%	0.13\%	0.45\%	0.06\%	0.22\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.25\%	1.55\%	0.11\%	0.45\%	0.10\%	0.35\%	0.05\%	0.17\%	0.04\%	0.12\%	0.02\%	0.07\%	0.04\%	0.15\%	0.02\%	0.07\%
Organics	Animal By-Products	0.00\%	0.03\%	0.00\%	0.01\%	0.01\%	0.06\%	0.00\%	0.02\%	0.02\%	0.09\%	0.01\%	0.03\%	0.01\%	0.05\%	0.00\%	0.02\%
Organics	Rubber Products	0.04\%	0.20\%	0.02\%	0.07\%	0.01\%	0.03\%	0.00\%	0.01\%	0.03\%	0.10\%	0.01\%	0.05\%	0.21\%	0.58\%	0.11\%	0.34\%
Organics	Shoes	0.12\%	0.47\%	0.05\%	0.20\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.27\%	0.02\%	0.09\%	0.02\%	0.09\%	0.01\%	0.04\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.02\%
Organics	Fines	0.12\%	0.14\%	0.08\%	0.16\%	0.27\%	0.60\%	0.19\%	0.38\%	0.21\%	0.28\%	0.15\%	0.27\%	0.24\%	0.22\%	0.18\%	0.32\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.18\%	0.62\%	0.09\%	0.31\%	0.05\%	0.26\%	0.02\%	0.08\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%
Organics Total		1.72\%	2.24\%	1.22\%	2.29\%	2.02\%	2.24\%	1.46\%	2.66\%	1.76\%	1.76\%	1.32\%	2.27\%	1.69\%	1.70\%	1.27\%	2.18\%
Appliance/Electronic	Appliances: Ferrous	12.34\%	27.91\%	5.53\%	21.36\%	2.45\%	8.76\%	1.13\%	4.25\%	2.94\%	10.30\%	1.38\%	5.07\%	5.97\%	11.21\%	3.27\%	9.41\%
Appliance/Electronic	Appliances: Non-Ferrous	0.25\%	1.48\%	0.11\%	0.46\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.26\%	0.02\%	0.08\%	0.35\%	1.58\%	0.16\%	0.62\%
Appliance/Electronic	Appliances: Plastic	0.96\%	1.94\%	0.55\%	1.48\%	0.64\%	2.51\%	0.31\%	1.08\%	0.69\%	1.44\%	0.37\%	1.12\%	0.61\%	1.79\%	0.31\%	1.01\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.04\%	0.22\%	0.02\%	0.07\%	0.17\%	0.68\%	0.08\%	0.30\%	0.08\%	0.51\%	0.03\%	0.15\%	0.47\%	2.30\%	0.22\%	0.81\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.18\%	1.16\%	0.08\%	0.34\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.13\%	0.39\%	0.06\%	0.22\%	0.11\%	0.60\%	0.05\%	0.20\%	0.96\%	3.64\%	0.43\%	1.69\%	0.39\%	1.84\%	0.17\%	0.69\%
Appliance/Electronic Total		13.72\%	28.05\%	6.87\%	22.47\%	3.37\%	8.88\%	1.82\%	5.39\%	4.73\%	10.52\%	2.68\%	7.34\%	7.96\%	11.40\%	4.98\%	11.56\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.01\%	0.06\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.30\%	0.02\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Treated/Contaminated Wood	0.03\%	0.10\%	0.02\%	0.05\%	0.03\%	0.15\%	0.01\%	0.04\%	0.03\%	0.17\%	0.01\%	0.06\%	0.01\%	0.02\%	0.00\%	0.01\%
C \& D Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.23\%	0.02\%	0.09\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.03\%	0.10\%	0.01\%	0.05\%	0.06\%	0.37\%	0.03\%	0.11\%	0.20\%	1.23\%	0.09\%	0.36\%	0.07\%	0.23\%	0.03\%	0.12\%
C \& D Debris Total		0.07\%	0.15\%	0.04\%	0.11\%	0.14\%	0.45\%	0.07\%	0.23\%	0.30\%	1.26\%	0.14\%	0.52\%	0.07\%	0.22\%	0.04\%	0.12\%

Table 1-186
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/High Income (continued)

Table 1-187
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	0.79\%	1.60\%	0.44\%	1.23\%	0.86\%	1.56\%	0.51\%	1.30\%	0.36\%	0.93\%	0.19\%	0.58\%	0.36\%	0.62\%	0.21\%	0.56\%
Paper	Plain OCC/Kraft Paper	0.30\%	0.65\%	0.17\%	0.46\%	0.38\%	1.15\%	0.21\%	0.60\%	0.18\%	0.45\%	0.10\%	0.27\%	0.25\%	0.34\%	0.16\%	0.35\%
Paper	High Grade Paper	0.09\%	0.32\%	0.04\%	0.15\%	0.03\%	0.19\%	0.02\%	0.06\%	0.03\%	0.09\%	0.02\%	0.05\%	0.13\%	0.50\%	0.06\%	0.22\%
Paper	Mixed Low Grade Paper	1.66\%	1.89\%	1.22\%	2.17\%	1.09\%	1.12\%	0.83\%	1.37\%	1.56\%	1.42\%	1.24\%	1.91\%	1.08\%	1.23\%	0.79\%	1.42\%
Paper	Phone Books/Paperbacks	0.18\%	0.80\%	0.08\%	0.32\%	0.17\%	1.09\%	0.07\%	0.30\%	0.02\%	0.10\%	0.01\%	0.03\%	0.14\%	0.60\%	0.07\%	0.25\%
Paper	Paper Bags	0.03\%	0.08\%	0.02\%	0.05\%	0.06\%	0.13\%	0.03\%	0.09\%	0.03\%	0.14\%	0.02\%	0.06\%	0.08\%	0.16\%	0.05\%	0.12\%
Paper	Polycoated Paper Containers	2.94\%	3.26\%	2.36\%	3.57\%	2.59\%	1.26\%	2.28\%	2.92\%	2.40\%	2.08\%	2.02\%	2.81\%	2.08\%	0.95\%	1.84\%	2.34\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.24\%	0.26\%	0.16\%	0.32\%	0.30\%	0.34\%	0.23\%	0.39\%	0.30\%	0.45\%	0.21\%	0.40\%	0.43\%	0.37\%	0.33\%	0.55\%
Paper	Single Use Paper Plates, Cups	0.04\%	0.08\%	0.03\%	0.07\%	0.07\%	0.08\%	0.05\%	0.10\%	0.07\%	0.11\%	0.04\%	0.10\%	0.08\%	0.08\%	0.06\%	0.11\%
Paper	Other Nonrecyclable Paper	0.46\%	0.40\%	0.34\%	0.60\%	0.59\%	0.36\%	0.48\%	0.70\%	0.46\%	0.38\%	0.35\%	0.58\%	0.65\%	0.50\%	0.52\%	0.80\%
Paper Total		6.72\%	5.32\%	5.56\%	7.99\%	6.13\%	3.53\%	5.29\%	7.02\%	5.40\%	3.06\%	4.69\%	6.17\%	5.29\%	2.58\%	4.64\%	5.98\%
Plastic	PET Botlles	5.96\%	2.07\%	5.40\%	6.54\%	6.69\%	2.39\%	6.08\%	7.32\%	6.52\%	2.05\%	5.99\%	7.08\%	8.37\%	2.40\%	7.73\%	9.03\%
Plastic	HDPE Bottles: Natural	3.99\%	1.50\%	3.58\%	4.42\%	4.60\%	1.98\%	4.09\%	5.14\%	4.46\%	1.78\%	3.98\%	4.96\%	4.80\%	1.63\%	4.35\%	5.27\%
Plastic	HDPE Bottles: Colored	3.66\%	1.91\%	3.16\%	4.19\%	3.90\%	2.23\%	3.41\%	4.41\%	3.34\%	1.38\%	2.91\%	3.80\%	3.29\%	1.45\%	2.86\%	3.75\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.08\%	0.38\%	0.04\%	0.14\%	0.02\%	0.08\%	0.01\%	0.03\%	0.01\%	0.03\%	0.00\%	0.01\%	0.02\%	0.06\%	0.01\%	0.03\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.36\%	0.97\%	0.19\%	0.59\%	0.19\%	0.59\%	0.10\%	0.30\%	0.08\%	0.20\%	0.04\%	0.13\%	0.14\%	0.40\%	0.07\%	0.22\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.09\%	0.02\%	0.06\%	0.02\%	0.04\%	0.01\%	0.04\%	0.01\%	0.04\%	0.00\%	0.02\%	0.06\%	0.09\%	0.03\%	0.09\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.03\%	0.00\%	0.02\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.02\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.13\%	0.22\%	0.08\%	0.20\%	0.10\%	0.13\%	0.06\%	0.14\%	0.06\%	0.08\%	0.04\%	0.08\%	0.13\%	0.21\%	0.09\%	0.18\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.25\%	0.14\%	0.29\%	0.31\%	0.47\%	0.21\%	0.43\%	0.09\%	0.17\%	0.05\%	0.13\%	0.16\%	0.16\%	0.11\%	0.22\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	0.05\%	0.01\%	0.02\%	0.01\%	0.05\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.15\%	0.02\%	0.06\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.42\%	0.32\%	0.33\%	0.51\%	0.43\%	0.60\%	0.32\%	0.55\%	0.32\%	0.32\%	0.23\%	0.42\%	0.52\%	0.47\%	0.41\%	0.65\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.09\%	0.24\%	0.05\%	0.15\%	0.02\%	0.05\%	0.01\%	0.04\%	0.01\%	0.02\%	0.00\%	0.01\%	0.05\%	0.18\%	0.03\%	0.09\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.06\%	0.01\%	0.02\%	0.10\%	0.43\%	0.05\%	0.18\%	0.05\%	0.34\%	0.02\%	0.10\%
Plastic	Other PVC	0.01\%	0.05\%	0.00\%	0.02\%	0.06\%	0.39\%	0.03\%	0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.13\%	0.01\%	0.05\%
Plastic	Rigid Polystyrene Containers and Packaging	0.25\%	0.64\%	0.16\%	0.36\%	0.28\%	0.22\%	0.22\%	0.35\%	0.54\%	1.19\%	0.37\%	0.74\%	0.25\%	0.31\%	0.18\%	0.33\%
Plastic	Expanded Polystyrene Containers and Packaging	0.14\%	0.16\%	0.10\%	0.19\%	0.11\%	0.10\%	0.08\%	0.14\%	0.17\%	0.17\%	0.12\%	0.22\%	0.13\%	0.13\%	0.10\%	0.17\%
Plastic	Other Rigid Containers/Packaging	1.67\%	0.88\%	1.41\%	1.94\%	1.69\%	0.83\%	1.48\%	1.91\%	1.77\%	0.80\%	1.56\%	1.99\%	1.46\%	0.40\%	1.35\%	1.57\%
Plastic	Plastic Bags	0.84\%	0.65\%	0.66\%	1.05\%	1.00\%	0.62\%	0.85\%	1.17\%	0.91\%	0.52\%	0.78\%	1.06\%	1.44\%	1.49\%	1.11\%	1.82\%
Plastic	Other Film	4.21\%	1.81\%	3.76\%	4.68\%	3.37\%	1.49\%	2.94\%	3.84\%	3.34\%	1.39\%	2.97\%	3.72\%	3.15\%	1.36\%	2.76\%	3.57\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.12\%	0.14\%	0.08\%	0.17\%	0.27\%	0.56\%	0.18\%	0.37\%	0.22\%	0.23\%	0.16\%	0.29\%	0.48\%	0.77\%	0.37\%	0.62\%
Plastic	Other Plastics Materials	3.76\%	2.82\%	3.06\%	4.53\%	3.02\%	1.91\%	2.51\%	3.57\%	4.36\%	3.55\%	3.53\%	5.27\%	3.57\%	2.30\%	2.96\%	4.23\%
Plastic Total		25.98\%	6.55\%	24.21\%	27.79\%	26.11\%	7.91\%	24.01\%	28.26\%	26.29\%	8.03\%	24.13\%	28.50\%	28.14\%	6.04\%	26.52\%	29.79\%
Glass	Clear Container Glass	6.93\%	5.01\%	5.53\%	8.47\%	6.64\%	4.28\%	5.46\%	7.92\%	7.55\%	5.75\%	5.98\%	9.28\%	6.77\%	4.41\%	5.53\%	8.14\%
Glass	Green Container Glass	1.95\%	1.84\%	1.37\%	2.62\%	1.93\%	1.88\%	1.35\%	2.61\%	2.93\%	3.51\%	2.12\%	3.87\%	2.33\%	1.92\%	1.79\%	2.94\%
Glass	Brown Container Glass	1.31\%	1.63\%	0.89\%	1.81\%	2.34\%	2.62\%	1.70\%	3.08\%	1.48\%	1.26\%	1.09\%	1.93\%	2.11\%	2.00\%	1.61\%	2.68\%
Glass	Mixed Cullet	17.23\%	12.72\%	14.09\%	20.61\%	20.75\%	11.26\%	17.43\%	24.28\%	22.23\%	13.52\%	18.77\%	25.90\%	22.69\%	11.27\%	19.74\%	25.79\%
Glass	Other Container Glass	0.32\%	1.24\%	0.15\%	0.55\%	0.10\%	0.27\%	0.05\%	0.16\%	0.11\%	0.30\%	0.05\%	0.18\%	0.20\%	0.69\%	0.09\%	0.33\%
Glass	Other Glass	0.53\%	1.57\%	0.29\%	0.83\%	0.62\%	1.18\%	0.37\%	0.95\%	0.39\%	0.70\%	0.22\%	0.62\%	0.42\%	0.83\%	0.24\%	0.64\%
Glass Total		28.27\%	12.77\%	24.91\%	31.75\%	32.37\%	13.30\%	28.77\%	36.09\%	34.70\%	14.48\%	30.73\%	38.77\%	34.52\%	11.20\%	31.46\%	37.65\%

Table 1-187
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.48\%	0.48\%	0.38\%	0.60\%	0.42\%	0.34\%	0.34\%	0.50\%	0.52\%	0.42\%	0.42\%	0.62\%	0.81\%	0.36\%	0.71\%	0.90\%
Metal	Aluminum Foil/Containers	1.12\%	0.78\%	0.92\%	1.35\%	1.17\%	0.50\%	1.05\%	1.31\%	0.97\%	0.65\%	0.79\%	1.17\%	1.04\%	0.67\%	0.87\%	1.22\%
Metal	Other Aluminum	0.05\%	0.18\%	0.02\%	0.08\%	0.13\%	0.86\%	0.06\%	0.24\%	0.34\%	0.72\%	0.18\%	0.54\%	0.74\%	1.71\%	0.39\%	1.20\%
Metal	Other Non-Ferrous	0.55\%	1.79\%	0.28\%	0.91\%	0.93\%	2.31\%	0.53\%	1.44\%	0.31\%	1.20\%	0.15\%	0.52\%	0.47\%	1.53\%	0.25\%	0.76\%
Metal	Tin Food Cans	9.07\%	3.34\%	8.15\%	10.02\%	9.13\%	3.67\%	8.20\%	10.11\%	8.79\%	3.33\%	7.91\%	9.71\%	7.50\%	3.09\%	6.74\%	8.30\%
Metal	Empty Aerosol Cans	0.84\%	0.48\%	0.70\%	1.00\%	0.81\%	0.55\%	0.66\%	0.97\%	0.89\%	0.54\%	0.73\%	1.05\%	0.99\%	0.61\%	0.82\%	1.19\%
Metal	Other Ferrous	15.74\%	13.47\%	12.34\%	19.48\%	11.46\%	11.73\%	8.65\%	14.60\%	10.49\%	8.16\%	8.35\%	12.84\%	8.16\%	7.04\%	6.30\%	10.23\%
Metal	Mixed Metals	1.45\%	2.76\%	0.84\%	2.21\%	1.89\%	3.09\%	1.12\%	2.84\%	5.18\%	9.42\%	3.08\%	7.80\%	2.33\%	4.76\%	1.36\%	3.54\%
Metal Total		29.30\%	12.53\%	25.93\%	32.78\%	25.94\%	11.32\%	22.99\%	29.00\%	27.48\%	11.83\%	24.45\%	30.61\%	22.04\%	8.42\%	19.80\%	24.36\%
Organics	Leaves and Grass	0.08\%	0.34\%	0.03\%	0.14\%	0.01\%	0.08\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.01\%	0.08\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	1.18\%	1.30\%	0.84\%	1.58\%	1.93\%	2.54\%	1.28\%	2.69\%	1.47\%	1.82\%	1.05\%	1.96\%	1.69\%	1.64\%	1.23\%	2.22\%
Organics	Wood Furniture/Furniture Pieces	0.02\%	0.11\%	0.01\%	0.04\%	0.09\%	0.46\%	0.05\%	0.16\%	0.07\%	0.18\%	0.03\%	0.11\%	0.22\%	0.94\%	0.10\%	0.37\%
Organics	Non-C\&D Untreated Wood	0.02\%	0.05\%	0.01\%	0.03\%	0.16\%	0.49\%	0.08\%	0.27\%	0.13\%	0.53\%	0.06\%	0.23\%	0.02\%	0.11\%	0.01\%	0.03\%
Organics	Non-Clothing Textiles	0.16\%	0.39\%	0.09\%	0.26\%	0.09\%	0.21\%	0.04\%	0.14\%	0.07\%	0.20\%	0.04\%	0.12\%	0.07\%	0.16\%	0.04\%	0.11\%
Organics	Clothing Textiles	0.11\%	0.28\%	0.05\%	0.18\%	0.16\%	0.67\%	0.08\%	0.28\%	0.07\%	0.22\%	0.04\%	0.12\%	0.07\%	0.17\%	0.04\%	0.11\%
Organics	Carpet/Upholstery	0.02\%	0.15\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.13\%	0.01\%	0.04\%
Organics	Disposable Diapers and Sanitary Products	0.03\%	0.11\%	0.01\%	0.05\%	0.07\%	0.21\%	0.03\%	0.12\%	0.05\%	0.19\%	0.02\%	0.09\%	0.06\%	0.20\%	0.03\%	0.10\%
Organics	Animal By-Products	0.02\%	0.11\%	0.01\%	0.03\%	0.11\%	0.67\%	0.05\%	0.19\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.08\%	0.29\%	0.04\%	0.14\%	0.03\%	0.10\%	0.01\%	0.05\%	0.16\%	0.46\%	0.08\%	0.26\%	0.19\%	1.02\%	0.08\%	0.32\%
Organics	Shoes	0.11\%	0.58\%	0.05\%	0.20\%	0.13\%	0.49\%	0.06\%	0.22\%	0.11\%	0.39\%	0.05\%	0.20\%	0.04\%	0.12\%	0.02\%	0.07\%
Organics	Other Leather Products	0.01\%	0.05\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.06\%	0.21\%	0.03\%	0.10\%
Organics	Fines	0.21\%	0.27\%	0.15\%	0.28\%	0.28\%	0.51\%	0.21\%	0.37\%	0.22\%	0.32\%	0.16\%	0.29\%	0.24\%	0.22\%	0.18\%	0.31\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.11\%	0.30\%	0.06\%	0.18\%	0.03\%	0.16\%	0.01\%	0.05\%	0.02\%	0.09\%	0.01\%	0.04\%	0.02\%	0.05\%	0.01\%	0.03\%
Organics Total		2.16\%	1.59\%	1.74\%	2.63\%	3.09\%	2.91\%	2.37\%	3.90\%	2.39\%	2.10\%	1.91\%	2.92\%	2.68\%	2.32\%	2.09\%	3.34\%
Appliance/Electronic	Appliances: Ferrous	4.28\%	11.65\%	2.13\%	7.14\%	4.40\%	13.34\%	2.11\%	7.49\%	1.80\%	7.25\%	0.82\%	3.14\%	4.58\%	12.98\%	2.23\%	7.71\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.35\%	0.02\%	0.10\%	0.00\%	0.00\%	0.00\%	0.00\%	0.11\%	0.54\%	0.05\%	0.19\%
Appliance/Electronic	Appliances: Plastic	1.10\%	2.09\%	0.62\%	1.73\%	0.48\%	1.25\%	0.24\%	0.79\%	0.66\%	1.50\%	0.35\%	1.06\%	0.79\%	1.84\%	0.42\%	1.28\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.21\%	0.90\%	0.09\%	0.36\%	0.12\%	0.58\%	0.06\%	0.21\%	0.20\%	0.68\%	0.09\%	0.34\%	0.47\%	1.43\%	0.23\%	0.79\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.48\%	2.02\%	0.22\%	0.85\%	0.20\%	0.94\%	0.09\%	0.35\%	0.33\%	1.25\%	0.15\%	0.58\%	0.34\%	1.18\%	0.16\%	0.60\%
Appliance/Electronic Total		6.08\%	11.53\%	3.69\%	9.02\%	5.26\%	13.18\%	2.86\%	8.33\%	2.99\%	7.24\%	1.75\%	4.54\%	6.29\%	13.24\%	3.63\%	9.62\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.02\%	0.14\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
$C \& D$ Debris	Treated/Contaminated Wood	0.09\%	0.28\%	0.04\%	0.15\%	0.08\%	0.53\%	0.04\%	0.15\%	0.08\%	0.50\%	0.03\%	0.15\%	0.04\%	0.12\%	0.02\%	0.07\%
$C \& D$ Debris	Gypsum Scrap	0.01\%	0.05\%	0.00\%	0.02\%	0.01\%	0.05\%	0.00\%	0.01\%	0.03\%	0.15\%	0.01\%	0.06\%	0.02\%	0.12\%	0.01\%	0.04\%
$C \& D$ Debris	Rock/Concrete/Bricks	0.10\%	0.45\%	0.05\%	0.18\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.11\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
C\&D Debris	Other Construction Debris	0.14\%	0.36\%	0.07\%	0.23\%	0.05\%	0.20\%	0.02\%	0.09\%	0.02\%	0.09\%	0.01\%	0.04\%	0.07\%	0.21\%	0.03\%	0.12\%
C \& D Debris Total		0.36\%	0.67\%	0.20\%	0.56\%	0.15\%	0.56\%	0.07\%	0.25\%	0.15\%	0.52\%	0.08\%	0.26\%	0.13\%	0.26\%	0.07\%	0.20\%

Table 1-187
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Medium Income (continued)

Table 1-188
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Low Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	0.57\%	1.22\%	0.32\%	0.89\%	1.75\%	4.33\%	1.02\%	2.68\%	0.61\%	1.52\%	0.32\%	0.99\%	0.87\%	1.69\%	0.49\%	1.35\%
Paper	Plain OCC/Kraft Paper	0.25\%	0.37\%	0.15\%	0.38\%	0.37\%	0.58\%	0.22\%	0.55\%	0.32\%	0.54\%	0.19\%	0.49\%	0.38\%	0.48\%	0.24\%	0.55\%
Paper	High Grade Paper	0.12\%	0.38\%	0.06\%	0.21\%	0.04\%	0.16\%	0.02\%	0.06\%	0.08\%	0.36\%	0.04\%	0.13\%	0.07\%	0.18\%	0.04\%	0.12\%
Paper	Mixed Low Grade Paper	1.44\%	1.35\%	1.10\%	1.82\%	1.49\%	1.20\%	1.16\%	1.86\%	2.29\%	2.90\%	1.69\%	2.96\%	1.42\%	1.17\%	1.13\%	1.75\%
Paper	Phone Books/Paperbacks	0.12\%	0.47\%	0.06\%	0.22\%	0.11\%	0.68\%	0.05\%	0.20\%	0.06\%	0.26\%	0.03\%	0.11\%	0.07\%	0.36\%	0.03\%	0.13\%
Paper	Paper Bags	0.03\%	0.05\%	0.01\%	0.04\%	0.04\%	0.12\%	0.02\%	0.07\%	0.03\%	0.06\%	0.02\%	0.05\%	0.07\%	0.12\%	0.04\%	0.11\%
Paper	Polycoated Paper Containers	1.45\%	0.94\%	1.20\%	1.72\%	2.25\%	0.83\%	2.02\%	2.49\%	2.23\%	1.24\%	1.92\%	2.56\%	2.21\%	1.31\%	1.90\%	2.54\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.27\%	0.30\%	0.19\%	0.36\%	0.48\%	0.69\%	0.35\%	0.64\%	0.26\%	0.32\%	0.19\%	0.35\%	0.51\%	0.52\%	0.39\%	0.65\%
Paper	Single Use Paper Plates, Cups	0.03\%	0.05\%	0.02\%	0.04\%	0.06\%	0.07\%	0.04\%	0.09\%	0.05\%	0.06\%	0.03\%	0.08\%	0.14\%	0.54\%	0.08\%	0.21\%
Paper	Other Nonrecyclable Paper	0.47\%	0.43\%	0.36\%	0.60\%	0.56\%	0.42\%	0.45\%	0.69\%	0.37\%	0.32\%	0.28\%	0.49\%	0.81\%	0.69\%	0.65\%	0.99\%
Paper Total		4.74\%	2.60\%	4.08\%	5.46\%	7.15\%	5.65\%	6.00\%	8.40\%	6.31\%	4.20\%	5.27\%	7.43\%	6.55\%	3.26\%	5.72\%	7.44\%
Plastic	PET Botlles	5.31\%	2.55\%	4.60\%	6.06\%	6.76\%	1.97\%	6.23\%	7.30\%	6.95\%	2.39\%	6.29\%	7.63\%	8.56\%	3.20\%	7.73\%	9.44\%
Plastic	HDPE Bottles: Natural	2.73\%	2.07\%	2.23\%	3.29\%	4.07\%	2.13\%	3.47\%	4.72\%	3.01\%	1.39\%	2.64\%	3.39\%	3.21\%	1.50\%	2.80\%	3.65\%
Plastic	HDPE Bottles: Colored	2.58\%	1.57\%	2.11\%	3.10\%	3.74\%	1.71\%	3.19\%	4.34\%	3.67\%	1.49\%	3.25\%	4.12\%	3.08\%	1.40\%	2.65\%	3.54\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.03\%	0.00\%	0.01\%	0.02\%	0.09\%	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.06\%	0.01\%	0.03\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.17\%	0.79\%	0.08\%	0.28\%	0.40\%	1.00\%	0.21\%	0.64\%	0.08\%	0.19\%	0.04\%	0.13\%	0.23\%	0.75\%	0.13\%	0.36\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.04\%	0.07\%	0.02\%	0.06\%	0.03\%	0.05\%	0.02\%	0.05\%	0.04\%	0.10\%	0.02\%	0.06\%	0.03\%	0.06\%	0.02\%	0.05\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.01\%	0.03\%	0.01\%	0.02\%	0.01\%	0.04\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.03\%	0.07\%	0.01\%	0.04\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.12\%	0.17\%	0.08\%	0.18\%	0.14\%	0.20\%	0.09\%	0.20\%	0.15\%	0.20\%	0.10\%	0.21\%	0.15\%	0.17\%	0.10\%	0.20\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.31\%	0.99\%	0.17\%	0.49\%	0.19\%	0.20\%	0.14\%	0.25\%	0.15\%	0.23\%	0.09\%	0.22\%	0.19\%	0.27\%	0.13\%	0.26\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.02\%	0.07\%	0.01\%	0.04\%	0.01\%	0.05\%	0.00\%	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.02\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.12\%	0.01\%	0.03\%	0.05\%	0.28\%	0.02\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.18\%	0.20\%	0.13\%	0.24\%	0.34\%	0.30\%	0.26\%	0.43\%	0.38\%	0.45\%	0.27\%	0.51\%	0.54\%	0.75\%	0.40\%	0.70\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.08\%	0.27\%	0.04\%	0.13\%	0.17\%	0.62\%	0.08\%	0.29\%	0.03\%	0.12\%	0.01\%	0.04\%	0.02\%	0.04\%	0.01\%	0.03\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.03\%	0.00\%	0.01\%	0.09\%	0.59\%	0.04\%	0.17\%	0.14\%	0.54\%	0.06\%	0.24\%	0.12\%	0.43\%	0.05\%	0.21\%
Plastic	Other PVC	0.24\%	1.49\%	0.10\%	0.43\%	0.02\%	0.11\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.42\%	1.83\%	0.19\%	0.73\%
Plastic	Rigid Polystyrene Containers and Packaging	0.04\%	0.05\%	0.03\%	0.06\%	0.33\%	0.74\%	0.22\%	0.47\%	0.20\%	0.53\%	0.13\%	0.29\%	0.13\%	0.12\%	0.09\%	0.17\%
Plastic	Expanded Polystyrene Containers and Packaging	0.09\%	0.13\%	0.06\%	0.13\%	0.12\%	0.13\%	0.09\%	0.16\%	0.08\%	0.12\%	0.05\%	0.11\%	0.13\%	0.13\%	0.09\%	0.17\%
Plastic	Other Rigid Containers/Packaging	1.15\%	0.87\%	0.94\%	1.38\%	1.06\%	0.55\%	0.91\%	1.22\%	1.16\%	0.66\%	0.98\%	1.36\%	1.32\%	1.16\%	1.10\%	1.55\%
Plastic	Plastic Bags	0.41\%	0.31\%	0.32\%	0.51\%	1.06\%	2.00\%	0.79\%	1.38\%	0.73\%	0.54\%	0.59\%	0.90\%	1.22\%	1.15\%	0.93\%	1.54\%
Plastic	Other Film	3.02\%	1.41\%	2.58\%	3.49\%	3.51\%	1.36\%	3.16\%	3.89\%	3.82\%	1.58\%	3.36\%	4.32\%	2.85\%	1.87\%	2.38\%	3.36\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.12\%	0.13\%	0.08\%	0.16\%	0.15\%	0.17\%	0.11\%	0.20\%	0.18\%	0.15\%	0.13\%	0.23\%	0.29\%	0.16\%	0.24\%	0.34\%
Plastic	Other Plastics Materials	3.75\%	4.88\%	2.77\%	4.88\%	2.79\%	2.41\%	2.23\%	3.41\%	3.36\%	2.86\%	2.62\%	4.18\%	3.65\%	3.06\%	2.88\%	4.50\%
Plastic Total		20.37\%	9.62\%	17.77\%	23.11\%	25.05\%	7.48\%	23.00\%	27.15\%	24.17\%	6.88\%	22.27\%	26.12\%	26.17\%	8.29\%	23.95\%	28.46\%
Glass	Clear Container Glass	6.61\%	5.90\%	5.05\%	8.37\%	8.21\%	5.52\%	6.74\%	9.80\%	10.88\%	7.25\%	8.78\%	13.17\%	9.50\%	7.35\%	7.58\%	11.61\%
Glass	Green Container Glass	1.44\%	2.58\%	0.91\%	2.10\%	1.74\%	1.80\%	1.23\%	2.32\%	2.55\%	2.24\%	1.92\%	3.27\%	2.46\%	2.34\%	1.81\%	3.20\%
Glass	Brown Container Glass	1.30\%	1.61\%	0.96\%	1.71\%	1.76\%	1.88\%	1.25\%	2.35\%	2.17\%	1.77\%	1.61\%	2.81\%	2.46\%	1.98\%	1.92\%	3.07\%
Glass	Mixed Cullet	11.84\%	11.26\%	9.12\%	14.87\%	14.17\%	10.47\%	11.63\%	16.92\%	14.61\%	9.62\%	12.05\%	17.36\%	19.06\%	11.94\%	15.77\%	22.59\%
Glass	Other Container Glass	0.44\%	1.52\%	0.21\%	0.74\%	0.10\%	0.28\%	0.05\%	0.16\%	0.18\%	0.85\%	0.08\%	0.30\%	0.11\%	0.29\%	0.05\%	0.18\%
Glass	Other Glass	0.54\%	0.93\%	0.33\%	0.81\%	0.43\%	0.88\%	0.25\%	0.65\%	0.45\%	0.93\%	0.25\%	0.71\%	0.25\%	0.44\%	0.14\%	0.39\%
Glass Total		22.18\%	13.78\%	18.50\%	26.09\%	26.39\%	12.91\%	23.10\%	29.82\%	30.83\%	12.18\%	27.42\%	34.35\%	33.84\%	14.09\%	30.07\%	37.72\%

Table 1-188
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Low Income (continued)

			F														
				Confiden	Interval												
Material Group	Material ${ }^{(1)}$	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.39\%	0.31\%	0.32\%	0.47\%	0.46\%	0.33\%	0.38\%	0.55\%	0.63\%	0.40\%	0.53\%	0.74\%	0.86\%	0.35\%	0.77\%	0.96\%
Metal	Aluminum Foil/Containers	1.32\%	1.44\%	0.99\%	1.69\%	1.13\%	0.99\%	0.89\%	1.40\%	1.12\%	1.01\%	0.87\%	1.41\%	1.18\%	1.46\%	0.89\%	1.51\%
Metal	Other Aluminum	0.04\%	0.13\%	0.02\%	0.07\%	0.06\%	0.24\%	0.03\%	0.11\%	0.40\%	1.21\%	0.20\%	0.66\%	0.46\%	1.82\%	0.22\%	0.79\%
Metal	Other Non-Ferrous	0.14\%	0.44\%	0.07\%	0.24\%	1.48\%	6.02\%	0.70\%	2.53\%	1.06\%	3.94\%	0.52\%	1.79\%	0.60\%	1.28\%	0.35\%	0.93\%
Metal	Tin Food Cans	9.02\%	4.78\%	7.72\%	10.40\%	9.87\%	4.06\%	8.81\%	10.98\%	9.19\%	3.00\%	8.38\%	10.03\%	7.03\%	2.24\%	6.44\%	7.65\%
Metal	Empty Aerosol Cans	0.54\%	0.41\%	0.41\%	0.70\%	0.80\%	0.58\%	0.65\%	0.95\%	0.76\%	0.66\%	0.57\%	0.98\%	0.91\%	0.48\%	0.78\%	1.06\%
Metal	Other Ferrous	18.98\%	15.94\%	14.32\%	24.12\%	12.99\%	11.77\%	10.06\%	16.22\%	11.64\%	12.16\%	8.77\%	14.85\%	11.24\%	9.92\%	8.74\%	14.01\%
Metal	Mixed Metals	3.51\%	6.72\%	2.04\%	5.35\%	2.93\%	5.78\%	1.72\%	4.45\%	2.53\%	6.49\%	1.35\%	4.08\%	1.43\%	2.45\%	0.85\%	2.16\%
Metal Total		33.94\%	17.05\%	29.13\%	38.92\%	29.71\%	13.71\%	26.13\%	33.42\%	27.33\%	12.99\%	23.97\%	30.83\%	23.72\%	10.45\%	21.02\%	26.53\%
Organics	Leaves and Grass	0.00\%	0.01\%	0.00\%	0.00\%	0.02\%	0.12\%	0.01\%	0.03\%	0.02\%	0.10\%	0.01\%	0.03\%	0.01\%	0.05\%	0.00\%	0.01\%
Organics	Prunings	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	1.05\%	1.05\%	0.75\%	1.39\%	2.02\%	1.74\%	1.57\%	2.53\%	2.01\%	1.99\%	1.45\%	2.66\%	2.13\%	1.87\%	1.54\%	2.80\%
Organics	Wood Furniture/Furniture Pieces	0.25\%	1.04\%	0.11\%	0.43\%	0.25\%	0.98\%	0.12\%	0.43\%	0.04\%	0.14\%	0.02\%	0.08\%	0.22\%	0.72\%	0.11\%	0.38\%
Organics	Non-C\&D Untreated Wood	0.04\%	0.14\%	0.02\%	0.08\%	0.12\%	0.53\%	0.06\%	0.21\%	0.06\%	0.23\%	0.03\%	0.11\%	0.01\%	0.03\%	0.00\%	0.01\%
Organics	Non-Clothing Textiles	0.18\%	0.88\%	0.08\%	0.31\%	0.06\%	0.16\%	0.03\%	0.10\%	0.07\%	0.36\%	0.03\%	0.12\%	0.09\%	0.20\%	0.05\%	0.15\%
Organics	Clothing Textiles	0.15\%	0.39\%	0.08\%	0.25\%	0.06\%	0.19\%	0.03\%	0.11\%	0.02\%	0.10\%	0.01\%	0.04\%	0.11\%	0.22\%	0.06\%	0.18\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.15\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%
Organics	Disposable Diapers and Sanitary Products	0.04\%	0.19\%	0.02\%	0.07\%	0.03\%	0.10\%	0.01\%	0.04\%	0.04\%	0.16\%	0.02\%	0.07\%	0.19\%	0.38\%	0.10\%	0.30\%
Organics	Animal By-Products	0.01\%	0.08\%	0.01\%	0.02\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Rubber Products	0.02\%	0.05\%	0.01\%	0.04\%	0.10\%	0.46\%	0.05\%	0.17\%	0.04\%	0.13\%	0.02\%	0.07\%	0.14\%	0.37\%	0.07\%	0.22\%
Organics	Shoes	0.01\%	0.07\%	0.00\%	0.02\%	0.14\%	0.72\%	0.06\%	0.26\%	0.08\%	0.40\%	0.03\%	0.14\%	0.05\%	0.16\%	0.02\%	0.08\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Fines	0.10\%	0.22\%	0.07\%	0.15\%	0.17\%	0.22\%	0.12\%	0.22\%	0.30\%	0.43\%	0.21\%	0.40\%	0.31\%	0.54\%	0.22\%	0.42\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	1.07\%	6.76\%	0.43\%	1.99\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Miscellaneous Organics	0.18\%	0.39\%	0.09\%	0.29\%	0.01\%	0.07\%	0.00\%	0.02\%	0.07\%	0.32\%	0.03\%	0.12\%	1.00\%	6.26\%	0.41\%	1.85\%
Organics Total		2.03\%	2.13\%	1.54\%	2.59\%	3.01\%	2.24\%	2.46\%	3.62\%	3.81\%	6.90\%	2.68\%	5.14\%	4.25\%	6.74\%	3.10\%	5.58\%
Appliance/Electronic	Appliances: Ferrous	12.22\%	22.26\%	6.86\%	18.85\%	5.71\%	16.55\%	2.70\%	9.74\%	3.36\%	8.04\%	1.70\%	5.55\%	2.01\%	7.77\%	0.96\%	3.43\%
Appliance/Electronic	Appliances: Non-Ferrous	0.01\%	0.04\%	0.00\%	0.01\%	0.01\%	0.09\%	0.01\%	0.03\%	0.17\%	1.04\%	0.07\%	0.30\%	0.42\%	1.78\%	0.19\%	0.74\%
Appliance/Electronic	Appliances: Plastic	1.86\%	3.76\%	1.02\%	2.96\%	0.43\%	0.96\%	0.23\%	0.70\%	1.21\%	2.90\%	0.65\%	1.94\%	0.63\%	1.85\%	0.32\%	1.05\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.30\%	1.18\%	0.14\%	0.52\%	0.15\%	0.52\%	0.07\%	0.25\%	0.19\%	0.73\%	0.09\%	0.33\%	0.34\%	1.15\%	0.16\%	0.58\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.06\%	0.42\%	0.03\%	0.12\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.67\%	2.78\%	0.30\%	1.17\%	0.68\%	2.57\%	0.32\%	1.16\%	0.47\%	1.67\%	0.22\%	0.81\%	0.32\%	2.05\%	0.14\%	0.59\%
Appliance/Electronic Total		15.05\%	22.79\%	9.51\%	21.61\%	7.05\%	16.34\%	3.91\%	11.02\%	5.40\%	8.93\%	3.31\%	7.96\%	3.72\%	9.80\%	2.05\%	5.85\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.03\%	0.21\%	0.01\%	0.06\%	0.01\%	0.06\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%
C \& D Debris	Treated/Contaminated Wood	0.01\%	0.05\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.16\%	0.01\%	0.05\%	0.04\%	0.17\%	0.02\%	0.08\%
C \& D Debris	Gypsum Scrap	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.01\%	0.03\%	0.13\%	0.01\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.61\%	3.70\%	0.26\%	1.12\%	0.03\%	0.15\%	0.01\%	0.05\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Other Construction Debris	0.24\%	0.84\%	0.12\%	0.41\%	0.67\%	4.33\%	0.28\%	1.22\%	0.18\%	1.05\%	0.08\%	0.32\%	0.19\%	0.90\%	0.09\%	0.34\%
C \& D Debris Total		0.90\%	3.89\%	0.43\%	1.55\%	0.71\%	4.33\%	0.31\%	1.27\%	0.25\%	1.06\%	0.12\%	0.42\%	0.24\%	0.91\%	0.12\%	0.41\%

Table 1-188
Statistical Results, WCS Results Across Seasons, MGP, Medium Density/Low Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Miscellaneous Inorganics	Miscellaneous Inorganics	0.08\%	0.27\%	0.04\%	0.14\%	0.09\%	0.25\%	0.05\%	0.15\%	0.01\%	0.04\%	0.00\%	0.01\%	0.77\%	4.40\%	0.34\%	1.36\%
Miscellaneous Inorganics	Ceramics	0.47\%	1.09\%	0.26\%	0.75\%	0.37\%	0.74\%	0.21\%	0.57\%	0.78\%	1.56\%	0.48\%	1.16\%	0.40\%	0.45\%	0.27\%	0.56\%
Miscellaneous Inorganics	cs Total	0.55\%	1.20\%	0.31\%	0.86\%	0.46\%	0.78\%	0.28\%	0.68\%	0.79\%	1.55\%	0.49\%	1.17\%	1.17\%	4.46\%	0.67\%	1.80\%
HHW	Oil Filters	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.07\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Antifreeze	0.02\%	0.13\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Wet-Cell Batteries	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Latex Paints/Water-Based Adhesives/Glues	0.08\%	0.34\%	0.03\%	0.14\%	0.27\%	1.10\%	0.12\%	0.46\%	0.23\%	1.06\%	0.10\%	0.41\%	0.21\%	1.08\%	0.10\%	0.38\%
HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.54\%	3.43\%	0.22\%	1.00\%	0.05\%	0.27\%	0.02\%	0.09\%
HHW	Pesticides/Herbicides/Rodenticides	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Dry-Cell Batteries	0.08\%	0.42\%	0.04\%	0.14\%	0.04\%	0.11\%	0.02\%	0.07\%	0.02\%	0.07\%	0.01\%	0.04\%	0.01\%	0.04\%	0.01\%	0.02\%
HHW	Fluorescent Tubes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Mercury-Laden Wastes	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
HHW	Home Medical Products	0.00\%	0.01\%	0.00\%	0.00\%	0.01\%	0.06\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.00\%	0.02\%	0.12\%	0.01\%	0.04\%
HHW	Other Potentially Harmful Wastes	0.05\%	0.20\%	0.02\%	0.08\%	0.13\%	0.70\%	0.06\%	0.22\%	0.31\%	1.68\%	0.14\%	0.56\%	0.03\%	0.12\%	0.01\%	0.05\%
HHW Total		0.23\%	0.72\%	0.11\%	0.38\%	0.46\%	1.28\%	0.25\%	0.74\%	1.11\%	4.71\%	0.53\%	1.90\%	0.32\%	1.10\%	0.17\%	0.53\%
GRAND TOTAL		100.00\%				100.00\%				100.00\%				100.00\%			

Table 1-189
Statistical Results, WCS Results Across Seasons, MGP, Low Density/High Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
$\overline{\text { Paper }}$	Newspaper	0.80\%	1.40\%	0.47\%	1.23\%	1.64\%	3.39\%	1.00\%	2.43\%	0.48\%	1.07\%	0.26\%	0.77\%	0.75\%	1.38\%	0.44\%	1.16\%
Paper	Plain OCC/Kraft Paper	0.45\%	1.31\%	0.25\%	0.72\%	0.38\%	0.70\%	0.23\%	0.56\%	0.32\%	0.57\%	0.19\%	0.48\%	0.51\%	0.73\%	0.32\%	0.75\%
Paper	High Grade Paper	0.05\%	0.25\%	0.02\%	0.09\%	0.02\%	0.08\%	0.01\%	0.04\%	0.07\%	0.21\%	0.03\%	0.11\%	0.10\%	0.31\%	0.05\%	0.17\%
Paper	Mixed Low Grade Paper	1.34\%	1.44\%	0.94\%	1.81\%	1.26\%	1.37\%	0.96\%	1.61\%	2.67\%	2.80\%	2.02\%	3.40\%	1.00\%	1.24\%	0.72\%	1.32\%
Paper	Phone Books/Paperbacks	0.00\%	0.00\%	0.00\%	0.00\%	0.09\%	0.53\%	0.04\%	0.16\%	0.01\%	0.09\%	0.01\%	0.03\%	0.24\%	0.71\%	0.12\%	0.41\%
Paper	Paper Bags	0.05\%	0.18\%	0.02\%	0.08\%	0.05\%	0.16\%	0.03\%	0.08\%	0.06\%	0.14\%	0.04\%	0.10\%	0.07\%	0.12\%	0.04\%	0.10\%
Paper	Polycoated Paper Containers	1.71\%	1.48\%	1.33\%	2.14\%	1.78\%	0.94\%	1.55\%	2.02\%	1.98\%	1.00\%	1.73\%	2.26\%	1.70\%	0.82\%	1.49\%	1.93\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.26\%	0.30\%	0.17\%	0.36\%	0.34\%	0.54\%	0.24\%	0.47\%	0.41\%	0.49\%	0.29\%	0.55\%	0.60\%	0.63\%	0.47\%	0.75\%
Paper	Single Use Paper Plates, Cups	0.05\%	0.13\%	0.03\%	0.08\%	0.05\%	0.06\%	0.03\%	0.07\%	0.09\%	0.18\%	0.05\%	0.13\%	0.05\%	0.08\%	0.03\%	0.08\%
Paper	Other Nonrecyclable Paper	0.36\%	0.35\%	0.26\%	0.49\%	0.35\%	0.40\%	0.25\%	0.46\%	0.30\%	0.28\%	0.22\%	0.39\%	0.54\%	0.35\%	0.44\%	0.64\%
Paper Total		5.07\%	3.72\%	4.02\%	6.24\%	5.97\%	4.67\%	4.89\%	7.14\%	6.40\%	4.03\%	5.39\%	7.49\%	5.56\%	2.97\%	4.82\%	6.36\%
Plastic	PET Bottles	6.72\%	3.69\%	5.65\%	7.88\%	7.25\%	2.48\%	6.60\%	7.93\%	7.49\%	2.21\%	6.90\%	8.11\%	9.45\%	2.93\%	8.66\%	10.28\%
Plastic	HDPE Bottles: Natural	2.31\%	1.28\%	1.90\%	2.76\%	2.92\%	1.31\%	2.60\%	3.26\%	2.84\%	1.07\%	2.57\%	3.13\%	2.80\%	1.02\%	2.54\%	3.08\%
Plastic	HDPE Bottles: Colored	3.90\%	2.72\%	3.15\%	4.73\%	3.51\%	1.59\%	3.08\%	3.97\%	4.15\%	1.37\%	3.77\%	4.54\%	4.02\%	1.82\%	3.54\%	4.53\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.07\%	0.16\%	0.04\%	0.12\%	0.02\%	0.06\%	0.01\%	0.03\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.04\%	0.00\%	0.01\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.32\%	0.65\%	0.18\%	0.51\%	0.08\%	0.31\%	0.04\%	0.14\%	0.16\%	0.51\%	0.08\%	0.27\%	0.14\%	0.35\%	0.08\%	0.22\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.08\%	0.16\%	0.04\%	0.12\%	0.06\%	0.17\%	0.03\%	0.10\%	0.01\%	0.05\%	0.00\%	0.02\%	0.05\%	0.10\%	0.03\%	0.08\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.12\%	0.19\%	0.07\%	0.18\%	0.16\%	0.26\%	0.11\%	0.22\%	0.11\%	0.15\%	0.07\%	0.16\%	0.09\%	0.10\%	0.06\%	0.13\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.21\%	0.26\%	0.14\%	0.30\%	0.23\%	0.33\%	0.15\%	0.32\%	0.12\%	0.14\%	0.08\%	0.17\%	0.31\%	0.29\%	0.23\%	0.42\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.29\%	0.02\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.33\%	0.39\%	0.24\%	0.45\%	0.47\%	1.14\%	0.32\%	0.64\%	0.48\%	0.35\%	0.39\%	0.60\%	0.37\%	0.23\%	0.31\%	0.43\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.08\%	0.15\%	0.04\%	0.12\%	0.04\%	0.11\%	0.02\%	0.06\%	0.07\%	0.23\%	0.04\%	0.13\%	0.06\%	0.30\%	0.03\%	0.11\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.07\%	0.01\%	0.02\%	0.11\%	0.32\%	0.05\%	0.19\%	0.05\%	0.22\%	0.02\%	0.08\%
Plastic	Other PVC	0.03\%	0.17\%	0.01\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.45\%	0.05\%	0.18\%
Plastic	Rigid Polystyrene Containers and Packaging	0.30\%	0.57\%	0.19\%	0.43\%	0.39\%	0.79\%	0.29\%	0.52\%	0.50\%	0.53\%	0.38\%	0.63\%	0.22\%	0.27\%	0.16\%	0.29\%
Plastic	Expanded Polystyrene Containers and Packaging	0.04\%	0.08\%	0.02\%	0.07\%	0.17\%	0.31\%	0.11\%	0.25\%	0.09\%	0.09\%	0.06\%	0.12\%	0.10\%	0.11\%	0.07\%	0.14\%
Plastic	Other Rigid Containers/Packaging	1.19\%	0.75\%	0.94\%	1.46\%	1.16\%	0.74\%	0.98\%	1.36\%	1.44\%	0.81\%	1.21\%	1.69\%	1.28\%	0.56\%	1.13\%	1.45\%
Plastic	Plastic Bags	0.79\%	0.59\%	0.63\%	0.96\%	0.97\%	0.59\%	0.83\%	1.12\%	1.05\%	0.66\%	0.88\%	1.22\%	1.39\%	0.77\%	1.20\%	1.60\%
Plastic	Other Film	2.46\%	2.11\%	1.96\%	3.01\%	2.14\%	1.31\%	1.79\%	2.52\%	2.06\%	0.93\%	1.82\%	2.31\%	1.75\%	1.02\%	1.49\%	2.02\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.13\%	0.19\%	0.08\%	0.18\%	0.18\%	0.16\%	0.13\%	0.23\%	0.22\%	0.13\%	0.18\%	0.27\%	0.37\%	0.27\%	0.31\%	0.43\%
Plastic	Other Plastics Materials	4.02\%	3.24\%	3.07\%	5.09\%	2.87\%	2.51\%	2.30\%	3.50\%	4.06\%	2.93\%	3.32\%	4.87\%	2.71\%	1.77\%	2.27\%	3.20\%
Plastic Total		23.12\%	9.96\%	19.88\%	26.51\%	22.64\%	7.34\%	20.77\%	24.56\%	25.03\%	6.32\%	23.35\%	26.73\%	25.29\%	6.45\%	23.54\%	27.09\%
Glass	Clear Container Glass	9.27\%	6.30\%	7.35\%	11.39\%	11.05\%	5.79\%	9.59\%	12.59\%	12.79\%	6.09\%	11.06\%	14.63\%	11.80\%	5.82\%	10.11\%	13.61\%
Glass	Green Container Glass	3.47\%	3.99\%	2.38\%	4.77\%	3.55\%	3.04\%	2.72\%	4.48\%	3.69\%	2.32\%	3.06\%	4.37\%	3.28\%	2.35\%	2.64\%	3.99\%
Glass	Brown Container Glass	2.96\%	2.99\%	2.12\%	3.93\%	2.02\%	1.53\%	1.61\%	2.46\%	2.14\%	1.58\%	1.67\%	2.66\%	2.59\%	2.28\%	2.09\%	3.15\%
Glass	Mixed Cullet	12.03\%	11.99\%	9.04\%	15.39\%	12.47\%	8.06\%	10.43\%	14.67\%	10.67\%	7.78\%	8.78\%	12.72\%	16.67\%	10.64\%	13.83\%	19.72\%
Glass	Other Container Glass	0.12\%	0.38\%	0.06\%	0.20\%	0.18\%	0.56\%	0.09\%	0.30\%	0.32\%	1.47\%	0.15\%	0.55\%	0.22\%	0.48\%	0.11\%	0.35\%
Glass	Other Glass	0.40\%	0.79\%	0.23\%	0.62\%	0.69\%	1.39\%	0.41\%	1.05\%	0.27\%	0.56\%	0.15\%	0.44\%	0.37\%	0.97\%	0.21\%	0.58\%
Glass Total		28.25\%	13.56\%	23.92\%	32.80\%	29.95\%	11.66\%	26.82\%	33.19\%	29.88\%	8.94\%	27.43\%	32.40\%	34.94\%	10.18\%	32.16\%	37.77\%

Table 1-189
Statistical Results, WCS Results Across Seasons, MGP, Low Density/High Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	1.00\%	0.84\%	0.79\%	1.24\%	1.06\%	1.02\%	0.86\%	1.28\%	0.86\%	0.46\%	0.75\%	0.98\%	1.37\%	0.63\%	1.21\%	1.54\%
Metal	Aluminum Foil/Containers	1.20\%	0.83\%	0.96\%	1.47\%	1.19\%	0.89\%	0.96\%	1.44\%	1.28\%	0.76\%	1.11\%	1.47\%	1.19\%	0.60\%	1.03\%	1.36\%
Metal	Other Aluminum	0.12\%	0.48\%	0.05\%	0.20\%	0.03\%	0.16\%	0.02\%	0.06\%	0.72\%	2.23\%	0.37\%	1.18\%	0.72\%	1.81\%	0.37\%	1.18\%
Metal	Other Non-Ferrous	0.61\%	1.61\%	0.32\%	0.99\%	1.12\%	2.97\%	0.62\%	1.77\%	1.31\%	2.39\%	0.80\%	1.96\%	1.13\%	1.71\%	0.70\%	1.67\%
Metal	Tin Food Cans	7.87\%	3.50\%	6.69\%	9.15\%	8.01\%	3.46\%	7.12\%	8.95\%	7.70\%	2.93\%	6.95\%	8.48\%	6.49\%	2.16\%	5.88\%	7.12\%
Metal	Empty Aerosol Cans	0.70\%	0.58\%	0.52\%	0.91\%	0.54\%	0.42\%	0.43\%	0.68\%	0.69\%	0.52\%	0.54\%	0.86\%	0.78\%	0.46\%	0.66\%	0.92\%
Metal	Other Ferrous	13.99\%	16.80\%	9.84\%	18.73\%	16.90\%	18.62\%	12.35\%	22.00\%	13.68\%	11.33\%	10.63\%	17.05\%	10.41\%	9.18\%	7.95\%	13.16\%
Metal	Mixed Metals	3.60\%	10.20\%	1.88\%	5.85\%	2.07\%	4.23\%	1.25\%	3.10\%	2.45\%	5.53\%	1.30\%	3.94\%	3.41\%	8.87\%	1.92\%	5.30\%
Metal Total		29.09\%	17.12\%	24.14\%	34.31\%	30.93\%	15.64\%	27.00\%	35.01\%	28.69\%	10.63\%	25.87\%	31.60\%	25.50\%	11.16\%	22.69\%	28.42\%
Organics	Leaves and Grass	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.05\%	0.30\%	0.02\%	0.09\%	0.02\%	0.12\%	0.01\%	0.04\%
Organics	Prunings	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.05\%	0.01\%	0.02\%
Organics	Stumps/Limbs	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.06\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	1.78\%	2.96\%	1.11\%	2.60\%	1.39\%	1.84\%	0.96\%	1.90\%	2.54\%	2.08\%	2.01\%	3.14\%	1.85\%	1.64\%	1.39\%	2.39\%
Organics	Wood Furniture/Furniture Pieces	0.10\%	0.49\%	0.05\%	0.18\%	0.09\%	0.45\%	0.05\%	0.16\%	0.04\%	0.11\%	0.02\%	0.07\%	0.17\%	0.71\%	0.08\%	0.29\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.01\%	0.00\%	0.01\%	0.02\%	0.10\%	0.01\%	0.04\%	0.01\%	0.07\%	0.01\%	0.02\%	0.04\%	0.15\%	0.02\%	0.07\%
Organics	Non-Clothing Textiles	0.12\%	0.31\%	0.06\%	0.19\%	0.08\%	0.22\%	0.04\%	0.14\%	0.02\%	0.06\%	0.01\%	0.03\%	0.13\%	0.25\%	0.08\%	0.21\%
Organics	Clothing Textiles	0.03\%	0.09\%	0.02\%	0.06\%	0.05\%	0.22\%	0.03\%	0.09\%	0.11\%	0.24\%	0.06\%	0.18\%	0.08\%	0.25\%	0.04\%	0.13\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.26\%	0.02\%	0.08\%
Organics	Disposable Diapers and Sanitary Products	0.17\%	0.54\%	0.08\%	0.28\%	0.10\%	0.31\%	0.05\%	0.16\%	0.15\%	0.46\%	0.07\%	0.25\%	0.14\%	0.45\%	0.07\%	0.23\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.09\%	0.40\%	0.04\%	0.16\%	0.15\%	0.94\%	0.06\%	0.27\%
Organics	Rubber Products	0.04\%	0.15\%	0.02\%	0.07\%	0.02\%	0.08\%	0.01\%	0.04\%	0.16\%	0.66\%	0.08\%	0.26\%	0.05\%	0.08\%	0.03\%	0.08\%
Organics	Shoes	0.02\%	0.15\%	0.01\%	0.04\%	0.03\%	0.17\%	0.02\%	0.06\%	0.03\%	0.15\%	0.02\%	0.06\%	0.02\%	0.06\%	0.01\%	0.03\%
Organics	Other Leather Products	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.01\%	0.02\%	0.11\%	0.01\%	0.03\%
Organics	Fines	0.13\%	0.25\%	0.08\%	0.18\%	0.18\%	0.18\%	0.14\%	0.23\%	0.16\%	0.24\%	0.12\%	0.21\%	0.42\%	0.65\%	0.29\%	0.58\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.29\%	0.02\%	0.08\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.52\%	0.03\%	0.15\%
Organics	Miscellaneous Organics	0.16\%	0.45\%	0.08\%	0.27\%	0.04\%	0.19\%	0.02\%	0.07\%	0.09\%	0.30\%	0.04\%	0.15\%	0.11\%	0.41\%	0.05\%	0.19\%
Organics Total		2.56\%	3.29\%	1.79\%	3.47\%	2.08\%	2.13\%	1.58\%	2.65\%	3.49\%	2.45\%	2.86\%	4.17\%	3.35\%	2.96\%	2.67\%	4.10\%
Appliance/Electronic	Appliances: Ferrous	8.49\%	23.81\%	3.65\%	15.10\%	4.91\%	14.58\%	2.44\%	8.18\%	3.88\%	10.73\%	1.91\%	6.51\%	1.92\%	6.17\%	0.91\%	3.29\%
Appliance/Electronic	Appliances: Non-Ferrous	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.08\%	0.33\%	0.04\%	0.14\%	0.82\%	4.16\%	0.37\%	1.45\%
Appliance/Electronic	Appliances: Plastic	0.89\%	1.79\%	0.48\%	1.41\%	1.03\%	2.39\%	0.57\%	1.62\%	0.39\%	0.84\%	0.20\%	0.64\%	0.62\%	1.37\%	0.34\%	0.99\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.19\%	0.83\%	0.09\%	0.33\%	0.43\%	1.54\%	0.21\%	0.71\%	0.44\%	2.18\%	0.20\%	0.76\%	0.37\%	1.37\%	0.17\%	0.64\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.84\%	2.63\%	0.41\%	1.43\%	0.79\%	2.86\%	0.38\%	1.33\%	0.59\%	3.06\%	0.26\%	1.05\%	0.42\%	2.12\%	0.19\%	0.75\%
Appliance/Electronic Total		10.41\%	23.37\%	5.35\%	16.90\%	7.15\%	14.52\%	4.27\%	10.70\%	5.38\%	11.09\%	3.09\%	8.26\%	4.15\%	7.85\%	2.48\%	6.23\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.19\%	0.01\%	0.06\%
C \& D Debris	Treated/Contaminated Wood	0.05\%	0.13\%	0.03\%	0.09\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.30\%	0.05\%	0.17\%	0.03\%	0.15\%	0.01\%	0.05\%
C \& D Debris	Gypsum Scrap	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.08\%	0.01\%	0.02\%	0.02\%	0.07\%	0.01\%	0.03\%
C \& D Debris	Rock/Concrete/Bricks	0.15\%	0.81\%	0.06\%	0.26\%	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.13\%	0.01\%	0.05\%	0.14\%	0.76\%	0.06\%	0.25\%
C \& D Debris	Other Construction Debris	0.02\%	0.09\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.28\%	0.78\%	0.14\%	0.46\%
C \& D Debris Total		0.22\%	0.86\%	0.11\%	0.36\%	0.00\%	0.02\%	0.00\%	0.01\%	0.15\%	0.33\%	0.08\%	0.24\%	0.49\%	1.06\%	0.27\%	0.76\%

Table 1-189
Statistical Results, WCS Results Across Seasons, MGP, Low Density/High Income (continued)

Table 1-190
Statistical Results, WCS Results Across Seasons, MGP, Low Density/Medium Income

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	0.48\%	0.81\%	0.28\%	0.74\%	1.10\%	1.57\%	0.69\%	1.59\%	1.12\%	2.78\%	0.57\%	1.86\%	0.89\%	1.75\%	0.51\%	1.37\%
Paper	Plain OCC/Kraft Paper	0.93\%	1.35\%	0.60\%	1.35\%	0.60\%	0.99\%	0.37\%	0.89\%	0.16\%	0.33\%	0.10\%	0.25\%	0.43\%	0.71\%	0.26\%	0.65\%
Paper	High Grade Paper	0.25\%	0.94\%	0.12\%	0.42\%	0.02\%	0.04\%	0.01\%	0.03\%	0.04\%	0.19\%	0.02\%	0.07\%	0.29\%	1.36\%	0.13\%	0.51\%
Paper	Mixed Low Grade Paper	1.87\%	2.18\%	1.41\%	2.39\%	1.86\%	1.60\%	1.41\%	2.38\%	1.66\%	1.49\%	1.29\%	2.08\%	1.20\%	1.47\%	0.88\%	1.57\%
Paper	Phone Books/Paperbacks	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.21\%	0.02\%	0.08\%	0.08\%	0.36\%	0.04\%	0.14\%	0.07\%	0.34\%	0.03\%	0.13\%
Paper	Paper Bags	0.03\%	0.07\%	0.02\%	0.05\%	0.10\%	0.49\%	0.05\%	0.17\%	0.03\%	0.07\%	0.02\%	0.05\%	0.06\%	0.13\%	0.03\%	0.10\%
Paper	Polycoated Paper Containers	1.59\%	1.06\%	1.30\%	1.91\%	1.80\%	1.16\%	1.47\%	2.16\%	1.45\%	1.04\%	1.18\%	1.76\%	1.28\%	0.67\%	1.11\%	1.47\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	0.38\%	0.56\%	0.26\%	0.52\%	0.31\%	0.43\%	0.21\%	0.43\%	0.19\%	0.26\%	0.13\%	0.27\%	0.41\%	0.43\%	0.31\%	0.53\%
Paper	Single Use Paper Plates, Cups	0.05\%	0.14\%	0.03\%	0.08\%	0.17\%	0.75\%	0.09\%	0.27\%	0.03\%	0.04\%	0.02\%	0.05\%	0.09\%	0.37\%	0.05\%	0.15\%
Paper	Other Nonrecyclable Paper	0.57\%	0.46\%	0.43\%	0.73\%	0.41\%	0.39\%	0.31\%	0.53\%	0.25\%	0.23\%	0.18\%	0.34\%	0.56\%	0.56\%	0.41\%	0.74\%
Paper Total		6.15\%	3.95\%	5.03\%	7.39\%	6.41\%	3.76\%	5.27\%	7.65\%	5.04\%	3.81\%	4.08\%	6.09\%	5.29\%	3.89\%	4.37\%	6.28\%
Plastic	PET Botlles	6.64\%	3.14\%	5.58\%	7.78\%	7.13\%	2.93\%	6.20\%	8.13\%	7.07\%	2.26\%	6.46\%	7.71\%	8.00\%	2.94\%	7.22\%	8.82\%
Plastic	HDPE Bottles: Natural	3.31\%	1.63\%	2.77\%	3.89\%	3.57\%	1.96\%	3.01\%	4.18\%	3.01\%	1.17\%	2.71\%	3.32\%	3.02\%	1.36\%	2.65\%	3.40\%
Plastic	HDPE Bottles: Colored	3.39\%	2.04\%	2.77\%	4.07\%	3.19\%	1.69\%	2.69\%	3.73\%	3.66\%	1.70\%	3.15\%	4.19\%	3.51\%	1.46\%	3.10\%	3.95\%
Plastic	\#1 \#2 Tubs/Trays/Other Containers: \#1 PET	0.01\%	0.06\%	0.01\%	0.03\%	0.02\%	0.09\%	0.01\%	0.04\%	0.01\%	0.05\%	0.01\%	0.02\%	0.00\%	0.02\%	0.00\%	0.01\%
Plastic	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.25\%	0.62\%	0.13\%	0.40\%	0.23\%	0.76\%	0.13\%	0.36\%	0.22\%	0.63\%	0.11\%	0.37\%	0.04\%	0.08\%	0.02\%	0.07\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.06\%	0.07\%	0.03\%	0.08\%	0.03\%	0.10\%	0.02\%	0.05\%	0.01\%	0.03\%	0.00\%	0.02\%	0.03\%	0.08\%	0.02\%	0.05\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.11\%	0.61\%	0.05\%	0.19\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.14\%	0.18\%	0.09\%	0.20\%	0.14\%	0.19\%	0.09\%	0.20\%	0.11\%	0.24\%	0.07\%	0.17\%	0.12\%	0.12\%	0.08\%	0.16\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.28\%	0.51\%	0.16\%	0.42\%	0.22\%	0.56\%	0.13\%	0.32\%	0.13\%	0.12\%	0.09\%	0.17\%	0.24\%	0.32\%	0.17\%	0.32\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.01\%	0.05\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.09\%	0.01\%	0.03\%	0.01\%	0.06\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.33\%	0.40\%	0.25\%	0.44\%	0.28\%	0.27\%	0.21\%	0.36\%	0.64\%	0.68\%	0.48\%	0.82\%	0.37\%	0.30\%	0.29\%	0.45\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.20\%	0.49\%	0.11\%	0.31\%	0.04\%	0.09\%	0.02\%	0.06\%	0.35\%	1.40\%	0.16\%	0.61\%	0.04\%	0.10\%	0.02\%	0.07\%
Plastic	Soda Crates and Bottle Carriers	0.00\%	0.02\%	0.00\%	0.01\%	0.11\%	0.48\%	0.05\%	0.19\%	0.12\%	0.48\%	0.05\%	0.21\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Other PVC	0.01\%	0.09\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.04\%	0.23\%	0.02\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.61\%	3.02\%	0.32\%	1.01\%	0.24\%	0.25\%	0.18\%	0.30\%	0.32\%	0.32\%	0.24\%	0.42\%	0.27\%	0.36\%	0.19\%	0.36\%
Plastic	Expanded Polystyrene Containers and Packaging	0.12\%	0.14\%	0.08\%	0.17\%	0.13\%	0.15\%	0.09\%	0.18\%	0.06\%	0.08\%	0.04\%	0.08\%	0.07\%	0.08\%	0.05\%	0.10\%
Plastic	Other Rigid Containers/Packaging	1.62\%	1.44\%	1.28\%	1.99\%	1.20\%	0.81\%	0.94\%	1.48\%	1.59\%	0.91\%	1.32\%	1.89\%	1.32\%	0.68\%	1.10\%	1.55\%
Plastic	Plastic Bags	0.78\%	0.50\%	0.61\%	0.96\%	0.72\%	0.70\%	0.54\%	0.91\%	0.98\%	0.49\%	0.84\%	1.12\%	1.43\%	1.14\%	1.15\%	1.73\%
Plastic	Other Film	3.20\%	1.81\%	2.65\%	3.81\%	2.44\%	1.31\%	2.06\%	2.86\%	2.10\%	1.17\%	1.82\%	2.41\%	1.94\%	1.24\%	1.58\%	2.34\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.27\%	0.46\%	0.18\%	0.37\%	0.16\%	0.16\%	0.11\%	0.21\%	0.42\%	1.18\%	0.28\%	0.59\%	0.93\%	3.73\%	0.56\%	1.39\%
Plastic	Other Plastics Materials	3.01\%	2.21\%	2.40\%	3.69\%	3.60\%	3.56\%	2.76\%	4.55\%	3.76\%	2.10\%	3.23\%	4.33\%	2.86\%	1.59\%	2.45\%	3.30\%
Plastic Total		24.36\%	10.25\%	20.83\%	28.07\%	23.44\%	9.36\%	20.45\%	26.58\%	24.61\%	6.76\%	22.78\%	26.48\%	24.21\%	7.86\%	22.05\%	26.43\%
Glass	Clear Container Glass	10.19\%	7.53\%	8.02\%	12.60\%	10.11\%	5.90\%	8.37\%	12.00\%	10.28\%	5.63\%	8.86\%	11.80\%	9.50\%	5.18\%	8.05\%	11.06\%
Glass	Green Container Glass	2.66\%	2.98\%	1.84\%	3.63\%	2.30\%	2.64\%	1.66\%	3.04\%	3.00\%	2.76\%	2.19\%	3.93\%	2.88\%	2.39\%	2.22\%	3.61\%
Glass	Brown Container Glass	2.43\%	2.67\%	1.75\%	3.21\%	1.44\%	1.25\%	1.07\%	1.86\%	1.89\%	1.67\%	1.47\%	2.36\%	2.03\%	1.58\%	1.58\%	2.53\%
Glass	Mixed Cullet	10.28\%	8.95\%	7.83\%	13.01\%	11.82\%	11.65\%	8.95\%	15.03\%	16.25\%	11.21\%	13.39\%	19.33\%	21.29\%	13.48\%	17.55\%	25.29\%
Glass	Other Container Glass	0.23\%	1.05\%	0.11\%	0.41\%	0.31\%	0.77\%	0.17\%	0.49\%	0.25\%	0.57\%	0.13\%	0.41\%	0.11\%	0.25\%	0.06\%	0.18\%
Glass	Other Glass	1.17\%	2.01\%	0.71\%	1.73\%	0.70\%	1.27\%	0.42\%	1.06\%	0.31\%	0.46\%	0.18\%	0.48\%	0.78\%	2.95\%	0.42\%	1.26\%
Glass Total		26.95\%	12.90\%	22.73\%	31.40\%	26.69\%	14.24\%	22.44\%	31.16\%	31.99\%	11.75\%	28.87\%	35.19\%	36.59\%	14.37\%	32.50\%	40.78\%

Table 1-190
Statistical Results, WCS Results Across Seasons, MGP, Low Density/Medium Income (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.66\%	0.48\%	0.52\%	0.82\%	0.81\%	0.81\%	0.61\%	1.03\%	0.87\%	0.51\%	0.73\%	1.03\%	1.16\%	0.62\%	1.00\%	1.33\%
Metal	Aluminum Foil/Containers	1.26\%	1.07\%	0.97\%	1.59\%	0.96\%	0.67\%	0.77\%	1.17\%	1.22\%	0.93\%	0.99\%	1.48\%	1.18\%	0.94\%	0.96\%	1.43\%
Metal	Other Aluminum	0.23\%	1.07\%	0.10\%	0.39\%	0.00\%	0.02\%	0.00\%	0.00\%	1.00\%	2.80\%	0.54\%	1.61\%	0.81\%	2.27\%	0.41\%	1.34\%
Metal	Other Non-Ferrous	0.24\%	0.54\%	0.13\%	0.38\%	0.57\%	2.75\%	0.29\%	0.96\%	0.49\%	0.85\%	0.29\%	0.76\%	0.71\%	1.36\%	0.41\%	1.08\%
Metal	Tin Food Cans	9.80\%	5.51\%	8.10\%	11.65\%	9.42\%	4.36\%	8.02\%	10.92\%	8.05\%	3.12\%	7.25\%	8.89\%	6.51\%	2.94\%	5.77\%	7.29\%
Metal	Empty Aerosol Cans	0.70\%	0.45\%	0.54\%	0.87\%	0.61\%	0.46\%	0.47\%	0.75\%	0.53\%	0.39\%	0.40\%	0.68\%	0.64\%	0.41\%	0.50\%	0.80\%
Metal	Other Ferrous	13.83\%	12.87\%	10.28\%	17.81\%	14.24\%	17.15\%	10.07\%	18.99\%	13.27\%	12.53\%	10.13\%	16.77\%	9.24\%	10.31\%	6.69\%	12.17\%
Metal	Mixed Metals	1.71\%	3.35\%	1.02\%	2.59\%	5.43\%	15.45\%	2.86\%	8.77\%	6.56\%	10.75\%	4.02\%	9.67\%	2.92\%	4.19\%	1.84\%	4.23\%
Metal Total		28.42\%	13.95\%	23.95\%	33.10\%	32.04\%	18.64\%	26.81\%	37.49\%	32.01\%	13.48\%	28.44\%	35.68\%	23.16\%	9.69\%	20.55\%	25.89\%
Organics	Leaves and Grass	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Prunings	0.09\%	0.55\%	0.04\%	0.16\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Stumps/Limbs	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Food	1.63\%	1.93\%	1.08\%	2.29\%	2.04\%	2.37\%	1.46\%	2.73\%	1.53\%	1.35\%	1.13\%	2.00\%	1.93\%	2.24\%	1.33\%	2.62\%
Organics	Wood Furniture/Furniture Pieces	0.01\%	0.05\%	0.00\%	0.02\%	0.01\%	0.06\%	0.01\%	0.02\%	0.11\%	0.29\%	0.05\%	0.18\%	0.01\%	0.03\%	0.00\%	0.02\%
Organics	Non-C\&D Untreated Wood	0.00\%	0.01\%	0.00\%	0.00\%	0.03\%	0.12\%	0.01\%	0.04\%	0.02\%	0.08\%	0.01\%	0.03\%	0.01\%	0.04\%	0.00\%	0.01\%
Organics	Non-Clothing Texiles	0.19\%	0.58\%	0.10\%	0.32\%	0.19\%	0.79\%	0.09\%	0.33\%	0.05\%	0.13\%	0.02\%	0.08\%	0.10\%	0.20\%	0.05\%	0.15\%
Organics	Clothing Textiles	0.02\%	0.10\%	0.01\%	0.04\%	0.07\%	0.20\%	0.04\%	0.11\%	0.02\%	0.05\%	0.01\%	0.03\%	0.04\%	0.09\%	0.02\%	0.07\%
Organics	Carpet/Upholstery	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Organics	Disposable Diapers and Sanitary Products	0.05\%	0.15\%	0.02\%	0.08\%	0.08\%	0.41\%	0.04\%	0.15\%	0.06\%	0.24\%	0.03\%	0.11\%	0.09\%	0.27\%	0.04\%	0.16\%
Organics	Animal By-Products	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.04\%	0.00\%	0.01\%	0.01\%	0.07\%	0.01\%	0.02\%	0.01\%	0.08\%	0.01\%	0.02\%
Organics	Rubber Products	0.13\%	0.42\%	0.06\%	0.22\%	0.06\%	0.20\%	0.03\%	0.11\%	0.32\%	1.09\%	0.16\%	0.54\%	0.38\%	1.52\%	0.19\%	0.66\%
Organics	Shoes	0.22\%	1.00\%	0.09\%	0.39\%	0.17\%	0.71\%	0.08\%	0.29\%	0.03\%	0.13\%	0.01\%	0.05\%	0.03\%	0.12\%	0.02\%	0.06\%
Organics	Other Leather Products	0.02\%	0.11\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.03\%	0.00\%	0.01\%
Organics	Fines	0.10\%	0.11\%	0.07\%	0.14\%	0.14\%	0.18\%	0.10\%	0.18\%	0.26\%	0.36\%	0.17\%	0.35\%	0.39\%	0.77\%	0.25\%	0.55\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.01\%	0.90\%	5.69\%	0.37\%	1.67\%
Organics	Miscellaneous Organics	0.09\%	0.19\%	0.05\%	0.14\%	0.03\%	0.15\%	0.01\%	0.05\%	0.07\%	0.36\%	0.03\%	0.12\%	0.17\%	0.44\%	0.09\%	0.28\%
Organics Total		2.54\%	2.72\%	1.80\%	3.40\%	2.83\%	2.80\%	2.13\%	3.63\%	2.50\%	2.09\%	1.96\%	3.11\%	4.06\%	6.20\%	2.85\%	5.48\%
Appliance/Electronic	Appliances: Ferrous	9.35\%	28.01\%	3.59\%	17.45\%	6.32\%	19.70\%	2.76\%	11.21\%	1.96\%	6.32\%	0.93\%	3.36\%	4.20\%	14.34\%	1.90\%	7.34\%
Appliance/Electronic	Appliances: Non-Ferrous	0.09\%	0.39\%	0.04\%	0.16\%	0.02\%	0.10\%	0.01\%	0.03\%	0.11\%	0.47\%	0.05\%	0.20\%	0.16\%	0.70\%	0.07\%	0.28\%
Appliance/Electronic	Appliances: Plastic	0.88\%	2.18\%	0.47\%	1.41\%	0.69\%	3.09\%	0.32\%	1.19\%	0.49\%	1.19\%	0.26\%	0.80\%	0.46\%	1.11\%	0.24\%	0.75\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.05\%	0.01\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.15\%	0.82\%	0.07\%	0.27\%	0.11\%	0.51\%	0.05\%	0.19\%	0.04\%	0.17\%	0.02\%	0.08\%	0.48\%	1.60\%	0.23\%	0.82\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Televisions	0.07\%	0.45\%	0.03\%	0.13\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Other Computer Equipment	0.01\%	0.05\%	0.01\%	0.02\%	0.54\%	2.38\%	0.25\%	0.94\%	0.04\%	0.19\%	0.02\%	0.06\%	0.12\%	0.40\%	0.06\%	0.21\%
Appliance/Electronic Total		10.55\%	27.77\%	4.66\%	18.44\%	7.67\%	19.64\%	3.75\%	12.83\%	2.65\%	6.49\%	1.49\%	4.14\%	5.41\%	14.37\%	2.91\%	8.64\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.02\%	0.10\%	0.01\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%	0.16\%	0.69\%	0.07\%	0.28\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Treated/Contaminated Wood	0.02\%	0.08\%	0.01\%	0.04\%	0.00\%	0.00\%	0.00\%	0.00\%	0.05\%	0.18\%	0.02\%	0.09\%	0.02\%	0.07\%	0.01\%	0.04\%
$C \& D$ Debris	Gypsum Scrap	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
C \& D Debris	Rock/Concrete/Bricks	0.00\%	0.00\%	0.00\%	0.00\%	0.17\%	1.02\%	0.08\%	0.30\%	0.01\%	0.04\%	0.00\%	0.02\%	0.03\%	0.13\%	0.01\%	0.05\%
C\&D Debris	Other Construction Debris	0.09\%	0.40\%	0.04\%	0.17\%	0.01\%	0.06\%	0.00\%	0.02\%	0.35\%	1.67\%	0.16\%	0.62\%	0.01\%	0.08\%	0.01\%	0.03\%
C \& D Debris Total		0.13\%	0.41\%	0.07\%	0.22\%	0.18\%	1.02\%	0.08\%	0.32\%	0.57\%	1.92\%	0.29\%	0.95\%	0.06\%	0.16\%	0.03\%	0.10\%

Table 1-190
Statistical Results, WCS Results Across Seasons, MGP, Low Density/Medium Income (continued)

Table 1-191
Statistical Results, WCS Results Across Seasons, Street Basket

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
			Confidence Interval			Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Paper	Newspaper	15.24\%	9.01\%	13.36\%	17.23\%	17.36\%	10.44\%	14.73\%	20.16\%	17.13\%	9.78\%	14.72\%	19.69\%	13.11\%	9.06\%	11.09\%	15.27\%
Paper	Plain OCC/Kraft Paper	3.94\%	3.68\%	3.21\%	4.74\%	3.75\%	3.03\%	3.08\%	4.48\%	3.99\%	3.53\%	3.26\%	4.80\%	3.41\%	2.53\%	2.87\%	3.99\%
Paper	High Grade Paper	0.81\%	1.94\%	0.49\%	1.22\%	0.18\%	0.33\%	0.12\%	0.26\%	0.08\%	0.35\%	0.04\%	0.13\%	0.32\%	0.55\%	0.22\%	0.44\%
Paper	Mixed Low Grade Paper	9.20\%	4.43\%	8.21\%	10.23\%	8.96\%	5.61\%	7.60\%	10.42\%	7.49\%	5.23\%	6.45\%	8.61\%	8.63\%	3.08\%	7.86\%	9.43\%
Paper	Phone Books/Paperbacks	2.22\%	4.23\%	1.32\%	3.35\%	1.07\%	1.95\%	0.68\%	1.54\%	0.64\%	2.08\%	0.36\%	1.01\%	0.52\%	1.38\%	0.29\%	0.81\%
Paper	Paper Bags	1.27\%	0.82\%	1.09\%	1.46\%	1.31\%	0.72\%	1.12\%	1.53\%	1.73\%	0.86\%	1.53\%	1.94\%	1.36\%	0.67\%	1.20\%	1.54\%
Paper	Polycoated Paper Containers	0.27\%	0.19\%	0.22\%	0.32\%	0.28\%	0.22\%	0.23\%	0.34\%	0.45\%	1.40\%	0.31\%	0.61\%	0.33\%	0.33\%	0.28\%	0.39\%
Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	6.39\%	2.49\%	5.80\%	6.99\%	4.65\%	2.22\%	4.03\%	5.31\%	2.95\%	1.72\%	2.58\%	3.34\%	4.44\%	1.90\%	4.00\%	4.91\%
Paper	Single Use Paper Plates, Cups	1.88\%	1.14\%	1.63\%	2.14\%	2.05\%	1.32\%	1.73\%	2.40\%	2.27\%	1.33\%	1.97\%	2.60\%	1.38\%	0.74\%	1.20\%	1.56\%
Paper	Other Nonrecyclable Paper	1.05\%	1.52\%	0.82\%	1.31\%	0.38\%	0.38\%	0.30\%	0.47\%	0.32\%	0.29\%	0.26\%	0.39\%	0.86\%	0.65\%	0.73\%	1.01\%
Paper Total		42.26\%	10.89\%	39.65\%	44.90\%	40.00\%	13.86\%	36.16\%	43.90\%	37.06\%	12.74\%	33.91\%	40.28\%	34.36\%	12.25\%	31.37\%	37.41\%
Plastic	PET Botlles	1.90\%	0.92\%	1.69\%	2.11\%	1.73\%	0.82\%	1.52\%	1.95\%	2.47\%	1.16\%	2.21\%	2.75\%	2.89\%	1.22\%	2.59\%	3.20\%
Plastic	HDPE Bottles: Natural	0.25\%	0.34\%	0.19\%	0.32\%	0.28\%	0.24\%	0.22\%	0.35\%	0.21\%	0.18\%	0.17\%	0.26\%	0.28\%	0.23\%	0.23\%	0.34\%
Plastic	HDPE Bottles: Colored	0.22\%	0.22\%	0.16\%	0.28\%	0.18\%	0.28\%	0.13\%	0.25\%	0.14\%	0.26\%	0.09\%	0.19\%	0.18\%	0.24\%	0.12\%	0.24\%
Plastic	\#1\#2 Tubs/Trays/Other Containers: \#1 PET	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#1 \#2 Tubs/Trays/Other Containers: \#2 HDPE	0.03\%	0.15\%	0.01\%	0.05\%	0.00\%	0.02\%	0.00\%	0.01\%	0.07\%	0.20\%	0.04\%	0.10\%	0.01\%	0.04\%	0.01\%	0.02\%
Plastic	\#3 Through \#7 Bottles: \#3 PVC	0.00\%	0.02\%	0.00\%	0.01\%	0.01\%	0.04\%	0.01\%	0.02\%	0.00\%	0.01\%	0.00\%	0.01\%	0.01\%	0.03\%	0.00\%	0.01\%
Plastic	\#3 Through \#7 Bottles: \#4 LDPE	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#5 PP	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.02\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Bottles: \#7 Other	0.03\%	0.05\%	0.02\%	0.04\%	0.05\%	0.05\%	0.03\%	0.06\%	0.05\%	0.05\%	0.03\%	0.06\%	0.04\%	0.09\%	0.03\%	0.06\%
Plastic	\#3 Through \#7 Tubs: \#3 PVC	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#4 LDPE	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	\#3 Through \#7 Tubs: \#5 PP	0.19\%	0.18\%	0.14\%	0.24\%	0.14\%	0.17\%	0.11\%	0.18\%	0.15\%	0.17\%	0.11\%	0.20\%	0.21\%	0.22\%	0.17\%	0.27\%
Plastic	\#3 Through \#7 Tubs: \#7 Other	0.03\%	0.06\%	0.02\%	0.04\%	0.08\%	0.21\%	0.05\%	0.12\%	0.03\%	0.08\%	0.01\%	0.04\%	0.05\%	0.13\%	0.03\%	0.07\%
Plastic	Soda Crates and Bottle Carriers	0.02\%	0.15\%	0.01\%	0.04\%	0.17\%	0.71\%	0.09\%	0.28\%	0.03\%	0.16\%	0.02\%	0.06\%	0.03\%	0.15\%	0.02\%	0.06\%
Plastic	Other PVC	0.17\%	1.19\%	0.08\%	0.29\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Plastic	Rigid Polystyrene Containers and Packaging	0.29\%	0.21\%	0.24\%	0.34\%	0.35\%	0.35\%	0.28\%	0.42\%	0.39\%	0.46\%	0.31\%	0.48\%	0.33\%	0.27\%	0.28\%	0.39\%
Plastic	Expanded Polystyrene Containers and Packaging	0.39\%	0.43\%	0.31\%	0.48\%	0.34\%	0.30\%	0.27\%	0.41\%	0.46\%	0.59\%	0.37\%	0.56\%	0.45\%	0.28\%	0.38\%	0.51\%
Plastic	Other Rigid Containers/Packaging	0.46\%	0.40\%	0.38\%	0.56\%	0.53\%	0.34\%	0.44\%	0.64\%	0.81\%	0.84\%	0.67\%	0.97\%	0.58\%	0.28\%	0.52\%	0.65\%
Plastic	Plastic Bags	2.04\%	0.78\%	1.85\%	2.24\%	1.88\%	1.14\%	1.62\%	2.16\%	3.15\%	1.68\%	2.77\%	3.57\%	2.04\%	0.87\%	1.83\%	2.25\%
Plastic	Other Film	4.31\%	2.09\%	3.79\%	4.85\%	4.85\%	2.19\%	4.28\%	5.45\%	4.92\%	2.33\%	4.37\%	5.49\%	3.16\%	1.27\%	2.86\%	3.47\%
Plastic	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.92\%	0.50\%	0.80\%	1.04\%	1.10\%	0.82\%	0.93\%	1.28\%	1.48\%	1.03\%	1.28\%	1.69\%	1.32\%	0.73\%	1.14\%	1.51\%
Plastic	Other Plastics Materials	1.04\%	1.08\%	0.81\%	1.29\%	1.13\%	1.81\%	0.84\%	1.47\%	0.96\%	1.65\%	0.70\%	1.26\%	1.42\%	1.70\%	1.07\%	1.81\%
Plastic Total		12.29\%	3.77\%	11.42\%	13.19\%	12.84\%	3.96\%	11.67\%	14.06\%	15.32\%	4.30\%	14.28\%	16.39\%	12.99\%	4.02\%	12.03\%	13.99\%
Glass	Clear Container Glass	4.22\%	2.41\%	3.68\%	4.79\%	3.56\%	2.23\%	3.02\%	4.14\%	4.11\%	2.48\%	3.52\%	4.74\%	5.62\%	3.28\%	4.89\%	6.41\%
Glass	Green Container Glass	1.01\%	1.30\%	0.74\%	1.33\%	1.28\%	1.82\%	0.87\%	1.76\%	1.08\%	1.65\%	0.77\%	1.45\%	0.81\%	0.87\%	0.61\%	1.04\%
Glass	Brown Container Glass	0.90\%	1.23\%	0.66\%	1.17\%	0.67\%	0.76\%	0.48\%	0.88\%	0.57\%	0.79\%	0.41\%	0.76\%	0.87\%	0.94\%	0.65\%	1.12\%
Glass	Mixed Cullet	0.97\%	1.29\%	0.70\%	1.28\%	0.85\%	0.84\%	0.65\%	1.08\%	0.93\%	1.01\%	0.73\%	1.15\%	1.28\%	1.04\%	1.04\%	1.54\%
Glass	Other Container Glass	0.03\%	0.13\%	0.01\%	0.05\%	0.07\%	0.29\%	0.03\%	0.11\%	0.01\%	0.04\%	0.00\%	0.01\%	0.00\%	0.03\%	0.00\%	0.01\%
Glass	Other Glass	0.12\%	0.39\%	0.07\%	0.20\%	0.16\%	0.40\%	0.09\%	0.24\%	0.14\%	0.20\%	0.09\%	0.20\%	0.25\%	0.74\%	0.15\%	0.38\%
Glass Total		7.25\%	4.16\%	6.37\%	8.17\%	6.57\%	3.98\%	5.62\%	7.60\%	6.84\%	3.66\%	6.01\%	7.72\%	8.84\%	4.21\%	7.87\%	9.86\%

Table 1-191
Statistical Results, WCS Results Across Seasons, Street Basket (continued)

Material Group	Material ${ }^{(1)}$	Fall				Winter				Spring				Summer			
		Confidence Interval				Confidence Interval				Confidence Interval				Confidence Interval			
		Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound	Mean	Standard Deviation	Lower Bound	Upper Bound
Metal	Aluminum Cans	0.42\%	0.21\%	0.37\%	0.47\%	0.45\%	0.36\%	0.38\%	0.53\%	0.53\%	0.26\%	0.47\%	0.60\%	0.62\%	0.27\%	0.56\%	0.69\%
Metal	Aluminum Foil/Containers	0.43\%	0.27\%	0.37\%	0.50\%	0.48\%	0.25\%	0.41\%	0.55\%	0.53\%	0.38\%	0.44\%	0.62\%	0.50\%	0.28\%	0.44\%	0.57\%
Metal	Other Aluminum	0.05\%	0.17\%	0.03\%	0.07\%	0.09\%	0.57\%	0.04\%	0.15\%	0.04\%	0.28\%	0.02\%	0.07\%	0.01\%	0.05\%	0.01\%	0.02\%
Metal	Other Non-Ferrous	0.10\%	0.31\%	0.06\%	0.16\%	0.18\%	0.71\%	0.09\%	0.28\%	0.30\%	1.04\%	0.17\%	0.47\%	0.09\%	0.24\%	0.05\%	0.14\%
Metal	Tin Food Cans	0.45\%	0.39\%	0.35\%	0.56\%	0.54\%	0.53\%	0.41\%	0.68\%	0.48\%	0.47\%	0.39\%	0.58\%	0.59\%	0.47\%	0.47\%	0.71\%
Metal	Empty Aerosol Cans	0.09\%	0.14\%	0.05\%	0.13\%	0.04\%	0.07\%	0.02\%	0.05\%	0.07\%	0.16\%	0.04\%	0.11\%	0.09\%	0.17\%	0.06\%	0.14\%
Metal	Other Ferrous	1.40\%	3.64\%	0.87\%	2.06\%	3.47\%	10.11\%	2.14\%	5.11\%	2.23\%	4.79\%	1.37\%	3.28\%	3.42\%	8.82\%	2.09\%	5.05\%
Metal	Mixed Metals	0.57\%	1.07\%	0.37\%	0.81\%	0.62\%	1.10\%	0.40\%	0.89\%	0.25\%	0.35\%	0.16\%	0.35\%	0.44\%	1.25\%	0.27\%	0.66\%
Metal Total		3.51\%	3.77\%	2.86\%	4.23\%	5.86\%	9.96\%	4.39\%	7.53\%	4.42\%	4.77\%	3.53\%	5.41\%	5.76\%	8.70\%	4.37\%	7.34\%
Organics	Leaves and Grass	2.67\%	5.12\%	1.69\%	3.87\%	0.11\%	0.46\%	0.05\%	0.18\%	0.35\%	1.42\%	0.18\%	0.57\%	1.66\%	4.37\%	0.97\%	2.54\%
Organics	Prunings	0.28\%	0.96\%	0.15\%	0.45\%	0.33\%	0.89\%	0.19\%	0.50\%	0.36\%	1.13\%	0.20\%	0.56\%	0.25\%	0.75\%	0.15\%	0.38\%
Organics	Stumps/Limbs	0.00\%	0.03\%	0.00\%	0.01\%	0.00\%	0.03\%	0.00\%	0.01\%	0.23\%	1.27\%	0.11\%	0.40\%	0.03\%	0.22\%	0.01\%	0.05\%
Organics	Food	13.65\%	5.03\%	12.48\%	14.87\%	11.83\%	6.41\%	10.27\%	13.49\%	13.65\%	7.61\%	11.98\%	15.41\%	14.65\%	7.61\%	12.92\%	16.47\%
Organics	Wood Furniture/Furniture Pieces	0.64\%	2.42\%	0.33\%	1.06\%	0.25\%	0.77\%	0.13\%	0.39\%	0.09\%	0.33\%	0.04\%	0.14\%	0.87\%	2.14\%	0.51\%	1.32\%
Organics	Non-C\&D Untreated Wood	0.20\%	1.00\%	0.11\%	0.32\%	0.78\%	4.24\%	0.40\%	1.28\%	0.33\%	1.92\%	0.17\%	0.55\%	0.37\%	2.11\%	0.20\%	0.58\%
Organics	Non-Clothing Textiles	1.43\%	2.61\%	1.00\%	1.94\%	1.13\%	2.01\%	0.77\%	1.56\%	0.57\%	0.88\%	0.39\%	0.77\%	1.00\%	1.73\%	0.75\%	1.29\%
Organics	Clothing Textiles	1.16\%	1.71\%	0.84\%	1.54\%	1.32\%	1.82\%	0.96\%	1.74\%	1.37\%	2.54\%	0.98\%	1.83\%	1.51\%	2.31\%	1.06\%	2.03\%
Organics	Carpet/Upholstery	0.04\%	0.19\%	0.02\%	0.06\%	0.08\%	0.34\%	0.04\%	0.13\%	0.10\%	0.40\%	0.05\%	0.17\%	0.05\%	0.23\%	0.03\%	0.09\%
Organics	Disposable Diapers and Sanitary Products	1.04\%	1.09\%	0.79\%	1.34\%	0.83\%	1.02\%	0.60\%	1.09\%	0.69\%	0.96\%	0.49\%	0.94\%	0.83\%	0.77\%	0.64\%	1.05\%
Organics	Animal By-Products	1.66\%	1.50\%	1.29\%	2.07\%	2.12\%	2.40\%	1.61\%	2.70\%	1.43\%	2.27\%	0.98\%	1.95\%	1.83\%	2.08\%	1.37\%	2.35\%
Organics	Rubber Products	0.22\%	0.35\%	0.15\%	0.29\%	0.14\%	0.26\%	0.10\%	0.20\%	0.09\%	0.21\%	0.05\%	0.13\%	0.16\%	0.35\%	0.11\%	0.21\%
Organics	Shoes	0.38\%	0.67\%	0.24\%	0.56\%	0.35\%	0.70\%	0.20\%	0.53\%	0.36\%	0.50\%	0.23\%	0.52\%	0.44\%	0.70\%	0.28\%	0.63\%
Organics	Other Leather Products	0.03\%	0.08\%	0.01\%	0.04\%	0.10\%	0.42\%	0.05\%	0.17\%	0.14\%	0.97\%	0.07\%	0.25\%	0.06\%	0.12\%	0.03\%	0.09\%
Organics	Fines	3.74\%	3.65\%	3.14\%	4.38\%	5.77\%	4.55\%	4.75\%	6.89\%	7.65\%	4.24\%	6.77\%	8.57\%	3.89\%	3.55\%	3.28\%	4.54\%
Organics	Upholstered or Other Organic-Type Furniture	0.00\%	0.00\%	0.00\%	0.00\%	0.72\%	3.57\%	0.35\%	1.23\%	0.00\%	0.00\%	0.00\%	0.00\%	0.10\%	0.73\%	0.05\%	0.18\%
Organics	Miscellaneous Organics	0.79\%	2.37\%	0.51\%	1.14\%	2.63\%	5.66\%	1.57\%	3.96\%	1.24\%	2.41\%	0.77\%	1.81\%	0.90\%	1.74\%	0.59\%	1.27\%
Organics Total		27.93\%	9.34\%	25.72\%	30.20\%	28.50\%	10.61\%	26.04\%	31.03\%	28.64\%	10.44\%	26.14\%	31.20\%	28.59\%	10.44\%	26.05\%	31.21\%
Appliance/Electronic	Appliances: Ferrous	0.56\%	2.48\%	0.28\%	0.94\%	0.47\%	3.29\%	0.21\%	0.81\%	2.53\%	11.75\%	1.18\%	4.35\%	0.81\%	4.42\%	0.39\%	1.40\%
Appliance/Electronic	Appliances: Non-Ferrous	0.07\%	0.42\%	0.03\%	0.11\%	0.03\%	0.17\%	0.01\%	0.04\%	0.00\%	0.03\%	0.00\%	0.01\%	0.06\%	0.44\%	0.03\%	0.11\%
Appliance/Electronic	Appliances: Plastic	0.18\%	0.97\%	0.09\%	0.30\%	0.08\%	0.30\%	0.04\%	0.14\%	0.00\%	0.01\%	0.00\%	0.00\%	0.10\%	0.41\%	0.05\%	0.17\%
Appliance/Electronic	Audio/Visual Equipment: Cell Phones	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Appliance/Electronic	Audio/Visual Equipment: Other	0.31\%	1.55\%	0.15\%	0.52\%	0.09\%	0.30\%	0.04\%	0.14\%	0.12\%	0.33\%	0.07\%	0.18\%	0.17\%	0.88\%	0.10\%	0.27\%
Appliance/Electronic	Computer Monitors	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.15\%	0.01\%	0.04\%
Appliance/Electronic	Televisions	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.22\%	1.58\%	0.10\%	0.39\%
Appliance/Electronic	Other Computer Equipment	0.26\%	0.93\%	0.14\%	0.43\%	0.10\%	0.59\%	0.05\%	0.17\%	0.08\%	0.57\%	0.04\%	0.14\%	0.28\%	1.28\%	0.14\%	0.46\%
Appliance/Electronic Total		1.38\%	3.28\%	0.80\%	2.11\%	0.77\%	3.33\%	0.42\%	1.22\%	2.73\%	11.74\%	1.36\%	4.55\%	1.67\%	5.24\%	0.93\%	2.63\%
C \& D Debris	Untreated Dimension Lumber, Pallets, Crates	0.27\%	1.05\%	0.14\%	0.43\%	1.55\%	4.79\%	0.85\%	2.47\%	1.08\%	3.24\%	0.61\%	1.66\%	0.43\%	1.31\%	0.23\%	0.69\%
$C \& D$ Debris	Treated/Contaminated Wood	0.66\%	1.26\%	0.40\%	0.99\%	0.86\%	1.56\%	0.53\%	1.25\%	0.67\%	1.64\%	0.41\%	1.00\%	0.78\%	1.88\%	0.46\%	1.17\%
$C \& D$ Debris	Gypsum Scrap	0.42\%	1.68\%	0.21\%	0.70\%	0.15\%	0.46\%	0.08\%	0.24\%	0.28\%	1.40\%	0.14\%	0.47\%	2.08\%	6.84\%	1.07\%	3.41\%
$C \& D$ Debris	Rock/Concrete/Bricks	1.59\%	5.25\%	0.86\%	2.55\%	0.36\%	1.88\%	0.18\%	0.60\%	0.65\%	2.36\%	0.35\%	1.04\%	1.47\%	5.16\%	0.76\%	2.40\%
C \& D Debris	Other Construction Debris	1.06\%	3.86\%	0.55\%	1.73\%	1.39\%	4.10\%	0.76\%	2.20\%	1.87\%	6.93\%	1.00\%	3.00\%	2.49\%	7.39\%	1.38\%	3.91\%
C \& D Debris Total		4.00\%	6.65\%	2.66\%	5.60\%	4.31\%	7.03\%	2.81\%	6.10\%	4.55\%	8.65\%	2.92\%	6.52\%	7.24\%	12.48\%	4.68\%	10.31\%

Table 1-191
Statistical Results, WCS Results Across Seasons, Street Basket (continued)

8.3 Analysis of Variability - PWCS and WCS

In understanding the composition of the waste stream, it is useful to know something about the variability of each material in the waste stream. The percentage of a material may be relatively consistent across density/income strata and seasons or it may fluctuate significantly. The variability of each material is indicated by the statistical results. There are two kinds of variability that we may be concerned with in the statistical results.

The first kind is the variability that a material exhibits from sampling unit to sampling unit. For example, the percentage of newspaper in three samples may vary from 2 percent to 5 percent to 3 percent. This kind of "absolute" variability is measured by the Standard Deviation. For example, in the PWCS Refuse, the Standard Deviation of Food Waste was 8.13 percent and the Standard Deviation of Latex Paints was 0.57 percent, as shown in Table 1-164. A high Standard Deviation indicates that the percentage of a material in one sample varied significantly from percentage of that material in the next sample. This measure of variability, the Standard Deviation, for each stream, material, season, and strata, is shown in Tables 1-164 through 1-191.

The second kind of variability, "relative" variability (also called the "coefficient of variation") shows the variation from one sampling unit to the next compared to the Mean. The coefficient of variation is calculated by dividing the Standard Deviation by the Mean. The coefficient of variation for Food Waste in the PWCS refuse was 51 percent (8.13 percent / 15.93 percent $=$ 51 percent) and the coefficient of variation for Latex Paints was 1140 percent (0.57 percent / 0.05 percent $=1140$ percent). A high coefficient of variation indicates that, in relation to the Mean, the percentage of a material in one sample varied significantly from the percentage of that material in the next sample.

Tables 1-192 to 1-224 list the refuse materials in the PWCS and the WCS with the greatest and smallest coefficient of variation by season and strata. Each table presents three rankings of variability:

- The coefficient of variation for each of the nine material groups, from highest to lowest;
- The ten material categories with the greatest coefficient of variation; and
- The ten material categories with the smallest coefficient of variation.

Table 1-192
Analysis of Variability, PWCS, Refuse

Rank	Material Group	Coefficient of Variation
1	HHW Total	3.57
2	Misc. Total	2.68
3	App. \& Elec. Total	2.38
4	Const. Debris Total	1.20
5	Glass Total	0.86
6	Metal Total	0.72
7	Paper Total	0.41
8	Plastic Total	0.34
9	Organic Total	0.27
Rank	Material	Coefficient of Variation
Most Variable		
1	Mercury-Laden waste	14.14
2	Wet-Cell Batteries	14.14
3	Computer Monitors	14.02
4	Gasoline/Kerosene	13.50
5	Smoke Detectors	11.94
6	Latex Paints	11.57
7	Asphaltic Roofing	11.28
8	Televisions	11.26
9	Oil-Based Paint/Solvent	10.60
10	Fluorescent Tubes	10.49
Least Variable		
1	Other Rigid Containers/Packaging	0.78
2	Disposable Diapers/Sanitary Products	0.76
3	Tin Food Cans	0.75
4	PET Bottles: Non-Deposit	0.74
5	Mixed Low Grade Paper	0.60
6	Plastic Bags	0.55
7	Fines	0.54
8	Food	0.51
9	Compostable/Soiled/ Waxed OCC	0.46
10	Other Film	0.41

Table 1-193
Analysis of Variability, WCS, Fall 2004, Refuse, High Density/High Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	2.27
2	Miscellaneous Inorganics Total	2.18
3	Appliance/Electronic Total	2.13
4	C \& D Debris Total	1.76
5	Glass Total	0.82
6	Metal Total	0.47
7	Organics Total	0.27
8	Paper Total	0.23
9	Plastic Total	0.22
Rank	Material	Coefficient of Variation
Most Variable		
1	Pesticides/Herbicides/Rodenticides	7.07
2	Upholstered or Other Organic-Type Furniture	7.07
3	Fluorescent Tubes	7.07
4	Other PVC	7.07
5	\#3 Through \#7 Tubs: \#4 LDPE	7.07
6	Appliances: Non-Ferrous	7.07
7	Oil-Based Paints/Solvent-Based Adhesives/Glues	6.42
8	Other Potentially Harmful Wastes	5.81
9	Compressed Gas Cylinders, Fire Extinguishers	5.34
10	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	5.08
Least Variable		
1	PET Bottles	0.58
2	Polycoated Paper Containers	0.58
3	Paper Bags	0.54
4	Other Rigid Containers/Packaging	0.52
5	Fines	0.47
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.41
7	Food	0.40
8	Plastic Bags	0.39
9	Other Film	0.30
10	Mixed Low Grade Paper	0.29

Table 1-194
Analysis of Variability, WCS, Fall 2004, Refuse, High Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	3.08
2	Appliance/Electronic Total	2.07
3	HHW Total	1.77
4	C \& D Debris Total	1.43
5	Metal Total	1.04
6	Glass Total	0.66
7	Paper Total	0.34
8	Plastic Total	0.27
9	Organics Total	0.25
Rank	Material	Coefficient of Variation
Most Variable		
1	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
2	Stumps/Limbs	6.95
3	Other PVC	6.73
4	Appliances: Non-Ferrous	5.69
5	Compressed Gas Cylinders, Fire Extinguishers	5.66
6	Other Container Glass	5.64
7	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	5.24
8	Latex Paints/Water-Based Adhesives/Glues	5.14
9	Other Computer Equipment	5.01
10	Appliances: Ferrous	4.73
Least Variable		
1	Aluminum Foil/Containers	0.63
2	PET Bottles	0.61
3	Plastic Bags	0.57
4	Paper Bags	0.56
5	Expanded Polystyrene Containers and Packaging	0.55
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.53
7	Mixed Low Grade Paper	0.50
8	Fines	0.45
9	Food	0.35
10	Other Film	0.35

Table 1-195
Analysis of Variability, WCS, Fall 2004, Refuse, High Density/Low Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.41
2	HHW Total	1.81
3	C \& D Debris Total	1.76
4	Appliance/Electronic Total	1.53
5	Metal Total	0.69
6	Glass Total	0.67
7	Paper Total	0.34
8	Plastic Total	0.20
9	Organics Total	0.20
Rank	Material	Coefficient of Variation
Most Variable		
1	Compressed Gas Cylinders, Fire Extinguishers	7.07
2	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
3	Other PVC	7.07
4	\#3 Through \#7 Tubs: \#3 PVC	7.07
5	Latex Paints/Water-Based Adhesives/Glues	7.07
6	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	6.24
7	Carpet/Upholstery	6.14
8	Upholstered or Other Organic-Type Furniture	6.12
9	Soda Crates and Bottle Carriers	6.04
10	Other Computer Equipment	5.87
Least Variable		
1	Polycoated Paper Containers	0.59
2	Disposable Diapers and Sanitary Products	0.58
3	Plastic Bags	0.54
4	Compostable/Soiled Paper/Waxed OCC/Kraft	0.54
5	Mixed Low Grade Paper	0.52
6	Other Rigid Containers/Packaging	0.47
7	Fines	0.47
8	PET Bottles	0.44
9	Other Film	0.35
10	Food	0.33

Table 1-196
Analysis of Variability, WCS, Fall 2004, Refuse, Medium Density/High Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.63
2	HHW Total	2.42
3	Appliance/Electronic Total	2.32
4	C \& D Debris Total	1.19
5	Metal Total	0.94
6	Glass Total	0.67
7	Paper Total	0.29
8	Plastic Total	0.24
9	Organics Total	0.20
Rank	Material	Coefficient of Variation
Most Variable		
1	Computer Monitors	7.07
2	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
3	Stumps/Limbs	7.07
4	Soda Crates and Bottle Carriers	6.76
5	Other Container Glass	6.08
6	Latex Paints/Water-Based Adhesives/Glues	5.98
7	Rock/Concrete/Bricks	5.75
8	Gypsum Scrap	5.59
9	Audio/Visual Equipment: Other	5.10
10	Audio/Visual Equipment: Cell Phones	4.95
Least Variable		
1	Paper Bags	0.57
2	Fines	0.56
3	Polycoated Paper Containers	0.54
4	Single Use Paper Plates, Cups	0.51
5	Plastic Bags	0.50
6	Other Rigid Containers/Packaging	0.45
7	Compostable/Soiled Paper/Waxed OCC/Kraft	0.42
8	Mixed Low Grade Paper	0.41
9	Other Film	0.36
10	Food	0.28

Table 1-197
Analysis of Variability, WCS, Fall 2004, Refuse, Medium Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	2.27
2	Appliance/Electronic Total	1.89
3	Miscellaneous Inorganics Total	1.80
4	C \& D Debris Total	1.47
5	Glass Total	0.76
6	Metal Total	0.54
7	Paper Total	0.34
8	Plastic Total	0.29
9	Organics Total	0.20
Rank	Material	Coefficient of Variation
Most Variable		
1	Fluorescent Tubes	7.07
2	Computer Monitors	7.07
3	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
4	Stumps/Limbs	6.73
5	Non-C\&D Untreated Wood	6.70
6	\#3 Through \#7 Tubs: \#3 PVC	5.64
7	Appliances: Non-Ferrous	5.59
8	Upholstered or Other Organic-Type Furniture	5.39
9	Latex Paints/Water-Based Adhesives/Glues	5.26
10	Appliances: Ferrous	5.23
Least Variable		
1	Paper Bags	0.58
2	Fines	0.58
3	PET Bottles	0.56
4	Compostable/Soiled Paper/Waxed OCC/Kraft	0.53
5	Expanded Polystyrene Containers and Packaging	0.53
6	Other Rigid Containers/Packaging	0.52
7	Plastic Bags	0.51
8	Mixed Low Grade Paper	0.46
9	Food	0.38
10	Other Film	0.37

Table 1-198
Analysis of Variability, WCS, Fall 2004, Refuse, Medium Density/Low Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	2.48
2	Miscellaneous Inorganics Total	2.32
3	Appliance/Electronic Total	2.10
4	Metal Total	1.16
5	C \& D Debris Total	1.13
6	Glass Total	0.77
7	Paper Total	0.38
8	Plastic Total	0.37
9	Organics Total	0.24
Rank	Material	Coefficient of Variation
Most Variable		
1	\#3 Through \#7 Tubs: \#4 LDPE	7.07
2	Computer Monitors	7.07
3	Non-C\&D Untreated Wood	6.54
4	Upholstered or Other Organic-Type Furniture	6.08
5	Latex Paints/Water-Based Adhesives/Glues	5.94
6	\#3 Through \#7 Tubs: \#3 PVC	5.49
7	Appliances: Ferrous	5.03
8	Appliances: Non-Ferrous	4.63
9	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	4.58
10	Soda Crates and Bottle Carriers	4.50
Least Variable		
1	Disposable Diapers and Sanitary Products	0.70
2	Tin Food Cans	0.66
3	PET Bottles	0.64
4	Compostable/Soiled Paper/Waxed OCC/Kraft	0.59
5	Mixed Low Grade Paper	0.57
6	Plastic Bags	0.55
7	Fines	0.51
8	Other Film	0.51
9	Other Rigid Containers/Packaging	0.49
10	Food	0.45

Table 1-199
Analysis of Variability, WCS, Fall 2004, Refuse, Low Density/High Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	3.50
2	Miscellaneous Inorganics Total	1.92
3	Appliance/Electronic Total	1.73
4	C \& D Debris Total	1.48
5	Metal Total	0.90
6	Glass Total	0.82
7	Plastic Total	0.46
8	Paper Total	0.36
9	Organics Total	0.26
Rank	Material	Coefficient of Variation
Most Variable		
1	Audio/Visual Equipment: Cell Phones	7.07
2	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
3	Televisions	7.07
4	Other Container Glass	6.56
5	Other PVC	6.26
6	Other Aluminum	6.09
7	Latex Paints/Water-Based Adhesives/Glues	6.08
8	\#3 Through \#7 Tubs: \#3 PVC	5.83
9	Stumps/Limbs	5.82
10	HDPE Bottles: Natural	5.80
Least Variable		
1	Aluminum Foil/Containers	0.65
2	Fines	0.56
3	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.56
4	Expanded Polystyrene Containers and Packaging	0.55
5	Plastic Bags	0.54
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.54
7	Other Rigid Containers/Packaging	0.52
8	Other Film	0.47
9	Food	0.45
10	Mixed Low Grade Paper	0.45

Table 1-200
Analysis of Variability, WCS, Fall 2004, Refuse, Low Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	4.79
2	Appliance/Electronic Total	2.66
3	Miscellaneous Inorganics Total	2.09
4	C \& D Debris Total	1.31
5	Glass Total	1.01
6	Metal Total	0.85
7	Paper Total	0.35
8	Plastic Total	0.25
9	Organics Total	0.21
Rank	Material	Coefficient of Variation
Most Variable		
1	Latex Paints/Water-Based Adhesives/Glues	7.00
2	Other Container Glass	7.00
3	Other PVC	7.00
4	Televisions	7.00
5	Pesticides/Herbicides/Rodenticides	6.05
6	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	5.43
7	Rock/Concrete/Bricks	5.30
8	Appliances: Ferrous	5.22
9	Upholstered or Other Organic-Type Furniture	5.08
10	Stumps/Limbs	4.73
Least Variable		
1	Tin Food Cans	0.63
2	Polycoated Paper Containers	0.62
3	Mixed Low Grade Paper	0.57
4	Compostable/Soiled Paper/Waxed OCC/Kraft	0.56
5	PET Bottles	0.56
6	Fines	0.53
7	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.53
8	Plastic Bags	0.43
9	Food	0.39
10	Other Film	0.39

Table 1-201
Analysis of Variability, WCS, Winter 2005, Refuse, High Density/High Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.50
2	HHW Total	2.33
3	Appliance/Electronic Total	2.29
4	Metal Total	1.88
5	C \& D Debris Total	1.58
6	Glass Total	0.70
7	Organics Total	0.28
8	Plastic Total	0.28
9	Paper Total	0.23
Rank	Material	Coefficient of Variation
Most Variable		
1	Stumps/Limbs	7.28
2	Appliances: Ferrous	7.28
3	Appliances: Non-Ferrous	7.28
4	Wet-Cell Batteries	7.28
5	Pesticides/Herbicides/Rodenticides	6.67
6	Oil-Based Paints/Solvent-Based Adhesives/Glues	6.65
7	\#3 Through \#7 Bottles: \#3 PVC	6.03
8	Non-C\&D Untreated Wood	5.86
9	Rock/Concrete/Bricks	5.65
10	Mixed Metals	5.59
Least Variable		
1	Other Rigid Containers/Packaging	0.63
2	PET Bottles	0.55
3	Polycoated Paper Containers	0.54
4	Aluminum Foil/Containers	0.50
5	Fines	0.43
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.43
7	Paper Bags	0.42
8	Other Film	0.36
9	Food	0.35
10	Mixed Low Grade Paper	0.35

Table 1-202
Analysis of Variability, WCS, Winter 2005, Refuse, High Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	2.18
2	Miscellaneous Inorganics Total	2.14
3	HHW Total	1.99
4	C \& D Debris Total	1.30
5	Glass Total	0.89
6	Metal Total	0.87
7	Paper Total	0.32
8	Plastic Total	0.26
9	Organics Total	0.22
Rank	Material	Coefficient of Variation
Most Variable		
1	\#3 Through \#7 Tubs: \#3 PVC	7.07
2	Compressed Gas Cylinders, Fire Extinguishers	7.07
3	Soda Crates and Bottle Carriers	7.07
4	Other Potentially Harmful Wastes	7.07
5	Antifreeze	7.07
6	Latex Paints/Water-Based Adhesives/Glues	7.07
7	Other Container Glass	7.07
8	\#3 Through \#7 Tubs: \#4 LDPE	6.78
9	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	6.69
10	Stumps/Limbs	6.56
Least Variable		
1	Disposable Diapers and Sanitary Products	0.66
2	Mixed Low Grade Paper	0.58
3	Tin Food Cans	0.57
4	Plastic Bags	0.57
5	Compostable/Soiled Paper/Waxed OCC/Kraft	0.57
6	Newspaper	0.52
7	PET Bottles	0.52
8	Fines	0.44
9	Food	0.33
10	Other Film	0.33

Table 1-203
Analysis of Variability, WCS, Winter 2005, Refuse, High Density/Low Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	2.78
2	Miscellaneous Inorganics Total	2.22
3	HHW Total	1.92
4	C \& D Debris Total	1.34
5	Metal Total	0.70
6	Glass Total	0.66
7	Paper Total	0.35
8	Plastic Total	0.26
9	Organics Total	0.22
	Material	
Rank		
	Most Variable	7.14
1	\#3 Through \#7 Tubs: \#4 LDPE	7.14
2	Other Computer Equipment	6.80
3	Other Aluminum	6.46
4	Oil-Based Paints/Solvent-Based Adhesives/Glues	6.31
5	Other Potentially Harmful Wastes	5.93
6	Stumps/Limbs	5.73
7	Non-C\&D Untreated Wood	5.52
8	Leaves and Grass	5.37
9	Latex Paints/Water-Based Adhesives/Glues	5.22
10	Audio/Visual Equipment: Cell Phones	
	Least Variable	0.64
1	Aluminum Foil/Containers	0.60
2	Compostable/Soiled Paper/Waxed OCC/Kraft	0.55
3	Plastic Bags	0.55
4	Expanded Polystyrene Containers and Packaging	0.51
5	Disposable Diapers and Sanitary Products	0.48
6	Tin Food Cans	0.43
7	Other Film	0.41
8	Mixed Low Grade Paper	0.38
9	Fines	0.37
10	Food	

Table 1-204
Analysis of Variability, WCS, Winter 2005, Refuse, Medium Density/High Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	1.98
2	Appliance/Electronic Total	1.92
3	C \& D Debris Total	1.72
4	Miscellaneous Inorganics Total	1.42
5	Glass Total	0.87
6	Metal Total	0.73
7	Plastic Total	0.30
8	Paper Total	0.25
9	Organics Total	0.22
Rank	Material	Coefficient of Variation
Most Variable		
1	\#3 Through \#7 Tubs: \#4 LDPE	7.14
2	Latex Paints/Water-Based Adhesives/Glues	6.66
3	Appliances: Non-Ferrous	6.06
4	Stumps/Limbs	5.98
5	Other Container Glass	5.88
6	Other Leather Products	5.31
7	Televisions	5.06
8	Rock/Concrete/Bricks	5.05
9	Other Potentially Harmful Wastes	4.64
10	Other Aluminum	4.47
Least Variable		
1	Tin Food Cans	0.58
2	Plastic Bags	0.55
3	PET Bottles	0.55
4	Aluminum Foil/Containers	0.54
5	Paper Bags	0.52
6	Fines	0.52
7	Mixed Low Grade Paper	0.43
8	Other Film	0.41
9	Compostable/Soiled Paper/Waxed OCC/Kraft	0.40
10	Food	0.32

Table 1-205
Analysis of Variability, WCS, Winter 2005, Refuse, Medium Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	3.46
2	HHW Total	2.63
3	Miscellaneous Inorganics Total	2.06
4	C \& D Debris Total	2.06
5	Metal Total	1.13
6	Glass Total	0.67
7	Paper Total	0.31
8	Plastic Total	0.31
9	Organics Total	0.21
	Material	
		Coefficient
Rank		
	Most Variable	7.14
1	Stumps/Limbs	7.14
2	Appliances: Non-Ferrous	7.14
3	Computer Monitors	7.14
4	Televisions	6.68
5	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	6.47
6	Other Aluminum	6.47
7	Gasoline/Kerosene/Motor Oil/Diesel Fuel	6.28
8	Other Potentially Harmful Wastes	5.98
9	Rock/Concrete/Bricks	5.81
10	Other Container Glass	
	Least Variable	0.72
1	Plain OCC/Kraft Paper	0.65
2	Expanded Polystyrene Containers and Packaging	0.62
3	Aluminum Foil/Containers	0.61
4	Disposable Diapers and Sanitary Products	0.51
5	Plastic Bags	0.48
6	Mixed Low Grade Paper	0.45
7	Compostable/Soiled Paper/Waxed OCC/Kraft	0.44
8	Fines	0.34
9	Other Film	
10	Food	

Table 1-206
Analysis of Variability, WCS, Winter 2005, Refuse, Medium Density/Low Income

Rank	Material Group	Coefficient of Variation		
1	Appliance/Electronic Total	3.22		
2	HHW Total	2.20		
3	Miscellaneous Inorganics Total	1.88		
4	C \& D Debris Total	1.32		
5	Metal Total	0.73		
6	Glass Total	0.69		
7	Paper Total	0.35		
8	Plastic Total	0.25		
9	Organics Total	0.24		
	Material			
		Coefficient		
Rank		7.14		
	Most Variable	7.14		
1	Other Aluminum	7.14		
2	Pesticides/Herbicides/Rodenticides	7.14		
3	Soda Crates and Bottle Carriers	7.14		
4	Latex Paints/Water-Based Adhesives/Glues	7.14		
5	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.14		
6	\#3 Through \#7 Tubs: \#3 PVC	7.14		
7	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.14		
8	Other Computer Equipment	7.14		
9	Gasoline/Kerosene/Motor Oil/Diesel Fuel			
10	Televisions	0.63		
	Least Variable	0.58		
1	PET Bottles	0.57		
2	Paper Bags	0.55		
3	Tin Food Cans	0.54		
4	Fines	0.46		
5	Disposable Diapers and Sanitary Products	0.46		
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.37		
7	Plastic Bags			
8	Mixed Low Grade Paper			
9	Food			
10	Other Film			

Table 1-207
Analysis of Variability, WCS, Winter 2005, Refuse, Low Density/High Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	2.65
2	HHW Total	2.17
3	Miscellaneous Inorganics Total	2.15
4	Metal Total	1.38
5	C \& D Debris Total	1.32
6	Glass Total	0.83
7	Plastic Total	0.31
8	Paper Total	0.28
9	Organics Total	0.24
Rank	Material	Coefficient of Variation
Most Variable		
1	Appliances: Ferrous	7.21
2	Audio/Visual Equipment: Cell Phones	7.21
3	\#3 Through \#7 Tubs: \#4 LDPE	7.21
4	Antifreeze	7.21
5	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.21
6	Gasoline/Kerosene/Motor Oil/Diesel Fuel	7.21
7	Televisions	7.21
8	Compressed Gas Cylinders, Fire Extinguishers	7.21
9	Pesticides/Herbicides/Rodenticides	6.71
10	Stumps/Limbs	6.63
Least Variable		
1	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.67
2	Expanded Polystyrene Containers and Packaging	0.62
3	PET Bottles	0.59
4	Paper Bags	0.57
5	Plastic Bags	0.51
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.41
7	Other Film	0.40
8	Food	0.40
9	Fines	0.38
10	Mixed Low Grade Paper	0.32

Table 1-208
Analysis of Variability, WCS, Winter 2005, Refuse, Low Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	2.63
2	Miscellaneous Inorganics Total	2.19
3	HHW Total	1.49
4	Glass Total	1.05
5	C \& D Debris Total	0.99
6	Metal Total	0.93
7	Paper Total	0.34
8	Plastic Total	0.29
9	Organics Total	0.19
Rank	Material	Coefficient of Variation
Most Variable		
1	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
2	Audio/Visual Equipment: Cell Phones	7.07
3	Oil Filters	7.07
4	Gasoline/Kerosene/Motor Oil/Diesel Fuel	7.07
5	Other PVC	7.07
6	Soda Crates and Bottle Carriers	7.07
7	Audio/Visual Equipment: Other	5.19
8	Stumps/Limbs	5.07
9	Other Computer Equipment	5.03
10	Upholstered or Other Organic-Type Furniture	4.42
Least Variable		
1	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.72
2	Expanded Polystyrene Containers and Packaging	0.59
3	Aluminum Foil/Containers	0.58
4	Disposable Diapers and Sanitary Products	0.56
5	Plastic Bags	0.53
6	Mixed Low Grade Paper	0.48
7	Fines	0.46
8	Compostable/Soiled Paper/Waxed OCC/Kraft	0.40
9	Other Film	0.39
10	Food	0.36

Table 1-209
Analysis of Variability, WCS, Spring 2005, Refuse, High Density/High Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.83
2	HHW Total	2.68
3	Appliance/Electronic Total	1.80
4	C \& D Debris Total	1.31
5	Metal Total	0.95
6	Glass Total	0.61
7	Organics Total	0.28
8	Paper Total	0.28
9	Plastic Total	0.26
Rank	Material	Coefficient of Variation
Most Variable		
1	Soda Crates and Bottle Carriers	7.07
2	\#3 Through \#7 Tubs: \#4 LDPE	7.07
3	Other Aluminum	6.47
4	Other Computer Equipment	5.80
5	Appliances: Non-Ferrous	5.42
6	Miscellaneous Inorganics	5.18
7	Audio/Visual Equipment: Cell Phones	4.96
8	Latex Paints/Water-Based Adhesives/Glues	4.95
9	Stumps/Limbs	4.90
10	Upholstered or Other Organic-Type Furniture	4.62
Least Variable		
1	Aluminum Foil/Containers	0.57
2	PET Bottles	0.48
3	Other Film	0.46
4	Other Rigid Containers/Packaging	0.43
5	Paper Bags	0.41
6	Mixed Low Grade Paper	0.40
7	Fines	0.39
8	Plastic Bags	0.38
9	Compostable/Soiled Paper/Waxed OCC/Kraft	0.34
10	Food	0.34

Table 1-210
Analysis of Variability, WCS, Spring 2005, Refuse, High Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.66
2	Appliance/Electronic Total	1.86
3	HHW Total	1.72
4	C \& D Debris Total	1.23
5	Metal Total	0.74
6	Glass Total	0.65
7	Paper Total	0.34
8	Plastic Total	0.33
9	Organics Total	0.19
Rank	Material	Coefficient of Variation
Most Variable		
1	\#3 Through \#7 Tubs: \#3 PVC	7.07
2	Other Aluminum	7.07
3	Compressed Gas Cylinders, Fire Extinguishers	7.07
4	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	5.76
5	Appliances: Non-Ferrous	5.54
6	Miscellaneous Inorganics	5.54
7	Soda Crates and Bottle Carriers	5.37
8	Other Non-Ferrous	5.16
9	Stumps/Limbs	5.10
10	Pesticides/Herbicides/Rodenticides	4.97
Least Variable		
1	Expanded Polystyrene Containers and Packaging	0.68
2	Aluminum Foil/Containers	0.66
3	Compostable/Soiled Paper/Waxed OCC/Kraft	0.57
4	PET Bottles	0.56
5	Other Film	0.49
6	Plastic Bags	0.46
7	Fines	0.42
8	Mixed Low Grade Paper	0.41
9	Other Rigid Containers/Packaging	0.40
10	Food	0.33

Table 1-211
Analysis of Variability, WCS, Spring 2005, Refuse, High Density/Low Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	3.64
2	Appliance/Electronic Total	2.11
3	Miscellaneous Inorganics Total	1.55
4	C \& D Debris Total	1.34
5	Metal Total	0.76
6	Glass Total	0.61
7	Paper Total	0.35
8	Plastic Total	0.24
9	Organics Total	0.18
Rank	Material	Coefficient of Variation
Most Variable		
1	Other Computer Equipment	7.07
2	Pesticides/Herbicides/Rodenticides	7.07
3	Audio/Visual Equipment: Cell Phones	7.07
4	Soda Crates and Bottle Carriers	7.01
5	Other Aluminum	6.23
6	Appliances: Non-Ferrous	5.83
7	\#3 Through \#7 Tubs: \#3 PVC	5.60
8	Non-C\&D Untreated Wood	5.43
9	Home Medical Products	5.22
10	Rock/Concrete/Bricks	5.08
Least Variable		
1	Other Rigid Containers/Packaging	0.54
2	Fines	0.52
3	Expanded Polystyrene Containers and Packaging	0.52
4	Disposable Diapers and Sanitary Products	0.51
5	Plastic Bags	0.49
6	Tin Food Cans	0.45
7	PET Bottles	0.43
8	Mixed Low Grade Paper	0.42
9	Other Film	0.38
10	Food	0.31

Table 1-212
Analysis of Variability, WCS, Spring 2005, Refuse, Medium Density/High Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	3.08
2	Miscellaneous Inorganics Total	2.57
3	HHW Total	2.23
4	Metal Total	1.44
5	C \& D Debris Total	1.09
6	Glass Total	0.82
7	Plastic Total	0.34
8	Paper Total	0.34
9	Organics Total	0.22
Rank	Material	Coefficient of Variation
Most Variable		
1	Audio/Visual Equipment: Cell Phones	7.07
2	Latex Paints/Water-Based Adhesives/Glues	7.07
3	Computer Monitors	7.07
4	Other PVC	7.07
5	Soda Crates and Bottle Carriers	6.90
6	Upholstered or Other Organic-Type Furniture	6.89
7	Appliances: Non-Ferrous	6.67
8	\#3 Through \#7 Tubs: \#3 PVC	6.64
9	Other Computer Equipment	6.59
10	Home Medical Products	6.01
Least Variable		
1	Rigid Polystyrene Containers and Packaging	0.66
2	Expanded Polystyrene Containers and Packaging	0.63
3	PET Bottles	0.61
4	Plastic Bags	0.59
5	Fines	0.56
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.53
7	Other Film	0.51
8	Mixed Low Grade Paper	0.46
9	Paper Bags	0.42
10	Food	0.36

Table 1-213
Analysis of Variability, WCS, Spring 2005, Refuse, Medium Density/Medium Income

Rank	Material Group	Coefficient of Variation		
1	HHW Total	3.24		
2	Miscellaneous Inorganics Total	2.39		
3	Appliance/Electronic Total	2.10		
4	C \& D Debris Total	1.26		
5	Glass Total	0.97		
6	Metal Total	0.60		
7	Paper Total	0.34		
8	Plastic Total	0.28		
9	Organics Total	0.23		
	Material			
		Coefficient		
of Variation				
	Most Variable	7.14		
1	Fluorescent Tubes	7.14		
2	Gasoline/Kerosene/Motor Oi/Diesel Fuel	7.14		
3	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.14		
4	Soda Crates and Bottle Carriers	7.04		
5	Stumps/Limbs	6.72		
6	Latex Paints/Water-Based Adhesives/Glues	6.36		
7	Appliances: Non-Ferrous	5.79		
8	Rock/Concrete/Bricks	5.39		
9	Other Potentially Harmful Wastes	5.01		
10	Other Computer Equipment			
	Least Variable	0.61		
1	Paper Bags	0.59		
2	Other Rigid Containers/Packaging	0.53		
3	Aluminum Foil/Containers	0.49		
4	Mixed Low Grade Paper	0.48		
5	Expanded Polystyrene Containers and Packaging	0.44		
6	Plastic Bags	0.40		
7	Other Film	0.37		
8	Food	0.34		
10	Fines			
	Compostable/Soiled Paper/Waxed OCC/Kraft			

Table 1-214
Analysis of Variability, WCS, Spring 2005, Refuse, Medium Density/Low Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.93
2	HHW Total	1.98
3	Appliance/Electronic Total	1.89
4	C \& D Debris Total	1.34
5	Metal Total	0.67
6	Glass Total	0.67
7	Paper Total	0.30
8	Plastic Total	0.27
9	Organics Total	0.20
Rank	Material	Coefficient of Variation
Most Variable		
1	Fluorescent Tubes	7.07
2	Appliances: Non-Ferrous	7.07
3	Pesticides/Herbicides/Rodenticides	6.25
4	Miscellaneous Inorganics	5.63
5	Soda Crates and Bottle Carriers	5.56
6	Other Aluminum	5.51
7	Audio/Visual Equipment: Cell Phones	5.41
8	Upholstered or Other Organic-Type Furniture	5.33
9	Oil-Based Paints/Solvent-Based Adhesives/Glues	5.17
10	Appliances: Ferrous	4.84
Least Variable		
1	Paper Bags	0.59
2	Other Rigid Containers/Packaging	0.56
3	Fines	0.51
4	Plastic Bags	0.51
5	Expanded Polystyrene Containers and Packaging	0.51
6	PET Bottles	0.50
7	Compostable/Soiled Paper/Waxed OCC/Kraft	0.48
8	Mixed Low Grade Paper	0.45
9	Other Film	0.41
10	Food	0.37

Table 1-215
Analysis of Variability, WCS, Spring 2005, Refuse, Low Density/High Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	3.60
2	Appliance/Electronic Total	2.38
3	HHW Total	1.75
4	Metal Total	1.33
5	C \& D Debris Total	0.87
6	Glass Total	0.85
7	Plastic Total	0.41
8	Paper Total	0.41
9	Organics Total	0.25
Rank	Material	Coefficient of Variation
Most Variable		
1	Audio/Visual Equipment: Cell Phones	7.07
2	Latex Paints/Water-Based Adhesives/Glues	7.07
3	Other PVC	7.07
4	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
5	Oil Filters	7.07
6	Pesticides/Herbicides/Rodenticides	7.07
7	Compressed Gas Cylinders, Fire Extinguishers	7.07
8	Computer Monitors	7.07
9	Appliances: Non-Ferrous	6.26
10	Miscellaneous Inorganics	6.02
Least Variable		
1	Disposable Diapers and Sanitary Products	0.78
2	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.74
3	Other Rigid Containers/Packaging	0.74
4	PET Bottles	0.72
5	Plastic Bags	0.63
6	Fines	0.57
7	Other Film	0.55
8	Compostable/Soiled Paper/Waxed OCC/Kraft	0.54
9	Food	0.50
10	Mixed Low Grade Paper	0.46

Table 1-216
Analysis of Variability, WCS, Spring 2005, Refuse, Low Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.82
2	HHW Total	2.65
3	Appliance/Electronic Total	2.11
4	C \& D Debris Total	1.23
5	Glass Total	0.99
6	Metal Total	0.90
7	Paper Total	0.41
8	Plastic Total	0.39
9	Organics Total	0.27
Rank	Material	Coefficient of Variation
Most Variable		
1	Other Computer Equipment	7.07
2	\#3 Through \#7 Tubs: \#3 PVC	7.07
3	Oil Filters	7.07
4	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
5	Computer Monitors	7.07
6	Latex Paints/Water-Based Adhesives/Glues	7.07
7	Other PVC	7.07
8	Other Potentially Harmful Wastes	6.60
9	Other Leather Products	6.36
10	\#3 Through \#7 Tubs: \#4 LDPE	6.14
Least Variable		
1	Paper Bags	0.70
2	Other Rigid Containers/Packaging	0.68
3	Expanded Polystyrene Containers and Packaging	0.64
4	PET Bottles	0.63
5	Plastic Bags	0.58
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.56
7	Mixed Low Grade Paper	0.54
8	Other Film	0.53
9	Fines	0.53
10	Food	0.38

Table 1-217
Analysis of Variability, WCS, Summer 2005, Refuse, High Density/High Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	3.47
2	HHW Total	2.66
3	C \& D Debris Total	1.90
4	Miscellaneous Inorganics Total	1.57
5	Glass Total	0.63
6	Metal Total	0.53
7	Organics Total	0.31
8	Plastic Total	0.27
9	Paper Total	0.25
Rank	Material	Coefficient of Variation
Most Variable		
1	Other Aluminum	7.07
2	Latex Paints/Water-Based Adhesives/Glues	7.07
3	Oil Filters	7.07
4	Other Container Glass	7.07
5	\#3 Through \#7 Bottles: \#4 LDPE	7.07
6	\#3 Through \#7 Tubs: \#3 PVC	7.07
7	\#3 Through \#7 Tubs: \#4 LDPE	7.07
8	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
9	Upholstered or Other Organic-Type Furniture	6.99
10	Appliances: Ferrous	5.96
Least Variable		
1	Aluminum Foil/Containers	0.52
2	Single Use Paper Plates, Cups	0.52
3	Polycoated Paper Containers	0.46
4	Paper Bags	0.45
5	Food	0.44
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.40
7	Other Rigid Containers/Packaging	0.37
8	Mixed Low Grade Paper	0.35
9	Plastic Bags	0.29
10	Other Film	0.26

Table 1-218
Analysis of Variability, WCS, Summer 2005, Refuse, High Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	4.35
2	Appliance/Electronic Total	1.86
3	Miscellaneous Inorganics Total	1.81
4	C \& D Debris Total	1.76
5	Metal Total	0.88
6	Glass Total	0.65
7	Paper Total	0.30
8	Plastic Total	0.27
9	Organics Total	0.25
	Material	
		Coefficient
Rank		
	Most Variable	7.07
1	Appliances: Non-Ferrous	7.07
2	Latex Paints/Water-Based Adhesives/Glues	7.07
3	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
4	Other Potentially Harmful Wastes	7.07
5	Other PVC	7.07
6	Computer Monitors	7.07
7	Televisions	6.99
8	Fluorescent Tubes	6.40
9	Soda Crates and Bottle Carriers	6.22
10	Gasoline/Kerosene/Motor Oi//Diesel Fuel	
	Least Variable	0.52
1	PET Bottles	0.51
2	Disposable Diapers and Sanitary Products	0.51
3	Paper Bags	0.49
4	Fines	0.47
5	Mixed Low Grade Paper	0.47
6	Other Rigid Containers/Packaging	0.42
7	Compostable/Soiled Paper/Waxed OCC/Kraft	0.36
8	Food	0.33
10	Other Film	
	Plastic Bags	

Table 1-219
Analysis of Variability, WCS, Summer 2005, Refuse, High Density/Low Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	2.51
2	Appliance/Electronic Total	2.38
3	C \& D Debris Total	1.50
4	Miscellaneous Inorganics Total	1.33
5	Glass Total	0.59
6	Metal Total	0.35
7	Paper Total	0.26
8	Plastic Total	0.22
9	Organics Total	0.19
Rank	Material	Coefficient of Variation
Most Variable		
1	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
2	Fluorescent Tubes	7.07
3	Latex Paints/Water-Based Adhesives/Glues	7.07
4	Televisions	7.07
5	Oil Filters	7.07
6	Other PVC	7.07
7	Stumps/Limbs	7.07
8	Oil-Based Paints/Solvent-Based Adhesives/Glues	6.79
9	Soda Crates and Bottle Carriers	6.46
10	Other Aluminum	6.45
Least Variable		
1	Aluminum Foil/Containers	0.46
2	Other Rigid Containers/Packaging	0.46
3	Compostable/Soiled Paper/Waxed OCC/Kraft	0.46
4	PET Bottles	0.45
5	Paper Bags	0.41
6	Mixed Low Grade Paper	0.36
7	Food	0.33
8	Other Film	0.33
9	Plastic Bags	0.31
10	Fines	0.30

Table 1-220
Analysis of Variability, WCS, Summer 2005, Refuse, Medium Density/High Income

Rank	Material Group	Coefficient of Variation
1	Miscellaneous Inorganics Total	2.89
2	HHW Total	2.77
3	Appliance/Electronic Total	2.44
4	C \& D Debris Total	1.65
5	Metal Total	0.95
6	Glass Total	0.61
7	Plastic Total	0.29
8	Paper Total	0.25
9	Organics Total	0.19
	Material	
		Coefficient
Rank		
	Most Variable	7.07
1	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
2	Antifreeze	7.07
3	Fluorescent Tubes	7.07
4	Televisions	7.07
5	Audio/Visual Equipment: Cell Phones	7.07
6	Appliances: Non-Ferrous	7.07
7	Other Container Glass	7.07
8	Other PVC	6.54
9	Non-C\&D Untreated Wood	5.89
10	Oil-Based Paints/Solvent-Based Adhesives/Glues	
	Least Variable	0.56
1	Fines	0.49
2	PET Bottles	0.48
3	Aluminum Foil/Containers	0.44
4	Other Rigid Containers/Packaging	0.38
5	Mixed Low Grade Paper	0.37
6	Paper Bags	0.37
7	Other Film	0.34
8	Plastic Bags	0.29
9	Compostable/Soiled Paper/Waxed OCC/Kraft	
10	Food	

Table 1-221
\(\left.$$
\begin{array}{clc}\text { Analysis of Variability, WCS, Summer 2005, Refuse, Medium Density/Medium Income } \\
\hline \text { Rank } & & \text { Material Group }\end{array}
$$ \begin{array}{c}Coefficient

of Variation\end{array}\right]\)| 1 | HHW Total |
| :---: | :---: |
| 2 | Appliance/Electronic Total |
| 3 | Miscellaneous Inorganics Total |
| 4 | C \& D Debris Total |
| 5 | Glass Total |
| 6 | Metal Total |
| 7 | Paper Total |
| 8 | Plastic Total |
| 9 | Organics Total |

Rank	Material	Coefficient of Variation
Most Variable		
1	Gasoline/Kerosene/Motor Oi/Diesel Fuel	7.07
2	Televisions	7.07
3	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
4	Audio/Visual Equipment: Cell Phones	7.07
5	Stumps/Limbs	7.07
6	Appliances: Non-Ferrous	7.07
7	Computer Monitors	7.07
8	Oil-Based Pains/Solvent-Based Adhesives/Glues	6.22
9	Other Potentially Harmful Wastes	5.89
10	Other Container Glass	5.76
	Least Variable	
1	Paper Bags	0.56
2	Other Rigid Containers/Packaging	0.52
3	Fines	0.49
4	Expanded Polystyrene Containers and Packaging	0.47
5	Aluminum Foil/Containers	0.47
6	Mixed Low Grade Paper	0.36
7	Compostable/Soiled Paper/Waxed OCC/Kraft	0.34
8	Food	0.34
9	Plastic Bags	0.30
10	Other Film	0.27

Table 1-222
Analysis of Variability, WCS, Summer 2005, Refuse, Medium Density/Low Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	2.80
2	Miscellaneous Inorganics Total	1.58
3	HHW Total	1.53
4	C \& D Debris Total	1.18
5	Metal Total	0.71
6	Glass Total	0.71
7	Paper Total	0.33
8	Plastic Total	0.27
9	Organics Total	0.26
	Material	
		Coefficient
Rank		
	Most Variable	7.07
1	Other Aluminum	7.07
2	Pesticides/Herbicides/Rodenticides	7.07
3	Televisions	7.06
4	Stumps/Limbs	7.01
5	Other Computer Equipment	6.55
6	Non-C\&D Untreated Wood	6.26
7	Other Container Glass	5.94
8	Computer Monitors	5.89
9	Soda Crates and Bottle Carriers	5.25
10	Other Potentially Harmful Wastes	
	Least Variable	0.60
1	Tin Food Cans	0.58
2	PET Bottles	0.56
3	Paper Bags	0.54
4	Expanded Polystyrene Containers and Packaging	0.47
5	Other Rigid Containers/Packaging	0.43
6	Compostable/Soiled Paper/Waxed OCC/Kraft	0.31
7	Food	
8	Mixed Low Grade Paper	
9	Other Film	
10	Plastic Bags	

Table 1-223
Analysis of Variability, WCS, Summer 2005, Refuse, Low Density/High Income

Rank	Material Group	Coefficient of Variation
1	Appliance/Electronic Total	3.10
2	Miscellaneous Inorganics Total	2.58
3	HHW Total	2.37
4	Metal Total	1.35
5	C \& D Debris Total	1.28
6	Glass Total	0.60
7	Plastic Total	0.46
8	Organics Total	0.30
9	Paper Total	0.28
Rank	Material	Coefficient of Variation
Most Variable		
1	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
2	Audio/Visual Equipment: Cell Phones	7.07
3	Gasoline/Kerosene/Motor Oil/Diesel Fuel	7.07
4	Other Aluminum	7.07
5	Latex Paints/Water-Based Adhesives/Glues	7.07
6	Oil-Based Paints/Solvent-Based Adhesives/Glues	6.96
7	Other Computer Equipment	6.81
8	Appliances: Ferrous	6.63
9	Other Potentially Harmful Wastes	6.51
10	Non-C\&D Untreated Wood	5.59
Least Variable		
1	Aluminum Foil/Containers	0.65
2	Fines	0.58
3	Polycoated Paper Containers	0.57
4	Expanded Polystyrene Containers and Packaging	0.56
5	PET Bottles	0.55
6	Mixed Low Grade Paper	0.43
7	Plastic Bags	0.41
8	Compostable/Soiled Paper/Waxed OCC/Kraft	0.38
9	Other Film	0.37
10	Food	0.37

Table 1-224
Analysis of Variability, WCS, Summer 2005, Refuse, Low Density/Medium Income

Rank	Material Group	Coefficient of Variation
1	HHW Total	3.23
2	Appliance/Electronic Total	2.19
3	Miscellaneous Inorganics Total	1.58
4	Metal Total	1.37
5	C \& D Debris Total	0.99
6	Glass Total	0.95
7	Plastic Total	0.35
8	Paper Total	0.35
9	Organics Total	0.24
Rank	Material	Coefficient of Variation
Most Variable		
1	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	7.07
2	Fluorescent Tubes	7.07
3	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.07
4	Computer Monitors	7.07
5	Televisions	7.07
6	Oil Filters	7.07
7	Latex Paints/Water-Based Adhesives/Glues	7.05
8	Other PVC	6.81
9	Other Potentially Harmful Wastes	5.91
10	Other Aluminum	5.79
Least Variable		
1	Other Nonrecyclable Paper	0.73
2	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.70
3	Disposable Diapers and Sanitary Products	0.68
4	Polycoated Paper Containers	0.64
5	Paper Bags	0.63
6	Mixed Low Grade Paper	0.54
7	Plastic Bags	0.43
8	Compostable/Soiled Paper/Waxed OCC/Kraft	0.43
9	Fines	0.39
10	Food	0.39

[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 1
Section 9: Comparison with Other Jurisdictions
[This page intentionally left blank.]

Section 9 Comparison with Other Jurisdictions

9.1 Introduction

Section 9 presents a comparison of the results of the New York City Waste Characterization Study ("NYC WCS") and the results of waste composition studies from nine other jurisdictions across the United States. In all but one case, the studies from the other jurisdictions examined only disposed waste (i.e., refuse) and these results have been compared with the Citywide refuse results from the NYC WCS. The exception is Seattle Washington. Two studies were conducted for Seattle, a 2002 study which estimates the composition of Seattle's refuse and a 2005 study which estimates the composition of Seattle's recycling. The results of the Seattle studies are compared with the Citywide refuse and recycling results from the NYCWCS. The results of all these studies have been published within the past six years.

The purpose of these comparisons is to present the differences and similarities in the composition of the waste across geographic regions and over time. Because each of the studies sorted the waste using different material groups ${ }^{1}$ and categories ${ }^{1}$, adjustments have been made to make the results comparable to the NYC WCS.

The comparison includes a summary of the methodologies of each study, a comparison of the material group and the adjustments made to each group, a comparison of the material categories and the adjustments made to each category, and a comparison of the most prevalent materials in each study.

Section 9 is divided into 11 subsections. After the Introduction and Summary Comparison of all the studies is presented. These are followed by individual comparisons of the NYC WCS and the studies from the other jurisdictions. The jurisdictions included in this section include:
9.3 The City of Los Angeles, California
9.4 The City of Philadelphia, Pennsylvania
9.5 The City of Phoenix, Arizona
9.6 The City of San Diego, California
9.7 The City of San Francisco, California
9.8 The City of Seattle, Washington
9.9 Alameda County, California
9.10 The State of Pennsylvania
9.11 The State of Georgia

With the exception of the Seattle Recycling Study, the composition of the refuse from these jurisdictions is being compared to the composition of the refuse in New York City ("NYC") without corresponding comparison of recycling programs. Therefore, the refuse composition will reflect the recycling programs in place in a jurisdiction, and the recycling rates and habits, which will differ from place to place. For example, Philadelphia has a much lower percentage

[^1]of food waste in its refuse than New York City. But this may be explained by Philadelphia's lower diversion rate. Because there is more paper, plastic, and metal in Philadelphia's refuse than in New York City's refuse, the amount of food waste in Philadelphia's refuse would represent a greater percentage of the total refuse than an identical amount of food waste in New York City's refuse.

9.2 Comparison of Other Jurisdictions: A Summary

The ten waste composition studies that are compared to the NYC WCS in this section were conducted during the past six years. The earliest studies, San Diego and Alameda County, were published in 2000 and the Final Report for the NYC WCS will be published in 2006. All the studies in these comparisons examined waste generated by the residential sector. Nine of the ten studies compared with the NYC WCS estimate the composition of refuse. The Seattle Recycling Study estimated the composition of recycling. The NYC WCS characterized the both refuse and recycling (i.e. Paper, MGP, and aggregated recycling) and the aggregated recycling results were compared to Seattle's recycling stream. For the other studies, the NYC WCS recycling results were not part of the comparisons because the other studies characterized only the disposed waste (i.e., refuse).

All but one study ${ }^{2}$ were based on sampling the residential waste at transfer stations or disposal sites and sorting the waste by hand. The material groups and material categories used in the ten studies differed from each other and from the material groups and material categories used in the NYC WCS. The explanation of how the material groups and categories were adjusted to make them comparable to the NYC WCS is included in the description of the individual studies.

Six of the ten studies presented results for both single-family and multi-family residences. The composition of the single-family residential refuse was compared with the weighted average composition of the two low density strata of the NYC WCS. The composition of the multifamily residential refuse was compared with the weighted average composition of the high and medium density strata of the NYC WCS. Three of the studies presented the aggregated residential results and these results were compared with the aggregated residential results of the NYC WCS. One study presented the results of single family residences only and these results were compared with the results of the low density strata of the NYC WCS. The ten studies include sixteen separate sets of data, each of which are compared with one of five sets of data from the NYC WCS. Table 1-225 shows the types of results presented in each study and the comparisons used.

[^2]Table 1-225
Types of Residential Refuse Results Presented in Comparative Studies

Study	Type of Results	
The Los Angeles Study (1)	Single-Family	Comparison
The Los Angeles Study (2)	Multi-Family	Average of Low Density Strata in the NYC WCS (17)
The Philadelphia Study (3)	Average of High and Medium Density Strata in the NYC WCS (18)	Citywide Annual Residential (19)
The Phoenix Study (4)	Single-Family	Average of Low Density Strata in the NYC WCS (17)
The San Diego Study (5)	Multi-Family	Average of Low Density Strata in the NYC WCS (17)
The San Diego Study (6)	Average of High and Medium Density Strata in the NYC WCS (18)	
The San Francisco Study (7)	Multi-Family	Average of Low Density Strata in the NYC WCS (17)
The San Francisco Study (8)	Average of High and Medium Density Strata in the NYC WCS (18)	
The Seattle Refuse Study (9)	Single-Family	Average of Low Density Strata in the NYC WCS (17)
The Seattle Refuse Study (10)	Multi-Family	Average of High and Medium Density Strata in the NYC WCS (18)
The Seattle Recycling Study (11)	Single-Family	Average of Low Density Strata in the NYC WCS (20)
The Seattle Recycling Study (12)	Multi-Family	Average of High and Medium Density Strata in the NYC WCS (21)
The Alameda County Study (13)	Single-Family	Average of Low Density Strata in the NYC WCS (17)
The Alameda County Study (14)	Multi-Family	Average of High and Medium Density Strata in the NYC WCS (18)
The Pennsylvania Study (15)	Residential	Cesidential

(1) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Single-Family Residential Waste (Table 6, page 13)
(2) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Multi-Family Residential Waste (Table 8, page 16)
(3) Municipal Waste Composition Analysis; City of Philadelphia Department of Streets, 2000; "Cumulative Composition of Samples with Statistical Analysis" (Table 3-4, page 3-7)
(4) Characterization of Waste from Single-Family Residences; City of Phoenix Department of Public Works, 2003; "Material Categories in Single-family Residential Waste (Table 2, page 9)
(5) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Single-Family Residential Waste"; (Table 10, page 13)
(6) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Multi-Family Residential Waste" (Table 13, page 16)
(7) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Single-Family Residential Program"; (Table A-2, page A-4)
(8) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Multifamily Residential Program"; (Table A-4, page A-5)
(9) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Single-Family (January - December 2002); (Table 4-4, page 18)
(10) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Multi-Family (January - December 2002); (Table 4-5, page 19)
(11) 2005 Residential Recycling Composition Study; Seattle Public Utilities, 2005; "Composition by Weight: Single-Family [January 2005 - December 2005]; [Table 4-8, page 15]
(12) 2005 Residential Recycling Composition Study; Seattle Public Utilities, 2005; "Composition by Weight: Multi-Family [January 2005 - December 2005]; [Table 4-9, page 16]
(13) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Single-Family Aggregate Waste Composition and Disposal"; (Table 4-3, page 4-13)
(14) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Multi-Family Aggregate Waste Composition and Disposal"; (Table 4-4, page 4-17)
(15) Statewide Waste Composition Study; 2002; Pennsylvania Department of Environmental Protection; "Statewide Residential Aggregate Landfilled MSW Composition Detail"; (Table 3, page 4-15)
(16) Georgia Statewide Waste Characterization Study; 2005; Georgia Department of Community Affairs; "Landfilled Aggregate MSW Composition by Generator Sector (Residential)"; (Table 4-3, page 4-10)
(17) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17 pages 42-45) weighted average of low density strata
(18) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17 pages 42-45) weighted average of high and medium density strata
(19) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (see Volume 1, Section 2, Table 1-28)
(20) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of low density strata
(21) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of high and medium density strata

Table 1-226A compares nine refuse studies and the NYC WCS in terms of the material groups used in the NYC WCS. It also shows the year of each study, the number of material groups and categories used, and the number of sampling units on which the results were based.

Table 1-226B compares the Seattle Recycling Study and the NYC WCS in terms of the material groups used in the NYC WCS. It also shows the year of the two studies, the number of material groups and categories used, and the number of sampling units on which the results were based.

Table 1-226A
Comparison by Material Groups in Residential Refuse Results

Study	NYC WCS (1)	NYC WCS (2)	NYC WCS (3)	Los Angeles (4)	Los Angeles (5)	Philadelphia (6)	Phoenix (7)	San Diego (8)	San Diego (9)
Sector	Residential	Single-Family	Multi-Family	Single-Family	Multi-Family	Residential	Single-Family	Single-Family	Multi-Family
Study Date	2004/2005	2004/2005	2004/2005	2000/2001	2000/2001	2001/2002	2002/2003	1999/2000	1999/2000
Material Groups (18)	9	9	9	9	9	0 (19)	8	9	9
Material Categories	91	91	91	57	57	24	89	67	67
Residential Samples	1,609	401	1,208	80	89	258	383	174	54
Material Groups (18)									
Paper	23.3\%	20.7\%	24.3\%	22.6\%	32.2\%	29.0\%	18.2\%	25.0\%	38.3\%
Plastic	14.8\%	12.5\%	15.6\%	10.1\%	9.6\%	13.2\%	8.3\%	7.7\%	7.8\%
Glass	2.6\%	1.6\%	3.1\%	2.2\%	5.5\%	9.2\%	2.4\%	2.7\%	3.7\%
Metal	3.7\%	3.5\%	3.7\%	4.3\%	4.0\%	6.5\%	4.2\%	5.1\%	6.0\%
Organics	47.0\%	50.5\%	45.8\%	50.5\%	44.1\%	38.6\%	57.5\%	40.3\%	36.7\%
Appliances \& Electronics	1.4\%	1.5\%	1.3\%	0.4\%	1.8\%	0.1\%	0.9\%	0.5\%	0.2\%
C\&D	6.3\%	8.5\%	5.5\%	9.4\%	2.1\%	3.4\%	7.2\%	17.6\%	5.6\%
Miscellaneous Inorganics	0.7\%	1.0\%	0.6\%	0.0\%	0.0\%	0.0\%	0.6\%	1.0\%	1.3\%
HHW	0.3\%	0.2\%	0.3\%	0.3\%	0.4\%	0.0\%	0.2\%	0.1\%	0.3\%
	100.0\%	99.9\%	100.1\%	99.8\%	99.7\%	100.0\%	99.5\%	100.0\%	99.9\%

Study	San Francisco (10)	San Francisco (11)	Seattle (12)	Seattle (13)	Alameda (14)	Alameda (15)	Pennsylvania (16)	Georgia (17)
Sector	Single-Family	Multi-Family	Single-Family	Multi-Family	Single-Family	Multi-Family	Residential	Residential
Study Date	2004/2005	2004/2005	2001/2002	2001/2002	1999/2000	1999/2000	2001/2002	2003/2004
Material Groups (18)	8	8	8	8	7	7	6	7
Material Categories	63	63	89	89	45	45	37	39
Residential Samples	40	21	204	105	260	121	630	240
Material Groups (18)								
Paper	20.5\%	25.1\%	21.2\%	25.0\%	33.3\%	32.5\%	28.6\%	37.1\%
Plastic	11.3\%	11.4\%	10.1\%	8.5\%	12.3\%	11.3\%	9.6\%	16.6\%
Glass	2.0\%	4.3\%	3.4\%	4.6\%	3.2\%	3.6\%	3.5\%	4.7\%
Metal	3.1\%	3.3\%	3.6\%	4.3\%	3.0\%	3.8\%	5.8\%	5.0\%
Organics	58.8\%	47.1\%	55.8\%	46.2\%	43.5\%	43.2\%	36.8\%	31.0\%
Appliances \& Electronics	0.2\%	0.0\%	0.6\%	1.3\%	0.0\%	0.0\%	1.5\%	1.5\%
C\&D	1.8\%	4.9\%	3.9\%	8.2\%	1.4\%	2.4\%	11.3\%	2.8\%
Miscellaneous Inorganics	0.4\%	1.1\%	0.8\%	1.2\%	1.1\%	0.8\%	2.6\%	0.9\%
HHW	1.9\%	2.5\%	0.3\%	0.4\%	1.4\%	1.4\%	0.3\%	0.3\%
	100.0\%	99.7\%	99.7\%	99.7\%	99.2\%	99.0\%	100.0\%	99.9\%

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (see Volume 1, Section 2, Table 1-28
(2) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
4) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Single-Family Residential Waste (Table 6, page 13)
(5) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Multi-Family Residential Waste (Table 8, page 16)
(6) Municipal Waste Composition Analysis; City of Philadelphia Department of Streets, 2000; "Cumulative Composition of Samples with Statistical Analysis" (Table 3-4, page 3-7)
(7) Characterization of Waste from Single-Family Residences; City of Phoenix Department of Public Works, 2003; "Material Categories in Single-family Residential Waste (Table 2, page 9)
(8) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Single-Family Residential Waste"; (Table 10, page 13)
(9) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Multi-Family Residential Waste" (Table 13, page 16)
(10) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Single-Family Residential Program"; (Table A-2, page A-4)
(11) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Multifamily Residential Program"; (Table A-4, page A-5)
(12) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Single-Family (January - December 2002); (Table 4-4, page 18)
(13) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Multi-Family (January - December 2002); (Table 4-5, page 19)
(14) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Single-Family Aggregate Waste Composition and Disposal"; (Table 4-3, page 4-13)
(15) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Multi-Family Aggregate Waste Composition and Disposal"; (Table 4-4, page 4-17)
(16) Statewide Waste Composition Study; 2002; Pennsylvania Department of Environmental Protection; "Statewide Residential Aggregate Landfilled MSW Composition Detail"; (Table 3, page 4-15)
(17) Georgia Statewide Waste Characterization Study; 2005; Georgia Department of Community Affairs; "Landfilled Aggregate MSW Composition by Generator Sector (Residential)"; (Table 4-3, page 4-10)
(18) For the purposes of comparison, the material groups for the nine studies being compared have been adjusted to conform to the material groups in the NYC WCS; for details, see the individual comparisons
(19) The material categories in the Philadelphia Study were not aggregated into material groups; for the purposes of this comparison, R.W. Beck created materials groups from the material categories in the Philadelphia Study NYC WCS Vol 1 § 9 Comparison with Other Jurisdictions

Table 1-226B
Comparison by Material Groups
Seattle Recycling Study and the NYC WCS

Study	NYC WCS (1)	NYC WCS (2)	Seattle(3)	Seattle(4)
Sector	Single-Family	Multi-Family	Single-Family	Single-Family
Study Date	2004/2005	2004/2005	2004/2005	2004/2005
Material Groups (18)	9	9	6	6
Material Categories	91	91	29	29
Residential Samples	1600	1,600	173	88
Material Groups (18)				
Paper	58.5\%	57.9\%	76.0\%	74.7\%
Plastic	10.9\%	10.7\%	2.4\%	2.2\%
Glass	13.1\%	13.2\%	18.0\%	18.8\%
Metal	12.2\%	11.9\%	1.6\%	1.7\%
Organics	1.8\%	1.7\%		
Appliances \& Electronics	2.8\%	3.9\%		
C\&D	0.1\%	0.4\%		
Miscellaneous Inorganics	0.3\%	0.2\%		
HHW	0.2\%	0.1\%		
Contaminants			2.0\%	2.6\%
	100.0\%	100.0\%	100.0\%	100.0\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of low density strata
(2) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of high and medium density strata
(3) 2005 Residential Recycling Composition Study; Seattle Public Utilities, 2005; "Composition by Weight: Single-Family [January 2005 - December 2005]; [Table 4-8, page 15]
(4) 2005 Residential Recycling Composition Study; Seattle Public Utilities, 2005; "Composition by Weight: Multi-Family [January 2005 - December 2005]; [Table 4-9, page 16]

The most remarkable feature of Table 1-226A is the overall consistency across the studies. In all the results, Organics and Paper material groups represent the largest percentages of material. In all studies, the Metals Group presents a relatively narrow range of percentages, from 3.0 percent, in the Alameda County Study (Single-Family) and 6.5 percent in the Philadelphia Study. With the exception of the Philadelphia Study, the percentage of Glass in the studies ranges from 1.6 percent to 5.5 percent.

While the consistency among the studies is notable, there are some anomalies.

- As noted above, the percentage of Glass in the Philadelphia Study is remarkably high, almost three times higher than the average percentage of the other studies.
- The percentage of Construction and Demolition Waste in the San Diego Study is more than three times the average percentage of C\&D in the other studies. The percentage of C\&D in the Pennsylvania study is also much higher than in the other studies.

The comparison of the Seattle Recycling Study and the NYC WCS aggregated recycling results shown in Table 1-226B is discussed in more detail in Section 9.8.

Table 1-227A compares the ten most prevalent materials categories in the seventeen comparisons of refuse results and shows the percentage contribution to the total amount of waste. Table 1-227B compares the ten most prevalent materials categories in the comparison of recycling results and shows the percentage contribution to the total amount of recycling.

Table 1-227A

NYC WCS Residential (1)Materials	NYC WCS Residential - Single-Family (2)			NYC WCS Residential - Multi-Family (3) Refuse Materials		Los Angeles Residential - Single-Family (4)		Los Angeles Residential - Multi-Family (5)	
	\%	Refuse Materials	\%						
	21.4\%	Food	18.0\%	Food	22.6\%	Food	26.9\%	Food	27.0\%
Mixed Low Grade Paper	8.4\%	Leaves and Grass	9.5\%	Mixed Low Grade Paper	8.8\%	Remainder/Composite Organics	8.6\%	Newspaper	9.9\%
Compostable/SoiledWaxed	6.7\%	Mixed Low Grade Paper	7.2\%	Compostable/SoiledWaxed	6.6\%	Remainder/Composite Paper	8.6%	Remainder/Composite Organics	8.0\%
Other Film	5.4\%	Compostable/Soiled/Waxed	6.8\%	Other Film	5.8\%	Leaves and Grass	5.2\%	Remainder/Composite Paper	7.1\%
Fines	4.3\%	Other Film	4.3%	Fines	4.5\%	Other Miscellaneous Paper	4.9\%	Other Miscellaneous Paper	5.1\%
Leaves and Grass	4.0\%	Fines	3.9\%	Newspaper	4.1\%	Film Plastic	4.5\%	Film Plastic	3.5\%
Disposable Diapers/Sanitary Products	3.9\%	Disposable Diapers/Sanitary Products	3.6\%	Disposable Diapers/Sanitary Products	4.0\%	Newspaper	4.4\%	Uncoated Corrugated Cardboard	3.2\%
Newspaper	3.7\%	Newspaper	2.6\%	Plastics Bags - Shopping Bags	3.5\%	Lumber	3.5\%	Magazines and Catalogs	3.0\%
Plastics Bags - Shopping Bags	3.2\%	Texilies: Clothing	2.6\%	Texilies: Clothing	3.2\%	Mixed Residue	3.5\%	Leaves and Grass	2.5\%
Texiles: Clothing	3.0\%	Treated Wood	2.6\%	Leaves and Grass	2.0\%	Prunings and Trimmings	2.8\%	Texilies	2.5\%
Philadelphia Residential (6)		$\begin{gathered}\text { Phoenix - Single-Family (7) } \\ \text { Refuse Materials }\end{gathered}$		San Diego - Single-Family (8) Refuse Materials		San Diego - Multi-Family (9) Refuse Materials \%		San Francisco - Single-Family (10) Refuse Materials	
Other Paper	15.2\%	Leaves and Grass	23.5\%	Food	13.8\%	Food	14.2\%	Food	42.2\%
Other Combustibles	12.2\%	Food Waste	16.8\%	Leaves and Grass	10.0\%	Newspaper	11.0\%	Compostable/Soiled Paper	6.4\%
Other Plastics	10.7\%	Mixed Low Grade Paper	5.3\%	Remainder/Composite Paper	6.3\%	Uncoated Corrugated Cardboard	8.0\%	Mixed Low Grade Paper	6.0\%
Food Waste	10.6\%	Prunings	4.6\%	Newspaper	5.8\%	Remainder/Composite Paper	7.5\%	Film Plastic	5.2\%
Corrugated Cardboard	5.6\%	Compostable/Soiled Paper	4.5\%	Prunings and Trimmings	4.7\%	Leaves and Grass	7.1\%	Disposable Diapers	4.6\%
Newspaper	5.4\%	Disposable Diapers/Sanitary Products	3.6\%	Other Miscellaneous Paper	4.7\%	Other Miscellaneous Paper	5.3%	Animal By-Products	3.8\%
Other Non-Combustibles	5.2\%	Texilies: Clothing	3.1\%	Treated Lumber	4.4\%	Prunings and Trimmings	4.1\%	Texilies	3.2\%
Unclassified Fines	4.9\%	Plain OCC/Krat Paper	2.9\%	Film Plastic	3.5\%	Film Plastic	3.6\%	Newspaper	3.0\%
Wood	4.6\%	Newspaper	2.7\%	Concrete	3.4\%	Remainder/Composite Metal	2.9\%	Uncoated Corrugated Cardboard	2.0\%
Other Yard Waste	4.2\%	Animal By-Products	2.6\%	Uncoated Corrugated Cardboard	3.3\%	Diapers	2.6\%	HHW	2.9\%
Total	78.\%	Total	69.6\%	Total	59.9\%	Total	66.3\%	Total	79.3\%

San Francisco - Multi-Family (11) Refuse Materials	Seattle - Single-Family (12)			Seattle - Multi-Family (13)		Alameda County - Single-Family (14)		Alameda County - Mutti-Family (15)	
	\%	Refuse Materials	\%						
Food	29.9\%	Food	35.8\%	Food	28.1\%	Food	23.5\%	Food	20.9\%
Mixed Low Grade Paper	7.4\%	Compostable/Soiled Paper	7.9\%	Mixed Low Grade Paper	6.6\%	Other Paper	14.6\%	Other Paper	13.2\%
Compostable/Soiled Paper	6.1\%	Animal By-Products	6.1\%	Compostable/Soiled Paper	5.4\%	Film Plastics	6.4\%	Film Plastics	5.8\%
Texilies	5.1\%	Disposable Diapers	5.4\%	Newspaper	4.2\%	Newspaper	5.8\%	Newspaper	5.6\%
Newspaper	5.0\%	Mixed Low Grade Paper	4.9\%	Unwaxed OCC/Krat Paper	4.1\%	Mixed Paper	5.2\%	Leaves and Grass	4.7\%
Film Plastic	4.7\%	Uncoated Corrugated Cardboard	2.5\%	Animal By-Products	4.1\%	Diapers	4.5\%	Mixed Paper	4.5\%
Beverage Bottles	3.6\%	Plastic Film	2.4\%	Texilies/Clothing	3.0\%	Textiles and Leather	3.8\%	Uncoated Corrugated	3.8\%
Animal By-Products	2.7\%	Newspaper	2.2\%	CarpetUpholstery	2.9\%	Mixed Plastics	3.8\%	Texilies and Leather	3.6\%
Uncoated Corrugated Cardboard	2.6\%	Leaves and Grass	2.0\%	Leaves and Grass	2.8\%	Leaves and Grass	3.3\%	Mixed Plastics	3.6\%
Rock/Concreet//Bricks	2.6\%	Texilies/Clothing	2.0\%	Disposable Diapers	2.5\%	Other Organic Waste	3.2\%	Diapers	3.5\%
Total	69.7\%	Total	71.2\%	Total	63.7\%	Total	74.1\%	Total	69.2\%

Pennsylvania - Residential (16) Refuse Materials	Georgia - Residential (17)		
	\%	Refuse Materials	\%
Food	11.4\%	Food	13.4\%
Non-Recyclable Paper	9.4\%	Other Non-Recyclable Paper	10.7\%
Other C\&D	5.8\%	Film Plastic	7.4\%
Wood - Unpainted	5.0\%	Newspaper	6.5\%
Corrugated Cardboard	4.9\%	Corrugated Cardboard	6.0\%
Newspaper	4.7\%	Textiles	5.1\%
Yard Waste - Other	4.7\%	Paperboard	4.6\%
Mixed Paper	4.4\%	Rigid Plastic	4.4%
Film Plastic	4.3\%	Diapers	3.6\%
Texilies	4.2\%	Magazines/Glossy	3.4\%
Total	58.8\%	Total	65.1\%

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (see Volume 1, Section 2, Table 1-28)
(2) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Single-Family Residential Waste (Table 6, page 13)
(5) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Multi-Family Residential Waste (Table 8, page 16)
(6) Municipal Waste Composition Analysis; City of Philadelphia Department of Streets, 2000; "Cumulative Composition of Samples with Statistical Analysis" (Table 3-4, page 3-7)
(7) Characterization of Waste from Single-Family Residences; City of Phoenix Department of Public Works, 2003; "Material Categories in Single-family Residential Waste (Table 2, page 9)
(8) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Single-Family Residential Waste"; (Table 10, page 13)
(9) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Multi-Family Residential Waste" (Table 13, page 16)
(10) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Single-Family Residential Program"; (Table A-2, page A-4)
(11) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Multifamily Residential Program"; (Table A-4, page A-5)
(12) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Single-Family (January - December 2002); (Table 4-4, page 18)
(13) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Multi-Family (January - December 2002); (Table 4-5, page 19)
(14) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Single-Family Aggregate Waste Composition and Disposal"; (Table 4-3, page 4-13)
(15) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Multi-Family Aggregate Waste Composition and Disposal"; (Table 4-4, page 4-17)

(17) Georgia Statewide Waste Characterization Study; 2005; Georgia Department of Community Affairs; "Landfilled Aggregate MSW Composition by Generator Sector (Residential)"; (Table 4-3, page 4-10)

Table 1-227B
Summary Comparison - Prevalent Materials
Recycling

NYC WCS Residential - Single-Family (1)		NYC WCS Residential - Multi-Family (2)		Seattle - Single-Family (3)		Seattle - Multi-Family (4)	
Recycling Materials	\%	Recycling Materials	\%	Recycling Materials	\%	Recycling Materials	\%
Newspaper	24.6\%	Newspaper	23.0\%	Newspaper	34.0\%	Newspaper	29.4\%
Mixed Low Grade Paper	19.1\%	Mixed Low Grade Paper	17.5\%	Mixed Low Grade Paper	24.5\%	Mixed Low Grade Paper	22.0\%
Unwaxed OCC/Kraft Paper	6.9\%	Unwaxed OCC/Kraft Paper	9.5\%	Unwaxed OCC/Kraft Paper	14.7\%	Unwaxed OCC/Kraft Paper	19.7\%
Mixed Cullet	5.8\%	Mixed Cullet	7.9\%	Green Glass Bottles	5.8\%	Green Glass Bottles	6.1\%
Other Ferrous	5.6\%	Other Ferrous	5.8\%	Brown Glass Bottles	4.1\%	Brown Glass Bottles	4.3\%
Clear Container Glass	4.6\%	Clear Container Glass	3.1\%	Clear Glass Bottles	3.3\%	Phone Books	3.3\%
Tin Food Cans	3.4\%	Tin Food Cans	3.0\%	Phone Books	2.5\%	Clear Glass Bottles	3.2\%
PET Bottles	3.3\%	PET Botlles	2.9\%	Recyclable Glass (Commingled)	2.3\%	Mixed Cullet	2.7\%
Ferrous Appliances	2.1\%	Ferrous Appliances	2.8\%	Mixed Cullet	2.3\%	Recyclable Glass (Commingled)	2.1\%
Phone Books	2.0\%	Phone Books	,024	Tin Food Cans	0.8\%	Other Non-Recyclables	1.0\%
Total	77.4\%	Total	75.5\%	Total	94.3\%	Total	93.8\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of low density strata
(2) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Single-Family" (January 2005 - December 2005); (Table 4-8, page 15)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of high and medium density strata
(4) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Multifamily" (January 2005 - December 2005); (Table 4-9, page 16)

Unlike the material groups shown in Table 1-226, the material categories shown in Table 1-227 have not been adjusted. Therefore, with many more categories, it is more difficult to observe patterns across the studies. However, Table 1-227 does present a few interesting features.

- Food Waste and Newspapers are the only categories included in all seventeen lists.
- Food Waste represents the largest material category in fifteen of the seventeen lists. The exceptions are the Philadelphia Study in which the Other Paper, Other combustibles, and Other Plastics categories are a greater percentage of the refuse than Food Waste, and the Phoenix Study in which the Leaves and Grass category is a greater percentage of the refuse than Food Waste.
- The percentage of Food Waste ranges from 10.6 percent in the Philadelphia Study to 42.2 percent in the San Francisco Study
- The percentage of Newspaper is relatively consistent across the studies, ranging from 2.2 percent in the Seattle Study (Single-Family) to 11.0 percent in the San Diego Study (Multi-Family).
- The Plastic Film category appears in fourteen of the seventeen studies and accounts for between 2.4 percent and 7.4 percent in these studies.
- The Uncoated Corrugated Cardboard appears in twelve of the seventeen lists and accounts for between 2.0 percent and 8.0 percent in these studies.
- The Leaves and Grass category appears in eleven of the seventeen lists and accounts for between 2.0 percent and 10.0 percent in these studies, with the exception of the Phoenix Study in which Leaves and Grass account for 23.5 percent of the refuse.
- The Mixed Low Grade Paper or Mixed Paper categories appears in ten of the seventeen lists representing between 4.4 percent in the Pennsylvania Study to 8.8 percent in the NYC WCS (Multi-Family).

The comparison of these ten waste composition studies suggests that over time, at least the six years during which these studies were conducted, and across geographic regions, the composition of residential refuse in the United States has been remarkably similar.

9.3 Characterization of Municipal Solid Waste for the City of Los Angeles

9.3.1 Introduction

The "Characterization of Municipal Solid Waste for the City of Los Angeles" (the "Los Angeles Study") was carried out in 2000 and 2001 by the Cascadia Consulting Group, Inc. for the City of Los Angeles Bureau of Sanitation, Solid Resources Citywide Recycling Division. The objective of the Los Angeles Study was "to characterize and quantify refuse disposed by five sectors
within the City of Los Angeles". ${ }^{3}$ The characterization of municipal solid waste ("MSW") used composition estimates derived from hand-sorting MSW and applying statistical analysis to the number of samples of MSW from each waste sector. Quantity estimates (i.e., generation rates) were derived from data supplied by the California Integrated Waste Management Board's ("CIWMB") Disposed Reporting System, data obtained through surveys of disposal facility staff and drivers of individual vehicles at those facilities, and measurements taken of waste at the point of generation.

A summary methodological comparison of the Los Angeles Study and the NYC WCS is presented in Table 1-228.

[^3]Table 1-228
Methodological Comparison of the NYC WCS and the Los Angeles Study

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition NYC WCS Vol 1 §9 Comparison with Other Jurisdictions

The summary of the two studies shows some of the key methodological differences between the two studies.

- The Los Angles Study did not study seasonal variation. The NYC WCS studied waste over four seasons.
- The Los Angeles Study analyzed only the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The Los Angeles Study acquired and sorted 160 residential refuse samples and the NYC WCS acquired 3,600 residential refuse samples.
- The Los Angeles Study acquired samples from single-family residences at disposal/transfer station sites. In order to characterize the multi-family residences, samples were acquired at the generator sites.

The NYC WCS acquired samples only at transfer stations. However, strata-specific routes for the Residential Study and building-specific collections for the Multi-Unit Study ("MUS") were developed which resulted in wastes from specific sectors being delivered to the transfer stations.

- The purpose of the Los Angeles Study was to characterize refuse from single-family and multi-family residences. To do this the Los Angeles Study used stratified random sampling in which components of the study (i.e., single-family residences) were subdivided to reflect its contribution to the citywide refuse stream. Samples of refuse from single-family residences were acquired at three disposal sites and the number of samples acquired at each site was weighted, based on the expected number of tons from these sources delivered at each site. That is, if 50 percent of the refuse from single-family residences were expected to be delivered to a site, then 50 percent of the samples would be acquired from that site. This weighting gave the refuse from each residence an equal opportunity to be sorted.

The purpose of the NYC WCS was to characterize the waste from each of the eight housing density and income strata. Although NYC WCS divided the residential households into housing density and income strata, it acquired an equal number of samples from each stratum. It did not weight the number of samples based on each strata's contribution to the overall waste stream because this might have prevented a complete characterization of each of the eight strata. The NYC WCS aggregated the results of the characterization of the eight strata into a citywide composition based on the methodology explained in Volume 2, Section 2.

The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Los Angeles Study and the NYC WCS. The Los Angeles Study sorted the refuse into 58 material categories and the NYC WCS sorted refuse and recycling into 91 material categories.

Based on the structure of the two studies, two comparisons of the results from the residential sector can be made:

1. The results of the Single-Family component of the Los Angeles Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the two low density strata has been used.
2. The results of the Multi-Family component of the Los Angeles Study and the results of the High Density and Medium Density strata (High Density/High Income, High Density/Medium Income, Medium Density/High Income and Medium Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the four high and medium density strata has been used.

9.3.2 Adjustments to the Studies and Study Results

Different material groups and categories were used in the Los Angeles Study and the NYC WCS. The material groups and categories used in the two studies have been adjusted to accomplish the comparison. Table 1-229 shows the adjustments in terms of material groups and compares:

- The composition of the Los Angeles Study Single-family component with the composition of the low density strata in the NYC WCS.
- The composition of the Los Angeles Multi-family component with the composition of the high and medium density strata in the NYC WCS.

Table 1-229
Composition by Material Groups in the NYC WCS and the Los Angeles Study

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17 pages 42-45) weighted average of low density stratá
(2) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Single-Family Residential Waste (Table 6, page 13
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17 pages 42-45) weighted average of high and medium density strati
(4) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Multi-Family Residential Waste (Table 8, page 16
(5) The "Appliances \& Electronics" group in the NYC WCS is included in "Major Appliances" category from the "Metals" group in the Los Angeles Stud!
(6) The categories in the "Miscellaneous Inorganics" group in the NYC WCS are included in the "Special Wastes" group in the Los Angeles Stud':
(7) Certain categories in the Special Wastes" group were included in other groups in the NYC WCS and other categories, including "Sewage Solids", "Industrial Sludge", "Treate Medical Wastes", "Ash", and "Remainder/Composite Special Wastes" were excluded from the NYC WCs

Similar adjustments were necessary to make the comparisons in the material categories.
Table 1-230 shows the adjustment to the material categories and makes the same comparisons as those in Table 1-229.

Table 1-230
Material Categories in the NYC WCS and the Los Angeles Study

Material Group	NYC WCS Material Category	Los Angeles Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Los Angeles Single-Family (2)	NYC WCS Multi-Family (3)	Los Angeles Multi-Family (4)
Paper	Newspaper	Newspaper	None	2.6\%	4.4\%	4.1\%	9.9\%
Paper	Plain OCC/Kraft Paper	Uncoated Corrugated Cardboard	None	1.0\%	2.3\%	1.2\%	3.2\%
Paper	High Grade Paper	White Ledger	The "High Grade Paper" category in the NYC WCS combines four paper categories in the Los Angeles Study	0.5\%	0.7\%	0.7\%	1.2\%
Paper	High Grade Paper	Colored Ledger			0.0\%		0.1\%
Paper	High Grade Paper	Computer Paper			0.0\%		0.1\%
Paper	High Grade Paper	Other Office Paper			0.5\%		1.1\%
Paper	Mixed Low Grade paper	Other Miscellaneous Paper	The "Mixed Low Grade Paper" category in the NYC WCS combines two paper categories in the Los Angeles Study	7.2\%	4.9\%	8.8\%	5.1\%
Paper	Mixed Low Grade paper	Magazines and Catalogs			1.3\%		3.0\%
Paper	Phone Books/Paperbacks	Phone Books and Directories	None	0.4\%	0.2\%	0.5\%	0.3\%
Paper	Paper Bags	Paper Bags	None	0.5\%	0.9\%	0.8\%	1.1\%
Paper	Polycoated Containers	Remainder/Composite Paper	The "Remainder/Composite Paper" category in the Los Angeles Study combinesfour paper categories in the NYC WCS	0.3\%	7.4\%	0.5\%	7.1\%
Paper	Compostable/Soiled/Waxed	Remainder/Composite Paper		6.8\%		6.6\%	
Paper	Single Use Cups, Plates	Remainder/Composite Paper		0.8\%		0.4\%	
Paper	Other Non-Recyclable Paper	Remainder/Composite Paper		0.7\%		0.7\%	
PAPER				20.7\%	22.6\%	24.3\%	32.2\%
Plastic	PET Bottles	PETE Containers	The "PETE Containers" category in the Los Angeles Study combines two plastic categories in the NYC WCS	0.6\%	0.6\%	1.0\%	0.9\%
Plastic	HDPE Botlles - Natural	HDPE Containers	The "HDPE Containers" category in the Los Angeles Study combines three plastic	0.2\%	0.7\%	0.3\%	1.2\%
Plastic	HDPE Bottles - Colored	HDPE Containers		0.2\%		0.3\%	
Plastic	PET \#1 Tubs/Other Containers	PETE Containers	The "PETE Containers" category in the Los Angeles Study combines two plastic categories in the NYC WCS	0.0\%		0.0\%	
Plastic	HDPE \#2 Tubs/Other Containers	HDPE Containers	The "HDPE Containers" category in the Los Angeles Study combines three plastic categories in the NYC WCS	0.0\%		0.1\%	
Plastic	\#3 PVC Bottles	Miscellaneous Plastic Containers	The "Miscellaneous Plastic Containers" category in the Los Angeles Study combines eight plastic categories in the NYC WCS	0.0\%	0.6\%	0.0\%	0.8\%
Plastic	\#4 LDPE Bottles	Miscellaneous Plastic Containers		0.0\%		0.0\%	
Plastic	\#5 PP Bottles	Miscellaneous Plastic Containers		0.0\%		0.0\%	
Plastic	\#7 Other Botlles	Miscellaneous Plastic Containers		0.1\%		0.1\%	
Plastic	\#3 PVC Tubs	Miscellaneous Plastic Containers		0.0\%		0.0\%	
Plastic	\#4 LDPE Tubs	Miscellaneous Plastic Containers		0.0\%		0.0\%	
Plastic	\#5 PP Tubs	Miscellaneous Plastic Containers		0.2\%		0.2\%	
Plastic	\#7 Other Tubs	Miscellaneous Plastic Containers		0.0\%		0.0\%	
Plastic	Soda Crates \& Bottle Carriers	Durable Plastic ltems	The "Durable Plastic ltems " category in the Los Angeles Study combines fiveplastic categories in the NYC WCS	0.0\%	1.1\%	0.0\%	1.3\%
Plastic	Other PVC	Durable Plastic ltems		0.0\%		0.0\%	
Plastic	Rigid Polystyrene Containers	Durable Plastic ltems		0.2\%		0.3\%	
Plastic	Expanded Polystyrene	Durable Plastic Items		0.6\%		0.7\%	
Plastic	Other Rigid Containers	Durable Plastic ltems		0.7\%		0.8\%	
Plastic	Plastics Bags - Shopping Bags	Film Plastic	The "Film Plastic" category in the Los Angeles Study combines two plastic categories in the NYC WCS	2.3\%	4.5\%	3.5\%	3.5\%
Plastic	Other Film	Film Plastic		4.3\%		5.8\%	
Plastic	Single Use Cups, Plates	Remainder/Composite Plastic	The "Remainder/Composite Plastic" category in the Los Angeles Study combines two plastic categories in the NYC WCS	0.8\%	2.6\%	0.6\%	1.9\%
Plastic	Plastic Materials: Other	Remainder/Composite Plastic		2.2\%		1.8\%	
PLASTIC				12.5\%	10.1\%	15.6\%	9.6\%
Glass	Clear Container Glass	Clear Botlles and Containers	None	0.8\%	1.1\%	1.3\%	2.8\%
Glass	Green Container Glass	Green Bottles and Containers	None	0.2\%	0.4\%	0.4\%	1.4\%
Glass	Brown Container Glass	Brown Bottles and Containers	None	0.1\%	0.4\%	0.3\%	0.8\%
Glass	Mixed Cullet	Remainder/Composite Glass	None	0.3\%	0.2\%	0.7\%	0.5\%
Glass	Other Container Glass	Other Colored Glass Bottles and Containers	None	0.0\%	0.1\%	0.0\%	0.0\%
Glass	Other Glass	Flat Glass	None	0.2\%	0.0\%	0.3\%	0.0\%
GLASS				1.6\%	2.2\%	3.1\%	5.5\%
Metal	Aluminum Cans	Aluminum Cans	None	0.1\%	0.2\%	0.2\%	0.4\%
Metal	Aluminum Foil/Containers	Other Non-Ferrous Metal	The "Other Non-Ferrous Metal" category in the Los Angeles Study combines three metal categories in the NYC WCS	0.5\%	0.2\%	0.6\%	0.3\%
Metal	Other Aluminum	Other Non-Ferrous Metal		0.1\%		0.0\%	
Metal	Non-Ferrous: Other	Other Non-Ferrous Metal		0.2\%		0.1\%	
Metal	Tin Food Cans	Tin/Steel Cans	None	0.5\%	1.4\%	1.0\%	1.1\%
Metal	Empty Aerosol Cans	Other Ferrous Metal	The "Other Ferrous Metal" category in the Los Angeles Study combines two metalcategories in the NYC WCS	0.1\%	1.1\%	0.1\%	0.5\%
Metal	Ferrous: Other	Other Ferrous Metal		1.6\%		1.1\%	
Metal	Mixed Metals	Remainder/Composite Metal	None	0.5\%	1.4\%	0.5\%	1.7\%
METAL				3.5\%	4.3\%	3.7\%	4.0\%

Material Group	NYC WCS Material Category	Los Angeles Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Los Angeles Single-Family (2)	NYC WCS Multi-Family (3)	Los Angeles Multi-Family (4)
Organics	Leaves and Grass	Leaves and Grass	None	9.5\%	5.2\%	2.0\%	2.5\%
Organics	Prunings	Prunings and Trimmings	None	2.3\%	2.8\%	0.5\%	0.5\%
Organics	Stumps \& Limbs	Branches and Stumps	None	0.5\%	0.4\%	0.1\%	0.1\%
Organics	Food	Food	None	18.0\%	26.9\%	22.6\%	27.0\%
Organics	Wood Furniture/Furniture Pieces	Bulky ltems from SPECIAL WASTES	The "Bulky Items" category in the "Special Waste" group in the Los Angeles Study includes two categories in the NYC WCS "Organics" group	1.7\%	0.3\%	1.3\%	2.3\%
Organics	Non-C\&D untreated wood	Remainder/Composite Organics	The "Remainder/Composite Organics" category in the Los Angeles Study includes six organic categories in the NYC WCS	0.2\%	8.6\%	0.2\%	8.0\%
Organics	Non-Clothing Textiles	Textiles	The "Textiles " category in the Los Angeles Study combines two organic categories	1.5\%	2.8\%	1.7\%	2.5\%
Organics	Textiles: Clothing	Textiles	in the NYC WCS	2.6\%		3.2\%	
Organics	Carpet/Upholstery	Remainder/Composite Organics	The "Remainder/Composite Organics" category in the Los Angeles Study	2.0\%		1.3\%	
Organics	Disposable Diapers/Sanitary Products	Remainder/Composite Organics	combines six organic categories in the NYC WCS	3.6\%		4.0\%	
Organics	Animal By-Products	Manures	None	1.4\%	0.0\%	1.3\%	0.0\%
Organics	Rubber Products	Tires from SPECIAL WASTES	None	0.3\%	0.0\%	0.3\%	0.0\%
Organics	Shoes	Remainder/Composite Organics	The "Remainder/Composite Organics" category in the Los Angeles Study	0.6\%		0.8\%	
Organics	Other Leather Products	Remainder/Composite Organics	combines six organic categories in the NYC WCS	0.1\%		0.1\%	
Organics	Fines	MIXED RESIDUE	None	3.9\%	3.5\%	4.5\%	1.2\%
Organics	Upholstered or Other Organic Furniture	Bulky ltems from SPECIAL WASTES	The "Bulky Items" category in the "Special Waste" group in the Los Angeles Study includes two categories in the NYC WCS "Organics" group	1.0\%		1.1\%	
Organics	Miscellaneous Organics	Remainder/Composite Organics	The "Remainder/Composite Organics" category in the Los Angeles Study includes six organic categories in the NYC WCS	1.2\%		0.8\%	
Organics				50.5\%	50.5\%	45.8\%	44.1\%
Appliances/Elec.	Appliances: Ferrous	Major Appliances in METAL	The "Major Appliance" category in the "Metall group in the Los Angeles Study	0.5\%	0.0\%	0.3\%	0.0\%
Appliances/Elec.	Appliances: Non-Ferrous	Major Appliances in METAL	combines two categories in the NYC WCS	0.0\%		0.0\%	
Appliances/Elec.	Appliances: Plastics	Included in REMAINDER/COMPOSITE PLASTIC	The "Appliances:Plastic" category in the NYC WCS is included in the "Remainder/Composite Plastics" category of the Los Angeles Study	0.3\%		0.2\%	
Appliances/Elec.	Audio/Visual: Cell Phones	Electronics in METAL		0.0\%	0.4\%	0.0\%	1.8\%
Appliances/Elec.	Audio/Visual: Other	Electronics in METAL		0.3\%		0.3\%	
Appliances/Elec.	Computer Monitors	Electronics in METAL		0.1\%		0.1\%	
Appliances/Elec.	Televisions	Electronics in METAL	The "Electronics " category in the "Metal" group in the Los Angeles Study	0.2\%		0.1\%	
Appliances/Elec.	Other Computer Equipment	Electronics in METAL	combines five categories in the NYC WCS	0.1\%		0.2\%	
Appliances/Elec.				1.5\%	0.4\%	1.3\%	1.8\%
C \& D	Untreated dimension lumber	Lumber	The "Lumber" category in the Los Angeles Study combines two C\&D categories in	1.4\%	3.5\%	0.5\%	0.7\%
C\&D	Treated Wood	Lumber	the NYC WCS	2.6\%		1.7\%	
C \& D	Gypsum Scrap	Gypsum Board	None	1.2\%	0.6\%	1.1\%	0.1\%
C\& D	Concrete/Rock/Bricks	RockSoilfines	The "Concret//Rocks/Bricks" category in the NYC WCS combines two C\&D	0.9\%	2.7\%	0.8\%	0.2\%
C\& D	Concrete/Rock/Bricks	Concrete	categories in the Los Angeles Study		1.1\%		0.1\%
C\& D	Other C\&D Debris	Asphalt Paving		2.4\%	0.1\%	1.4\%	0.0\%
C\&D	Other CQD Debris	Asphalt Roofing	The "Other C\&D Debris" category in the NYC WCS combines three C\&D categories		0.2\%		0.0\%
C \& D	Other C\&D Debris	Remainder/Composite C\&D	in the Los Angeles Study		1.2\%		1.0\%
C \& D				8.5\%	9.4\%	5.5\%	2.1\%
Misc.Inorganics	Ceramics	Included in Remainder/Composite C\&D	The "Inorganics" group in the NYCWCS is included in the "Remainder/Composite	0.4\%		0.2\%	
Misc.Inorganics	Miscellaneous Inorganics	Included in Remainder/Composite C\&D	C\&D" category in the Los Angeles Study	0.6\%		0.4\%	
Misc.Inorganics				1.0\%	0.0\%	0.6\%	0.0\%

Table 1-230
Material Categories in the NYC WCS and the Los Angeles Study

Material Group	NYC WCS Material Category	Los Angeles Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Los Angeles Single-Family (2)	NYC WCS Multi-Family (3)	$\begin{aligned} & \hline \text { Los Angeles } \\ & \text { Multi-Family (4) } \end{aligned}$
HHW	Oil Filters	Remainder/Composite HHW	The "Remainder/Composite HHW" category in the Los Angeles Study combines seven HHW categories in the NYC WCS	0.0\%	0.1\%	0.0\%	0.0\%
HHW	Antifreeze	Vehicle and Equipment Fluids	None	0.0\%	0.0\%	0.0\%	0.0\%
HHW	Wet-Cell Batteries	Batteries	The "Batteries" category in the Los Angeles Study combines two HHW categories in the NYC WCS	0.0\%	0.1\%	0.0\%	0.1\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	Used Oil	None	0.0\%	0.1\%	0.0\%	0.2\%
HHW	LatexWater-based Paint/Adhesives/Glues	Paint	The "Paint" category in the Los Angeles Study combines two HHW categories in	0.1\%	0.0\%	0.0\%	0.1\%
HHW	Oil-based Paint/Adhesives/Glues	Paint	the NYC WCS	0.0\%		0.0\%	
HHW	Pesticides/Herbicides	Remainder/Composite HHW	The "Remainder/Composite HHW" category in the Los Angeles Study combines seven HHW categories in the NYC WCS	0.0\%		0.0\%	
HHW	Dry-Cell Batteries	Batteries	The "Batteries" category in the Los Angeles Study combines two HHW categories in the NYC WCS	0.1\%		0.1\%	
HHW	Fluorescent Tubes	Remainder/Composite HHW	The "Remainder/Composite HHW" category in the Los Angeles Study combines seven HHW categories in the NYC WCS	0.0\%		0.0\%	
HHW	Mercury Laden Wastes	Remainder/Composite HHW		0.0\%		0.0\%	
HHW	Compressed Gas Cylinders/Fire Extinguisher	Remainder/Composite HHW		0.0\%		0.0\%	
HHW	Home Medical Products	Remainder/Composite HHW		0.0\%		0.1\%	
HHW	Other Potentially Harmful Wastes	Remainder/Composite HHW		0.0\%		0.0\%	
HHW				0.2\%	0.3\%	0.3\%	0.4\%
TOTAL				99.9\%	99.8\%	100.1\%	99.7\%
		Excluded (5)					
		The following items were not included in the NYC WCS					
		Ash		N/A	0.1\%	N/A	0.0\%
		Sewage Solids		N/A	0.0\%	N/A	0.0\%
		Industrial Sludge		N/A	0.0\%	N/A	0.0\%
		Treated Medical Waste		N/A	0.0\%	N/A	0.0\%
		Remainder/Composite Special Waste		N/A	0.1\%	N/A	0.0\%
		Subtotal of Excluded		N/A	0.2\%	N/A	0.0\%
		Total		99.9\%	100.0\%	100.1\%	99.7\%

Figures may not add due to rounding

	0.2%
9.9%	100.0%

100.1\%
99.7\%
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Single-Family Residential Waste (Table 6, page 13)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Multi-Family Residential Waste (Table 8, page 16)
(5) Materials that were part of the Los Angeles Study, but were not materials included in the NYC WCS include sewage solids, industrial sludge, and treated medical waste.
(6) The material category "Agricultural Crop Residues" in the "Organics" Group of the Los Angeles Study has been deleted from the list of material categories. None of this material was found in either the Single-Family or Multi-Family refuse

9.3.3 Most Prevalent Materials

Based on the results of the Los Angeles Study and the NYC WCS, the most prevalent materials in the residential refuse streams are presented in Table 1-231.

Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Los Angeles Study

Material	NYC WCS Single-Family (1)	Material	LA Study Single-Family (2)	Material	NYC WCS Multi-Family (3)	Material	LA Study Multi-Family (4)
Food	18.0\%	Food	26.9\%	Food	22.6\%	Food	27.0\%
Leaves and Grass	9.5\%	Remainder/Composite Organics	8.6\%	Mixed Low Grade paper	8.8\%	Newspaper	9.9\%
Mixed Low Grade paper	7.2\%	Remainder/Composite Paper	8.6\%	Compostable/Soiled/Waxed	6.6\%	Remainder/Composite Organics	8.0\%
Compostable/Soiled/Waxed	6.8\%	Leaves and Grass	5.2\%	Other Film	5.8\%	Remainder/Composite Paper	7.1\%
Other Film	4.3\%	Other Miscellaneous Paper	4.9\%	Fines	4.5\%	Other Miscellaneous Paper	5.1\%
Fines	3.9\%	Film Plastic	4.5\%	Newspaper	4.1\%	Film Plastic	3.5\%
Disposable Diapers/Sanitary Products	3.6\%	Newspaper	4.4\%	Disposable Diapers/Sanitary Products	4.0\%	Uncoated Corrugated Cardboard	3.2\%
Newspaper	2.6\%	Lumber	3.5\%	Plastics Bags - Shopping Bags	3.5\%	Magazines and Catalogs	3.0\%
Textiles: Clothing	2.6\%	Mixed Residue	3.5\%	Textiles: Clothing	3.2\%	Leaves and Grass	2.5\%
Treated Wood	2.6\%	Prunings and Trimmings	2.8\%	Leaves and Grass	2.0\%	Textiles	2.5\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Single-Family Residential Waste (Table 6, page 13)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Characterization of Municipal Solid Waste for the City of Los Angeles, City of Los Angeles Department of Sanitation, 2001; "Composition of Multi-Family Residential Waste (Table 8, page 16)

9.4 Characterization of Municipal Solid Waste for the City of Philadelphia, Pennsylvania

9.4.1 Introduction

The "Municipal Waste Composition Analysis" (the "Philadelphia Study") was carried out in 1999 and 2000 by Camp Dresser \& McKee, Inc. for the City of Philadelphia Department of Streets, Sanitation Division. It was conducted to "perform a field study of the composition of residential solid waste the Department of Streets collects throughout the City", ${ }^{4}$ The composition analysis of MSW used estimates derived from hand-sorting MSW and applying statistical analysis to the number of samples of MSW. Quantity estimates (i.e., generation rates) were derived from data supplied by the City of Philadelphia Department of Streets.

A table summarizing the composition of recyclables was included in the Philadelphia Study. The data was obtained from the Philadelphia Department of Streets and is believed to be a summary of the materials received by Philadelphia's recycling processor. However, the basis of this summary was not available and comparisons with the NYC WCS recycling composition results have not been made because of the uncertainty of the methods used to obtain this data and, consequently, its accuracy and applicability to the NYC WCS data.

The Philadelphia Study field work targeted only residential refuse. A summary methodological comparison of the Philadelphia Study and the NYC WCS is presented in Table 1-232.

[^4]Table 1-232
Methodological Comparison of the NYC WCS and the Philadelphia Study

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The summary of the two studies shows some of the key methodological differences between the two studies.

- The Philadelphia Study analyzed only the refuse stream, although an estimate of the waste (refuse and recycling) was made using recycling data provided by the City of Philadelphia Department of Streets. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The Philadelphia Study acquired and sorted 258 residential refuse samples and the NYC WCS acquired and sorted 3,600 residential refuse samples.
- The Philadelphia Study stratified sampling based on Philadelphia's refuse collection districts. That is, the number of samples acquired from each of the 12 refuse collection districts was proportional to the amount of residential refuse collected in each district. If 10 percent of the residential refuse was collected in District 1, then 10 percent of the samples were targeted to be acquired from District 1. The selection of trucks from which samples were to be taken within each district was made by the City of Philadelphia Department of Street and it is not known if these trucks were randomly selected.

The purpose of the NYC WCS was to characterize the waste from each of the eight housing density and income strata. All census tracts in the City were classified by housing density and income into eight strata. Collection routes serving a single stratum were identified by DSNY and the trucks from which samples were to be taken were randomly selected from these routes. The NYC WCS acquired an equal number of samples from each stratum. The NYC WCS aggregated the results of the characterization of the eight strata into a citywide composition based on the methodology explained in Volume 2, Section 2.

There were a number of similarities between the two studies. Both studies acquired samples at city transfer stations. The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Philadelphia Study and the NYC WCS. The Philadelphia Study sorted the refuse into 24 material categories and the NYC WCS sorted refuse and recycling into 91 material categories. Both the Philadelphia Study and the NYC WCS estimated the composition of the refuse over four seasons.

Based on the structure of the Philadelphia Study and NYC WCS, the most useful comparison is between the results of the NYC WCS Annual Citywide Residential Refuse Study and the annual composition results of the Philadelphia Study.

9.4.2 Adjustments to the Studies and Study Results

Different material categories were used in the NYC WCS and in the Philadelphia Study. The Philadelphia Study used 24 material categories, but did not aggregate these into material groups. For the purposes of this report, R. W. Beck has separated the categories into groups approximately comparable to the material groups in the NYC WCS. Table 1-233 shows how this was done and compares the results in terms of material groups.

Table 1-233
Composition by Material Groups in the NYC WCS and the Philadelphia Study

NYC WCS Material Groups		Philadelphia Study Material Groups (1)	Adjustments to Material Groups	
Paper	Paper	NYC WCS Residential (2)	Philadelphia Study Residential (3)	
Plastic	Plastics	None	23.3%	29.0%
Glass	Glass	None	14.8%	13.2%
Metal	Metal	None	2.6%	9.2%
Organics	Other Organics	None	3.7%	6.5%
Appliances \& Electronics	Appliances \& Electronics	None	47.0%	38.6%
C\&D	Construction \& Demolition	None	1.4%	0.1%
Miscellaneous Inorganics	Miscellaneous Inorganics	None	6.3%	3.4%
HHW	HHW	None	0.7%	0.3%
TOTAL			100.0%	0.0%

(1) The Philadelphia Study did not include material groups. For the purposes of this analysis, R.W. Beck has created these material groups from the Philadelphia Study's material categories
(2) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(3) Municipal Waste Composition Analysis; City of Philadelphia Department of Streets, 2000; "Cumulative Composition of Samples with Statistical Analysis" (Table 3-4, page 3-7)

Similar adjustments were necessary to make comparisons in the material categories.
Table 1-234 compares the material categories in the two studies and shows the adjustments that were made.

Table 1-234
Material Categories in the WCS and the Philadelphia Study

Material Group	NYC WCS Material Category	Philadelphia Study Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Philadelphia Residential (2)
Paper	Newspaper	Newspaper	None	3.7\%	5.4\%
Paper	Plain OCC/Kraft Paper	Corrugated Cardboard	None	1.2\%	5.6\%
Paper	High Grade Paper	Office Paper	None	0.7\%	0.8\%
Paper	Mixed Low Grade paper	Magazines	None	8.4\%	2.0\%
Paper	Phone Books/Paperbacks	Other Paper	The "Other Paper" category in the Philadelphia Study combines six paper categories in the NYC WCS	0.5\%	15.2\%
Paper	Paper Bags	Other Paper		0.7\%	
Paper	Polycoated Containers	Other Paper		0.4\%	
Paper	Compostable/Soiled/Waxed	Other Paper		6.7\%	
Paper	Single Use Cups, Plates	Other Paper		0.5\%	
Paper	Other Non-Recyclable Paper	Other Paper		0.7\%	
PAPER				23.3\%	29.0\%
Plastic	PET Bottles	PET Bottles and Jars	The "PET Bottles and Jars" category in the Philadelphia Study combines two plastics categories in the NYC WCS	0.9\%	1.3\%
Plastic	HDPE Bottles - Natural	HDPE Bottles and Jars	The "HDPE Bottles and Jars" category in the Philadelphia Study combines three plastics categories in the NYC WCS	0.3\%	1.2\%
Plastic	HDPE Bottles - Colored	HDPE Bottles and Jars		0.3\%	
Plastic	PET \#1 Tubs/Other Containers	PET Bottles and Jars	The "PET Bottles and Jars" category in the Philadelphia Study combines two plastics categories in the NYC WCS	0.0\%	
Plastic	HDPE \#2 Tubs/Other Containers	HDPE Bottles and Jars	The "HDPE Bottles and Jars" category in the Philadelphia Study combines three plastics categories in the NYC WCS	0.1\%	
Plastic	\#3 PVC Bottles	Other Plastics	The "Other Plastic" category in the Philadelphia Study combines seventeen plastics categories in the NYC WCS	0.0\%	10.7\%
Plastic	\#4 LDPE Bottles	Other Plastics		0.0\%	
Plastic	\#5 PP Bottles	Other Plastics		0.0\%	
Plastic	\#7 Other Bottles	Other Plastics		0.1\%	
Plastic	\#3 PVC Tubs	Other Plastics		0.0\%	
Plastic	\#4 LDPE Tubs	Other Plastics		0.0\%	
Plastic	\#5 PP Tubs	Other Plastics		0.2\%	
Plastic	\#7 Other Tubs	Other Plastics		0.0\%	
Plastic	Soda Crates \& Bottle Carriers	Other Plastics		0.0\%	
Plastic	Other PVC	Other Plastics		0.0\%	
Plastic	Rigid Polystyrene Containers	Other Plastics		0.3\%	
Plastic	Expanded Polystyrene	Other Plastics		0.6\%	
Plastic	Other Rigid Containers	Other Plastics		0.8\%	
Plastic	Plastics Bags - Shopping Bags	Other Plastics		3.2\%	
Plastic	Other Film	Other Plastics		5.4\%	
Plastic	Single Use Cups, Plates	Other Plastics		0.6\%	
Plastic	Plastic Materials: Other	Other Plastics		1.9\%	
PLASTIC				14.8\%	13.2\%
Glass	Clear Container Glass	Glass Food and Beverage Containers	The "Glass Food and Beverage Containers" category in the Philadelphia Study combines four categories in the NYC WCS, including "Other Container Glass"	1.2\%	4.0\%
Glass	Green Container Glass	Glass Food and Beverage Containers		0.3\%	
Glass	Brown Container Glass	Glass Food and Beverage Containers		0.3\%	
Glass	Mixed Cullet	Other Non-Combustibles	The "Other Non-Combustibles" category in the Philadelphia Study combines eleven categories in the NYC WCS, including "Mixed Cullet"	0.0\%	5.2\%
Glass	Other Container Glass	Glass Food and Beverage Containers	The "Glass Food and Beverage Containers" category in the Philadelphia Study combines four glass categories in the NYC WCS	0.6\%	
Glass	Other Glass	Flat Glass	The "Other Non-Combustibles" category in the Philadelphia Study combines eleven categories in the NYC WCS, including "Other Glass"	0.2\%	
GLASS				2.6\%	9.2\%

NYC WCS Vol 1 § 9 Comparison with Other Jurisdictions

Table 1-234
Material Categories in the WCS and the Philadelphia Study

Material Group	NYC WCS Material Category	Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Philadelphia Residential (2)
Metal	Aluminum Cans	Aluminum Cans	None	0.2\%	0.6\%
Metal	Aluminum Foil/Containers	Other Aluminum	The "Other Aluminum" category in the Philadelphia Study combines two metal categories in the NYC WCS	0.6\%	0.5\%
Metal	Other Aluminum	Other Aluminum		0.0\%	
Metal	Non-Ferrous: Other	Other Metal	The "Other Metal" category in the Philadelphia Study combines two metal categories in the NYC WCS , including "Mixed Metals"	0.1\%	0.3\%
Metal	Tin Food Cans	Steel Cans	None	0.8\%	1.6\%
Metal	Empty Aerosol Cans	Other Ferrous Metal	The "Ferrous Metal" category in the Philadelphia Study combines twometal categories in the NYC WCS	0.1\%	3.5\%
Metal	Ferrous: Other	Other Ferrous Metal		1.3\%	
Metal	Mixed Metals	Other Metal	The "Other Metal" category in the Philadelphia Study combines two metal categories in the NYC WCS , including "Non-Ferrous: Other"	0.5\%	
METAL				3.7\%	6.5\%
Organics	Leaves and Grass	Leaves	None	4.0\%	2.1\%
Organics	Prunings	Other Yard Waste	The "Other Yard Waste" category in the Philadelphia Study combines two organics categories in the NYC WCS	0.9\%	4.2\%
Organics	Stumps \& Limbs	Other Yard Waste		0.2\%	
Organics	Food	Food Waste	None	21.4\%	10.6\%
Organics	Wood Furniture/Furniture Pieces	Wood	The "Wood" category in the Philadelphia Study combines three categories in the NYC WCS , including "Untreated Dimension Lumber" and "Treated Wood" in C\&D	1.4\%	4.6\%
Organics	Non-C\&D untreated wood	Wood		0.2\%	
Organics	Non-Clothing Textiles	Other Combustibles	The "Other Combustibles" category in the Philadelphia Study combines seventeen categories in the NYC WCS, including six categories in "HHW"	1.6\%	12.2\%
Organics	Textiles: Clothing	Other Combustibles		3.0\%	
Organics	Carpet/Upholstery	Other Combustibles		1.5\%	
Organics	Disposable Diapers/Sanitary Products	Other Combustibles		3.9\%	
Organics	Animal By-Products	Other Combustibles		1.3\%	
Organics	Rubber Products	Other Combustibles		0.3\%	
Organics	Shoes	Other Combustibles		0.7\%	
Organics	Other Leather Products	Other Combustibles		0.1\%	
Organics	Fines	Unclassified Fines	None	4.3\%	4.9\%
Organics	Upholstered or Other Organic Furniture	Other Combustibles	The "Other Combustibles" category in the Philadelphia Study combines seventeen categories in the NYC WCS, including six categories in "HHW"	1.1\%	
Organics	Miscellaneous Organics	Other Combustibles		0.9\%	
Organics				47.0\%	38.6\%
Appliances/Elec.	Appliances: Ferrous	Major Appliances	The "Major Appliances" category in the Philadelphia Study combines eight categories in the NYC WCS	0.4\%	0.1\%
Appliances/Elec.	Appliances: Non-Ferrous	Major Appliances		0.0\%	
Appliances/Elec.	Appliances: Plastics	Major Appliances		0.2\%	
Appliances/Elec.	Audio/Visual: Cell Phones	Major Appliances		0.0\%	
Appliances/Elec.	Audio/Visual: Other	Major Appliances		0.3\%	
Appliances/Elec.	Computer Monitors	Major Appliances		0.1\%	
Appliances/Elec.	Televisions	Major Appliances		0.1\%	
Appliances/Elec.	Other Computer Equipment	Major Appliances		0.2\%	
Appliances/Elec.				1.4\%	0.1\%

Table 1-234
Material Categories in the WCS and the Philadelphia Study

Material Group	NYC WCS Material Category	Philadelphia Study Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Philadelphia Residential (2)
C \& D	Untreated dimension lumber	Wood	The "Wood" category in the Philadelphia Study combines three	0.8\%	
C \& D	Treated Wood	Wood	categories in the NYC WCS, including "Wood Furniture/Furniture	2.0\%	
C \& D	Gypsum Scrap	Other Building Materials	The "Other Building Materials " category in the Philadelphia Study combines two C\&D categories in the NYC WCS	1.1\%	3.0\%
C \& D	Concrete/Rock/Bricks	Concrete and Bricks	None	0.8\%	0.4\%
C \& D	Other C\&D Debris	Other Building Materials	The "Other Building Materials " category in the Philadelphia Study combines two C\&D categories in the NYC WCS	1.7\%	
C \& D				6.3\%	3.4\%
Misc.Inorganics	Ceramics	Other Non-Combustibles	The "Other Non-Combustibles" category in the Philadelphia Study	0.5\%	
Misc.Inorganics	Miscellaneous Inorganics	Other Non-Combustibles	combines nine categories in the NYC WCS, including seven categories in "HHW"	0.3\%	
Misc.Inorganics				0.7\%	0.0\%
HHW	Oil Filters	Other Non-Combustibles	The "Other Non-Combustibles" category in the Philadelphia Study combines nine categories in the NYC WCS, including two categories in "Misc. Inorganics"	0.0\%	
HHW	Antifreeze	Other Combustibles	The "Other Combustibles" category in the Philadelphia Study combines seventeen categories in the NYC WCS, including eleven categories in "Organics"	0.0\%	
HHW	Wet-Cell Batteries	Other Non-Combustibles	The "Other Non-Combustibles" category in the Philadelphia Study combines nine categories in the NYC WCS, including two categories in "Misc. Inorganics"	0.0\%	
HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	Other Combustibles		0.0\%	
HHW	Latex/Water-based Paint/Adhesives/Glues	Other Combustibles	The "Other Combustibles " category in the Philadelphia Study	0.1\%	
HHW	Oil-based Paint/Adhesives/Glues	Other Combustibles	combines seventeen categories in the NYC WCS , including eleven	0.0\%	
HHW	Pesticides/Herbicides	Other Combustibles	categories in "Organics"	0.0\%	
HHW	Dry-Cell Batteries	Other Non-Combustibles		0.1\%	
HHW	Fluorescent Tubes	Other Non-Combustibles	The "Other Non-Combustibles" category in the Philadelphia Study	0.0\%	
HHW	Mercury Laden Wastes	Other Non-Combustibles	combines nine categories in the NYC WCS, including two categories	0.0\%	
HHW	Compressed Gas Cylinders/Fire Extinguisher	Other Non-Combustibles	in "Misc. Inorganics"	0.0\%	
HHW	Home Medical Products	Other Combustibles	The "Other Combustibles " category in the Philadelphia Study combines seventeen categories in the NYC WCS, including eleven categories in "Organics"	0.1\%	
HHW	Other Potentially Harmful Wastes	Other Non-Combustibles	The "Other Non-combustibles " category in the Philadelphia Study combines nine categories in the NYC WCS, including two categories in "Misc. Inorganics"	0.0\%	
HHW				0.3\%	0.0\%
TOTAL				100.0\%	100.0\%

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(2) Municipal Waste Composition Analysis; City of Philadelphia Department of Streets, 2000; "Cumulative Composition of Samples with Statistical Analysis" (Table 3-4, page 3-7)

9.4.3 Most Prevalent Materials

Based on the results of the Philadelphia Study and the NYC WCS, the most prevalent materials in the residential refuse stream are presented in Table 1-235.

Table 1-235
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Philadelphia Study

Material	NYC WCS Residential (1)	Material Residential (2)	
Food	21.4%	Other Paper	15.2%
Mixed Low Grade paper	8.4%	Other Combustibles	12.2%
Compostable/Soiled/Waxed	6.7%	Other Plastics	10.7%
Other Film	5.4%	Food Waste	10.6%
Fines	4.3%	Corrugated Cardboard	5.6%
Leaves and Grass	4.0%	Newspaper	5.4%
Disposable Diapers/Sanitary Products	3.9%	Other Non-Combustibles	5.2%
Newspaper	3.7%	Unclassified Fines	4.9%
Plastics Bags - Shopping Bags	3.2%	Wood	4.6%
Textiles: Clothing	3.0%	Other Yard Waste	4.2%

(1) NYC WCS "Citywide Refuse Results Across Seasons" (see Volume 1, Section 2, Table 1-28)
(3) Municipal Waste Composition Analysis; City of Philadelphia Department of Streets, 2000; "Cumulative Composition of Samples with Statistical Analysis" (Table 3-4, page 3-7)

9.5 Characterization of Municipal Solid Waste for the City of Phoenix

9.5.1 Introduction

The "Characterization of Waste from Single-Family Residences for the City of Phoenix" (the "Phoenix Study") was carried out by the Cascadia Consulting Group, Inc. for the City of Phoenix Department of Public Works in 2003. The objective of the Phoenix Study was to "conduct a study estimating the composition of disposed waste from single-family residences and to determine the relative amount of recyclable material in the disposed waste from each of six service areas". ${ }^{5}$ The characterization of municipal solid waste ("MSW") used composition estimates derived from hand-sorting MSW and applying statistical analysis to the number of samples of MSW from single-family residences in each of Phoenix's six service areas. Quantity estimates (i.e., generation rates) were derived from data supplied by the City of Phoenix Department of Public Works. A summary methodological comparison of the Phoenix Study and the NYC WCS is presented in Table 1-236.

[^5]Table 1-236
Methodological Comparison of the NYC WCS and the Phoenix Study

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The summary of the two studies shows some of the key methodological differences between the two studies.

- The Phoenix Study examined only refuse from single-family residences. The NYC WCS examined refuse and recycling for residential residences (single-family and multi-family residences).
- Although the Phoenix Study sampled and sorted over two seasons, it did not report seasonal results. The NYC WCS studied waste over four seasons and reported seasonal results.
- The Phoenix Study analyzed only the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The Phoenix Study acquired and sorted 283 residential refuse samples and the NYC WCS acquired and sorted 3,600 residential refuse samples.
- One purpose of the Phoenix was to characterize refuse from single-family residences in each of the six service areas. The Phoenix Study used "truck trips" (the segment of the collection route that a truck travels before it brings its contents to the solid waste disposal facility) as the basis for sampling. An equal number of samples from each service area were randomly selected from truck trips in that service area. The results from the six service areas were aggregated into a citywide single-family refuse composition estimate.

The purpose of the NYC WCS was to characterize the waste from each of the eight housing density and income strata. The NYC WCS divided the residential households into housing density and income strata and targeted an equal number of samples from each stratum. The NYC WCS aggregated the results of the characterization of the eight strata into a citywide composition based on the methodology explained in Volume 2, Section 2.

The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Phoenix Study and the NYC WCS. Both studies acquired samples at transfer stations, selecting random portions of the tipped loads. The Phoenix Study sorted the refuse into 89 material categories and the NYC WCS sorted refuse and recycling into 91 material categories.

Based on the structure of the Phoenix Study and the NYC WCS, the most useful comparison is between the results of the Phoenix Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Citywide Refuse across Seasons). The weighted average of the two low density strata has been used.

9.5.2 Adjustments to the Studies and Study Results

Slightly different material groups and material categories were used in the NYC WCS and in the Phoenix Study. The material groups and categories used in the two studies have been adjusted to accomplish the comparison. Table 1-237 compares the results of the Phoenix Study and the NYC WCS in terms of material groups and shows the adjustments made to each group.

Table 1-237
Composition by Material Groups in the NYC WCS and the Phoenix Study

NYC WCS Material Groups	Phoenix Study Material Groups	Adjustments to Material Groups	NYC WCS Single-Family (1)	
Paper	Paper	Phoenix Study Single-Family (2)		
Plastic	Plastics	None	20.7%	18.2%
Glass	Glass	(3)	12.5%	8.3%
Metal	Metal	(4)	1.6%	2.4%
Organics	Organics	(5)	3.5%	4.2%
Appliances \& Electronics		(6)	50.5%	57.5%
C\&D	C\&D Wastes	None	1.5%	0.9%
Miscellaneous Inorganics		(7)	8.5%	7.2%
HHW	HHW	None	0.0%	0.6%
	Other Materials	(8)		0.2%
Total			99.9%	

Figures may not add due to rounding
(1) NYC WCS "Refuse Results Across Seasons" weighted average of low density strata (Volume 1, Section 2, Table 1-28)
(2) Characterization of Waste from Single-Family Residences; City of Phoenix Department of Public Works, 2003; "Material Categories in Single-family Residential Waste (Table 2, page 9)
(3) The "Fluorescent Tubes" category, classified as "Glass" in the Phoenix Study, has been included in HHW in the NYC WCS
(4) The "Motor Oil Filters" category, classified as "Metal" in the Phoenix Study, has been included in HHW in the NYC WCS
(5) Several categories, such as "Textiles/Clothing" and "Furniture", classified as "Other Materials" in the Phoenix Study, have been included in the "Organics" group of the NYC WCS
(6) The categories in the "Appliances \& Electronics" group in the NYC WCS are included as "Other Materials" group in the Phoenix Study
(7) The categories in the "Miscellaneous Inorganics" group in the NYC WCS are included in the "Other Materials" group in the Phoenix Study
(8) The categories in the "Other Materials" group of the Phoenix Study are included in several other group of the NYC WCS

Similar adjustments were necessary to make comparisons in the material categories. Table 1-238 compares the materials categories in the NYC WCS and the Phoenix Study and shows the adjustments that were made.

Table 1-238
Material Categories in the NYC WCS and the Phoenix Study

Material Group	NYC WCS Material Category	Phoenix Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Phoenix Single-Family (2)
Paper	Newspaper	Newspaper	None	2.6\%	2.7\%
Paper	Plain OCC/Kraft Paper	Plain OCC/Kraft Paper	None	1.0\%	2.9\%
Paper	High Grade Paper	Office Paper	The "High Grade Paper" category in the NYC WCS combines two categories in the Phoenix Study	0.5\%	1.2\%
Paper	High Grade Paper	Computer Paper			0.0\%
Paper	Mixed Low Grade paper	Mixed Low Grade paper	None	7.2\%	5.3\%
Paper	Phone Books/Paperbacks	Phone Books	None	0.4\%	0.1\%
Paper	Paper Bags		The "Paper/Other Materials" category in the Phoenix Study combines two categories in the NYC WCS	0.5\%	1.1\%
Paper	Polycoated Containers	Milk/Juice/Polycoat	The "Polycoated Containers" category in the NYC WCS combines two categories in the Phoenix Study	0.3\%	0.0\%
Paper	Compostable/Soiled/Waxed	Compostable/Soiled	The "Compostable/Soiled/Waxed" category in the NYC WCS combines two categories in the Phoenix Study	6.8\%	4.5\%
Paper	Compostable/Soiled/Waxed	Waxed OCC/Kraft			0.1\%
Paper	Single Use Cups, Plates	Paper/Other Materials	The "Paper/Other Materials" category in the Phoenix Study combines two categories in the NYC WCS	0.8\%	
Paper		Frozen Food Polycoats	The "Polycoated Containers" category in the NYC WCS Study combines two categories in the Phoenix Study		0.2\%
Paper	Other Non-Recyclable Paper	Non-Recyclable Paper Products	None	0.7\%	0.1\%
PAPER				20.7\%	18.2\%
Plastic	PET Botles	\#1 Pop \& Liquor	The "PET Bottles" category in the NYC WCS combines two categories in the Phoenix Study	0.6\%	0.2\%
	PET Bottles	\#1 Other Bottles			0.5\%
Plastic	HDPE Bottles - Natural	\#2 Milk and Juice	None	0.2\%	0.2\%
Plastic	HDPE Bottles - Colored	\#2 Other Bottles	None	0.2\%	0.3\%
Plastic	PET \#1 Tubs/Other Containers	Other Rigid Packaging	The "Other Rigid Packaging" in the Phoenix Study combines three categories in the NYC WCS	0.0\%	0.8\%
Plastic	HDPE \#2 Tubs/Other Containers	\#2 Jars and Tubs	None	0.0\%	0.1\%
Plastic	\#3 PVC Botlles	Other Bottles, Jars, Tubs	The "Other Bottles, Jars, Tubs" in the Phoenix Study combines eight categories in the NYC WCS	0.0\%	0.3\%
Plastic	\#4 LDPE Bottles	Other Botlles, Jars, Tubs		0.0\%	
Plastic	\#5 PP Bottles	Other Bottles, Jars, Tubs		0.0\%	
Plastic	\#7 Other Bottles	Other Bottles, Jars, Tubs		0.1\%	
Plastic	\#3 PVC Tubs	Other Bottles, Jars, Tubs		0.0\%	
Plastic	\#4 LDPE Tubs	Other Bottles, Jars, Tubs		0.0\%	
Plastic	\#5 PP Tubs	Other Bottles, Jars, Tubs		0.2\%	
Plastic	\#7 Other Tubs	Other Bottles, Jars, Tubs		0.0\%	
Plastic	Soda Crates \& Bottle Carriers	Plastic Products	The "Plastic Products" category in the Phoenix Study combines three categories in the NYC WCS	0.0\%	1.1\%
Plastic	Other PVC	Plastic Products		0.0\%	
Plastic	Rigid Polystyrene Containers	Other Rigid Packaging	The "Other Rigid Packaging" in the Phoenix Study combines three categories in the NYC WCS	0.2\%	
Plastic	Expanded Polystyrene	Expanded Polystyrene	None	0.6\%	0.5\%
Plastic	Other Rigid Containers	Other Rigid Packaging	The "Other Rigid Packaging" category in the Phoenix Study combines three categories in the NYC WCS	0.7\%	
Plastic	Plastics Bags - Shopping Bags	Grocery/Store/Bread Bags	The "Plastic Bags - Shopping Bags" category in the NYC WCS combines two categories in the Phoenix Study	2.3\%	0.9\%
Plastic		Garbage Bags			0.9\%
Plastic	Other Film	Other Film Plastic	None	4.3\%	1.6\%
Plastic	Single Use Cups, Plates	Plastic Products	The "Plastic Products" category in the Phoenix Study combines three categories in the NYC WCS	0.8\%	
Plastic	Plastic Materials: Other	Plastic/Other Materials	None	2.2\%	0.9\%
PLASTIC				12.5\%	8.3\%

Table 1-238
Material Categories in the NYC WCS and the Phoenix Study

NYC WCS Vol 1 § 9 Comparison with Other Jurisdictions

Table 1-238
Material Categories in the NYC WCS and the Phoenix Study

Material Group	NYC WCS Material Category	Phoenix Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Phoenix Single-Family (2)
Appliances/Elec.	Appliances: Ferrous	Small Appliances	The "Small Appliance" category in the Phoenix Study, classified in the "Other Materials" Group, combines three categories in the NYC WCS	0.5\%	
Appliances/Elec.	Appliances: Non-Ferrous	Small Appliances		0.0\%	
Appliances/Elec.	Appliances: Plastics	Small Appliances		0.3\%	0.4\%
Appliances/Elec.	Audio/Visual: Cell Phones	Audio Visual Equipment	The "Audio/Visual" category in the Phoenix Study, classified in the "Other Materials" Group, combines three categories in the NYC WCS	0.0\%	
Appliances/Elec.	Audio/Visual: Other	Audio Visual Equipment		0.3\%	0.3\%
Appliances/Elec.	Computer Monitors	Computer Monitors	None	0.1\%	0.0\%
Appliances/Elec.	Televisions	Television sets	None	0.2\%	0.1\%
Appliances/Elec.	Other Computer Equipment	Other Computer Equipment	None	0.1\%	0.1\%
Appliances/Elec.				1.5\%	0.9\%
C \& D	Untreated dimension lumber	Dimension lumber	The "Untreated Dimension Lumber" category in the NYC WCS combines four categories in the Phoenix Study	1.4\%	1.2\%
C\& D	Untreated dimension lumber	Pallets			0.1\%
C \& D	Untreated dimension lumber	Crates/Boxes			0.0\%
C \& D	Untreated dimension lumber	Other Untreated Wood			0.5\%
C \& D	Treated Wood	Treated Wood	The "Treated Wood" category in the NYC WCS combines two categories in the Phoenix Study		0.4\%
C \& D	Treated Wood	Contaminated Wood		2.6\%	0.6\%
C \& D	Gypsum Scrap	New Gypsum Scrap	The "Gypsum Scrap" category in the NYC WCS combines two categories in the Phoenix Study		0.0\%
C \& D		Demolition Gypsum Scrap		1.2\%	0.4\%
C \& D	Concrete/Rock/Bricks	Concrete/Rock/Bricks	None	0.9\%	1.5\%
C \& D	Other C\&D Debris	Asphaltic Roofing	The "Other C\&D Debris" category in the NYC WCS combines two categories in the Phoenix Study	2.4\%	0.2\%
C \& D	Other C\&D Debris	Fiberglass Insulation			0.0\%
C \& D	Other C\&D Debris	Other Construction Debris			0.7\%
C\& D	Other C\&D Debris	Sand/Soil/Dirt			1.6\%
C \& D				8.5\%	7.2\%
Misc.Inorganics	Ceramics	Ceramics/China	This NYC WCS category is classified under "Other Materials" materials group in the Phoenix Study	0.4\%	0.3\%
Misc.Inorganics	Miscellaneous Inorganics	Miscellaneous Inorganics	The "Misc. Inorganics" category in the NYC WCS category combines two categories in the "Other Materials" group in the Phoenix Study		0.2\%
		Ash		0.6\%	0.1\%
Misc.Inorganics				1.0\%	0.6\%

Table 1-238
Material Categories in the NYC WCS and the Phoenix Study

Material Group	NYC WCS Material Category	Phoenix Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Phoenix Single-Family (2)
HHW	Oil Filters	Motor Oil Filters	Classified under "Metals" materials group in the Phoenix Study	0.0\%	0.0\%
HHW	Antifreeze			0.0\%	
HHW	Wet-Cell Batteries	Wet-Cell Batteries	None	0.0\%	0.0\%
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	Gasoline/Kerosene			0.0\%
HHW		Motor Oil/Diesel Oil	The "Gasoline/Kerosene/Motor Oil" category in the NYC WCS combines two categories in the Phoenix Study	0.0\%	0.0\%
HHW	Latex/Water-based Paint/Adhesives/Glues	Latex Paint	None	0.1\%	0.1\%
HHW	Oil-based Paint/Adhesives/Glues	Oil-based Paints/Thinners	None	0.0\%	0.0\%
HHW	Pesticides/Herbicides	Pesticides/Herbicides	None	0.0\%	0.0\%
HHW	Dry-Cell Batteries	Dry-Cell Batteries	None	0.1\%	0.1\%
HHW	Fluorescent Tubes	Fluorescent Tubes	Classified under "Glass" materials group in the Phoenix Study	0.0\%	0.0\%
HHW	Mercury Laden Wastes	Other Hazardous	The "Other Hazardous" category in the Phoenix Study combines three categories in the NYC WCS	0.0\%	0.0\%
HHW	Compressed Gas Cylinders/Fire Extinguisher	Other Hazardous		0.0\%	
HHW	Home Medical Products	Other Hazardous		0.0\%	
HHW	Other Potentially Harmful Wastes	Asbestos	The "Other Potentially Harmful Wastes" category in the NYC WCS combines four categories in the Phoenix Study	0.0\%	0.0\%
		Explosives			0.0\%
		Hazardous Glues/Adhesives			0.0\%
		Non-Hazardous Glues/Adhesives			0.0\%
HHW				0.2\%	0.2\%
TOTAL				99.9\%	99.5\%

Figures may not add due to rounding
(1) NYC WCS "Refuse Results Across Seasons" weighted average of low density strata (Volume 1, Section 2, Table 1-28
(2) Characterization of Waste from Single-Family Residences; City of Phoenix Department of Public Works, 2003; "Material Categories in Single-family Residential Waste (Table 2 , page \mathfrak{C}

9.5.3 Most Prevalent Materials

Based on the results of the Phoenix Study and the NYC WCS, the most prevalent materials in the residential refuse stream are presented in Table 1-239.

Table 1-239
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Phoenix Study

Material	NYC WCS Single-Family (1)	Phoenix Study Single-Family (2)	
Food	18.0%	Leaves and Grass	23.5%
Leaves and Grass	9.5%	Food Waste	16.8%
Mixed Low Grade paper	7.2%	Mixed Low Grade paper	5.3%
Compostable/Soiled/Waxed	6.8%	Prunings	4.6%
Other Film	4.3%	Compostable/Soiled Paper	4.5%
Fines	3.9%	Disposable Diapers/Sanitary Products	3.6%
Disposable Diapers/Sanitary Products	3.6%	Textiles: Clothing	3.1%
Newspaper	2.6%	Plain OCC/Kraft Paper	2.9%
Textiles: Clothing	2.6%	Newspaper	2.7%
Treated Wood	2.6%	Animal By-Products	2.6%

Figures may not add due to rounding
(1) NYC WCS "Refuse Results Across Seasons" weighted average of low density strata (Volume 1, Section 2, Table 1-28)
(2) "Characterization of Waste from Single-Family Residences"; City of Phoenix Department of Public Works, 2003; "Material Categories in Single-Family Residential Waste" (Table 2, page 9)

9.6 Characterization of Municipal Solid Waste for the City of San Diego

9.6.1 Introduction

The "Waste Composition Study 1999-2000" (the "San Diego Study") was carried out by the Cascadia Consulting Group, Inc. for the City of San Diego Environmental Services Department in 2000. The objective of the San Diego Study was to "obtain detailed information on the amount and types of trash and recyclables being disposed by single-family residences, multifamily residences...". ${ }^{6}$ The waste was analyzed over three sampling seasons: November 1999, February/March 2000 and May 2000. A summary methodological comparison of the San Diego Study and the NYC WCS is presented in Table 1-240.

[^6]Table 1-240
Methodological Comparison of the NYC WCS and the San Diego Study

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The summary of the two studies shows some of the key methodological differences between the two studies.

- The San Diego Study examined the variation in the waste over three seasons, fall, winter, and spring. The NYC WCS studied waste over four seasons, fall, winter, spring, and summer.
- The San Diego Study analyzed the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The San Diego Study analyzed 228 residential refuse samples. The NYC WCS acquired and hand-sorted 3,600 residential refuse samples.
- The San Diego Study set a target number of refuse samples for each generator type (singlefamily and multi-family) and allocated these evenly across the three seasons of the study. The samples of C\&D were allocated by vehicle type across the generator sectors.

The NYC WCS set a target number of residential refuse and recycling samples by the eight housing density and income strata. The NYC WCS aggregated the results of the characterization of the eight strata into a citywide composition based on the methodology explained in Volume 2, Section 2.

Both studies acquired samples at transfer stations. The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the San Diego Study and the NYC WCS. The San Diego Study sorted the refuse into 89 material categories and the NYC WCS sorted refuse and recycling into 91 material categories.

Based on the structure of the two studies, two comparisons of the results from the residential sector can be made:

1. The results of the Single-Family component of the San Diego Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the two low density strata has been used.
2. The results of the Multi-Family component of the San Diego Study and the results of the High Density and Medium Density strata (High Density/High Income, High Density/Medium Income, Medium Density/High Income and Medium Density/ Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the four high and medium density strata has been used.

9.6.2 Adjustments to the Studies and Study Results

Different material groups and material categories were used in the San Diego Study and the NYC WCS. The material groups and categories used in the two studies have been adjusted to accomplish the comparison. Table 1-241 compares the composition of the two studies in terms of material groups and shows the adjustments made to each group.

Table 1-241
Composition by Material Groups in the NYC WCS and the San Diego Study

NYC WCS Material Groups	San Diego Study Material Groups	Adjustments to Material Groups	NYC WCS Single-Family (1)	San Diego Single-Family (2)	NYC WCS Multi-Family (3)	$\begin{gathered} \text { San Diego } \\ \text { Multi-Family (4) } \end{gathered}$
Paper	Paper	None	20.7\%	25.0\%	24.3\%	38.3\%
Plastic	Plastics	None	12.5\%	7.7\%	15.6\%	7.8\%
Glass	Glass	None	1.6\%	2.7\%	3.0\%	3.7\%
Metal	Metal	None	3.5\%	5.1\%	3.7\%	6.0\%
Organics	Other Organics	None	50.5\%	40.3\%	45.8\%	36.7\%
Appliances \& Electronics		(5)	1.5\%	0.5\%	1.3\%	0.2\%
C\&D	Construction \& Demolition	None	8.5\%	17.6\%	5.5\%	5.6\%
Miscellaneous Inorganics		(6)	1.0\%	1.0\%	0.6\%	1.3\%
HHW	HHW	None	0.2\%	0.1\%	0.3\%	0.3\%
	Special Wastes	(7)				
	Mixed Residue	(8)				
Total			100.0\%	100.0\%	100.0\%	99.9\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Single-Family Residential Waste"; (Table 10, page 13)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Multi-Family Residential Waste" (Table 13, page 16)
(5) The categories in the "Appliances \& Electronics" group in the NYC WCS are included as "Major Appliances" in the "Metals" group of the San Diego Study
(6) The categories in the "Miscellaneous Inorganics" group in the NYC WCS are included in the "Special Wastes" group from the San Diego Study
(7) The categories in the "Special Wastes" group of the San Diego Study are included in several other groups of the NYC WCS
(8) The "Mixed Residue" group of the San Diego Study are included as "fines" in the "Organics" group of the NYC WCS

Similar adjustments were necessary to make the comparisons in the material categories.
Table 1-242 compares the material categories in the NYC WCS and the San Diego Study and shows the adjustments that were made.

Table 1-242

Material Categories in the NYC WCS and the San Diego Study

Material Group	NYC WCS Material Category	$\begin{gathered} \text { San Diego } \\ \text { Material Category (1) } \\ \hline \end{gathered}$	Adjustment to Material Category	NYC WCS Single-Family (1)	$\begin{gathered} \text { San Diego } \\ \text { Single-Family (2) } \\ \hline \end{gathered}$	NYC WCS Multi-Family (3)	San Diego Multi-Family (4)
Paper	Newspaper	Newspaper	None	2.6\%	5.8\%	4.1\%	11.0\%
Paper	Plain OCC/Kraft Paper	Uncoated Corrugated Cardboard	None	1.0\%	3.3\%	1.2\%	8.0\%
Paper	High Grade Paper	White Ledger Paper	The "High Grade Paper" category in the NYC WCS combines four categories in the San Diego Study	0.5\%	1.1\%	0.7\%	1.4\%
Paper		Colored Ledger Paper			0.2\%		0.2\%
Paper		Computer Paper			0.0\%		0.0\%
Paper		Other Office Paper			0.8\%		0.6\%
Paper	Mixed Low Grade paper	Magazines and Catalogs	None	7.2\%	1.7\%	8.8\%	1.9\%
Paper	Phone Books/Paperbacks	Phone Books and Directories	None	0.4\%	0.4\%	0.5\%	0.9\%
Paper	Paper Bags	Paper Bags	None	0.5\%	0.7\%	0.8\%	1.1\%
Paper	Polycoated Containers	Remainder/Composite Paper	The "Remainder/Composite Paper" category in the San Diego Study combines two categories in the NYC WCS	0.3\%	6.3\%	0.5\%	7.5\%
Paper	Compostable/Soiled/Waxed	Waxed Corrugated Cardboard	None	6.8\%	0.0\%	6.6\%	0.4\%
Paper	Single Use Cups, Plates	Remainder/Composite Paper	The "Remainder/Composite Paper" category in the San Diego Study combines two categories in the NYC WCS	0.8\%		0.4\%	
Paper	Other Non-Recyclable Paper	Other Miscellaneous Paper	None	0.7\%	4.7\%	0.7\%	5.3\%
PAPER				20.7\%	25.0\%	24.3\%	38.3\%
Plastic	PET Botlles	CRV PETE Containers (1)	None	0.6\%	0.1\%	1.0\%	0.2\%
Plastic	HDPE Bottles - Natural	CRV HDPE Containers (1)	The "CRV HDPE Containers" category in the San	0.2\%		0.3\%	
Plastic	HDPE Bottles - Colored		Diego Study combines two categories in the NYC WCS	0.2\%	0.3\%	0.3\%	0.4\%
Plastic	PET \#1 Tubs/Other Containers	Non-CRV PETE Containers	None	0.0\%	0.5\%	0.0\%	0.5\%
Plastic	HDPE \#2 Tubs/Other Containers	Non-CRV HDPE Containers	None	0.0\%	0.2\%	0.1\%	0.2\%
Plastic	\#3 PVC Bottles	Miscellaneous Plastics Containers	The "Miscellaneous Plastic Containers" category in the San Diego Study combines ten categories in the NYC WCS	0.0\%	0.7\%	0.0\%	0.6\%
Plastic	\#4 LDPE Bottles	Miscellaneous Plastics Containers		0.0\%		0.0\%	
Plastic	\#5 PP Bottles	Miscellaneous Plastics Containers		0.0\%		0.0\%	
Plastic	\#7 Other Bottles	Miscellaneous Plastics Containers		0.1\%		0.1\%	
Plastic	\#3 PVC Tubs	Miscellaneous Plastics Containers		0.0\%		0.0\%	
Plastic	\#4 LDPE Tubs	Miscellaneous Plastics Containers		0.0\%		0.0\%	
Plastic	\#5 PP Tubs	Miscellaneous Plastics Containers		0.2\%		0.2\%	
Plastic	\#7 Other Tubs	Miscellaneous Plastics Containers		0.0\%		0.0\%	
Plastic	Soda Crates \& Bottle Carriers	Durable Plastic ltems	The "Durable Plastic ltems" category in the San Diego Study combines three categories in the NYO WCS	0.0\%	1.1\%	0.0\%	
Plastic	Other PVC	Durable Plastic Items		0.0\%		0.0\%	1.0\%
Plastic	Rigid Polystyrene Containers	Miscellaneous Plastics Containers	The "Miscellaneous Plastic Containers" category in the San Diego Study combines two categories in the NYC WCS	0.2\%		0.3\%	
Plastic	Expanded Polystyrene	Durable Plastic ltems	The "Durable Plastic lems" category in the San Diego Study combines three categories in the NYO WCS	0.6\%		0.7\%	
Plastic	Other Rigid Containers	Miscellaneous Plastics Containers	The "Miscellaneous Plastic Containers" category in the San Diego Study combines two categories in the NYC WCS	0.7\%		0.8\%	
Plastic	Plastics Bags - Shopping Bags	Film Plastic	The "Film Plastic" category in the San Diego Study combines two categories in the NYC WCS	2.3\%	3.5\%	3.5\%	3.6\%
Plastic	Other Film	Film Plastic		4.3\%		5.8\%	
Plastic	Single Use Cups, Plates	Durable Plastic Items	The "Durable Plastic Items" category in the San Diego Study combines three categories in the NYO WCS	0.8\%		0.6\%	
Plastic	Plastic Materials: Other	Remainder/Composite Plastic	None	2.2\%	1.3\%	1.8\%	1.3\%
PLASTIC				12.5\%	7.7\%	15.6\%	7.8\%

Table 1-242

Material Categories in the NYC WCS and the San Diego Study

Table 1-242
Material Categories in the NYC WCS and the San Diego Study

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Single-Family Residential Waste"; (Table 10, page 13)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Multi-Family Residential Waste" (Table 13, page 16
5) The following categories were used in the San Diego Study, but were deleted because no materials, or nominal amounts of these types were found: Agricultural Crop Residues, Sewage Solids, Industrial Sludge (6) CRV - California Refund Value; Consumers receive payments when they return CRV beverage containers under California's recycling law

9.6.3 Most Prevalent Materials

Based on the results of the San Diego Study and the NYC WCS, the most prevalent materials in the residential refuse streams are presented in Table 1-243.

Table 1-243
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the San Diego Study

Material	NYC WCS Single-Family (1)	Material	San Diego Single-Family (2)	Material	NYC WCS Multi-Family (3)	Material	San Diego Multi-Family (4)
Food	18.0\%	Food	13.8\%	Food	22.2\%	Food	14.2\%
Leaves and Grass	9.5\%	Leaves and Grass	10.0\%	Mixed Low Grade Paper	8.6\%	Newspaper	11.0\%
Mixed Low Grade Paper	7.2\%	Remainder/Composite Paper	6.3\%	Remainder/Composite Paper	6.6\%	Uncoated Corrugated Cardboard	8.0\%
Compostable/Soiled/Waxed Paper	6.8\%	Newspaper	5.8\%	Other Film	5.8\%	Remainder/Composite Paper	7.5\%
Other Film	4.3\%	Prunings and Trimmings	4.7\%	Fines	4.5\%	Leaves and Grass	7.1\%
Fines	3.9\%	Other Miscellaneous Paper	4.7\%	Newspaper	4.1\%	Other Miscellaneous Paper	5.3\%
Diapers/Other Sanitary Products	3.6\%	Treated Lumber	4.4\%	Diapers/Other Sanitary Products	4.0\%	Prunings and Trimmings	4.1\%
Newspaper	2.6\%	Film Plastic	3.5\%	Plastic Bags: Shopping Bags	3.5\%	Film Plastic	3.6\%
Textiles: Clothing	2.6\%	Concrete	3.4\%	Textiles: Clothing	3.2\%	Remainder/Composite Metal	2.9\%
Treated Wood	2.6\%	Uncoated Corrugated Cardboard	3.3\%	Leaves and Grass	2.0\%	Diapers	2.6\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Single-Family Residential Waste"; (Table 10, page 13
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strate
(4) Waste Composition Study 1999-2000; City of San Diego Environmental Services Department, 2000, "Composition of Disposed Multi-Family Residential Waste" (Table 13, page 16

9.7 Characterization of Municipal Solid Waste for the City of San Francisco

9.7.1 Introduction

The "Waste Characterization Study" (the "San Francisco Study") was carried out by Environmental Science Associates for the City and County of San Francisco Department of the Environment in 2004/2005. The objective of the San Francisco Study was to "identify the major constituents of the San Francisco municipal solid waste stream" ${ }^{7}$ and "characterize and quantify the municipal solid waste (MSW) sent to landfill from San Francisco". ${ }^{8}$ The characterization of the MSW was carried out by hand-sorting and visual characterization at the facilities of Norcal, a private waste management company operating most of the solid waste infrastructure in 2004/2005. A summary methodological comparison of the San Francisco Study and the NYC WCS is presented in Table 1-244.

[^7]Table 1-244
Methodological Comparison of the NYC WCS and the San Francisco Study

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The summary of the two studies shows some of the key methodological differences between the two studies.

- The San Francisco Study examined the variation in the Norcal waste over two seasons, winter and spring. The NYC WCS studied waste over four seasons, fall, winter, spring, and summer.
- The San Francisco Study analyzed the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The San Francisco Study analyzed 82 residential refuse samples. The NYC WCS acquired and hand-sorted 3,600 residential refuse samples.
- The San Francisco Study identified the vehicles from which samples were to be taken and selecting the first vehicles to arrive at the transfer station each day until the requisite number of samples for that day was acquired.

The NYC WCS randomly selected the vehicles from which samples were to be acquired from a list of collection routes within each density/income strata.

Both studies acquired samples at transfer stations. The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the San Francisco Study and the NYC WCS. The San Francisco Study sorted the refuse into 63 material categories and the NYC WCS sorted refuse and recycling into 91 material categories.

Based on the structure of the two studies, two comparisons of the results from the residential sector can be made:

1. The results of the Single-Family component of the San Francisco Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the two low density strata has been used.
2. The results of the Multi-Family component of the San Francisco Study and the results of the High Density and Medium Density strata (High Density/High Income, High Density/Medium Income, Medium Density/High Income and Medium Density/ Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the four high and medium density strata has been used.

9.7.2 Adjustments to the Studies and Study Results

Different material groups and material categories were used in the San Francisco Study and the NYC WCS. The material groups and categories used in the two studies have been adjusted to accomplish the comparison. Table 1-245 compares the composition of the two studies in terms of material groups and shows the adjustments made to each group.

Table 1-245
Composition by Material Groups in the NYC WCS and the San Francisco Study

NYC WCS Material Groups	San Francisco Study Material Groups	Adjustments to Material Groups	NYC WCS Single-Family (1)	San Francisco Single-Family (2)	NYC WCS Multi-Family (3)	San Francisco Multi-Family (4)
Paper	Paper	None	20.7\%	20.5\%	24.3\%	25.1\%
Plastic	Plastics	None	12.5\%	11.3\%	15.6\%	11.4\%
Glass	Glass	None	1.6\%	2.0\%	3.0\%	4.3\%
Metal	Metal	None	3.5\%	3.1\%	3.7\%	3.3\%
Organics	Organics	(5)	50.5\%	58.8\%	45.8\%	47.1\%
Appliances \& Electronics		(6)	1.5\%	0.2\%	1.3\%	0.0\%
C\&D	CDL Wastes	None	8.5\%	1.8\%	5.5\%	4.9\%
Miscellaneous Inorganics		(7)	1.0\%	0.4\%	0.6\%	1.1\%
HHW	Hazardous Wastes	None	0.2\%	1.9\%	0.3\%	2.5\%
	Other Materials (8)					
Total			99.9\%	100.0\%	100.0\%	99.7\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Single-Family Residential Program"; (Table A-2, page A-4)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Multifamily Residential Program"; (Table A-4, page A-5)
(5) Several categories in the "Organics" group of the NYC WCS, such as "Textiles" and Furniture" are taken from the "Other Materials" group from the San Francisco Study
(6) The categories in the "Appliances \& Electronics" group in the NYC WCS are included as "Other Materials" group from the San Francisco Study
(7) The categories in the "Miscellaneous Inorganics" group in the NYC WCS are included in the "CDL Wastes" group from the San Francisco Study
(8) The categories in the "Other Materials" group of the San Francisco Study are included in several other groups of the NYC WCS

Similar adjustments were necessary to make the comparisons in the material categories. Table 1-246 compares the material categories in the NYC WCS and the San Francisco Study and shows the adjustments that were made.

Table 1-246
Material Categories in the NYC WCS and the San Francisco Study

Material Group	NYC WCS Material Category	San Francisco Study Material Category	Adjustment to Material Category		San Francisco Single-Family (2)	NYC WCS Multi-Family (3)	San Francisco Multi-Family (4)
Paper	Newspaper	Newspaper	None	2.6\%	3.0\%	4.1\%	5.0\%
Paper	Plain OCC/Kraft Paper	Plain OCC//ratt Paper	None	1.0\%	2.0\%	1.2\%	2.6\%
Paper	High Grade Paper	High Grade Paper	None	0.5\%	1.3\%	0.7\%	1.6\%
Paper	Mixed Low Grade Paper		The "Mixed Low Grand Paper" category in the San	7.2\%		8.8\%	
Paper	Phone Books/Paperbacks		Francisco Study combines three paper categories in	0.4\%		0.5\%	
Paper	Paper Bags	Mixed Low Grade Paper	the NYC WCS	0.5\%	6.0\%	0.8\%	7.4\%
Paper	Polycoated Containers	Polycoated Paper	None	0.3\%	0.7\%	0.5\%	0.9\%
Paper	Compostable/Soiled/Waxed	Compostable/Soiled			6.4\%	6.6\%	6.1\%
		Waxed OCC/Kraft Paper	The "Compostable/Soiled/Waxed" category in the NYC WCS combines two paper categories in the San Francisco Study	6.8\%	0.1\%		0.3\%
Paper	Single Use Cups, Plates	Mixed Low Grade Paper	The "Mixed Low Grand Paper" category in the San Francisco Study combines four paper categories in the NYC WCS	0.8\%		0.4\%	
Paper	Other Non-Recyclable Paper	Composite/Other Paper	None	0.7\%	1.0\%	0.7\%	1.2\%
PAPER				20.7\%	20.5\%	24.3\%	25.1\%
Plastic	PET Bottles	PET Bottles	None	0.6\%	0.5\%	1.0\%	0.9\%
Plastic	HDPE Bottles - Natural	HDPE Botlles - Natural	None	0.2\%	0.2\%	0.3\%	0.2\%
Plastic	HDPE Bottles - Colored	HDPE Botlles - Colored	None	0.2\%	0.3\%	0.3\%	0.3\%
Plastic	PET \#1 Tubs/Other Containers	\#1, 3, 6, \& 7 Tubs and Cups	The "\#1, 3, 6, 7 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.0\%	0.7\%	0.0\%	0.6\%
Plastic	HDPE \#2 Tubs/Other Containers	\#2, 4, \& 5 Tubs and Cups	The "\#2, 4,5 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.0\%	0.4\%	0.1\%	0.3\%
Plastic	\#3 PVC Bottles	\#1, 3, 6, \& 77 Tubs and Cups	The "\#1, 3, 6, 7 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.0\%		0.0\%	
Plastic	\#4 LDPE Botlles			0.0\%		0.0\%	
Plastic	\#5 PP Bottles	\#2, 4, \& 5 Tubs and Cups	The "\#2, 4, 5 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.0\%		0.0\%	
Plastic	\#7 Other Botlles			0.1\%		0.1\%	
Plastic	\#3 PVC Tubs	\#1, 3, 6, \& 7 Tubs and Cups	The "\#1, 3, 6, 7 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.0\%		0.0\%	
Plastic	\#4 LDPE Tubs			0.0\%		0.0\%	
Plastic	\#5 PP Tubs	\#2, 4, \& 5 Tubs and Cups	The "\#2, 4, \& 5 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.2\%		0.2\%	
Plastic	\#7 Other Tubs	\#1, 3, 6, \& 7 Tubs and Cups	The "\#1, 3, 6, 7 Tubs and Cups" category in the San Francisco Study combines five plastic categories in the NYC WCS	0.0\%		0.0\%	
Plastic	Soda Crates \& Bottle Carriers			0.0\%		0.0\%	
Plastic	Other PVC	Plastic Products	The "Plastic Products" category in the San Francisco Study combines two plastic categories in the NYC WCS	0.0\%	1.1\%	0.0\%	0.8\%
Plastic	Rigid Polystyrene Containers	Other Rigid Packaging	None	0.2\%	0.6\%	0.3\%	0.5\%
Plastic	Expanded Polystyrene	Nonfood Expanded Polystyrene	None	0.6\%	0.2\%	0.7\%	0.4\%
Plastic	Other Rigid Containers	Other Plastic Botlles	The "Other Plastic Bottles" category in the San Francisco Study combines two plastic categories in the NYC WCS	0.7\%		0.8\%	0.0\%
Plastic	Plastics Bags - Shopping Bags	Clean Shopping/Dry Cleaning Bags	None	2.3\%	0.2\%	3.5\%	0.2\%
Plastic		Other Clean Polyethylene Film			0.2\%		0.5\%
Plastic	Other Film	Other Film	combines two plastic categories in the San Francisco Study	4.3\%	5.2\%	5.8\%	4.7\%
Plastic	Single Use Cups, Plates	Other Food Service Plastics	None	0.8\%	0.9\%	0.6\%	0.8\%
Plastic	Plastic Materials: Other	Composit//Other Plastic	None	2.2\%	0.8\%	1.8\%	1.2\%
PLASTIC				12.5\%	11.3\%	15.6\%	11.4\%

Material Group	NYC WCS Material Category	San Francisco Study Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	San Francisco Single-Family (2)	$\begin{gathered} \text { NYC WCS } \\ \text { Multi-Family (3) } \end{gathered}$	$\begin{aligned} & \hline \text { San Francisco } \\ & \text { Multi-Family (4) } \\ & \hline \end{aligned}$
Glass	Clear Container Glass		The "Beverage Bottle" category in the San	0.8\%		1.3\%	
Glass	Green Container Glass		Francisco Study combines three glass categories in	0.2\%		0.4\%	
Glass	Brown Container Glass	Beverage Bottles	the NYC WCS	0.1\%	1.3\%	0.3\%	3.6\%
Glass	Mixed Cullet	Composite/Other Glass	None	0.3\%	0.2\%	0.7\%	0.2\%
Glass	Other Container Glass	Container Glass	None	0.0\%	0.4\%	0.0\%	0.5\%
Glass	Other Glass	Plate Glass	None	0.2\%	0.1\%	0.2\%	0.0\%
GLASS				1.6\%	2.0\%	3.0\%	4.3\%
Metal	Aluminum Cans	Aluminum Cans	None	0.1\%	0.2\%	0.2\%	0.3\%
Metal	Aluminum FoillContainers	Aluminum FoillContainers	None	0.5\%	0.2\%	0.6\%	0.2\%
Metal	Other Aluminum	Other Aluminum	None	0.1\%	0.0\%	0.0\%	0.1\%
Metal	Non-Ferrous: Other	Non-Ferrous: Other	None	0.2\%	0.1\%	0.1\%	0.0\%
Metal	Tin Food Cans	Tin Food Cans	None	0.5\%	0.7\%	1.0\%	0.8\%
Metal	Empty Aerosol Cans	Empty Pain \& Aerosol Cans	None	0.1\%	0.1\%	0.1\%	0.0\%
Metal	Ferrous: Other	Ferrous: Other	None	1.6\%	0.8\%	1.1\%	0.8\%
Metal	Mixed Metals	Composit//Other Metals	None	0.5\%	1.0\%	0.5\%	1.1\%
METAL				3.5\%	3.1\%	3.7\%	3.3\%
Organics	Leaves and Grass	Grass	None	9.5\%	0.2\%	2.0\%	0.3\%
Organics	Prunings	Prunings	None	2.3\%	1.6\%	0.5\%	1.4\%
Organics	Stumps \& Limbs	Stumps and Logs from "C8D"	None	0.5\%	0.0\%	0.1\%	0.0\%
Organics	Food	Food	None	18.0\%	42.2\%	22.6\%	29.9\%
Organics	Wood Furniture/Furniture Pieces			1.7\%		1.3\%	
Organics	Non-C\&D untreated wood	Furniture from "Other Materials"	The "Furniture" category from the "Other Materials" group in the San Francisco Study combines two organics categories in the NYC WCS	0.2\%	0.0\%	0.2\%	0.0\%
Organics	Non-Clothing Textiles	Texiles from "Other Materials"	None	1.5\%	3.2\%	1.7\%	5.1\%
Organics	Texilies: Clothing	Apparel from "Other Materials"	The "Apparel" category from the "Other Materials" group in the San Francisco Study combines three organics categories in the NYC WCS	2.6\%	0.9\%	3.2\%	0.7\%
Organics	CarpetUpholstery	CarpetUpholstery from "Other Materials"	None	2.0\%	1.2\%	1.3\%	1.9\%
Organics	Disposable Diapers/Sanitary Products	Diapers	None	3.6\%	4.6\%	4.0\%	2.4\%
Organics	Animal By-Products	Animal By-Products	None	1.4\%	3.8\%	1.3\%	2.7\%
Organics	Rubber Products	Tires and Rubber from "Other Materials"	None	0.3\%	0.2\%	0.3\%	0.6\%
Organics	Shoes			0.6\%		0.8\%	
Organics	Other Leather Products	Apparel from "Other Materials"	group in the San Francisco Study combines three organics categories in the NYC WCS	0.1\%		0.1\%	
Organics	Fines	Sand/Soil/Dir/Grit/Fines from "C\&D"	The "Sand/Soi//Dirt/Grit/Fines" category from the "Other Materials" group in the San Francisco Study combines categories in the NYC WCS	3.9\%	0.2\%	4.5\%	1.2\%
Organics	Upholstered or Other Organic Funniture	Matresses from "Other Materials"	None	1.0\%	0.0\%	1.1\%	0.0\%
Organics	Miscellaneous Organics	Composite/Other Organics	None	1.2\%	0.7\%	0.8\%	0.9\%
Organics				50.5\%	58.8\%	45.8\%	47.1\%
Appliances/Elec.	Appliances: Ferrous			0.5\%		0.3\%	
Appliances/Elec.	Appliances: Non-Ferrous			0.0\%		0.0\%	
Appliances/Elec.	Appliances: Plastics			0.3\%		0.2\%	
Appliances/Elec.	Audio Visual: Cell Phones			0.0\%		0.0\%	
Appliances/Elec.	AudioV Visual: Other			0.3\%		0.3\%	
Appliances/Elec.	Computer Monitors		The "Appliances" category from the "Other	0.1\%		0.1\%	
Appliances/Elec.	Televisions		Materials" group in the San Francisco Study	0.2\%		0.1\%	
Appliances/Elec.	Other Computer Equipment	Appliances from "Other Materials"	combines eight categories in the NYC WCS	0.1\%	0.2\%	0.2\%	0.0\%
Appliances/Elec.				1.5\%	0.2\%	1.3\%	0.0\%
C\&D		Clean Wood			0.6\%		0.1\%
C\&D	Untreated dimension lumber	Pallets \& Crates	The "Untreated Dimension Lumber " category in the NYC WCS combines two C\&D categories in the San Francisco Study	1.4\%	0.0\%	0.5\%	0.0\%
C\&D	Treated Wood	Composite/Other Wood	None	2.6\%	0.4\%	1.7\%	1.9\%
C\&D	Gypsum Scrap	Clean Gypsum	"Gypsum Scrap" category in the NYC WCS		0.5\%	1.1\%	0.2\%
C \& D		Painted Gypsum	combines two C\&D categories in the San Francisco Study	1.2\%	0.0\%		0.0\%
C\&D	Concreet/RockBricks	Concrete/Rock/Bricks	None	0.9\%	0.1\%	0.8\%	2.6\%
C\&D		Composite/Other C\&D	The "Other C\&D" category in the NYC WCS		0.2\%		0.1\%
C\&D		Fiberglass Insulation	combines three C\&D categories in the San		0.0\%		0.0\%
C\&D	Other C\&D Debris	Asphaltic Roofing	Francisco Study	2.4\%	0.0\%	1.4\%	0.0\%
C\& D				8.5\%	1.8\%	5.5\%	4.9\%

Table 1-246

Material Categories in the NYC WCS and the San Francisco Study

Material Group	$\begin{gathered} \text { NYC WCS } \\ \text { Material Category } \\ \hline \end{gathered}$	San Francisco Study Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	$\begin{gathered} \text { San Francisco } \\ \text { Single-Family (2) } \end{gathered}$	$\begin{gathered} \text { NYC WCS } \\ \text { Multi-Family (3) } \end{gathered}$	San Francisco Multi-Family (4)
Misc.Inorganics	Ceramics	Ceramics from C\&D	None	0.4\%	0.4\%	0.2\%	1.1\%
Misc.Inorganics	Miscellaneous Inorganics	Sand/Soil/Dit/Grit/Fines from "C\&D"	The "Sand/Soi//Dirt/Grit/Fines" category from the "Other Materials" group in the San Francisco Study combines categories in the NYC WCS	0.6\%		0.4\%	
Misc.Inorganics				1.0\%	0.4\%	0.6\%	1.1\%
HHW	Oil Filters			0.0\%		0.0\%	
HHW	Antifreeze			0.0\%		0.0\%	
HHW	Wet-Cell Batteries			0.0\%		0.0\%	
HHW	Gasoline/Kerosene/MMotor Oil/Diesel Fuel			0.0\%		0.0\%	
HHW	LatexWater-based Paint/Adhesives/Glues			0.1\%		0.0\%	
HHW	Oil-based Paint/Adhesives/Glues			0.0\%		0.0\%	
HHW	Pesticides/Herbicides		The "Hazardous Wastes" Group in the San	0.0\%		0.0\%	
HHW	Dry-Cell Batteries		Francisco Study combines twelve HHW categories	0.1\%		0.1\%	
HHW	Fluorescent Tubes		in the NYC WCS	0.0\%		0.0\%	2.5\%
HHW	Mercury Laden Wastes	Hazardous Wastes		0.0\%	1.9\%	0.0\%	
HHW	Compressed Gas Cylinders/Fire Extinguisher	Empty Propane Tanks from "Metal"	None	0.0\%	0.0\%	0.0\%	0.0\%
HHW	Home Medical Products		The "Hazardous Wastes" Group in the San	0.0\%		0.1\%	
HHW	Other Potentially Harmfu Wastes	Hazardous Wastes	Francisco Study combines twelve HHW categories	0.0\%		0.0\%	
HHW				0.2\%	1.9\%	0.3\%	2.5\%
TOTAL				99.9\%	100.0\%	100.0\%	99.7\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Single-Family Residential Program"; (Table A-2, page A-4) (3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) " Waste Characterization Study"; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Multifamily Residential Program"; (Table A-4, page A-5)

9.7.3 Most Prevalent Materials

Based on the results of the San Francisco Study and the NYC WCS, the most prevalent materials in the residential refuse streams are presented in Table 1-247.

Table 1-247
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the San Francisco Study

Material	NYC WCS Single-Family (1)	Material	San Francisco Single-Family (2)	Material	NYC WCS Multi-Family (3)	Material	San Francisco Multi-Family (4)
Food	18.0\%	Food	42.2\%	Food	22.6\%	Food	29.9\%
Leaves and Grass	9.5\%	Compostable/Soiled Paper	6.4\%	Mixed Low Grade Paper	8.8\%	Mixed Low Grade Paper	7.4\%
Mixed Low Grade Paper	7.2\%	Mixed Low Grade Paper	6.0\%	Remainder/Composite Paper	6.6\%	Compostable/Soiled Paper	6.1\%
Compostable/Soiled/Waxed Paper	6.8\%	Film Plastic	5.2\%	Other Film	5.8\%	Textiles	5.1\%
Other Film	4.3\%	Disposable Diapers	4.6\%	Fines	4.5\%	Newspaper	5.0\%
Fines	3.9\%	Animal By-Products	3.8\%	Newspaper	4.1\%	Film Plastic	4.7\%
Diapers/Other Sanitary Products	3.6\%	Textiles	3.2\%	Diapers/Other Sanitary Products	4.0\%	Beverage Bottles	3.6\%
Newspaper	2.6\%	Newspaper	3.0\%	Plastic Bags: Shopping Bags	3.5\%	Animal By-Products	2.7\%
Textiles: Clothing	2.6\%	Uncoated Corrugated Cardboard	2.0\%	Textiles: Clothing	3.2\%	Uncoated Corrugated Cardboard	2.6\%
Treated Wood	2.6\%	HHW	2.9\%	Leaves and Grass	2.0\%	Rock/Concrete/Bricks	2.6\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Single-Family Residential Program"; (Table A-2, page A-4)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) Waste Characterization Study; City and County of San Francisco Department of the Environment; 2005; "Characterization of Waste Disposed through Fantastic 3 Multifamily Residential Program"; (Table A-4, page A-5)

9.8 Characterization of Municipal Solid Waste for the City of Seattle

9.8.1 Introduction

The City of Seattle has conducted two composition studies during the past five years, a 2002 report on refuse composition and a 2005 study on recycling composition. Although the two studies were not conducted at the same time, they have been combined to compare both Seattle Studies to the refuse and recycling results from the NYC WCS.

The "2002 Residential Waste Stream Composition Study" (the "Seattle Refuse Study") was carried out by the Cascadia Consulting Group, Inc. for the Seattle Public Utilities ("SPU") in 2002/2003. The Seattle Refuse Study, the eighth in a series of waste stream composition studies conducted by the SPU, was to "obtain information about the City's residential... waste stream to estimate (its) recycling potential". ${ }^{\text {. }}$ The Seattle Refuse Study analyzed single-family and multifamily waste from two service areas (North and South Areas) in the City. Composition estimates were developed by sampling refuse and sorting and weighing these samples.

The "2005 Residential Recycling Composition Study" (the "Seattle Recycling Study") was also carried out by the Cascadia Consulting Group, Inc. for the SPU, in 2004/2005. The purpose of the Seattle Recycling Study was "to better understand the types and quantities of recyclables set out by Seattle residents" and "to determine payment from the City (Seattle) to the private company that processes Seattle's residential recycling". ${ }^{10}$ Like the Seattle Refuse Study, the Seattle Recycling Study analyzed samples from single-family and multi-family residences from the North and South service areas of Seattle.

A summary methodological comparison of the two Seattle Studies and the NYC WCS is presented in Table 1-248.

[^8]
Table 1-248

Methodological Comparison of the NYC WCS and the Seattle Studies

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The comparison shows some of the key methodological differences between the two studies.

- The Seattle Recycling Study examined two streams of recycling: (1) glass and (2) commingled paper and containers. The NYC WCS also analyzed two streams of recycling: (1) MGP, which included metal and plastics, as well as glass, and (2) Paper.
- The Seattle Refuse Study acquired and sorted 309 refuse samples; the NYC WCS acquired and sorted 3,200 refuse samples.
- The Seattle Recycling Study acquired and sorted 261 residential recycling samples and the NYC WCS acquired and sorted 1,600 residential recycling samples (320 samples of Paper and 1,280 samples of MGP).
- The Seattle Studies randomly selected collection routes for single-family and multi-family residences in the North and South Service Areas. Two-thirds of the refuse and recycling samples were acquired from single-family residences and one-third from multi-family residences. Given this ratio of single-family and multi-family residences, samples were evenly distributed across the two services area and across seasons.

The NYC WCS used eight housing density and income strata as the basis for sampling. An equal number of samples were acquired from each stratum. Every census tract in New York City was classified by strata. Vehicles targeted for sampling were randomly selected from collection routes within a single stratum, called "pure routes." The NYC WCS aggregated the results of the characterization of the eight strata into a citywide composition based on the methodology explained in Volume 2, Section 2. In the PWCS, vehicles targeted for sampling were randomly selected from collection routes within each borough.

Both the Seattle Studies and the NYC WCS acquired samples at transfer stations. The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Seattle Study and the NYC WCS. The Seattle Refuse Study sorted the refuse into 89 material categories and the Seattle Recycling Study sorted samples into 29 categories. The NYC WCS sorted refuse and recycling into the same 91 material categories.

Based on the structure of the studies, four comparisons of the results from the residential sector can be made:

1. The results of the Single-Family component of the Seattle Refuse Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the two low density strata has been used.
2. The results of the Multi-Family component of the Seattle Refuse Study and the results of the High Density and Medium Density strata (High Density/High Income, High Density/Medium Income, Medium Density/High Income and Medium Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the four high and medium density strata has been used.
3. The results of the Single-Family component of the Seattle Recycling Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Annual Aggregated Recycling Across Seasons). The weighted average of the two low density strata has been used.
4. The results of the Multi-Family component of the Seattle Recycling Study and the results of the High Density and Medium Density strata (High Density/High Income, High Density/Medium Income, Medium Density/High Income and Medium Density/Medium Income) of the NYC WCS (Annual Aggregated Recycling). The weighted average of the four high and medium density strata has been used.

During the period of the Seattle Refuse Study (January 2002 to December 2002), approximately 142,910 tons of refuse were collected from Seattle residents. About 63 percent (89,942 tons) was collected from single-family residents and approximately 37 percent (52,969 tons) from multi-family residents. During the period of the Seattle Recycling Study (January 2005 to December 2005), approximately 83,200 tons of recyclables were collected from Seattle residents. About 79 percent (65,400 tons) was collected from single-family residents and approximately 21 percent (17,800 tons) from multi-family residents.

During the period of the NYC WCS (September 2004 to September 2005) approximately 2,811,524 tons of refuse and 603,000 tons of recycling were collected from New York City residents. About 26 percent (735,563 tons) of the refuse was collected from residents in the low density housing strata and approximately 72 percent (2,020,242 tons) was collected from residents in the high and medium housing density strata. About 29 percent (176,644 tons) of the recycling was collected from residents in the low density housing strata and approximately 71 percent (426,500 tons) was collected from residents in the high and medium housing density strata. ${ }^{11}$

9.8.2 Adjustments to the Studies and Study Results

Different material groups and categories were used in the two Seattle Studies and the NYC WCS. The material groups and categories used in the studies have been adjusted to accomplish the comparison. Table 1-249A compares the Seattle Refuse Study's overall residential results and the NYC WCS citywide refuse results, in terms of material groups and shows the adjustments made to each group.

Because the Seattle Recycling Study did not report the glass and commingled streams of recycling separately, the results of the Seattle Recycling Study have been compared with the NYC WCS aggregated recycling steam (Paper and MGP). Again, different material groups and categories were used in the NYC WCS and in the Seattle Recycling Study. The differences in the materials groups and categories used in the two studies have been adjusted to accomplish the comparison of the results. Table 1-249B compares the results of the Seattle Recycling Study and the NYC WCS in terms of material groups and shows the adjustments made to each group.

[^9]Table 1-249A
Composition by Material Groups in the NYC WCS and the Seattle Study
Refuse

$\begin{gathered} \text { NYC WCS } \\ \text { Material Groups } \end{gathered}$	Seattle Study Material Groups	Adjustments to Material Groups	NYC WCS Single-Family (1)	Seattle Single-Family (2)	NYC WCS Multi-Family (3)	Seattle Multi-Family (4)
Paper	Paper	None	20.7\%	21.2\%	24.3\%	25.0\%
Plastic	Plastics	None	12.5\%	10.1\%	15.6\%	8.5\%
Glass	Glass	None	1.6\%	3.4\%	3.0\%	4.6\%
Metal	Metal	None	3.5\%	3.6\%	3.7\%	4.3\%
Organics	Organics	(5)	50.5\%	55.8\%	45.8\%	46.2\%
Appliances \& Electronics		(6)	1.5\%	0.6\%	1.3\%	1.3\%
C\&D	CDL Wastes	None	8.5\%	3.9\%	5.5\%	8.2\%
Miscellaneous Inorganics		(7)	1.0\%	0.8\%	0.6\%	1.2\%
HHW	Hazardous Wastes	None	0.2\%	0.3\%	0.3\%	0.4\%
	Other Materials (8)					
Total			99.9\%	99.7\%	100.0\%	99.7\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Single-Family (January - December 2002); (Table 4-4, page 18;
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Multi-Family (January - December 2002); (Table 4-5, page 19)
(5) Several categories in the "Organics" group of the NYC WCS, such as "Textiles/Clothing", and Furniture" are taken from the "Other Materials" group from the Seattle Study
(6) The "Appliances \& Electronics" group in the NYC WCS is included in the "Other Materials" group from the Seattle Study
(7) The "Miscellaneous Inorganics" group in the NYC WCS are included in the "Other Materials" group from the Seattle Study
(8) The categories in the "Other Materials" group of the Seattle Study are included in the "Organics", "Appliances \& Electronics", and "Miscellaneous Inorganics" groups of the NYC WCS

Table 1-249B
Composition by Material Groups in the NYC WCS and the Seattle Study Recycling

NYC WCS Material Groups	Seattle Study Material Groups	Adjustments to Material Groups	NYC WCS Single-Family (Seattle Single-Family (2)	NYC WCS Multi-Family (3)	Seattle Multi-Family (4)
Paper	Paper	None	58.5\%	76.0\%	57.9\%	74.7\%
Plastic	Plastics	None	10.9\%	2.4\%	10.7\%	2.2\%
Glass	Glass	(5)	13.1\%	15.7\%	13.2\%	16.7\%
	Recyclable Glass	(5)		2.3\%		2.1\%
Metal	Metal	None	12.2\%	1.6\%	11.9\%	1.7\%
Organics	Organics	(6)	1.8\%		1.7\%	
Appliances \& Electronics		(6)	2.8\%		3.9\%	
C\&D	CDL Wastes	(6)	0.1\%		0.4\%	
Miscellaneous Inorganics		(6)	0.3\%		0.2\%	
HHW	Hazardous Wastes	(6)	0.2\%		0.1\%	
	Contaminants	(6)		2.0\%		2.6\%
Total			100.0\%	100.0\%	100.0\%	100.0\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of low density strata
(2) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Single-Family" (January 2005 - December 2005); (Table 4-8, page 15)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of high and medium density strata (4) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Multifamily" (January 2005 - December 2005); (Table 4-9, page 16)
(5) The Seattle Recycling Study divides glass into two material groups: (1) Glass and (2) Recyclable Glass; The NYC WCS includes all glass in a single material group
(6) The Seattle Recycling Study has a single material group, "Contaminants" that includes the following material groups in the NYC WCS: Organics, Appliances \& Electronics, C\&D,

Miscellaneous Inorganics, and HHW

Similar adjustments were necessary to make the comparisons in the material categories. Table 1-250A compares the material categories in the NYC WCS and the Seattle Refuse Study and shows the adjustments that were made. Table 1-250B compares the material categories in the NYC WCS and the Seattle Recycling Study and shows the adjustments that were made.

Table 1-250A

Table 1-250A

Table 1-250A

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Single-Family (January - December 2002); (Table 4-4, page 18)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Multi-Family (January - December 2002); (Table 4-5, page 19)

Table 1-250B
Material Categories in the NYC WCS and the Seattle Study

Table 1-250B

Material Categories in the NYC WCS and the Seattle Study
Recycling

Table 1-250B

Material Group	Recycling Subindicator (1)	NYC WCS Material Category	Seattle Recycling Material Category	Adjustment to Material Category	$\begin{gathered} \text { NYC WCS } \\ \text { Single-Family (2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Seattle } \\ \text { Single-Family (3) } \\ \hline \end{gathered}$	NYC WCS Multi-Family (4)	Seattle Multi-Family (5)
HHW	NR	Oil Filters	Other Non-Re cyclables	The "Other Non-Recyclables" category in the Seattle Recycling Study includes all HHW categories in the NYC WCS	0.0\%		0.0\%	
HHW	NR	Antifreeze	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Wet-Cell Batteries	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Gasoline/Kerosene/Motor OillDiesel Fuel	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	LatexWater-based Paint/Adhesives/Glues	Other Non-Re cyclables		0.1\%		0.1\%	
HHW	NR	Oil-based Paint/Adhesives/Glues	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Pesticides/Herbicides	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Dry-Cell Batteries	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Fluorescent Tubes	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Mercury Laden Wastes	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Compressed Gas Cylinders/Fire Extinguisher	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Home Medical Products	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR	Other Potentially Harmful Wastes	Other Non-Re cyclables		0.0\%		0.0\%	
HHW	NR				0.1\%	0.0\%	0.2\%	0.0\%
TOTAL					100.0\%	100.0\%	100.0\%	100.0\%

Figures may not add due to rounding
(1) The abbreviations used for the Recycling Subindicator indicate: ("R") those materials which are designated for recycling under New York City's curbside recycling program, (PR) those materials for which markets exist and which could be adde ("NR") those materials that are not designated for recycling under New York City's curbside recycling program because established or emerging markets do not presently exist.
(2) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of low density strata
(3) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Single-Family" (January 2005 - December 2005); (Table 4-8, page 15)
(4) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of high and medium density strata
(5) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Multifamily" (January 2005 - December 2005); (Table 4-9, page 16)

9.8.3 Most Prevalent Materials

Based on the results of the Seattle Refuse Study and the NYC WCS, the most prevalent materials in the refuse stream are shown in Table 1-251A. Based on the results of the Seattle Recycling Study and the NYC WCS, the most prevalent materials in the residential recycling streams are shown in Table 1-251B.

Table 1-251A
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Seattle Study

Material	NYC WCS Single-Family (1)	Material	Seattle Single-Family (2)	Material	NYC WCS Multi-Family (3)	Material	Seattle Multi-Family (4)
Food	18.0\%	Food	35.8\%	Food	22.6\%	Food	28.1\%
Leaves and Grass	9.5\%	Compostable/Soiled Paper	7.9\%	Mixed Low Grade Paper	8.8\%	Mixed Low Grade Paper	6.6\%
Mixed Low Grade Paper	7.2\%	Animal By-Products	6.1\%	Remainder/Composite Paper	6.6\%	Compostable/Soiled Paper	5.4\%
Compostable/Soiled/Waxed Paper	6.8\%	Disposable Diapers	5.4\%	Other Film	5.8\%	Newspaper	4.2\%
Other Film	4.3\%	Mixed Low Grade Paper	4.9\%	Fines	4.5\%	Unwaxed OCC/Kraft Paper	4.1\%
Fines	3.9\%	Uncoated Corrugated Cardboard	2.5\%	Newspaper	4.1\%	Animal By-Products	4.1\%
Diapers/Other Sanitary Products	3.6\%	Plastic Film	2.4\%	Diapers/Other Sanitary Products	4.0\%	Textiles/Clothing	3.0\%
Newspaper	2.6\%	Newspaper	2.2\%	Plastic Bags: Shopping Bags	3.5\%	Carpet/Upholstery	2.9\%
Textiles: Clothing	2.6\%	Leaves and Grass	2.0\%	Textiles: Clothing	3.2\%	Leaves and Grass	2.8\%
Treated Wood	2.6\%	Textiles/Clothing	2.0\%	Leaves and Grass	2.0\%	Disposable Diapers	2.5\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Single-Family (January - December 2002); (Table 4-4, page 18)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) 2002 Residential Waste Stream Composition Study; Seattle Public Utilities; 2003; "Composition by Weight - Multi-Family (January - December 2002); (Table 4-5, page 19)

Table 1-251B
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Seattle Study
Recycling

Material	NYC WCS Single-Family (1)	Material	Seattle Single-Family (2)	Material	NYC WCS Multi-Family (3)	Material	Seattle Multi-Family (4)
Newspaper	24.6\%	Newsprint	34.0\%	Newspaper	23.0\%	Newsprint	29.4\%
Mixed Low Grade Paper	19.1\%	Mixed Low Grade Paper	24.5\%	Mixed Low Grade Paper	17.5\%	Mixed Low Grade Paper	22.0\%
Unwaxed OCC/Kraft Paper	6.9\%	Unwaxed OCC/Kraft Paper	14.7\%	Unwaxed OCC/Kraft Paper	9.5\%	Unwaxed OCC/Kraft Paper	19.7\%
Mixed Cullet	5.8\%	Green Glass Bottles	5.8\%	Mixed Cullet	7.9\%	Green Glass Bottles	6.1\%
Other Ferrous	5.6\%	Brown Glass Bottles	4.1\%	Other Ferrous	5.8\%	Brown Glass Bottles	4.3\%
Clear Container Glass	4.6\%	Clear Glass Bottles	3.3\%	Phone Books	3.1\%	Phone Books	3.3\%
Tin Food Cans	3.4\%	Phone Books	2.5\%	Tin Food Cans	3.0\%	Clear Glass Bottles	3.2\%
PET Bottles	3.3\%	Recyclable Glass (Commingled)	2.3\%	Ferrous Appliances	2.9\%	Mixed Cullet	2.7\%
Ferrous Appliances	2.1\%	Mixed Cullet	2.3\%	Clear Container Glass	2.8\%	Recyclable Glass (Commingled)	2.1\%
Phone Books	2.0\%	Tin Food Cans	0.8\%	PET Bottles	2.4\%	Other Non-Recyclables	1.0\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of low density strata
(2) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Single-Family" (January 2005 - December 2005); (Table 4-8, page 15)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Aggregated Recycling (Paper and MGP)" (Volume 1, Section 1, Table 1-20) weighted average of high and medium density strata
(4) 2005 Residential Recycling Composition Study; Seattle Public Utilities; 2005; "Composition by Weight - Multifamily" (January 2005 - December 2005); (Table 4-9, page 16)

A summary comparison of the Seattle Refuse Study and the other refuse studies is presented Section 9.2.

From the comparison of the Seattle Recycling Study and the NYC WCS, the following conclusions can be drawn:

- In both studies, paper accounts for more than half the recycling (by weight) for both singlefamily and multi-family households.
- The percentage of paper collected in recycling from Seattle residents is significantly higher than the percentage of paper collected in recycling from New York City residents.
- Glass accounts for approximately the same percentage of the recycling streams in both studies.
- The composition of New York City's recyclable materials has a higher percentage of metal and plastic than Seattle's recyclable materials.
- The composition of Seattle's recyclable materials has a significantly higher percentage of paper than New York City's recyclable materials.
- Approximately 4.3 percent of the recycling collected from single-family households and 4.7 percent of the recycling collected from multi-family households in Seattle residents consisted of contaminants, including non-conforming glass in the glass compartment, and non-conforming paper, metal, plastic and other non-recyclables and recyclable glass in the in the commingled container.
- Approximately 9.5 percent of the recycling collected from households in New York City's low density strata and 10.1 percent of the recycling collected from New York City's high density and medium density households consisted of materials which were not designated for recycling under the City's current curbside recycling program.

9.9 Characterization of Municipal Solid Waste for Alameda County, California

9.9.1 Introduction

The "2000 Solid Waste Characterization Study" (the "Alameda County Study") was carried out by R.W. Beck, Inc. for the Alameda County Waste Management Authority ("ACWMA") in 2000. The objectives of the Alameda County Study were to "Determine the composition of the County's aggregate solid waste stream..., compare the results of the 2000 Study with the results of those (studies) from 1995 and 1990...". The Alameda County Study analyzed both SingleFamily residential waste and Multi-Family residential waste. Geographically, the Alameda Study sampled waste from 17 jurisdictions within the County, including 14 incorporated municipalities, two Sanitation Districts, and the unincorporated area of the County. These sectors and jurisdictions were selected to be consistent with the 1995 Study. A summary methodological comparison of the Alameda County Study and the NYC WCS is presented in Table 1-252.

Table 1-252
Methodological Comparison of the NYC WCS and the Alameda Study

(1) Actual data was not available; assumes an average sample weight of 250 lbs
(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The comparison in Table 1-252 shows some of the key methodological differences between the two studies.

- The Alameda County Study based its analysis on 17 geographic jurisdictions within the County. The NYC WCS based its analysis on eight housing density and income strata within the City, which accounted for virtually the entire population and geographic areas of the City.
- Although the Alameda County Study sampled and sorted over four seasons, seasonal results were not published. The NYC WCS studied waste over four seasons and reported the seasonal results.
- The Alameda County Study analyzed only the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The Alameda County Study acquired and hand-sorted 381 residential refuse samples and the NYC WCS acquired and hand-sorted 3,600 residential refuse samples.
- The Alameda County Study selected generator types and jurisdictions to be consistent with a 1995 Study. The NYC WCS selected the housing density and income strata for the WCS to be consistent with the 1989/1990 Study.

Both the Alameda County Study and the NYC WCS acquired samples at transfer stations. The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Alameda County Study and the NYC WCS. The Seattle Study sorted the refuse into 45 material categories and the NYC WCS sorted refuse and recycling into 91 material categories.

Based on the structure of the two studies, two comparisons of the results from the residential sector can be made:

1. The results of the Single-Family component of the Alameda County Study and the results from the Low Density strata (Low Density/High Income and Low Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the two low density strata has been used.
2. The results of the Multi-Family component of the Alameda County Study and the results of the High Density and Medium Density strata (High Density/High Income, High Density/Medium Income, Medium Density/High Income and Medium Density/Medium Income) of the NYC WCS (Citywide Refuse Across Seasons). The weighted average of the four high and medium density strata has been used.

9.9.2 Adjustments to the Studies and Study Results

Different material groups and categories were used in the NYC WCS and in the Alameda
County Study. The material groups and categories used in the two studies have been adjusted to accomplish the comparison. Table 1-253 compares the NYC WCS and the Alameda County Study in terms of material groups and shows the adjustments made to the material groups.

Table 1-253

Composition by Material Groups in the NYC WCS and the Alameda County Study

NYC WCS Material Groups	Alameda County Material Groups	Adjustments to Material Groups	NYC WCS Single-Family (1)	Alameda County Single-Family (2)	NYC WCS Multi-Family (3)	Alameda County Multi-Family (4)
Paper	Paper	None	20.7\%	33.3\%	24.3\%	32.5\%
Plastic	Plastics	None	12.5\%	12.3\%	15.6\%	11.3\%
Glass	Glass	None	1.6\%	3.2\%	3.0\%	3.6\%
Metal	Metal	None	3.5\%	3.0\%	3.7\%	3.8\%
Organics	Other Organics	(5)	50.5\%	43.5\%	45.8\%	43.2\%
	Yard Waste					
Appliances \& Electronics		(6)	1.5\%	1.4\%	1.3\%	2.4\%
C\&D		(7)	8.5\%	1.1\%	5.5\%	0.8\%
Miscellaneous Inorganics		(8)	1.0\%	1.4\%	0.6\%	1.4\%
HHW	Hazardous Wastes	(9)	0.2\%	0.6\%	0.3\%	0.8\%
	Other Wastes (5)	(10)				
Total			99.9\%	99.8\%	100.0\%	99.8\%

Figures may not add due to rounding
(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Single-Family Aggregate Waste Composition and Disposal"; (Table 4-3, page 4-13),
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Multi-Family Aggregate Waste Composition and Disposal"; (Table 4-4, page 4-17),
(5) The "Organics" group in the NYC WCS combines the "Other Organics" and "Yard Waste" groups from the Alameda County Study
(6) The "Appliances \& Electronics" group in the NYC WCS combines categories from the "Metals" and "Other Wastes" groups from the Alameda County Study
(7) The "C\&D" group in the NYC WCS includes categories from the "Other Wastes" group from the Alameda County Study
(8) The "Miscellaneous Inorganics" group in the NYC WCS includes categories from the "Other Wastes" group from the Alameda County Study
(9) The "HHW" group in the NYC WCS is the single category "Hazardous Wastes" from the "Other Wastes" group from the Alameda County Study
(10) The "Other Wastes" group in the Alameda County Study includes categories that are included in various groups in the NYC WCS

Similar adjustments were necessary to make the comparisons in the material categories. Table 1-254 compares the materials categories in the two studies and shows the adjustments that were made.

Material Group	NYC WCS Material Category	Alameda County Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Alameda County Single-Family (2	NYC WCS Multi-Family (3)	Alameda County Multi-Family (4)
Paper	Newspaper	Newspaper	None	2.6\%	5.8\%	4.1\%	5.6\%
Paper	Plain OCC/Krat Paper	Uncoated Corrugated	None	1.0\%	2.6\%	1.2\%	3.6\%
Paper	High Grade Paper	High Grade Paper		0.5\%	1.9\%	0.7\%	2.6\%
Paper	Mixed Low Grade paper	Mixed Paper	The "Mixed Low Grade Paper" category in the NYC WCS combines two paper categories in the Alameda County Study	7.2\%	5.2\%	8.8\%	4.5\%
Paper	Mixed Low Grade paper	Magazines			2.5\%		2.3\%
Paper	Phone Books/Paperbacks	Phone Books	The "Phone Books/Paperbacks" category in the NYC WCS combines two paper categories in the Alameda County Study		0.4\%		0.4\%
Paper		Textbooks		0.4\%	0.3\%	0.5\%	0.3\%
Paper	Paper Bags	Other Paper	The "Other Paper" category in the Alameda County Study combines five paper categories in the NYC WCS	0.5\%	14.6\%	0.8\%	13.2\%
Paper	Polycoated Containers	Other Paper		0.3\%		0.5\%	
Paper	Compostable/Soiled/Waxed	Other Paper		6.8\%		6.6\%	
Paper	Single Use Cups, Plates	Other Paper		0.8\%		0.4\%	
Paper	Other Non-Recyclable Paper	Other Paper		0.7\%		0.7\%	
PAPER				20.7\%	33.3\%	24.3\%	32.5\%
Plastic	PET Bottles	PET Slim	None	0.6\%	0.6\%	1.0\%	0.6\%
Plastic	HDPE Bottles - Natural	HDPE Bottles - Natural	None	0.2\%	0.3\%	0.3\%	0.3\%
Plastic	HDPE Bottles - Colored	HDPE Bottles - Colored	None	0.2\%	0.4\%	0.3\%	0.3\%
Plastic	PET\#1 Tubs/Other Containers	PET Wide	None	0.0\%	0.1\%	0.0\%	0.0\%
Plastic	HDPE \#2 TubsIOther Containers	HDPE Wide	None	0.0\%	0.2\%	0.1\%	0.2\%
Plastic	\#3 PVC Bottles	Other Plastic Containers	The "Other Plastic Containers" category in the Alameda County Study combines ten plastic categories in the NYC WCS	0.0\%	0.5\%	0.0\%	0.5\%
Plastic	\#4 LDPE Botlles	Other Plastic Containers		0.0\%		0.0\%	
Plastic	\#5 PP Bottles	Other Plastic Containers		0.0\%		0.0\%	
Plastic	\#7 Other Botlles	Other Plastic Containers		0.1\%		0.1\%	
Plastic	\#3 PVC Tubs	Other Plastic Containers		0.0\%		0.0\%	
Plastic	\#4 LDPE Tubs	Other Plastic Containers		0.0\%		0.0\%	
Plastic	\#5 PP Tubs	Other Plastic Containers		0.2\%		0.2\%	
Plastic	\#7 Other Tubs	Other Plastic Containers		0.0\%		0.0\%	
Plastic	Soda Crates \& Bottle Carriers	Mixed Plastics	The "Mixed Plastics" category in the Alameda County Study combines five plastic categories in the NYC WCS	0.0\%	3.8\%	0.0\%	3.6\%
Plastic	Other PVC	Mixed Plastics		0.0\%		0.0\%	
Plastic	Rigid Polystyrene Containers	Other Plastic Containers	The "Other Plastic Containers" category in the Alameda County Study combines ten plastic categories in the NYC WCS	0.2\%		0.3\%	
Plastic	Expanded Polystyrene	Mixed Plastics	The "Mixed Plastics" category in the Alameda County Study combines five plastic categories in the NYC WCS	0.6\%		0.7\%	
Plastic	Other Rigid Containers	Other Plastic Containers	The "Other Plastic Containers" category in the Alameda County Study combines ten plastic categories in the NYC WCS	0.7\%		0.8\%	
Plastic	Plastics Bags - Shopping Bags	Film Plastics	The "Film Plastics" category in the Alameda County Study combines two plastic categories in the NYC WCS	2.3\%	6.4\%	3.5\%	5.8\%
Plastic	Other Film	Film Plastics		4.3\%		5.8\%	
Plastic	Single Use Cups, Plates	Mixed Plastics	The "Mixed Plastics" category in the Alameda County Study combines five plastic categories in the NYC WCS	0.8\%		0.6\%	
Plastic	Plastic Materials: Other	Mixed Plastics		2.2\%		1.8\%	
PLASTIC				12.5\%	12.3\%	15.6\%	11.3\%

Table 1-254

Material Categories in the NYC WCS and the Alameda County Study

Material Group	NYC WCS Material Category	Alameda County Material Category	Adjustment to Material Category	$\begin{gathered} \text { NYC WCS } \\ \text { Single-Family (1) } \\ \hline \end{gathered}$	Alameda County Single-Family (2)	NYC WCS Multi-Family (3)	$\begin{gathered} \text { Alameda County } \\ \text { Multi-Family (4) } \\ \hline \end{gathered}$
Glass	Clear Container Glass	CRV Glass	The "CVR Glass" category in the Alameda County Study combines three glass categories in the NYC WCS		1.3\%		1.7\%
Glass	Clear Container Glass	Other Recyclable Glass - Clear	The "Clear Container Glass" category in the NYC WCS combines two glass categories in the Alameda County Study	0.8\%	1.0\%	1.3\%	1.0\%
Glass	Green Container Glass	CRV Glass	The "CVR Glass" category in the Alameda County Study combines three glass categories in the NYC WCS				
Glass	Green Container Glass	Other Recyclable Glass - Colored	The "Green Container Glass" category in the NYC WCS combines two glass categories in the Alameda County Study	0.2\%	0.5\%	0.4\%	0.6\%
Glass	Brown Container Glass	CRV Glass	The "CVR Glass" category in the Alameda County Study combines three glass categories in the NYC WCS				
Glass	Brown Container Glass	Other Recyclable Glass - Colored	The "Non-Recyclable Glass - Colored" category in the Alameda County Study combines two glass categories in the NYC WCS	0.1\%		0.3\%	
Glass	Mixed Cullet	Other Non-Recyclable Glass		0.3\%		0.7\%	
Glass	Other Container Glass	Other Non-Recyclable Glass	The "Other Non-Recyclable Glass" category in the	0.0\%		0.0\%	
Glass	Other Glass	Other Non-Recyclable Glass	categories in the NYC WCS	0.2\%	0.4\%	0.2\%	0.3\%
GLASS				1.6\%	3.2\%	3.0\%	3.6\%
Metal	Aluminum Cans	Aluminum Cans	None	0.1\%	0.3\%	0.2\%	0.4\%
Metal	Aluminum FoillContainers	Other Non-Ferrous Metal	The "Other Non-Ferrous Metas" category in the	0.5\%		0.6\%	
Metal	Other Aluminum	Other Non-Ferrous Metal	Alameda County Study combines three metals	0.1\%		0.0\%	
Metal	Non-Ferrous: Other	Other Non-Ferrous Metal	categories in the NYC WCS	0.2\%	0.6\%	0.1\%	0.7\%
Metal	Tin Food Cans	Steel Food and Beverage Cans		0.5\%		1.0\%	
Metal	Empty Aerosol Cans	Steel Food and Beverage Cans	Alameda County Study combines two metals categories in the NYC WCS	0.1\%	1.1\%	0.1\%	0.9\%
Metal	Ferrous: Other	Other Ferrous Metals	The "Other Ferrous Metals" category in the Alameda	1.6\%		1.1\%	
Metal	Mixed Metals	Other Ferrous Metals	County Study combines two metals categories in the NYC WCS	0.5\%	1.0\%	0.5\%	1.8\%
METAL				3.5\%	3.0\%	3.7\%	3.8\%
Organics	Leaves and Grass	Leaves and Grass from "Yard Waste"	None	9.5\%	3.3\%	2.0\%	4.7\%
Organics	Prunings	Prunings and Trimmings from "Yard Waste"	None	2.3\%	1.4\%	0.5\%	1.8\%
Organics	Stumps \& Limbs	Branches \& Stumps From "Yard Waste"	None	0.5\%	0.4\%	0.1\%	0.5\%
Organics	Food	Food Waste	None	18.0\%	23.5\%	22.6\%	20.9\%
Organics	Wood Furniture/Furniture Pieces	Wood - Painted	The "Wood - Painted" category from the Alameda County Study combines two categories in the NYC WCS	1.7\%	0.9\%	1.3\%	1.3\%
Organics	Non-C\&D untreated wood	Wood - Unpainted	The "Wood - Unpainted" category from the Alameda County Study combines two categories in the NYC WCS	0.2\%	0.9\%	0.2\%	2.0\%
Organics	Non-Clothing Texilies	Textiles and Leather	'Texiles and Leather" category in the Alameda	1.5\%		1.7\%	
Organics	Texilies: Clothing	Texilies and Leather	County Study combines four organics categories in the NYC WCS	2.6\%	3.8\%	3.2\%	3.6\%
Organics	CarpetUpholstery	Carpet	None	2.0\%	0.9\%	1.3\%	1.1\%
Organics	Disposable Diapers/Sanitary Products	Diapers	None	3.6\%	4.5\%	4.0\%	3.5\%
Organics	Animal By-Products	Other Organic Waste	The "Other Organic Waste" category in the Alameda County Study combines four organics categories in the NYC WCS	1.4\%	3.2\%	1.3\%	2.8\%
Organics	Rubber Products	Other Rubber	"Rubber Products" category in the NYC WCS		0.6\%		0.6\%
Organics	Rubber Products	Tires	combines two organics categories in the Alameda County Study	0.3\%	0.1\%	0.3\%	0.4\%
Organics	Shoes	Textiles and Leather	The "Textiles and Leather" category in the Alameda	0.6\%		0.8\%	
Organics	Other Leather Products	Texilies and Leather	County Study combines four organics categories in the NYC WCS	0.1\%		0.1\%	
Organics	Fines	Other Organic Waste	The "Other Organic Waste" category in the Alameda	3.9\%		4.5\%	
Organics	Upholstered or Other Organic Furniture	Other Organic Waste	County Study combines four orgarics categories in	1.0\%		1.1\%	
Organics	Miscellaneous Organics	Other Organic Waste	the NYC WCS	1.2\%		0.8\%	
Organics				50.5\%	43.5\%	45.8\%	43.2\%

Table 1-254

Material Categories in the NYC WCS and the Alameda County Study

Material Group	$\begin{gathered} \text { NYC WCS } \\ \text { Material Category } \\ \hline \end{gathered}$	Alameda County Material Category	Adjustment to Material Category	NYC WCS Single-Family (1)	Alameda County Single-Family (2)	$\begin{gathered} \text { NYC WCS } \\ \text { Multi-Family (3) } \\ \hline \end{gathered}$	Alameda County Multi-Family (4)
Appliances/Elec.	Appliances: Ferrous	Composite Bulk liems from "Other Waste"	None	0.5\%	0.4\%	0.3\%	1.3\%
Appliances/Elec.	Appliances: Non-Ferrous	White Goods from "Metals"		0.0\%		0.0\%	
Appliances/Elec.	Appliances: Plastics	White Goods from "Metals"	The "White Goods" category from the "Metals" group in the Alameda Study combines two categories in the NYC WCS	0.3\%	0.1\%	0.2\%	0.0\%
Appliances/Elec.	AudioVisual: Cell Phones	Brown Goods from "Other Waste"		0.0\%		0.0\%	
Appliances/Elec.	AudioVVisual: Other	Brown Goods from "Other Waste"		0.3\%		0.3\%	
Appliances/Elec.	Computer Monitors	Brown Goods from "Other Waste"	The "Brown Goods" category from the "Other	0.1\%		0.1\%	
Appliances/Elec.	Televisions	Brown Goods from "Other Waste"	Materials" group in the Alameda Study combines five	0.2\%		0.1\%	
Appliances/Elec.	Other Computer Equipment	Brown Goods from "Other Waste"	categories in the NYC WCS	0.1\%	0.9\%	0.2\%	1.1\%
Appliances/Elec.				1.5\%	1.4\%	1.3\%	2.4\%
C\&D	Untreated dimension lumber	Wood - Unpainted	The "Wood - Unpainted" category from the Alameda County Study combines two categories in the NYC County Study combines two categories in the NYC WCS	1.4\%		0.5\%	
C \& D	Treated Wood	Wood - Painted	The "Wood - Painted" category from the Alameda County Study combines two categories in the NYC WCS	2.6\%		1.7\%	
C\& D	Gypsum Scrap	Gypsum Wallboard - Painted	The "Gypsum Scrap" category from the NYC WCS		0.2\%		0.1\%
C\& D	Gypsum Scrap	Gypsum Wallboard - Unpainted	combines two C\&D categories in the Alameda County Study	1.2\%	0.1\%	1.1\%	0.1\%
			The "Crushable Iners" category from the Alameda County Study combines two categories in the NYC WCS				
C\&D	Concrete/Rock/Bricks	Crushable Inerts	WCS	0.9\%	0.7\%	0.8\%	0.6\%
C\&D	Other C\&D Debris	Asphalt Roofing		2.4\%	0.1\%	1.4\%	0.0\%
C\&D				8.5\%	1.1\%	5.5\%	0.8\%
			The "Crushable Inerts" category from the Alameda County Study combines two categories in the NYC				
Misc.Inorganics	Ceramics	Crushable Inerts	WCS	0.4\%		0.2\%	
Misc.Inorganics	Miscellaneous Inorganics	Other Inerts	None	0.6\%	1.4\%	0.4\%	1.4\%
Misc.IIorganics			The "Hazardous Waste " category in the Alameda Study combines thirteen HHW categories in the NYC WCS	1.0\%	1.4\%	0.6\%	1.4\%
HHW	Oil Filters	Hazardous Waste		0.0\%		0.0\%	
HHW	Antifreeze	Hazardous Waste		0.0\%		0.0\%	
HHW	Wet-Cell Batteries	Hazardous Waste		0.0\%		0.0\%	
HHW	Gasoline/Kerosene/MMotor OillDiesel Fuel	Hazardous Waste		0.0\%		0.0\%	
HHW	LatexWater-based Paint/Adhesives/Glues	Hazardous Waste		0.1\%		0.0\%	
HHW	Oil-based Paint/Adhesives/Gues	Hazardous Waste		0.0\%		0.0\%	
HHW	Pesticides/Herbicides	Hazardous Waste		0.0\%		0.0\%	
HHW	Dry-Cell Batteries	Hazardous Waste		0.1\%		0.1\%	
HHW	Fluorescent Tubes	Hazardous Waste		0.0\%		0.0\%	
HHW	Mercury Laden Wastes	Hazardous Waste		0.0\%		0.0\%	
HHW	Compressed Gas Cylinders/Fire Extinguisher	Hazardous Waste		0.0\%		0.0\%	
HHW	Home Medical Products	Hazardous Waste		0.0\%		0.1\%	
HHW	Other Potentially Harmíl Wastes	Hazardous Waste		0.0\%	0.6\%	0.0\%	0.8\%
HHW				0.2\% ${ }^{9.9 \%}$	0.6\%	0.3\%	
TOTAL				99.9\%	99.8\%	100.0\%	99.8\%

Figures may not add due to rounding
NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Single-Family Aggregate Waste Composition and Disposal"; (Table 4-3, page 4-13) (3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Multi-Family Aggregate Waste Composition and Disposal"; (Table 4-4, page 4-17)

9.9.3 Most Prevalent Materials

Based on the results of the Alameda County Study and the NYC WCS, the most prevalent materials in the residential refuse stream are shown in Table 1-255.

Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Alameda County Study

Material	NYC WCS Single-Family (1)	Material	Alameda County Single-Family (2)	Material	NYC WCS Multi-Family (3)	Material	Alameda County Multi-Family (4)
Food	18.0\%	Food	23.5\%	Food	22.6\%	Food	20.9\%
Leaves and Grass	9.5\%	Other Paper	14.6\%	Mixed Low Grade Paper	8.8\%	Other Paper	13.2\%
Mixed Low Grade Paper	7.2\%	Film Plastics	6.4\%	Remainder/Composite Paper	6.6\%	Film Plastics	5.8\%
Compostable/Soiled/Waxed Paper	6.8\%	Newspaper	5.8\%	Other Film	5.8\%	Newspaper	5.6\%
Other Film	4.3\%	Mixed Paper	5.2\%	Fines	4.5\%	Leaves and Grass	4.7\%
Fines	3.9\%	Diapers	4.5\%	Newspaper	4.1\%	Mixed Paper	4.5\%
Diapers/Other Sanitary Products	3.6\%	Textiles and Leather	3.8\%	Diapers/Other Sanitary Products	4.0\%	Uncoated Corrugated	3.8\%
Newspaper	2.6\%	Mixed Plastics	3.8\%	Plastic Bags: Shopping Bags	3.5\%	Textiles and Leather	3.6\%
Textiles: Clothing	2.6\%	Leaves and Grass	3.3\%	Textiles: Clothing	3.2\%	Mixed Plastics	3.6\%
Treated Wood	2.6\%	Other Organic Waste	3.2\%	Leaves and Grass	2.0\%	Diapers	3.5\%

(1) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of low density strata
(2) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Single-Family Aggregate Waste Composition and Disposal"; (Table 4-3, page 4-13)
(3) NYC WCS "Housing Density and Income Details, Annual Waste Characterization, Refuse" (Volume 1, Section 1, Table 1-17) weighted average of high and medium density strata
(4) 2000 Solid Waste Characterization Study; Alameda County Waste Management Authority; 2000; "Multi-Family Aggregate Waste Composition and Disposal"; (Table 4-4, page 4-17)

9.10 Characterization of Municipal Solid Waste for the State of Pennsylvania

9.10.1 Introduction

The "Statewide Waste Composition Study" (the "Pennsylvania Study") was carried out by R. W. Beck, Inc. for the Pennsylvania Department of Environmental Protection in 2001/2002. The objective of the Pennsylvania Study was to "better understand the composition of the waste being disposed in Pennsylvania". ${ }^{12}$ The Pennsylvania Study considered the composition of the waste in six regions of the State, as well as the aggregate composition for the State. It focused on the State's disposed waste stream.

Although the Pennsylvania Study refers to a "series of recycling composition sorts at material recovery facilities (MRFs) across the State ${ }^{13 "}$, these studies were highly focused on specific MRFs, each one, in effect a case study. Because the data from these studies were not consistent with the recycling composition results of the NYC WCS, a comparison of the two studies would not be appropriate.

A summary methodological comparison of the Pennsylvania Study and the NYC WCS is presented in Table 1-256.

[^10]
Table 1-256

Methodological Comparison of the NYC WCS and the Pennsylvania Study

	NYC WCS	Pennsylvania Study
Date of Study	2004/2005	2000/2001
Population Studied		
Description of Population	Residential population of New York City	Residential population of the State of Pennsylvania
Number of Population	8,008,278	12,281,054
Dwelling Types Represented	Single-family, two + family houses; apartment buildings for WCS; for MUS apartment buildings	Single-family and multifamily residences (reported in aggregate as Residential)
Geographic Areas Studied	New York City (five boroughs), using US census tract as geographical unit	State of Pennsylvania (six regions)
Residential Components of Study	1) Single-Season Snapshot (PWCS); Refuse, Paper, MGP, Waste,	Residential refuse
	2) Four Season and annual residential (WCS); Refuse, Paper, MGP, Aggregated Recycling, Waste	
	3) Multi-Unit Apartment Study; Refuse, Paper, MGP, Aggregated Recycling, Waste	
Number of Residential Samples (2)	Single -Season (PWCS) -- 400 samples (200 Refuse, 100 Paper, 100 MGP)	Residential - 630 samples hand-sorted (133 visually characterized)
	Curbside Residential (WCS) 3,200 samples (1,600 Refuse, 320 Paper, 1280 MGP)	
Total Residential Samples	3,600 samples	763 samples (630 samples hand-sorted, 133 visually characterized)
Total Tons Sorted	329 tons	79 tons hand-sorted (1)
Seasonality Studied	Yes, four seasons as well as aggregated into annual results (WCS)	Sampling took place over four seasons, but seasonal results were not developed
Sample Size	200 lbs to 300 lbs for Refuse samples; 100 lbs to 150 lbs for Recycling Sampl;es	200 lbs to 250 lbs
Method of Random Selection	For the WCS, all NYC census tracts characterized by housing density and income strata; Collection routes serving a single strata were identified and vehicles targeted for sampling were randomly selected from these routes. For PWCS, collection routes were randomly selected by Borough. In both studies, samples were randomly selected from tipped loads.	Sampling sites (landills and transfer stations) selected in each of the six regions. At each site a list of haulers, including the origin and type of waste, was provided. Target vehicles were randonly selected for each generator type. Samples were randomly selected from tipped loads.
Streams Characterized	Residential Refuse, Paper, MGP, Aggregated Recycling, Waste,	Refuse
Material Groups and Material Categories	Nine material groups; 91 material categories	Six material groups; 37 material categories
Specific Areas of Study		
Housing Density and Income Reusability	Yes, eight housing density and income strata	No
	Yes, through product classification	No
Percentage of Waste Designated for Recycling	Yes	No
Container Deposit	Yes, by deposit, non-deposit, potential deposit	No
Container Size	Yes, single-serve (<20 oz.) and multi-service (>21 oz)	No
Generation	Yes, per household and per capita	No
Presentation of Results		
Material Composition Percentages	Yes	Yes
Material Composition Tonnages	Yes	Yes
Other	Means with Confidence Intervals	Means with Confidence Intervals
	Regression analysis using DSNY collection tonnages to estimate strata waste generation	
	Regression analysis for MUS to identify building characteristics associated with successful recycling	

(1) Actual data was not available; assumes an average sample weight of 250 lbs

(2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

The comparison in Table 1-256 shows some of the key methodological differences between the two studies.

- The Pennsylvania Study examined waste from six regions in the State of Pennsylvania. The NYC WCS analyzed waste from the City of New York, including the City's five borough in the PWCS and eight housing density and income strata for the WCS.
- Although the Pennsylvania Study sampled and sorted over four seasons, seasonal results were not published. The NYC WCS studied waste over four seasons and reported the seasonal and annual results.
- The Pennsylvania Study analyzed only the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The Pennsylvania Study acquired and hand-sorted 763 residential refuse samples and the NYC WCS acquired and hand-sorted 3,600 residential refuse samples.
- The Pennsylvania Study used a list of incoming vehicles provided at each sampling site to randomly select vehicles targeted for sampling. Target vehicles were classified on the basis of the origin of the waste and the generator type. The NYC WCS classified each of the census tracts into one of eight housing density and income strata. Collection routes serving a single stratum were identified and vehicles targeted for sampling were randomly selected from these routes.
- The Pennsylvania Study acquired and sorted samples at transfer stations or landfills across the State. The NYC WCS acquired samples at four transfer stations and sorted all samples at two marine transfer stations.

The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Pennsylvania Study and the NYC WCS. The Pennsylvania Study sorted the refuse into 37 material categories and the NYC WCS sorted refuse and recycling into 91 material categories.

Based on the structure and results of the two studies, a comparison of the aggregated residential results can be made. Although the Pennsylvania Study acquired samples from both singlefamily and multi-family residences, only the aggregated residential results were reported.

9.10.2 Adjustments to the Studies and Study Results

Different material groups and material categories were used in the NYC WCS and in the Pennsylvania Study. The material groups and categories in the two studies have been adjusted to accomplish the comparison. Table 1-257 compares the Pennsylvania Study and the NYC WCS in terms of material groups and shows the adjustments that were made to each group.

Table 1-257
Composition by Material Groups in the NYC WCS and the Pennsylvania Study

NYC WCS Material Groups	Pennsylvania Material Groups	Adjustments to Material Groups		NYC WCS Residential (1)		Pennsylvania Residential (2)
Paper	Paper	None	23.3%	28.6%		
Plastic	Plastics	None	14.8%	9.6%		
Glass	Glass	None	2.6%	3.5%		
Metal	Metal	None	3.7%	5.8%		
Organics	Organics	(3)	47.0%	36.8%		
Appliances \& Electronics		(4)	1.4%	1.5%		
C\&D		(5)	6.3%	11.3%		
Miscellaneous Inorganics	Inorganics	(6)	0.7%	2.6%		
HHW		(7)	0.3%	0.3%		
Total			$\mathbf{1 0 0 . 0 \%}$	100.0%		

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(2) Statewide Waste Composition Study; 2002; Pennsylvania Department of Environmental Protection; "Statewide Residential Aggregate Landfilled MSW Composition Detail"; (Table 3, page 4-15)
(3) Certain categories in the NYC WCS, such as "Carpet" and "Funiture" are included in the "Other Inorganics" group of the Pennsylvania Study
(4) The "Appliances \& Electronics" categories in the NYC WCS are included in the "Metal" and "Other Inorganics" groups of the Pennsylvania Study
(5) The "C\&D" categories in the NYC WCS are included in the "Other Inorganics" group of the Pennsylvania Study
(6) The "Miscellaneous Inorganics" categories in the NYC WCS are included in the "Other Inorganics" group of the Pennsylvania Study
(7) The "HHW" group in the NYC WCS is the single category "HHW" from the "Inorganics" group from the Pennsylvania Study

Similar adjustments were necessary to make the comparison of material categories. Table 1-258 compares the material categories in the NYC WCS and the Pennsylvania Study, shows the adjustments made to the categories, and compares the results.

Table 1-258
Material Categories in the NYC WCS and the Pennsylvania Study

Material Group	NYC WCS Material Category	Pennsylvania Study Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Pennsylvania Residential (2)
Paper	Newspaper	Newspaper	None	3.7\%	4.7\%
Paper	Plain OCC/Kraft Paper	Corrugated Cardboard	None	1.2\%	4.9\%
Paper	High Grade Paper	Office		0.7\%	2.2\%
Paper	Mixed Low Grade paper	Mixed Paper	The "Mixed Low Grade Paper" category in the NYC WCS combines two paper		4.4\%
Paper	Mixed Low Grade paper	Magazine/Glossy	categories in the Pennsylvania Study	8.4\%	2.6\%
Paper	Phone Books/Paperbacks	Mixed Paper	The "Mixed Paper" category in the Pennsylvania Study combines three paper	0.5\%	
Paper	Paper Bags	Mixed Paper	categories in the NYC WCS	0.7\%	
Paper	Polycoated Containers	Polycoated/Aseptic Containers	None	0.4\%	0.4\%
Paper	Compostable/Soiled/Waxed	Non-Recyclable Paper		6.7\%	
Paper	Single Use Cups, Plates	Non-Recyclable Paper	The "Non-Recyclable Paper" category in the Pennsylvania Study combines thres	0.5\%	
Paper	Other Non-Recyclable Paper	Non-Recyclable Paper	paper categories in the NYC WCS	0.7\%	9.4\%
PAPER				23.3\%	28.6\%
Plastic	PET Bottles	PET Botlles	None	0.9\%	0.9\%
Plastic	HDPE Botlles - Natural	HDPE Botles	The "HDPE Bottles" category in the Pennsylvania Study combines two plastic	0.3\%	
Plastic	HDPE Bottles - Colored	HDPE Bottles	categories in the NYC WCS	0.3\%	0.9\%
Plastic	PET \#1 Tubs/Other Containers	Other Rigid Plastic		0.0\%	
Plastic	HDPE \#2 Tubs/Other Containers	Other Rigid Plastic	The "Other Rigid Plastics" category in the Pennsylvania Study combines thirteen plastic categories in the NYC WCS, including the "Appliances: Plastic" category	0.1\%	2.8\%
Plastic	\#3 PVC Bottles	\#3-\#7 Bottles		0.0\%	
Plastic	\#4 LDPE Bottles	\#3-\#7 Bottles		0.0\%	
Plastic	\#5 PP Bottles	\#3-\#7 Bottles	The "\#3 - \#7 Bottles" category in the Pennsylvania Study combines four plastic	0.0\%	
Plastic	\#7 Other Botles	\#3-\#7 Bottles	categories in the NYC WCS	0.1\%	0.1\%
Plastic	\#3 PVC Tubs	Other Rigid Plastic		0.0\%	
Plastic	\#4 LDPE Tubs	Other Rigid Plastic		0.0\%	
Plastic	\#5 PP Tubs	Other Rigid Plastic		0.2\%	
Plastic	\#7 Other Tubs	Other Rigid Plastic		0.0\%	
Plastic	Soda Crates \& Bottle Carriers	Other Rigid Plastic		0.0\%	
Plastic	Other PVC	Other Rigid Plastic	The "Other Rigid Plastics" category in the Pennsylvania Study combines thirteen	0.0\%	
Plastic	Rigid Polystyrene Containers	Other Rigid Plastic	plastic categories in the NYC WCS, including the "Appliance: Plastic" category	0.3\%	
Plastic	Expanded Polystyrene	Expanded Polystyrene	None	0.6\%	0.6\%
Plastic	Other Rigid Containers	Other Rigid Plastic	The "Other Rigid Plastics" category in the Pennsylvania Study combines thirteen plastic categories in the NYC WCS, including the "Appliance: Plastic" category	0.8\%	
Plastic	Plastics Bags - Shopping Bags	Film Plastics	The "Film Plastics" category in the Pennsylvania Study combines two plastic	3.2\%	
Plastic	Other Film	Film Plastics	categories in the NYC WCS	5.4\%	4.3\%
Plastic	Single Use Cups, Plates	Other Rigid Plastic		0.6\%	
Plastic	Plastic Materials: Other	Other Rigid Plastic	The "Other Rigid Plastics" category in the Pennsylvania Study combines thirteen plastic categories in the NYC WCS, including the "Appliances: Plastic" category	1.9\%	
PLASTIC				14.8\%	9.6\%
Glass	Clear Container Glass	Clear Glass	None	1.2\%	1.7\%
Glass	Green Container Glass	Green Glass	None	0.3\%	0.4\%
Glass	Brown Container Glass	Amber Glass	None	0.3\%	0.9\%
Glass	Mixed Cullet	Other Non-Recyclable Glass	The "Non-Recyclable Glass" category in the Pennsylvania Study combines three glass categories in the NYC WCS	0.6\%	0.5\%
Glass	Other Container Glass	Other Non-Recyclable Glass		0.0\%	
Glass	Other Glass	Other Non-Recyclable Glass		0.2\%	
GLASS				2.6\%	3.5\%

Table 1-258

Material Categories in the NYC WCS and the Pennsylvania Study

Material Group	NYC WCS Material Category	Pennsylvania Study Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Pennsylvania Residential (2)
Metal	Aluminum Cans	Aluminum Cans	None	0.2\%	0.6\%
Metal	Aluminum Foil/Containers	Other Aluminum	The "Other Aluminum" category in the Pennsylvania Study combines two metals	0.6\%	
Metal	Other Aluminum	Other Aluminum	categories in the NYC WCS	0.0\%	0.5\%
Metal	Non-Ferrous: Other	Other Non-Ferrous	The "Other Non-Ferrous" category in the Pennsylvania Study combines two categories in the NYC WCS including the "Appliances: Non-Ferrous"	0.1\%	0.4\%
Metal	Tin Food Cans	Steel Cans	The "Steel Cans" category in the Pennsylvania Study combines two metals	0.8\%	
Metal	Empty Aerosol Cans	Steel Cans	categories in the NYC WCS	0.1\%	1.3\%
Metal	Ferrous: Other	Other Ferrous		1.3\%	
Metal	Mixed Metals	Other Ferrous Metals	The "Other Ferrous Metals" category in the Pennsylvania Study combines two metals categories in the NYC WCS, and the "Appliances: Ferrous" category	0.5\%	3.0\%
METAL				3.7\%	5.8\%
Organics	Leaves and Grass	Yard Waste - Grass	None	4.0\%	2.3\%
Organics	Prunings	Yard Waste - Other	The "Yard Waste - Other" category in the Pennsylvania Study combines two	0.9\%	
Organics	Stumps \& Limbs	Yard Waste - Other	organics categories in the NYC WCS	0.2\%	4.7\%
Organics	Food	Food Waste	None	21.4\%	11.4\%
Organics	Wood Furniture/Furniture Pieces	Furniture from "Inorganics"	None	1.4\%	1.6\%
Organics	Non-C\&D untreated wood	Wood - Unpainted	The "Wood - Unpainted" category from the Pennsylvania Study combines two categories in the NYC WCS	0.2\%	5.0\%
Organics	Non-Clothing Textiles	Textiles	The "Textiles" category in the Pennsylvania Study combines two organics	1.6\%	
Organics	Textiles: Clothing	Textiles	categories in the NYC WCS	3.0\%	4.2\%
Organics	Carpet/Upholstery	Carpet from "Inorganics"	None	1.5\%	1.8\%
Organics	Disposable Diapers/Sanitary Products	Diapers	None	3.9\%	2.5\%
Organics	Animal By-Products	Other Organics		1.3\%	
Organics	Rubber Products	Other Organics		0.3\%	
Organics	Shoes	Other Organics	The "Other Organics" category in the Pennsylvania Study combines six organics	0.7\%	
Organics	Other Leather Products	Other Organics	categories in the NYC WCS	0.1\%	2.1\%
Organics	Fines	Fines	None	4.3\%	1.2\%
Organics	Upholstered or Other Organic Furniture	Other Organics	The "Other Organics" category in the Pennsylvania Study combines two	1.1\%	
Organics	Miscellaneous Organics	Other Organics	organics categories in the NYC WCS	0.9\%	
Organics				47.0\%	36.8\%
Appliances/Elec.	Appliances: Ferrous	Other Ferrous from "Metals"	The "Other Ferrous" category in the Pennsylvania Study combines three categories in the NYC WCS	0.4\%	
Appliances/Elec.	Appliances: Non-Ferrous	Other Non-Ferrous from "Metals"	The "Other Non-Ferrous" category in the Pennsylvania Study combines two categories in the NYC WCS	0.0\%	
Appliances/Elec.	Appliances: Plastics	Other Rigid Plastics from "Plastics"	The "Other Rigid Plastics" category in the Pennsylvania Study combines thirteen categories in the NYC WCS	0.2\%	
Appliances/Elec.	Audio/Visual: Cell Phones	Electronics from "Inorganics"		0.0\%	
Appliances/Elec.	Audio/Visual: Other	Electronics from "Inorganics"		0.3\%	
Appliances/Elec.	Computer Monitors	Electronics from "Inorganics"		0.1\%	
Appliances/Elec.	Televisions	Electronics from "Inorganics"	The "Electronics" category from the "Inorganics" group in the Pennsylvania	0.1\%	
Appliances/Elec.	Other Computer Equipment	Electronics from "Inorganics"	Study combines five categories in the NYC WCS	0.2\%	1.5\%
Appliances/Elec.				1.4\%	1.5\%
C \& D	Untreated dimension lumber	Wood - Unpainted	The "Wood - Unpainted" category from the Pennsylvania Study combines two categories in the NYC WCS	0.8\%	
C\& D	Treated Wood	Wood - Painted	None	2.0\%	3.9\%
C \& D	Gypsum Scrap	Drywall	None	1.1\%	1.6\%
C \& D	Concrete/Rock/Bricks	Other C\&D	The "Other C\&D" category from the Pennsylvania Study combines two	0.8\%	
C \& D	Other C\&D Debris	Other C\&D	categories in the NYC WCS	1.7\%	5.8\%
C \& D				6.3\%	11.3\%

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (see Volume 1, Section 2, Table 1-28)
(2) Statewide Waste Composition Study; 2002; Pennsylvania Department of Environmental Protection; "Statewide Residential Aggregate Landfilled MSW Composition Detail"; (Table 3, page 4-15)

9.10.3 Most Prevalent Materials

Based on the results of the Pennsylvania Study and the NYC WCS, the most prevalent materials in the residential refuse streams are shown Table 1-259.

Table 1-259
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Pennsylvania Study

Material	NYC WCS Residential (1)	Mennsylvania Residential (2)	
Food	21.4%	Food	11.4%
Mixed Low Grade Paper	8.4%	Non-Recyclable Paper	9.4%
Compostable/Soiled/Waxed Paper	6.7%	Other C\&D	5.8%
Other Film	5.4%	Wood - Unpainted	5.0%
Fines	4.3%	Corrugated Cardboard	4.9%
Leaves \& Grass	4.0%	Newspaper	4.7%
Diapers/Other Sanitary Products	3.9%	Yard Waste - Other	4.7%
Newspaper	3.7%	Mixed Paper	4.4%
Plastic Bags - Shopping Bags	3.2%	Film Plastic	4.3%
Textiles: Clothing	3.0%	Textiles	4.2%

(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(2) Statewide Waste Composition Study; 2002; Pennsylvania Department of Environmental Protection; "Statewide Residential Aggregate Landfilled MSW Composition Detail"; (Table 3, page 4-15)

9.11 Characterization of Municipal Solid Waste for the State of Georgia

9.11.1 Introduction

The "Georgia Statewide Waste Characterization Study" (the "Georgia Study") was carried out by R.W. Beck, Inc. for the Georgia Department of Community Affairs in 2004/2005. The purpose of the Georgia Study was "to prepare information that can be used by cities and counties across Georgia to estimate the composition of their disposed municipal solid waste streams...."14 The Georgia Study developed composition estimates for disposed waste for each of Georgia's thirteen Regional Development Centers ("RDCs"). The estimates were developed for the residential and sectors, as well as for waste delivered to disposal sites by transfer trailer. A summary methodological comparison of the Georgia Study and the NYC WCS is presented in Table 1-260.

[^11]Table 1-260
Methodological Comparison of the NYC WCS and the Georgia Study

	NYC WCS	Georgia Study
Date of Study	2004/2005	2004/2005
Population Studied		
Description of Population	Residential population of New York City	Residential population of the State of Georgia
Number of Population	8,008,278	9,072,576
Dwelling Types Represented	Single-family, two + family houses; apartment buildings for WCS; for MUS apartment buildings	Single-family and multifamily residences (reported in aggregate as Residential)
Geographic Areas Studied	New York City (five boroughs), using US census tract as geographical unit	State of Georgia (thirteen Regional Development Centers)
Residential Components of Study	1) Single-Season Snapshot (PWCS); Refuse, Paper, MGP, Waste,	Residential refuse
	2) Four Season and annual residential (WCS); Refuse, Paper, MGP, Aggregated Recycling, Waste	
	3) Multi-Unit Apartment Study; Refuse, Paper, MGP, Aggregated Recycling, Waste	
Number of Residential Samples (2)	Single -Season (PWCS) -- 400 samples (200 Refuse, 100 Paper, 100 MGP)	Residential - 240 samples
	Curbside Residential (WCS) 3,200 samples (1,600 Refuse, 320 Paper, 1280 MGP)	
Total Residential Samples	3,600 samples	240 samples
Total Tons Sorted	329 tons	30 tons (1)
Seasonality Studied	Yes, four seasons as well as aggregated into annual results (WCS)	Sampling took place over four seasons, but seasonal results were not reported
Sample Size	200 lbs to 300 lbs for Refuse samples; 100 lbs to 150 lbs for Recycling Sampl;es	200 lbs to 250 lbs
Method of Random Selection	For the WCS, all NYC census tracts characterized by housing density and income strata; Collection routes serving a single strata were identified and vehicles targeted for sampling were randomly selected from these routes. For PWCS, collection routes were randomly selected by Borough. In both studies, samples were randomly selected from tipped loads.	Distribution of samples was based on tonnages disposed in each RDC. Trucks arriving at sampling/sorting sites were randomly selected in proportion to the number of samples targeted. Samples were randomly selected from tipped loads
Streams Characterized	Residential Refuse, Paper, MGP, Aggregated Recycling, Waste,	Refuse
Material Groups and Material Categories	Nine material groups; 91 material categories	Seven material groups; 39 material categories
Specific Areas of Study		
Housing Density and Income	Yes, eight housing density and income strata	No
Reusability	Yes, through product classification	No
Percentage of Waste Designated for Recycling	Yes	No
Container Deposit	Yes, by deposit, non-deposit, potential deposit	No
Container Size	Yes, single-serve (<24 oz.) and multi-serve (>24 oz)	No
Generation	Yes, per household and per capita	No
Presentation of Results		
Material Composition Percentages	Yes	Yes
Material Composition Tonnages	Yes	Yes
Other	Means with Confidence Intervals	Means with Confidence Intervals
	Regression analysis using DSNY collection tonnages to estimate strata waste generation	
	Regression analysis for MUS to identify building characteristics associated with successful recycing	

[^12]The comparison in Table 1-260 shows some of the key methodological differences between the two studies.

- The Georgia Study examined waste from the thirteen Regional Development Centers, which account for approximately 90 percent of the waste disposed in the State. The NYC WCS analyzed waste from New York City's five boroughs (in the PWCS) and eight housing density and income strata (in the WCS), which accounted for virtually all residential waste generated in the City.
- Although the Georgia Study sampled and sorted over four seasons, seasonal results were not published. The NYC WCS studied waste over four seasons and reported the seasonal results.
- The Georgia Study analyzed only the refuse stream. The NYC WCS analyzed Refuse, Paper, MGP, Aggregated Recycling (Paper and MGP), and Waste (Refuse and Recycling).
- The Georgia Study acquired and sorted 240 residential refuse samples and the NYC WCS acquired and sorted 3,600 residential refuse samples.
- The Georgia Study used a list of incoming vehicles provided at each sampling site to randomly select vehicles targeted for sampling, distributing the number of samples to the RDCs and generator sectors. Target vehicles were classified on the basis of the origin of the waste and the generator type. The NYC WCS classified each of the census tracts into one of eight housing density and income strata. Residential collection routes serving a single stratum were identified and vehicles targeted for sampling were randomly selected from these routes.
- The Georgia Study acquired and sorted samples at transfer stations or landfills across the State. The NYC WCS acquired samples at four transfer stations and sorted all samples at two marine transfer stations.

The procedures used to acquire random samples from tipped loads and sort the samples were virtually the same in both the Georgia Study and the NYC WCS. The Georgia Study sorted the refuse into 39 material categories and the NYC WCS sorted refuse and recycling into 91 material categories. Both studies tested sub-samples of waste for moisture.

Based on the structure and results of the two studies, a comparison of the aggregated residential results can be made. Although the Georgia Study acquired samples from both single-family and multi-family residences, only the aggregated residential results were reported.

9.11.2 Adjustments to the Studies and Study Results

Different material groups and categories were used in the NYC WCS and in the Georgia Study. The differences in the materials groups and categories used in the two studies have been adjusted to accomplish the comparison.

Table 1-261 compares the results of the Georgia Study and the NYC WCS in terms of material groups and shows the adjustments made to each group.

Table 1-261
Composition by Material Groups in the NYC WCS and the Georgia Study

NYC WCS Material Groups	Georgia Material Groups	Adjustments to Material Groups		NYC WCS Residential (1)	
Paper	Paper	None	23.3%	Georgia Residential (2)	
Plastic	Plastics	None	14.8%	16.1%	
Glass	Glass	None	2.6%	4.7%	
Metal	Metal	None	3.7%	5.0%	
Organics	Organics	(3)	47.0%	31.0%	
Appliances \& Electronics		(4)	1.4%	1.5%	
C\&D	C\&D	None	6.3%	2.8%	
Miscellaneous Inorganics	Inorganics	(5)	0.7%	0.9%	
HHW		(6)	0.3%	0.3%	
Total			$\mathbf{1 0 0 . 0 \%}$	$\mathbf{9 9 . 9 \%}$	

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(2) Georgia Statewide Waste Characterization Study; 2005; Georgia Department of Community Affairs; "Landfilled Aggregate MSW Composition by Generator Sector (Residential)"; (Table 4-3, page 4-10)
(3) The "Carpet/Upholstery" category in the NYC WCS is included in the "Inorganics" group of the Georgia Study
(4) The "Appliances \& Electronics" categories in the NYC WCS are included in the "Other Inorganics" group of the Georgia Study
(5) The "Miscellaneous Inorganics" categories in the NYC WCS are included in the "Inorganics" group of the Georgia Study
(6) The "HHW" categories in the NYC WCS is the single category "HHW" from the "Inorganics" group from the Georgia Study

Similar adjustments were necessary to make the comparisons in the material categories.
Table 1-262 compares the material categories in the NYC WCS and the Georgia Study and the adjustments that were made.

Table 1-262
Material Categories in the NYC WCS and the Georgia Study

Table 1-262
Material Categories in the NYC WCS and the Georgia Study

Material Group	NYC WCS Material Category	Georgia Study Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Georgia Residential (2)
Glass	Clear Container Glass	Clear Glass	None	1.2\%	2.4\%
Glass	Green Container Glass	Green Glass	None	0.3\%	0.5\%
Glass	Brown Container Glass	Amber Glass	None	0.3\%	1.4\%
Glass	Mixed Cullet	Other Glass	The "Other Glass" category in the Georgia Study combines three glass categories in the NYC WCS	0.6\%	0.4\%
Glass	Other Container Glass	Other Glass		0.0\%	
Glass	Other Glass	Other Glass		0.2\%	
GLASS				2.6\%	4.7\%
Metal	Aluminum Cans	Aluminum Cans	None	0.2\%	0.9\%
Metal	Aluminum Foil/Containers	Other Non-Ferrous	The "Other Non-Ferrous" category in the Georgia Study combines four categories in the NYC WCS including "Appliances: Non Ferrous"	0.6\%	
Metal	Other Aluminum	Other Non-Ferrous		0.0\%	
Metal	Non-Ferrous: Other	Other Non-Ferrous		0.1\%	0.7\%
Metal	Tin Food Cans	Steel Cans	None	0.8\%	1.7\%
Metal	Empty Aerosol Cans	Other Ferrous	The "Other Ferrous Metals" category in the Georgia Study combines four metals categories in the NYC WCS including "Appliances: Ferrous	0.1\%	
Metal	Ferrous: Other	Other Ferrous		1.3\%	1.7\%
METAL				3.7\%	5.0\%
Organics	Leaves and Grass	Yard Waste	The "Yard Waste" category in the Georgia Study combines three organics categories in the NYC WCS	4.0\%	2.1\%
Organics	Prunings	Yard Waste		0.9\%	
Organics	Stumps \& Limbs	Yard Waste		0.2\%	
Organics	Food	Food Waste	None	21.4\%	13.4\%
Organics	Wood Furniture/Furniture Pieces	Wood (non-C\&D)	The "Wood (non-C\&D)" category from the Georgia Study combines two categories in the NYC WCS	1.4\%	1.4\%
Organics	Non-C\&D untreated wood	Wood (non-C\&D)		0.2\%	
Organics	Non-Clothing Textiles	Textiles	The "Textiles" category in the Georgia Study combines two organics categories in the NYC WCS	1.6\%	
Organics	Textiles: Clothing	Textiles		3.0\%	5.1\%
Organics	Carpet/Upholstery	Carpet from "C\&D"	None	1.5\%	1.1\%
Organics	Disposable Diapers/Sanitary Products	Diapers	None	3.9\%	3.6\%
Organics	Animal By-Products	Other Organics	The "Other Organics" category in the Georgia Study combines five organics categories in the NYC WCS	1.3\%	1.3\%
Organics	Rubber Products	Tires	None	0.3\%	0.0\%
Organics	Shoes	Other Organics	The "Other Organics" category in the Georgia Study combinesfive organics categories in the NYC WCS	0.7\%	
Organics	Other Leather Products	Other Organics		0.1\%	
Organics	Fines	Fines	None	4.3\%	3.0\%
Organics	Upholstered or Other Organic Furniture	Other Organics	The "Other Organics" category in the Georgia Study combinesfive organics categories in the NYC WCS	1.1\%	
Organics	Miscellaneous Organics	Other Organics		0.9\%	
Organics				47.0\%	31.0\%

Table 1-262
Material Categories in the NYC WCS and the Georgia Study

Material Group	NYC WCS Material Category	Georgia Study Material Category	Adjustment to Material Category	$\begin{gathered} \text { NYC WCS } \\ \text { Residential (1) } \end{gathered}$	$\begin{gathered} \text { Georgia } \\ \text { Residential (2) } \end{gathered}$
Appliances/Elec.	Appliances: Ferrous	Other Ferrous from "Metals"	The "Other Ferrous" category in the Georgia Study combines four categories in the NYC WCS	0.4\%	
Appliances/Elec.	Appliances: Non-Ferrous	Other Non-Ferrous from "Metals"	The "Other Non-Ferrous" category in the Georgia Study combines four categories in the NYC WCS	0.0\%	
Appliances/Elec.	Appliances: Plastics	Other Rigid Plastics from "Plastics"	The "Other Rigid Plastics" category in the Georgia Study combines thirteen categories in the NYC WCS	0.2\%	
Appliances/Elec.	Audio/Visual: Cell Phones	Other Electronics from "Inorganics"		0.0\%	
Appliances/Elec.	Audio/Visual: Other	Other Electronics from "Inorganics"	the Georgia Study combines two categories in the NYC WCS	0.3\%	1.5\%
Appliances/Elec.	Computer Monitors	Computers from "Inorganics"	The "Computers" category in the "Inorganics" group of the Georgia Study combines two categories in the NYC WCS	0.1\%	0.0\%
Appliances/Elec.	Televisions	Televisions from "Inorganics"	None	0.1\%	0.0\%
Appliances/Elec.	Other Computer Equipment	Computers from "Inorganics"	The "Computers" category in the "Inorganics" group of the Georgia Study combines two categories in the NYC WCS	0.2\%	
Appliances/Elec.				1.4\%	1.5\%
C \& D	Untreated dimension lumber	Wood	The "Wood" category from the Georgia Study combines two	0.8\%	
C \& D	Treated Wood	Wood	categories in the NYC WCS	2.0\%	1.3\%
C \& D	Gypsum Scrap	Drywall	None	1.1\%	0.3\%
C \& D	Concrete/Rock/Bricks	Inerts	None	0.8\%	0.2\%
C \& D	Other C\&D Debris	Other C\&D	None	1.7\%	1.0\%
C \& D				6.3\%	2.8\%
Misc.Inorganics	Ceramics	Other Inorganics		0.3\%	
Misc.Inorganics	Miscellaneous Inorganics	Other Inorganics	The "Other Inorganics" category from the Georgia Study combines two categories in the NYC WCS	0.5\%	0.9\%
Misc.Inorganics				0.7\%	0.9\%

Table 1-262
Material Categories in the NYC WCS and the Georgia Study

Material Group	NYC WCS Material Category	Georgia Study Material Category	Adjustment to Material Category	NYC WCS Residential (1)	Georgia Residential (2)
HHW	Oil Filters	HHW	The "HHW " category in the Georgia Study combines thirteenHHW categories in the NYC WCS	0.0\%	
HHW	Antifreeze	HHW		0.0\%	
HHW	Wet-Cell Batteries	HHW		0.0\%	
HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	HHW		0.0\%	
HHW	Latex/Water-based Paint/Adhesives/Glues	HHW		0.1\%	
HHW	Oil-based Paint/Adhesives/Glues	HHW		0.0\%	
HHW	Pesticides/Herbicides	HHW		0.0\%	
HHW	Dry-Cell Batteries	HHW		0.1\%	
HHW	Fluorescent Tubes	HHW		0.0\%	
HHW	Mercury Laden Wastes	HHW		0.0\%	
HHW	Compressed Gas Cylinders/Fire Extinguisher	HHW		0.0\%	
HHW	Home Medical Products	HHW		0.1\%	0.3\%
HHW	Other Potentially Harmful Wastes	HHW		0.0\%	
HHW				0.3\%	0.3\%
TOTAL				100.0\%	99.9\%

Figures may not add due to rounding
(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(2) Georgia Statewide Waste Characterization Study; 2005; Georgia Department of Community Affairs; "Landfilled Aggregate MSW Composition by Generator Sector (Residential)"; (Table 4-3, page 4-10)

9.11.3 Most Prevalent Materials

Based on the results of the Georgia Study and the NYC WCS, the most prevalent materials in the residential refuse streams are shown in Table 1-263.

Table 1-263
Most Prevalent Materials in the Refuse Stream of the NYC WCS and the Georgia Study

Material		NYC WCS Residential (1)	Georgia Residential (2)
Food	21.4%	Food	13.4%
Mixed Low Grade Paper	8.4%	Other Non-Recyclable Paper	10.7%
Compostable/Soiled/Waxed Paper	6.7%	Film Plastic	7.4%
Other Film	5.4%	Newspaper	6.5%
Fines	4.3%	Corrugated Cardboard	6.0%
Leaves \& Grass	4.0%	Textiles	5.1%
Diapers/Other Sanitary Products	3.9%	Paperboard	4.6%
Newspaper	3.7%	Rigid Plastic	4.4%
Plastic Bags - Shopping Bags	3.2%	Diapers	3.6%
Textiles: Clothing	3.0%	Magazines/Glossy	3.4%

(1) NYC WCS "Citywide Refuse Results Across Seasons, Waste Characterization Study, Refuse (Annual)" (Volume 1, Section 2, Table 1-28)
(2) Georgia Statewide Waste Characterization Study; 2005; Georgia Department of Community Affairs; "Landfilled Aggregate MSW Composition by Generator Sector (Residential)"; (Table 4-3, page 4-10)
[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 2
Methodology

VOLUME 2 - METHODOLOGY
 TABLE OF CONTENTS

GLOSSARY GL-1
SECTION 1 INTRODUCTION 1
SECTION 2 PLANNING FOR THE PWCS AND THE WCS RESIDENTIAL STUDY 1
2.0 INTRODUCTION 1
2.1 THE SAMPLING PLAN 1
2.1.1 Sample Number 1
2.1.2 Sample Unit Weight 5
2.1.3 The Method for Selecting Sampling Units 6
2.1.3.1 PWCS Sample Selection6
2.1.3.1.1 Selecting PWCS Sampling Units 7
2.1.3.2 WCS Sample Selection 8
2.1.3.2.1 Determining Housing Density and Income Strata 8
2.1.3.2.2 Mapping the City by Housing Density and Income Strata 10
2.1.3.2.3 Selecting WCS Sampling Units 33
2.2 PLANNING FOR WASTE GENERATION ESTIMATES 38
2.2.1 PWCS Generation Rates Jurisdiction 38
2.2.2 WCS Generation Rates Jurisdiction. 38
2.2.3 PWCS Generation Rate Calculations 39
2.2.4 WCS Generation Rate Calculations 39
2.2.5 Generation Rate Estimates 48
2.2.6 Generation Rates and Citywide Composition Estimates 48
SECTION 3 PLANNING FOR THE STREET BASKET WASTE STUDY1
3.1 SAMPLING PLAN FOR THE STREET BASKET WASTE STUDY 1
3.1.1 Sample Number 1
3.1.2 Street Basket Sample Selection 3
3.1.3 Sample Unit Weight 3
SECTION 4 IMPLEMENTATION OF THE STUDIES 1
4.0 INTRODUCTION 1
4.1 SAMPLING 1
4.1.1 Sampling Logistics 1
4.1.1.1 Sampling Sites 1
4.1.1.2 Sampling Schedule 2
4.1.1.3 Sampling Participants 2
4.1.1.4 Truck Number Transmission and Delivery of Samples 3
4.1.2 Sample Acquisition 5
4.1.2.1 Statistical Validity of Multiple Samples from a Single Truck. 9
4.2 SORTING 9
4.2.1 Sort Categories 9
4.2.1.1 Material Groups and Categories 9
4.2.1.2 Use of Categories for all Streams 13

VOLUME 2 - METHODOLOGY
 TABLE OF CONTENTS (continued)

4.2.1.3 Changes in Categories from PWCS to WCS 14
4.2.1.4 Changes in Categories from WCS Fall/Winter/Spring to Summer 15
4.2.2 Sorting Procedures 15
4.2.2.1 Sorting Sites 15
4.2.2.2 Site Layout 16
4.2.2.3 Staffing 19
4.2.2.4 Description of Procedures 21
4.2.2.5 Moisture and Particulate Testing 22
4.2.2.6 Table Layout 24
4.2.2.7 Special Procedures - Illegally Disposed Street Basket Waste. 37
4.2.2.8 Supplies 38
4.3 DATA RECORDING 40
4.3.1 Cart Labels 40
4.3.2 Sample Management Forms 41
4.3.3 Sample Detail Forms 44
4.3.4 Moisture and Particulate Testing Labels. 52
4.3.5 Data Entry Process 52
4.3.6 Database Design Overview 53
4.3.7 Chain of Custody 54
4.3.8 Quality Assurance/Quality Control Procedures 54
4.4 DATA ANALYSIS 55
4.4.1 Aggregation Calculations. 55
4.4.2 Weighting Calculations. 55
4.4.3 Confidence Interval Calculations 56
4.4.4 Reporting 57
4.4.4.1 Operations Plans 57
4.4.4.2 Quarterly Reports 57
4.4.4.2.1 Production Schedule 58
4.4.4.2.2 Revisions. 58
4.4.4.3 Final Report 59

VOLUME 2 - METHODOLOGY
 TABLE OF CONTENTS (continued)

TABLES
2-1 Number of Samples Targeted and Acquired §2-Page 5
2-2 Refuse and Recycling Collection and Sample Selection for the PWCS §2-Page 6
2-3 Number of Samples Targeted for the PWCS §2-Page 7
2-4 Housing Density and Income Strata §2-Page 8
2-5 Distribution of Census Tracts Among Density and Income Strata §2-Page 9
2-6 Distribution of New York City's Population by Density and Income Strata §2-Page 10
2-7 Sampling Units for Each Season by Stream and Strata §2-Page 36
2-8 Comparison of PWCS and WCS Composition Estimates for Major Material Groups §2-Page 37
2-9 Sanitation Districts, Sections and Census Tracts in New York City §2-Page 39
2-10 Estimated Households in Manhattan Sanitation District 3, Section 4 §2-Page 44
2-11 Estimated Households in Manhattan Sanitation District 3 §2-Page 44
2-12 PWCS Generation Rates §2-Page 48
2-13 WCS Generation Rates §2-Page 48
2-14 Number of Street Basket Waste Collection Routes by Borough and Season §3-Page 2
2-15 Forms Used to Transmit Truck Numbers §4-Page 4
2-16 Number of Samples Targeted and Acquired §4-Page 7
2-17 Sample Weights Targeted and Acquired §4-Page 7
2-18 Number of Samples and Average Sample Weights for PWCS and WCS §4-Page 8
2-19 Material Groups, Subgroups, Categories, and Subcategories §4-Page 11
2-20 Materials and Criteria for Subsorting §4-Page 13
2-21 Changes in Materials from PWCS to WCS §4-Page 14
2-22 Changes in Materials from Fall/Winter/Spring to Summer in the WCS §4-Page 15
2-23 PWCS Materials Tested for Moisture and Particulates §4-Page 23
2-24 WCS Materials Tested for Moisture and Particulates. §4-Page 23
2-25 Equipment and Supplies for Sampling and Sorting §4-Page 39

VOLUME 2 - METHODOLOGY
 TABLE OF CONTENTS
 (continued)

FIGURES

2-1 Lower Manhattan showing Census Tracts from MapPLUTO §2-Page 11
2-2 Lower Manhattan showing District, Section and Census
Tract Boundaries .. §2-Page 12
2-3 Manhattan Census Tracts by High, Medium and
Low Housing Density (Grayscale)... §2-Page 13
2-4 Bronx Census Tracts by High, Medium and
Low Housing Density (Grayscale).. §2-Page 14
2-5 Brooklyn Census Tracts by High, Medium and
Low Housing Density (Grayscale).. §2-Page 15
2-6 \quad Queens Census Tracts by High, Medium and
Low Housing Density (Grayscale)... §2-Page 16
2-7 Staten Island Census Tracts by High, Medium and
Low Housing Density (Grayscale).. §2-Page 17
2-8 Manhattan Census Tracts by High, Medium and
Low Income (Grayscale).. §2-Page 18
2-9 Bronx Census Tracts by High, Medium and
Low Income (Grayscale)... §2-Page 19
$\begin{array}{ll}\text { 2-10 } & \text { Brooklyn Census Tracts by High, Medium and } \\ \text { Low Income (Grayscale)... §2-Page } 20\end{array}$
2-11 Queens Census Tracts by High, Medium and
Low Income (Grayscale)... §2-Page 21
2-12 Staten Island Census Tracts by High, Medium $\begin{aligned} & \text { and Low Income (Grayscale)... §2-Page } 22\end{aligned}$
2-13 Manhattan Census Tracts by Housing Density
and Income Strata (Grayscale)... §2-Page 23
$\begin{array}{ll}\text { 2-14 } & \text { Bronx Census Tracts by Housing Density } \\ \text { and Income Strata (Grayscale)... §2-Page } 24\end{array}$
2-15 Brooklyn Census Tracts by Housing Density
and Income Strata (Grayscale).. §2-Page 25
$\begin{array}{ll}\text { 2-16 } & \text { Queens Census Tracts by Housing Density } \\ \text { and Income Strata (Grayscale)... §2-Page } 26\end{array}$
2-17 $\begin{aligned} & \text { Staten Island Census Tracts by Housing Density } \\ & \text { and Income Strata (Grayscale).. §2-Page } 27\end{aligned}$
2-18 Borough Census Tracts by Housing Density (Color) ... §2-Page 28
2-19 Borough Census Tracts by Income (Color) ... §2-Page 29

VOLUME 2 - METHODOLOGY
 TABLE OF CONTENTS
 (continued)

FIGURES
 (continued)

2-20 Borough Census Tracts by Density and Income Strata (Color)......................... §2-Page 30
2-21 Manhattan Sanitation Districts, Sections $\quad \begin{aligned} & \text { and Census Tracts (Grayscale).. §2-Page } 31\end{aligned}$
2-22 Manhattan Sanitation District 3, Section 4 with
Multiple Density/Income Strata.. §2-Page 32
2-23 Manhattan District 8, Section 2 with a Single Stratum....................................... §2-Page 33
2-24 Manhattan Census Tracts by Density/Income Strata.. §2-Page 41
2-25 Manhattan District 3 Census Tracts by Housing Density and
Income Strata (Grayscale)... §2-Page 42
2-26 Manhattan District 3 .. §2-Page 43
2-27 Queens Districts 3 and 4 .. §2-Page 46
2-28 Dates of PWCS and WCS Sorting Periods.. §4-Page 2
2-29 Refuse Sort Site Layout ... §4-Page 17
2-30 Recycling Sort Site Layout.. §4-Page 18
2-31 WCS Fall/Winter/Spring Refuse Sorting - Table Layout (Initial Sort) §4-Page 26
$\begin{array}{ll}\text { 2-32 } & \text { WCS Fall/Winter/Spring Refuse Sorting - Table Layout (Subsorts for } \\ \text { Appliances/Electronics, Misc. Plastics, Injection Molded Container, } \\ \text { Other Metal, HHW) ... §4-Page } 27\end{array}$
$\begin{array}{ll}\text { 2-33 } & \text { WCS Fall/Winter/Spring Refuse Sorting - Table Layout } \\ \text { (Subsorts for Construction Debris, Wood, Glass Containers) §4-Page } 28\end{array}$
$\begin{array}{ll}\text { 2-34 } & \text { WCS Fall/Winter/Spring Refuse Sorting - Table Layout } \\ \text { (Subsorts for Other Glass, Aluminum Cans, PET Bottles, } \\ & \text { HDPE Natural, HDPE Colored) ... §4-Page } 29\end{array}$
2-35 WCS Fall/Winter/Spring Paper Sorting - Table Layout (Initial Sort) §4-Page 30
$\begin{array}{ll}\text { 2-36 } & \text { WCS Fall/Winter/Spring Paper Sorting - Table Layout (Subsorts for } \\ & \text { Appliances/Electronics, Other Plastic, Injection Molded } \\ & \text { Bottles and Cans, Other Metal, HHW) .. §4-Page } 31\end{array}$
2-37 WCS Fall/Winter/Spring Paper Sorting - Table Layout (Subsorts for Non-Recyclable Paper, Construction Debris, Other Glass, Textiles, Other Organics, Leaves \& Grass)
§4-Page 32
2-38 WCS Fall/Winter/Spring MGP Sorting - Table Layout (Initial Sort)................. §4-Page 33

VOLUME 2 - METHODOLOGY
 TABLE OF CONTENTS (continued)

FIGURES
 (continued)

2-39 WCS Fall/Winter/Spring MGP Sorting - Table Layout (Subsorts for Appliances/Electronics, Construction Debris, Other Plastic, Other Metal, HHW)
§4-Page 34
$\begin{array}{ll}\text { 2-40 } & \text { WCS Fall/Winter/Spring MGP Sorting - Table Layout (Subsorts } \\ & \text { for Non-Recyclable Paper, Other Paper, Textiles, Other Organics, } \\ & \text { Leaves \& Grass)... §4-Page } 35\end{array}$
2-41 WCS Fall/Winter/Spring MGP Sorting - Table Layout (Subsorts
for Recyclable Plastic, Glass, Aluminum Containers)....................................... §4-Page 36
2-42 Cart Label.. §4-Page 41
2-43 Sample Management Form ... §4-Page 42
2-44 Visual Bulk Item Inspection Form... §4-Page 43
2-45 Sample Detail Form (Residential) ... §4-Page 45
2-46 Sample Detail Form (Street Basket) ... §4-Page 48
2-47 Moisture and Particulate Testing Label... §4-Page 52
2-48 Chain of Custody ... §4-Page 54

Glossary of Abbreviations and Definitions

The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
1989/1990 WCS	The waste characterization study conducted by the New York City Department of Sanitation in 1989 and 1990.
Absolute Variability	The variability from sampling unit to sampling unit, which is measured by the Standard Deviation.
Borough	The five political/geographic areas of New York City: Manhattan, Brooklyn, Bronx, Queens, and Staten Island.
Bulk Item	As defined for the NYC WCS, any item of waste that will not fit into a 96-gallon container.
BWPRR	Bureau of Waste Prevention, Reuse and Recycling
C\&D	An abbreviation of construction and demolition debris, a material group in the NYC WCS.
Capture Rate	The amount of materials set out for residential recycling collection as a percentage of designated recyclable materials in both recycling and refuse streams. This ratio measures how much of the targeted materials are actually being recycled, which is a measure of how successfully such materials are recycled.
Census Tracts	Census tracts are small, relatively permanent statistical subdivisions of a county. New York City includes 2,217 census tracts containing on average about 4,000 inhabitants.
City	New York City
Confidence Interval	A range within which the true Mean of the population is believed to lie with the given confidence level.
Confidence Level	The certainty with which the true Mean lies within the interval determined. For the NYC WCS, a 90 percent confidence level is used. A 90 percent confidence level is the industry standard for Waste Characterization Studies. Note that the use of a 90 percent level instead of a 95 percent level (the standard for scientific research) does not (a) affect the calculation of means, only the width of intervals around the means or (b) preclude the application of a 95 percent confidence level to results if such an analysis is of interest.
Contamination Rate	The percentage of material that is found in the containers set out for residential recycling collection that is not accepted in New York City's curbside recycling program.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.
$\left.\begin{array}{|l|l|}\hline \text { TERM } & \text { DEFINITION } \\ \hline \text { Correlation, negative } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A negative correlation occurs when one variable } \\ \text { increases and the other variable decreases. }\end{array} \\ \hline \text { Correlation, positive } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A positive correlation occurs when one variable } \\ \text { increases and the other variable also increases. }\end{array} \\ \hline \text { Count } & \text { The process of counting the individual items that were subsorted. }\end{array} \left\lvert\, \begin{array}{l}\text { Curbside Collection } \\ \hline \begin{array}{l}\text { The collection of residential refuse or recycling in bins or bags } \\ \text { set out in proximity to residences that generate these types of } \\ \text { waste. DSNY provides curbside refuse collection to all residents } \\ \text { two or three times per week and recycling curbside collection } \\ \text { once per week. }\end{array} \\ \hline \text { Density/Income Strata } \\ \hline \begin{array}{l}\text { Divisions of New York City's population based on median } \\ \text { housing density and median household income. }\end{array} \\ \hline \text { Deposit (containers) } \\ \begin{array}{l}\text { Beverage containers for which, under the New York State } \\ \text { Redeemable Container Law, the purchaser is required to pay a } \\ \text { deposit. The deposit may be redeemed when the empty } \\ \text { containers are returned to a retailer or authorized redemption } \\ \text { center. }\end{array} \\ \hline \text { District } \\ \text { Dual-bin Trucks }\end{array} \begin{array}{l}\text { The 59 areas within New York City used by the Department of } \\ \text { Sanitation to administer the City's waste management program. } \\ \text { These districts are co-terminus, or identical, to the 59 Community } \\ \text { Districts. }\end{array}\right.\right\}$

Glossary of Abbreviations and Definitions (continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Film (Plastic)	A category of flexible plastic materials used for packaging, trash bags and other applications, typically made of polyethylene or polypropylene.
HDPE	An abbreviation for high density polyethylene; a plastic denoted by a \#2 inside the chasing arrows recycling symbol.
HHW	An abbreviation for Household Hazardous Waste, one of the material groups in the NYC WCS.
H/H	An abbreviation for the high housing density and high income stratum.
H/L	An abbreviation for the high housing density and low income stratum.
H/M	An abbreviation for the high housing density and medium income stratum.
Illegally Disposed Street Basket Waste	Residential or commercial waste that is illegally disposed of in street baskets (e.g. home-use products, such as large detergent bottles, cereal boxes, or personal mail; construction materials, etc.).
L/H	An abbreviation for the low housing density and high income stratum.
L/M	An abbreviation for the low housing density and medium income stratum.
Late Week/Early Week	A criterion used in the PWCS based on the idea that the composition of the waste discarded during the latter part of a week differs significantly from the composition of waste discarded during the early part of a week.
LDPE	An abbreviation for low density polyethylene, a plastic denoted by \#4 inside the "chasing arrows" recycling symbol.
Lower Boundary	For a given material, the lowest average percentage of that material expected in the population consistent with the sample, at the confidence level specified.
M/H	An abbreviation for the medium housing density and high income stratum.
M/L	An abbreviation for the medium housing density and low income stratum.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
M/M	An abbreviation for the medium housing density and medium income stratum.
Material Categories	The classification of all materials in the waste stream into categories for sorting, weighing, and counting purposes. In the NYC WCS, 91 Material Categories were used to characterize the City's waste stream.
Material Groups	Groupings of material categories used to simplify or generalize results. The Material Groups used in the NYC WCS are: Paper, Plastic, Glass, Metal, Organics, Appliances/Electronics, Construction and Demolition Debris, Miscellaneous Inorganics, and Household Hazardous Waste.
Mean	The sum of the values of all observations divided by the number of observations, also known as average. In analyzing the composition of samples of waste, refuse, recycling, and the contents of street baskets, the best estimate of the true percentage of each material in the population is the Mean percentage of that material from all of the samples.
MGP	An abbreviation for Metal, Glass, and Plastic. One of the two streams of recycling collected by the DSNY consisting of plastic bottles and jugs; glass bottles and jars; metal cans and household objects; aluminum foil, trays and cans, and gable top beverage cartons. The other stream of recycling collected by DSNY is Paper.
Multi-Unit Apartment	Broken glass in small pieces (under 3" x 3") of mixed color.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
NYC	New York City
NYC WCS	New York City Waste Characterization Study
Observation	The value(s) associated with a given sampling unit.
OCC	An abbreviation for old corrugated cardboard, one of the material categories in the PWCS and the NYC WCS.
ONP	An abbreviation for old newspaper, one of the material categories in the PWCS and the NYC WCS.
Paper	The second of two streams of recyclable materials collected by DSNY consisting of newspapers; magazines; catalogues; junk mail; white office paper; mixed paper; and gray and corrugated cardboard/paperboard. The other stream of is Metals/Glass/Plastic (MGP).
PET	An abbreviation for polyethylene terephthalate, a plastic denoted by \#1 inside the "chasing arrows" recycling symbol.
Population (Statistics)	The entire aggregation of items from which a sample can be drawn. In the NYC WCS, the population was all of the residential waste collected at the curb by DSNY.
PP	An abbreviation for polyethylene propylene, a plastic denoted by \#5 inside the "chasing arrows" recycling symbol.
Potential Deposit	Beverage containers which are not currently designated as deposit containers under the New York State Redeemable Container Law, but which may be designated in future legislation.
PS	An abbreviation for polystyrene, a plastic denoted by \#6 inside the "chasing arrows" recycling symbol.
Pure Routes	DSNY Refuse and Recycling collection routes that include only residences from a single housing density and income stratum.
PWCS	The preliminary waste characterization study conducted by the New York City Department of Sanitation in 2004.
PVC	An abbreviation for polyvinyl chloride, a plastic denoted by \#3 inside the "chasing arrows" recycling symbol.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Recycling	The act of recovering items or materials that might have been discarded and, usually after processing, returning them to the stream of commerce. Also, the materials that are set out for recycling collection.
Recycling Subindicators	A set of abbreviations used to indicate; i) those materials designated for recycling under New York City's current curbside recycling program during the study period ("R"); ii) those materials for which markets exist and which could be added to a future New York City curbside program ("PR"); and iii) those materials that are not designated for recycling under New York City's curbside recycling program because established or emerging markets do not presently exist ("NR").
Refuse	Items or materials that are discarded and disposed.
Relative Variability	The variability from Sampling Unit to Sampling Unit in relation to the Mean. This is calculated by dividing the Standard Deviation by the Mean.
Residential Study	The component of the 2004/2005 waste characterization study that addressed the generation and composition of the curbside residential waste.
Sample	A portion of a population used to estimate the composition of the population as a whole. The Sample is made up of multiple Sampling Units.
Sample Acquisition, or Sampling	The procedure for selecting Sampling Units from the population.
Sample Number	The number of sampling units in a sample.
Sample Weight	The weight of a sampling unit. In the WCS, each refuse sampling unit was between 200 and 300 pounds.
Sampling Unit	A single elementary unit used as the basis for estimating the composition of the population.
Section	Each of the City's 59 Sanitation Districts is divided into 3 to 5 Sanitation District Sections within which routes are designed and tonnage data collected daily.
Single-serve (containers)	Beverage containers with a capacity of less than 24 ounces of liquid.

Glossary of Abbreviations and Definitions
(continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Sorting	The procedure for separating a heterogeneous amount of material, such as a 200 pound Sampling Units of refuse, into its constituent material categories.
Sorting Period	The days or weeks when the sampling and sorting of waste took place during the NYC WCS.
Standard Deviation	A measure of the dispersion or variability around the Mean of the weights of a group of Sampling Units of New York City waste.
Street Basket Waste Study	The component of the 2004/2005 waste characterization study that addressed the composition of the street basket waste.
Subsorts	The process of sorting a particular material into smaller constituent components (e.g. drinking containers were subsorted into deposit and non-deposit containers).
Upper Boundary	For a given material, the highest average percentage of that material expected in a population consistent with the sample, at the confidence level specified.
Waste	The combination of Refuse and Recycling
Waste Generation	The rate at which waste is set out for collection, typically reported in terms of amounts per generator per time period (e.g. pounds per capita per week).
WCS	The waste characterization study conducted over four seasons by the New York City Department of Sanitation in 2004 and 2005.

NYC Waste Characterization Study
Final Report, Volume 2
Section 1: Introduction

Section 1.0 Introduction

During 2004 and 2005, the R. W. Beck Project Team conducted two waste characterization studies for the DSNY ${ }^{\mathbf{1}}$. The first study, the PWCS, took place during May and June of 2004. The purpose of the PWCS was to provide DSNY with a "snapshot" of the City's residential Refuse and Recycling waste streams by sorting samples of each type of waste and analyzing the results.

The second study, the New York City WCS was conducted from the fall of 2004 through the summer of 2005. The WCS consisted of three separate studies:

- The Residential Study, which was designed to estimate the generation rates and composition of curbside residential refuse and recycling by eight housing Density/Income Strata over four seasons;

■ The Street Basket Waste Study, which was designed to estimate the composition of street basket waste from dedicated DSNY street basket collection routes; and
Both the PWCS and WCS involved a significant amount of planning, and the purpose of this volume of the Final Report is to describe and explain the methodologies and procedures used to develop the final results. This volume is divided into four sections:

- Section 1: Introduction
- Section 2: Planning for the PWCS and the WCS Residential Study
- Section 3: Planning for the Street Basket Study
- Section 4: Implementation of the Studies

The Multi-Unit Study, which was designed to determine the correlation between physical and operational characteristics of multi-unit buildings and successful recycling. The Multi-Unit Study is discussed in Volume 3 of the Final Report.

[^13]NYC Waste Characterization Study
Final Report, Volume 2
Section 2: Planning for the PWCS and the WCS Residential Study

Section 2 Planning for the PWCS and the WCS Residential Study

2.0 Introduction

Planning for the Waste Characterization in the PWCS and the WCS Residential Study consisted of developing a sampling plan and the related procedures necessary to implement these plans for each study.

2.1 The Sampling Plan

The following discussion of the Sampling Plan for the PWCS and WCS makes a distinction between a "sampling unit" and a "sample." A sampling unit is a single elementary unit used as the basis for estimating the composition of the population ${ }^{1}$. For reasons explained below, the sampling unit for refuse in the PWCS and WCS was 200 pounds to 300 pounds of refuse. A sample is a portion of the population used to estimate the composition of the population as a whole. A sample comprised of 200 sampling units of refuse was used to estimate citywide composition of refuse in the PWCS. For the WCS, the sample comprised the 1,600 sampling units of refuse used to estimate the citywide composition of refuse over four seasons.

Each sampling plan addressed four issues: (1) the sample size, or number of sampling units to be selected; (2) the method for selecting which parts of the waste stream to sample; (3) the weight of each sampling unit; and (4) the procedures for acquiring sampling units. Separate sampling plans were developed for refuse and recycling in both the PWCS and the WCS.

2.1. Sample Number

In any characterization study, the number of sampling units that are sorted affects the accuracy of the estimate. For example, if only one sampling unit of a particular material stream were sorted, it is very unlikely that the estimate resulting from sorting that single sampling unit would match the composition of the entire material stream. On the other hand, if hundreds of thousands of sampling units were sorted, enough so that every ounce of the City's refuse and recycling materials were sorted, the resulting estimate would be very accurate indeed. In fact, it would be perfectly accurate.

Determining the number of sampling units to be sorted is closely related to the nature of the material that will be sorted. If the material being sorted was consistently and homogeneously discarded by households, it would be relatively easy to arrive at an estimate. It would take very few sampling units to develop an estimate if there were only two materials in the material stream and they were always found in the same proportion in every sampling unit. Of course, this is not the case. Refuse, and to a lesser degree,

[^14]recycling materials, are extremely variable. The percentage of each type of waste or recycling material can vary considerably among households. Even from the same household, the type of refuse or recycling materials can vary depending on when it is generated. For example, during the autumn, one would expect to find large amounts of leaves in the refuse stream, but in the winter there will be few, if any, leaves in the refuse stream. On the other hand, food waste will be found throughout the year. In the recycling stream, it is likely that milk cartons will occur year around, while certain water, soda and refreshment containers may increase during the hot summer months when consumption of these items increases.

Because of the potential for variability in waste, a different number of sampling units may be required to obtain an accurate estimate for different types of waste. Continuing the example, since food waste is likely to be found more consistently in the refuse stream than leaves, fewer sampling units would be required to obtain an accurate estimate of the food waste percentage in the refuse stream.

In the PWCS and WCS, the estimate of the composition of waste is presented as three numbers: (1) the Sample Mean; (2) the Confidence Level; and (3) the Confidence Interval ${ }^{2}$. The Sample Mean is the average percentage of a given material found in the sampling units sorted. For example, after sorting thirty sampling units of refuse, a list of thirty percentages of food waste will be obtained - one for each refuse sampling unit sorted. If the average of the thirty percentages of food waste is 16 percent, then the Sample Mean for food waste found in the sampling units is 16 percent.

The Confidence Level and the Confidence Interval are intertwined concepts. Together, they allow statements to be made about the entire population from the sampling units taken. The Sample Mean is simply the average value of the sampling units. It is unlikely that the percentage of a given type of waste for the entire population matches the Sample Mean exactly. The Confidence Level and the Confidence Interval provide a way to convey how much the Sample Mean tells us about the entire population.

The Confidence Level indicates the degree of certainty that the Confidence Interval contains the population's true mean value. The higher the Confidence Level, the greater our certainty that the Mean of the entire population is contained within the Confidence Interval. For example, if the Confidence Interval around the Sample Mean - 15 percent to 17 percent for food waste - is based on a Confidence Level of 90 percent, we can be 90 percent confident that the population's percentage of food waste is contained in that interval. The purpose of the Confidence Level is to provide an indication of the accuracy of the sampling results. In waste characterization studies, a 90 percent Confidence Level is a widely accepted industry standard and was used in this study.

The third number used in describing the composition of the refuse is the Confidence Interval. This is an expression of the uncertainty regarding the population mean. For example, our Sample Mean of 16 percent for food waste may have a Confidence Interval of ± 1 percent, at a 90 percent Confidence Level. That is, based on our number of

[^15]sampling units and results obtained, we would expect that 90 percent of the time, the amount of food waste in the refuse of the entire population would be between 15 percent and 17 percent. Described another way, if we could actually go out and determine the exact percentage of food waste in our population, we are 90 percent certain that the actual percentage of food waste in the refuse stream would fall between 15 percent and 17 percent. If we wanted a more accurate estimate, we would have to sort more sampling units. The results could also be calculated at a 95 percent Confidence Level. However, given the same number of sampling units, the Confidence Interval at a 95 percent Confidence Level would be wider. In other words, the cost of being more confident that the interval contains the population Mean is a wider Confidence Interval.

It should be noted that the use of a 90 percent level instead of a 95 percent level (the standard for scientific research) does not affect the calculation of the means, only the width of intervals around the means. So for example, a mean of 5 percent of the composition of a particular material category might have a confidence interval of 4 percent to 6 percent at a 90 percent level and 3 percent to 7 percent at a 95 percent level. In reference to each statistic, we would correspondingly say that we are confident that the true mean for that material - if we were able to sample all the waste in New York City would fall 90 percent of the time between 4 percent and 6 percent and 95 percent of the time between 3 percent and 7 percent.

For this reason, it is not applicable to say that a 95 percent confidence level is "better" than a 90 percent level; nor to expect that the results in terms of means - the statistic that primarily inform us about the make up of New York City waste - would change if a different confidence level were applied.

In recommending the number of sampling units to sort, R. W. Beck considered not only the level of accuracy of the estimate, but the cost of providing this estimate and the variability of materials being sorted. As noted above, the variability of some material in the refuse is greater than other materials. Yard Waste is much more variable than Paper. Therefore, for a given number of sampling units, the estimate of some materials will be more accurate than the estimate for others. Sorting a few hundred sampling units of refuse may provide a Confidence Interval of ± 8 percent for Paper, but a ± 30 percent for Yard Waste. To achieve a ± 8 percent for Yard Waste would require significantly more sampling units to be sorted and a higher cost to obtain such accuracy of the results.

In practical terms, "variability" simply means the variation we are likely to find among sampling units. If we sort through 10 sampling units and each one has between 28 percent and 32 percent of a given waste type, we can be reasonably certain that the percentage of this waste type for the population as a whole lies in this general range. But if we sort through these same 10 sampling units and find results of 1 percent, 80 percent, 20 percent, 65 percent, and so forth, we are much less certain about the percentage of this waste type in the entire population.

There is a point of diminishing returns for waste sampling. After that point, the cost of achieving small increases in accuracy by sampling more waste is high. Below that point,
significant increases in accuracy can be achieved with relatively little cost. However, the general pattern is clear: the more sampling units that are sorted, the greater the accuracy of the estimate.

The PWCS Sampling Plan called for 200 sampling units of Residential Refuse and 200 sampling units of Recycling (100 sampling units of MGP and 100 sampling units of Paper). The WCS Sampling Plan called for 1,600 sampling units of Residential Refuse and 1,600 sampling units of Residential Recycling. Because the results of the PWCS indicated greater variability in the MGP stream than in the Paper stream, the number of MGP sampling units was increased relative to the number of Paper sampling units. For this reasons, 1,280 sampling units of MGP were targeted and 320 sampling units of Paper. Table 2-1 presents the number of samples targeted and acquired for the PWCS and the WCS.

Table 2-1
Number of Samples Targeted and Acquired ${ }^{(1)}$
Number of Samples Targeted

Streams	PWCS $^{(2)}$	Fall	Winter	Spring	Summer	WCS
Refuse	200	400	400	400	400	1,600
Paper	100	80	80	80	80	320
MGP	100	320	320	320	320	1,280
Street Basket	-	50	50	50	50	200
Total	400	850	850	$\mathbf{8 5 0}$	$\mathbf{8 5 0}$	3,400

Number of Samples Acquired

Streams	PWCS $^{(2)}$	Fall	Winter	Spring	Summer	WCS
Refuse	200	399	409	401	400	1,609
Paper	99	80	85	80	80	325
MGP	104	320	340	320	320	1,300
Street Basket	-	50	50	50	50	200
Total	403	849	884	$\mathbf{8 5 1}$	$\mathbf{8 5 0}$	3,434

(1) Based on the results of the PWCS, which showed that MGP samples were more heterogeneous than Paper samples, it was decided to target more MGP samples than Paper samples for the WCS. Heterogeneity of the population, in this case MGP, requires that more samples be drawn in order to obtain the same degree of accuracy.
(2) Street Basket samples were not collected during the Preliminary Waste Characterization Study.

2.1.2 Sample Unit Weight

For both refuse and recycling, the number of sampling units and the mass of the sampling units assure that the sample will appropriately represent the overall population (i.e., waste stream).

The procedures for analyzing the composition of municipal solid waste were initially developed over 30 years ago and have been extensively revised and refined in the past three decades. Studies by the USEPA and academic sources (e.g., Klee, A.J and D. Carruth. "Sample Weights in Solid Waste Composition Studies." American Society of Civil Engineers Journal of Sanitary Engineering Division. Vol. 96. 945-954. August 1970) suggest a 200 to 300 -pound quantity of refuse is sufficient to characterize municipal solid waste. This weight is based on factors such as particle size, material components, and the level of mixing that occurs during collection. These sources also suggest that, as the size of a refuse sampling unit increases beyond 200 to 300 pounds, the statistical benefits associated with the larger size is outweighed by the incremental increase in the cost of processing the sampling units. As a result, the MSW sampling unit weight of 200 to 300 pounds has been the industry guideline for MSW composition studies in the United States for the past 15 years. The refuse sampling units for the PWCS and the WCS used this guideline.

Paper and MGP collected for recycling differs from refuse in several ways. First, these streams target a specific set of materials and, therefore, tend to be more homogeneous than refuse. Second, particle size, particularly in the paper steam, is more uniform, compared to refuse. Because of these characteristics and based on the Project Team's experience in previous waste characterization studies, the target weight of recycling sampling units for the PWCS and the WCS was 100 to 125 pounds. A total of 678,467 pounds of residential refuse and recycling were sorted during the PWCS and the WCS. The number of samples and the average sample weights for the PWCS and the WCS can be found in Table 2-17 in Volume 2, Section 4.

2.1.3 The Method for Selecting Sampling Units

The PWCS and the WCS used different criteria for selecting sampling units.

2.1.3.1 PWCS Sample Selection

The PWCS Refuse Sampling Plan used two criteria to select the samples. First, sampling units were selected to provide an estimate of the composition of refuse and recycling citywide. Based on the results of previous studies, it was estimated that a total of 200 Refuse sampling units, 100 MGP sampling units, and 100 Paper sampling units would provide a confidence interval of ± 7.5 percent at a 90 percent confidence level for the major Material Categories.

To obtain representative amounts of waste from each of the City's five boroughs, the number of sampling units was based on the contribution of each borough to the total amount of refuse collected by DSNY during the period of July 2003 to February 2004. The PWCS Recycling Sample Plan selected samples based on the average tons of Paper and MGP collected from each borough from April 5, 2004 to April 18, 2004. Table 2-2 shows the average weekly tons collected from each borough, the percentage of Refuse, MGP, and Paper collected from each borough, and the number of sampling units to be acquired from each borough for the PWCS.

Table 2-2
Refuse and Recycling Collection and Sample Selection for the PWCS

Borough	Refuse			Paper			MGP		
	Average Weekly Tons Collected ${ }^{(1)}$	Percent Collected	Number of Samples	Average Weekly Tons Collected ${ }^{(1)}$	Percent Collected	Number of Samples	Average Weekly Tons Collected ${ }^{(1)}$	Percent Collected	Number of Samples
Manhattan	10,431	18.01\%	36	1,781	23.92\%	24	793	18.10\%	18
Bronx	9,032	15.60\%	32	669	8.98\%	9	644	14.70\%	15
Brooklyn	18,100	31.25\%	64	1,961	26.33\%	26	1,224	27.93\%	28
Queens	16,021	27.66\%	53	2,308	30.99\%	31	1,357	30.97\%	31
Staten Island	4,328	7.47\%	16	728	9.78\%	10	364	8.31\%	8
Total ${ }^{(2)}$	57,912	100.00\%	200	7,447	100.00\%	100	4,382	100.00\%	100

(1) Average weekly tonnage of refuse collected between July 2003 and February 2004; average weekly tonnage of Paper and MGP collected between April 5 and April $18,2004$.
(2) The sum of values may not add to the total shown due to rounding.

The PWCS was not designed to produce statistically significant waste composition results by borough, only for the City as a whole. Although the sampling was weighted to reflect the relative waste generation of the five boroughs, not enough samples were acquired to characterize each borough on its own at the same level of precision required to characterize the City as a whole. However, when the DSNY asked for boroughspecific results from the PWCS, there was enough data to produce them, and they are consequently published in the Final Report (Volume 1, Section 4.2 Tables 1-94 through $1-98)$. It should be cautioned that the borough-specific results for the PWCS will have wider confidence intervals than citywide results, for this reason.

The second criterion in the PWCS Sampling Plan was used to test the hypothesis that curbside refuse collected early in the week differed quantitatively from the waste collected late in the week. The hypothesis held that the composition of waste generated by weekend social events and yard work and collected early in the week would be significantly different from the composition of the waste collected and disposed later in the week. If this hypothesis were true, the sampling plan for the WCS would have been adjusted to take into account this early week/late week variation in waste generation.

To test this hypothesis, samples were scheduled to be acquired from early week ("EW") collections and late week ("LW") collections from each of the five boroughs. The first waste collections of the week are Monday and Tuesday, for areas with 3-day per week collection, and Monday, Tuesday, or Wednesday for areas with 2-day per week collection. Since residents receive recycling collection once a week, the early-week/lateweek criterion could not be applied to the recycling sample.

2.1.3.1.1 Selecting PWCS Sampling Units

Using these criteria and routing data provided by DSNY, R. W. Beck developed a list of EW and LW routes in each of the five boroughs for each day of the Sorting Period. Using a random number generator, routes from the list were selected for sampling. Table 2-3 shows the number of EW and LW samples targeted for acquisition from each borough for the PWCS.

Table 2-3
Number of Samples Targeted for the PWCS

Borough	Refuse		Paper	MGP	Total
	Number of Early Week Samples	Number of Late Week Samples	Number of Samples	Number of Samples	Number of Samples
	17	19	24	18	78
	13	18	9	15	55
Brooklyn	26	38	26	28	118
Queens	30	23	31	31	115
Staten Island	9	7	10	8	34
Total	$\mathbf{9 5}$	$\mathbf{1 0 5}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{4 0 0}$

The results of the PWCS regarding the differences in early week samples and late week samples were mixed. On the one hand, there was a statistically significant difference between the early week samples and the late week samples for certain materials, such as Paper and Organics. However, these differences were only slightly outside the confidence intervals. On the other hand, Plastics, Glass, Metal, Appliances \& Electronics, Construction Debris, Miscellaneous Inorganics, and Household Hazardous Waste showed no statistically significant differences between early week and late week samples. Given the mixed results of the PWCS in this regard, the relatively minor statistically significant differences in Paper and Organics, and the complexity that adding the EW/LW criteria would have added to the planning of the WCS, it was decided not to incorporate this criteria into the planning of the WCS.

2.1.3.2 WCS Sample Selection

2.1.3.2.1 Determining Housing Density and Income Strata

One purpose of the WCS Residential Study was to characterize the City's residential refuse and recycling by housing density and income strata over four seasons. The planning for the WCS began by defining housing density and income strata for the City and determining the location of these strata within the City.

For the purposes of the WCS Residential Study, the City was divided into nine housing density and income strata. A matrix of these strata is shown in Table 2-4.

Table 2-4
Housing Density and Income Strata

High Density High Income	Medium Density High Income	Low Density High Income
High Density	Medium Density	Low Density
Medium Income	Medium Income	Medium Income
High Density	Medium Density	Low Density
Low Income	Low Income	Low Income

The methodology used to define these strata is the same one currently used by the DSNY's Operations Management Division ("OMD"). However, the OMD applies the methodology to determine strata for the City's 59 Community Districts. For the WCS, the methodology was applied to the City's 2,217 census tracts because the results would be likely to show less variation in the minimum and maximum housing density and income. For example, each of the 59 Community Districts contains an average of more than 50,000 households, while each of the City's 2,217 tracts contains an average of less
than 1,500 households. The greater the number of households, the more likely it would be that there would be variation of housing density and income levels. Community Districts, being larger, were more likely to have a greater range of housing density and household income within their borders.

The data used to develop the strata were the United States Census Bureau's Year 2000 census data.

To determine the housing density strata, data on the number of residential structures and the number of units per structure were used. The census tracts in the high housingdensity strata were those in which 67 percent or more of the residential structures contain ten or more units. The low housing density strata consisted of census tracts in which 67 percent or more of the residential structures contain two or fewer units. The medium density strata included all those census tracts that were not in either the high density stratum or the low density stratum.

To determine the high, medium, and low income strata, the median household income for each of the City's census tracts was used. The census tracts were divided evenly into three groups. Based on 2000 census data, the high income strata included all those census tracts with a median household income above $\$ 46,193$; the medium income strata consisted of census tracts with a median household income of less than $\$ 46,193$ and greater than $\$ 30,763$. The low income strata consisted of census tracts with a median household income below $\$ 30,763$. There were 739 census tracts in each of the three income groups.

As noted above, this is the methodology used by the OMD. However, the OMD applies the methodology to Community Districts, rather than census tracts. Table 2-5 shows the distribution of census tracts in the City among income and density strata.

Table 2-5
Distribution of Census Tracts Among Density and Income Strata

	High Income	Medium Income	Low Income	Total
High Density	167	127	342	636
Medium Density	162	435	392	989
Low Density	$\underline{410}$	$\underline{177}$	$\underline{5}$	$\underline{592}$
Total	$\mathbf{7 3 9}$	$\mathbf{7 3 9}$	$\mathbf{7 3 9}$	$\mathbf{2 , 2 1 7}$

Using these methods of stratification, the City's population was divided into these nine groups. Table 2-6 shows the portion of New York City's population in each of the nine strata.

Table 2-6
Distribution of New York City's Population by Density and Income Strata ${ }^{(1)}$

	High Income	Medium Income	Low Income	Total
High Density	883,319	710,418	$1,753,021$	$3,346,758$
Medium Density	444,298	$1,442,180$	$1,129,673$	$3,016,151$
Low Density	$\underline{1,171,081}$	$\underline{471,531}$	$\underline{2,757}$	$\underline{1,645,369}$
Total	$\mathbf{2 , 4 9 8 , 6 9 8}$	$\mathbf{2 , 6 2 4 , 1 2 9}$	$\mathbf{2 , 8 8 5 , 4 5 1}$	$\mathbf{8 , 0 0 8 , 2 7 8}$

(1) Based on Year 2000 Census Data.

This approach to defining the Density and Income Strata has certain limitations. First, the use of certain criteria to define the strata precludes the use of other criteria to analyze the composition of the waste. The use of housing density and income strata as the building blocks of the sampling plan precludes using another criterion, such as ethnicity or education, to analyze the composition of the waste.

Second, setting certain values as demarcations between strata creates a "near-boundary" problem. This problem refers to the similarity of Census tracts that are close to, but on opposite sides of the cutoff between two strata. For example, the cutoff between the high income strata and the medium income strata is $\$ 46,193$. A census tract with the median household income of $\$ 46,190$ would be classified as medium income and a census tract with a median household income of $\$ 46,200$ would be classified as high income. Although these two census tracts have almost the same median household income, they are classified as belonging to different strata. Compare these two census tracts with two census tracts within the high income strata, one with a median household income of $\$ 46,200$ and one with a median household income of $\$ 150,000$. This "near-cutoff" problem occurs in any scheme that separates classes by specific quantitative measures.

Third, the criteria are averaged over the census tract and there are inevitably variations in housing density and income within a census tract. For example, this method may characterize a given census tract as high density/high income even though portions of the population in that census tract may fall into the medium income, or low income category. This limitation is inherent in any methodology that simplifies the characteristics of a diverse population. This limitation would be more pronounced if a larger geographic area, such as a Community District, were used to determine the strata. In any classification system, these types of limitations are unavoidable and in this case were minimized to the extent possible consistent with the goals of the WCS. For these reasons we believe this approach to developing the housing density and income was reasonable.

2.1.3.2.2 Mapping the City by Housing Density and Income Strata

The next step in developing the WCS Residential Sampling Plan was to identify refuse and recycling collection routes for each stratum. To do this, a set of maps were developed. These maps showed the census tracts in each of the nine strata. The maps
were derived from The BYTES of the BIG APPLE MapPLUTO ("MapPLUTO"), a GIS dataset developed by the New York City Department of City Planning. Figure 2-1 is an example from MapPLUTO of a portion of Manhattan showing the census tract boundaries.

Figure 2-1
Lower Manhattan showing Census Tracts from MapPLUTO
The information on these maps was then combined with the boundaries for the areas used by DSNY to administer collection routes, called Sanitation Districts and Sanitation District Sections. Figure 2-2 shows the same portion of Manhattan with census tract boundaries, as well as the boundaries for Sanitation Districts and Sanitation District Sections. The dotted line indicates Sanitation District Section boundaries and the heavy dark lines indicate Sanitation District boundaries.

Figure 2-2
Lower Manhattan showing District, Section and Census Tract Boundaries
In planning the WCS, data from census tracts, Sanitation District Sections, and Sanitation Districts were used. At the census tract level, housing density and income data were used to establish the density and income strata. At the Sanitation District Section level, residential collection routes and collection tonnages were obtained from DSNY. At the Sanitation District level, data on population and collection tonnages were used to check the reasonableness of the findings.

Using U.S. Census Bureau data for the year 2000, census tracts were classified by housing density. Figures 2-3 through 2-7 present the high, medium, and low housing density census tracts for each of the five boroughs. The City's census tracts were also classified by median household income. Figures 2-8 through 2-12 show the census tracts with high, medium, and low median income. Housing density and income were combined to determine the nine density/income strata. The census tracts classified by density/income strata for each of the five boroughs are shown in grayscale Figures 2-13 through 2-17 and in color in Figures 2-18 through 2-20.

	Housing Density Categories
\square	High
\square	Medium
\square	Low
\square	Parkland or Other Non-Residential

Figure 2-3
Manhattan Census Tracts by High, Medium and Low Housing Density (Grayscale)

Figure 2-4
Bronx Census Tracts by High, Medium and Low Housing Density (Grayscale)

Figure 2-5
Brooklyn Census Tracts by High, Medium and Low Housing Density (Grayscale)

Figure 2-6
Queens Census Tracts by High, Medium and Low Housing Density (Grayscale)

Figure 2-7
Staten Island Census Tracts by High, Medium and Low Housing Density (Grayscale)

Income Categories
High
Medium
Low
\square Parkland or Other Non-Residential

Figure 2-8
Manhattan Census Tracts by High, Medium and Low Income (Grayscale)

Figure 2-9
Bronx Census Tracts by High, Medium and Low Income (Grayscale)

Figure 2-10
Brooklyn Census Tracts by High, Medium and Low Income (Grayscale)

Figure 2-11
Queens Census Tracts by High, Medium and Low Income (Grayscale)

Figure 2-12
Staten Island Census Tracts by High, Medium and Low Income (Grayscale)

Figure 2-13
Manhattan Census Tracts by Housing Density and Income Strata (Grayscale)

Figure 2-14
Bronx Census Tracts by Housing Density and Income Strata (Grayscale)

Figure 2-15
Brooklyn Census Tracts by Housing Density and Income Strata (Grayscale)

Figure 2-16
Queens Census Tracts by Housing Density and Income Strata (Grayscale)

Figure 2-17
Staten Island Census Tracts by Housing Density and Income Strata (Grayscale)

\quad Housing Density Categories
\square High
\square Medum
\square Low
\square Parkland or Other Non-Residential

Figure 2-18
Borough Census Tracts by Housing Density (Color)

Figure 2-19
Borough Census Tracts by Income (Color)

Figure 2-20
Borough Census Tracts by Housing Density and Income Strata (Color)

It is important to note that the boundaries of the Sanitation Districts, the District Sections, and the census tracts do not coincide, as shown in Figure 2-21.

Figure 2-21
Manhattan Sanitation Districts, Sections and Census Tracts (Grayscale)

This presented a challenge because in most cases, the census tracts within a District or District Section represented multiple strata, as shown in Figure 2-22.

Figure 2-22
Manhattan Sanitation District 3, Section 4 with Multiple Density/Income Strata
The purpose of mapping the density/income strata was to identify refuse and recycling collection routes collecting from a single stratum. Because of the heterogeneous demographics in most of the Sanitation District Sections, it was difficult to find collection routes from a single stratum. However, there were areas where several census tracts in the same strata were adjacent to one another, as shown in Figure 2-23. These were the areas that held the most promise for finding collection routes within a single stratum.

Figure 2-23
Manhattan Sanitation District 8, Section 2 with a Single Density/Income Stratum
As Figure 2-23 shows, Manhattan District 8, Section 2 consists only of the high density/high income strata. The homogeneity of strata means that all collection routes in this District Section fall within the high density/high income stratum.

2.1.3.2.3 Selecting WCS Sampling Units

The explanation of how sampling units were selected for the WCS involves the use of the four terms defined below:

- Collection Route is a set of streets and blocks used to describe the residences from which refuse or recycling will be collected and the days of the week on which collection takes place.
- Pure Route is a collection route that covers only census tracts from a single Housing Density/Income Stratum. Manhattan District 8, Section 2, Route 1 is an example of a pure route that includes only census tracts in the High Density/High Income stratum.
- Route Occurrence is a single instance of a Pure Route being collected. For example, Manhattan District 8, Section 2, Route 1 on Monday, August 15, 2005 is one Route Occurrence.
- Universe of Route Occurrences is the listing of all Route Occurrences from a single stratum for a specific period of time, such as a 3-week Sorting Period.

In developing the Sample Plan, it was decided to use existing collection routes, rather than create special routes. Developing special routes would have involved assigning DSNY trucks and crews to specific areas on specific days, as well as re-routing the trucks and crews that were normally assigned to those areas on those days. The cost of developing and implementing special collection routes for the WCS was determined to be prohibitive and would have severely disrupted normal DSNY collection operations citywide, causing inconvenience to many residents. Therefore, only existing collection routes were used.

Most DSNY collection routes serve areas larger than a single census tract. As the maps in Figures 2-3 through 2-20 show, the census tracts for the nine strata are scattered throughout the City. However, there are some areas where a group of census tracts from the same strata are adjacent to one another. In some of these cases, it was possible to identify pure routes. Given the small number of census tracts in the low density/low income strata, the dispersion of those census tracts, and the small number of residents in those census tracts (fewer than 3,000), it was decided to eliminate this strata from the WCS and focus resources on the remaining eight strata ${ }^{3}$.

Working with the maps of census tracts by strata, DSNY Collections Bureau developed a list of pure routes. As noted above, Manhattan District 8, Section 2, Route 1 is a pure route for the High Density/High Income stratum. Refuse is collected on this route three times per week, on Monday, Wednesday, and Friday. During the 3-week Summer Sorting Period, there were eight instances of refuse being collected on this route, or eight Route Occurrences.

For each pure route within a single Housing Density/Income stratum, a list of Route Occurrences was compiled. The Route Occurrences from all pure routes within the stratum comprised the universe of Route Occurrences from which the sampling units of refuse and recycling for that stratum were selected.

Prior to each seasonal Sorting Period, the universe of Route Occurrences was developed using a list of seasonal routes provided by DSNY. The Route Occurrences to be sampled were randomly selected from the universe of Route Occurrences using a random number

[^16]generator. If a Route Occurrence was selected for sampling, it remained on the list and might be selected again. If a Route Occurrence was selected twice, two sampling units would be taken from the truck collecting that route on that day. For strata with a large number of pure routes and Route Occurrences, taking multiple samples from a single route was unusual. For strata with a small number of pure routes and Route Occurrences, multiple samples from a single truck were more common. Because the sampling unit is a fixed amount of refuse (200 pounds to 300 pounds) or recycling (100 pounds to 150 pounds), a single truck can hold multiple sampling units and, if selected randomly, each sampling unit has an equal opportunity to the included in the study. For a full discussion of the statistical validity of taking multiple samples from a truck, see Volume 4, Appendix M.

Table 2-7 shows the number of randomly selected sampling units for the PWCS and each season of the WCS.

Table 2-7
Sample Units for Each Season by Stream and Strata

PWCS	Refuse	Paper	MGP	Dual	Total		Total WCS	Refuse	Paper	MGP	Dual	Basket ${ }^{(1)}$	Total
Manhattan	36	22	18	0	76		High Density/High Income	203	41	162	0	N/A	406
Bronx	31	8	14	2	55		High Density/Medium Income	200	28	113	60	N/A	401
Brooklyn North	25	7	7	0	39		High Density/Low Income	201	41	164	0	N/A	406
Brooklyn South	39	9	12	20	80		Medium Density/High Income	201	39	161	1	N/A	402
Queens West	14	5	8	18	45		Medium Density/Medium Income	202	11	53	139	N/A	405
Queens East	39	0	0	34	73		Medium Density/Low Income	201	7	31	165	N/A	404
Staten Island	16	0	0	18	34		Low Density/High Income	202	0	0	205	N/A	407
							Low Density/Medium Income	199	0	0	204	N/A	403
Total	200	51	59	92	402		Total	1,609	167	684	774	200	3,434
Fall 2004	Refuse	Paper	MGP	Dual	Basket ${ }^{(1)}$	Total	Winter 2005	Refuse	Paper	MGP	Dual	Basket ${ }^{(1)}$	Total
High Density/High Income	50	10	40	0	N/A	100	High Density/High Income	53	11	42	0	N/A	106
High Density/Medium Income	50	10	38	2	N/A	100	High Density/Medium Income	50	10	32	9	N/A	101
High Density/Low Income	50	10	40	0	N/A	100	High Density/Low Income	51	11	44	0	N/A	106
Medium Density/High Income	50	10	40	0	N/A	100	Medium Density/High Income	51	10	41	0	N/A	102
Medium Density/Medium Income	50	3	12	35	N/A	100	Medium Density/Medium Income	51	1	13	39	N/A	104
Medium Density/Low Income	50	1	3	46	N/A	100	Medium Density/Low Income	51	2	3	48	N/A	104
Low Density/High Income	50	0	0	50	N/A	100	Low Density/High Income	52	0	0	55	N/A	107
Low Density/Medium Income	49	0	0	50	N/A	99	Low Density/Medium Income	50	0	0	54	N/A	104
Total	399	44	173	183	50	849	Total	409	45	175	205	50	884

Spring 2005	Refuse	Paper	MGP	Dual	Basket ${ }^{(1)}$	Total	Summer 2005	Refuse	Paper	MGP	Dual	Basket ${ }^{(1)}$	Total
High Density/High Income	50	10	40	0	N/A	100	High Density/High Income	50	10	40	0	N/A	100
High Density/Medium Income	50	3	24	23	N/A	100	High Density/Medium Income	50	5	19	26	N/A	100
High Density/Low Income	50	10	40	0	N/A	100	High Density/Low Income	50	10	40	0	N/A	100
Medium Density/High Income	50	9	40	1	N/A	100	Medium Density/High Income	50	10	40	0	N/A	100
Medium Density/Medium Income	51	6	15	29	N/A	101	Medium Density/Medium Income	50	1	13	36	N/A	100
Medium Density/Low Income	50	3	14	33	N/A	100	Medium Density/Low Income	50	1	11	38	N/A	100
Low Density/High Income	50	0	0	50	N/A	100	Low Density/High Income	50	0	0	50	N/A	100
Low Density/Medium Income	50	0	0	50	N/A	100	Low Density/Medium Income	50	0	0	50	N/A	100
Total	401	41	173	186	50	851	Total	400	37	163	200	50	850

(1) Street Basket routes were not broken down by density/income strata. Street baskets were not assessed in the PWCS.

The sampling plans for both the PWCS and the WCS provide an estimate of the composition of refuse and recycling at the citywide level. However, the PWCS was specifically designed to provide a citywide composition estimate, using waste collection data from each of the City's five boroughs as a basis for sampling. The WCS was designed to provide a composition estimate using waste collection data from eight housing density and income strata. By design, these strata encompass the entire residential population of New York City. These eight strata composition estimates were then aggregated, using waste generation data, to produce a citywide estimate of waste composition (Section 2.2.6).

The PWCS also acted as a methodological check for the full four season WCS. Table 2-8 compares the citywide estimates of the major Material Groups for Refuse, Paper, and MGP in the PWCS and the WCS. The similarity in results provides evidence that the sampling methodology used in the WCS waste composition research is sound.
Remarkably consistent results were achieved at the citywide level across two studies, using two very different samples bases.

The WCS was not designed to produce statistically significant waste composition results by borough, only for the eight density and income strata that comprise the City's demographic variation at a 90 percent level of confidence with $+7.5 \%$ for the major Material Groups. Using these same data, it was possible to calculate the results by borough, although the confidence intervals for these results are wider than for the strataspecific results (Volume 1, Section 4.4, Tables 1-119 through 1-123).

Table 2-8
Comparison of PWCS and WCS Composition Estimates for Major Material Groups

Material Group	Refuse		Paper		MGP	
	PWCS	WCS	PWCS	WCS	PWCS	WCS
Paper	23.19\%	23.32\%	96.55\%	97.25\%	4.80\%	5.22\%
Plastic	14.19\%	14.76\%	1.58\%	1.36\%	21.53\%	23.57\%
Glass	2.60\%	2.60\%	0.13\%	0.10\%	35.11\%	32.93\%
Metal	3.54\%	3.65\%	0.22\%	0.14\%	31.08\%	26.87\%
Organics	47.56\%	47.05\%	1.23\%	0.95\%	3.31\%	2.67\%
Appliances and Electronics	0.86\%	1.36\%	0.06\%	0.04\%	2.91\%	7.45\%
C \& D Debris	7.01\%	6.28\%	0.20\%	0.12\%	0.28\%	0.41\%
Miscellaneous Inorganics	0.59\%	0.71\%	0.02\%	0.03\%	0.86\%	0.56\%
HHW	0.45\%	0.27\%	0.01\%	0.02\%	0.12\%	0.33\%
Total ${ }^{(1)}$	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%

(1) The sum of values may not add to the total shown due to rounding.

2.2 Planning for Waste Generation Estimates

Generation rates refer to the average amount of Refuse, MGP, Paper and Waste set out for collection by a household (or person) over a given period of time. Generation rates were developed for the PWCS and the WCS to quantify the amount of waste and provide tonnages estimates for each of the materials in the composition figures. In addition, the WCS generation rates were calculated to weight strata generation estimates in order to develop citywide composition estimates.

2.2.1 PWCS Generation Rates Jurisdiction

The PWCS generation rates were calculated for each of the City's five boroughs. The calculation involved dividing the annual amount of waste (Refuse, MGP, and Paper) collected in each borough, from data provided by DSNY, by the population and the number of households in each borough, using U.S. Census Data.

2.2.2 WCS Generation Rates Jurisdiction

The WCS generation rates were calculated for each of the eight Density and Income Strata. To calculate generation rates for the WCS it was necessary to use information from three different jurisdictions within the City.

- The largest of these are the 59 Sanitation Districts, which are the same as the City's 59 Community Districts. Information on population and households for these districts was available from the Department of City Planning which maps U.S. Census Data onto these boundaries. This information is available on the Department of City Planning website at http://www.nyc.gov/html/dcp/html/lucds/cdstart.shtml.
- The second jurisdiction is the Sanitation District Section. There are 230 Sanitation District Sections, administrative jurisdictions used by DSNY. Complete information on population and households is not available at this level.
- The third jurisdiction is the census tract which is a small, relatively permanent subdivision used by the U.S. Census Bureau to present census data, such as population and households.

Table 2-9 shows the number of Sanitation Districts, District Sections, and Census Tracts by borough in the City.

Table 2-9
Sanitation Districts, Sections and Census Tracts in New York City

Borough	Sanitation Districts	District Sections	Census Tracts
Manhattan	12	40	296
Brooklyn	12	33	355
Bronx	18	77	783
Queens	14	66	673
Staten Island	3	16	110
Total	59	232	2,217

Although the DSNY maintains a record of collection tonnages by Sanitation District and District Section, it does not provide tonnage data at the census tract level.

2.2.3 PWCS Generation Rate Calculations

DSNY compiles weekly data on tons collected for each of the 59 Sanitation Districts. By summing the number of tons collected in a borough and dividing by that borough's population (for the per capita rate) or the number of households (for the per household rate), the weekly generation rate of that borough was calculated.

2.2.4 WCS Generation Rate Calculations

As discussed in Section 2.2, WCS generation rates were developed to weight strata composition estimates so they could be aggregated into a citywide composition estimate.

To calculate the WCS generation rates for the eight density/income strata, four types of information were used:

1. The average tons of residential Refuse, MGP, and Paper collected per week by DSNY. The DSNY provided this information for each of the City's 230 Sanitation District Sections for each season. For the purposes of this planning, the following months were used for each season:

■ Fall - September, October, November of 2004;

- Winter - January, February, March of 2005;
- Spring - April, May, June of 2005; and

■ Summer - July, August, September of 2005.
2. The reported population and the number of households for the 2,217 census tracts in the City. This information for the Year 2000 is available from the U.S. Census Bureau.
3. The strata assigned to each Census Tract in the City. In developing the WCS Residential sampling plan, each census tract in the City was assigned to one of nine strata, as described above ${ }^{4}$.
4. The reported population and number of households in the City for each of the City's 59 Sanitation Districts.

Developing the WCS generation rates by strata involved an eight-step process.
Step 1: A map of the City was prepared, showing Density/Income strata for each of the City's 2,217 census tracts. This map was prepared as a part of the development of the WCS residential sampling plan. For example, Figure 2-24 shows the Density/Income strata for each of the 296 census tracts in Manhattan.

[^17]

Figure 2-24
Manhattan Census Tracts by Density/Income Strata

Step 2: The Sanitation Districts and District Sections were superimposed on census tract maps. When the borders for the Sanitation Districts and Sections were placed over the census tracts, it became clear that the boundaries for census tracts and the boundaries for Sanitation Districts and District Sections are distinct from each other. For example, Manhattan District 3 contains four District Sections, as shown in Figure 2-25.

Figure 2-25
Manhattan District 3 Census Tracts by Housing Density and Income Strata (Grayscale)
One of these District Sections, Section 4, contains all or part of eight census tracts. Note that the census tracts within Manhattan District 3, Section 4 include three different density/income strata.

Step 3: The geographic center point of each census tract was determined. The census tract was then "assigned" to the District Section in which the geographic center point resided. As Figure 2-26 shows, Manhattan District 3, Section 4 includes all, or part of, eight census tracts with the geographical center point of each census tract indicated by a star. Although a significant portion of census tracts 32 and 38 are within Manhattan

District 3, Section 4, their geographical center points are in Manhattan District 3, Section 3. So census tracts 32 and 38 were assigned to Manhattan District 3, Section 3.

Figure 2-26
Manhattan District 3
Following this procedure, the six census tracts with their geographic centers in Manhattan District 3, Section 4 were assigned to Manhattan District 3, Section 4. They included census tracts $42,40,34,28,26.02$ and 24.

Step 4: The reported number of households in the census tracts assigned to Manhattan District 3, Section 4 were added together, as shown in Table 2-10. At this point in the procedure, all households in the census tracts are included in the estimate for Manhattan District 3, Section 4, even though a portion of a census tract may be outside the Section. For example, all the households in census tract 24 are included in the estimate for Manhattan District 3, Section 4, although part of census tract 24 is in Manhattan District 3, Section 3.

Table 2-10
Estimated Households in Manhattan Sanitation District 3, Section 4

Census Tracts	Households ${ }^{(1)}$
42	1,880
40	4,698
34	3,967
28	3,136
26.02	1,836
24	1,773
Total	$\mathbf{1 7 , 2 9 0}$
(1) Based on Year 2000 Census Data.	

As Table 2-10 shows, the estimated number of households in Manhattan District 3, Section 4 was 17,290.

Step 5: Step 4 was followed for each Section in a given District and all the households for all the Sections in a given District were added together, as shown in Table 2-11. This was the estimate based on census tracts.

Table 2-11
Estimated Households in Manhattan Sanitation District 3

Section	Households ${ }^{(1)}$
1	20,816
2	13,328
3	19,930
17,290	
Tota	71,364

(1) Number of households based on assigning census tracts to the Section in which the geographic center point of the census tract resides.

Step 6: To check the accuracy of the estimate, the estimated number of households in the District developed for generation rate planning were compared with the number of households reported by the NYC Department of City Planning for that District.

For example, the NYC Department of City Planning reported that there were 72,681 households in Manhattan District 3. This is within 1.8 percent of the 71,364 households estimated in Table 2-11. If the two figures were within 5 percent of each other, the procedure was determined to be a reasonable method of estimating households by Section for this District.

This procedure was applied to each of the City's 59 Sanitation Districts for both households and population. Forty-two of the City's 59 Sanitation Districts met the " 5 percent" criterion. For the other 17 Districts, further analysis was necessary.

Step 7: For the 17 Districts that did not meet the " 5 percent" criterion, the analysis was continued.

This additional analysis involved assigning a percentage of the households in a given Section to an adjacent Section. If the difference between the estimated number of households in a District and the number of households reported by the NYC Department of City Planning was greater than 5 percent in a given Sanitation District, then the households in census tracts straddling District boundaries were proportioned between the two Districts based on a visual estimate of the census tract's land area in each District. The estimated number of households was then recalculated. This procedure was repeated for other adjoining Districts until the estimated number of households was within 5 percent of the number of households in the Sanitation District, as reported by the NYC Department of City Planning ${ }^{5}$. For example, as shown in Figure 2-27, the initial estimate for number of households in Queens Districts 3 and 4 did not meet the 5 percent criterion. The estimated number of households for District 3 was 5.09 percent lower than the number reported by the NYC Department of City Planning. The estimated number of households for District 4 was 6.26 percent higher than the number reported by the NYC Department of City Planning.

[^18]

Figure 2-27
Queens Districts 3 and 4
By allocating the number of households in the Sections straddling the District boundaries proportionally to their land area and recalculating the number of households, the estimated number of households in District 3 and the number of households in District 3 reported by the NYC Department of City Planning were within 0.96 percent of each other. The estimated number of households and the number of households reported by the NYC Department of City Planning in District 4 were within 0.90 percent of each other.

After Steps 6 and 7 were carried out, an estimate of the number of households and population for every census tract, or portion of census tract in every Section in the City was available. Since each Census tract is uniquely identified as belonging to a single Density/Income strata, this means that the number of households (and population) for each strata in every Sanitation Section is available.

Step 8: A regression analysis for each of the strata was performed. As noted above, every census tract in the City was placed into one of nine strata. As a result of the previous steps, an estimate of the population and the number of households for each stratum in each Section of the City had been determined.

Of the 230 Sections in the City, there are 43 Sections which contained census tracts from only one stratum. For example, Manhattan District 8, Section 2 contained only census tracts from the High/High stratum. The remaining 187 Sections contained census tracts
from multiple strata. Figure 2-27 shows that Manhattan District 3, Section 4 has census tracts from three different Density/Income strata: High/High, High/Medium and High/Low.

A regression equation was used to determine the generation rate for each stratum. The regression equation is a statistical technique used here to estimate an average "tons per household" (or "tons per capita") value for each stratum. A simplified example can illustrate how the regression equation was used.

Example: Assume a case in which there are only three Sections and two strata.

- Section 1 has 100 households in strata A and 400 households in strata B and discards 190 tons of waste per year.
- Section 2 has 300 households in strata A and 200 households in strata B and discards of 220 tons of waste per year.
- Section 3 has 500 households in strata A and 800 households in strata B and discards 500 tons of waste per year

In the formula used to estimate the average number of tons discarded per household for each strata, X 1 is the average number of tons discarded by households in strata A and X 2 is the average number of tons discarded by households in strata B.

Because households in any given Section may not discard the average amount of waste for their stratum, there will be a difference between the generation based on the estimated average generation rates and the total generation reported by DSNY. This difference is represented by the symbol ε (epsilon). The formula looks like this:

$$
\begin{aligned}
& \text { Section } 1 \text { waste tons }=(100 * \mathrm{X} 1)+(400 * \mathrm{X} 2)+\varepsilon=190 \\
& \text { Section } 2 \text { waste tons }=(300 * \mathrm{X} 1)+(200 * \mathrm{X} 2)+\varepsilon=220 \\
& \text { Section } 3 \text { waste tons }=(500 * \mathrm{X} 1)+(800 * \mathrm{X} 2)+\varepsilon=500
\end{aligned}
$$

This regression equation is solved through the application of a statistical technique known as "Least Square Method". In this example, X1 $=0.49$ and X2 $=0.33$ (tons per household per year) are the estimates which best fit the data. The resulting estimates means that, for the two strata in the example, strata A has a generation rate of 0.49 tons per household per year and strata B has a generation rate of 0.33 tons per household per year.

In the actual analysis, generation rates for both population and households were estimated for Refuse, MGP, Paper and Waste for each of the eight strata using data from 227 of the 230 Sanitation Sections. Three Sanitation District Sections were excluded because they were non-residential areas.

2.2.5 Generation Rate Estimates

WCS generation rates were calculated on both a per capita basis and a per household basis for the eight strata. Using population, in per capita generation rates, is a widely accepted metric for reporting and comparing generation rates. However, waste is generated on a household basis and per capita generation rates do not account for differences in household size. Therefore, the WCS generation rates are reported on both a per capita and a per household basis. Table 2-12 presents the PWCS generation rates for the five boroughs and Table 2-13 presents the WCS generation rates for each of the eight strata.

Table 2-12
PWCS Generation Rates

	Per Capita				Per Housing Unit			
Borough	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste
Manhattan	0.35	0.06	0.03	0.45	0.68	0.12	0.06	0.86
Bronx	0.39	0.03	0.03	0.45	1.06	0.08	0.08	1.21
Brooklyn	0.19	0.02	0.02	0.23	0.51	0.06	0.04	0.61
Queens	0.20	0.03	0.02	0.24	0.55	0.07	0.05	0.66
Staten Island	0.60	0.08	0.05	0.73	1.62	0.23	0.13	1.97

Table 2-13
WCS Generation Rates

Density/Income Strata	Refuse	Paper	MGP					Waste
Refuse	Per Housing Unit							
Plaser	MGP	Waste						
High Density/High Income	0.34	0.09	0.04	0.47	0.53	0.14	0.06	0.74
High Density/Medium Income	0.27	0.03	0.02	0.31	0.65	0.08	0.05	0.78
High Density/Low Income	0.31	0.01	0.02	0.34	0.84	0.04	0.05	0.92
Medium Density/High Income	0.28	0.08	0.03	0.39	0.54	0.17	0.07	0.78
Medium Density/Medium Income	0.33	0.05	0.03	0.41	0.85	0.13	0.09	1.06
Medium Density/Low Income	0.35	0.02	0.02	0.40	1.02	0.06	0.07	1.15
Low Density/High Income	0.44	0.07	0.04	0.56	1.25	0.21	0.12	1.58
Low Density/Medium Income	0.36	0.02	0.03	0.42	1.20	0.09	0.11	1.40

The complete set of generation rate results is presented in Volume 1, Tables 1-12, 1-13, and 1-14 of the Final Report.

2.2.6 Generation Rates and Citywide Composition Estimates

Because the WCS was designed to estimate waste composition by housing density and income strata (and not the City as a whole), it was necessary to use the WCS generation rates to calculate citywide waste composition estimates. As noted in Steps 1 and 4 (Section 2.2.4), generation rates were calculated using actual weekly tonnages of refuse, MGP, and Paper collected and the population and households at the Sanitation District level provided by DSNY. This information was provided by Sanitation District for the entire City.

To calculate the percentage of newspaper in the waste (refuse and recycling) stream at the strata-level and citywide involved aggregating and weighting seasonal data.

1. The seasonal contribution of each stratum was calculated by dividing the annual generation of the stratum by the seasonal tonnage of that stratum. For example, the sum of the four seasons of waste generated by the High Density/High Income stratum was 31,279 tons. The amount generated during the summer was 7,357 tons. The summer contribution to this stratum's annual generation is 23.5 percent. That is, 23.5 percent of the waste generated annually by the High Density/High Income stratum was generated in the summer. The four seasonal contributions for the High Density/High Income strata were:

Season	Tons ${ }^{(1)}$	Percent ${ }^{(2)}$
Fall 2004	8,153	26.17%
Winter 2005	7,843	25.1%
Spring 2005	7,924	25.3%
Summer 2005	7,357	23.5%
Total	31,278	
(1)	Tables 1 1-37, 1-42, 1-47, and 1-52.	
(2) Seasonal percentage contribution of annual generation. (3) The annual amount of waste generated by the High Densit/ligh Income strata.		

This procedure was carried out for each stratum over each season.
2. To calculate composition for each material, the seasonal percentage of each material was multiplied by the seasonal contribution to the stream of waste. For example, the annual percentage of newspaper in the waste for the High Density/High Income strata, each seasonal contribution of the stratum was multiplied by the seasonal estimate for newspaper. The estimate percentage of newspaper for the High Density/High Income strata for summer was 14.51 percent. Multiplying 14.51 percent by 23.5 percent results in a summer estimate of 3.41 percent. Adding the four seasonal contributions provided an estimate of the annual percentage of newspaper in the High Density/High Income strata's waste of 13.43 percent.

Season	Percent ${ }^{(1)}$	Composition ${ }^{(2)}$	Seasonal Contribution
Fall 2004	26.17\%	12.7\%	3.3\%
Winter 2005	25.1\%	11.5\%	2.9\%
Spring 2005	25.3\%	15.1\%	3.8\%
Summer 2005	23.5\%	14.5\%	3.4\%
Total			$13.43 \%{ }^{(3)}$
(1) Percent contr (2) Tables 1-37, (3) The annual a Table 1-21.	ation. the waste genera	he High Density/High Inco	strata, Volume 1, Section 1 ,

3. To calculate citywide estimates, a similar procedure was used. The annual citywide tonnages were divided by the seasonal tonnages. For example, the sum of the four seasonal citywide waste tonnages was 258,411 tons. The citywide tonnage during the summer was 65,108 tons. The summer contribution to this stratum's annual generation is 25.2 percent. That is, 25.2 percent of the waste generated citywide for the year was generated in the summer. The four seasonal citywide tonnages were:

Season	Tons ${ }^{(1)}$	Percent ${ }^{(2)}$
Fall 2004	66,026	25.5%
Winter 2005	59,681	21.1%
Spring 2005	67,569	26.2%
Summer 2005	65,108	25.2%
Total	$\mathbf{2 5 8 , 4 1 1}{ }^{(3)}$	

(1) Tables 1-24, 1-25, 1-26, and 1-27.
(2) Seasonal percentage contribution of annual generation.
(3) The annual amount of waste generated citywide. Add text re: rounding.
4. To calculate the citywide composition of each material, the percentage of seasonal contribution to the stream was multiplied by the seasonal percentage estimate of the material. For example, to estimate the annual citywide percentage of newspaper in waste, the seasonal contributions of waste were multiplied by the seasonal composition estimates for newspaper.

Season	Percent ${ }^{(1)}$	Composition ${ }^{(2)}$	Seasonal Contribution
Fall 2004	25.5%	7.5%	1.9%
Winter 2005	23.1%	7.8%	1.8%
Spring 2005	26.2%	7.6%	2.0%
Summer 2005	25.2%	7.3%	1.8%
Total		$7.5{ }^{(3)}$	
(1)	Percent contribution to annual generation.		
(2) Tables 1-24, 1-25, $1-26$, and 1-27.			
(3) The annual percentage of newspaper in the waste citywide, Volume 1, Section 1, Table 1-32.			

It is important to understand that the tonnages and households on which these citywide composition estimates were based included the entire City, but the generation rates applied to only eight strata. Because the Low Density/Low Income strata represented a relatively small portion of the City, it was dropped from the study (Section 2.1.3.2.3).

The use of citywide data (tonnages, population and households) from DSNY and the data for eight, rather than nine, strata make the generation calculations more complex. For example, if the average weekly generation rate for the High Density/High Income strata of 7,819.49 tons (Table 1-21, Volume 1, Section 1) is multiplied by 52 weeks and divided by the number of households, 538,713 (Table 1-5, Volume 1, Section 1), the result is 0.75 tons per household per week.

However, the weekly generation rate for the High Density/High Income strata, as shown in Table 1-13 (Volume 1, Section 1) is 0.74 tons per household per week. The reason the generation rate shown in Table 1-13 is slightly lower than the generation rate calculated from Table 1-21 is that Table 1-13 used an analysis that included all nine strata while the analysis used in Table 1-21 was applied to eight strata.

NYC Waste Characterization Study
Final Report, Volume 2
Section 3: Planning for the Street Basket Waste Study

Section 3 Planning for the Street Basket Waste Study

3.1 Sampling Plan for the Street Basket Waste Study

The goal of the Street Basket Waste Study was to estimate the composition of street basket waste from dedicated DSNY street basket routes. Street basket waste is collected on some DSNY collection routes that also collect residential waste, as well as institutions such as schools and churches. Dedicated street basket routes are those routes that collect only street baskets.

Because dedicated street basket routes collected only a portion of all the street baskets in the City and because street basket trucks collect from baskets multiple times daily, it was not feasible to calculate a generation rate for street baskets.

The sampling plan for street basket waste addressed the same three issues addressed in the Residential Study: (1) the number of samples to be selected; (2) the method for selecting routes; and (3) the weight of each sample.

3.1.1 Sample Number

According to the DSNY, there were about 2,700 dedicated street basket collection routes in the City during the four WCS Sorting Periods. Each of the City's five boroughs had at least one dedicated street basket route per season. Collections on these dedicated routes might occur several times a day and several days per week. The "universe" of street basket routes from which samples were selected was the product of the approximately 2,700 dedicated routes and the number of collections per week. For example, during the three-week Summer Sorting Period, there were 358 dedicated street basket routes for Manhattan. The number of times these street baskets were collected on these routes during the Sorting Period was 836 . The term "route occurrence" is used to describe each individual collection event. In the Summer Sorting Period, there were 836 route occurrences.

For the approximately 2,700 dedicated routes during the WCS, there was a universe of over 7,300 route occurrences from which street basket samples could be taken over the four Sorting Periods. Table 2-14 shows the number of dedicated street basket routes in each borough for each of the four seasons of the WCS and the universe of routes from which samples of the street basket waste could be acquired.

Table 2-14
Number of Street Basket Waste Collection Routes by Borough and Season

Borough	District	Fall	Winter	Spring	Summer
Manhattan	01	32	36	40	40
Manhattan	02	40	42	45	44
Manhattan	03	35	36	36	35
Manhattan	04	21	23	24	24
Manhattan	05	54	54	55	56
Manhattan	06	20	26	26	26
Manhattan	07	27	29	29	29
Manhattan	08	28	30	31	31
Manhattan	09	11	14	14	14
Manhattan	10	15	15	15	15
Manhattan	11	15	15	15	15
Manhattan	12	25	28	28	29
Manhattan Total		323	348	358	358
Bronx	04	19	19	20	19
Bronx	06	12	12	12	12
Bronx	07	12	12	12	12
Bronx	09	6	6	6	6
Bronx	10	2	2	2	2
Bronx Total		51	51	52	51
Brooklyn North	01	10	11	11	11
Brooklyn North	02	18	17	15	18
Brooklyn North	03	6	6	6	6
Brooklyn North	04	6	7	7	6
Brooklyn North	05	4	4	4	4
Brooklyn North	08	6	6	6	6
Brooklyn North Total		50	51	49	51
Brooklyn South	06	6	6	6	6
Brooklyn South	07	6	6	7	7
Brooklyn South	09	6	7	7	7
Brooklyn South	10	6	6	6	6
Brooklyn South	11	6	9	9	9
Brooklyn South	12	12	13	12	13
Brooklyn South	13	7	7	7	7
Brooklyn South	14	8	8	7	9
Brooklyn South	15	6	6	6	6
Brooklyn South	16	6	7	7	7
Brooklyn South	17	6	6	6	6
Brooklyn South	18	1	1	1	1
Brooklyn South Total		76	82	81	84
Queens East	07	7	8	8	8
Queens East	08	5	5	5	5
Queens East	10	7	8	9	9
Queens East	11	6	6	6	6
Queens East	12	9	9	9	9
Queens East	13	6	6	6	6
Queens East	14	7	6	6	7
Queens East Total		47	48	49	50
Queens West	01	13	13	14	14
Queens West	02	13	13	13	13
Queens West	03	10	10	12	12
Queens West	04	12	12	12	12
Queens West	05	12	16	17	16
Queens West	06	19	17	12	19
Queens West Total		79	81	80	86
Staten Island	01	6	7	8	9
Staten Island	02	6	6	6	6
Staten Island	03	6	6	5	6
Staten Island Total		18	19	19	21

To determine the number of samples needed, R. W. Beck analyzed street basket composition data from the 2002 Seattle Litter Composition Study (the "Seattle Study"). The variability of the street basket waste in the Seattle Study indicated that 200 samples of street basket waste would be expected to achieve a 90 percent confidence level for a confidence interval of ± 7.5 percent for the four major classes of materials: paper, plastic, metal, and glass. It was decided to divide the sampling and sorting evenly across the four seasons, analyzing 50 street basket samples per season (Table 2-1 in Volume 2, Section 2).

3.1.2 Street Basket Sample Selection

Each season, samples for the Street Basket Study were randomly selected from the universe of routes shown in Table 2-14. A random number generator was used to select the routes and the list of selected routes was then given to DSNY.

3.1.3 Sample Unit Weight

New York City does not have street basket recycling, so all material collected in street basket waste is refuse. A sample weight of 200 to 300 pounds, the industry standard for refuse samples (as discussed in Section 2.1.2.3.), was used for the street basket waste samples. The weight of the street basket samples sorted during the WCS is presented in Volume 4, Appendix H, Table H-12.

NYC Waste Characterization Study
Final Report, Volume 2
Section 4: Implementation of the Studies

Section 4 Implementation of the Studies

4.0 Introduction

For the purposes of this discussion, the implementation of the PWCS and the WCS has been divided into three areas:

1. Sampling, in which samples of refuse, recycling, and street basket waste were acquired;
2. Sorting, in which the samples of refuse, recycling, and street basket waste were separated into material categories; and
3. Data Analysis, in which the information from the sampling and sorting procedures was compiled and analyzed.

4.1 Sampling

The implementation of the PWCS and WCS sampling plans involved the logistics of the sampling procedure, the protocol for identifying the trucks collecting sample loads, and the protocol for sample acquisition.

4.1.1 Sampling Logistics

4.1.1.1 Sampling Sites

Samples of residential refuse and recycling and street basket waste were acquired at the following four facilities under contract to DSNY to receive refuse or recycling.

- Harlem River Yards is a transfer station owned and operated by Waste Management, Inc. and located at 132nd Street and Saint Anne Avenue in the Bronx. Samples of residential refuse and street basket waste from Manhattan, the Bronx and Queens were acquired at this facility.
- Varick I is a transfer station owned and operated by Waste Management, Inc. and located at 215 Varick Street in Brooklyn. Samples of residential refuse and street basket waste from Brooklyn and Staten Island were acquired at this facility.
■ The Shepherd Avenue Facility is a Paper processing facility owned and operated by Metropolitan Paper and located at 877 Shepherd Avenue in Brooklyn. Samples of Paper recycling from all boroughs were acquired at this facility.
- Hugo Neu is an MGP processing facility owned and operated by Sims Hugo Neu (formerly Hugo Neu East) on Greenpoint Avenue in Long Island City, Brooklyn. Samples of MGP from all boroughs were acquired at this facility.

After samples from these facilities were acquired, they were taken to a different location for sorting (Section 4.2.2.1).

4.1.1.2 Sampling Schedule

There were two PWCS Sorting Periods and four seasonal WCS Sorting Periods. The dates these Sorting Periods took place are shown in Figure 2-28.

Sorting Period	Date
PWCS Refuse Sorting Period	May 15 to May 28, 2004
PWCS Recycling Sorting Period	June 7 to June 12, 2004
WCS Fall Sorting Period	October 18 to November 6, 2004
WCS Winter Sorting Period	March 8 to March 29, 2005
WCS Spring Sorting Period	May 9 to May 27, 2005
WCS Summer Sorting Period	August 1 to August 27, 2005

Figure 2-28
Dates of PWCS and WCS Sorting Periods
Collection of curbside residential refuse and recycling in the City takes place between 6:00 a.m. and approximately 11:00 a.m. each day, Monday through Saturday. The Sampling Plans (as discussed in Section 2) identified the collection routes from which samples were to be acquired. DSNY determined the specific trucks that would be collecting on those routes and arranged to have them deliver their loads to one of the four sampling sites. Collection took place during the day, after which trucks returned to their garage to await relay during the night shift. The trucks delivering sample loads arrived at the transfer stations/processing facilities between the hours of 12:00 midnight and approximately 6:00 a.m. the day after the waste was collected. Waste collected on Saturday morning was delivered to the sampling sites between 12:00 midnight and 6:00 a.m. Monday morning. Samples were acquired by the Sampling Teams during these six-hour periods.

4.1.1.3 Sampling Participants

The participants involved in the acquisition of samples included:

- The staff at each of the four sampling sites, including the Facility Manager, the equipment drivers, and others;

■ The Sampling Team which consisted of a Director of Sampling, four Sample Managers and four assistants;

- The Project Team's Data Management Team that received, compiled, and disseminated information on sampling;

■ DSNY BWPRR staff that assisted in directing traffic at facilities and provided a vital communications link between DSNY, the Sampling Team, and the facility staff; and

- DSNY Collections Bureau that identified the trucks from which samples were to be acquired and provided around-the-clock information on truck breakdowns and delays. In addition, DSNY Collections Bureau Supervisors checked with the BWPRR staff and Sampling Team about missing trucks or late deliveries.

The roles that each of these parties played in the sampling procedures is described in more detail in Sections 4.1.1.4 and 4.1.2.

4.1.1.4 Truck Number Transmission and Delivery of Samples

The Sampling Plans for the PWCS and the WCS identified the collection routes from which samples of Refuse, MGP, Paper and Street Basket Waste were to be acquired. Prior to each quarterly Sorting Period, the Project Team provided DSNY with the list of the routes to be sampled during that period. This list was based on the Sampling Plans described in Sections 2.1 and 3.1. Trucks were assigned to pre-selected sample routes by the District Supervisor early in the morning of each sample collection day.

Monday through Saturday during each Sorting Period, the DSNY Collections Bureau identified the specific trucks that would be collecting from the routes identified in the Sampling Plan. The list of these trucks, by truck number and the route, were faxed by the DSNY Collections Bureau to the Data Management Team each morning between 9:00 a.m. and 11:00 a.m. This list was checked, duplicated and disseminated to the participants in the sampling procedures, including the staffs at the four facilities, the DSNY Collections Bureau, the BWPRR staff and the Sampling Team. In addition, the Sampling Team brought extra hard copies of the Truck Number Forms to the facilities each night. An example of the forms used to transmit the truck numbers is shown in Table 2-15.

Table 2-15
Forms Used to Transmit Truck Numbers
This is a portion of the form supplied by DSNY to transmit truck numbers:
New York City Department of Sanitation Residential Waste Characterization Studiy - Phase

Winter Sampling Summary

This is a portion of the form that R. W. Beck prepared for use each day of sampling.

New York City Department of Sanitation

RESIDENTIAL WASTE CHARACTERIZATION STUDY - PHASE I - SUMMER

REFUSE ROUTES

Delivery Schedule Tuesday, August 09, 2005

Date Refuse is Collected Vendor for Delivery Delivery Date Delivery Hours Borough of Origin Number of Deliveries

Monday, August 08, 2005
Harlem River Yard
Tuesday, August 09, 2005
Midnight - 8 am
Manhattan
7

SELECTED REFUSE ROUTES

Borough	District	Section	Route	Truck Number
Manhattan	2	2	1	25 CW143
Manhattan	2	3	2	25CU316
Manhattan	3	1	4	25 CU082
Manhattan	6	3	1	25CW597
Manhattan	7	3	2	25CW179
Manhattan	7	3	3	25CW595
Manhattan	8	4	2	25CW562

The trucks collecting on the selected routes were diverted by DSNY to the appropriate sampling sites. When a truck with a sample load arrived at the facility, it was identified by the facility staff, the BWPRR staff or the Sampling Team, and directed to a designated area where the sample was acquired.

On a few occasions, trucks that were scheduled to deliver sample loads did not arrive, due to mechanical break-downs or other operational problems. Typically the Sample Manager or the BWPRR staff noted the missing truck and checked with the DSNY Collections Bureau. This information would also be communicated to the Director of Sampling by cell phone. In some cases, sample trucks were delayed because of breakdowns and the Sampling Team waited until the truck arrived and then acquired the sample. In other cases, the sample truck could not make delivery and a replacement sample was used.

To provide a cushion for missed truck deliveries, the Project Team took "back-up" samples each season. The "back-up" samples were only sorted if the regularly scheduled sample load could not be delivered. In the WCS, back-up samples were necessary for Refuse, MGP and Paper for each stratum and for street basket waste. Typically two or three back-up refuse samples and one or two MGP and Paper samples were kept on hand for each stream and stratum. If, at the end of the Sorting Period, back-up samples were not sorted, they were disposed, as opposed to being sorted.

4.1.2 Sample Acquisition

When a truck with a sample load arrived at the transfer station/processing facility, it was directed to a designated area where the sample was acquired. Prior to the truck tipping its load the Sample Manager selected a portion of the tipped load at random. The Sample Manager randomly selected one quarter of the tipped load: right, left, front or rear. This selected portion was communicated to the driver of a front-end loader ("FEL") who picked up the selected portion of the load in the FEL's bucket. The FEL buckets at the sampling sites varied in size from six to 12 cubic yards.

The FEL's bucket was then lowered so that the Sample Manager and his/her assistant could pull material from the bucket into 96 -gallon carts. As the bucket was lowered, the Sample Manager randomly selected the section of the bucket from which the sample would be taken: right, left or center. The sample was taken from this area of the FEL bucket. In most cases, the density of the refuse required a 200 to 300 -pound sample to be collected in two carts. Most recycling samples required only one cart.

Sample Mangers found that some randomly selected portions sometimes included bulk items, such as large appliances, upholstered chairs, or bed frames. The presence of bulk items was a random occurrence because the portion of the tipped load was randomly selected. Because these bulk items were too large to put into a 96 -gallon cart, they were manually set aside and weighed separately. The weight of the bulk item and a description of the item were recorded on the Sample Management Form. The bulk item was then returned to the tipping floor to be discarded. The weight of all bulk items was
incorporated into total sample weight and the sample's composition. The data was recorded when the sample was sorted and weighed at the sorting site. If, for example, the randomly-selected portion of the tipped load of refuse included a wooden bed, the bed would be weighed and the refuse in the cart would be weighed. If the bed weighed 50 pounds and the refuse in the cart weighed 160 pounds, the total weight of the sample would be 210 pounds. After weighing the bed, the Sample Manager would record the weight and a brief description of the bed on the Sample Management Form. The bed would be returned to the load of refuse at the transfer station and would not be transported to the sorting site. Only the cart with 160 pounds of refuse would be taken to the Sorting Site for sorting and weighing. The wooden bed would be included in the "Furniture" material category and the weight of the bed, 50 pounds, would be assigned to that material category on the Sample Detail Form (Section 4.3.3).

In some cases, the sampling plan called for acquiring multiple sampling units from a single truck. In these cases the first sample was acquired and then the entire process repeated, using the remaining portion of the tipped load. Bulk items that had been included in previous samples were excluded for subsequent samples. The rationale for taking multiple samples from a single truck is discussed in Section 4.1.2.1.

After the sample had been acquired, each cart was weighed to be sure the total weight of each sample met the minimum weight threshold. After the weight had been confirmed, the transfer station's FEL managed the remainder of the tipped load as it normally would in the course of facility operations.

A label showing the date the sample was acquired, sample number, a sample code and the truck number was attached to each cart. The Sample Manager also completed a Sample Management Form for each sampling unit. An example of the label attached to the cart is shown in Section 4.3.1, Figure 2-42. An example of the Sample Management Form us shown in Section 4.3.2, Figure 2-43.

After all samples to be acquired that day had been weighed and labeled, they were loaded on a truck and transported by the Sample Management Team to sorting sites (Section 4.2.2.1) where they were unloaded and positioned for sorting.

Tables 2-16, 2-17, and 2-18 summarize the acquisition of samples. Table 2-16 presents the number of samples targeted and acquired for the PWCS and the WCS, Table 2-17 presents the weights targeted and acquired, and Table 2-18, lists the number of samples and the average sample weights for the PWCS and the WCS.

Weather, operational changes, and human error produced a degree of uncertainty around the acquisition of the targeted number of samples each season. Therefore, back-up samples were acquired and, in some cases, sorted, to be sure a minimum number of samples were included each season. This is the reason there is some variation in the number of samples shown each season in the following tables.

Table 2-16
Number of Samples Targeted and Acquired ${ }^{(1)}$
Number of Samples Targeted

Streams	PWCS $^{(2)}$	Fall	Winter	Spring	Summer	WCS
Refuse	200	400	400	400	400	1,600
Paper	100	80	80	80	80	320
MGP	100	320	320	320	320	1,280
Street Basket	-	50	50	50	50	200
Total	$\mathbf{4 0 0}$	$\mathbf{8 5 0}$	$\mathbf{8 5 0}$	$\mathbf{8 5 0}$	$\mathbf{8 5 0}$	$\mathbf{3 , 4 0 0}$

Number of Samples Acquired

Streams	PWCS $^{(2)}$	Fall	Winter	Spring	Summer	WCS
Refuse	200	399	409	401	400	1,609
Paper	99	80	85	80	80	325
MGP	104	320	340	320	320	1,300
Street Basket	-	50	50	50	50	200
Total	403	849	$\mathbf{8 8 4}$	$\mathbf{8 5 1}$	$\mathbf{8 5 0}$	$\mathbf{3 , 4 3 4}$

(1) Based on the results of the PWCS, which showed that MGP samples were more heterogeneous than Paper samples, it was decided to target more MGP samples than Paper samples for the WCS. Heterogeneity of the population, in this case MGP, requires that more samples be drawn in order to obtain the same degree of accuracy.
(2) Street Basket samples were not collected during the Preliminary Waste Characterization Study.

Table 2-17
Sample Weights Targeted and Acquired
Sample Weights Targeted

Streams	PWCS ${ }^{(1)}$	Fall	Winter	Spring	Summer
Refuse	200	200	200	200	200
MGP	100	100	100	100	100
Paper	100	100	100	100	100
Street Basket	-	200	200	200	200

Average Sample Weights Acquired

Streams	PWCS ${ }^{(1)}$	Fall	Winter	Spring	Summer
Refuse	234	216	225	228	229
MGP	118	124	131	153	165
Paper	116	113	124	136	134
Street Basket	-	209	221	233	223

(1) Street Basket samples were not collected during the Preliminary Waste Characterization Stu

Table 2-18
Number of Samples and Average Sample Weights for PWCS and WCS

Stream	PWCS ${ }^{(1)}$		Fall 2004		Winter 2005		Spring 2005		Summer 2005	
	Number of Samples	Average Sample Weight								
Refuse	200	234	399	216	409	225	401	228	400	229
MGP	104	118	320	124	340	131	320	153	320	165
Paper	99	116	80	113	85	124	80	136	80	134
Street Basket	-	-	50	209	50	221	50	233	50	223

(1) Street Basket samples were not collected during the Preliminary Waste Characterization Study.

4.1.2.1 Statistical Validity of Multiple Samples from a Single Truck

The purpose of the WCS was to characterize the waste from eight Housing Density and Income Strata. Underlying this purpose was the desire to ascertain whether waste from each of the eight strata share, or do not share, certain characteristics. That is, Refuse or Recycling from the Medium Density/Medium Income stratum has certain average traits and we wished to know whether these traits are measurably different from the average traits of Refuse or Recycling from, for example, the High Density/High Income stratum.

The sampling unit for the WCS is 200 to 300 pounds of Refuse (or 100 to 125 pounds of recycling), not a collection route. It has been assumed that the collection trucks completing each route are essentially full and of similar size. These full trucks are a convenient way to obtain the sampling units desired, and each truck holds many such sampling units. Therefore, when a Route Occurrence is randomly selected from the universe of Route Occurrences, just one sampling unit has been selected from that route and many more sampling units are still available from that same truck.

Throughout the WCS, sample selections were made in as random a fashion as practical. Route Occurrences were randomly selected from the universe of Route Occurrences for each stratum. The sampling units were randomly selected from the trucks that delivered the waste. In these ways, each sampling unit generated in the eight strata had an equal opportunity to be sorted and analyzed.

4.2 Sorting

The next step in characterizing waste for the PWCS and WCS was sorting the samples that had been acquired.

4.2.1 Sort Categories

Sampling units of Refuse, MGP, Paper and Street Basket Waste were sorted by material. The number and types of material categories were the basic units of the analysis and the building blocks used to describe the composition of the waste.

4.2.1.1 Material Groups and Categories

The materials into which waste was sorted changed during the course of the PWCS and WCS, and these changes are described in Sections 4.2.1.3 and 4.2.1.4. The materials and procedures used in the Fall, Winter and Spring Sorting Periods are referenced here because they were used for the majority of the samples that were sorted during the WCS.

Four levels of classification were used to describe the sorted materials:

- Material Groups were the largest class of materials, consisting of Paper, Plastic, Glass, Metal, Organics, Appliances and Electronics, Construction and Demolition Debris, Miscellaneous Inorganics, and Household Hazardous Wastes.

■ Material Subgroups were a subdivision of material groups. For example, within the Paper groups, there were six material subgroups: ONP, OCC, Mixed Paper, Beverage Cartons, Compostable Paper, and Other Paper.

- Material Categories were a subdivision of material groups and subgroups. For example, within the Mixed Paper subgroup, there were four material categories: High Grade Paper, Mixed Low Grade Paper, Phone Books/Paperbacks, and Paper Bags. Some material subgroups, such as newspaper, were not subdivided further.
- Material Subcategories were a subdivision of material categories. For example, the Plastics material group included a subgroup of Injection Molded Tubs. The subgroup of Injection Molded Tubs was divided into two material categories: \#1-\#2 Tubs and \#3 through \#7 Tubs. The \#1-\#2 Tubs were divided into two material subcategories: \#1 PET and \#2 HDPE.

Certain materials, such as Newspaper and Wet-cell batteries were not subdivided into all four of these classifications. Table 2-19 shows the materials in each level of classification. Table 2-19 also shows those materials ("R") designated for recycling under New York City's current curbside recycling program during the study period, those materials ("PR") for which markets exist and which could be added to a future New York City curbside program, and those materials ("NR") that are not designated for recycling under New York City's curbside recycling program because established or emerging markets do not presently exist.

Table 2-19
Material Groups, Subgroups, Categories, and Subcategories

Material Group	Material Subgroup	Material Category	Material Subcategory	Recycling Designation ${ }^{(1)}$
Paper	ONP	Newspaper		R Paper
Paper	OCC	Plain OCC/Kraft Paper		R Paper
Paper	Mixed Paper	High Grade Paper		R Paper
Paper	Mixed Paper	Mixed Low Grade Paper		R Paper
Paper	Mixed Paper	Phone Books/Paperbacks		R Paper
Paper	Mixed Paper	Paper Bags		R Paper
Paper	Bev Cartons	Polycoated Paper Containers		R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		NR-Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups		NR-Paper
Paper	Other Paper	Other Nonrecyclable Paper		NR-Paper
Plastic	PET Bottles	PET Bottles		R Plastics
Plastic	HDPE Bottles	HDPE Bottles	Natural	R Plastics
Plastic	HDPE Bottles	HDPE Bottles	Colored	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers	\#1 PET	PR-Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers	\#2 HDPE	PR-Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles	\#3 PVC	PR-Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles	\#4 LDPE	PR-Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles	\#5 PP	PR-Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles	\#7 Other	PR-Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs	\#3 PVC	PR-Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs	\#4 LDPE	PR-Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs	\#5 PP	PR-Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs	\#7 Other	PR-Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		PR-Plastics
Plastic	Other Plastic Products	Other PVC		NR-Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		PR-Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		PR-Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		PR-Plastics
Plastic	Film	Plastic Bags		PR-Plastics
Plastic	Film	Other Film		PR-Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		NR-Plastics
Plastic	Other Plastic Products	Other Plastics Materials		NR-Plastics
Glass	Container Glass	Clear Container Glass		R Glass
Glass	Container Glass	Green Container Glass		R Glass
Glass	Container Glass	Brown Container Glass		R Glass
Glass	Mixed Cullet	Mixed Cullet		R Glass
Glass	Container Glass	Other Container Glass		R Glass
Glass	Other Glass	Other Glass		PR-Glass
Metal	Aluminum	Aluminum Cans		R Metal
Metal	Aluminum	Aluminum Foil/Containers		R Metal
Metal	Aluminum	Other Aluminum		R Metal
Metal	Non-Ferrous	Other Non-Ferrous		R Metal
Metal	Ferrous	Tin Food Cans		R Metal
Metal	Ferrous	Empty Aerosol Cans		R Metal
Metal	Ferrous	Other Ferrous		R Metal
Metal	Other Metal	Mixed Metals		R Metal

(1) The three recycling designations used here are:
$R=$ Materials designated for recycling under New York City's current curbside recycling program during the study period.
$\mathrm{PR}=$ Materials from which markets exists and which may be added to a future New York City curbside recycling program.
NR = Materials not designated for recycling under New York City's current curbside recycling program for which established or emerging markets do not exist.

Table 2-19
Material Groups, Subgroups, Categories, and Subcategories (continued)

Material Group	Material Subgroup	Material Category	Material Subcategory	Recycling Designation
Organic	Yard	Leaves And Grass		NR-Other
Organic	Yard	Prunings		NR-Other
Organic	Wood	Stumps/Limbs		NR-Other
Organic	Food	Food		NR-Other
Organic	Wood	Wood Furniture/Furniture Pieces		NR-Other
Organic	Wood	Non-C\&D Untreated Wood		NR-Other
Organic	Textiles	Non-Clothing Textiles		NR-Other
Organic	Textiles	Clothing Textiles		NR-Other
Organic	Textiles	Carpet/Upholstery		NR-Other
Organic	Diapers/Hygeine	Disposable Diapers and Sanitary Products		NR-Other
Organic	Misc. Organic	Animal By-Products		NR-Other
Organic	Misc. Inorganic	Rubber Products		NR-Other
Organic	Textiles	Shoes		NR-Other
Organic	Textiles	Other Leather Products		NR-Other
Organic	Misc. Organic	Fines		NR-Other
Organic	Textiles	Upholstered or Other Organic-Type Furniture		NR-Other
Organic	Misc. Organic	Miscellaneous Organics		NR-Other
Appliances \& Electronics	Ferrous	Appliances	Ferrous	R Metal
Appliances \& Electronics	Non-Ferrous	Appliances	Non-Ferrous	R Metal
Appliances \& Electronics	Household Appliance - Plastic	Appliances	Plastic	NR-Other
Appliances \& Electronics	Electronic.AV/Computer	Audio/Visual Equipment	Cell Phones	NR-Other
Appliances \& Electronics	Electronic.AV/Computer	Audio/Visual Equipment	Other	NR-Other
Appliances \& Electronics	Electronic.AV/Computer	Computer Monitors		NR-Other
Appliances \& Electronics	Electronic.AV/Computer	Televisions		NR-Other
Appliances \& Electronics	Electronic.AV/Computer	Other Computer Equipment		NR-Other
C\&D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates		NR-Other
C\&D Debris	Wood	Treated/Contaminated Wood		NR-Other
C\&D Debris	Inorganic C\&D	Gypsum Scrap		NR-Other
C\&D Debris	Inorganic C\&D	Rock/Concrete/Bricks		NR-Other
C\&D Debris	Inorganic C\&D	Other Construction Debris		NR-Other
Miscellaenous Inorganics	Misc. Inorganic	Miscellaneous Inorganics		NR-Other
Miscellaenous Inorganics	Misc. Inorganic	Ceramics		NR-Other
HHW	HHW	Oil Filters		NR-Other
HHW	HHW	Antifreeze		NR-Other
HHW	HHW	Wet-Cell Batteries		NR-Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel		NR-Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues		NR-Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues		NR-Other
HHW	HHW	Pesticides/Herbicides/Rodenticides		NR-Other
HHW	HHW	Dry-Cell Batteries		NR-Other
HHW	HHW	Fluorescent Tubes		NR-Other
HHW	HHW	Mercury-Laden Wastes		NR-Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers		NR-Other
HHW	HHW	Home Medical Products		NR-Other
HHW	HHW	Other Potentially Harmful Wastes		NR-Other
(1) The three recycling designations used here are:				
$\begin{aligned} & R=\text { Materials designatec } \\ & P R=\text { Materials from whic } \\ & \text { NR = Materials not desig } \end{aligned}$	for recycling under New York City markets exists and which may b ted for recycling under New York	ent curbside recycling program during the study peria d to a future New York City curbside recycling progra current curbside recycling program for which estab	or emerging ma	kets do not exist.

Bottles and cans were subdivided further in order to obtain more detailed information about the waste stream. Bottles and cans were separated into deposit, non-deposit and potential deposit categories, based on their classification in the current New York State Redeemable Container Law. They were also divided into single serve (twenty-four ounces or less), multi-serve (greater than twenty-four ounces) and non-beverage containers. The containers in each group were weighed collectively, to determine those containers' contribution to the stream as a whole, counted and re-categorized. Table 2-20 presents the materials that were sub-sorted and the criteria used for each material. The sorting of deposit and non-deposit subcategories began in the PWCS and became part of the subsorting procedure in the WCS. The subsorting of single-serve, multi-serve, and non-beverage containers began in the WCS.

Table 2-20
Materials and Criteria for Subsorting

Material	Deposit $^{(1)}$	Non-Deposit	Potential Deposit $^{(2)}$	Single Serve	Multi-Serve	Non-Beverage
PET Bottles	X	X	X	X	X	X
HDPE Bottles: Natural		X	X	X	X	X
HDPE Bottles: Colored		X	X	X	X	X
\#3 PVC Bottles		X	X	X	X	X
\#4 LDPE Bottles		X	X	X	X	X
\#5 PP Bottles	X	X	X	X	X	
\#7 Other Bottles	X	X	X	X	X	X
Clear Container Glass	X	X	X			
Green Container Glass	X	X				
Brown Container Glass	X	X	X			
Other Container Glass	X	X	X			
Aluminum Cans	X	X	X			

(1) Containers included in the New York State Redeemable Container Law.
(2) Containers under consideration for inclusion in an expanded New York State Redeemable Container Law, including iced tea bottles and cans, sport drink bottles, cans/bottles containing juice drink that is less than 70 percent pure vegetable or fruit juice.

4.2.1.2 Use of Categories for all Streams

Material groups, subgroups, categories and subcategories were used for all samples acquired in the PWCS and WCS, including residential Refuse, residential MGP, residential Paper and Street Basket Waste. Some changes were made in the categories between the PWCS and the WCS and between the Fall/Winter/Spring Sorting Periods to the Summer Sorting Period in the WCS. These changes are described below.

Because the goal of the Multi-Unit Study was to determine factors leading to recycling success, and not to estimate the composition of the waste, fewer material categories were used in that Study (Volume 3).

4.2.1.3 Changes in Categories from PWCS to WCS

Sampling units of Refuse and Recycling were sorted into 104 material categories in the PWCS. Based on the results of the PWCS, it was decided to consolidate certain material categories and expand others. The amendments to the sort categories are shown in Table 2-21. Certain materials, such as single-use cameras and disposable razors, were found so infrequently during the PWCS that it was decided to eliminate them as separate categories. On the other hand, DSNY's interest in the composition of durables in the waste stream resulted in expanding or adding to these categories. Table 2-21 shows the changes in the materials from the PWCS to the Fall Sorting Period of the WCS.

Table 2-21
Changes in Materials from PWCS to WCS

Material Group	PWCS Material Categories: Subcategory	Material Group	WCS Material Categories: Subcategory
Paper	Phone Books	Paper	Phone Books/Paperbacks ${ }^{(1)}$
Paper	Paperbacks	Paper	
Plastic	PET Bottles - Deposit	Plastic	PET Bottles ${ }^{(2)}$
Plastic	PET Bottles - Non-Deposit	Plastic	
Plastic	Single Use Cameras	Plastic	Other Plastic Products ${ }^{(1)}$
Plastic	Disposable Razors	Plastic	
Glass	Clear Glass Bottles - Deposit	Glass	Clear Glass Bottes ${ }^{(2)}$
Glass	Clear Glass Bottles - Non-Deposit	Glass	
Glass	Green Glass Bottles - Deposit	Glass	Green Glass Bottes ${ }^{(2)}$
Glass	Green Glass Bottles - Non-Deposit	Glass	
Glass	Brown Glass Bottles - Deposit	Glass	Brown Glass Bottes ${ }^{(2)}$
Glass	Brown Glass Bottles - Non-Deposit	Glass	
Metal	Aluminum Cans - Deposit	Metal	Aluminum Cans ${ }^{(2)}$
Metal	Aluminum Cans - Non-Deposit	Metal	
Organics	Shoes - Leather	Organics	Shoes ${ }^{(1)}$
Organics	Shoes - Other	Organics	
Organics	Shoes - Rubber	Organics	
Organics	Miscellaneous Organics	Organics	Organic: Wood Furniture/Furniture Pieces ${ }^{(3)}$
Organics		Organics	Organic: Upholstered or Other Organic-Type Furniture ${ }^{(3)}$
Appliances/Electronics	Small Appliances	Appliances/Electronics	Appliances: Ferrous ${ }^{(3)}$
Appliances/Electronics		Appliances/Electronics	Appliances: Non-Ferrous ${ }^{(3)}$
Appliances/Electronics		Appliances/Electronics	Appliances: Plastics ${ }^{(3)}$
C\&D Debris	Fiberglass Insulation	C\&D Debris	Other Construction Debris ${ }^{(1)}$
C\&D Debris	Asphaltic Roofing	C\&D Debris	
HHW	Gasoline/Kerosene	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel ${ }^{(1)}$
HHW	Motor Oil/Diesel Oil	HHW	
HHW	Latex Paint	HHW	Latex Paints/Water-Based Adhesives/Glues ${ }^{(1)}$
HHW	Water and Solvent-Based Adhesives/Glues	HHW	
HHW	Asbestos	HHW	Other Potentially Harmful Wastes ${ }^{(1)}$
HHW	Explosives	HHW	
HHW	Smoke Detectors	HHW	

(1) Because very small amounts of the materials in certain PWCS categories were found, the categories were aggregated for the WCS.
(2) In the WCS, bottles and cans were subsorted into various deposit types (e.g. Deposit, Non-Deposit, Potential Deposit) and then sometimes container sizes (e.g. Single Serve, Multi Serve, Non-Beverage).
(3) An interest in the repairability of durable items led to the expansion of the PWCS category into more specific categories to obtain more detailed information about the waste.

4.2.1.4 Changes in Categories from WCS Fall/Winter/Spring to Summer

During the first three Sorting Periods of the WCS, 91 material categories were used to sort Refuse, Recycling and Street Basket Waste samples. After the Spring Sorting Period, the number of material categories was increased to provide more detail about the composition of durables and film in the waste stream. Table 2-22 shows the changes in the material categories from the Fall/Winter/Spring Sorting Periods to the Summer Sorting Period.

Table 2-22
Changes in Materials from Fall/Winter/Spring to Summer in the WCS

4.2.2 Sorting Procedures

4.2.2.1 Sorting Sites

During the PWCS, the sorting of Refuse and Recycling samples took place at the Greenpoint Marine Transfer Station ("Greenpoint MTS") located on Greenpoint Avenue in Brooklyn. All samples were transported from the four sampling sites to Greenpoint MTS where they were sorted.

The WCS was a larger and more complex study than the PWCS and two sorting sites were used. Because of its proximity to Metropolitan Paper and Hugo Neu, the Greenpoint MTS was used to sort all samples of MGP and Paper. The North Shore Marine Transfer Station ("North Shore MTS"), located off College Point Avenue in

Queens, was used to sort samples of Refuse, Street Basket Waste, and Waste from buildings targeted for the Multi-Unit Study.

4.2.2.2 Site Layout

Each sorting site had to accommodate space for the following:

- Delivery and queuing of samples and placement of back-up samples and empty carts;
- Sort and subsort tables, bins, scale, and crew;
- Roll-off containers where waste was placed after it had been sorted, weighed, and the weights recorded; and
- Equipment storage.

Figures 2-29 and 2-30 show the general site layouts for Refuse and Recycling, respectively.

Figure 2-29
Refuse Sort Site Layout

Figure 2-30
Recycling Sort Site Layout

4.2.2.3 Staffing

The professional field staff consisted of the positions listed below. A more detailed description of the roles and activities of the professional staff is included in the Field Procedures and Training Manual in Volume 4, Appendix A.

Logistics Manager

The Logistics Manager had responsibility for attending to all logistical details that arose during the Sorting Period, including purchasing equipment and supplies, arranging for lunches, overseeing equipment repair, and responding to any health or medical emergencies. Many of the responsibilities involved spur-of-the-moment problems that could not be addressed by the professionals because of their sampling or sorting duties. There was one Logistics Manager during each Sorting Period.

Director of Sampling

The Director of Sampling had overall responsibility for acquiring samples during each Sorting Period. These responsibilities included staffing, staff training, oversight of equipment, relations with transfer station personnel and the BWPRR staff assigned to transfer stations, and supervision of the sampling procedures. The Director of Sampling worked from about 9:30 p.m. until all samples had been acquired the following morning.

During the Spring and Summer Sorting Periods, when the Multi-Unit Study was implemented, MUS sampling took place from about 2:00 a.m. to 10:00 a.m. To provide some relief for the Director of Sampling, if the MUS samples were late in arriving, the Logistics Manager took on the Director of Sampling duties in the morning. There was one Director of Sampling during each Sorting Period.

Sample Manager

The Sample Manager was responsible for properly acquiring, recording and delivering samples of waste to the appropriate sorting site. One or two Sample Managers were assigned by the Director of Sampling to each sampling site, depending on the number of samples to be acquired on a given night, the volume of traffic at each site, and the level of BWPRR staff support at the site. Each Sample Manager worked with an assistant (a temporary worker), who assisted with all aspects of sampling except data recording.

Director of Sorting

The Director of Sorting had overall responsibility for the proper sorting of samples during each Sorting Period at both sorting sites. These responsibilities included staffing, staff training, quality control, oversight of equipment, and supervision.

Field Supervisor

A Field Supervisor had responsibility for operations at the each of the sorting sites, supervising the sorting crews, and all activities within his/her facility. The Field Supervisor worked with the Director of Sampling to check incoming samples of waste and determine the number of samples to be sorted during a given day. The Field Supervisor was also responsible for assuring a smooth flow of samples to the sort areas, thereby keeping the sorting crews productive throughout the day.

Crew Chief

The Crew Chief had responsibility for managing his/her designated sort area and the actual sorting and weighing of samples. This included coordinating with the Field Supervisor to receive and track samples and managing the sort crew during sample loading, sorting, weighing and recording of waste samples.

Data Manager

In the field, the Data Manager had responsibility for collecting, checking and verifying all data developed by the sampling and sorting operations and entering the data into the Project Database. During the PWCS and the Fall Sorting Period of the WCS, the Data Manager and her team of analysts operated from their office in Orlando, Florida. During the Winter Sorting Period, the Data Manager and one assistant operated from an on-site office in the hotel where the field personnel were housed. Temporary workers were used to input data. During the Spring and Summer Sorting Periods, the entire Data Management Team (i.e., Data Manager and five analysts) operated from the on-site office.

Data Analysts

The Data Analysts worked under the supervision of the Data Manager. Their duties included compiling and distributing the daily truck numbers, checking and verifying data forms, and entering data into the Project Database. During the Spring and Summer Sorting Period, when the Multi-Unit Study was being implemented, along with the Residential Study and the Street Basket Study, five Data Analysts worked in the on-site office.

Temporary Workers

Temporary workers were used as assistants to the Sample Managers and as sorters. Each Sample Manager had an assistant to help with the loading and unloading of equipment and acquisition of samples.

Four or five temporary workers were assigned to each sorting crew. They worked under the direct supervision of the Crew Chief. Some temporary workers at the sorting sites were also assigned work cleaning the area.

4.2.2.4 Description of Procedures

After the samples had been transported to the Greenpoint MTS and the North Shore MTS, the Field Supervisor checked each of the samples to be certain that the information on the Sample Labels was clear and consistent. Often the Field Supervisor would check with the Data Manager by cell phone to confirm information on the label. After the Samples had been checked in, the Director of Sorting and the Field Supervisor determined each sorting crew's sample allotment for that day and the Field Supervisor lined up the samples near the crew's sorting table.

The Crew Chief and crew then began sorting samples using the following procedure:

- The sample was weighed and the weight recorded on the Sample Detail Form (Figures 2-45 and 2-46), as a check against the sample weight obtained during sampling.
- The sample was placed on the sorting table and the waste was sorted into the appropriate material categories. Material was placed in the appropriately labeled three- and five-gallon bins around the sorting table.
■ When most of the sample had been sorted, one or two crew members began the required sub-sorts and counts of materials at a separate table.
- After all material had been sorted, the material falling through the $1 / 2$-inch screen on the sorting table, called "fines", was swept up and placed in a bin. If, in the opinion of the Crew Chief, the fines were identifiable as a specific material, they were placed in the appropriate bin. For example, if the Crew Chief determined that 50 percent of the fines were coffee grounds, then 50 percent of the fines would be placed in the "Food Waste" bin and the remaining fines were placed in the "Fines" bin. All pieces of material that fell through the $1 / 2$-inch screen from MGP samples were classified as "Mixed Cullet" because virtually all this material consisted of broken glass. Material swept up from the recycling sub-sort tables were classified as "Fines."
- After the sorting was completed, the floor of the sorting area, including the area around the sorting table and the sub-sort table, was swept. Material that could be identified was placed in the appropriate bin. Unidentifiable sweepings were categorized as "Fines". For example, a newspaper on the floor would be placed in the "Newspaper" bin.
- Next, each bin of material was weighed and the weight of the material recorded by the Crew Chief. (Tare weights for the bins were determined before the beginning of the Sorting Period by taking the weight of each empty bin. The same bins were used for the same materials at the same table for the duration of the Sorting Period.)
- After each material had been weighed and the weights recorded, the Crew Chief recorded the results of the subsorts on the Sample Detail Forms.

■ After all data had been recorded, the sorted material was placed in a roll-off container for disposal.

- The empty bins were returned to their places around the sorting table and the sorting of the next sample began.

For the disposal of post-sort Refuse and the processing of post-sort Recycling, DSNY placed roll-off containers at each sorting site. Because of the large amount of post-sort Refuse, the roll-off container at the North Shore MTS, where all Refuse was sorted, was removed each day and returned empty. Two roll-off containers were placed at the Greenpoint MTS, one for post-sort MGP and one for post-sort Paper. These were removed and returned empty when the Field Supervisor notified DSNY that they needed emptying. Refuse at Greenpoint MTS (i.e., non-designated material in the Recycling) was placed in plastic bags and removed by DSNY each day or two.

4.2.2.5 Moisture and Particulate Testing

In both the PWCS and WCS, materials from randomly selected samples were sent to a laboratory for moisture and particulates testing. The purpose of this testing was to determine the amount of fugitive moisture and foreign matter in each of these materials. The test determined how much of the weight of a given material was accounted for by moisture or foreign matter. For each test, a two- to four-pound amount of the material (called a material testing unit or "MTU") was double-bagged and sent to a laboratory for analysis.

The Data Manager randomly selected Refuse and Recycling samples to be tested, using a random-number generator and the list of the total number of samples to be acquired that season. The list of samples and the materials to be tested were given to each of the Field Supervisors at the beginning of the Sorting Period.

Immediately after a sample designated for testing had been sorted and weighed, a designated professional (i.e., Crew Chief or Field Supervisor) collected the MTUs from the appropriate bins.

Each MTU was removed from the appropriate sorting bin and double-bagged using small plastic bags and sealed tightly. In order to assign moisture testing data to the appropriate sample for analysis, the following information was recorded on a pre-printed MTU label:

- The Sample Identification Number (date of sampling, route and sample number);
- Moisture Sample Number (see below);
- The name of the material in the bag;
- The date the sample was sorted; and
- The type of waste (MGP, Paper, Refuse).

An example of an MTU Label is shown in Section 4.3.4, Figure 2-47. The MTUs from each sample were placed in a cardboard box for shipping.

All the MTUs prepared during the seasonal Sorting Period were recorded in the Moisture Testing Log. Table 2-23 shows the materials selected for MTU testing and the number of MTUs sent for testing for the PWCS and Table 2-24 shows the materials selected for MTU testing for the WCS.

Table 2-23
PWCS Materials Tested for Moisture and Particulates

Paper	Plastics
Newspaper	PET Bottles
Plain OCC/Kraft Paper	HDPE Bottles: Natural
High Grade Paper	HDPE Bottles: Colored
Mixed Low Grade Paper	Rigid Polystyrene Containers and Packaging
Phone Books	Expanded Polystyrene Containers and Packaging
Paperbacks	Other Rigid Containers/Packaging
Paper Bags	Plastic Bags
Polycoated Paper Containers	Other Film
Compostable/Soiled Paper/Waxed OCC/Kraft	Single Use Plastic Plates, Cups, Cutlery, Etc.
Single Use Paper Plates, Cups	Metals
Other Non-recyclable Paper	Aluminum Cans
Organics	Aluminum Foil/Containers
Non-Clothing Textiles	Tin Food Cans
Clothing Textiles	

Total Categories: 25

Table 2-24
WCS Materials Tested for Moisture and Particulates

Paper	Plastics
Newspaper	PET Bottles
Plain OCC/Kraft Paper	HDPE Bottles
High Grade Paper	Rigid Polystyrene Containers and Packaging
Mixed Low Grade Paper	Other Rigid Containers/Packaging
Phone Books/Paperbacks	Plastic Bags
Paper Bags	Other Film
Polycoated Paper Containers	Single Use Plastic Plates, Cups, Cutlery, Etc.
Compostable/Soiled Paper/Waxed OCC/Kraft	
Single Use Paper Plates, Cups	
Other Non-recyclable Paper	Metals
Organics	Aluminum Cans
Non-Clothing Textiles	Aluminum Foil/Containers
Clothing Textiles	

[^19]The moisture and particulate testing in the laboratory was conducted in two stages. First, immediately after opening the plastic bags, the MTU was weighed. It was then placed in a drying oven at a temperature of 80 degrees Celsius for 12 to 24 hours. After drying was completed, the material was then weighed again.

Second, the dried material was gently rubbed against itself to release any foreign matter, such as pieces of glass or food waste, adhering to it. After this step, the particles of foreign matter were weighed. The resulting data from each MTU included:

- Weight of MTU prior to drying;
- Weight of MTU after drying; and
- Weight of any foreign matter.

This information was sent to the Data Manager who compiled the results for each season. The results of the moisture and particulate testing are presented in Volume 1 of the Final Report.

4.2.2.6 Table Layout

The sorting crew stood around a table on which the sample of waste was placed. Threeand five-gallon bins were placed around the table according to material group. Larger bins were used for materials that were typically abundant in samples; smaller bins were used for the other materials. For purposes of illustration, Figure 2-31 shows the table layout for a WCS Refuse sample during the Fall, Winter, and Spring Sorting Periods for the initial sort and Figures 2-32, 2-33 and 2-34 illustrate the suborts that were part of this sorting procedure. Figures 2-35 through 2-37 show the table layout and subsorts for a Paper sample. Figures 2-38 through 2-41 show the table layout and subsorts for an MGP sample.

These diagrams show the table layout for the material categories for the Fall, Winter, and Spring Sorting Periods. During the Summer Sorting Period, six material categories were enlarged to gather more detailed information on the plastics and durables in the waste stream (Section 4.2.1.4). These changes included:

1. Plastic bags were subsorted into Shopping Bags, Dry Cleaning/Newspaper Bags, and Garbage/Recycling Bags.
2. Other plastic materials were subsorted into Personal Hygiene Plastic Products, Toys/Housewares Plastics Products, and Other Plastic Materials.
3. Mixed Metals was subsorted into Mixed Metal Hardware, Mixed Metal Toys/Housewares, and Other Mixed Metal.
4. Other Metal was subsorted into Other Aluminum, Other Non-Ferrous, and Other Ferrous.
a. Other aluminum was subsorted into aluminum hardware, aluminum toys/housewares, and other aluminum.
b. Other non-ferrous metal was subsorted into non-ferrous hardware, non-ferrous toys/housewares, and other non-ferrous.
c. Other ferrous metal was subsorted into ferrous hardware, ferrous toys/housewares, and other ferrous.

These changes in the material categories for the Summer Sorting Period resulted in adjustments to the table layout and subsorts, but are not illustrated in Figures 2-31 through 2-41.

Figure 2-31
WCS Fall/Winter/Spring Refuse Sorting - Table Layout (Initial Sort)

1) Product sorted by resin type
(2) Bottles sorted and counted by (a) non-deposit, potential deposit, and (b) single-serve, multi-serve, and non-beverage
(3) Sorted into ferrous, non-ferrous, and plastic appliances
(4) Sorted into cell phones and other equipment

Figure 2-32
WCS Fall/Winter/Spring Refuse Sorting - Table Layout (Subsorts for Appliances/Electronics, Misc. Plastics, Injection Molded Container, Other Metal, HHW)

(1) Bottles subsorted and counted by deposit, non-deposit, potential deposit

Figure 2-33
WCS Fall/Winter/Spring Refuse Sorting - Table Layout (Subsorts for Construction Debris, Wood, Glass Containers)

Figure 2-34
WCS Fall/Winter/Spring Refuse Sorting - Table Layout
(Subsorts for Other Glass, Aluminum Cans, PET Bottles, HDPE Natural, HDPE Colored)

Figure 2-35
WCS Fall/Winter/Spring Paper Sorting - Table Layout (Initial Sort)

Figure 2-36
WCS Fall/Winter/Spring Paper Sorting - Table Layout
(Subsorts for Appliances/Electronics, Other Plastic, Injection Molded Bottles and Cans, Other Metal, HHW)

Figure 2-37
WCS Fall/Winter/Spring Paper Sorting - Table Layout
(Subsorts for Non-Recyclable Paper, Construction Debris, Other Glass, Textiles, Other Organics, Leaves \& Grass)

Figure 2-38
WCS Fall/Winter/Spring MGP Sorting - Table Layout (Initial Sort)

(1) Product sorted by resin type
(2) Bottles sorted and counted by (a) non-deposit, potential deposit, and (b) single-serve, multi-serve, and non-beverage
(3) Sorted into ferrous, non-ferrous, and plastic appliances
(4) Sorted into cell phones and other A/V equipment

Figure 2-39
WCS Fall/Winter/Spring MGP Sorting - Table Layout
(Subsorts for Appliances/Electronics, Construction Debris, Other Plastic, Other Metal, HHW)

Figure 2-40
WCS Fall/Winter/Spring MGP Sorting - Table Layout
(Subsorts for Non-Recyclable Paper, Other Paper, Textiles, Other Organics, Leaves \& Grass)

Figure 2-41
WCS Fall/Winter/Spring MGP Sorting - Table Layout (Subsorts for Recyclable Plastic, Glass, Aluminum Containers)

4.2.2.7 Special Procedures - Illegally Disposed Street Basket Waste

One purpose of the Street Basket Waste Study was to determine the amount of illegally disposed residential and commercial waste in street basket waste. A procedure to identify illegally disposed residential and commercial Waste in Street Baskets was conducted before the sorting of the sample took place. To determine the illegal use of street baskets for residential or commercial Refuse disposal, the following protocol was used:

- Before sorting, each street basket sample was placed on the sort table for inspection by the Crew Chief to identify suspected illegal residential or commercial waste.
- All closed opaque plastic bags the size of a shopping bag or larger were identified as potentially containing illegal material.
■ The loose material found in clear plastic basket liners or opaque liners labeled with a Business Improvement District ("BID") logo were considered legal street basket waste.
- Any closed opaque plastic bags the size of a shopping bag or larger found within a BID bag were also identified as potentially containing illegal material.
- Closed bags identified as potentially containing illegal material were opened.
- If a bag contained any of the following materials, it was classified as "residential":
- Addressed mail;
- Substantial quantities of home-use products, including: health and beauty aids, detergent bottles, family-sized drink containers, or other seemingly residential material; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggested home use.

■ If a bag contained any of the following materials, it was classified as "commercial":

- Retail food preparation wastes (industrial-sized food/liquid containers, substantial quantities of identical packaging or unused products, cardboard boxes);
- Construction materials such as pieces of dry wall or other building materials; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggested office, retail, industrial, construction or food establishment waste.

Closed shopping bags not containing materials deemed residential or commercial, but suggesting street use (single use containers, newspapers, etc.) were considered legally disposed street basket waste.

For all bags identified as containing residential or commercial wastes, the following four procedures were followed:

- All such bags were individually photographed.

■ The contents of each bag were recorded. The crew chief recorded this information on the Sample Detail Form.

■ All such bags (regardless of size) were separated into two groups: residential bags and commercial bags. The bag count was recorded on the Sample Detail Form (Figure 2-46).
■ In each sample, bags identified as containing residential or commercial waste were weighed in two groups: residential bags and commercial bags. The combined weights of the bags in each group (residential and commercial) were recorded on the Sample Detail Form.

In addition, each sample was examined for suspected instances of illegally disposed residential or commercial wastes not encased in closed bags as defined above - including instances of broken bags with spilling contents, as well as residential or commercial material loose in the street basket contents. These materials were photographed but not weighed and their presence noted on the Sample Detail Form (Figure 2-46).

After these procedures had been completed, all material was placed onto the sorting table and sorted according to the refuse sorting protocol.

All weights were recorded by the Crew Chief. The Sample Detail Form for the Street Basket Waste Study samples is shown in Figure 2-46. When the weighing of all material in the sample had been completed, the sorted refuse and recycling was placed in an appropriate roll-off container and returned to the transfer station or processor.

The Crew Chief and crew than began sorting the next sample.

4.2.2.8 Supplies

Sampling and Sorting Crews required safety equipment, as well as sampling and sorting equipment. The equipment and supplies used during the PWCS and WCS are shown in Table 2-25.

Table 2-25
Equipment and Supplies for Sampling and Sorting

Safety Equipment for Each Worker

Tyvek suits
Black neoprene gloves with cotton liners
Hard hats
Protective eye wear
Mesh safety vests
Dust masks

Safety Equipment for Each Sampling Team and Sorting Crew

A first-aid kit
A fire extinguisher
Flash light
Orange safety cones
Rolls of caution tape

Sampling Equipment for Each Sampling Team

A Ryder (City Van) truck ($16^{\prime} \mathrm{L} \times 8^{\prime} \mathrm{W} \times 8^{\prime} \mathrm{H}$) with hydraulic lift gate
Two-wheeled, 96 -gallon capacity carts ("Toters")
An Arlyn Scale, Brand HV 200 KGL Model portable platform scale
Two rakes, two shovels and two brooms
Plastic bags
Cell phones for each member of the Sampling Team

Sorting Equipment for Each Sorting Crew

A sorting table $-4^{\prime} x 8^{\prime}$ with a $4^{\prime} x 8^{\prime}$ removable frame with $1 / 2^{\prime \prime}$ screen
One or two subsort tables-4' x 8'
An Arlyn Scale, Brand HV 200 KGL Model portable platform scale
A magnifying glass
A magnet
Camera for Street Basket Waste
Hand rakes
Forty to sixty 32-gallon capacity plastic bins
Ten to twenty 2-gallon capacity plastic bins
A shovel, whisk broom, push broom and dust pan

Table 2-25
Equipment and Supplies for Sampling and Sorting (continued)

Sorting Equipment for Each Sorting Site

A folding table
Folding chairs
Office supplies (paper, clipboards, staplers, pens)
Tools (hammer, saw, level, measuring tape, crow bar)
Cleaning equipment (mops, pails, hose, sponges)

4.3 Data Recording

During the sampling and sorting of the PWCS and WCS, three types of forms were used by the field staff to record information. This information was entered into the Project Database by the Data Team, made up of the Data Manager and her staff of analysts.

4.3.1 Cart Labels

As each sample was acquired, a label was attached to each cart with information on the sample. The labels were color-coded: red for street basket, white for residential refuse and recycling, yellow for multi-unit refuse, and green for multi-unit recycling. Figure 2-42 is an example of a cart label.

Bulky Wt: \qquad

Varick Street
$20050818-B K-6-2-1-2-R$
$M H$

Figure 2-42
Cart Label

4.3.2 Sample Management Forms

For each sample that was acquired, the Sample Manager completed a Sample Management Form. These were also color-coded: white for residential samples, yellow for multi-unit samples, and pink for street basket samples. Figure 2-43 is an example of the Sample Management Form used for residential waste and Figure 2-44 is an example of the Visual Bulk Item Inspection Form used for street basket waste.

New York City Department of Sanitation Waste Characterization Study SAMPLE MANAGEMENT FORM

Net Weight of Truck Load: \qquad tons or pounds (circle one)

Figure 2-43
Sample Management Form

New York City Department of Sanitation
 Waste Characterization Study
 VISUAL BULK ITEM INSPECTION FORM

Visually Inspected Bulk Items				
No.	Bulk Item	General Size	Quantity	Description
Sample 1	Refrigerators	Full Size (Between 5 \& 6 ft)	2	One was complete, one was missing the doors; heaviest mtrl=ferrous metal
Sample 2	Sofa	Full Size (Between 5 \& 6 ft)	3	One was leather; Two were other textiles; one that was not leather may be a sofa bed
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Figure 2-44
Visual Bulk Item Inspection Form

4.3.3 Sample Detail Forms

After each sample was sorted, a Sample Detail Form was completed by the Crew Chief and checked by the Field Supervisor and/or the Director of Sorting. Because of the special procedures associated with the Street Basket Waste Study and the Multi-Unit Study, the Sample Detail Forms for these types of samples were slightly different than the forms for residential samples. Figures 2-45 and 2-46 are examples of the Sample Detail Forms for residential samples and street basket waste samples for the Summer Sorting Period, respectively.

Figure 2-45
Sample Detail Form (Residential)

Figure 2-45
Sample Detail Form (Residential)
(continued)

Figure 2-45
Sample Detail Form (Residential)
(continued)

Toter Wts:		,	Data	Moisture Sample		
Sort Date:		$\underline{\square}$				
Crew Chief:		-				
Truck Number:		er:				
Sample Detail Form						
Grp	Mat. \# Material					
$\frac{5}{2}$	1	Newspaper				
	2	Plain OCC/Kraft Paper				
	3	High Grade Paper				
	4	Mixed Low Grade Paper				
	5	Phone Books Paperbacks				
	6	Paper Bags				
	7	Polycoated Paper Containers				
	8	Compostable/Soiled Paper/Waxed OCC/Kraft				
	9	Single Use Paper Plates, Cups				
	10	Other Nonrecyclable Paper				
$\begin{aligned} & \frac{9}{6} \\ & \frac{\pi}{2} \end{aligned}$	14	\#1 PET Tubs Other Containers				
	15	\#2 HDPE Tubs/Other Containers				
	20	\#3 PVC Tubs				
	21	${ }^{\text {4 }} 4$ LDPE Tubs				
	22	${ }^{15} 5 \mathrm{PP}$ Tubs				
	23	\#7 Other Tubs				
	24	Soda Crates and Bottle Carriers				
	25	Other PVC				
	26	Rigid Polystyrene Containers and Packaging				
	27	Expanded Polystyrene Containers and Packaging				
	28	Other Rigid Containers/Packaging				
	29	Plastic Bags: Shopping Bags				
	29.1	Plastic Bags: Dry Cleaning Bags				
	30	Film: Other				
	30.1	Film: Garbage Recycling Bags				
	31	Single Use Plastic Plates, Cups, Cutlery, Etc.				
	32	Plastic Materials: Other				
	32.1	Plastic Materials: Personal Hygiene				
	32.2	Plastic Materials: Toys/Housewares				
$\frac{\text { gi }}{\frac{6}{心}}$	36	Mixed Cullet				
	38	Other Glass				
$\frac{\bar{J}}{\frac{0}{2}}$	40	Aluminum: Foil/Containers				
	41	Aluminum: Other				
	41.1	Aluminum: Toys/Housewares				
	41.2	Aluminum: Hardware				
	42	Non-Ferrous: Other				
	42.1	Non-Ferrous: Toys/Housewares				
	42.2	Non-Ferrous: Hardware				
	43	Tin Food Cans				
	44	Empty Acrosol Cans				
	45	Ferrous: Other				
	45.1	Ferrous: Toys/Housewares				
	45.2	Ferrous: Hardware				
	46	Mixed Metals: Other				
	46.1	Mixed Metals: Toys/Housewares				
	46.2	Mixed Metals: Hardware				

Figure 2-46
Sample Detail Form (Street Basket)

Figure 2-46
Sample Detail Form (Street Basket)
(continued)

Figure 2-46
Sample Detail Form (Street Basket)
(continued)

Street Basket Sample Additional Data Form
For each bag not labeled with a BID and determined to contain residential or commercial material:
Step 1: Describe the contents of each bag.

Step 2: Place the sample id card in a visible place and photograph each bag separately.
Step 3: Weigh the bags in two groups: residential and commercial.

Step 4: Identify and describe residential or commercial waste not found in a bag. Description of loose illicit material:

Step 5: Place the sample id card in a visible place and photograph
illicit material not found in a bag.
Step 6: Return any weighed bags to the table and sort all material following the same procedure used for refuse.

Figure 2-46
Sample Detail Form (Street Basket) (continued)

4.3.4 Moisture and Particulate Testing Labels

As described in Section 4.2.2.5, certain materials in both the PWCS and the WCS were selected for moisture and particulate testing. These materials were taken from randomly selected samples and sent to a laboratory for analysis. Figure 2-47 is an example of the label attached to each material sent to the laboratory.

Figure 2-47
Moisture and Particulate Testing Label

4.3.5 Data Entry Process

The flow of data from the field to the Data Team followed the schedule below, Monday through Saturday during the Sorting Period. Times are approximate because truck deliveries, traffic conditions and other circumstances changed from day to day.

6:00 a.m.: Sample Managers returned to the on-site office with completed Sample Management Forms for residential and street basket samples, as well as information about any missed truck deliveries or samples. The forms were placed in a folder, along with a daily status report from the Director of Sampling.

9:00 a.m.: Data Team began the day by checking Sample Management Forms against the master list of samples that were to have been acquired that day. Then the Data Team began entering data from each form into the Project Database. If there were questions about any Sample Management Form, it was set aside and the Data Manager followed up with the Sample Manager who submitted the form.

9:30 a.m.: Sample Managers acquiring Multi-Unit samples arrived with their completed Sample Management Forms. These were checked and entered by the Data Team.

10:00 a.m.: Truck numbers for the samples to be delivered early the next morning were received from the DSNY Collections Bureau by fax. The Data Team entered this information on designated forms and distributed them to DSNY staff, the staff at each of the transfer station/processing facilities and to the Sample Managers.

11:30 a.m.: The Director of Sorting, who traveled between sorting sites several times a day, stopped at the on-site office and delivered the completed Sample Detail Forms for samples that had been sorted that morning. These forms would be checked and, if they were complete and legible, entered into the database. If there were questions about a form, it would be set aside for follow-up.

2:30 p.m.: The Director of Sorting would drop off more Sample Detail Forms to be checked and entered by the Data Team.

5:00 p.m.: All Field Supervisors and Crew Chiefs arrived at the on-site office with the remaining Sample Detail Forms. The Data Manager took this opportunity to check with Crew Chiefs about incomplete or illegible Sample Detail Forms. At this time, the Data Manager, Director of Sorting and the Field Supervisors discussed the sorting schedule, the number of samples and empty carts on the floor at each sorting site, and determined the number and type of samples to be sorted the following day.

4.3.6 Database Design Overview

The basic design of the Project Database consisted of two main tables into which study data was entered. The first contained summary information about each sampling unit. The second table contained detailed information about each sampling unit's composition.

The summary table included the following information for each sampling unit:

- The season in which the sampling unit was taken;
- The date the sampling unit was collected by DSNY;
- The date the sampling unit was acquired by the Sample Manager;

■ The weather conditions during the time between collection of the sampling unit by DSNY and the time of acquisition by the Sample Manager;

- The name of the Sample Manager;
- The route and truck number from which the sampling unit was taken;

■ The type of sampling unit (i.e., refuse, MGP, Paper, or street basket);

- The pre-sort weight of the sampling unit; and
- Information about any bulk items that were part of the sampling unit.

The detailed table contained the following information about each material in each sampling unit:

- The date the sampling unit was sorted;
- The name of the Crew Chief responsible for sorting the sampling unit;
- The route from which the sampling unit was taken;
- A second pre-sort weight of the sampling unit;
- The name of the material;
- The total weight of the material in the sampling unit; and

■ If appropriate, the number of instances (i.e., count) of that material in the sampling unit.

4.3.7 Chain of Custody

The forms for each sample passed through the Chain of Custody outlined in Figure 2-48.

Figure 2-48
Chain of Custody

4.3.8 Quality Assurance/Quality Control Procedures

Separate quality assurance and quality control ("QA/QC") procedures were developed for field data and for reports. Sampling data on the Sample Management Forms was checked by the Director of Sampling and then by the analyst entering the data into the database.

Sorting data on the Sample Detail Forms was checked by the Field Supervisors and/or the Director of Sorting. These were also checked by the Data Team before being entered into the database.

The Data Manager followed up on any incomplete or illegible forms with the Sample Managers or Crew Chiefs who filled them out.

The database allowed for automated checks of the data entered. The automated checks recognized possible errors, such as missing data, data entry mistakes, and mistakes in sample ID number. Paper copies of all forms were kept and stored in the Boston (MA) office of R. W. Beck. Duplicates of all forms were made and sent to R. W. Beck's Orlando (FL) office for reference and storage.

After being prepared, report documents went through two QA/QC checks. The preparer of the document sent the document to a first reviewer who checked the document and signed the QA/QC form. After the first reviewer had signed off on the document, it was passed on to a second reviewer. The document was submitted only after the second reviewer had approved the document.

4.4 Data Analysis

The analysis of the data compiled during the PWCS and WCS was conducted by the Data Team using data entered in the Project Database. The number and type of calculations are summarized below and the results are shown in Volume 1 of the Final Report.

4.4.1 Aggregation Calculations

Residential average composition data was produced by stratum for each season and each stream (Refuse, MGP and Paper) using only the samples that were categorized by the desired stratum, season, and stream.

Those 96 sets of average composition results (eight stratum in each of three stream over four seasons), were then aggregated to produce results for many combinations of strata, seasons and/or streams. For example, annual results were produced by using a weighted average of the four seasons' results, citywide results were produced by using a weighted average of the strata results, and total waste results were produced by using a weighted average of the three substreams' results. An example of the aggregation calculation is presented in Volume 2, Section 2.2.6.

Street basket results for each season were produced directly from the street basket samples.

4.4.2 Weighting Calculations

As noted in Section 4.4.1, results requiring aggregation were developed using weighted averages. The weighting factors were based on actual tonnages of waste collected during
the season of the Sorting Period. In other words, citywide results for refuse in the summer were calculated by weighting each stratum's refuse results by the percent contribution of the tonnage collected from that stratum to the tonnage collected citywide and then summing the results. An example of the weighting calculation is presented in Volume 2, Section 2.2.6.

4.4.3 Confidence Interval Calculations

The estimated waste composition results produced from the PWCS and WCS are reported with a 90 percent Confidence Level that the actual value for the entire population ("true value") lies somewhere within an interval of values, called a Confidence Interval.

In other words, there is a 90 percent chance that the true value is between the lowest boundary and highest boundary of the Confidence Level.

The Confidence Interval for a particular material was calculated using a margin of error for the sample mean of the material. The margin of error was based on the standard deviation of the material category across all the sampling units, the number of sampling units obtained, and a t-value table.

Because the results of the waste composition are determined in percentages (i.e., in proportion to other numbers), mathematical transformations were used in calculating the confidence intervals. Such transformations are often useful when dealing with percentages where there are limits to the possible values (i.e., the percentages are not negative, nor are they greater than 100 percent).

The general formula for a confidence interval is:

$$
\mu=\bar{X} \pm t_{\alpha} \frac{s}{\sqrt{n}}
$$

where:
$\mu=$ the "true" value of the population parameter
$\bar{X}=$ the sample average value
$\mathrm{t}_{\alpha}=$ the critical value leaving $\alpha \%$ probability in each "tail" of the Student's t
distribution, with $\mathrm{n}-1$ degrees of freedom
$\mathrm{s}=$ the standard deviation of the sample
$\mathrm{n}=$ the sample size (number of sampling units)
The "population parameter" is the measure of interest in any particular calculation. For example, if we are trying to determine the average percentage of newspaper refuse, then "percentage of newspaper in the refuse" is the population parameter. For example:

We sort 50 sampling units in an attempt to measure the average percentage of newspaper in a given population. In our sample, the average of the 50 observations we obtain is
6%, and the standard deviation of our sample observations is 2%. We wish to find a 90% confidence interval for the true average percentage of newspaper in the population.
$\mu=6 \% \pm 1.68 *(2 \% / 7.07)=6 \% \pm 0.48 \%$
So our 90 percent confidence interval would be from 5.52 percent to 6.48 percent.

4.4.4 Reporting

The planning and results of the PWCS and WCS were documented in writing in a series of reports described below.

4.4.4.1 Operations Plans

Before each sorting season, including the PWCS, an Operations Plan was submitted to DSNY. The Operations Plan included the following sections:

- The Residential Sampling Plan for that season. For the WCS, it also described the Street Basket Sampling Plan and, in the spring and summer Operations Plans, the Sampling Plan for the Multi-Unit Study;
- The material categories to be used in sorting;
- The field procedures;
- The professional staff that would be working that season;
- The plans for staff training;
- An equipment list;
- Plans for the disposition of post-sort refuse and recycling; and
- A description of data recording and QA/QC procedures.

The five Operations Plans for the PWCS and the four seasonal WCS Sorting Periods are included in Volume 4 of the Final Report.

4.4.4.2 Quarterly Reports

At the end of each Sorting Period, a quarterly report was prepared summarizing the preparation and results of that period. The contents of the Quarterly Reports varied slightly from season to season due to differences in the scope of work each season. For example, the spring and summer Quarterly Reports included information on the Multi-Unit Study because it was implemented during those two Sorting Periods. The contents of the Quarterly Reports included:

- An Introduction;
- Planning for the Residential Study;
- Planning for the Street Basket Study;
- Sampling Logistics;
- Sorting Logistics;
- Data Recording and Analysis;
- Residential Study Results;
- Street Basket Study Results, and

■ Citywide-Results At-A-Glance, a summary of results citywide.
Each Quarterly Report included 26 appendices with supplementary information, including the maps used in the sample planning, the list of all staff who worked that period, photographs of the sampling and sorting, photographs of the street basket waste, and detailed results of the data analysis.

4.4.4.2.1 Production Schedule

The Quarterly Reports were usually submitted to DSNY three to four months after the conclusion of the Sorting Period. The activities necessary to produce these reports included:

- Compiling and analyzing the sampling and sorting data;

■ Obtaining data from DSNY on weekly average tonnages collected for estimating generation rates;

■ Producing and labeling photographs; and

- Drafting the text for the reports.

Drafts of the four Quarterly Reports and the associated results were submitted to DSNY. Comments and corrections from DSNY were incorporated into the draft reports. In the last quarter of 2005, the four Quarterly Reports of the WCS were reviewed and adjusted for purposes of consistency and accuracy, and final Quarterly Reports were submitted to DSNY. The dates of the Sorting Period are shown in Section 4.1.1.2, Figure 2-28.

4.4.4.2.2 Revisions

The development and production of all reports required a number of revisions. These revisions were necessary due to changes in the way in which the results were presented and minor adjustments to some calculations in the drafts. The Quarterly Reports represent historical accounts of each Sorting Period and may include incorrect information. The Final Report is the definitive account of the PWCS and WCS and supersedes all previously reported results. In all cases, adjustments were very small and in no cases did they result in any change in the data at a scale meaningful for policy or planning.

4.4.4.3 Final Report

The Final Report is presented in four volumes and associated documents:

- Volume 1 - Study Results;
- Volume 2 - Methodology;
- Volume 3 - Multi-Unit Study; and
- Volume 4 - Appendices.

NYC Waste Characterization Study
Final Report, Volume 3
Multi-Unit Apartment Study

VOLUME 3 - MULTI-UNIT APARTMENT STUDY TABLE OF CONTENTS

GLOSSARY GL-1
3.1 INTRODUCTION. 1
3.2 METHODOLOGY 1
3.2.1 Recycling Success 1
3.2.1.1 Indicators of Successful Recycling 1
3.2.2 Building Characteristics 3
3.2.3 Analysis 4
3.3 PLANNING4
3.3.1 Selection of Target Buildings 4
3.3.2 Selection of Building Characteristics 6
3.3.3 Analysis of Waste 6
3.3.3.1 Scheduling of Sample Collections 6
3.3.3.2 Sample Weight 7
3.3.3.3 Material Categories 8
3.4 IMPLEMENTATION 8
3.4.1 Sample Acquisition 8
3.4.1.1 Refuse 8
3.4.1.2 Recycling 9
3.4.1.3 Resulting Data 9
3.4.2 Sorting of Samples 9
3.4.2.1 Sorting Procedures 9
3.4.2.2 Waste from Non-Target Buildings 9
3.4.2.3 Resulting Data 10
3.4.3 Data on Buildings 11
3.4.3.1 Databases 11
3.4.3.2 Building Surveys 16
3.4.3.2.1 Survey Teams 16
3.4.3.2.2 Survey Procedures 16
3.4.4 Data Management and Analysis 16
3.5 RESULTS 17
3.5.1 Diversion Rate without Contamination 18
3.5.2 Diversion Rate with Contamination. 20
3.5.3 Capture Rate without Contamination 21
3.5.4 Capture Rate with Contamination 22
3.5.5 Contamination Rate 24
3.5.6 Summary of Binary Building Factors 25

VOLUME 3 - MULTI-UNIT APARTMENT STUDY TABLE OF CONTENTS (continued)

TABLES

Table 3-1 Multi-Unit Study Recycling Success Factors 3
Table 3-2 Selection of Target Buildings for the Multi-Unit Study 5
Table 3-3 Building Factors Related to Diversion Rate without Contamination, Results of Multiple Regression Analysis 18
Table 3-4 Building Factors Related to Diversion Rate with Contamination, Results of Multiple Regression Analysis 20
Table 3-5 Building Factors Related to Capture Rate without Contamination, Results of Multiple Regression Analysis 21
Table 3-6 Building Factors Related to Capture Rate with Contamination, Results of Multiple Regression Analysis 22
Table 3-7 Building Factors Related to Contamination Rate, Results of Multiple Regression Analysis 24
Table 3-8 Summary of Average Recycling Success Statistics -- Binary Building Factors 26
Table E3-1 Multi-Unit Apartment Study, Building Factors Correlated to Diversion Rate without Contamination Results of Multiple Regression Analysis 30
EXHIBITS
Exhibit 3-1 Regression Methodology 28
Exhibit 3-2 Multi-Unit Building Characteristics 32
Exhibit 3-3 Schedule of Samples Acquired and Sorted 35
Exhibit 3-4 Multi-Unit Study Material Groups, Subgroups, Categories and Subcategories 47
Exhibit 3-5 Multi-Unit Study Sample Management Form 48
Exhibit 3-6 Weight of Refuse and Recycling MUS Samples 49
Exhibit 3-7 Multi-Unit Sample Detail Form 57
Exhibit 3-8 Bag Tracking Form 58
Exhibit 3-9 Composition of MUS Refuse, Recycling, and Waste 59
Exhibit 3-10 MUS Recycling Success Statistics 65
Exhibit 3-11 Building Survey Staffing Lists. 69
Exhibit 3-12 Multi-Unit Building Survey Questionnaire 70
Exhibit 3-13 Calendar of Multi-Unit Study Activities. 74

Glossary of Abbreviations and Definitions

The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
1989/1990 WCS	The waste characterization study conducted by the New York City Department of Sanitation in 1989 and 1990.
Absolute Variability	The variability from sampling unit to sampling unit, which is measured by the Standard Deviation.
Borough	The five political/geographic areas of New York City: Manhattan, Brooklyn, Bronx, Queens, and Staten Island.
Bulk Item	As defined for the NYC WCS, any item of waste that will not fit into a 96-gallon container.
BWPRR	Bureau of Waste Prevention, Reuse and Recycling
C\&D	An abbreviation of construction and demolition debris, a material group in the NYC WCS.
Capture Rate	The amount of materials set out for residential recycling collection as a percentage of designated recyclable materials in both recycling and refuse streams. This ratio measures how much of the targeted materials are actually being recycled, which is a measure of how successfully such materials are recycled.
Census Tracts	Census tracts are small, relatively permanent statistical subdivisions of a county. New York City includes 2,217 census tracts containing on average about 4,000 inhabitants.
City	New York City
Confidence Interval	A range within which the true Mean of the population is believed to lie with the given confidence level.
Confidence Level	The certainty with which the true Mean lies within the interval determined. For the NYC WCS, a 90 percent confidence level is used. A 90 percent confidence level is the industry standard for Waste Characterization Studies. Note that the use of a 90 percent level instead of a 95 percent level (the standard for scientific research) does not (a) affect the calculation of means, only the width of intervals around the means or (b) preclude the application of a 95 percent confidence level to results if such an analysis is of interest.
Contamination Rate	The percentage of material that is found in the containers set out for residential recycling collection that is not accepted in New York City's curbside recycling program.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.
$\left.\begin{array}{|l|l|}\hline \text { TERM } & \text { DEFINITION } \\ \hline \text { Correlation, negative } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A negative correlation occurs when one variable } \\ \text { increases and the other variable decreases. }\end{array} \\ \hline \text { Correlation, positive } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A positive correlation occurs when one variable } \\ \text { increases and the other variable also increases. }\end{array} \\ \hline \text { Count } & \text { The process of counting the individual items that were subsorted. }\end{array} \left\lvert\, \begin{array}{l}\text { Curbside Collection } \\ \hline \begin{array}{l}\text { The collection of residential refuse or recycling in bins or bags } \\ \text { set out in proximity to residences that generate these types of } \\ \text { waste. DSNY provides curbside refuse collection to all residents } \\ \text { two or three times per week and recycling curbside collection } \\ \text { once per week. }\end{array} \\ \hline \text { Density/Income Strata } \\ \hline \begin{array}{l}\text { Divisions of New York City's population based on median } \\ \text { housing density and median household income. }\end{array} \\ \hline \text { Deposit (containers) } \\ \begin{array}{l}\text { Beverage containers for which, under the New York State } \\ \text { Redeemable Container Law, the purchaser is required to pay a } \\ \text { deposit. The deposit may be redeemed when the empty } \\ \text { containers are returned to a retailer or authorized redemption } \\ \text { center. }\end{array} \\ \hline \text { District } \\ \text { Dual-bin Trucks }\end{array} \begin{array}{l}\text { The 59 areas within New York City used by the Department of } \\ \text { Sanitation to administer the City's waste management program. } \\ \text { These districts are co-terminus, or identical, to the 59 Community } \\ \text { Districts. }\end{array}\right.\right\}$

Glossary of Abbreviations and Definitions (continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Film (Plastic)	A category of flexible plastic materials used for packaging, trash bags and other applications, typically made of polyethylene or polypropylene.
HDPE	An abbreviation for high density polyethylene; a plastic denoted by a \#2 inside the chasing arrows recycling symbol.
HHW	An abbreviation for Household Hazardous Waste, one of the material groups in the NYC WCS.
H/H	An abbreviation for the high housing density and high income stratum.
H/L	An abbreviation for the high housing density and low income stratum.
H/M	An abbreviation for the high housing density and medium income stratum.
Illegally Disposed Street Basket Waste	Residential or commercial waste that is illegally disposed of in street baskets (e.g. home-use products, such as large detergent bottles, cereal boxes, or personal mail; construction materials, etc.).
L/H	An abbreviation for the low housing density and high income stratum.
L/M	An abbreviation for the low housing density and medium income stratum.
Late Week/Early Week	A criterion used in the PWCS based on the idea that the composition of the waste discarded during the latter part of a week differs significantly from the composition of waste discarded during the early part of a week.
LDPE	An abbreviation for low density polyethylene, a plastic denoted by \#4 inside the "chasing arrows" recycling symbol.
Lower Boundary	For a given material, the lowest average percentage of that material expected in the population consistent with the sample, at the confidence level specified.
M/H	An abbreviation for the medium housing density and high income stratum.
M/L	An abbreviation for the medium housing density and low income stratum.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
M/M	An abbreviation for the medium housing density and medium income stratum.
Material Categories	The classification of all materials in the waste stream into categories for sorting, weighing, and counting purposes. In the NYC WCS, 91 Material Categories were used to characterize the City's waste stream.
Material Groups	Groupings of material categories used to simplify or generalize results. The Material Groups used in the NYC WCS are: Paper, Plastic, Glass, Metal, Organics, Appliances/Electronics, Construction and Demolition Debris, Miscellaneous Inorganics, and Household Hazardous Waste.
Mean	The sum of the values of all observations divided by the number of observations, also known as average. In analyzing the composition of samples of waste, refuse, recycling, and the contents of street baskets, the best estimate of the true percentage of each material in the population is the Mean percentage of that material from all of the samples.
MGP	An abbreviation for Metal, Glass, and Plastic. One of the two streams of recycling collected by the DSNY consisting of plastic bottles and jugs; glass bottles and jars; metal cans and household objects; aluminum foil, trays and cans, and gable top beverage cartons. The other stream of recycling collected by DSNY is Paper.
Mixed Cullet	Broken glass in small pieces (under 3"x 3") of mixed color.
Moisture and Particulate Test	A laboratory test that determines the amount of moisture in a sample of material and determines the amount of fugitive or foreign material adhering to the sample.
Multiserve (containers)	Beverage containers with a capacity of more than 24 ounces of liquid.
Multi-Unit Apartment Study or Multi-Unit Study (MUS)	The component of the 2004/2005 waste characterization study that examined the correlation between the physical and operational characteristics of multi-unit buildings (those buildings with 6 or more residential units) and recycling success.
Non-deposit (containers)	Beverage containers which are not designated as deposit containers under the New York State Redeemable Container Law.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
NYC	New York City
NYC WCS	New York City Waste Characterization Study
Observation	The value(s) associated with a given sampling unit.
OCC	An abbreviation for old corrugated cardboard, one of the material categories in the PWCS and the NYC WCS.
ONP	An abbreviation for old newspaper, one of the material categories in the PWCS and the NYC WCS.
Paper	The second of two streams of recyclable materials collected by DSNY consisting of newspapers; magazines; catalogues; junk mail; white office paper; mixed paper; and gray and corrugated cardboard/paperboard. The other stream of is Metals/Glass/Plastic (MGP).
PET	An abbreviation for polyethylene terephthalate, a plastic denoted by \#1 inside the "chasing arrows" recycling symbol.
Population (Statistics)	The entire aggregation of items from which a sample can be drawn. In the NYC WCS, the population was all of the residential waste collected at the curb by DSNY.
PP	An abbreviation for polyethylene propylene, a plastic denoted by \#5 inside the "chasing arrows" recycling symbol.
Potential Deposit	Beverage containers which are not currently designated as deposit containers under the New York State Redeemable Container Law, but which may be designated in future legislation.
PS	An abbreviation for polystyrene, a plastic denoted by \#6 inside the "chasing arrows" recycling symbol.
Pure Routes	DSNY Refuse and Recycling collection routes that include only residences from a single housing density and income stratum.
PWCS	The preliminary waste characterization study conducted by the New York City Department of Sanitation in 2004.
PVC	An abbreviation for polyvinyl chloride, a plastic denoted by \#3 inside the "chasing arrows" recycling symbol.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Recycling	The act of recovering items or materials that might have been discarded and, usually after processing, returning them to the stream of commerce. Also, the materials that are set out for recycling collection.
Recycling Subindicators	A set of abbreviations used to indicate; i) those materials designated for recycling under New York City's current curbside recycling program during the study period ("R"); ii) those materials for which markets exist and which could be added to a future New York City curbside program ("PR"); and iii) those materials that are not designated for recycling under New York City's curbside recycling program because established or emerging markets do not presently exist ("NR").
Refuse	Items or materials that are discarded and disposed.
Relative Variability	The variability from Sampling Unit to Sampling Unit in relation to the Mean. This is calculated by dividing the Standard Deviation by the Mean.
Residential Study	The component of the 2004/2005 waste characterization study that addressed the generation and composition of the curbside residential waste.
Sample	A portion of a population used to estimate the composition of the population as a whole. The Sample is made up of multiple Sampling Units.
Sample Acquisition, or Sampling	The procedure for selecting Sampling Units from the population.
Sample Number	The number of sampling units in a sample.
Sample Weight	The weight of a sampling unit. In the WCS, each refuse sampling unit was between 200 and 300 pounds.
Sampling Unit	A single elementary unit used as the basis for estimating the composition of the population.
Section	Each of the City's 59 Sanitation Districts is divided into 3 to 5 Sanitation District Sections within which routes are designed and tonnage data collected daily.
Single-serve (containers)	Beverage containers with a capacity of less than 24 ounces of liquid.

Glossary of Abbreviations and Definitions
(continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Sorting	The procedure for separating a heterogeneous amount of material, such as a 200 pound Sampling Units of refuse, into its constituent material categories.
Sorting Period	The days or weeks when the sampling and sorting of waste took place during the NYC WCS.
Standard Deviation	A measure of the dispersion or variability around the Mean of the weights of a group of Sampling Units of New York City waste.
Street Basket Waste Study	The component of the 2004/2005 waste characterization study that addressed the composition of the street basket waste.
Subsorts	The process of sorting a particular material into smaller constituent components (e.g. drinking containers were subsorted into deposit and non-deposit containers).
Upper Boundary	For a given material, the highest average percentage of that material expected in a population consistent with the sample, at the confidence level specified.
Waste	The combination of Refuse and Recycling
Waste Generation	The rate at which waste is set out for collection, typically reported in terms of amounts per generator per time period (e.g. pounds per capita per week).
WCS	The waste characterization study conducted over four seasons by the New York City Department of Sanitation in 2004 and 2005.

Volume 3 - Multi-Unit Apartment Study

3.1 Introduction

The purpose of the Multi-Unit Study ${ }^{1}$ was to determine the structural and/or operational characteristics that promote recycling participation in multi-unit apartment buildings by identifying those building characteristics most closely associated with successful recycling, as defined herein.

Planning for the Multi-Unit Study began in November 2004, and implementation of the Multi-Unit Study began during the spring sorting period, in May 2005. The sorting of Multi-Unit samples continued in the summer sorting period, in August 2005. As noted below, the Multi-Unit Study also involved a series of building surveys that took place during June, September, and October of 2005.

3.2 Methodology

The methodology used for the Multi-Unit Study consisted of two sets of data-gathering activities, followed by an analysis of the resulting data.

3.2.1 Recycling Success

The first activity collected data related to successful recycling within the multi-unit apartment and involved an analysis of the waste from randomly selected multi-unit buildings. Five terms, describing the materials collected, were used in developing the statistical measures used to assess recycling success.

- Designated Recyclables ("DR"): Items designated for recycling under NYC's current recycling program, including bulk metal items;
- Contamination ("C"): Items not designated for recycling under NYC's current recycling program that are mistakenly set out with recycling;
- Recycling: Items set out for recycling collection, in a recycling bin or bag, or as bulk recycling, on the building's recycling collection day. These items include Designated Recyclables and Contamination.
- Refuse: Items set out for refuse collection, in a refuse bin or bag, or as bulk refuse, on the building's refuse collection day. Refuse properly consists of items not designated for recycling under NYC's current recycling program; however, it may also consist of Designated Recyclables that are either mistakenly set out with Refuse or are set out with Refuse because of a choice by the resident not to recycle; and
- Waste ("W"): The sum of Refuse and Recycling.

For each building, the refuse and recycling set out for collection during a single week was sampled and sorted. The results were used to determine how successful each building was at recycling overall.

3.2.1.1 Indicators of Successful Recycling

The Multi-Unit Study used five separate measurements to determine successful recycling. First, the Diversion Rate without Contamination is the amount of designated materials set out for recycling collection (excluding non-designated materials) as a percentage of the total waste collected. The Diversion Rate is the result of dividing the amount of designated recycling

[^20]material set out (excluding contaminants) by the total amount of waste (refuse and recycling) set out for collection. For example, for a given week, if the amount of the designated recycling materials set out for collection is 18 pounds and the total amount of waste (refuse and recycling) for that week is 70 pounds, the Diversion Rate without Contamination is 26 percent.

Second, the Diversion Rate with Contamination is the amount of materials set out for recycling collection (including all non-designated materials) as a percentage of the total waste collected. The Diversion Rate is the result of dividing the amount of designated recycling material set out (including contaminants) by the total amount of waste (refuse and recycling) collected. For example, for a given week, if the weight of materials in the recycling set-out is 20 pounds and the total weight of waste (refuse and recycling) for that week is 70 pounds, the Diversion Rate with Contamination is 29 percent.
Third, the Capture Rate without Contamination is the amount of material designated for recycling that is set out for recycling collection as a percentage of designated materials in both recycling and refuse. The Capture Rate is the result of dividing the amount of designated material in the recycling set-out by the sum of the designated material in both the recycling and refuse for the week. For example, if the amount of designated material in the recycling set-out is 18 pounds and there is an additional 3 pounds of designated material in the refuse, the Capture Rate without Contamination is 86 percent.

Fourth, the Capture Rate with Contamination is the amount of material designated for recycling (including contaminants) that is set out for recycling collection as a percentage of designated materials in both recycling and refuse. The Capture Rate is the result of dividing the amount of material in the recycling set-out by the sum of the designated material in both the recycling and refuse for the week. For example, if the amount of material in the recycling set-out is 20 pounds and there is an additional 3 pounds of designated material in the refuse, the Capture Rate with Contamination is 95 percent.
Fifth, the Contamination Rate is the percentage of material that is not designated for recycling by the DSNY that is found in the recycling set out for collection. Following the previous examples, if 2 pounds of refuse (i.e., non-designated material) is found in a recycling set-out with 20 pounds of total material, the Contamination Rate is 10 percent.
A description of these five rates - Diversion Rate without Contamination, Diversion Rate with Contamination, Capture Rate without Contamination, Capture Rate with Contamination and Contamination Rate - are summarized in Table 3-1.

Table 3-1
Multi-Unit Study Recycling Success Factors

Factor	Definition $^{[1]}$	Example $^{[2]}$
Diversion Rate without Contamination	DR in Recycling divided by W	$18 \mathrm{lbs} / 70 \mathrm{lbs}=26 \%$
Diversion Rate with Contamination	Recycling divided by W	$20 \mathrm{lbs} / 70 \mathrm{lbs}=29 \%$
Capture Rate without Contamination	DR in Recycling divided by DR in W	$18 \mathrm{lbs} /(18 \mathrm{lbs}+3 \mathrm{lbs})=86 \%$
Capture Rate with Contamination	Recycling divided by DR in W	$20 \mathrm{lbs} /(18 \mathrm{lbs}+3 \mathrm{lbs})=95 \%$
Contamination Rate	C in Recycling divided by Recycling	$2 \mathrm{lbs} / 20 \mathrm{lbs}=10 \%$

[^21]Why calculate Diversion or Capture Rates with Contamination? The DSNY gathers data on Recycling and Refuse tonnages collected each day. With such tonnage data, it calculates a weekly, monthly, and annual diversion rate. Such records go back to 1992. But daily tonnage records taken from scale weights recorded when recycling trucks make deliveries do not include information on contamination rates within specific deliveries. Thus, for an accurate historical comparison, it is necessary to calculate the diversion rate by dividing Recycling by the sum of Recycling plus Refuse, without regard to contaminants.
Similarly, the capture rate has, historically, been calculated using real time tonnage data on recycling collections, out of an estimated baseline percentage of Designated Recyclables in the total Waste stream (calculated using Recycling plus Refuse tonnage data multiplied by a baseline percentage).
Calculation of diversion and capture rates with contaminants presents important data for historical comparisons and retains the value of true, rather than estimated data. Finally, the calculation of a diversion statistic that includes contamination enables fair comparison of NYC's diversion rate with those of other cities, none of whom exclude contamination from their calculations.

3.2.2 Building Characteristics

The second data-gathering procedure involved collecting information on each individual building. This was done through a series of surveys about the structural, operational and demographic characteristics in each building, supplemented with centralized data sources, particularly for certain economic data.

- "Structural" characteristics related to the physical properties of a building. Examples include the number of floors in a building, and whether the building has an elevator.
- "Operational" characteristics related to the daily operations and/or recycling infrastructure of the building. Examples include the location of the recycling area, whether the maintenance staff inspects refuse, and labeling of recycling containers and areas.
- "Demographic" characteristics related to the socioeconomic composition of the building residents and characteristics of the building itself. Examples include the education level of residents of the Census Tract in which the building is located and the percentage of building residents that are English-speaking.

The surveys included site visits to each targeted building, interviews with building superintendents or owners and data retrieved from several city databases.

3.2.3 Analysis

A multiple regression analysis was performed on the data from each building to identify the strength of the relationships between each of the building characteristics and the recycling success rates. These analyses resulted in information about the influence of the building characteristics on the recycling success factors. The results of the multiple regression analysis are a series of models that help to explain a portion of the variation in recycling success.

3.3 Planning

Planning for the Multi-Unit Study included two separate, but related, activities: the selection of multi-unit buildings to be analyzed and the selection of building characteristics to be used in the analysis.

3.3.1 Selection of Target Buildings

At the beginning of the Multi-Unit Study, R. W. Beck estimated that at least 125 buildings should be included in the Multi-Unit Study. This total was based on R. W. Beck's estimate that 125 buildings would be enough buildings to provide sufficient examples of each type of building characteristic to gauge the effect of these characteristics on the recycling success of the building. For example, in order to assess the effect of functional elevators on a building's recycling success, it would be necessary to have at least 12 buildings with functional elevators in the Multi-Unit Study. Because the buildings were to be selected at random, there was no way to know beforehand how many buildings would actually have functional elevators. However, with a sample size of 125 buildings, R. W. Beck estimated that each of the 45 building characteristics would be present in at least 10 percent of the buildings. This estimate was also based on the assumption that any characteristic that was not present in at least 10 percent of the buildings in the overall population of buildings was not crucial to the current level of recycling success.

The universe of multi-unit buildings in NYC, from which 125 buildings were to be selected, consists of approximately 46,000 apartment buildings with at least six units. Public housing and buildings with mixed residential and commercial use were excluded from the Multi-Unit Study because DSNY does not collect from commercial buildings and, in New York City Housing Authority buildings, refuse and recycling are handled differently than in other residential buildings.

The Department of City Planning's MapPluto database was used to make the random selection of target buildings. On November 1, 2004, the Project Team randomly selected 140 multi-unit apartment buildings of six units or more from the universe of 46,000 multi-unit buildings. At that time, it was thought that 140 buildings would be more than enough to provide a sample size of 125 buildings. Unfortunately, this was not the case.

From that list of 140 buildings, DSNY eliminated 39 buildings which were no longer available (e.g., no longer existed, were no longer multi-unit apartments, etc.). Of the 101 remaining buildings, 67 were targeted for the Spring Sorting Period. The number of field personnel needed to acquire and sort samples limited the number of buildings that could be targeted.

During the Spring Sorting Period, it became apparent that, due to the commingling of waste from different addresses, obtaining complete, accurate and reliable data on the buildings would be more difficult than had been anticipated. Therefore, it was decided to increase the number of buildings in the sample size. On May 17, 2005, a second round of selections was made, adding 80 randomly selected buildings to the sample. This created a pool of 114 target buildings (34 buildings remaining from the first-round list and 80 new buildings from the second round list). The Summer sampling period was lengthened and ninety-four of the 114 buildings were targeted for sorting during the Summer Sorting Period.

From the total of 161 buildings targeted (67 building targeted in the Spring and 94 buildings targeted in the Summer), five buildings were eliminated because data from these buildings was incomplete or unavailable. Therefore, the total number of target buildings included for the Multi-Unit Study was 156 buildings. Table 3-2 summarizes the process of selecting the multi-unit buildings for the Multi-Unit Study.

Table 3-2
Selection of Target Buildings for the Multi-Unit Study

	Manhattan	Bronx	Brooklyn	Queens	Staten Island	Total
Universe of Buildings	14,231	5,612	17,841	7,948	552	46,184
Random Selections \#1	37	12	56	35	0	140
Buildings Eliminated ${ }^{(1)}$	8	4	15	12	0	39
Buildings Available - Spring	29	8	41	23	0	101
Spring Buildings Selected	17	4	29	17	0	67
Random Selections \#2	28	10	25	17	0	80
Buildings Available - Summer	40	14	37	23	0	114
Summer Buildings Selected	33	13	31	17	0	94
Multi-Unit Study Target	50	17	60	34	0	161
Buildings (2)						
Buildings Disqualified ${ }^{(3)}$	4	0	0	1	0	5
Total Target Buildings ${ }^{(4)}$	46	17	60	33	0	156

(1) Buildings that no longer existed or were no longer multi-unit buildings, as determined by DSNY.
(2) Number of buildings from which samples were acquired and sorted.
(3) Buildings disqualified during analysis because of the commingling of waste from different addresses in collected samples.
(4) It was not possible to obtain surveys for two of the 156 target buildings. In addition, because some of the Multi-Unit Study samples were found to include waste from neighboring non-target buildings, 18 of these non-target buildings were included in the building surveys. The total number of buildings included in the analysis was 172 (see discussion in Section 3.4.4).

3.3.2 Selection of Building Characteristics

Forty-five building characteristics were selected by DSNY and the Project Team for use in the Multi-Unit Study. These characteristics were selected because it was believed that they might have an influence on the recycling success of a multi-unit building. Each of these characteristics can be described in terms of its descriptive dimension, its quantitative variation, and the means of gathering the information on the characteristic.
Each of the 45 factors described some structural, operational, or demographic characteristics of the building. Eleven of these factors describe the structural characteristics of the building, such as the number of floors or the presence of functional elevators. Twenty-six of these factors are operational characteristics, such as the location of recycling areas and the recycling area access hours. Eight of these factors are demographic, such as the average household size and the median household income of the census tract in which the building was located.
The building factors also represent three types of quantitative variables. Twenty-one of these characteristics are binary, determined by questions involving a yes-or-no answer, such as "Does the building have functional elevators?" or "Is recycling mandated by the building lease?".
Eleven of the characteristics are "continuous" in which the exact answer to the question depends on the precision of the measurement, such as the average household income or the market value of the building. Thirteen of the characteristics are discrete, meaning that they can be measured using a whole number, such as "the number of recycling sorts required by residents" or "number of floors in the building".

Finally, information on the each of the building factors was obtained in one of three ways. Building surveyors from the Project Team visited each of the target buildings and made a visual inspection of the premises to answer questions such as, "Are the recycling containers clearly labeled?" and "Is the recycling area secure?". This visual inspection was the most reliable means of collecting information on the buildings. The second means of gathering information was through interviews with the building superintendents. These interviews included questions such as "How many units are owner-occupied?" and "Are refuse areas inspected regularly?". The third source of information was provided by statistical databases. The median household income in the building's census tract obtained from the U.S. Census Bureau or the taxable value of the building obtained from the New York City Department of Finance are examples of information gathered in this way.
The full list of building characteristics, showing these categories of building factors, is shown in Exhibit 3-2.

3.3.3 Analysis of Waste

The analysis of the refuse and recycling from each building required a series of special collections, a specific protocol for acquiring samples, and specific procedure for sorting the samples.

3.3.3.1 Scheduling of Sample Collections

As noted above, 156 buildings were randomly selected for sampling and sorting during the Spring and Summer Sorting Periods. These buildings were exempted from normal collection routes for one week, during which each received individual refuse and recycling collection in a designated truck. To obtain a sample of the refuse and recycling set out for collection from each targeted building, one full week's waste was collected. Because all targeted buildings also receive one recycling collection weekly, the recycling was also collected. To be sure that a
complete week's waste was collected from each targeted building, the recycling collection always took place on the last day of the two or three times per week collection schedule, to be reasonably sure that the recycling collected was generated over the same week that the refuse was generated.

For example, the schedule for collecting a target building with a Monday-Wednesday-Friday refuse collection schedule and recycling collection on Monday would begin with the refuse collection on Wednesday and the following Friday, and both refuse and recycling collected on the following Monday. In this way, an entire week's waste could be captured for the Multi-Unit Study. Similarly, the schedule for a building with Monday-Thursday refuse collection and Monday recycling collection would begin with refuse collection on Thursday and both refuse and recycling collected on the following Monday.

In order to maximize productivity, all special collections for the Multi-Unit Study were carried out by DSNY's dual-bin collection vehicles. On refuse-only collection days, the dual-bin vehicles contained refuse from two buildings wherever possible, with an individual building's refuse placed in each side of the truck. On refuse/recycling collection days, one side of the truck was used for refuse, and the other for recycling, for an individual building. Because all of each building's recycling setouts would be sorted and weighed, it was not necessary to keep MGP setouts separate from paper setouts. Because of the small volume of collections, loads were not compacted.

The loads of refuse and recycling collected from target buildings in Manhattan and the Bronx were delivered to Waste Management's Harlem River Yard Transfer Station in the Bronx. Refuse and recycling from target buildings in Brooklyn and Queens were taken to Waste Management's Varick I Transfer Station in Brooklyn. The random selection of buildings for the Multi-Unit Study did not include any multi-unit buildings from Staten Island because only one percent of the City's 46,000 multi-unit apartment buildings are located on Staten Island.

The schedule of samples acquired and sorted each day during the Spring and Summer Sorting Periods is shown in Exhibit 3-3. In Exhibit 3-3, and successive tables, buildings are identified by the period in which the waste from the building was sorted ("SP" for Spring and "SU" for Summer) and the numbers are based on the Borough, District, and Section in which the building is located. For reasons of confidentiality, addresses of individual buildings are not shown. ${ }^{2}$

3.3.3.2 Sample Weight

In planning for the Multi-Unit Study, it was decided that the sample weight of refuse should be the same as the sample weight for the Residential Study. The procedures for analyzing the composition of municipal solid waste were initially developed over 30 years ago and have been extensively revised and refined in the past three decades. Studies by the USEPA and academic sources (e.g., Klee, A.J and D. Carruth. "Sample Weights in Solid Waste Composition Studies." American Society of Civil Engineers Journal of Sanitary Engineering Division. Vol. 96. 945-954. August 1970) suggest a 200 to 300-pound sample of refuse is sufficient to characterize municipal solid waste. This sample weight is based on factors such as particle size, material components and the level of mixing that occurs during collection. These sources also suggest that, as the size of refuse samples increases beyond 200 to 300 pounds, the statistical benefits associated with the larger sample size are outweighed by the incremental increase in the cost of processing the samples. As a result, the municipal solid waste sample weight of 200 to

[^22]300 pounds has been the industry guideline for municipal solid waste composition studies in the United States for the past 15 years. The samples of refuse from the target buildings for the Multi-Unit Study use this guideline.
Paper and MGP collected for recycling differs from refuse in several ways. First, these streams target a specific set of materials and, therefore, tend to be more homogeneous than refuse. Second, particle size, particularly in the paper steam, is more uniform, compared to refuse. Because of these characteristics and based on the Project Team's experience in previous waste characterization studies, the recommended weight of recycling samples was 100 pounds to 125 pounds. However, because the recycling samples for the Multi-Unit Study were acquired at the City's refuse transfer stations, all recycling materials delivered to the transfer stations were taken by the Sampling Team to the Greenpoint Marine Transfer Station. To obtain complete information on the materials set out for recycling, all recycling materials were sorted.

3.3.3.3 Material Categories

Because the primary purpose of the analysis of the waste was to determine recycling success, rather than to determine the composition of the refuse and recycling from multi-unit apartment buildings, the protocol for sorting refuse and recycling for the Multi-Unit Study differed in several respects from the protocol used for sorting waste for the Residential Study. For the Multi-Unit Study, the sort categories only needed to be detailed enough to effectively separate recyclable from non-recyclable materials and provide a certain level of additional detail.
Therefore, the number of material categories used in the Multi-Unit Study was reduced from the number of material categories used in the Residential and Street Basket Waste Studies. The material categories used for the Multi-Unit Study are presented in Exhibit 3-4.

3.4 Implementation

The implementation of the Multi-Unit Study included Sample Acquisition, sample sorting, and data management and analysis.

3.4.1 Sample Acquisition

The Dual-bin Trucks delivering loads of refuse and recycling to Harlem River Yard and Varick I were weighed upon arrival. Each truck was accompanied by a DSNY Supervisor. The Sample Manager first confirmed the address of the target building from which the refuse and/or recycling was collected with the Supervisor. Then the Sample Management Team acquired samples of refuse and recycling using the following procedures:

3.4.1.1 Refuse

After a truck collecting refuse from the multi-unit target building had tipped its load, the Sample Management Team randomly selected a 200 to 300 -pound sample ${ }^{3}$. The Sample Manager worked with a Front-End Loader ("FEL") to select the sample randomly. As the collection truck tipped its load, the Sample Manager randomly selected an area of the tipped load and instructed the FEL operator to grab a bucket load of material from that area of the pile. When the FEL's bucket was full of material, the Sample Manager randomly selected the portion of the bucket from which the sample would be taken. The material in that portion of the bucket would then be pulled into the 96 -gallon toters until a full 200 to 300 -pound sample was acquired. In cases where the entire load of refuse was less than 200 pounds, the entire load of refuse was taken.

[^23]Each refuse sample was weighed by the Sample Management Team. The Sample Manager noted any bulk items (i.e., items too large to fit into a 96 -gallon toter) on the Sample Management Form, which included information on the weight, description and material of each bulk item.

Next, in order to determine the total amount of refuse set out by the target building for that day, all refuse not included in the sample was weighed separately by the Sampling Team. This weight was also recorded on the Sample Management Form.

After all refuse samples scheduled to be delivered on that day had been received, the refuse samples were taken by the Sample Management Team to the North Shore Marine Transfer Station where they were sorted. Bulk items were left at the transfer station for disposal.

3.4.1.2 Recycling

The "sample" of recycling from each target building consisted of the entire load of recycling, including all bulk items. Each sample was collected by the Sample Management Team and weighed. Both 96 -gallon toters and plastic bags were used for collecting and transporting the recycling. All samples of recycling were taken by the Sample Management Team to the Greenpoint Marine Transfer Station where they were sorted. Bulk items that could not easily fit in toters or bags were noted on the Sample Management Form, as described above, but were also included in the material taken to Greenpoint Marine Transfer Station. Bulk items were also tagged appropriately and included in the sort data. An example of the Sample Management Form for the Multi-Unit Study is shown as Exhibit 3-5.

3.4.1.3 Resulting Data

The data gathered from the acquisition of samples includes the weight of each sample of refuse, recycling and waste for each target building. This data is presented in Exhibit 3-6.

3.4.2 Sorting of Samples

When the samples of refuse and recycling were delivered to the sorting sites, they were sorted and weighed.

3.4.2.1 Sorting Procedures

Because the primary purpose of the Multi-Unit Study was not to determine the composition of the refuse and recycling from multi-unit apartment buildings, the procedure for sorting refuse and recycling for the Multi-Unit Study differed in several respects from the procedure used for sorting residential and street basket waste.

First, each refuse sample was inspected to determine if it had come from the targeted building. The protocol for this procedure is described in Section 3.4.2.2. Second, as shown in Exhibit 3-4, the number of material categories used for sorting samples of multi-unit apartment refuse was smaller than the number of categories used for sorting residential refuse and street basket waste. The material recycling categories used for the Multi-Unit Study were identical to those used for the residential recycling. The Sample Detail Forms used in sorting multi-unit refuse and for recycling are shown as Exhibit 3-7.

3.4.2.2 Waste from Non-Target Buildings

An unexpected aspect of the Multi-Unit Study involved the presence of waste from non-target buildings in the samples collected from target buildings. On the first night of sampling, DSNY supervisors in the field noted one building where refuse set-outs appeared to be combined with
the set-outs from the neighboring building. For this reason, a protocol was added to the multi-unit sorting of refuse samples to detect instances of waste from non-target buildings.

The protocol developed to identify samples with non-target refuse consisted of five steps:

1. Before the sample was sorted, all bags in the sample were counted.
2. All bags in the sample were carefully opened and inspected. Instances of mail, including letters, periodicals, and other types of mail, from non-targeted addresses were noted and the addresses recorded. Mail was examined for the purposes of confirming building origin only. In order to ensure confidentiality, records were not kept of resident names, and all mail was destroyed after sorting had taken place.
3. All bags were classified as,
a. Confirmed Target - Refuse with mail from the target building;
b. Confirmed Non-Target - Refuse with mail from a non-target address; and
c. Unconfirmed (i.e., no mail).
4. Upon completion of this protocol, all bags were sorted.
5. Loose material was considered "unconfirmed" unless it was mail with a non-target address.

Some of the reasons that waste from non-target buildings might have been present in target building waste include:

- Inadvertent collection of containers from a non-target building. These containers might have been placed next to containers from the target building and picked up by DSNY by mistake, or two different buildings might have had a common set-out location, resulting in a commingling of the waste.
- Residents from a non-target building placing bags of waste in the containers belonging to the target building. If, for example, the refuse containers from the non-target building were full, a resident of the non-target building might walk over and place their refuse in the container from a target building. Residents may also place their waste next to an adjacent building to avoid anticipated summonses.
- Residents of the target building disposing non-target waste. A resident of a target building may receive mail at another address (e.g., work address) but may dispose of it at the target address.

The information from the procedure was noted on the Bag-Tracking Form which was part of the Multi-Unit Sample Detail form. A copy of the Bag-Tracking Form is shown in Exhibit 3-8. The information on non-target refuse and recycling gathered during sorting was included in the packet of material used by building surveyors and 18 non-target buildings were surveyed and the results of these surveys were incorporated into the analysis (Section 3.4.4).

3.4.2.3 Resulting Data

The data obtained from the sorting of multi-unit waste includes the composition of the refuse, recycling and waste. This data is presented in Exhibit 3-9. The recycling success factors described above were calculated from the data in Exhibit 3-9. The resulting recycling success statistics are shown in Exhibit 3-10.

3.4.3 Data on Buildings

Information on the characteristics of the target buildings was gathered from central databases and building surveys.

3.4.3.1 Databases

Certain information on the building characteristics was gathered from four publicly-available databases.

- BYTES of the BIG APPLE ${ }^{\text {tm }}$ MapPluto $^{\text {tm }}$, maintained by the New York City Department of City Planning. From this database, information by address on the buildings' borough, block, lot, number of residential units, and number of floors was obtained from Access and imported into the project database. The URL address of this database is http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml and a printout of the first page of the web page is shown below.

PAD ${ }^{\text {m }}$ © 2005-06. NYC Department of City Planning. All rights reserved.
License agreement required - please call 212-720-3505 for more information.
The PAD (Property Address Directory) file contains additional geographic informati tax lot level not found in the PLUTO files. This data includes alias addresses and E Identification Numbers (BINs). It consists of two ASCII, comma delimited files: a and an address file.
Release............ 05D
Date of Data.... July - December 2005
Price............... $\$ 250$ Citywide

[^24]- Building Information System ("BIS"), maintained by the New York City Department of Buildings. From this database, information on number of elevators and the total number of violations were obtained visually and copied into the project database. The URL address of this database is http://a810-bisweb.nyc.gov/bisweb/bsqpm01.jsp and a printout of the first page of the web page is shown below.
Buildings Information System Page 1 of 2

NYC Department of Buildings
Buildings Information System
Welcome to the Department of Buildings online query system. You can search for general information on a property in the city including recorded complaints and violations, actions, applications, and inspections. You can also search for information about tradespeople licensed by the Department. The information provided here comes directly from the Department's Building Information System. Look for additional functionality to be added in the future. If you have any questions please review these Frequently Asked Questions, the Glossary, or call the 311 Citizen Service Center by dialing 311 or (212) NEW YORK outside of New York City

Using the BIS search features: When entering information in most queries, it is important to data enter complete information for fields such as Address, License Number and Job Number. Wildcard searches in most queries will not result in the retrieval of information unless specifically noted.

BIS Menu

A Building Information Search
(Modem/Dial-Up Users Click Here if Above Link Fails)

B Skilled Trades Licensees/General Contractors Search

C efiling

D My Community

Other Related Links

Dept. of Buildings: Jobs / Permits / Signs / Complaints Statistical Reports

Dept. of Consumer Affairs: Home Improvement Contractor License Check

Dept. of Finance: Property Records - ACRIS

New York State: Online License Verifications

- New York City's property information system, maintained by the New York City Department of Finance-E Services. Information on the number of units, the number of stories, and the market value and taxable value of the building were obtained visually and copied into the project database. The URL address of this database is http://nycserv.nyc.gov/nycproperty/nynav/jsp/selectbbl.jsp and a printout of the first page of the web page is shown below.
Welcome to New York City's property information system. To obtain information about a property, enter a borough-block-lot (BBL) and click on View.

YOUR PROPERIY	NYCProperty
INEORMEIION	Need Help?
"A Business \& Taxpayer Resource"	Select a BBL

Today's Date: November 10, 2006

If you do not know your BBL, click here to search by address.

Copyright © 2005 The City of Now York
Go To: Finance Home Page | NYC.gov Home Page | Contact NYC.gov | FAQs | Privacy Statement | Site Map

- HPDOnline (HPD Building info), maintained by the New York City Department of Housing Preservation and Development. Information on the number of residential units and violations were obtained visually and copied into the project database. The URL address of this database is http://167.153.4.71/hpdonline/provide address.aspx and a printout of the first page of the web page is shown below.

3.4.3.2 Building Surveys

3.4.3.2.1 Survey Teams

A series of on-site building surveys were conducted by the Project Team, supported by DSNY staff from the BWPRR. Shortly after the Spring and Summer Sorting Periods, Project Team members conducted surveys for the buildings that had been targeted during the preceding sorting period. The spring surveys were conducted during the weeks of June $6^{\text {th }}$ and June $20^{\text {th }}, 2005$. The summer surveys took place during the weeks of September $12^{\text {th }}$ and October $3^{\text {rd }}, 2005$.
During these weeks, each surveyor spent the day visiting target buildings and conducting a visual survey of the building and an interview with the building superintendent or owner. In some cases, the superintendent was not available and one or more follow-up visits were necessary. DSNY BWPRR staff provided logistical support, including driving to the buildings, helping to locate the superintendent, and in some cases, translating for the surveyor. The staffing of the building surveys is presented in Exhibit 3-11.

3.4.3.2.2 Survey Procedures

The goal of the survey was to complete the survey questionnaire which was designed around the 45 building characteristics (Exhibit 3-2). A visual inspection of each building during the site visit was conducted to provide information such as the state of maintenance and repair in the building, the location of the recycling area and the existence and quality of recycling signage. An interview with the building superintendent or owner was also conducted to obtain information such as the level of recycling enforcement, recycling area access hours and the number of recycling sorts required of residents. The surveyor also took photographs of the building's recycling and refuse areas. The building questionnaire is shown in Exhibit 3-12 and the summary of the chronology of the building surveys is presented in Exhibit 3-13. Despite these procedures and repeated efforts to meet with building superintendents, information on some buildings was incomplete because superintendents either did not know or could not be reached.

3.4.4 Data Management and Analysis

The management of sort data for the Multi-Unit Study was similar to the management of data for the Residential Study (Volume 2, Section 4 of the Final Report). Each morning, the Sample Management Forms were turned into the Data Manager who checked them for completeness and legibility. The data was then entered in the project database. Each evening, the Sample Detail Forms were turned in to the Director of Sorting and the Data Manager who checked them. Then this information was entered into the project database.

The information collected during the building surveys was sent to the Multi-Unit Study Task Manager who followed-up incomplete survey forms or ambiguous responses to survey questions. Despite repeated efforts to conduct surveys for the 156 target buildings, it was not possible to obtain surveys for two buildings. Therefore, 154 surveys from target buildings were used in the analysis.

In addition, because a number of samples from target buildings included non-target waste, the analysis included building surveys from 18 non-target buildings. Because the waste from these buildings was mixed with the waste from the target buildings, the recycling success factors for the non-target building were assumed to be the same as the recycling success factors from the target building. In all, 172 buildings were included in the analysis. Completed surveys were entered into the project database.

To initiate the analysis, data from the analysis of the waste and the results of the building surveys were aggregated by building. This aggregated data was used to conduct a multiple regression analysis. A more detailed description of the regression analysis is presented in Exhibit 3-1. The results of the analysis are presented below.

3.5 Results

The results of the Multi-Unit Study multiple regression analysis are presented in Tables 3-3 through 3-7. Each table shows the building factors that were found to be related to recycling success, the type of building factor and the coefficient. The discussions of each building factor describe the relationship between the building factor and recycling success. It should be emphasized that the results of the analysis show the relationships between the building factors and recycling success. These relationships do not necessarily imply causation. In some cases, the direction of the relationship is counterintuitive. The purpose of the discussion of each factor is to elaborate on the relationships shown by the analysis.
As discussed in Exhibit 3-1, the coefficient of each factor provides an estimate of the quantitative influence of each factor on recycling success. These estimates are subject to varying degrees of uncertainty and should be viewed as rough indications of the amount of influence.

Furthermore, the methods by which information about the factors was obtained may have some bearing on the interpretation of the results. For example, data that was obtained from published sources, such as census data, or information about the layout of the building that was directly observed by the building surveyors, may be more reliable than responses to questions by building management. Examples of potentially sensitive questions include whether the building staff regularly inspects refuse and notifies residents and whether recycling is mandated in the building.

Regression analysis involves testing the various building factors against the measure of recycling success to determine the factors have the strongest relationship to that measure. Five analyses were conducted for the Multi-Unit Study, one for each of the five measures of recycling success. However, each analysis was run many times with different combinations of building factors. The results shown in the tables below show the factors with the strongest influences. As noted, data on some buildings was incomplete. The five analyses on each of the five definitions of recycling success incorporated only buildings with information on all building characteristics. For example, in Table 3-3, complete information on the eight building factors shown in the results was available for 93 of the buildings in the Multi Unit Study. The factors are listed by "Factor Type" in the following order: Binary, Continuous, Discrete, and within each category by the size of the coefficients.

3.5.1 Diversion Rate without Contamination

Table 3-3
Building Factors Related to Diversion Rate without Contamination [1] Results of Multiple Regression Analysis

	Building Factor	Factor Type	Coefficient ${ }^{[2][3]}$
1	Buildings with clearly labeled recycling containers AND a clearly labeled recycling area.	Binary	4.80
2	Buildings with at least one elevator.	Binary	(4.26)
3	Buildings with visible pest problems in the recycling area(s).	Binary	(5.45)
4	Percentage of Building units reported to be occupied.	Continuous	0.20
5	Percentage of Census Tract that obtained a high school diploma or higher.	Continuous	0.19
6	Number of sorts reported to be required of Building residents.	Discrete	1.31
7	Number of Building units reported to be owneroccupied.	Discrete	0.12
8	Number of Building refuse points not co-located with recycling area(s).	Discrete	(0.98)

[1] Building factors ordered by factor type.
[2] Parameters estimated from 93 observations, i.e., 93 buildings had full information on all eight factors.
[3] Positive coefficients (figures with no parentheses) indicate that recycling success will increase if the building factor is present or is increased. Negative coefficients (figures in parentheses) indicate that recycling success will decrease if the building factor is present or is increased.

Table 3-3 shows that eight building factors were related to with "Diversion Rate without Contamination." They are discussed below.

Table 3-3, 1: "Buildings with clearly labeled recycling containers AND clearly labeled recycling area(s)" is a binary factor that shows a positive relationship to Diversion Rate without Contamination. When recycling containers and recycling areas are clearly marked, the Diversion Rate without Contamination is expected to increase significantly. This makes intuitive sense and may be one of the key findings of the study, as it is a factor that may be influenced by building management and even DSNY more easily than many others. When clearly marked recycling containers and clearly marked recycling areas were considered separately, both showed a positive relation, but in combination, their relationship was stronger than their relationships separately.

Table 3-3, 2: "Buildings with at least one elevator" is a binary factor because it involves the answer to a "Yes-or-No" question. This factor is negatively related to with the Diversion Rate without Contamination. That is, in a building with at least one elevator, the diversion rate is expected to decrease. Or, said another way, buildings without any elevators are expected to have higher Diversion Rates without Contamination. This result is somewhat counterintuitive
because one might expect that elevators would make recycling easier. One explanation for this variable may be that recycling success is more likely to be higher in smaller buildings (i.e., those buildings without elevators) where the building superintendent may have more direct contact with residents. A more detailed discussion of this issue can be found in Exhibit 3-1.

Table 3-3, 3: "Buildings with a visible pest problem in the recycling area" is a binary factor that shows a negative relationship to Diversion Rate without Contamination. Again, this makes intuitive sense because a recycling area with a visible pest problem would probably be poorly maintained and less attractive to residents, leading to decreased recycling.

Table 3-3, 4: "Percentage of Building units reported to be occupied" is a continuous factor positively related to Diversion Rate without Contamination. It is not clear why high occupancy rates might help to boost recycling success.
Table 3-3, 5: "The percentage of the population of the census tract that obtained a high school diploma or higher" is a continuous factor because the percentage might be anywhere from 0 percent to 100 percent. The coefficient of 0.19 is positive because it suggests that for every percent increase in the population of census tract that obtained a high school diploma or higher, the Diversion Rate without Contamination should also increase. This make intuitive sense because a more educated person might have a better understanding of the reasons for recycling and be more inclined to do so.

Table 3-3, 6: "Number of sorts reported to be required by building residents" is a discrete factor because the number of sorts that are required is a whole number. This factor shows a positive relationship to the Diversion Rate without Contamination. Although it might seem counterintuitive that residents required to sort recycling material into more bins (i.e., do more work) would achieve a higher diversion rate, it might be that the additional required sorts indicate a more serious approach to recycling in the building.

Table 3-3, 7: "Number of Building units reported to be owner-occupied" is a discrete factor that also shows a positive relationship to Diversion Rate without Contamination. It may be that the presence of owners in the building helps to foster a proprietary attitude that increases recycling. It may also indicate a more stable building population that is more familiar with building recycling rules.
Table 3-3, 8: "Number of building refuse points not co-located with recycling area(s)" is a discrete factor that shows a negative relationship to Diversion Rate without Contamination. Here co-location means that refuse and recycling can be taken to the same area of the building. If residents have to take their refuse and recycling materials to different locations in the building, this might discourage them from recycling, leading to a lower diversion rate.

3.5.2 Diversion Rate with Contamination

Table 3-4
Building Factors Related to Diversion Rate with Contamination [1] Results of Multiple Regression Analysis

	Fac	Factor Type	Coefficient ${ }^{[2][3]}$
1	Buildings with clearly labeled recycling containers AND a clearly labeled recycling area.	Binary	7.03
2	Buildings with visible pest problems in the recycling area(s).	Binary	(4.11)
3	Buildings with at least one elevator.	Binary	(4.65)
4	Percentage of Building units reported to be occupied.	Continuous	0.23
5	Percentage of Census Tract that obtained a high school diploma or higher.	Continuous	0.19
6	Number of sorts reported to be required of Building residents.	Discrete	1.72
7	Number of Building units reported to be owneroccupied.	Discrete	0.12
8	Number of Building refuse points not co-located with recycling area(s).		(1.57)

[1] Building factors ordered by factor type.
[2] Parameters estimated from 93 observations, i.e., 93 buildings had full information on all eight factors.
[3] Positive coefficients (figures with no parentheses) indicate that recycling success will increase if the building factor is
present or is increased. Negative coefficients (figures in parentheses) indicate that recycling success will decrease if
the building factor is present or is increased.

Table 3-4 includes eight factors related to the Diversion Rate with Contamination. Given the similarity between this measure of recycling success and Diversion without Contamination, it should not be surprising that these are the same factors as those associated with Diversion Rate without Contamination. The factors are the same type and the relationships (positive or negative) to recycling success and the same as those in Table 3-3, however the coefficients of some of the factors are different.

3.5.3 Capture Rate without Contamination

Table 3-5
Building Factors Related to Capture Rate without Contamination [1] Results of Multiple Regression Analysis

	Building Factor	Factor Type	Coefficient ${ }^{[2] ~[3]}$
1	Buildings with clearly labeled recycling containers.	Binary	4.84
2	Percentage of Building units reported to be occupied.	Continuous	0.28
3	Aggregate market value of Building ($\$ 000$) divided by number of units in the Building.	Continuous	(0.06)
4	Number of sorts reported to be required of Building residents.	Discrete	5.97
5	Number of Building units reported to be owneroccupied.	Discrete	0.19
6	Total number of violations and complaints for Building as reported by sources ${ }^{[4]}$.		(0.16)
	[1] Building factors ordered by factor type.		
	[2] Parameters estimated from 98 observations.		
[3] Positive coefficients (figures with no parentheses) indicate that recycling success will increase if the building factor is present or is increased. Negative coefficients (figures in parentheses) indicate that recycling success will decrease if the building factor is present or is increased. [4] Sources: Dept. of Housing Preservation and Dept. of Buildings.			

Table 3-5 includes six factors related to Capture Rate without Contamination. These factors are discussed below:

Table 3-5, 1 : "Building with clearly marked recycling containers" is a binary variable that shows a positive relationship to Capture Rate without Contamination. In Tables 3-3 and 3-4, this characteristic was combined with "Buildings with clearly labeled recycling areas. But in Table 3-5 the clear marking of recycling containers has been disaggregated from clearly marked recycling areas, suggesting that the clearly marked containers alone are enough to increase Capture Rate without Contamination significantly. It makes intuitive sense that clearly marked containers lead to more successful recycling.
Table 3-5, 2: "Percentage of Building units reported to be occupied" is a continuous factor that shows a positive relationship to Capture Rate without Contamination. This is the same factor and type of relationship shown in Tables 3-3 and 3-4. Buildings with a higher occupancy rate seem to show both a higher diversion rate and a higher capture rate. It is not clear why this is so.
Table 3-5, 3: "Aggregate market value of Building (\$000s) divided by number of units in the Building" is a continuous factor that shows a negative relationship to Capture Rate without Contamination. It is not clear why buildings with a higher market value per unit would have a lower capture rate.
Table 3-5, 4: "Number of Sorts Reported to be required by residents" is a discrete factor that shows a positive relationship to Capture Rate without Contamination. Again, this is the same factor and type of relationship shown in Tables 3-3 and 3-4. Buildings with a higher number of
sorts may have a more aggressive recycling program, leading to higher diversion and capture rates.

Table 3-5, 5: "Number of Building units reported to be owner-occupied" is a discrete factor that shows a positive relationship to Capture Rate without Contamination, just as it did in Tables 3-3 and 3-4. Buildings with more owners occupying units are expected to have more recycling success, perhaps because the greater sense of responsibility for the building among the residents. Owner-occupancy may also indicate a more stable building population that is more familiar with building recycling rules.

Table 3-5, 6: "Number of violations or complaints as reported by the City Department of Housing Preservation and Department of Buildings" is a discrete factor that shows a negative relationship to Capture Rate without Contamination. This makes intuitive sense because violations and complaints would indicate a poorly maintained building which might discourage residents from recycling.

3.5.4 Capture Rate with Contamination

Table 3-6
Building Factors Rrelated to Capture Rate with Contamination [1] Results of Multiple Regression Analysis

| | | Building Factor | Factor
 Type |
| :--- | :--- | :--- | :---: | | Coefficient ${ }^{[2]}$ [3] |
| :---: |

Table 3-6 has seven factors related to Capture Rate with Contamination. Four of these factors are identical to the factors in the Table 3-5.

Table 3-6, 1: "Buildings with clearly labeled recycling containers AND clearly labeled recycling area(s)" is a binary factor that shows a positive relationship to Capture Rate with Contamination. When recycling containers and recycling areas are clearly marked, the Capture Rate with Contamination is expected to increase significantly. This is an intuitive finding.

Table 3-6, 2: "Aggregate market value of Building (\$000s) divided by number of units in the Building" is the same factor in Table 3-5, a continuous factor with a negative relationship to Capture Rate with Contamination.
Table 3-6, 3: "Buildings with functional refuse chutes" is a binary factor that shows a negative relationship to Capture Rate with Contamination. It appears that when a building has functional refuse chutes, residents may be inclined to put all materials, refuse and recycling, into the chutes and therefore, smaller amounts of recycling materials are captured.
Table 3-6, 4: "Number of sorts reported to be required by residents" is a discrete factor that shows a positive relationship to Capture Rate with Contamination. This same factor appears in Table 3-5 and shows a positive relationship to capture rates.

Table 3-6, 5: "Number of building refuse points co-located with recycling" is a continuous factor that shows a positive relationship to Capture Rate with Contamination. This factor was also related to Diversion Rate and makes intuitive sense. When refuse and recycling areas are co-located, it makes it more convenient for residents to recycle.

Table 3-6, 6: "Percentage of Building units reported to be owner-occupied" is also a discrete factor that shows a positive relationship to Capture Rate with Contamination, just as it did in Tables 3-3, 3-4, and 3-5. Buildings with more owners occupying units appear to have more recycling success, perhaps because the greater sense of responsibility among the residents.
Table 3-6, 7: "Number of violations or complaints as reported by the City Department of Housing Preservation and Department of Buildings" is the same factor that was related to Capture Rate without Contamination, a discrete factor with a negative relationship to Capture Rate with Contamination. Again, violations and complaints would appear to indicate a poorly maintained building which might discourage residents from recycling.

3.5.5 Contamination Rate

Table 3-7
Building Factors Related to Contamination Rate [1] Results of Multiple Regression Analysis

	Building Factor	Factor Type	Coefficient ${ }^{[2]}{ }^{[3]}$
1	Buildings where waste is inspected by building staff and violators notified.	Binary	13.20
2	Buildings with a messy recycling area.	Binary	12.08
3	Buildings with a clearly labeled recycling area.	Binary	(2.48)
4	Buildings where the recycling area is monitored by security camera or security personnel.	Binary	(4.64)
5	Buildings with functional refuse chutes.	Binary	(12.78)
6	Census Tract Household size.	Continuous	3.78
7	Number of Building units reported to be occupied.	Discrete	0.20
8	Number of Building units reported to be owneroccupied.	Discrete	(0.04)
[1] Building factors ordered by factor type. [2] Parameters estimated from 91 observations, i.e., 91 buildings had full information on all eight factors. [3] Positive coefficients (figures with no parentheses) indicate that recycling success will increase if the building factor is present or is increased. Negative coefficients (figures in parentheses) indicate that recycling success will decrease if the building factor is present or is increased.			

Table 3-7 has eight factors related to the Contamination Rate. In this case, the Contamination Rate is a negative factor indicating the percentage of non-designated recycling in the material set out for recycling.

Table 3-7, 1: "Buildings where waste is inspected by the building staff and violators notified" is a binary factor with a positive relationship to the Contamination Rate. This is a difficult factor to explain. Regular inspection of waste and notification of violators would seem to suggest that the recycling program is carefully supervised and, for that reason, Contamination Rates would decrease, but they do not; instead Contamination Rates go up. It is possible that the data on which the analysis of this factor is flawed because building managers are being asked to evaluate their own performance. In other words, when asked if they inspect the trash and notify violators, they may say "yes" even if they don't actually do it. It may also be possible that high Contamination Rates have led building managers to initiate regular inspections and, at the time of the survey, the Contamination Rates were still high.
Table 3-7, 2: "Buildings with messy recycling areas" is a binary factor with a very positive relationship to the Contamination Rate. Here "messy" means dirty, poorly maintained, or disordered. It is not surprising that buildings with unclean recycling areas would have high contamination rates in the recycling.

Table 3-7, 3: "Buildings with clearly marked recycling areas" is a binary factor with a negative relationship to the Contamination Rate. In other words, buildings with clearly marked recycling areas have lower Contamination Rates. Clearly marked recycling areas may indicate a more carefully maintained recycling program, leading to less contamination in the recycling materials.

Table 3-7, 4: "Buildings where the recycling area is monitored by security cameras or security personnel" is a binary factor with a negative relationship to the Contamination Rate. Buildings with secure recycling areas would suggest a well-run recycling program, leading to lower Contamination Rates.

Table 3-7, 5: "Buildings with functional refuse chutes" is a binary factor with a negative relationship to the Contamination Rate. The relationship between functional refuse chutes appears to be complex. As shown in Table 3-6 (\#5), functional refuse chutes reduce the capture rate with contamination. At the same time, functional refuse chutes appear to reduce the Contamination Rate. One possible explanation may be that in buildings with functional refuse chutes, relatively few people recycle, but those that do, are quite careful about what they place in their recycling container. Another possibility is that residents in building with refuse chutes are using them to dispose of their refuse and not putting refuse into their recycling containers.

Table 3-7, 6: "Census Tract Household size" is a continuous factor with a positive relationship to the Contamination Rate. In other words, as household size increases the rate of contamination also increases. The explanation for this may be that in larger households, more people may be putting material in the recycling container and it is more difficult to keep recycling materials free of contamination.

Table 3-7, 7: "Number of Building units reported to be occupied" is a discrete factor with a positive relationship to the Contamination Rate. A higher percentage of the units occupied appears to increase the Contamination Rate.

Table 3-7, 8: "Number of units reported to be owner-occupied" is a discrete factor with a negative relationship to the Contamination Rate. As the percentage of owner-occupied units increases, the Contamination Rate decreases. As shown in previous tables, ownership appears to increase recycling success.

3.5.6 Summary of Binary Building Factors

Another way to view the results of the Multi-Unit Study regression analysis is to examine the recycling success for the buildings responding either "yes" or "no" to the binary building factors. Table 3-8 presents the nineteen binary building factors. The two columns under "Building Count" show the number of buildings found to have the factor, as the result of the building surveys, and the number of buildings without the factor. In the next ten columns, the average recycling success metric for the buildings with and without the building factor are shown.

For example, from the 172 building survey responses, 169 buildings either had, or did not have at least one elevator (the other 3 responses were incomplete). Of these 169 buildings, 27 buildings had at least one elevator and 142 did not. For those buildings that did have at least one elevator, the average Diversion Rate with Contamination was 16 percent. For those buildings without at least one elevator, the average Diversion Rate with Contamination was 19.5 percent. As Table 3-8 shows, the average diversion and capture rates for buildings without elevators were always higher than for buildings with at least one elevator. The Contamination Rates for these buildings was identical, whether or not they had elevators.

Table 3-8
Summary of Average Recylcing Success Statistics - Binary Building Factors

Building Factor	Building Count ${ }^{(1)}$		Diversion Rate (\%)				Capture Rate (\%)				Contamination Rate (\%)	
			With Contamination		Without Contamination		With Contamination		Without Contamination			
	Yes	No										
At least one elevator	27	142	16.0	19.5	13.2	16.4	43.3	51.5	35.3	42.7	16.8	16.8
Accessible Recycling Area	154	15	19.9	9.6	16.7	8.0	52.5	29.1	43.5	24.1	17.3	10.4
Functional Refuse Chutes	25	141	15.5	19.8	12.9	16.6	40.0	52.7	33.0	43.8	15.9	16.6
Recycling Area Clearly Labeled	88	78	21.8	16.3	18.4	13.5	56.1	44.9	46.4	37.4	16.9	16.4
Recycling Containers Clearly Labeled	52	111	26.6	16.0	22.2	13.4	66.4	44.0	54.6	36.7	17.0	16.6
Recycling Area Pest Problem	14	155	12.4	19.6	9.2	16.5	35.3	51.8	25.5	43.3	22.6	16.2
Refuse Area Pest Problem	20	149	12.8	19.9	9.5	16.8	38.6	52.0	28.3	43.6	21.5	16.1
Recycling Area Ventilated	4	164	16.8	19.1	16.0	16.0	40.5	50.8	38.5	42.0	6.2	16.9
Recycling Area Messy	27	143	16.3	19.5	11.9	16.6	48.9	50.5	36.1	42.7	23.7	15.5
Recycling Area Secure	38	131	20.4	18.6	17.0	15.6	54.9	49.1	45.4	40.7	16.5	16.8
Recycling Area Monitored	9	160	25.0	18.7	21.1	15.6	69.5	49.3	57.9	40.9	16.6	16.8
Recycling Area High Traffic	100	69	20.6	16.7	17.5	13.6	51.4	49.0	43.1	39.9	17.1	16.2
Recycling Area Open/Visible	132	36	19.8	16.1	16.5	13.6	51.9	44.4	42.9	37.4	17.4	14.5
Recycling Mandated in Lease	53	57	20.7	18.4	17.6	15.0	53.6	51.3	44.9	41.3	16.3	20.7
Recycling Mandated Other Comm. ${ }^{[2]}$	75	72	21.6	16.4	18.5	13.2	54.9	47.2	46.4	38.0	15.5	18.7
Staff Inspect Refuse	123	33	20.0	17.3	16.5	15.0	53.2	45.2	43.5	38.9	18.2	13.2
Recycling Area Outdoors	121	51	19.7	16.5	16.5	13.8	52.6	43.1	43.5	36.0	17.9	14.2
Recycling Area in Basement	19	153	20.5	18.6	17.8	15.4	55.6	49.1	47.8	40.4	14.3	17.1
Recycling Area on Each Floor	8	164	17.4	18.8	14.1	15.8	46.0	50.0	37.2	41.4	18.5	16.7

[1] The total number of buildings for each factor varies because some survey information was unavailable from certain buildings.
[2] Survey question relates to forms of communication other than the building lease that may mandate recycling in a particular building.

The results shown in Table 3-8 present only the results of binary factors. As Tables 3-3 through 3-7 show, the recycling success statistics were found to be related to a number of building factors (binary, continuous, and discrete).

Exhibit 3-1

E3.1.1 Introduction

The purpose of the Multi-Unit Apartment Study ("Multi-Unit Study" or "MUS") was to identify and quantify the primary physical, operational, and demographic building characteristics that are related to recycling success. For instance, are indoor recycling areas or clearly marked recycling containers related to successful recycling in multi-unit apartment buildings? If so, to what extent would improving these areas improve recycling success? To analyze these building characteristics, a statistical procedure known as multiple regression analysis was used.

Developing a multiple regression equation involves using more than one independent variable in an equation to determine the extent to which these multiple variables explain the variation in the dependent variable. In other words, in this type of analysis, we want to analyze several building characteristics together in order to be able to distinguish each characteristic's effect on recycling success. This discussion presents an explanation of how this procedure was used in the Multi-Unit Study, and what the results indicate.

E3.1.2 Multiple Regression

The purpose of this exhibit is to explain how the multiple regression analysis was used in the Multi-Unit Study. ${ }^{1}$

Multiple regression equations are used to identify and quantify the influence of multiple independent variables on a single dependent variable. For the Multi-Unit Study, the independent variables ("external factors") were formed from the 45 building characteristics. These included physical or structural characteristics such as the number of floors in the building and the presence of functioning elevators; operational characteristics, such as hours the recycling area is open and the signage on the recycling containers; and demographic characteristics, such as market value of the building's units and the percentage of high school graduates in the building Census Tract. A full list of the building characteristics used in the analysis is presented in Exhibit 3-2.

The dependent variable in the regression analysis was "recycling success." Five definitions of recycling success were used in the analysis: Diversion Rate Without Contamination, Diversion Rate With Contamination, Capture Rate Without Contamination, Capture Rate With Contamination, and the Contamination Rate. Therefore, five separate multiple regression equations were developed, one for each of the five definitions (see Table 3-1 in Volume 3 of the Final Report for more information about these definitions).
Since more than one external factor (building characteristic) may have an effect on the dependent variable (recycling success), the analysis simultaneously considered these various factors and combinations. All of the 45 building characteristics shown in Exhibit 3-2 were believed to have a possible effect on recycling success.

[^25]Exhibit 3-1
Regression Methodology
(continued)
To begin to develop the multiple regression equation from this large set of variables, the analyst must first address two questions. First, which of the building characteristics are believed to be the most important ones, the primary "drivers" of recycling success? Second, which characteristics overlap? For example, the location of the recycling area and the presence of cameras in the recycling area both represent aspects of security. One or the other, or both, may be important in explaining recycling success. In the course of the analysis, one factor may be discarded in favor of the other, or both may be included or excluded. The analyst develops the regression equation by testing each of the building characteristics in a variety of combinations.
With 45 independent variables (i.e., building characteristics), each equation was developed through successive iterations in an attempt to ensure that (1) all those building characteristics that help to explain recycling success are included in the equation; and (2) those building characteristics that do not help to explain recycling success are excluded from the equation. The analyst may exclude characteristics either because their effect on recycling success cannot be accurately quantified as either helpful or harmful or because their effect on recycling success is already subsumed by another characteristic.

Once the analyst has decided which characteristics to include in the multiple regression equation and completed the analysis, the results not only indicate which building characteristics are related to recycling success, but also provide estimates of the quantitative relationship with building characteristic. That is, the equation indicates if a building characteristic has a large or small effect on recycling success.

E3.1.3 The Results

The results of the multiple regression analysis in Tables 3-3 through 3-7 in the Report show the building factors that were found to be related to each of the five recycling success factors. Each table shows the building factors that were found to be related to the "recycling success" factor, the type of factor, and the coefficient. The coefficient represents the amount of change, on average, in recycling success associated with a oneunit change in the independent variable (e.g., building factor), all other factors remaining constant. An explanation of one of the tables should help explain the results and Table E3-1 is reproduced here as an illustration.

Exhibit 3-1
Regression Methodology
(continued)
Table E3-1
Multi-Unit Apartment Study
Building Factors Correlated to Diversion Rate without Contamination Results of Multiple Regression Analysis

[1] Parameters estimated from 93 observations.

Table E3-1 shows that there were eight building factors whose variations each help to "explain" variations in the diversion rate without contamination. Three types of building factors were included in the multiple regression analysis.
A "Binary" factor can be answered with a "yes" or "no". "Buildings with clearly marked recycling containers" is a binary factor because the building surveyors were asked to determine if the building did, or did not, have clearly marked recycling containers. This factor is positively related to recycling success. That is, if a building has clearly marked recycling containers and recycling area(s), the regression analysis suggests that diversion rate will increase, holding all other factors constant. Here a "Yes" answer means a higher diversion rate than otherwise. On the other hand, "Buildings with visible pest problems in the recycling area" which is also a binary factor, is negatively related to recycling success. The regression analysis suggests that if a building's recycling area has a visible pest problem, the diversion rate will go down, again, holding all other factors constant. Here a "Yes" answer means a lower diversion rate. These results make intuitive sense. Both of these characteristics are influential factors, but in opposite directions. The coefficient tells us that, of the 93 buildings on which this analysis was based, the buildings which had clearly labeled recycling containers and clearly labeled recycling areas could be expected to have a 4.8 percent improvement in the diversion rate without contamination, over buildings which have areas and containers which are poorly labeled or not labeled at all, other things being equal.

Exhibit 3-1
Regression Methodology
(continued)
"Continuous" factors are those that may have any value (e.g., 23.435). In the MUS, such variables were typically percentages and therefore ranged between " 0 " and " 100 ". For example, the percentage of the Census Tract population with a high school diploma or higher may range between 0 percent and 100 percent. In this case, the coefficient indicates that for every percentage increase in the population of the census tract that obtained a high school diploma or higher, the diversion rate without contamination would be expected to increase by 0.19 percent, all else equal.

A "Discrete" factor is one that has a limited number of possible responses. For example, the number of sorts required by building residents may be $0,1,2,3$, or 4 . The coefficient for the number of sorts required by residents indicates that for each additional sort, the diversion rate without contamination could be expected to increase by 1.31 percent, all else equal.

Because the regression analysis includes three different types of factors, it is not a simple matter to identify the most influential building characteristic. To obtain the impact on recycling success for any given characteristic, one must know both the coefficient (included in the table above) and that characteristic's units of measure. Having clearly labeled recycling containers and recycling areas (a binary factor) improves recycling success by about 4.8 percent (4.8×1). A similar impact could be expected on the diversion rate without recycling with an increase of 25 percent in the population in the census tract with a high school diploma or higher $(0.19 \times 25=4.8)$.

While most of the results of the regression analysis in Section 3.5 are easily understood, some results may appear to be counterintuitive. For example, in Table E3-1, buildings with at least one elevator are negatively related to recycling, other things being equal. One might think that having an elevator would make recycling easier and more convenient. But the analysis does not support this interpretation. The analysis suggests that buildings with one or more elevators are associated with lower recycling success rates, once all other factors have been taken into account. One possibility that was considered was that the presence of an elevator might be proxy for some other characteristic, such as building size. For example, the presence of elevators might be a characteristic of large buildings and that large buildings, for whatever reasons, did not achieve high diversion rates without contamination compared to smaller buildings. However, our analysis examined the use of two characteristics of building size (number of floors and number of units) to test this hypothesis. The analysis showed that neither of these two characteristics was as indicative of (the lack of) recycling success as the presence of at least one elevator. It seems clear that the presence of at least one elevator is a proxy for some other factor that was either not included in the analysis or was included but for which complete data was not available.
While our analysis was not limited to factors within the purview of DSNY programs and/or building management, several of the important factors listed in the tables may be subject to their influence. As noted above, the building characteristics include both physical and operational characteristics, such as secure recycling areas and clearly labeled recycling containers. These are the types of characteristics that a building's management and/or DSNY can affect to influence recycling success.

Exhibit 3-2
Multi-Unit Building Characteristics

	Premise	Data Source	Data Values
Building Factors			
1. Absence/presence of a central recycling location accessible on a daily basis	Daily availability of recycling increases participation	Visit	No=0, Yes=1
2. Percent of refuse discard locations with co-located recycling	Co-locating refuse and recycling increases recycling participation and reduces contamination	Visit	0-100\%
3. Recycling location safety - Monitored by person or security camera - Inside locked/secure building - High-traffic area - Open visibility (not enclosed) - Bright lighting	Safe recycling locations result in high participation and low contamination	Visit	$\begin{aligned} & \text { No }=0, Y e s=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \end{aligned}$
4. Number of floors in the building	Multi-floor buildings without on-floor recycling locations have lower recycling rates	MapPLUTO	1-?
5. Number of residential units in the building	Minimum number of units are needed in order for hiring building staff to service central waste and recycling locations	MapPLUTO	6-?
6. Average square footage per resident	Low square footage per resident results in lower participation rates	Visit (residents) MapPLUTO (ft^{2})	100-?
7. Functional trash chutes	Recycling must be as convenient, sanitary, pest/odor free, uncluttered as trash disposal	Visit	No=0, Yes=1
8. Functional recyclables chutes	Recycling must have same benefits as trash disposal Recyclables carts/bins may fill, smell	Visit	No=0, Yes=1
9. Functional elevators	Functioning elevators in multi-floor buildings increases recycling participation if on-floor locations are not offered	Dept. of Bldgs. Website and Visit ("working")	No=0, Yes=1
10. Adequate maintenance/custodial services	Inadequate funds/attention to maintenance and custodial service causes recycling service, elevator, and pest problems	Dept. of Housing Pres. \& Dev. number of prior year violations	0-?

Exhibit 3-2
Multi-Unit Building Characteristics
(continued)

	Premise	Data Source	Data Values
11. Adequate building repair	Inadequate funds/attention to building maintenance and custodial service causes recycling service, elevator, and pest problems	Dept. of Bldgs. prior year complaints	0-?
12. Turnover of tenant population during the last year	High turnover contributes to low participation and poor quality	MISLAND Report CONEDBLK	\% yearly turnover
Recycling Programmatic Factors			
13. Location of recycling participation area - Outdoors - Basement - On each floor - Recyclables are collected by maintenance/ custodial staff outside each unit's door	Participation improves with convenience	Visit	$\begin{aligned} & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \end{aligned}$
14. Number of units per recycling collection location	Participation improves with convenience	Visit	1-?
15. Number of recyclables sorts required of residents	High recycling participation and low contamination occur when building staff sort/separate for residents	Visit	0 (staff sort from waste) to 3 (paper, OCC, MGP)
16. Volume of available recycling containers	Participation/proper separation improve when recycling containers are properly sized so as to not overflow	Visit	cubic ft./unit
17. Labeling of recycling containers/recycling area - Recycling area clearly labeled/designated - Separately labeled containers for paper and MGP	Clear signage improves participation and reduces contamination	Visit	$\begin{aligned} & \mathrm{No}=0, \mathrm{Yes}=1 \\ & \mathrm{No}=0, \mathrm{Yes}=1 \end{aligned}$
18. Number of languages in which recycling signage is printed	Multi-language signage leads to improved participation and reduced contamination	Visit	1-?
19. General appearance of the recycling area - Pest problems observed (live or dead insects, rodents, or their droppings)	Sanitary and clean area increases recycling participation	Visit	No=0, Yes=1

NYC WCS Vol 3 Multi-Unit Apartment Study

Exhibit 3-2
Multi-Unit Building Characteristics
(continued)

| | | Premise | Data Source |
| :--- | :--- | :--- | :--- | | Data Values |
| :--- |
| |
| -Air fresheners or ventilating fans are absent or
 Spillage and dirt (other than de minimis) are
 observed | No=0, Yes=1

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Spring)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date	Sampling Location ${ }^{[1]}$
1	Bronx	4	2	Refuse	1 of 3	5/10/05	5/11/05	Harlem River Yard
1	Bronx	4	2	Refuse	2 of 3	5/12/05	5/14/05	Harlem River Yard
1	Bronx	4	2	Refuse	3 of 3	5/14/05	5/17/05	Harlem River Yard
1	Bronx	4	2	Recycling	1 of 1	5/14/05	$N / A^{[2]}$	Harlem River Yard
2	Bronx	6	1	Refuse	1 of 3	5/14/05	5/17/05	Harlem River Yard
2	Bronx	6	1	Refuse	2 of 3	5/17/05	5/19/05	Harlem River Yard
2	Bronx	6	1	Refuse	3 of 3	5/19/05	5/21/05	Harlem River Yard
2	Bronx	6	1	Recycling	1 of 1	5/19/05	5/19/05	Harlem River Yard
3	Bronx	6	1	Refuse	1 of 3	5/14/05	5/17/05	Harlem River Yard
3	Bronx	6	1	Refuse	2 of 3	5/17/05	5/20/05	Harlem River Yard
3	Bronx	6	1	Refuse	3 of 3	5/19/05	5/23/05	Harlem River Yard
3	Bronx	6	1	Recycling	1 of 1	5/19/05	5/19/05	Harlem River Yard
4	Bronx	12	1	Refuse	1 of 2	5/10/05	5/12/05	Harlem River Yard
4	Bronx	12	1	Refuse	2 of 2	5/13/05	5/16/05	Harlem River Yard
4	Bronx	12	1	Recycling	1 of 1	5/13/05	5/16/05	Harlem River Yard
5	Brooklyn North	1	1	Refuse	1 of 3	5/11/05	5/12/05	Varick
5	Brooklyn North	1	1	Refuse	2 of 3	5/13/05	5/16/05	Varick
5	Brooklyn North	1	1	Refuse	3 of 3	5/16/05	5/18/05	Varick
5	Brooklyn North	1	1	Recycling	1 of 1	5/16/05	5/17/05	Varick
6	Brooklyn North	1	1	Refuse	1 of 3	5/12/05	5/14/05	Varick
6	Brooklyn North	1	1	Refuse	2 of 3	5/14/05	5/16/05	Varick
6	Brooklyn North	1	1	Refuse	3 of 3	5/17/05	5/20/05	Varick
6	Brooklyn North	1	1	Recycling	1 of 1	5/17/05	5/17/05	Varick
7	Brooklyn North	1	4	Refuse	1 of 3	5/9/05	5/12/05	Varick
7	Brooklyn North	1	4	Refuse	2 of 3	5/11/05	5/13/05	Varick
7	Brooklyn North	1	4	Refuse	3 of 3	5/13/05	5/16/05	Varick
7	Brooklyn North	1	4	Recycling	1 of 1	5/13/05	5/16/05	Varick
8	Brooklyn North	2	1	Refuse	1 of 3	5/13/05	5/16/05	Varick
8	Brooklyn North	2	1	Refuse	2 of 3	5/16/05	5/19/05	Varick
8	Brooklyn North	2	1	Refuse	3 of 3	5/18/05	5/20/05	Varick
8	Brooklyn North	2	1	Recycling	1 of 1	5/18/05	5/18/05	Varick
9	Brooklyn North	2	3	Refuse	1 of 3	5/14/05	5/16/05	Varick
9	Brooklyn North	2	3	Refuse	2 of 3	5/17/05	5/19/05	Varick
9	Brooklyn North	2	3	Refuse	3 of 3	5/19/05	5/21/05	Varick
9	Brooklyn North	2	3	Recycling	1 of 1	5/19/05	5/19/05	Varick
10	Brooklyn North	2	4	Refuse	1 of 2	5/10/05	5/12/05	Varick
10	Brooklyn North	2	4	Refuse	2 of 2	5/13/05	5/16/05	Varick
10	Brooklyn North	2	4	Recycling	1 of 1	5/13/05	5/16/05	Varick
11	Brooklyn North	3	1	Refuse	1 of 3	5/14/05	5/17/05	Varick
11	Brooklyn North	3	1	Refuse	2 of 3	5/17/05	5/19/05	Varick
11	Brooklyn North	3	1	Refuse	3 of 3	5/19/05	5/21/05	Varick
11	Brooklyn North	3	1	Recycling	1 of 1	5/19/05	5/19/05	Varick
12	Brooklyn North	3	2	Refuse	1 of 3	5/13/05	5/16/05	Varick
12	Brooklyn North	3	2	Refuse	2 of 3	5/16/05	5/18/05	Varick
12	Brooklyn North	3	2	Refuse	3 of 3	5/18/05	5/21/05	Varick
12	Brooklyn North	3	2	Recycling	1 of 1	5/18/05	5/18/05	Varick
13	Brooklyn North	3	3	Refuse	1 of 3	5/11/05	5/12/05	Varick
13	Brooklyn North	3	3	Refuse	2 of 3	5/13/05	5/16/05	Varick
13	Brooklyn North	3	3	Refuse	3 of 3	5/16/05	5/18/05	Varick
13	Brooklyn North	3	3	Recycling	1 of 1	5/16/05	5/16/05	Varick
14	Brooklyn North	3	3	Refuse	1 of 3	5/11/05	5/12/05	Varick
14	Brooklyn North	3	3	Refuse	2 of 3	5/13/05	5/14/05	Varick
14	Brooklyn North	3	3	Refuse	3 of 3	5/16/05	5/18/05	Varick
14	Brooklyn North	3	3	Recycling	1 of 1	5/16/05	5/16/05	Varick

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Spring) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date	Sampling Location ${ }^{[1]}$
15	Brooklyn North	4	1	Refuse	1 of 3	5/12/05	5/14/05	Varick
15	Brooklyn North	4	1	Refuse	2 of 3	5/14/05	5/16/05	Varick
15	Brooklyn North	4	1	Refuse	3 of 3	5/17/05	5/19/05	Varick
15	Brooklyn North	4	1	Recycling	1 of 1	5/17/05	5/17/05	Varick
16	Brooklyn North	4	1	Refuse	1 of 3	5/11/05	5/12/05	Varick
16	Brooklyn North	4	1	Refuse	2 of 3	5/13/05	5/16/05	Varick
16	Brooklyn North	4	1	Refuse	3 of 3	5/16/05	5/19/05	Varick
16	Brooklyn North	4	1	Recycling	1 of 1	5/16/05	5/17/05	Varick
17	Brooklyn North	4	1	Refuse	1 of 3	5/12/05	5/14/05	Varick
17	Brooklyn North	4	1	Refuse	2 of 3	5/14/05	5/16/05	Varick
17	Brooklyn North	4	1	Refuse	3 of 3	5/17/05	5/19/05	Varick
17	Brooklyn North	4	1	Recycling	1 of 1	5/17/05	5/17/05	Varick
18	Brooklyn North	4	2	Refuse	1 of 3	5/10/05	5/13/05	Varick
18	Brooklyn North	4	2	Refuse	2 of 3	5/12/05	5/14/05	Varick
18	Brooklyn North	4	2	Refuse	3 of 3	5/14/05	5/16/05	Varick
18	Brooklyn North	4	2	Recycling	1 of 1	5/14/05	5/16/05	Varick
19	Brooklyn South	6	2	Refuse	1 of 2	5/16/05	5/18/05	Varick
19	Brooklyn South	6	2	Refuse	2 of 2	5/19/05	5/23/05	Varick
19	Brooklyn South	6	2	Recycling	1 of 1	5/19/05	5/19/05	Varick
20	Brooklyn South	6	5	Refuse	1 of 2	5/21/05	5/25/05	Varick
20	Brooklyn South	6	5	Refuse	2 of 2	5/25/05	5/26/05	Varick
20	Brooklyn South	6	5	Recycling	1 of 1	5/25/05	5/25/05	Varick
21	Brooklyn South	7	4	Refuse	1 of 2	5/18/05	5/20/05	Varick
21	Brooklyn South	7	4	Refuse	2 of 2	5/21/05	5/25/05	Varick
21	Brooklyn South	7	4	Recycling	1 of 1	5/21/05	5/23/05	Varick
22	Brooklyn South	9	1	Refuse	1 of 3	5/16/05	5/18/05	Varick
22	Brooklyn South	9	1	Refuse	2 of 3	5/18/05	5/20/05	Varick
22	Brooklyn South	9	1	Refuse	3 of 3	5/20/05	5/24/05	Varick
22	Brooklyn South	9	1	Recycling	1 of 1	5/20/05	5/20/05	Varick
23	Brooklyn South	9	3	Refuse	1 of 3	5/20/05	5/23/05	Varick
23	Brooklyn South	9	3	Refuse	2 of 3	5/23/05	5/25/05	Varick
23	Brooklyn South	9	3	Refuse	3 of 3	5/25/05	5/26/05	Varick
23	Brooklyn South	9	3	Recycling	1 of 1	5/25/05	5/25/05	Varick
24	Brooklyn South	10	4	Refuse	1 of 2	5/19/05	5/21/05	Varick
24	Brooklyn South	10	4	Refuse	2 of 2	5/23/05	5/25/05	Varick
24	Brooklyn South	10	4	Recycling	1 of 1	5/23/05	5/23/05	Varick
25	Brooklyn South	11	3	Refuse	1 of 2	5/21/05	5/24/05	Varick
25	Brooklyn South	11	3	Refuse	2 of 2	5/25/05	5/26/05	Varick
25	Brooklyn South	11	3	Recycling	1 of 1	5/25/05	5/25/05	Varick
26	Brooklyn South	12	1	Refuse	1 of 2	5/17/05	5/19/05	Varick
26	Brooklyn South	12	1	Refuse	2 of 2	5/20/05	5/24/05	Varick
26	Brooklyn South	12	1	Recycling	1 of 1	5/20/05	5/20/05	Varick
27	Brooklyn South	12	3	Refuse	1 of 2	5/21/05	5/25/05	Varick
27	Brooklyn South	12	3	Refuse	2 of 2	5/25/05	5/26/05	Varick
27	Brooklyn South	12	3	Recycling	1 of 1	5/25/05	5/25/05	Varick
28	Brooklyn South	12	4	Refuse	1 of 2	5/18/05	5/20/05	Varick
28	Brooklyn South	12	4	Refuse	2 of 2	5/21/05	5/24/05	Varick
28	Brooklyn South	12	4	Recycling	1 of 1	5/21/05	5/21/05	Varick
29	Brooklyn South	14	1	Refuse	1 of 3	5/17/05	5/19/05	Varick
29	Brooklyn South	14	1	Refuse	2 of 3	5/19/05	5/21/05	Varick
29	Brooklyn South	14	1	Refuse	3 of 3	5/21/05	5/24/05	Varick
29	Brooklyn South	14	1	Recycling	1 of 1	5/21/05	5/23/05	Varick
30	Brooklyn South	14	2	Refuse	1 of 2	5/19/05	5/21/05	Varick
30	Brooklyn South	14	2	Refuse	2 of 2	5/23/05	5/25/05	Varick
30	Brooklyn South	14	2	Recycling	1 of 1	5/23/05	5/23/05	Varick
31	Brooklyn South	14	4	Refuse	1 of 2	5/19/05	5/23/05	Varick
31	Brooklyn South	14	4	Refuse	2 of 2	5/23/05	5/25/05	Varick
31	Brooklyn South	14	4	Recycling	1 of 1	5/23/05	5/23/05	Varick

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Spring) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Soring Date	Sampling Location ${ }^{[1]}$
32	Brooklyn South	15	2	Refuse	1 of 2	5/20/05	5/23/05	Varick
32	Brooklyn South	15	2	Refuse	2 of 2	5/24/05	5/25/05	Varick
32	Brooklyn South	15	2	Recycling	1 of 1	5/24/05	5/24/05	Varick
33	Brooklyn South	15	5	Refuse	1 of 2	5/17/05	5/20/05	Varick
33	Brooklyn South	15	5	Refuse	2 of 2	5/20/05	5/24/05	Varick
33	Brooklyn South	15	5	Recycling	1 of 1	5/20/05	5/20/05	Varick
34	Manhattan	2	1	Refuse	1 of 3	5/20/05	5/23/05	Harlem River Yard
34	Manhattan	2	1	Refuse	2 of 3	5/23/05	5/25/05	Harlem River Yard
34	Manhattan	2	1	Refuse	3 of 3	5/25/05	5/26/05	Harlem River Yard
34	Manhattan	2	1	Recycling	1 of 1	5/25/05	5/25/05	Harlem River Yard
35	Manhattan	2	2	Refuse	1 of 3	5/16/05	5/18/05	Harlem River Yard
35	Manhattan	2	2	Refuse	2 of 3	5/18/05	5/20/05	Harlem River Yard
35	Manhattan	2	2	Refuse	3 of 3	5/20/05	5/23/05	Harlem River Yard
35	Manhattan	2	2	Recycling	1 of 1	5/20/05	5/21/05	Harlem River Yard
36	Manhattan	3	3	Refuse	1 of 3	5/16/05	5/18/05	Harlem River Yard
36	Manhattan	3	3	Refuse	2 of 3	5/18/05	5/20/05	Harlem River Yard
36	Manhattan	3	3	Refuse	3 of 3	5/20/05	5/23/05	Harlem River Yard
36	Manhattan	3	3	Recycling	1 of 1	5/20/05	5/21/05	Harlem River Yard
37	Manhattan	4	1	Refuse	1 of 3	5/17/05	5/19/05	Harlem River Yard
37	Manhattan	4	1	Refuse	2 of 3	5/19/05	5/21/05	Harlem River Yard
37	Manhattan	4	1	Refuse	3 of 3	5/21/05	5/24/05	Harlem River Yard
37	Manhattan	4	1	Recycling	1 of 1	5/21/05	5/23/05	Harlem River Yard
38	Manhattan	4	2	Refuse	1 of 3	5/17/05	5/20/05	Harlem River Yard
38	Manhattan	4	2	Refuse	2 of 3	5/19/05	5/23/05	Harlem River Yard
38	Manhattan	4	2	Refuse	3 of 3	5/21/05	5/24/05	Harlem River Yard
38	Manhattan	4	2	Recycling	1 of 1	5/21/05	5/23/05	Harlem River Yard
39	Manhattan	4	3	Refuse	1 of 3	5/20/05	5/23/05	Harlem River Yard
39	Manhattan	4	3	Refuse	2 of 3	5/23/05	5/24/05	Harlem River Yard
39	Manhattan	4	3	Refuse	3 of 3	5/25/05	5/26/05	Harlem River Yard
39	Manhattan	4	3	Recycling	1 of 1	5/25/05	5/25/05	Harlem River Yard
40	Manhattan	5	1	Refuse	1 of 3	5/16/05	5/18/05	Harlem River Yard
40	Manhattan	5	1	Refuse	2 of 3	5/18/05	5/20/05	Harlem River Yard
40	Manhattan	5	1	Refuse	3 of 3	5/20/05	5/24/05	Harlem River Yard
40	Manhattan	5	1	Recycling	1 of 1	5/20/05	5/21/05	Harlem River Yard
41	Manhattan	6	1	Refuse	1 of 3	5/14/05	5/17/05	Harlem River Yard
41	Manhattan	6	1	Refuse	2 of 3	5/17/05	5/19/05	Harlem River Yard
41	Manhattan	6	1	Refuse	3 of 3	5/19/05	5/21/05	Harlem River Yard
41	Manhattan	6	1	Recycling	1 of 1	5/19/05	5/19/05	Harlem River Yard
42	Manhattan	7	1	Refuse	1 of 3	5/16/05	5/17/05	Harlem River Yard
42	Manhattan	7	1	Refuse	2 of 3	5/18/05	5/20/05	Harlem River Yard
42	Manhattan	7	1	Refuse	3 of 3	5/20/05	5/23/05	Harlem River Yard
42	Manhattan	7	1	Recycling	1 of 1	5/20/05	5/21/05	Harlem River Yard
43	Manhattan	7	1	Refuse	1 of 3	5/17/05	5/19/05	Harlem River Yard
43	Manhattan	7	1	Refuse	2 of 3	5/19/05	5/23/05	Harlem River Yard
43	Manhattan	7	1	Refuse	3 of 3	5/21/05	5/24/05	Harlem River Yard
43	Manhattan	7	1	Recycling	1 of 1	5/21/05	5/21/05	Harlem River Yard
44	Manhattan	7	4	Refuse	1 of 3	5/18/05	5/20/05	Harlem River Yard
44	Manhattan	7	4	Refuse	2 of 3	5/20/05	5/24/05	Harlem River Yard
44	Manhattan	7	4	Refuse	3 of 3	5/23/05	5/24/05	Harlem River Yard
44	Manhattan	7	4	Recycling	1 of 1	5/23/05	5/23/05	Harlem River Yard

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Spring) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Soring Date	Sampling Location ${ }^{[1]}$
45	Manhattan	7	5	Refuse	1 of 3	5/19/05	5/23/05	Harlem River Yard
45	Manhattan	7	5	Refuse	2 of 3	5/21/05	5/24/05	Harlem River Yard
45	Manhattan	7	5	Refuse	3 of 3	5/24/05	5/25/05	Harlem River Yard
45	Manhattan	7	5	Recycling	1 of 1	5/24/05	5/24/05	Harlem River Yard
46	Manhattan	9	1	Refuse	1 of 3	5/16/05	5/19/05	Harlem River Yard
46	Manhattan	9	1	Refuse	2 of 3	5/18/05	5/20/05	Harlem River Yard
46	Manhattan	9	1	Refuse	3 of 3	5/20/05	5/24/05	Harlem River Yard
46	Manhattan	9	1	Recycling	1 of 1	5/20/05	5/21/05	Harlem River Yard
47	Manhattan	10	1	Refuse	1 of 3	5/16/05	5/17/05	Harlem River Yard
47	Manhattan	10	1	Refuse	2 of 3	5/18/05	5/20/05	Harlem River Yard
47	Manhattan	10	1	Refuse	3 of 3	5/20/05	5/23/05	Harlem River Yard
47	Manhattan	10	1	Recycling	1 of 1	5/20/05	5/21/05	Harlem River Yard
48	Manhattan	12	1	Refuse	1 of 3	5/14/05	5/16/05	Harlem River Yard
48	Manhattan	12	1	Refuse	2 of 3	5/17/05	5/19/05	Harlem River Yard
48	Manhattan	12	1	Refuse	3 of 3	5/19/05	5/21/05	Harlem River Yard
48	Manhattan	12	1	Recycling	1 of 1	5/19/05	5/19/05	Harlem River Yard
49	Manhattan	12	3	Refuse	1 of 3	5/17/05	5/20/05	Harlem River Yard
49	Manhattan	12	3	Refuse	2 of 3	5/19/05	5/23/05	Harlem River Yard
49	Manhattan	12	3	Refuse	3 of 3	5/21/05	5/24/05	Harlem River Yard
49	Manhattan	12	3	Recycling	1 of 1	5/21/05	5/23/05	Harlem River Yard
50	Manhattan	12	3	Refuse	1 of 3	5/17/05	5/20/05	Harlem River Yard
50	Manhattan	12	3	Refuse	2 of 3	5/19/05	5/21/05	Harlem River Yard
50	Manhattan	12	3	Refuse	3 of 3	5/21/05	5/25/05	Harlem River Yard
50	Manhattan	12	3	Recycling	1 of 1	5/21/05	5/23/05	Harlem River Yard
51	Queens West	1	2	Refuse	1 of 2	5/9/05	5/13/05	Varick
51	Queens West	1	2	Refuse	2 of 2	5/12/05	5/13/05	Varick
51	Queens West	1	2	Recycling	1 of 1	5/12/05	5/16/05	Varick
52	Queens West	1	2	Refuse	1 of 2	5/10/05	5/13/05	Varick
52	Queens West	1	2	Refuse	2 of 2	5/13/05	5/16/05	Varick
52	Queens West	1	2	Recycling	1 of 1	5/13/05	5/16/05	Varick
53	Queens West	1	3	Refuse	1 of 2	5/14/05	5/17/05	Varick
53	Queens West	1	3	Refuse	2 of 2	5/18/05	5/23/05	Varick
53	Queens West	1	3	Recycling	1 of 1	5/18/05	5/18/05	Varick
54	Queens West	1	4	Refuse	1 of 2	5/13/05	5/16/05	Varick
54	Queens West	1	4	Refuse	2 of 2	5/17/05	5/19/05	Varick
54	Queens West	1	4	Recycling	1 of 1	5/17/05	5/17/05	Varick
55	Queens West	1	4	Refuse	1 of 2	5/12/05	5/14/05	Varick
55	Queens West	1	4	Refuse	2 of 2	5/16/05	5/18/05	Varick
55	Queens West	1	4	Recycling	1 of 1	5/16/05	5/16/05	Varick
56	Queens West	1	4	Refuse	1 of 2	5/12/05	5/14/05	Varick
56	Queens West	1	4	Refuse	2 of 2	5/16/05	5/18/05	Varick
56	Queens West	1	4	Recycling	1 of 1	5/16/05	5/16/05	Varick
57	Queens West	1	6	Refuse	1 of 2	5/11/05	5/12/05	Varick
57	Queens West	1	6	Refuse	2 of 2	5/14/05	5/17/05	Varick
57	Queens West	1	6	Recycling	1 of 1	5/14/05	5/16/05	Varick
58	Queens West	2	3	Refuse	1 of 2	5/11/05	5/13/05	Varick
58	Queens West	2	3	Refuse	2 of 2	5/14/05	5/17/05	Varick
58	Queens West	2	3	Recycling	1 of 1	5/14/05	5/17/05	Varick
59	Queens West	3	3	Refuse	1 of 2	5/12/05	5/14/05	Varick
59	Queens West	3	3	Refuse	2 of 2	5/16/05	5/18/05	Varick
59	Queens West	3	3	Recycling	1 of 1	5/16/05	5/17/05	Varick
60	Queens West	3	3	Refuse	1 of 2	5/12/05	5/14/05	Varick
60	Queens West	3	3	Refuse	2 of 2	5/16/05	5/18/05	Varick
60	Queens West	3	3	Recycling	1 of 1	5/16/05	5/16/05	Varick

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Spring) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date	Sampling Location ${ }^{[1]}$
61	Queens West	3	3	Refuse	1 of 2	5/11/05	5/12/05	Varick
61	Queens West	3	3	Refuse	2 of 2	5/14/05	5/17/05	Varick
61	Queens West	3	3	Recycling	1 of 1	5/14/05	5/16/05	Varick
62	Queens West	4	2	Refuse	1 of 2	5/14/05	5/16/05	Varick
62	Queens West	4	2	Refuse	2 of 2	5/18/05	5/21/05	Varick
62	Queens West	4	2	Recycling	1 of 1	5/18/05	5/18/05	Varick
63	Queens West	5	3	Refuse	1 of 2	5/9/05	5/13/05	Varick
63	Queens West	5	3	Refuse	2 of 2	5/12/05	5/14/05	Varick
63	Queens West	5	3	Recycling	1 of 1	5/12/05	5/17/05	Varick
64	Queens West	5	3	Refuse	1 of 2	5/9/05	5/13/05	Varick
64	Queens West	5	3	Refuse	2 of 2	5/12/05	5/14/05	Varick
64	Queens West	5	3	Recycling	1 of 1	5/12/05	5/16/05	Varick
65	Queens West	6	2	Refuse	1 of 2	5/10/05	5/11/05	Varick
65	Queens West	6	2	Refuse	2 of 2	5/13/05	5/16/05	Varick
65	Queens West	6	2	Recycling	1 of 1	5/13/05	5/16/05	Varick
66	Queens West	9	1	Refuse	1 of 2	5/11/05	5/13/05	Varick
66	Queens West	9	1	Refuse	2 of 2	5/14/05	5/17/05	Varick
66	Queens West	9	1	Recycling	1 of 1	5/14/05	5/16/05	Varick

[1] All refuse and recycling samples were sorted at the North Shore and Green Point facilities, respectively.
[2] No recycling was available on the recycling collection day. Consequently, only 233 of 234 samples were sorted.

Exhibit 3-3 Schedule of Samples Acquired and Sorted (Summer)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date [3]	Sampling Location ${ }^{[1]}$
1	Bronx	1	2	Refuse	1 of 3	8/22/05	8/22/05	Harlem River Yard
1	Bronx	1	2	Refuse	2 of 3	8/24/05	8/25/05	Harlem River Yard
1	Bronx	1	2	Refuse	3 of 3	8/26/05	8/26/05	Harlem River Yard
1	Bronx	1	2	Recycling	1 of 1	8/26/05	8/26/05	Harlem River Yard
2	Bronx	2	1	Refuse	1 of 3	8/22/05	8/22/05	Harlem River Yard
2	Bronx	2	1	Refuse	2 of 3	8/24/05	8/24/05	Harlem River Yard
2	Bronx	2	1	Refuse	3 of 3	8/26/05	8/26/05	Harlem River Yard
2	Bronx	2	1	Recycling	1 of 1	8/26/05	8/26/05	Harlem River Yard
3	Bronx	2	1	Refuse	1 of 3	8/20/05	8/20/05	Harlem River Yard
3	Bronx	2	1	Refuse	2 of 3	8/23/05	8/23/05	Harlem River Yard
3	Bronx	2	1	Refuse	3 of 3	8/25/05	8/25/05	Harlem River Yard
3	Bronx	2	1	Recycling	1 of 1	8/25/05	8/25/05	Harlem River Yard
4	Bronx	2	6	Refuse	1 of 3	8/20/05	8/20/05	Harlem River Yard
4	Bronx	2	6	Refuse	2 of 3	8/23/05	8/23/05	Harlem River Yard
4	Bronx	2	6	Refuse	3 of 3	8/25/05	8/25/05	Harlem River Yard
4	Bronx	2	6	Recycling	1 of 1	8/25/05	$N / A^{[2]}$	Harlem River Yard
5	Bronx	3	1	Refuse	1 of 3	8/23/05	8/23/05	Harlem River Yard
5	Bronx	3	1	Refuse	2 of 3	8/25/05	8/25/05	Harlem River Yard
5	Bronx	3	1	Refuse	3 of 3	8/27/05	8/27/05	Harlem River Yard
5	Bronx	3	1	Recycling	1 of 1	8/27/05	8/27/05	Harlem River Yard
6	Bronx	4	1	Refuse	1 of 3	8/20/05	8/22/05	Harlem River Yard
6	Bronx	4	1	Refuse	2 of 3	8/23/05	8/24/05	Harlem River Yard
6	Bronx	4	1	Refuse	3 of 3	8/25/05	8/25/05	Harlem River Yard
6	Bronx	4	1	Recycling	1 of 1	8/25/05	8/25/05	Harlem River Yard
7	Bronx	5	1	Refuse	1 of 3	8/22/05	8/22/05	Harlem River Yard
7	Bronx	5	1	Refuse	2 of 3	8/24/05	8/24/05	Harlem River Yard
7	Bronx	5	1	Refuse	3 of 3	8/26/05	8/26/05	Harlem River Yard
7	Bronx	5	1	Recycling	1 of 1	8/26/05	8/26/05	Harlem River Yard
8	Bronx	6	2	Refuse	1 of 3	8/19/05	8/19/05	Harlem River Yard
8	Bronx	6	2	Refuse	2 of 3	8/22/05	8/22/05	Harlem River Yard
8	Bronx	6	2	Refuse	3 of 3	8/24/05	8/25/05	Harlem River Yard
8	Bronx	6	2	Recycling	1 of 1	8/24/05	8/24/05	Harlem River Yard
9	Bronx	6	2	Refuse	1 of 3	8/19/05	8/19/05	Harlem River Yard
9	Bronx	6	2	Refuse	2 of 3	8/22/05	8/22/05	Harlem River Yard
9	Bronx	6	2	Refuse	3 of 3	8/24/05	8/24/05	Harlem River Yard
9	Bronx	6	2	Recycling	1 of 1	8/24/05	8/24/05	Harlem River Yard
10	Bronx	7	1	Refuse	1 of 3	8/23/05	8/24/05	Harlem River Yard
10	Bronx	7	1	Refuse	2 of 3	8/25/05	8/25/05	Harlem River Yard
10	Bronx	7	1	Refuse	3 of 3	8/27/05	8/27/05	Harlem River Yard
10	Bronx	7	1	Recycling	1 of 1	8/27/05	8/27/05	Harlem River Yard
11	Bronx	7	1	Refuse	1 of 3	8/22/05	8/23/05	Harlem River Yard
11	Bronx	7	1	Refuse	2 of 3	8/24/05	8/24/05	Harlem River Yard
11	Bronx	7	1	Refuse	3 of 3	8/26/05	8/26/05	Harlem River Yard
11	Bronx	7	1	Recycling	1 of 1	8/26/05	8/26/05	Harlem River Yard
12	Bronx	8	1	Refuse	1 of 3	8/17/05	8/18/05	Harlem River Yard
12	Bronx	8	1	Refuse	2 of 3	8/19/05	8/19/05	Harlem River Yard
12	Bronx	8	1	Refuse	3 of 3	8/22/05	8/23/05	Harlem River Yard
12	Bronx	8	1	Recycling	1 of 1	8/22/05	8/22/05	Harlem River Yard
13	Bronx	10	1	Refuse	1 of 2	8/19/05	8/19/05	Harlem River Yard
13	Bronx	10	1	Refuse	2 of 2	8/23/05	8/23/05	Harlem River Yard
13	Bronx	10	1	Recycling	1 of 1	8/23/05	8/23/05	Harlem River Yard
14	Brooklyn North	1	1	Refuse	1 of 3	8/3/05	8/4/05	Varick
14	Brooklyn North	1	1	Refuse	2 of 3	8/5/05	8/5/05	Varick
14	Brooklyn North	1	1	Refuse	3 of 3	8/8/05	8/8/05	Varick
14	Brooklyn North	1	1	Recycling	1 of 1	8/8/05	8/15/05	Varick

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Summer) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date [3]	Sampling Location ${ }^{[1]}$
15	Brooklyn North	1	3	Refuse	1 of 3	8/6/05	8/6/05	Varick
15	Brooklyn North	1	3	Refuse	2 of 3	8/9/05	8/10/05	Varick
15	Brooklyn North	1	3	Refuse	3 of 3	8/11/05	8/12/05	Varick
15	Brooklyn North	1	3	Recycling	1 of 1	8/11/05	8/11/05	Varick
16	Brooklyn North	2	1	Refuse	1 of 3	8/5/05	8/5/05	Varick
16	Brooklyn North	2	1	Refuse	2 of 3	8/8/05	8/8/05	Varick
16	Brooklyn North	2	1	Refuse	3 of 3	8/10/05	8/11/05	Varick
16	Brooklyn North	2	1	Recycling	1 of 1	8/10/05	8/15/05	Varick
17	Brooklyn North	2	1	Refuse	1 of 3	8/5/05	8/5/05	Varick
17	Brooklyn North	2	1	Refuse	2 of 3	8/8/05	8/8/05	Varick
17	Brooklyn North	2	1	Refuse	3 of 3	8/10/05	8/11/05	Varick
17	Brooklyn North	2	1	Recycling	1 of 1	8/10/05	8/16/05	Varick
18	Brooklyn North	3	1	Refuse	1 of 3	8/5/05	8/5/05	Varick
18	Brooklyn North	3	1	Refuse	2 of 3	8/8/05	8/8/05	Varick
18	Brooklyn North	3	1	Refuse	3 of 3	8/10/05	8/12/05	Varick
18	Brooklyn North	3	1	Recycling	1 of 1	8/10/05	8/15/05	Varick
19	Brooklyn North	3	3	Refuse	1 of 3	8/9/05	8/10/05	Varick
19	Brooklyn North	3	3	Refuse	2 of 3	8/11/05	8/12/05	Varick
19	Brooklyn North	3	3	Refuse	3 of 3	8/13/05	8/15/05	Varick
19	Brooklyn North	3	3	Recycling	1 of 1	8/13/05	8/15/05	Varick
20	Brooklyn North	4	1	Refuse	1 of 3	8/3/05	8/4/05	Varick
20	Brooklyn North	4	1	Refuse	2 of 3	8/5/05	8/5/05	Varick
20	Brooklyn North	4	1	Refuse	3 of 3	8/8/05	8/8/05	Varick
20	Brooklyn North	4	1	Recycling	1 of 1	8/8/05	8/15/05	Varick
21	Brooklyn North	4	1	Refuse	1 of 3	8/3/05	8/4/05	Varick
21	Brooklyn North	4	1	Refuse	2 of 3	8/5/05	8/5/05	Varick
21	Brooklyn North	4	1	Refuse	3 of 3	8/8/05	8/8/05	Varick
21	Brooklyn North	4	1	Recycling	1 of 1	8/8/05	8/15/05	Varick
22	Brooklyn North	4	1	Refuse	1 of 3	8/4/05	8/5/05	Varick
22	Brooklyn North	4	1	Refuse	2 of 3	8/6/05	8/6/05	Varick
22	Brooklyn North	4	1	Refuse	3 of 3	8/9/05	8/10/05	Varick
22	Brooklyn North	4	1	Recycling	1 of 1	8/9/05	8/17/05	Varick
23	Brooklyn North	4	2	Refuse	1 of 3	8/9/05	8/9/05	Varick
23	Brooklyn North	4	2	Refuse	2 of 3	8/11/05	8/13/05	Varick
23	Brooklyn North	4	2	Refuse	3 of 3	8/13/05	8/15/05	Varick
23	Brooklyn North	4	2	Recycling	1 of 1	8/13/05	8/16/05	Varick
24	Brooklyn North	4	2	Refuse	1 of 3	8/8/05	8/8/05	Varick
24	Brooklyn North	4	2	Refuse	2 of 3	8/10/05	8/11/05	Varick
24	Brooklyn North	4	2	Refuse	3 of 3	8/12/05	8/15/05	Varick
24	Brooklyn North	4	2	Recycling	1 of 1	8/12/05	8/15/05	Varick
25	Brooklyn North	4	3	Refuse	1 of 3	8/6/05	8/6/05	Varick
25	Brooklyn North	4	3	Refuse	2 of 3	8/9/05	8/10/05	Varick
25	Brooklyn North	4	3	Refuse	3 of 3	8/11/05	8/13/05	Varick
25	Brooklyn North	4	3	Recycling	1 of 1	8/11/05	8/15/05	Varick
26	Brooklyn North	4	3	Refuse	1 of 3	8/5/05	8/5/05	Varick
26	Brooklyn North	4	3	Refuse	2 of 3	8/8/05	8/9/05	Varick
26	Brooklyn North	4	3	Refuse	3 of 3	8/10/05	8/12/05	Varick
26	Brooklyn North	4	3	Recycling	1 of 1	8/10/05	8/17/05	Varick
27	Brooklyn North	5	4	Refuse	1 of 2	8/9/05	8/9/05	Varick
27	Brooklyn North	5	4	Refuse	2 of 2	8/12/05	8/13/05	Varick
27	Brooklyn North	5	4	Recycling	1 of 1	8/12/05	8/17/05	Varick

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Summer) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date [3]	Sampling Location ${ }^{[1]}$
28	Brooklyn South	6	1	Refuse	1 of 2	8/5/05	8/5/05	Varick
28	Brooklyn South	6	1	Refuse	2 of 2	8/9/05	8/10/05	Varick
28	Brooklyn South	6	1	Recycling	1 of 1	8/9/05	8/16/05	Varick
29	Brooklyn South	6	4	Refuse	1 of 2	8/9/05	8/10/05	Varick
29	Brooklyn South	6	4	Refuse	2 of 2	8/12/05	8/13/05	Varick
29	Brooklyn South	6	4	Recycling	1 of 1	8/12/05	8/15/05	Varick
30	Brooklyn South	6	4	Refuse	1 of 2	8/9/05	8/10/05	Varick
30	Brooklyn South	6	4	Refuse	2 of 2	8/12/05	8/13/05	Varick
30	Brooklyn South	6	4	Recycling	1 of 1	8/12/05	8/16/05	Varick
31	Brooklyn South	6	4	Refuse	1 of 2	8/9/05	8/11/05	Varick
31	Brooklyn South	6	4	Refuse	2 of 2	8/12/05	8/15/05	Varick
31	Brooklyn South	6	4	Recycling	1 of 1	8/12/05	8/17/05	Varick
32	Brooklyn South	6	5	Refuse	1 of 2	8/5/05	8/5/05	Varick
32	Brooklyn South	6	5	Refuse	2 of 2	8/9/05	8/10/05	Varick
32	Brooklyn South	6	5	Recycling	1 of 1	8/9/05	8/16/05	Varick
33	Brooklyn South	6	5	Refuse	1 of 2	8/4/05	8/4/05	Varick
33	Brooklyn South	6	5	Refuse	2 of 2	8/8/05	819/05	Varick
33	Brooklyn South	6	5	Recycling	1 of 1	8/8/05	8/15/05	Varick
34	Brooklyn South	7	4	Refuse	1 of 2	8/3/05	8/4/05	Varick
34	Brooklyn South	7	4	Refuse	2 of 2	8/6/05	8/6/05	Varick
34	Brooklyn South	7	4	Recycling	1 of 1	8/6/05	8/11/05	Varick
35	Brooklyn South	9	1	Refuse	1 of 3	8/8/05	8/8/05	Varick
35	Brooklyn South	9	1	Refuse	2 of 3	8/10/05	8/11/05	Varick
35	Brooklyn South	9	1	Refuse	3 of 3	8/12/05	8/15/05	Varick
35	Brooklyn South	9	1	Recycling	1 of 1	8/12/05	8/15/05	Varick
36	Brooklyn South	9	1	Refuse	1 of 3	8/9/05	8/9/05	Varick
36	Brooklyn South	9	1	Refuse	2 of 3	8/11/05	8/12/05	Varick
36	Brooklyn South	9	1	Refuse	3 of 3	8/13/05	8/15/05	Varick
36	Brooklyn South	9	1	Recycling	1 of 1	8/13/05	8/17/05	Varick
37	Brooklyn South	9	1	Refuse	1 of 3	8/9/05	8/10/05	Varick
37	Brooklyn South	9	1	Refuse	2 of 3	8/11/05	8/13/05	Varick
37	Brooklyn South	9	1	Refuse	3 of 3	8/13/05	8/15/05	Varick
37	Brooklyn South	9	1	Recycling	1 of 1	8/13/05	8/15/05	Varick
38	Brooklyn South	9	2	Refuse	1 of 3	8/8/05	8/9/05	Varick
38	Brooklyn South	9	2	Refuse	2 of 3	8/10/05	8/12/05	Varick
38	Brooklyn South	9	2	Refuse	3 of 3	8/12/05	8/13/05	Varick
38	Brooklyn South		2	Recycling	1 of 1	8/12/05	8/15/05	Varick
39	Brooklyn South	11	3	Refuse	1 of 2	8/6/05	8/6/05	Varick
39	Brooklyn South	11	3	Refuse	2 of 2	8/10/05	8/11/05	Varick
39	Brooklyn South	11	3	Recycling	1 of 1	8/10/05	8/17/05	Varick
40	Brooklyn South	11	6	Refuse	1 of 2	8/3/05	8/4/05	Varick
40	Brooklyn South	11	6	Refuse	2 of 2	8/6/05	8/6/05	Varick
40	Brooklyn South	11	6	Recycling	1 of 1	8/6/05	8/15/05	Varick
41	Brooklyn South	13	1	Refuse	1 of 2	8/6/05	8/6/05	Varick
41	Brooklyn South	13	1	Refuse	2 of 2	8/10/05	8/12/05	Varick
41	Brooklyn South	13	1	Recycling	1 of 1	8/10/05	8/16/05	Varick
42	Brooklyn South	13	2	Refuse	1 of 3	8/8/05	8/8/05	Varick
42	Brooklyn South	13	2	Refuse	2 of 3	8/10/05	8/11/05	Varick
42	Brooklyn South	13	2	Refuse	3 of 3	8/12/05	8/15/05	Varick
42	Brooklyn South	13	2	Recycling	1 of 1	8/12/05	8/17/05	Varick

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Summer) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date [3]	Sampling Location ${ }^{[1]}$
43	Brooklyn South	16	2	Refuse	1 of 3	8/9/05	8/10/05	Varick
43	Brooklyn South	16	2	Refuse	2 of 3	8/11/05	8/12/05	Varick
43	Brooklyn South	16	2	Refuse	3 of 3	8/13/05	8/15/05	Varick
43	Brooklyn South	16	2	Recycling	1 of 1	8/13/05	8/16/05	Varick
44	Brooklyn South	17	5	Refuse	1 of 2	8/8/05	8/9/05	Varick
44	Brooklyn South	17	5	Refuse	2 of 2	8/11/05	8/12/05	Varick
44	Brooklyn South	17	5	Recycling	1 of 1	8/11/05	8/11/05	Varick
45	Manhattan	2	3	Refuse	1 of 3	8/13/05	8/16/05	Harlem River Yard
45	Manhattan	2	3	Refuse	2 of 3	8/16/05	8/17/05	Harlem River Yard
45	Manhattan	2	3	Refuse	3 of 3	8/18/05	8/18/05	Harlem River Yard
45	Manhattan	2	3	Recycling	1 of 1	8/18/05	8/18/05	Harlem River Yard
46	Manhattan	3	2	Refuse	1 of 3	8/5/05	8/5/05	Harlem River Yard
46	Manhattan	3	2	Refuse	2 of 3	8/8/05	8/9/05	Harlem River Yard
46	Manhattan	3	2	Refuse	3 of 3	8/10/05	8/11/05	Harlem River Yard
46	Manhattan	3	2	Recycling	1 of 1	8/10/05	8/11/05	Harlem River Yard
47	Manhattan	4	1	Refuse	1 of 3	8/8/05	8/9/05	Harlem River Yard
47	Manhattan	4	1	Refuse	2 of 3	8/10/05	8/12/05	Harlem River Yard
47	Manhattan	4	1	Refuse	3 of 3	8/12/05	8/15/05	Harlem River Yard
47	Manhattan	4	1	Recycling	1 of 1	8/12/05	8/16/05	Harlem River Yard
48	Manhattan	4	1	Refuse	1 of 3	8/8/05	8/9/05	Harlem River Yard
48	Manhattan	4	1	Refuse	2 of 3	8/10/05	8/11/05	Harlem River Yard
48	Manhattan	4	1	Refuse	3 of 3	8/12/05	8/13/05	Harlem River Yard
48	Manhattan	4	1	Recycling	1 of 1	8/12/05	8/15/05	Harlem River Yard
49	Manhattan	4	1	Refuse	1 of 3	8/9/05	8/11/05	Harlem River Yard
49	Manhattan	4	1	Refuse	2 of 3	8/11/05	8/13/05	Harlem River Yard
49	Manhattan	4	1	Refuse	3 of 3	8/13/05	8/16/05	Harlem River Yard
49	Manhattan	4	1	Recycling	1 of 1	8/13/05	8/16/05	Harlem River Yard
50	Manhattan	4	2	Refuse	1 of 3	8/9/05	8/11/05	Harlem River Yard
50	Manhattan	4	2	Refuse	2 of 3	8/11/05	8/12/05	Harlem River Yard
50	Manhattan	4	2	Refuse	3 of 3	8/13/05	8/15/05	Harlem River Yard
50	Manhattan	4	2	Recycling	1 of 1	8/13/05	8/17/05	Harlem River Yard
51	Manhattan	4	2	Refuse	1 of 3	8/9/05	8/11/05	Harlem River Yard
51	Manhattan	4	2	Refuse	2 of 3	8/11/05	8/12/05	Harlem River Yard
51	Manhattan	4	2	Refuse	3 of 3	8/13/05	8/15/05	Harlem River Yard
51	Manhattan	4	2	Recycling	1 of 1	8/13/05	8/16/05	Harlem River Yard
52	Manhattan	5	1	Refuse	1 of 3	8/8/05	8/9/05	Harlem River Yard
52	Manhattan	5	1	Refuse	2 of 3	8/10/05	8/11/05	Harlem River Yard
52	Manhattan	5	1	Refuse	3 of 3	8/12/05	8/13/05	Harlem River Yard
52	Manhattan	5	1	Recycling	1 of 1	8/12/05	$N / A^{[2]}$	Harlem River Yard
53	Manhattan	6	2	Refuse	1 of 3	8/8/05	8/9/05	Harlem River Yard
53	Manhattan	6	2	Refuse	2 of 3	8/10/05	8/11/05	Harlem River Yard
53	Manhattan	6	2	Refuse	3 of 3	8/12/05	8/13/05	Harlem River Yard
53	Manhattan	6	2	Recycling	1 of 1	8/12/05	8/15/05	Harlem River Yard
54	Manhattan	6	3	Refuse	1 of 3	8/9/05	8/10/05	Harlem River Yard
54	Manhattan	6	3	Refuse	2 of 3	8/11/05	8/12/05	Harlem River Yard
54	Manhattan	6	3	Refuse	3 of 3	8/13/05	8/16/05	Harlem River Yard
54	Manhattan	6	3	Recycling	1 of 1	8/13/05	8/16/05	Harlem River Yard
55	Manhattan	7	1	Refuse	1 of 3	8/8/05	8/9/05	Harlem River Yard
55	Manhattan	7	1	Refuse	2 of 3	8/10/05	8/11/05	Harlem River Yard
55	Manhattan	7	1	Refuse	3 of 3	8/12/05	8/13/05	Harlem River Yard
55	Manhattan	7	1	Recycling	1 of 1	8/12/05	8/16/05	Harlem River Yard
56	Manhattan	7	2	Refuse	1 of 3	8/8/05	8/8/05	Harlem River Yard
56	Manhattan	7	2	Refuse	2 of 3	8/10/05	8/11/05	Harlem River Yard
56	Manhattan	7	2	Refuse	3 of 3	8/12/05	8/13/05	Harlem River Yard
56	Manhattan	7	2	Recycling	1 of 1	8/12/05	8/15/05	Harlem River Yard

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Summer) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	$\begin{array}{\|c\|} \hline \text { Sorting Date } \\ \hline \end{array}$	Sampling Location ${ }^{[1]}$
57	Manhattan	7	2	Refuse	1 of 3	8/9/05	8/10/05	Harlem River Yard
57	Manhattan	7	2	Refuse	2 of 3	8/11/05	8/12/05	Harlem River Yard
57	Manhattan	7	2	Refuse	3 of 3	8/13/05	8/16/05	Harlem River Yard
57	Manhattan	7	2	Recycling	1 of 1	8/13/05	8/16/05	Harlem River Yard
58	Manhattan	7	3	Refuse	1 of 3	8/5/05	8/5/05	Harlem River Yard
58	Manhattan	7	3	Refuse	2 of 3	8/8/05	8/8/05	Harlem River Yard
58	Manhattan	7	3	Refuse	3 of 3	8/10/05	8/15/05	Harlem River Yard
58	Manhattan	7	3	Recycling	1 of 1	8/10/05	8/11/05	Harlem River Yard
59	Manhattan	7	3	Refuse	1 of 3	8/5/05	8/5/05	Harlem River Yard
59	Manhattan	7	3	Refuse	2 of 3	8/8/05	8/9/05	Harlem River Yard
59	Manhattan	7	3	Refuse	3 of 3	8/10/05	8/12/05	Harlem River Yard
59	Manhattan	7	3	Recycling	1 of 1	8/10/05	8/11/05	Harlem River Yard
60	Manhattan	7	4	Refuse	1 of 3	8/3/05	8/4/05	Harlem River Yard
60	Manhattan	7	4	Refuse	2 of 3	8/5/05	8/5/05	Harlem River Yard
60	Manhattan	7	4	Refuse	3 of 3	8/8/05	8/9/05	Harlem River Yard
60	Manhattan	7	4	Recycling	1 of 1	8/8/05	8/11/05	Harlem River Yard
61	Manhattan	7	5	Refuse	1 of 3	8/3/05	8/4/05	Harlem River Yard
61	Manhattan	7	5	Refuse	2 of 3	8/5/05	8/5/05	Harlem River Yard
61	Manhattan	7	5	Refuse	3 of 3	8/8/05	8/9/05	Harlem River Yard
61	Manhattan	7	5	Recycling	1 of 1	8/8/05	8/11/05	Harlem River Yard
62	Manhattan	7	5	Refuse	1 of 3	8/4/05	8/4/05	Harlem River Yard
62	Manhattan	7	5	Refuse	2 of 3	8/6/05	8/6/05	Harlem River Yard
62	Manhattan	7	5	Refuse	3 of 3	8/9/05	8/10/05	Harlem River Yard
62	Manhattan	7	5	Recycling	1 of 1	8/9/05	8/15/05	Harlem River Yard
63	Manhattan	8	1	Refuse	1 of 3	8/3/05	8/4/05	Harlem River Yard
63	Manhattan	8	1	Refuse	2 of 3	8/5/05	8/5/05	Harlem River Yard
63	Manhattan	8	1	Refuse	3 of 3	8/8/05	8/8/05	Harlem River Yard
63	Manhattan	8	1	Recycling	1 of 1	8/8/05	8/11/05	Harlem River Yard
64	Manhattan	8	5	Refuse	1 of 3	8/16/05	8/17/05	Harlem River Yard
64	Manhattan	8	5	Refuse	2 of 3	8/18/05	8/18/05	Harlem River Yard
64	Manhattan	8	5	Refuse	3 of 3	8/20/05	8/22/05	Harlem River Yard
64	Manhattan	8	5	Recycling	1 of 1	8/20/05	8/23/05	Harlem River Yard
65	Manhattan	9	3	Refuse	1 of 3	8/16/05	8/17/05	Harlem River Yard
65	Manhattan	9	3	Refuse	2 of 3	8/18/05	8/18/05	Harlem River Yard
65	Manhattan	9	3	Refuse	3 of 3	8/20/05	8/20/05	Harlem River Yard
65	Manhattan	9	3	Recycling	1 of 1	8/20/05	8/22/05	Harlem River Yard
66	Manhattan	9	3	Refuse	1 of 3	8/15/05	8/16/05	Harlem River Yard
66	Manhattan	9	3	Refuse	2 of 3	8/17/05	8/18/05	Harlem River Yard
66	Manhattan	9	3	Refuse	3 of 3	8/19/05	8/19/05	Harlem River Yard
66	Manhattan	9	3	Recycling	1 of 1	8/19/05	8/19/05	Harlem River Yard
67	Manhattan	9	3	Refuse	1 of 3	8/15/05	8/16/05	Harlem River Yard
67	Manhattan	9	3	Refuse	2 of 3	8/17/05	8/17/05	Harlem River Yard
67	Manhattan	9	3	Refuse	3 of 3	8/19/05	8/20/05	Harlem River Yard
67	Manhattan	9	3	Recycling	1 of 1	8/19/05	8/19/05	Harlem River Yard
68	Manhattan	10	1	Refuse	1 of 3	8/15/05	8/16/05	Harlem River Yard
68	Manhattan	10	1	Refuse	2 of 3	8/17/05	8/18/05	Harlem River Yard
68	Manhattan	10	1	Refuse	3 of 3	8/19/05	8/19/05	Harlem River Yard
68	Manhattan	10	1	Recycling	1 of 1	8/19/05	$N / A^{[2]}$	Harlem River Yard
69	Manhattan	10	1	Refuse	1 of 3	8/15/05	8/17/05	Harlem River Yard
69	Manhattan	10	1	Refuse	2 of 3	8/17/05	8/18/05	Harlem River Yard
69	Manhattan	10	1	Refuse	3 of 3	8/19/05	8/20/05	Harlem River Yard
69	Manhattan	10	1	Recycling	1 of 1	8/19/05	$N / A^{[2]}$	Harlem River Yard
70	Manhattan	10	2	Refuse	1 of 3	8/16/05	8/17/05	Harlem River Yard
70	Manhattan	10	2	Refuse	2 of 3	8/18/05	8/18/05	Harlem River Yard
70	Manhattan	10	2	Refuse	3 of 3	8/20/05	8/20/05	Harlem River Yard
70	Manhattan	10	2	Recycling	1 of 1	8/20/05	8/23/05	Harlem River Yard

Exhibit 3-3
Schedule of Samples Acquired and Sorted (Summer) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date [3]	Sampling Location ${ }^{[1]}$
71	Manhattan	10	3	Refuse	1 of 3	8/15/05	8/16/05	Harlem River Yard
71	Manhattan	10	3	Refuse	2 of 3	8/17/05	8/17/05	Harlem River Yard
71	Manhattan	10	3	Refuse	3 of 3	8/19/05	8/20/05	Harlem River Yard
71	Manhattan	10	3	Recycling	1 of 1	8/19/05	$N / A^{[2]}$	Harlem River Yard
72	Manhattan	11	1	Refuse	1 of 3	8/15/05	8/16/05	Harlem River Yard
72	Manhattan	11	1	Refuse	2 of 3	8/17/05	8/17/05	Harlem River Yard
72	Manhattan	11	1	Refuse	3 of 3	8/19/05	8/20/05	Harlem River Yard
72	Manhattan	11	1	Recycling	1 of 1	8/19/05	$N / A^{[2]}$	Harlem River Yard
73	Manhattan	12	4	Refuse	1 of 3	8/9/05	8/10/05	Harlem River Yard
73	Manhattan	12	4	Refuse	2 of 3	8/11/05	8/12/05	Harlem River Yard
73	Manhattan	12	4	Refuse	3 of 3	8/13/05	8/15/05	Harlem River Yard
73	Manhattan	12	4	Recycling	1 of 1	8/13/05	8/17/05	Harlem River Yard
74	Queens West	1	1	Refuse	1 of 2	8/22/05	8/23/05	Varick
74	Queens West	1	1	Refuse	2 of 2	8/25/05	8/26/05	Varick
74	Queens West	1	1	Recycling	1 of 1	8/25/05	8/25/05	Varick
75	Queens West	1	1	Refuse	1 of 2	8/22/05	8/22/05	Varick
75	Queens West	1	1	Refuse	2 of 2	8/25/05	8/25/05	Varick
75	Queens West	1	1	Recycling	1 of 1	8/25/05	8/25/05	Varick
76	Queens West	1	3	Refuse	1 of 2	8/18/05	8/18/05	Varick
76	Queens West	1	3	Refuse	2 of 2	8/22/05	8/22/05	Varick
76	Queens West	1	3	Recycling	1 of 1	8/22/05	8/23/05	Varick
77	Queens West	1	4	Refuse	1 of 2	8/20/05	8/20/05	Varick
77	Queens West	1	4	Refuse	2 of 2	8/24/05	8/24/05	Varick
77	Queens West	1	4	Recycling	1 of 1	8/24/05	8/24/05	Varick
78	Queens West	1	4	Refuse	1 of 2	8/20/05	8/20/05	Varick
78	Queens West	1	4	Refuse	2 of 2	8/24/05	8/25/05	Varick
78	Queens West	1	4	Recycling	1 of 1	8/24/05	8/24/05	Varick
79	Queens West	1	5	Refuse	1 of 2	8/23/05	8/24/05	Varick
79	Queens West	1	5	Refuse	2 of 2	8/26/05	8/26/05	Varick
79	Queens West	1	5	Recycling	1 of 1	8/26/05	8/26/05	Varick
80	Queens West	1	6	Refuse	1 of 2	8/19/05	8/19/05	Varick
80	Queens West	1	6	Refuse	2 of 2	8/23/05	8/23/05	Varick
80	Queens West	1	6	Recycling	1 of 1	8/23/05	8/23/05	Varick
81	Queens West	2	3	Refuse	1 of 2	8/23/05	8/24/05	Varick
81	Queens West	2	3	Refuse	2 of 2	8/26/05	8/26/05	Varick
81	Queens West	2	3	Recycling	1 of 1	8/26/05	8/26/05	Varick
82	Queens West	2	3	Refuse	1 of 2	8/24/05	8/24/05	Varick
82	Queens West	2	3	Refuse	2 of 2	8/27/05	8/27/05	Varick
82	Queens West	2	3	Recycling	1 of 1	8/27/05	8/27/05	Varick
83	Queens West	3	2	Refuse	1 of 2	8/24/05	8/24/05	Varick
83	Queens West	3	2	Refuse	2 of 2	8/27/05	8/27/05	Varick
83	Queens West	3	2	Recycling	1 of 1	8/27/05	8/27/05	Varick
84	Queens West	4	2	Refuse	1 of 2	8/19/05	8/19/05	Varick
84	Queens West	4	2	Refuse	2 of 2	8/23/05	8/23/05	Varick
84	Queens West	4	2	Recycling	1 of 1	8/23/05	8/23/05	Varick
85	Queens West	5	3	Refuse	1 of 2	8/22/05	8/23/05	Varick
85	Queens West	5	3	Refuse	2 of 2	8/25/05	8/25/05	Varick
85	Queens West	5	3	Recycling	1 of 1	8/25/05	8/25/05	Varick
86	Queens West	5	3	Refuse	1 of 2	8/24/05	8/24/05	Varick
86	Queens West	5	3	Refuse	2 of 2	8/27/05	8/27/05	Varick
86	Queens West	5	3	Recycling	1 of 1	8/27/05	8/27/05	Varick
87	Queens West	5	3	Refuse	1 of 2	8/22/05	8/22/05	Varick
87	Queens West	5	3	Refuse	2 of 2	8/25/05	8/25/05	Varick
87	Queens West	5	3	Recycling	1 of 1	8/25/05	8/25/05	Varick
88	Queens West	5	3	Refuse	1 of 2	8/22/05	8/23/05	Varick
88	Queens West	5	3	Refuse	2 of 2	8/25/05	8/25/05	Varick
88	Queens West	5	3	Recycling	1 of 1	8/25/05	8/25/05	Varick

Exhibit 3-3

Schedule of Samples Acquired and Sorted (Summer) (continued)

Building No.	Borough	District	Section	Sample Type	Sample Number	Collection Date	Sorting Date $[3]$	Sampling Location ${ }^{[1]}$
89	Queens West	5	4	Refuse	1 of 2	$8 / 19 / 05$	$8 / 19 / 05$	Varick
89	Queens West	5	4	Refuse	2 of 2	$8 / 23 / 05$	$8 / 23 / 05$	Varick
89	Queens West	5	4	Recycling	1 of 1	$8 / 23 / 05$	$8 / 23 / 05$	Varick
90	Queens West	9	4	Refuse	1 of 2	$8 / 18 / 05$	$8 / 18 / 05$	Varick
90	Queens West	9	4	Refuse	2 of 2	$8 / 22 / 05$	$8 / 22 / 05$	Varick
90	Queens West	9	4	Recycling	1 of 1	$8 / 22 / 05$	$8 / 23 / 05$	Varick

[1] All refuse and recycling samples were sorted at the North Shore and Green Point facilities, respectively.
[2] No recycling was available on the recycling collection day for 6 samples. Consequently, only 324 of 330 samples were sorted.
[3] For certain buildings, the recycling sample was sorted prior to the last refuse sample. Both of these samples were collected on the same day.

Exhibit 3-4
Multi-Unit Study Material Groups, Subgroups, Categories and Subcategories

	Material Group	Material Subgroup	Material Category	Material Subcategory	$\begin{gathered} \text { Recycling } \\ \text { Designation }{ }^{(1)} \end{gathered}$
1	Paper	ONP	Newspaper		R Paper
2	Paper	OCC	Plain OCC/Kraft Paper		R Paper
3	Paper	Mixed Paper	High Grade Paper		R Paper
4	Paper	Mixed Paper	Mixed Low Grade Paper		R Paper
5	Paper	Mixed Paper	Phone Books/Paperbacks		R Paper
6	Paper	Mixed Paper	Paper Bags		R Paper
7	Paper	Bev Cartons	Polycoated Paper Containers		R Bev Cartons
8	Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft		NR-Paper
9	Paper	Compostable Paper	Single Use Paper Plates, Cups		NR-Paper
10	Paper	Other Paper	Other Nonrecyclable Paper		NR-Paper
11	Plastic	PET Bottles	PET Bottles		R Plastics
12	Plastic	HDPE Bottles	HDPE Bottles	Natural	R Plastics
13	Plastic	HDPE Bottles	HDPE Bottles	Colored	R Plastics
14	Plastic	Injection Molded Tubs	\#1-\#2 Tubs	\#1 PET \#2 HDPE	PR-Plastics
15	Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles	\#3-\#7 resins	PR-Plastics
16	Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs	\#3-\#7 resins	PR-Plastics
17	Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers		PR-Plastics
18	Plastic	Other Plastic Products	Other PVC		NR-Plastics
19	Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging		PR-Plastics
20	Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging		PR-Plastics
21	Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging		PR-Plastics
22	Plastic	Film	Plastic Bags		PR-Plastics
23	Plastic	Film	Other Film		PR-Plastics
24	Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.		NR-Plastics
25	Plastic	Other Plastic Products	Other Plastics Materials		NR-Plastics
26	Glass	Container Glass	Clear Container Glass		R Glass
27	Glass	Container Glass	Green Container Glass		R Glass
28	Glass	Container Glass	Brown Container Glass		R Glass
29	Glass	Mixed Cullet	Mixed Cullet		R Glass
30	Glass	Container Glass	Other Container Glass		R Glass
31	Glass	Other Glass	Other Glass		PR-Glass
32	Metal	Aluminum	Aluminum Cans		R Metal
33	Metal	Aluminum	Aluminum Foil/Containers		R Metal
34	Metal	Aluminum	Other Aluminum		R Metal
35	Metal	Non-Ferrous	Other Non-Ferrous		R Metal
36	Metal	Ferrous	Tin Food Cans		R Metal
37	Metal	Ferrous	Empty Aerosol Cans		R Metal
38	Metal	Ferrous	Other Ferrous		R Metal
39	Metal	Other Metal	Mixed Metals		R Metal
40	Durables	Ferrous	Appliances	Ferrous	R Metal
41	Durables	Non-Ferrous	Appliances	Non-Ferrous	R Metal
42	Durables	Household Appliance - Non-Metal	Appliances	Non-Metal	NR-Other
43	Durables	Electronics	Electronics		NR-Other
44	Durables	Furniture	Furniture		NR-Other
45	Organic	Yard	Yard Waste		NR-Other
46	Organic	Food	Food Waste		NR-Other
47	Organic	Misc. Organic	Other Organics		NR-Other
48	Other	C\&D	C\&D		NR-Other
49	Other	Miscellaneous/HHW	Miscellaneous/HHW		NR-Other
(1) The three recycling designations used here are: $R=$ Materials designated for recycling under New York City's current curbside recycling program during the study period. $P R=$ Materials from which markets exists and which may be added to a future New York City curbside recycling program. NR = Material not designated for recycling under New York City's current curbside recycling program for which established or emerging markets do not exist.					

Exhibit 3-5

Outgoing Truck Weight (AFTER sample has been dumped): \qquad tons or pounds (circle one)

Exhibit 3-6

Weight of Refuse and Recycling MUS Samples (Recycling Samples)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Recycling Samples (lbs)	Average Weight of Recycling per Unit/Wk (lbs) ${ }^{[3]}$
SP1	Bronx	4	2	17	0	0
SP2	Bronx	6	1	8	56	7
SP3	Bronx	6	1	17	57	3
SP4	Bronx	12	1	13	147	11
SP5	Brooklyn North	1	1	8	119	15
SP6	Brooklyn North	1	1	8	23	3
SP7	Brooklyn North	1	4	8	23	3
SP8	Brooklyn North	2	1	8	36	5
SP9	Brooklyn North	2	3	20	22	1
SP10	Brooklyn North	2	4	6	103	17
SP11	Brooklyn North	3	1	8	14	2
SP12	Brooklyn North	3	2	8	64	8
SP13	Brooklyn North	3	3	6	69	11
SP14	Brooklyn North	3	3	6	56	9
SP15	Brooklyn North	4	1	6	31	5
SP16	Brooklyn North	4	1	6	80	13
SP17	Brooklyn North	4	1	6	11	2
SP18	Brooklyn North	4	2	6	28	5
SP19	Brooklyn South	6	2	9	54	6
SP20	Brooklyn South	6	5	15	110	7
SP21	Brooklyn South	7	4	6	70	12
SP22	Brooklyn South	9	1	16	36	2
SP23	Brooklyn South	9	3	36	124	3
SP24	Brooklyn South	10	4	6	39	7
SP25	Brooklyn South	11	3	16	207	13
SP26	Brooklyn South	12	1	72	395	5
SP27	Brooklyn South	12	3	20	115	6
SP28	Brooklyn South	12	4	6	26	4
SP29	Brooklyn South	14	1	25	57	2
SP30	Brooklyn South	14	2	6	62	10
SP31	Brooklyn South	14	4	54	138	3
SP32	Brooklyn South	15	2	47	372	8
SP33	Brooklyn South	15	5	63	406	6
SP34	Manhattan	2	1	22	445	20
SP35	Manhattan	2	2	20	608	30
SP36	Manhattan	3	3	8	280	35
SP37	Manhattan	4	1	15	369	25
SP38	Manhattan	4	2	24	139	6
SP39	Manhattan	4	3	15	35	2
SP40	Manhattan	5	1	2	13	7
SP41	Manhattan	6	1	18	121	7
SP42	Manhattan	7	1	10	48	5
SP43	Manhattan	7	1	8	6	1
SP44	Manhattan	7	4	9	9	1
SP45	Manhattan	7	5	22	87	4
SP46	Manhattan	9	1	28	138	5
SP47	Manhattan	10	1	18	32	2

Exhibit 3-6

Weight of Refuse and Recycling MUS Samples (Recycling Samples) (continued)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Recycling Samples (lbs)	Average Weight of Recycling per Unit/Wk (lbs) ${ }^{[3]}$
SP48	Manhattan	12	1	39	428	11
SP49	Manhattan	12	3	20	308	15
SP50	Manhattan	12	3	20	88	4
SP51	Queens West	1	2	20	167	8
SP52	Queens West	1	2	6	29	5
SP53	Queens West	1	3	8	67	8
SP54	Queens West	1	4	7	61	9
SP55	Queens West	1	4	17	92	5
SP56	Queens West	1	4	6	129	21
SP57	Queens West	1	6	6	71	12
SP58	Queens West	2	3	26	184	7
SP59	Queens West	3	3	6	45	7
SP60	Queens West	3	3	6	44	7
SP61	Queens West	3	3	6	48	8
SP62	Queens West	4	2	65	365	6
SP63	Queens West	5	3	6	14	2
SP64	Queens West	5	3	6	40	7
SP65	Queens West	6	2	54	188	3
SP66	Queens West	9	1	32	301	9
SU1	Bronx	1	2	21	180	9
SU2	Bronx	2	1	6	25	4
SU3	Bronx	2	1	26	49	2
SU4	Bronx	2	6	8	0	0
SU5	Bronx	3	1	8	54	7
SU6	Bronx	4	1	64	113	2
SU7	Bronx	5	1	32	270	8
SU8	Bronx	6	2	18	32	2
SU9	Bronx	6	2	6	21	4
SU10	Bronx	7	1	23	258	11
SU11	Bronx	7	1	103	375	4
SU12	Bronx	8	1	72	438	6
SU13	Bronx	10	1	285	1,100	4
SU14	Brooklyn North	1	1	6	19	3
SU15	Brooklyn North	1	3	6	40	7
SU16	Brooklyn North	2	1	9	105	12
SU17	Brooklyn North	2	1	7	33	5
SU18	Brooklyn North	3	1	16	39	2
SU19	Brooklyn North	3	3	6	16	3
SU20	Brooklyn North	4	1	20	115	6
SU21	Brooklyn North	4	1	6	37	6
SU22	Brooklyn North	4	1	6	16	3
SU23	Brooklyn North	4	2	6	22	4
SU24	Brooklyn North	4	2	6	26	4
SU25	Brooklyn North	4	3	6	26	4
SU26	Brooklyn North	4	3	6	131	22
SU27	Brooklyn North	5	4	12	19	2
SU28	Brooklyn South	6	1	8	92	12

Exhibit 3-6

Weight of Refuse and Recycling MUS Samples (Recycling Samples) (continued)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Recycling Samples (lbs)	Average Weight of Recycling per Unit/Wk (lbs) ${ }^{[3]}$
SU29	Brooklyn South	6	4	6	14	2
SU30	Brooklyn South	6	4	8	121	15
SU31	Brooklyn South	6	4	6	61	10
SU32	Brooklyn South	6	5	20	194	10
SU33	Brooklyn South	6	5	8	78	10
SU34	Brooklyn South	7	4	6	98	16
SU35	Brooklyn South	9	1	23	107	5
SU36	Brooklyn South	9	1	16	156	10
SU37	Brooklyn South	9	1	16	24	2
SU38	Brooklyn South	9	2	53	121	2
SU39	Brooklyn South	11	3	54	79	1
SU40	Brooklyn South	11	6	17	44	3
SU41	Brooklyn South	13	1	60	331	6
SU42	Brooklyn South	13	2	6	34	6
SU43	Brooklyn South	16	2	6	38	6
SU44	Brooklyn South	17	5	8	54	7
SU45	Manhattan	2	3	14	34	2
SU46	Manhattan	3	2	10	28	3
SU47	Manhattan	4	1	9	133	15
SU48	Manhattan	4	1	17	388	23
SU49	Manhattan	4	1	72	926	13
SU50	Manhattan	4	2	25	169	7
SU51	Manhattan	4	2	24	12	0
SU52	Manhattan	5	1	8	0	0
SU53	Manhattan	6	2	9	20	2
SU54	Manhattan	6	3	41	186	5
SU55	Manhattan	7	1	10	17	2
SU56	Manhattan	7	2	10	24	2
SU57	Manhattan	7	2	10	176	18
SU58	Manhattan	7	3	10	50	5
SU59	Manhattan	7	3	10	31	3
SU60	Manhattan	7	4	7	16	2
SU61	Manhattan	7	5	22	53	2
SU62	Manhattan	7	5	15	259	17
SU63	Manhattan	8	1	36	93	3
SU64	Manhattan	8	5	20	50	3
SU65	Manhattan	9	3	36	136	4
SU66	Manhattan	9	3	8	12	2
SU67	Manhattan	9	3	49	115	2
SU68	Manhattan	10	1	6	0	0
SU69	Manhattan	10	1	11	0	0
SU70	Manhattan	10	2	12	50	4
SU71	Manhattan	10	3	10	0	0
SU72	Manhattan	11	1	32	0	0
SU73	Manhattan	12	4	30	507	17
SU74	Queens West	1	1	9	97	11
SU75	Queens West	1	1	9	170	19

Exhibit 3-6

Weight of Refuse and Recycling MUS Samples

(Recycling Samples) (continued)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Recycling Samples (lbs)	Average Weight of Recycling per Unit/Wk (lbs) ${ }^{[3]}$
SU76	Queens West	1	3	6	8	1
SU77	Queens West	1	4	6	31	5
SU78	Queens West	1	4	6	46	8
SU79	Queens West	1	5	6	45	8
SU80	Queens West	1	6	12	95	8
SU81	Queens West	2	3	20	122	6
SU82	Queens West	2	3	12	18	2
SU83	Queens West	3	2	48	460	10
SU84	Queens West	4	2	102	216	2
SU85	Queens West	5	3	6	90	15
SU86	Queens West	5	3	6	21	4
SU87	Queens West	5	3	6	33	5
SU88	Queens West	5	3	6	38	6
SU89	Queens West	5	4	6	93	15
SU90	Queens West	9	4	106	632	6

[^26]Exhibit 3-6
Weight of Refuse and Recycling MUS Samples (Refuse Samples)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Refuse Samples (lbs)	Average Weight of Refuse per Unit/Wk (lbs) ${ }^{[3]}$
SP1	Bronx	4	2	17	783	46
SP2	Bronx	6	1	8	187	23
SP3	Bronx	6	1	17	533	31
SP4	Bronx	12	1	13	577	44
SP5	Brooklyn North	1	1	8	113	14
SP6	Brooklyn North	1	1	8	99	12
SP7	Brooklyn North	1	4	8	502	63
SP8	Brooklyn North	2	1	8	66	8
SP9	Brooklyn North	2	3	20	456	23
SP10	Brooklyn North	2	4	6	309	51
SP11	Brooklyn North	3	1	8	104	13
SP12	Brooklyn North	3	2	8	261	33
SP13	Brooklyn North	3	3	6	451	75
SP14	Brooklyn North	3	3	6	408	68
SP15	Brooklyn North	4	1	6	289	48
SP16	Brooklyn North	4	1	6	208	35
SP17	Brooklyn North	4	1	6	117	20
SP18	Brooklyn North	4	2	6	79	13
SP19	Brooklyn South	6	2	9	233	26
SP20	Brooklyn South	6	5	15	229	15
SP21	Brooklyn South	7	4	6	328	55
SP22	Brooklyn South	9	1	16	424	26
SP23	Brooklyn South	9	3	36	1,097	30
SP24	Brooklyn South	10	4	6	194	32
SP25	Brooklyn South	11	3	16	494	31
SP26	Brooklyn South	12	1	72	1,626	23
SP27	Brooklyn South	12	3	20	1,020	51
SP28	Brooklyn South	12	4	6	188	31
SP29	Brooklyn South	14	1	25	1,145	46
SP30	Brooklyn South	14	2	6	87	15
SP31	Brooklyn South	14	4	54	733	14
SP32	Brooklyn South	15	2	47	1,784	38
SP33	Brooklyn South	15	5	63	1,100	17
SP34	Manhattan	2	1	22	612	28
SP35	Manhattan	2	2	20	137	7
SP36	Manhattan	3	3	8	462	58
SP37	Manhattan	4	1	15	373	25
SP38	Manhattan	4	2	24	255	11
SP39	Manhattan	4	3	15	86	6
SP40	Manhattan	5	1	2	136	68
SP41	Manhattan	6	1	18	375	21
SP42	Manhattan	7	1	10	479	48
SP43	Manhattan	7	1	8	71	9
SP44	Manhattan	7	4	9	33	4
SP45	Manhattan	7	5	22	268	12
SP46	Manhattan	9	1	28	603	22
SP47	Manhattan	10	1	18	612	34

Exhibit 3-6
Weight of Refuse and Recycling MUS Samples
(Refuse Samples) (continued)

$\left.$						Total Wt. of Refuse
Samples						
(lbs)						
:---:						
of Refuse per						
Unit/Wk (lbs) ${ }^{[3]}$	\right\rvert\,					

Exhibit 3-6
Weight of Refuse and Recycling MUS Samples
(Refuse Samples) (continued)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Refuse Samples (lbs)	Average Weight of Refuse per Unit/Wk (lbs) ${ }^{[3]}$
SU29	Brooklyn South	6	4	6	52	9
SU30	Brooklyn South	6	4	8	120	15
SU31	Brooklyn South	6	4	6	223	37
SU32	Brooklyn South	6	5	20	509	25
SU33	Brooklyn South	6	5	8	380	48
SU34	Brooklyn South	7	4	6	258	43
SU35	Brooklyn South	9	1	23	1,241	54
SU36	Brooklyn South	9	1	16	550	34
SU37	Brooklyn South	9	1	16	528	33
SU38	Brooklyn South	9	2	53	1,164	22
SU39	Brooklyn South	11	3	54	1,271	24
SU40	Brooklyn South	11	6	17	578	34
SU41	Brooklyn South	13	1	60	1,073	18
SU42	Brooklyn South	13	2	6	189	31
SU43	Brooklyn South	16	2	6	207	35
SU44	Brooklyn South	17	5	8	463	58
SU45	Manhattan	2	3	14	115	8
SU46	Manhattan	3	2	10	455	45
SU47	Manhattan	4	1	9	90	10
SU48	Manhattan	4	1	17	673	40
SU49	Manhattan	4	1	72	1,377	19
SU50	Manhattan	4	2	25	534	21
SU51	Manhattan	4	2	24	134	6
SU52	Manhattan	5	1	8	177	22
SU53	Manhattan	6	2	9	50	6
SU54	Manhattan	6	3	41	614	15
SU55	Manhattan	7	1	10	142	14
SU56	Manhattan	7	2	10	118	12
SU57	Manhattan	7	2	10	299	30
SU58	Manhattan	7	3	10	428	43
SU59	Manhattan	7	3	10	156	16
SU60	Manhattan	7	4	7	87	12
SU61	Manhattan	7	5	22	464	21
SU62	Manhattan	7	5	15	275	18
SU63	Manhattan	8	1	36	559	16
SU64	Manhattan	8	5	20	215	11
SU65	Manhattan	9	3	36	1,313	36
SU66	Manhattan	9	3	8	588	73
SU67	Manhattan	9	3	49	1,376	28
SU68	Manhattan	10	1	6	64	11
SU69	Manhattan	10	1	11	136	12
SU70	Manhattan	10	2	12	597	50
SU71	Manhattan	10	3	10	1,260	126
SU72	Manhattan	11	1	32	1,125	35
SU73	Manhattan	12	4	30	1,314	44
SU74	Queens West	1	1	9	217	24
SU75	Queens West	1	1	9	168	19

Exhibit 3-6
Weight of Refuse and Recycling MUS Samples
(Refuse Samples) (continued)

Building ${ }^{[1]}$	Borough	District	Section	Number of Units ${ }^{[2]}$	Total Wt. of Refuse Samples (Ibs)	Average Weight of Refuse per Unit/Wk (lbs) ${ }^{[3]}$
SU76	Queens West	1	3	6	132	22
SU77	Queens West	1	4	6	93	16
SU78	Queens West	1	4	6	171	29
SU79	Queens West	1	5	6	109	18
SU80	Queens West	1	6	12	467	39
SU81	Queens West	2	3	20	185	9
SU82	Queens West	2	3	12	208	17
SU83	Queens West	3	2	48	1,220	25
SU84	Queens West	4	2	102	5,003	49
SU85	Queens West	5	3	6	195	32
SU86	Queens West	5	3	6	117	19
SU87	Queens West	5	3	6	172	29
SU88	Queens West	5	3	6	69	12
SU89	Queens West	5	4	6	218	36
SU90	Queens West	9	4	106	1,777	17

[^27]Exhibit 3-7

Multi-Unit Sample Detail Form

Exhibit 3-8

Bag Tracking Form

New York City Waste Characterization Study
 Multi-Unit Study (Summer Sort)
 Multi-Unit Sorting - Bag Count and Identification

$\left.\begin{array}{|l|}\hline \text { Date: } \\ \hline \text { Crew Chief: } \\ \hline \text { Target Building Address: } \\ \hline \text { Sample Date: } \\ \hline \text { Bags in Sample } \\ \hline\end{array} \quad \begin{array}{l}\text { Total Bags and loose waste (Fill This Out First) } \\ \text { Confirmed Bags from Target Building } \\ \text { Unconfirmed Bags and loose waste } \\ \text { Confirmed Bags from Non-target Buildings } \\ \text { Write in Total }\end{array}\right\}$

Exhibit 3-9
Composition of MUS Refuse (Spring)

Mat No.	Material Category	Percent Composition
1	Newspaper	3.7%
2	Plain OCC/Kraft Paper	0.7%
3	High Grade Paper	0.8%
4	Mixed Low Grade Paper	7.0%
5	Phone Books/Paperbacks	0.3%
6	Paper Bags	0.7%
7	Polycoated Paper Containers	0.5%
8	Compostable/Soiled Paper/Waxed OCC/Kraft	6.1%
9	Single Use Paper Plates, Cups	0.4%
10	Other Nonrecyclable Paper	0.7%
11	PET Bottles	0.9%
12	HDPE Bottles: Natural	0.3%
13	HDPE Bottles: Colored	0.3%
14	\#1 Through \#2 Tubs	0.1%
15	\#3 Through \#7 Bottles	0.2%
16	\#3 Through \#7 Tubs	0.5%
17	Soda Crates and Bottle Carriers	0.0%
18	Other PVC	0.0%
19	Rigid Polystyrene Containers and Packaging	0.3%
20	Expanded Polystyrene Containers and Packaging	0.7%
21	Other Rigid Containers/Packaging	0.8%
22	Plastic Bags	3.4%
23	Other Film	4.4%
24	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.7%
25	Other Plastics Materials	1.0%
26	Clear Container Glass	2.7%
27	Green Container Glass	0.6%
28	Brown Container Glass	0.7%
29	Mixed Cullet	0.3%
30	Other Container Glass	0.5%
31	Other Glass	0.0%
32	Aluminum Cans	0.3%
33	Aluminum Foi//Containers	0.3%
34	Other Aluminum	0.2%
35	Other Non-Ferrous	0.6%
36	Tin Food Cans	0.0%
37	Empty Aerosol Cans	0.0%
38	Other Ferrous	0.9%
39	Mixed Metals	0.1%
40	Appliances: Ferrous	0.4%
41	Appliances: Non-Ferrous	0.5%
42	Appliances: Non-Metal	0.5%
43	Electronics	0.0%
44	Furniture	0.1%
45	Yard Waste	Food Waste

Exhibit 3-9
Composition of MUS Recycling ${ }^{(1)}$ (Spring) (continued)

Mat No.	Material Category	Percent Composition
1	Newspaper	12.8\%
2	Plain OCC/Kraft Paper	11.9\%
3	High Grade Paper	3.1\%
4	Mixed Low Grade Paper	15.4\%
5	Phone Books/Paperbacks	1.4\%
6	Paper Bags	0.3\%
7	Polycoated Paper Containers	0.8\%
8	Compostable/Soiled Paper/Waxed OCC/Kraft	2.3\%
9	Single Use Paper Plates, Cups	0.1\%
10	Other Nonrecyclable Paper	2.0\%
11	PET Bottles	2.7\%
12	HDPE Bottles: Natural	1.4\%
13	HDPE Bottles: Colored	1.3\%
14	\#1 Through \#2 Tubs	0.2\%
15	\#3 Through \#7 Bottles	0.2\%
16	\#3 Through \#7 Tubs	0.2\%
17	Soda Crates and Bottle Carriers	0.0\%
18	Other PVC	0.0\%
19	Rigid Polystyrene Containers and Packaging	0.6\%
20	Expanded Polystyrene Containers and Packaging	0.1\%
21	Other Rigid Containers/Packaging	0.6\%
22	Plastic Bags	0.5\%
23	Other Film	2.3\%
24	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.1\%
25	Other Plastics Materials	1.4\%
26	Clear Container Glass	8.6\%
27	Green Container Glass	3.4\%
28	Brown Container Glass	2.3\%
29	Mixed Cullet	2.0\%
30	Other Container Glass	0.1\%
31	Other Glass	1.9\%
32	Aluminum Cans	0.2\%
33	Aluminum Foil/Containers	0.4\%
34	Other Aluminum	0.2\%
35	Other Non-Ferrous	0.0\%
36	Tin Food Cans	2.5\%
37	Empty Aerosol Cans	0.2\%
38	Other Ferrous	2.8\%
39	Mixed Metals	1.2\%
40	Appliances: Ferrous	2.2\%
41	Appliances: Non-Ferrous	0.0\%
42	Appliances: Non-Metal	0.2\%
43	Electronics	2.0\%
44	Furniture	1.3\%
45	Yard Waste	0.0\%
46	Food Waste	3.5\%
47	Other Organics	1.5\%
48	C\&D	1.1\%
49	Miscellaneous/HHW	0.7\%
	TOTAL	100.0\%

[1] For this aspect of the WCS, Paper and MGP were weighed and sorted together; therefore, only aggregate results are available.
\square \qquad

Exhibit 3-9
Composition of MUS Waste (Spring) (continued)

Mat No.	Material Category	Percent Composition
1	Newspaper	5.5\%
2	Plain OCC/Kraft Paper	2.9\%
3	High Grade Paper	1.2\%
4	Mixed Low Grade Paper	8.6\%
5	Phone Books/Paperbacks	0.5\%
6	Paper Bags	0.6\%
7	Polycoated Paper Containers	0.6\%
8	Compostable/Soiled Paper/Waxed OCC/Kraft	5.4\%
9	Single Use Paper Plates, Cups	0.3\%
10	Other Nonrecyclable Paper	1.0\%
11	PET Bottles	1.3\%
12	HDPE Bottles: Natural	0.5\%
13	HDPE Bottles: Colored	0.5\%
14	\#1 Through \#2 Tubs	0.1\%
15	\#3 Through \#7 Bottles	0.2\%
16	\#3 Through \#7 Tubs	0.4\%
17	Soda Crates and Bottle Carriers	0.0\%
18	Other PVC	0.0\%
19	Rigid Polystyrene Containers and Packaging	0.3\%
20	Expanded Polystyrene Containers and Packaging	0.6\%
21	Other Rigid Containers/Packaging	0.7\%
22	Plastic Bags	2.8\%
23	Other Film	4.0\%
24	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.6\%
25	Other Plastics Materials	1.1\%
26	Clear Container Glass	3.9\%
27	Green Container Glass	1.1\%
28	Brown Container Glass	1.0\%
29	Mixed Cullet	0.7\%
30	Other Container Glass	0.0\%
31	Other Glass	0.6\%
32	Aluminum Cans	0.2\%
33	Aluminum Foil/Containers	0.6\%
34	Other Aluminum	0.0\%
35	Other Non-Ferrous	0.0\%
36	Tin Food Cans	1.2\%
37	Empty Aerosol Cans	0.1\%
38	Other Ferrous	0.8\%
39	Mixed Metals	0.6\%
40	Appliances: Ferrous	0.8\%
41	Appliances: Non-Ferrous	0.0\%
42	Appliances: Non-Metal	0.1\%
43	Electronics	0.9\%
44	Furniture	1.9\%
45	Yard Waste	1.4\%
46	Food Waste	25.5\%
47	Other Organics	13.8\%
48	C\&D	4.3\%
49	Miscellaneous/HHW	0.5\%
	TOTAL	100.0\%

Exhibit 3-9
 Composition of MUS Refuse (Summer)

Mat No.	Material Category	Percent Composition
1	Newspaper	6.1\%
2	Plain OCC/Kraft Paper	1.2\%
3	High Grade Paper	0.6\%
4	Mixed Low Grade Paper	9.2\%
5	Phone Books/Paperbacks	0.3\%
6	Paper Bags	0.8\%
7	Polycoated Paper Containers	0.6\%
8	Compostable/Soiled Paper/Waxed OCC/Kraft	5.9\%
9	Single Use Paper Plates, Cups	0.4\%
10	Other Nonrecyclable Paper	0.7\%
11	PET Bottles	1.6\%
12	HDPE Bottles: Natural	0.5\%
13	HDPE Bottles: Colored	0.6\%
14	\#1 Through \#2 Tubs	0.0\%
15	\#3 Through \#7 Bottles	0.1\%
16	\#3 Through \#7 Tubs	0.2\%
17	Soda Crates and Bottle Carriers	0.0\%
18	Other PVC	0.0\%
19	Rigid Polystyrene Containers and Packaging	0.3\%
20	Expanded Polystyrene Containers and Packaging	0.6\%
21	Other Rigid Containers/Packaging	0.9\%
22	Plastic Bags	3.0\%
23	Other Film	4.0\%
24	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.5\%
25	Other Plastics Materials	1.8\%
26	Clear Container Glass	3.0\%
27	Green Container Glass	0.6\%
28	Brown Container Glass	0.8\%
29	Mixed Cullet	0.3\%
30	Other Container Glass	0.0\%
31	Other Glass	0.5\%
32	Aluminum Cans	0.3\%
33	Aluminum Foil/Containers	0.6\%
34	Other Aluminum	0.0\%
35	Other Non-Ferrous	0.1\%
36	Tin Food Cans	1.3\%
37	Empty Aerosol Cans	0.3\%
38	Other Ferrous	0.6\%
39	Mixed Metals	0.4\%
40	Appliances: Ferrous	0.1\%
41	Appliances: Non-Ferrous	0.0\%
42	Appliances: Non-Metal	0.1\%
43	Electronics	1.1\%
44	Furniture	2.6\%
45	Yard Waste	0.8\%
46	Food Waste	23.6\%
47	Other Organics	17.1\%
48	C\&D	5.3\%
49	Miscellaneous/HHW	0.5\%
	TOTAL	100.0\%

Exhibit 3-9
Composition of MUS Recycling ${ }^{(1)}$ (Summer) (continued)

2	Plain OCC/Kraft Paper	16.4\%
3	High Grade Paper	1.1\%
4	Mixed Low Grade Paper	14.0\%
5	Phone Books/Paperbacks	2.6\%
6	Paper Bags	0.2\%
7	Polycoated Paper Containers	0.8\%
8	Compostable/Soiled Paper/Waxed OCC/Kraft	0.9\%
9	Single Use Paper Plates, Cups	0.0\%
10	Other Nonrecyclable Paper	1.8\%
11	PET Bottles	3.3\%
12	HDPE Bottles: Natural	1.7\%
13	HDPE Bottles: Colored	1.2\%
14	\#1 Through \#2 Tubs	0.2\%
15	\#3 Through \#7 Bottles	0.1\%
16	\#3 Through \#7 Tubs	0.2\%
17	Soda Crates and Bottle Carriers	0.0\%
18	Other PVC	0.1\%
19	Rigid Polystyrene Containers and Packaging	0.1\%
20	Expanded Polystyrene Containers and Packaging	0.1\%
21	Other Rigid Containers/Packaging	0.4\%
22	Plastic Bags	1.1\%
23	Other Film	0.9\%
24	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.1\%
25	Other Plastics Materials	1.9\%
26	Clear Container Glass	9.9\%
27	Green Container Glass	4.0\%
28	Brown Container Glass	2.4\%
29	Mixed Cullet	1.8\%
30	Other Container Glass	0.1\%
31	Other Glass	1.3\%
32	Aluminum Cans	0.2\%
33	Aluminum Foil/Containers	0.4\%
34	Other Aluminum	0.0\%
35	Other Non-Ferrous	0.3\%
36	Tin Food Cans	2.2\%
37	Empty Aerosol Cans	0.4\%
38	Other Ferrous	2.3\%
39	Mixed Metals	1.1\%
40	Appliances: Ferrous	4.1\%
41	Appliances: Non-Ferrous	0.1\%
42	Appliances: Non-Metal	0.3\%
43	Electronics	0.7\%
44	Furniture	1.1\%
45	Yard Waste	0.1\%
46	Food Waste	1.9\%
47	Other Organics	0.8\%
48	C\&D	0.5\%
49	Miscellaneous/HHW	1.1\%
	TOTAL	100.0\%

[1] For this aspect of the WCS, Paper and MGP were weighed and sorted together; therefore, only aggregate results are available.

Exhibit 3-9
Composition of MUS Waste (Summer) (continued)

Mat No.	Material Category	Percent Composition
1	Newspaper	7.0\%
2	Plain OCC/Kraft Paper	3.1\%
3	High Grade Paper	0.6\%
4	Mixed Low Grade Paper	9.8\%
5	Phone Books/Paperbacks	0.6\%
6	Paper Bags	0.8\%
7	Polycoated Paper Containers	0.6\%
8	Compostable/Soiled Paper/Waxed OCC/Kraft	5.3\%
9	Single Use Paper Plates, Cups	0.4\%
10	Other Nonrecyclable Paper	0.8\%
11	PET Bottles	1.8\%
12	HDPE Bottles: Natural	0.7\%
13	HDPE Bottles: Colored	0.7\%
14	\#1 Through \#2 Tubs	0.0\%
15	\#3 Through \#7 Bottles	0.1\%
16	\#3 Through \#7 Tubs	0.2\%
17	Soda Crates and Bottle Carriers	0.0\%
18	Other PVC	0.0\%
19	Rigid Polystyrene Containers and Packaging	0.3\%
20	Expanded Polystyrene Containers and Packaging	0.5\%
21	Other Rigid Containers/Packaging	0.8\%
22	Plastic Bags	2.7\%
23	Other Film	3.6\%
24	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.4\%
25	Other Plastics Materials	1.8\%
26	Clear Container Glass	3.9\%
27	Green Container Glass	1.0\%
28	Brown Container Glass	1.0\%
29	Mixed Cullet	0.5\%
30	Other Container Glass	0.0\%
31	Other Glass	0.6\%
32	Aluminum Cans	0.3\%
33	Aluminum Foil/Containers	0.6\%
34	Other Aluminum	0.0\%
35	Other Non-Ferrous	0.1\%
36	Tin Food Cans	1.4\%
37	Empty Aerosol Cans	0.3\%
38	Other Ferrous	0.8\%
39	Mixed Metals	0.5\%
40	Appliances: Ferrous	0.6\%
41	Appliances: Non-Ferrous	0.0\%
42	Appliances: Non-Metal	0.1\%
43	Electronics	1.0\%
44	Furniture	2.4\%
45	Yard Waste	0.7\%
46	Food Waste	20.9\%
47	Other Organics	15.0\%
48	C\&D	4.7\%
49	Miscellaneous/HHW	0.6\%
	TOTAL	100.0\%

Exhibit 3-10
MUS Recycling Success Statistics (Spring)

	Borough	District	Section	Recycling Success Factors				
				Diversion Rate		Capture Rate		
Building Number				With Contamination	Without Contamination	With Contamination[1]	Without Contamination	Contamination Rate
1	Bronx	4	2	0\%	0\%	0\%	0\%	0.0\%
2	Bronx	6	1	22\%	20\%	78\%	71\%	8.3\%
3	Bronx	6	1	10\%	7\%	35\%	24\%	32.7\%
4	Bronx	12	1	20\%	15\%	56\%	41\%	26.6\%
5	Brooklyn North	1	1	50\%	48\%	89\%	85\%	4.1\%
6	Brooklyn North	1	1	18\%	15\%	70\%	58\%	18.1\%
7	Brooklyn North	1	4	4\%	4\%	15\%	15\%	1.9\%
8	Brooklyn North	2	1	38\%	36\%	68\%	65\%	4.3\%
9	Brooklyn North	2	3	5\%	3\%	13\%	9\%	30.4\%
10	Brooklyn North	2	4	24\%	23\%	46\%	44\%	4.4\%
11	Brooklyn North	3	1	11\%	9\%	44\%	35\%	20.1\%
12	Brooklyn North	3	2	20\%	16\%	49\%	38\%	22.1\%
13	Brooklyn North	3	3	13\%	13\%	41\%	40\%	2.9\%
14	Brooklyn North	3	3	12\%	12\%	31\%	31\%	0.0\%
15	Brooklyn North	4	1	9\%	9\%	31\%	31\%	1.5\%
16	Brooklyn North	4	1	28\%	27\%	56\%	53\%	3.7\%
17	Brooklyn North	4	1	9\%	6\%	45\%	34\%	24.0\%
18	Brooklyn North	4	2	19\%	17\%	73\%	65\%	10.6\%
19	Brooklyn South	6	2	19\%	14\%	41\%	30\%	26.8\%
20	Brooklyn South	6	5	32\%	24\%	88\%	65\%	26.4\%
21	Brooklyn South	7	4	17\%	15\%	68\%	59\%	14.1\%
22	Brooklyn South	9	1	8\%	7\%	16\%	15\%	10.1\%
23	Brooklyn South	9	3	10\%	4\%	30\%	12\%	58.9\%
24	Brooklyn South	10	4	16\%	15\%	64\%	59\%	7.2\%
25	Brooklyn South	11	3	30\%	20\%	99\%	65\%	34.1\%
26	Brooklyn South	12	1	20\%	15\%	65\%	49\%	24.0\%
27	Brooklyn South	12	3	10\%	7\%	40\%	27\%	32.4\%
28	Brooklyn South	12	4	12\%	6\%	40\%	18\%	55.0\%
29	Brooklyn South	14	1	5\%	4\%	15\%	13\%	11.5\%
30	Brooklyn South	14	2	44\%	32\%	100\%	80\%	27.9\%
31	Brooklyn South	14	4	17\%	13\%	51\%	41\%	19.6\%
32	Brooklyn South	15	2	17\%	12\%	56\%	38\%	32.8\%
33	Brooklyn South	15	5	27\%	25\%	70\%	64\%	8.4\%
34	Manhattan	2	1	42\%	33\%	100\%	85\%	20.4\%
35	Manhattan	2	2	81\%	63\%	100\%	91\%	22.2\%
36	Manhattan	3	3	38\%	21\%	81\%	45\%	44.5\%
37	Manhattan	4	1	49\%	33\%	100\%	77\%	33.0\%
38	Manhattan	4	2	35\%	32\%	60\%	54\%	9.6\%
39	Manhattan	4	3	28\%	26\%	50\%	47\%	7.2\%
40	Manhattan	5	1	9\%	4\%	23\%	11\%	51.9\%
41	Manhattan	6	1	23\%	21\%	77\%	68\%	12.1\%
42	Manhattan	7	1	9\%	9\%	41\%	39\%	5.8\%
43	Manhattan	7	1	8\%	7\%	20\%	17\%	18.3\%
44	Manhattan	7	4	22\%	21\%	49\%	47\%	3.3\%
45	Manhattan	7	5	24\%	23\%	57\%	53\%	6.2\%

Exhibit 3-10
MUS Recycling Success Statistics (Spring) (continued)

	Borough	District	Section	Recycling Success Factors				
				Diversion Rate		Capture Rate		
Building Number				With Contamination	Without Contamination	With Contamination[1]	Without Contamination	Contamination Rate
46	Manhattan	9	1	18\%	14\%	59\%	45\%	23.5\%
47	Manhattan	10	1	6\%	5\%	24\%	20\%	15.2\%
48	Manhattan	12	1	20\%	15\%	83\%	64\%	22.5\%
49	Manhattan	12	3	17\%	12\%	70\%	47\%	32.5\%
50	Manhattan	12	3	5\%	2\%	23\%	10\%	56.7\%
51	Queens West	1	2	32\%	26\%	77\%	62\%	19.8\%
52	Queens West	1	2	19\%	19\%	63\%	62\%	1.2\%
53	Queens West	1	3	37\%	35\%	86\%	83\%	3.8\%
54	Queens West	1	4	7\%	5\%	33\%	22\%	33.8\%
55	Queens West	1	4	28\%	23\%	67\%	55\%	18.0\%
56	Queens West	1	4	39\%	36\%	97\%	89\%	8.9\%
57	Queens West	1	6	39\%	36\%	97\%	89\%	8.9\%
58	Queens West	2	3	11\%	8\%	32\%	23\%	29.6\%
59	Queens West	3	3	21\%	20\%	81\%	76\%	6.3\%
60	Queens West	3	3	9\%	9\%	52\%	47\%	9.9\%
61	Queens West	3	3	16\%	15\%	53\%	50\%	5.9\%
62	Queens West	4	2	30\%	25\%	74\%	61\%	17.5\%
63	Queens West	5	3	6\%	3\%	27\%	12\%	54.6\%
64	Queens West	5	3	15\%	8\%	49\%	28\%	42.4\%
65	Queens West	6	2	12\%	9\%	33\%	25\%	26.4\%
66	Queens West	9	1	19\%	13\%	62\%	43\%	30.1\%

[1] In calculating the Capture Rate, with Contamination, the following formula was used: Recycling/DR in Waste. In buildings with relatively
high levels of contamination in the Recycling in comparison with the total amount of Waste, the amount of DR in the Waste Stream could be smaller than the amount of Recycling. The result would be a Capture Rate with Contamination of more than 100 percent. For example, building 30 set out Recycling that included 44 lbs of DR and 17 lbs of non-designated materials, and set out refuse with 11 lbs of DR and 66 lbs of refuse. Using the formula, Recycling/DR in Waste $=61 / 55=111 \%$. In these cases, where the calculated Capture Rate with Contamination is greater than 100 percent, the Capture Rate with Contamination is shown as 100 percent.

Exhibit 3-10
MUS Recycling Success Statistics (Summer)

	Borough	District	Section	Recycling Success Factors				
				Diversion Rate		Capture Rate		
Building Number				With Contamination	Without Contamination	With Contamination [1]	Without Contamination	Contamination Rate
1	Bronx	1	2	5\%	5\%	30\%	26\%	16.0\%
2	Bronx	2	1	13\%	12\%	32\%	31\%	3.2\%
3	Bronx	2	1	7\%	5\%	25\%	18\%	26.3\%
4	Bronx	2	6	0\%	0\%	0\%	0\%	0.0\%
5	Bronx	3	1	5\%	4\%	14\%	11\%	16.9\%
6	Bronx	4	1	4\%	3\%	12\%	12\%	4.0\%
7	Bronx	5	1	22\%	17\%	70\%	54\%	23.2\%
8	Bronx	6	2	2\%	2\%	6\%	6\%	12.9\%
9	Bronx	6	2	6\%	4\%	21\%	14\%	32.4\%
10	Bronx	7	1	18\%	16\%	62\%	54\%	13.3\%
11	Bronx	7	1	9\%	9\%	24\%	23\%	1.8\%
12	Bronx	8	1	12\%	11\%	36\%	33\%	9.8\%
13	Bronx	10	1	5\%	5\%	11\%	10\%	11.3\%
14	Brooklyn North	1	1	23\%	22\%	62\%	60\%	3.3\%
15	Brooklyn North	1	3	12\%	11\%	76\%	70\%	7.1\%
16	Brooklyn North	2	1	46\%	42\%	88\%	80\%	8.7\%
17	Brooklyn North	2	1	38\%	35\%	68\%	63\%	7.5\%
18	Brooklyn North	3	1	12\%	11\%	29\%	27\%	8.1\%
19	Brooklyn North	3	3	7\%	6\%	17\%	15\%	13.6\%
20	Brooklyn North	4	1	17\%	16\%	63\%	57\%	10.2\%
21	Brooklyn North	4	1	9\%	4\%	28\%	15\%	47.9\%
22	Brooklyn North	4	1	4\%	4\%	15\%	15\%	0.0\%
23	Brooklyn North	4	2	6\%	3\%	23\%	10\%	55.4\%
24	Brooklyn North	4	2	3\%	2\%	23\%	19\%	20.2\%
25	Brooklyn North	4	3	6\%	6\%	34\%	33\%	2.2\%
26	Brooklyn North	4	3	35\%	26\%	92\%	67\%	27.1\%
27	Brooklyn North	5	4	7\%	7\%	26\%	25\%	4.1\%
28	Brooklyn South	6	1	30\%	28\%	51\%	47\%	6.7\%
29	Brooklyn South	6	4	22\%	22\%	46\%	46\%	0.0\%
30	Brooklyn South	6	4	50\%	49\%	77\%	75\%	2.1\%
31	Brooklyn South	6	4	22\%	21\%	51\%	48\%	4.4\%
32	Brooklyn South	6	5	28\%	26\%	76\%	73\%	4.4\%
33	Brooklyn South	6	5	17\%	15\%	57\%	53\%	8.1\%
34	Brooklyn South	7	4	26\%	21\%	83\%	67\%	19.1\%
35	Brooklyn South	9	1	8\%	6\%	20\%	14\%	29.2\%
36	Brooklyn South	9	1	22\%	18\%	48\%	39\%	18.3\%
37	Brooklyn South	9	1	5\%	4\%	13\%	11\%	12.5\%
38	Brooklyn South	9	2	10\%	8\%	28\%	21\%	22.8\%
39	Brooklyn South	11	3	6\%	6\%	18\%	17\%	5.1\%
40	Brooklyn South	11	6	7\%	6\%	28\%	24\%	14.2\%
41	Brooklyn South	13	1	23\%	14\%	65\%	40\%	38.6\%
42	Brooklyn South	13	2	13\%	12\%	33\%	30\%	9.7\%
43	Brooklyn South	16	2	13\%	13\%	31\%	31\%	1.6\%
44	Brooklyn South	17	5	10\%	9\%	32\%	30\%	8.7\%
45	Manhattan	2	3	20\%	19\%	55\%	51\%	6.6\%

[1] In calculating the Capture Rate, with Contamination, the following formula was used: Recycling/DR in Waste. In buildings with relatively high levels of contamination in the Recycling in comparison with the total amount of Waste, the amount of DR in the Waste Stream could be smaller than the amount of Recycling. The result would be a Capture Rate with Contamination of more than 100 percent.
For example, building 73 set out recycling that included 367 lbs of $D R$ and 132 lbs of non-designated materials, and set out refuse with 88 lbs of DR and 1,208 lbs of refuse. Using the formula, Recycling/DR in Waste $=499 / 455=110 \%$. In these cases, where the calculated Capture Rate with Contamination is greater than 100 percent, the Capture Rate with Contamination is shown as 100 percent.

Exhibit 3-11
Building Survey Staffing List

Building Surveyors	Affiliation	Survey Dates
Walt Davenport	R.W. Beck	Spring Survey, June 6-10, 2005
Mary Chamberlain	R.W. Beck	Spring Survey, June 6-10, 2005
Kerri Genden	R.W. Beck	Spring Survey, June 6-10, 2005
Lyndsay Hazen	Cascadia Consulting	Spring Survey, June 6-10, 2005
Walt Davenport	R.W. Beck	Summer Survey, Sept. 12-14, 2005
Andy Hayes	R.W. Beck	Summer Survey, Sept. 12-16, 2005
Nan Holmes	Cascadia Consulting	Summer Survey, Sept. 12-16, 2005
Dieter Eckels	Cascadia Consulting	Summer Survey, Sept. 12-16, 2005
Lyndsay Hazen	R.W. Beck	
Ran Holmes	R.W. Beck	Summer Survey, Oct. 3-7, 2005
Karen Healy	Cascadia Consulting	Summer Survey, Oct. 3-7, 2005
Dieter Eckels	Cascadia Consulting	Summer Survey, Oct. 3-7, 2005

Address: \qquad
Borough: [Brooklyn \qquad Bronx \qquad Queens \qquad , Manhattan \qquad
Manager/Supr. Contact: \qquad
Zip Code: \qquad

Visit Date: \qquad Staff Surveyor Name:
\qquad

Phone: \qquad
(

VISIT OBSERVATIONS

1. At least one recycling area accessible on a daily basis? Yes \qquad No \qquad
2. Number of total recycling collection points? \qquad
3. Number of refuse disposal points? \qquad
4. Number of refuse disposal points co-located with recycling? \qquad
5. Functional trash chutes? Functional \qquad Not Functional \qquad No Chutes \qquad
6. Functional recycling chutes? Functional \qquad Not Functional \qquad No Chutes \qquad
7. Functional elevators? Functional \qquad Not Functional \qquad No Elevators \qquad
8. Recycling area(s) are:

Outdoors? Yes \qquad No \qquad
Basement? Yes \qquad No \qquad
On each floor?Yes \qquad No \qquad
Collected by maintenance/custodial staff at each unit's door? Yes \qquad No \qquad
9. Recycling area(s) clearly labeled or designated: Yes \qquad No \qquad No recycling area \qquad
10. Recycling containers clearly labeled for paper and MGP: Yes \qquad No \qquad No containers \qquad
11. How many languages used for recycling signage: \qquad . Languages other than English \qquad
12. Number sorts required of residents:

3 - MGP, Mixed + Paper, Corrugated Containers? Yes \qquad No \qquad
2 - MGP, Paper (including corrugated containers)? Yes \qquad No \qquad
1 - Recyclables (MGP and paper recyclables mixed together)? Yes \qquad No \qquad
0 - Maintenance/custodial staff remove recyclables from refuse? Yes \qquad No \qquad
13. Recycling area(s) have pest problems (live or dead insects, rodents, or droppings)?

Yes \qquad No \qquad No recycling area \qquad Refuse area(s) have pest problems (live or dead insects, rodents, or droppings)?

Yes \qquad No \qquad
14. Recycling area(s) have functional ventilating fans or air fresheners

Yes \qquad No \qquad No enclosed recycling area \qquad
15. Recycling area(s) have more than minimal spillage and dirt/residue accumulation?

Yes No No recycling area \qquad
16. Recycling area(s) are:

Inside a locked/secure building? Yes \qquad No \qquad
Monitored by a person or security camera? Yes \qquad No \qquad
Located in a high-traffic area(s)? Yes \qquad No \qquad
Open and visible (not enclosed)? Yes \qquad No \qquad
Brightly lit? Yes \qquad No \qquad
17. The dimensions of recycling containers are (measurement in inches):

Not applicable (e.g., chutes, or each unit provides their own bag or container): \qquad
Rectangular: Length ___ Width ___ Height ___ Number of containers of this size \qquad
Length ___ Width ___ Height ___ Number of containers of this size \qquad
Length \qquad Width \qquad Height \qquad Number of containers of this size \qquad
Cylindrical: Diameter \qquad Height \qquad Number of containers of this size \qquad
Diameter___ Height \qquad Number of containers of this size \qquad
Diameter___ Height \qquad Number of containers of this size \qquad
Notes: \qquad
\qquad

Building Address:

MANAGER QUESTIONS

1. How many units are occupied? \qquad How many people live in this building? \qquad
2. How many times per year do you remind residents of the need to recycle? \qquad
$>0 \rightarrow$ How do you provide this reminder (e.g., newsletter)? \qquad
ASK AT END \rightarrow Can I see a copy? [Number of times/year verified by observation \qquad].
3. Is recycling mandated in the lease or association documents?

Yes \qquad No \qquad
ASK AT END \rightarrow Can I see a copy? [Verified by observation — Yes \qquad , No \qquad
4. Is recycling mandated in newsletters or other informal building communications?

Yes \qquad No \qquad
ASK AT END \rightarrow Can I see a copy? [Verified by observation — Yes \qquad , No \qquad
5. Does building staff inspect refuse for recycling participation and notify violating units?

Yes \qquad No, or no building staff \qquad ASK AT END \rightarrow Can I see a copy of a violation notice? [Verified by observation — Yes \qquad , No \qquad
6. How many hours per day are recycling areas accessible to residents? \qquad
7. What percentage of unit residents are conversant in English? \qquad
8. How many residential units are owner occupied? \qquad
\rightarrow Go back to Questions 2, 3, 4, and 5 and ask to see copies.

Option Question
What is the average monthly rent or condo/co-op fee? \$ \qquad Do residents pay separately for:

Electric?	Yes	No
Gas?	Yes	No
Combined gas/electric? Yes	No	
Water/sewer?	Yes -	No
Oil?	Yes	No

Notes: \qquad
\qquad

Multi-Unit Building Survey Questionnaire

 (continued)
ONLY IF READILY AVAILABLE, AND AFTER SPEAKING WITH SUPER BUILDING RESIDENT \#1

1. Do you live in this building? Yes \qquad No \qquad [end interview]
2. How many times per year does building management remind residents to recycle? \qquad
3. Does building management tell residents that recycling is mandatory for your building?

Yes \qquad How?
\rightarrow Verbally told when moving in \qquad
\rightarrow Lease or association documents \qquad
\rightarrow Newsletters or other informal building communications \qquad
\rightarrow Violation letters or notices to units that don't recycle \qquad
No \qquad
4. Are recycling areas accessible to you 24 hours per day? Yes \qquad No \qquad No recycling area \qquad
5. Is there anything about your building that discourages or makes recycling difficult?

BUILDING RESIDENT \#2

1. Do you live in this building? Yes \qquad No \qquad [end interview]
2. How many times per year does building management remind residents to recycle? \qquad
3. Does building management tell residents that recycling is mandatory for your building?

Yes \qquad How?
\rightarrow Verbally told when moving in \qquad
\rightarrow Lease or association documents \qquad
\rightarrow Newsletters or other informal building communications \qquad
\rightarrow Violation letters or notices to units that don't recycle \qquad
No \qquad
4. Are recycling areas accessible to you 24 hours per day? Yes \qquad No \qquad No recycling area \qquad
5. Is there anything about your building that discourages or makes recycling difficult?

Exhibit 3-13
Calendar of Multi-Unit Study Activities

Activity	Date
Begin Multi-Unit Planning Period	November 2004
Selection of Target Buildings for Spring	November 1, 2004
Spring Sampling and Sorting of MUS waste	May $9-25,2005$
Spring Building Surveys	June 6-10, June 20-24, 2005
Selection of Target Buildings for Summer	June 2005
Summer Sampling and Sorting of MUS waste	August 3-27, 2005
Summer Building Surveys	Sept. 12-16, Oct. 3-7, 2005

NYC Waste Characterization Study
Final Report, Volume 4
Appendices

VOLUME 4 - APPENDICES
 TABLE OF CONTENTS

GLOSSARY GL-1
A Field Procedures and Training Manual A-1
B WCS Structure B-1
C Operations Plans
Appendix C1 Operations Plan PWCS 2004 C-1
Appendix C2 Operations Plan WCS Fall 2004. C-13
Appendix C3 Operations Plan WCS Winter 2005 C-28
Appendix C4 Operations Plan WCS Spring 2005 C-113
Appendix C5 Operations Plan WCS Summer 2005 C-204
D Health and Safety Plan D-1
E Staffing Lists
Appendix E1 Staffing Lists PWCS E-1
Appendix E2 Staffing Lists WCS Fall E-18
Appendix E3 Staffing Lists WCS Winter E-38
Appendix E4 Staffing Lists WCS Spring E-58
Appendix E5 Staffing Lists WCS Summer E-76
F Photographs
Appendix F1 WCS Fall Sampling and Sorting Photographs F-1
Appendix F2 Fall Street Basket Photographs F-37
Appendix F3 WCS Winter Sampling and Sorting Photographs F-128
Appendix F4 Winter Street Basket Photographs F-165
Appendix F5 WCS Spring Sampling and Sorting Photographs F-327
Appendix F6 Spring Street Basket Photographs F-339
Appendix F7 WCS Summer Sampling and Sorting Photographs F-450
Appendix F8 Summer Street Basket Photographs F-454
G Demographic Data
Table G-1 Number of Census Tracts by Major Housing Density Characteristics G-1
Table G-2 Number of Census Tracts by Average Median Household Income Ranges G-2
H Sample Data
Table H-1 Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall, 2004 H-1
Table H-2 Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter, 2005 H-9

VOLUME 4 - APPENDICES TABLE OF CONTENTS (continued)

Table H-3 Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring, 2005 H-17
Table H-4 Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer, 2005 H-25
Table H-5 Universe of Routes, PWCS H-33
Table H-6 Universe of Routes, WCS H-37
Table H-7 Collections During Study (tons per week) H-43
Table H-8 Sample Mass by Strata H-44
Table H-9 Samples Acquired by Day and by Strata H-45
Table H-10 Samples by Facility, by Day and by Strata. H-54
Table H-11 Sample Weights by Day and by Strata H-62
Table H-12 Truck Deliveries by Day H-126
Table H-13 Weight of Street Basket Samples H-134
I Additional Composition Data
Table I-1 WCS Refuse Composition, Weekly Tonnages, Fall 2004 I-1
Table I-2 WCS Refuse Composition, Weekly Tonnages, Winter 2005 I-4
Table I-3 WCS Refuse Composition, Weekly Tonnages, Spring 2005 I-7
Table I-4 WCS Refuse Composition, Weekly Tonnages, Summer 2005 I-10
Table I-5 WCS Paper Composition, Weekly Tonnages, Fall 2004 I-13
Table I-6 WCS Paper Composition, Weekly Tonnages, Winter 2005 I-16
Table I-7 WCS Paper Composition, Weekly Tonnages, Spring 2005 I-19
Table I-8 WCS Paper Composition, Weekly Tonnages, Summer 2005 I-22
Table I-9 WCS MGP Composition, Weekly Tonnages, Fall 2004 I-25
Table I-10 WCS MGP Composition, Weekly Tonnages, Winter 2005 I-28
Table I-11 WCS MGP Composition, Weekly Tonnages, Spring 2005 I-31
Table I-12 WCS MGP Composition, Weekly Tonnages , Summer 2005 I-34
Table I-13 WCS Aggregated Recycling Composition, Weekly Tonnages, Fall 2004 I-37
Table I-14 WCS Aggregated Recycling Composition, Weekly Tonnages, Winter 2005 I-40
Table I-15 WCS Aggregated Recycling Composition, Weekly Tonnages, Spring 2005 I-43
Table I-16 WCS Aggregated Recycling Composition, Weekly Tonnages, Summer 2005 I-46
Table I-17 WCS Waste Composition, Weekly Tonnages, Fall 2004 I-49
Table I-18 WCS Waste Composition, Weekly Tonnages, Winter 2005 I-52

VOLUME 4 - APPENDICES
 TABLE OF CONTENTS
 (continued)

Table I-19 WCS Waste Composition, Weekly Tonnages, Spring 2005 I-55
Table I-20 WCS Waste Composition, Weekly Tonnages, Summer 2005 I-58
Table I-21 WCS Citywide Results at a Glance, Composition Tonnages, Fall 2004 I-61
Table I-22 WCS Citywide Results at a Glance, Composition Tonnages, Winter 2005 I-64
Table I-23 WCS Citywide Results at a Glance, Composition Tonnages, Spring 2005 I-67
Table I-24 WCS Citywide Results at a Glance, Composition Tonnages, Summer 2005 I-70
Table I-25 Citywide Aggregated Recycling Results at a Glance, Composition Tonnages by Season I-73
Table I-26 Residential Bulk Item Summary, Manhattan, PWCS I-76
Table I-27 Residential Bulk Item Summary, Bronx, PWCS I-77
Table I-28 Residential Bulk Item Summary, Brooklyn, PWCS I-78
Table I-29 Residential Bulk Item Summary, Queens, PWCS I-79
Table I-30 Residential Bulk Item Summary, Staten Island, PWCS I-80
Table I-31 Residential Bulk Item Summary, Manhattan, WCS I-81
Table I-32 Residential Bulk Item Summary, Bronx, WCS I-82
Table I-33 Residential Bulk Item Summary, Brooklyn, WCS I-83
Table I-34 Residential Bulk Item Summary, Queens, WCS I-84
Table I-35 Residential Bulk Item Summary, Staten Island, WCS I-85
J Generation Rate Data
Table J-1 Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section - Fall, 2004 J-1
Table J-2 Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section - Winter, 2005 J-6
Table J-3 Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section - Spring, 2005 J-11
Table J-4 Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section - Summer, 2005 J-16
Table J-5 Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Fall, 2004 J-21
Table J-6 Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Winter, 2005 J-25
Table J-7 Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Spring, 2005 J-29

VOLUME 4 - APPENDICES TABLE OF CONTENTS (continued)

Table J-8 Generation Rates per Housing Unit, by Stream and by Strata,Statistical Results, Summer, 2005J-33
Table J-9 Generation Rates per Capita, by Stream and by Strata, Statistical Results, Fall, 2004 J-37
Table J-10 Generation Rates per Capita, by Stream and by Strata, Statistical Results, Winter, 2005 J-41
Table J-11 Generation Rates per Capita, by Stream and by Strata, Statistical Results, Spring, 2005 J-45
Table J-12 Generation Rates per Capita, by Stream and by Strata, Statistical Results, Summer, 2005 J-49
Table J-13 Per Housing Unit Generation Rate by Stratum, Fall 2004 J-53
Table J-14 Per Housing Unit Generation Rate by Stratum, Winter 2005 J-54
Table J-15 Per Housing Unit Generation Rate by Stratum, Spring 2005 J-55
Table J-16 Per Housing Unit Generation Rate by Stratum, Summer 2005 J-56
Table J-17 Per Capita Generation Rate by Stratum, Fall 2004 J-57
Table J-18 Per Capita Generation Rate by Stratum, Winter 2005 J-58
Table J-19 Per Capita Generation Rate by Stratum, Spring 2005 J-59
Table J-20 Per Capita Generation Rate by Stratum, Summer 2005 J-60
Table J-21 Estimated Tonnages per Week Projected on a Housing Unit Basis, Fall 2004 J-61
Table J-22 Estimated Tonnages per Week Projected on a Per Capita Basis, Fall 2004 J-62
Table J-23 Estimated Tonnages per Week Projected on a Housing Unit Basis, Winter 2005 J-63
Table J-24 Estimated Tonnages per Week Projected on a Per Capita Basis, Winter 2005 J-64
Table J-25 Estimated Tonnages per Week Projected on a Housing Unit Basis, Spring 2005 J-65
Table J-26 Estimated Tonnages per Week Projected on a Per Capita Basis, Spring 2005 J-66
Table J-27 Estimated Tonnages per Week Projected on a Housing Unit Basis, Summer 2005 J-67
Table J-28 Estimated Tonnages per Week Projected on a Per Capita Basis, Summer 2005 J-68
Table J-29 Residential Waste Generation and Capture Rates for Aggregated Recycling, Fall 2004 J-69
Table J-30 Residential Waste Generation and Capture Rates for Aggregated Recycling, Winter 2005 J-70

VOLUME 4 - APPENDICES
 TABLE OF CONTENTS
 (continued)

Table J-31 Residential Waste Generation and Capture Rates for Aggregated Recycling, Spring 2005 J-71
Table J-32 Residential Waste Generation and Capture Rates for Aggregated Recycling, Summer 2005 J-72
K Capture Rate Data
Table K-1 Capture Rate, Weekly Tonnages and Percentages, Citywide, Fall 2004 K-1
Table K-2 Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Fall 2004 K-2
Table K-3 Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Fall 2004 K-3
Table K-4 Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Fall 2004 K-4
Table K-5 Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Fall 2004 K-5
Table K-6 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Fall 2004 K-6
Table K-7 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Fall 2004 K-7
Table K-8 Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Fall 2004 K-8
Table K-9 Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Fall 2004 K-9
Table K-10 Capture Rate, Weekly Tonnages and Percentages, Citywide, Winter 2005 K-10
Table K-11 Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Winter 2005 K-11
Table K-12 Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Winter 2005 K-12
Table K-13 Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Winter 2005 K-13
Table K-14 Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Winter 2005 K-14
Table K-15 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Winter 2005 K-15
Table K-16 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Winter 2005 K-16

VOLUME 4 - APPENDICES
 TABLE OF CONTENTS (continued)

Table K-17 Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Winter 2005K-17
Table K-18 Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Winter 2005 K-18
Table K-19 Capture Rate, Weekly Tonnages and Percentages, Citywide, Spring 2005 K-19
Table K-20 Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Spring 2005 K-20
Table K-21 Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Spring 2005 K-21
Table K-22 Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Spring 2005 K-22
Table K-23 Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Spring 2005 K-23
Table K-24 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Spring 2005 K-24
Table K-25 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Spring 2005 K-25
Table K-26 Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Spring 2005 K-26
Table K-27 Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Spring 2005 K-27
Table K-28 Capture Rate, Weekly Tonnages and Percentages, Citywide, Summer 2005 K-28
Table K-29 Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Summer 2005 K-29
Table K-30 Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Summer 2005. K-30
Table K-31 Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Summer 2005 K-31
Table K-32 Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Summer 2005 K-32
Table K-33 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Summer 2005 K-33
Table K-34 Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Summer 2005 K-34
Table K-35 Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Summer 2005 K-35

VOLUME 4 - APPENDICES
 TABLE OF CONTENTS
 (continued)

$$
\begin{aligned}
& \text { Table K-36 Capture Rate, Weekly Tonnages and Percentages, } \\
& \text { Low Density/Medium Income Strata, Summer } 2005 \text {... K-36 }
\end{aligned}
$$

L Waste Without Bulk, Weekly Tonnages
Table L-1 Waste Weekly Tonnages, Excluding Bulk, by Strata,
Fall 2004 ... L-1
Table L-2 Waste Weekly Tonnages, Excluding Bulk, by Strata,
Winter 2005 .. L-4
Table L-3 Waste Weekly Tonnages, Excluding Bulk, by Strata,
Spring 2005 ..L-7
Table L-4 Waste Weekly Tonnages, Excluding Bulk, by Strata, Summer 2005 .L-10
M Statistical Validity of Taking Multiple Sampling Units from a Single Truck. M-1
N Bulk Metal in the MGP Stream N-1
O New York City Literature Review Bibliography O-1

Glossary of Abbreviations and Definitions

The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
1989/1990 WCS	The waste characterization study conducted by the New York City Department of Sanitation in 1989 and 1990.
Absolute Variability	The variability from sampling unit to sampling unit, which is measured by the Standard Deviation.
Borough	The five political/geographic areas of New York City: Manhattan, Brooklyn, Bronx, Queens, and Staten Island.
Bulk Item	As defined for the NYC WCS, any item of waste that will not fit into a 96-gallon container.
BWPRR	Bureau of Waste Prevention, Reuse and Recycling
C\&D	An abbreviation of construction and demolition debris, a material group in the NYC WCS.
Capture Rate	The amount of materials set out for residential recycling collection as a percentage of designated recyclable materials in both recycling and refuse streams. This ratio measures how much of the targeted materials are actually being recycled, which is a measure of how successfully such materials are recycled.
Census Tracts	Census tracts are small, relatively permanent statistical subdivisions of a county. New York City includes 2,217 census tracts containing on average about 4,000 inhabitants.
City	New York City
Confidence Interval	A range within which the true Mean of the population is believed to lie with the given confidence level.
Confidence Level	The certainty with which the true Mean lies within the interval determined. For the NYC WCS, a 90 percent confidence level is used. A 90 percent confidence level is the industry standard for Waste Characterization Studies. Note that the use of a 90 percent level instead of a 95 percent level (the standard for scientific research) does not (a) affect the calculation of means, only the width of intervals around the means or (b) preclude the application of a 95 percent confidence level to results if such an analysis is of interest.
Contamination Rate	The percentage of material that is found in the containers set out for residential recycling collection that is not accepted in New York City's curbside recycling program.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.
$\left.\begin{array}{|l|l|}\hline \text { TERM } & \text { DEFINITION } \\ \hline \text { Correlation, negative } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A negative correlation occurs when one variable } \\ \text { increases and the other variable decreases. }\end{array} \\ \hline \text { Correlation, positive } & \begin{array}{l}\text { A statistical measure referring to the relationship between two or } \\ \text { more variables suggesting a causal relationship between these } \\ \text { variables. A positive correlation occurs when one variable } \\ \text { increases and the other variable also increases. }\end{array} \\ \hline \text { Count } & \text { The process of counting the individual items that were subsorted. }\end{array} \left\lvert\, \begin{array}{l}\text { Curbside Collection } \\ \hline \begin{array}{l}\text { The collection of residential refuse or recycling in bins or bags } \\ \text { set out in proximity to residences that generate these types of } \\ \text { waste. DSNY provides curbside refuse collection to all residents } \\ \text { two or three times per week and recycling curbside collection } \\ \text { once per week. }\end{array} \\ \hline \text { Density/Income Strata } \\ \hline \begin{array}{l}\text { Divisions of New York City's population based on median } \\ \text { housing density and median household income. }\end{array} \\ \hline \text { Deposit (containers) } \\ \begin{array}{l}\text { Beverage containers for which, under the New York State } \\ \text { Redeemable Container Law, the purchaser is required to pay a } \\ \text { deposit. The deposit may be redeemed when the empty } \\ \text { containers are returned to a retailer or authorized redemption } \\ \text { center. }\end{array} \\ \hline \text { District } \\ \text { Dual-bin Trucks }\end{array} \begin{array}{l}\text { The 59 areas within New York City used by the Department of } \\ \text { Sanitation to administer the City's waste management program. } \\ \text { These districts are co-terminus, or identical, to the 59 Community } \\ \text { Districts. }\end{array}\right.\right\}$

Glossary of Abbreviations and Definitions (continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Film (Plastic)	A category of flexible plastic materials used for packaging, trash bags and other applications, typically made of polyethylene or polypropylene.
HDPE	An abbreviation for high density polyethylene; a plastic denoted by a \#2 inside the chasing arrows recycling symbol.
HHW	An abbreviation for Household Hazardous Waste, one of the material groups in the NYC WCS.
H/H	An abbreviation for the high housing density and high income stratum.
H/L	An abbreviation for the high housing density and low income stratum.
H/M	An abbreviation for the high housing density and medium income stratum.
Illegally Disposed Street Basket Waste	Residential or commercial waste that is illegally disposed of in street baskets (e.g. home-use products, such as large detergent bottles, cereal boxes, or personal mail; construction materials, etc.).
L/H	An abbreviation for the low housing density and high income stratum.
L/M	An abbreviation for the low housing density and medium income stratum.
Late Week/Early Week	A criterion used in the PWCS based on the idea that the composition of the waste discarded during the latter part of a week differs significantly from the composition of waste discarded during the early part of a week.
LDPE	An abbreviation for low density polyethylene, a plastic denoted by \#4 inside the "chasing arrows" recycling symbol.
Lower Boundary	For a given material, the lowest average percentage of that material expected in the population consistent with the sample, at the confidence level specified.
M/H	An abbreviation for the medium housing density and high income stratum.
M/L	An abbreviation for the medium housing density and low income stratum.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
M/M	An abbreviation for the medium housing density and medium income stratum.
Material Categories	The classification of all materials in the waste stream into categories for sorting, weighing, and counting purposes. In the NYC WCS, 91 Material Categories were used to characterize the City's waste stream.
Material Groups	Groupings of material categories used to simplify or generalize results. The Material Groups used in the NYC WCS are: Paper, Plastic, Glass, Metal, Organics, Appliances/Electronics, Construction and Demolition Debris, Miscellaneous Inorganics, and Household Hazardous Waste.
Mean	The sum of the values of all observations divided by the number of observations, also known as average. In analyzing the composition of samples of waste, refuse, recycling, and the contents of street baskets, the best estimate of the true percentage of each material in the population is the Mean percentage of that material from all of the samples.
MGP	An abbreviation for Metal, Glass, and Plastic. One of the two streams of recycling collected by the DSNY consisting of plastic bottles and jugs; glass bottles and jars; metal cans and household objects; aluminum foil, trays and cans, and gable top beverage cartons. The other stream of recycling collected by DSNY is Paper.
Multi-Unit Apartment	Broken glass in small pieces (under 3" x 3") of mixed color.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
NYC	New York City
NYC WCS	New York City Waste Characterization Study
Observation	The value(s) associated with a given sampling unit.
OCC	An abbreviation for old corrugated cardboard, one of the material categories in the PWCS and the NYC WCS.
ONP	An abbreviation for old newspaper, one of the material categories in the PWCS and the NYC WCS.
Paper	The second of two streams of recyclable materials collected by DSNY consisting of newspapers; magazines; catalogues; junk mail; white office paper; mixed paper; and gray and corrugated cardboard/paperboard. The other stream of is Metals/Glass/Plastic (MGP).
PET	An abbreviation for polyethylene terephthalate, a plastic denoted by \#1 inside the "chasing arrows" recycling symbol.
Population (Statistics)	The entire aggregation of items from which a sample can be drawn. In the NYC WCS, the population was all of the residential waste collected at the curb by DSNY.
PP	An abbreviation for polyethylene propylene, a plastic denoted by \#5 inside the "chasing arrows" recycling symbol.
Potential Deposit	Beverage containers which are not currently designated as deposit containers under the New York State Redeemable Container Law, but which may be designated in future legislation.
PS	An abbreviation for polystyrene, a plastic denoted by \#6 inside the "chasing arrows" recycling symbol.
Pure Routes	DSNY Refuse and Recycling collection routes that include only residences from a single housing density and income stratum.
PWCS	The preliminary waste characterization study conducted by the New York City Department of Sanitation in 2004.
PVC	An abbreviation for polyvinyl chloride, a plastic denoted by \#3 inside the "chasing arrows" recycling symbol.

Glossary of Abbreviations and Definitions

 (continued)The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Recycling	The act of recovering items or materials that might have been discarded and, usually after processing, returning them to the stream of commerce. Also, the materials that are set out for recycling collection.
Recycling Subindicators	A set of abbreviations used to indicate; i) those materials designated for recycling under New York City's current curbside recycling program during the study period ("R"); ii) those materials for which markets exist and which could be added to a future New York City curbside program ("PR"); and iii) those materials that are not designated for recycling under New York City's curbside recycling program because established or emerging markets do not presently exist ("NR").
Refuse	Items or materials that are discarded and disposed.
Relative Variability	The variability from Sampling Unit to Sampling Unit in relation to the Mean. This is calculated by dividing the Standard Deviation by the Mean.
Residential Study	The component of the 2004/2005 waste characterization study that addressed the generation and composition of the curbside residential waste.
Sample	A portion of a population used to estimate the composition of the population as a whole. The Sample is made up of multiple Sampling Units.
Sample Acquisition, or Sampling	The procedure for selecting Sampling Units from the population.
Sample Number	The number of sampling units in a sample.
Sample Weight	The weight of a sampling unit. In the WCS, each refuse sampling unit was between 200 and 300 pounds.
Sampling Unit	A single elementary unit used as the basis for estimating the composition of the population.
Section	Each of the City's 59 Sanitation Districts is divided into 3 to 5 Sanitation District Sections within which routes are designed and tonnage data collected daily.
Single-serve (containers)	Beverage containers with a capacity of less than 24 ounces of liquid.

Glossary of Abbreviations and Definitions
(continued)
The first time that a term or abbreviation defined in the glossary appears in the text, it is printed in bold.

TERM	DEFINITION
Sorting	The procedure for separating a heterogeneous amount of material, such as a 200 pound Sampling Units of refuse, into its constituent material categories.
Sorting Period	The days or weeks when the sampling and sorting of waste took place during the NYC WCS.
Standard Deviation	A measure of the dispersion or variability around the Mean of the weights of a group of Sampling Units of New York City waste.
Street Basket Waste Study	The component of the 2004/2005 waste characterization study that addressed the composition of the street basket waste.
Subsorts	The process of sorting a particular material into smaller constituent components (e.g. drinking containers were subsorted into deposit and non-deposit containers).
Upper Boundary	For a given material, the highest average percentage of that material expected in a population consistent with the sample, at the confidence level specified.
Waste	The combination of Refuse and Recycling
Waste Generation	The rate at which waste is set out for collection, typically reported in terms of amounts per generator per time period (e.g. pounds per capita per week).
WCS	The waste characterization study conducted over four seasons by the New York City Department of Sanitation in 2004 and 2005.

NYC Waste Characterization Study
Final Report, Volume 4
Appendix A: Field Procedures and Training Manual
[This page intentionally left blank.]

Appendix A
 Field Procedures and Training Manual

Introduction

The purpose of this manual is to describe the field procedures used in the Preliminary Waste Characterization Study ("PWCS") and the Waste Characterization Study ("WCS") for the Department of Sanitation of New York City ("DSNY").

Although R. W. Beck, Inc. ("R. W, Beck") and its subcontractors, Cascadia Consulting, Inc., Organics Recycling, Inc. and Camp Dresser McKee, have conducted numerous waste characterization studies, the magnitude and complexity of the PWCS and WCS called for a special level of organization and procedures and these are described below.

This Manual is based on R.W. Beck's experience during the PWCS and WCS, incorporating various changes in field procedures and training that were made during these studies. Before each sorting period, an Operations Plan was submitted to DSNY and these plans are presented in Appendices C (Volume 4) of the Report.

The Manual includes an overview of the Field Activities, a description of the roles of the key field personnel, a discussion of the field training program, an explanation of the sampling and sorting procedures, and a series of discussions and recommendations related to "Lessons Learned" during the PWCS and WCS.

Overview of Field Activities

The PWCS and WCS consisted of six sorting periods between May, 2004 and August, 2005. During each sorting period, a group of professional staff supervised the work of acquiring samples of waste, sorting these samples, and recording the resulting data. Table A-1 shows the dates and streams of waste sampled and sorted during each sorting period.

Table A-1
PWCS and WCS Sampling and Sorting periods

Sorting Period	Dates	Streams Sorted ${ }^{(1)}$
PWCS	May 15-28, 2004	Refuse
PWCS	June 7-12, 2004	MGP, Paper
WCS - Fall	October 18 - November 6, 2004	Refuse, SBW, MGP, Paper
WCS - Winter	March 8 - 29, 2005	Refuse, SBW, MGP, Paper
WCS - Spring	May 9-27, 2005	Refuse, SBW, MGP, Paper, MUR, MURE
WCS - Summer	August 1-27, 2005	Refuse, SBW, MGP, Paper, MUR, MURE
The streams of was basket waste ("SBW	ded residential refuse ("Refuse"); metal, glas se from multi-unit apartment buildings ("MU	d plastic recycling ("MGP"); paper recycling ("Paper"); street Recycling from multi-unit apartment buildings ("MURE").

During these periods, all field personnel worked a six-day week to match the DSNY's weekly waste collection schedule. The refuse and recycling sampling was carried out between midnight to early morning at four transfer stations. The sampling for the MultiUnit Study took place between about 2:00 a.m. and mid-morning. Sorting took place between 7:00 a.m. and the late afternoon.

The Multi-Unit Study also required a series of building surveys and the field work related to these surveys is discussed in some detail in Volume 3 of the Final Report.

Key Professional Staff

During each seasonal sorting period, all personnel worked a six-day week to match the DSNY work week. For the PWCS and WCS, the key professional field personnel included:

- A Logistics Manager;
- A Director of Sampling;
- Sample Managers;
- A Director of Sorting;
- Two Field Supervisors;
- Crew Chiefs; and
- A Data Manager.

The roles of these key personnel during field activities are described below.

Logistics Manager

The Logistics Manager ("LM") had the responsibility attending to all logistical details that arose during the sorting period, including purchasing equipment and supplies, arranging for lunches, overseeing equipment repair, and responding to any health or medical emergencies. Many of the responsibilities involved spur-of-the-moment problems that could not be addressed by the professionals because of their sampling or sorting duties.

Daily Activities

As suggested above, the daily activities of the LM were rarely routine. Usually, the day began by purchasing supplies and equipment requested by the Sample Managers and Crew Chiefs the previous evening. These supplies included safety and sorting equipment, office supplies, and water and snacks for the sorting crews. Supplies were provided to personnel at the North Shore Transfer Station, the Greenpoint Transfer Station, and the Data Center at the hotel.

Repairs to sorting tables or scales were taken care of by the LM. When the rental trucks used for sampling malfunctioned or required attention, the LM delivered them to the garage for repairs. The LM arranged for lunches at both sorting sites and arranged for the shipping of samples to the laboratory for moisture and particulate testing. Occasionally,
the LM filled in as a Crew Chief or Sample Manager when existing personnel were indisposed or the schedule was tight. In general, the LM dealt with emergencies, unmet needs, and unforeseen circumstances.

Other Responsibilities

The LM had certain seasonal responsibilities as well. These included helping to arrange for temporary workers before the beginning of each sorting period. Before the Winter Sorting Period, the LM arranged for tents and heaters at both sorting sites and ensured that they were properly maintained during the sorting period.

Director of Sampling

The Director of Sampling ("DSAM") had the overall responsibility of acquiring samples during each sorting period. These responsibilities included staffing, staff training, oversight of equipment, relations with transfer station personnel, and supervision of the sampling procedures. Like the Sample Managers, the DSAM worked from about 9:30 p.m. until all samples had been acquired the following morning.

During the spring and summer sorting periods, when the Multi-Unit Study ("MUS") was implemented, MUS sampling took place from about 2:00 a.m. to 10:00 a.m. To provide some relief for the DSAM if the MUS samples were late in arriving, the LM sometimes took on the DSAM's duties in the morning.

Daily Activities

The DSAM's daily shift began with a meeting of all Sample Managers between 9:30 p.m. and 10:00 p.m. each evening to inform Sample Managers of any changes in schedule, distribute truck assignments, and make any other announcements. During the night, the DSAM traveled among the sampling sites, often providing help at sites where the largest number of samples were being acquired. The DSAM was also the primary contact with DSNY staff stationed at the Harlem River Yard and Hugo Neu transfer stations. All emergencies were relayed to the DSAM who had the responsibility of ensuring they were taken care of. When all samples had been acquired for the day, the DSAM's final responsibility was to file a status report with the Project Manager on that night's activities.

Other Responsibilities

Before each sorting period, the DSAM helped to select and recruit Sample Managers and worked with the Project Manager and Data Manager to set up the sampling schedule. After each sorting period, the DSAM provided a list of the temporary workers to be asked to return and made recommendations on changes in procedures, staffing, and equipment and supplies for the coming sorting period.

Sample Manager

The Sample Manager ("SM") was responsible for properly acquiring, recording and delivering samples of waste to the appropriate sorting site. Throughout the PWCS/WCS, four sampling sites were used: (1) Waste Management's Harlem River Yard transfer station; (2) Waste Management's Varick I transfer station; (3) Hugo Neu Long Island

City transfer station; and (4) Metropolitan Paper's Brooklyn transfer station. One or two SMs were assigned by the DSAM to each sampling site, depending on the number of samples to be acquired on a given night, the volume of traffic at each site, and the level of DSNY staff support at the site. Each SM worked with an assistant, a temporary worker assigned by the DSAM, who helped with all aspects of sampling except data recording.

Daily Activities

The SM's day began with a meeting with the DSAM between 9:30 p.m. and 10:00 p.m. each evening to learn about any changes in schedule or other announcements and get that night's truck assignments. The SM then drove to one of the sorting sites where the rental trucks were parked, met his/her assistant, loaded the truck with the scale, rakes, the requisite number of toters and other equipment, and drove to his/her assigned sampling site.

The SM and his/her assistant typically arrived at the transfer station/sampling site between 11:00 p.m. and 11:30 p.m. Upon arrival, the SM checked in with the Facility Manager and/or the DSNY staff assigned to that facility. The SM distributed copies of the truck number assignments for that day to the facility staff and DSNY staff. The Sampling Team was then assigned an area of the facility to stage the toters, scale and other equipment. After unloading the equipment and completing necessary paperwork, the SM waited for the first truck to arrive.

As each DSNY collection truck arrived, the truck number was checked by the DSNY staff and/or the SM or the facility staff to determine if the truck number corresponded to the truck number provided by DSNY for sample trucks. If a sample was to be acquired from that truck, the driver was notified and the truck sent to specific area in the facility where the driver tipped its load.

Once the sample truck's load had been tipped, the sample was acquired according to the sampling protocol described in Volume 2, Section 4. The toters with the acquired samples were then loaded on to the sampling team's rental truck. As the end of the shift approached, usually between 6:00 a.m. and 7:00 a.m., the SM would contact the DSNY staff or the DSAM to check on any missing sample trucks. Missing trucks were trucks that had broken down, had tipped their loads early, or tipped their loads at an incorrect location. In the case of a truck break-down, the DSAM worked closely with the DSNY staff to determine if the sampling team should wait for the truck to be repaired and sent on to the transfer station, or if the truck would not be coming. The sampling procedures included the provision of back-up samples to replace samples not acquired due to truck break-downs or other reasons.

At the end of the shift, when all samples had been acquired, the SM and assistant drove the samples back to the sorting sites. Samples of refuse were delivered to the North Shore MTS and samples of recycling were delivered to the Greenpoint MTS. Upon arrival at the MTS, the SM and his/her assistant unloaded all samples, stowed the equipment and parked the truck. The SM checked in with the DSAM to report any unusual circumstances, including samples not acquired, equipment or truck malfunctions, or other incidents.

Director of Sorting

The Director of Sorting ("DSORT") had the overall responsibility of the proper sorting of samples during each sorting period. These responsibilities included staffing, staff training, quality control, oversight of equipment, and supervision of the Field Supervisors and the Crew Chiefs. The DSORT, along with other personnel involved in sorting, began the day about 6:30 a.m. and typically finished in the late afternoon.

Daily Activities

The DSORT began the day meeting with the Field Supervisors to determine the number of samples to be sorted that day. The number of samples to be sorted was determined jointly by the Project Manager, Data Manager, the DSORT, and the Field Supervisor. Before the sorting period began, a provisional sorting schedule was drafted. However, during the course of the sorting period, this provisional schedule would be modified almost every day, due to unforeseen circumstances, such as illnesses, absences among the sorters, missed samples, as well as the efficiency of the sorting crews.

During the day, the DSORT would move between the two sorting sites, checking on the crews' productivity, assessing equipment needs, and assisting Field Supervisors and Crew Chiefs in their duties. The DSORT would recommend changes in sorting procedures or personnel, if he believed it would increase productivity without compromising the sorting protocol (Volume 2, Section 4).

As samples were sorted and weighed, the DSORT would make sure that empty toters were properly staged for the SMs. The DSORT worked closely with the Field Supervisors and Crew Chiefs throughout the day.

As noted above, back-up samples were acquired in case samples were lost through sampling or sorting errors. The final protocol for back-up samples called for at least two extra samples for each density/income stratum and two for street basket waste. This was a total of at least 18 samples. The management of back-up samples was one of the duties of the DSORT, as well as other supervisors.

At the end of the day, the DSORT would return to the Data Center with the Field Supervisors and Crew Chiefs to check the Sample Detail Forms before they were turned over to the Data Manager and her staff. Once the paperwork had been completed, the DSORT, in consultation with the Field Supervisors, Data Manager and Project Manager, confirmed the number of samples that would be sorted during the following day.

Other Responsibilities

Before each sorting period began, the DSORT would work with the Project Manager to identify the Field Supervisors and Crews Chiefs during that period. The DSORT would work with the Logistics Manager to address special equipment needs, such as the tents and heaters used during the winter sorting period, or the additional sorting tables needed for the Multi-Unit Study.

Field Supervisor

The Field Supervisor ("FS") had overall responsibility for operation of the sorting sites. Both the Greenpoint Marine Transfer Station and the North Shore Marine Transfer

Station were used as sorting sites. The FS supervised the sorting crews and all activities within his/her facility. The FS worked with the DSORT to check incoming samples of waste and determine the number of samples to be sorted during a given day. The FS was also responsible for ensuring a smooth flow of samples to the sort areas, thereby keeping the sorting crews productive throughout the day.

Daily Activities

The FS was responsible for ensuring that the Crew Chiefs ("CCs") had the labor necessary to complete the target samples and to communicate with the CCs to determine if any modifications or substitutions needed to be made with the sort crew. (Direct supervision of the sort crew was left to the Crew Chief.)

The FS was responsible for making sure that all aspects of selecting samples, transporting samples to the sort area, and removal of sorted material were handled as efficiently as possible. The FS was in continual communication with the Crew Chiefs to ensure the sorting crews had ample material to sort, as well as the necessary tools and supplies. The FS was ultimately responsible for adherence to the Health and Safety Plan, and the communication of the contents of the Plan to the Crew Chiefs and the sorting crews.
Along with the Director of Sorting, the FS was responsible for setting up the training program for professional staff and temporary workers. The FS was also responsible for seeing that roll-off containers for the disposal of sorted material were in place, and accessible for removal. The FS coordinated the removal of full roll-off containers with DSNY.

After the sorting began, the FS monitored the progress of the sorting teams and addressed obstacles that were impeding the sort process. Overcoming these obstacles might include arranging for the purchasing of additional supplies, requesting changes in sorting team personnel, changing times of operations, and managing health and safety issues that arose.

The FS also made periodic quality control checks to ensure accuracy and consistency among all sorting crews. These checks consisted of examining bins to see that only the proper materials were in each bin and that material was not being dropped on the floor. The FSs at the sorting sites worked with each other to ensure consistency between the two sites. For example, in cases where there was a question about a specific material or product, the two FSs and the DSORT would check with DSNY and then ensure that a consistent procedure was put in place at both sorting sites.

The FS assisted the CC with sub-sorts, the street basket illegal waste protocol (see below) and moisture sampling. Each Friday, the FS signed sorters' timesheets and handed out paychecks. The FS communicated regularly with the DSORT, the DSAM and Data Manager about missed samples and the need to sort back-up samples.

At the end of the day, the FS was responsible for seeing that the sorting site was swept clean and set up for the next day's sorting. The FS also checked the completed Sample Detail Forms to see that they were complete and legible, before they were turned over to the Data Manager.

Other Responsibilities

Before each sorting period, the FS worked with the DSORT and the Project Manager to select and recruit Crew Chiefs. The FS was also consulted on all issues pertaining to his/her sorting site, including the configuration of tables, staffing, and schedule. The FS also worked with DSNY on special activities such as tours of the sorting site, the project video and the stockpiling of durable bulk items for analysis. At the end of each sorting period, the FS and DSORT would identify outstanding temporary workers who would be asked to return the following sorting period.

Crew Chief

The Crew Chief ("CC") had the overall responsibility of managing his/her designated sort area and the actual sorting and weighing of waste samples. This included coordinating with the Field Supervisor (FS) to receive and track samples and managing the sort crew during sample loading, sorting, weighing, and recording of waste samples.

Daily Activities

The CC was responsible for ensuring that the sorting area was safe, efficient and supplied with the necessary equipment. This included setting up the sort table, material bins, and scale in a logical layout and having daily supplies of health and safety gear and miscellaneous sort equipment on hand.

The CC was responsible for all aspects of the direct supervision of the sorting team, including reinforcing safety training, sorter training, and communicating labor needs to the FS and DSORT. The CC was also responsible, along with the FS, for scheduling breaks and lunches, communicating the estimated schedule to the sorting team, motivating the sorting team, setting realistic goals for the team, and refining the sort team as needed to ensure the successful completion of the target samples.

The CC was directly responsible for ensuring that each sample was sorted efficiently and correctly, with a minimal amount of downtime. This entailed ensuring that material was correctly sorted into the proper bins, that the bins were properly weighed and the weights recorded, that the sorted material was disposed correctly in roll-off containers, and that the next sample was pre-weighed and prepared for sorting. The CC supervised all weighing of sorted material, including a final inspection of each bin prior to recording the weight. The CC continually inspected each bin during the sort to ensure the sorters were identifying and separating the material correctly.
The CC was responsible for data tracking and recording during the sorting process. This included coordinating with the FS to track incoming samples, tracking the weight of each sample to be sorted during the pre-weighing process, recording the container tare weights on the first and last day of the sorting period, recording all weights of sorted material bins for each sample, accurately and completely filling out the Sample Detail Forms for each sample and returning the forms to the FS at the end of the day.

The CC was directly responsible for the health and safety of the sort team. This included knowledge of the firm's Health and Safety Plan, oversight of all sorters to ensure proper and consistent use of safety equipment, training of the sort crew in proper waste handling
techniques, and awareness of the facility safety requirements and procedures to follow in case of an emergency.

Data Manager

In the field, the Data Manager had the responsibility of collecting, checking, and verifying all data developed by the sampling and sorting operations and entering the data into the project database. During the PWCS and the Fall Sorting Period of the WCS, the Data Manager and her team of analysts operated from their office in Orlando, Florida. During the winter sorting period, the Data Manager and one assistant operated from an on-site office in the hotel where the field personnel were housed. Temporary workers were used to input data. During the spring and summer sorting periods, the entire Data Management Team (i.e., Data Manager and five analysts) operated from the on-site office.

Daily Activities

The Data Manager supervised all activities of the Data Management Team from 9:00 a.m. to 6:00 p.m. six days per week.

Truck Number Protocol

Typically, the first responsibility of the day for the Data Manager was to receive, compile, and distribute truck numbers. Six mornings a week, DSNY faxed the numbers of trucks collecting residential refuse, street basket waste, and recycling from the routes selected for sampling on that day. The Data Management Team transferred these truck numbers to several forms. Copies of the truck numbers for that day were:

- Faxed to the DSNY staff;
- Faxed to facility staff at the transfer stations;
- Given to the DSAM who handed them to SMs at the evening meeting; and
- Retained by the Data Management Team for their records.

Occasionally, DSNY made changes in the truck numbers during the day. These changes were reported by telephone to the Data Manager who revised and redistributed the forms.

A separate procedure was used for communicating the numbers for trucks collecting waste for the MUS. Refuse and recycling for the MUS was collected in DSNY trucks specifically designated to pick up this waste from individual buildings. These special collections took place between 6:00 a.m. and 8:00 a.m. each morning. DSNY did not determine the truck numbers for these special collections until midnight of the day the collections were to take place. When the truck numbers were determined, the DSNY Collections Bureau reported the number by telephone to the BWPRR staff assisting at the Hugo Neu Transfer Station. The BWPRR staff then relayed the truck numbers to the DSAM, who in turn relayed it to the SMs responsible for acquiring MUS samples and to the Data Manager.

Other Responsibilities

The Data Management Team received and checked the Sample Management Forms and Sample Detail Forms for completeness and legibility before transferring the data from the forms to the project database. Running totals were continually checked against the Sample Management Plan for that season. The Data Management Team was constantly in touch with other members of the Project Team to report progress, check data, and confirm target samples.

The Data Manager also selected and monitored the acquisition of back-up samples. These were necessary to protect against the loss of samples from missed deliveries of samples or errors in sorting. She also selected random samples to be tested for moisture and particulates. In addition, photographs of illegal Street Basket Waste (see below) and sampling and sorting Operations Plans were stored electronically by the Data Management Team.

Field Training

The training of both professional staff and temporary workers took place at the beginning of each sorting period. Although almost all of the professional staff had prior experience in waste characterization studies, it was necessary to provide training to familiarize them with those aspects of the procedures which were unique to the PWCS/WCS.

Training Schedule

The training of Sample Managers took place before the first samples were taken. Training included an explanation of the sampling procedures the day before sampling began, as well as "on-the-job" training during the first few nights of sampling during each sorting period. The temporary workers assigned as assistants to the Sample Managers were also trained on the job under the direction of the Sample Managers and the Director of Sampling.

The training of Crew Chiefs took place during or before the first day of sorting during each sorting period. Temporary workers assigned as sorters began their training during the first day of sorting.

Trainers

The training of Sample Managers and their assistants was conducted by the Director of Sampling, the Logistics Manager, and the Project Manager. The training of Crew Chiefs and Sorters was conducted by the Project's Technical Advisor, the Director of Sorting and the Field Supervisors.

Field Training Content

The content of the training sessions included both health and safety training and procedural training. As the project progressed and new streams of material were introduced or new facets of the WCS were implemented, the training was modified.

Health and Safety

The first priority in the training of professional staff and temporary workers was an emphasis on health and safety. The R. W. Beck Health and Safety Plan was issued to all professional personnel and used as an outline for the safety training.
The health and safety training of SMs and their assistants included the following elements:

- Use of personal safety equipment, including hard hats, protective gloves, dust masks, Tyvek ${ }_{\circledR}$ suits, steel-toed boots, protective eyewear.
- Use of other safety equipment, including fire extinguishers (provided in each truck) and first aid kits.
- A discussion of driving safety in the rental trucks on New York City streets and highways.
- The operation of truck lift gates and emergency lights.
- Waste handling, with particular attention to the safe practices for moving waste from front-end loaders into toters and lifting heavy objects (e.g., bulk items and toters).
- Issues of fatigue and hydration.
- Safety practices of the facilities in which samples were being acquired, including the wearing of hard hats, safety vests, and steel-toed boots.
- Procedures to follow in case of illness, accidents, and other emergencies.

The health and safety training of Crew Chiefs included the following elements:

- Use of personal safety equipment, including hard hats, protective gloves, dust masks, Tyvek ${ }_{\circledR}$ suits, steel-toed boots, protective eyewear.
- Waste handling, including the proper handling of waste with hand rakes and lifting heavy objects (e.g., bulk items and toters).
- Issues of hydration and fatigue.
- Procedures to follow in case of illness, accidents, and other emergencies.

The health and safety training that took place at the beginning of each sorting period was reinforced through reminders during the period itself.

Sampling Training

In addition to the health and safety training, the training of SMs and their assistants consisted of the following elements:

- An explanation of the purpose and structure of the WCS, including the importance of acquiring samples.
- An introduction to the other members of the Project Team and their roles.
- An orientation, to familiarize the SMs with the location of the transfer stations where the samples would be acquired. To help SMs understand the most efficient routes to
get to the transfer stations, all SMs were given written directions and driven to each location.
- An explanation and demonstration of the sampling procedure (see below), including the care and operation of the scales.
- An explanation of selecting random samples from loads of refuse and recycling.
- An explanation of the Sample Management Form and the data tags attached to each toter.
- A discussion of the expectations for assistants and how to handle absences, illness and other personnel problems.
- "On the job" training during the first night or two of sampling. SMs who had not had previous WCS sampling experience were accompanied to the transfer station by the DSAM, the Project Manager, or other experienced staff member.

Sort Training

In addition to the health and safety training, the training of CCs and sorters consisted of the following elements.

- An explanation of the purpose and structure of the WCS, including the importance of sorting samples according to the appropriate protocols.
- An orientation to the sorting site and the sorting areas.
- An illustrated lecture on the material categories and the bins for each material.
- An explanation of the subsorting and count procedures.
- An explanation of the work flow:
- Pre-weighing of samples
- Placing the sample on the sort table
- Proper sorting
- Subsorting/counting
- Collecting fines
- Weighing out
- Disposal of residue
- A demonstration by the professional staff how a sample was to be sorted.
- "On the job" training in which each crew sorted a sample with close supervision by the Technical Advisor, the DSORT, and the FSs. By the end of the first day, most crews were familiar with the procedures and were increasing their productivity.

Cross-Training

Because the random selection of sample routes results in differences in the daily acquisition of samples, there was occasionally an imbalance in the number of samples to be sorted. For example, on a day when a large number of refuse samples were acquired,
the refuse sorting crews at North Shore MTS might be pressed to sort them in a timely manner without help. On these occasions, cross-training was conducted.

Two types of cross-training were provided. First, at each sorting site, sorting crews became adept at sorting specific types of samples. At the North Shore MTS, where refuse was sorted, certain crews specialized in sorting street basket waste which had a protocol which was slightly different from the protocol for residential refuse. At Greenpoint MTS, where recycling was sorted, certain crews focused on the sorting of MGP, other crews specialized in sorting Paper samples. Under the direction of the DSORT and the FS, these crews were often cross-trained to allow greater flexibility in setting daily schedules and taking care of production bottlenecks.
Second, on a few occasions when the number of refuse samples to be sorted was unusually large, a recycling sorting crew from the Greenpoint MTS was moved to North Shore MTS and cross-trained to sort refuse. The cross-training was done relatively quickly because all crews understood health and safety procedures and basic sorting procedures.

Field Procedures

Sampling Procedures

Refuse Sampling

The samples of residential refuse were acquired at one of two private transfers stations owned by Waste Management, Inc. ("WMI") and under a contract with DSNY to receive residential curbside refuse. The two transfer stations were WMI's Varick I transfer station and Harlem River Yard transfer station. DSNY diverted the trucks that had been selected for sampling to one of these two transfer stations. The drivers of the trucks, as well as the scale-house operators at the transfer stations, had been notified ahead of time that the truck was to be sampled.

As a selected truck arrived at the transfer station, the Sample Manager was notified. After the truck had tipped its load, a front-end loader ("FEL") from the transfer station took a randomly selected portion of the tipped load selected by the Sample Manager. The Sample Manager randomly chose a portion of the tipped load (e.g., front, back, left or right) before the FEL began to grab the sample. The protocol for selecting random samples from tipped loads is discussed in detail in Volume 2, Section 4.1 of the Report.

The FEL operator then lowered the FEL bucket and the Sample Manager and his/her assistant pulled a sample of the refuse from the FEL bucket into one or two 96-gallon toters.

In a test conducted on May 7, 2004, it was found that a single 96-gallon toter held approximately 150 pounds of refuse. Therefore, it is estimated that two toters of refuse should contain one 200 to 250 pound sample of waste. After the toters had been weighed, each toter was labeled with the date, sample number, a sample code, and the truck number. In addition, the Sample Manager completed a Sample Management Form which was turned in to the Data Management Center at the end of the shift. After the
refuse sample was acquired, the FEL operator managed the remainder of the tipped load as he normally would in the course of facility operations.

After the samples were weighed and labeled, they were loaded into a Project Team rental truck and transported to the North Shore Marine Transfer Station where they were unloaded and positioned for sorting.

Typically, some samples contained bulky items that did not fit into 96-gallon toters. When this occurred, the bulky items were manually set aside. The Sample Manager then weighed the item and recorded the weight and a description of the item on the Sample Management Form. This information was included when the remainder of the sample was sorted and weighed at the sorting site.

Recycling Sampling

The samples of residential recycling (Paper and MGP), were acquired at one of two processors under contract with the DSNY to receive residential curbside recycling. MGP samples were acquired at Hugo Neu's facility in Long Island City. The Paper samples were acquired at the Metropolitan Paper Facility in Brooklyn. The Project Team was assisted by DSNY staff who checked incoming trucks, directed traffic, and provided information on missing or late trucks.

DSNY arranged to divert the recycling collection trucks that had been selected for sampling to these two processors. The drivers of the trucks, as well as the scale-house operators at the transfer stations, received faxed lists of the collection truck numbers from the Data Management Team the morning before the samples arrived. The facility staff was given a duplicate list by the SM when he/she arrived at the facility each evening.
The procedure for acquiring samples was identical to the procedure used to acquire Refuse samples. However, the Project Team's experience in other projects indicated that 100 to 125 pound samples of recycling material required only one toter.

The samples of Paper and MGP were taken to the Greenpoint Marine Transfer Station where they were sorted. Many MGP samples contained bulky items that did not fit into 96 -gallon toters. When this occurred, the bulky items were manually set aside. The Sample Manager weighed the item and recorded the weight and a description of the item on the Sample Management Form. This information was included when the remainder of the sample was sorted and weighed at the sorting site.

Sorting Procedures

Residential Refuse Sorting

After the samples of refuse had been transported to the North Shore MTS, the Field Supervisor checked each of the samples to be certain that the information on the Sample Labels was clear and consistent. Often the FS would check with the Data Manager by cell phone to confirm information on the label. After the Samples had been checked in, the Field Supervisor determined each sorting crew's sample allotment for that day and lined up the samples next to the crew's sorting table.

The Crew Chief and crew then began sorting samples using the following procedure:

- The sample was weighed and the weight recorded, to check against the sample weight obtained during sampling.
- The sample was placed on the sorting table and the refuse was sorted into the appropriate material categories. Material was placed in the appropriately-labeled bins around the sorting table.
- When most of the samples had been sorted, one or two crew members began the required subsorts and counts of materials at a separate table.
- After all material had been sorted, the material falling through the $1 / 2$-inch screen on the sorting table, called "fines", was swept up and placed in a bin. If, in the opinion of the CC, the fines were identifiable as a specific material, they were placed in the appropriate bin. For example, if the CC determined that 50 percent of the fines were coffee grounds, then 50 percent of the fines would be placed in the "Food Waste" bin and the remaining fines were placed in the "Fines" bin.
- The sorting area, including the sorting table and the subsort table, was swept. Material that could be identified was placed in the appropriate bin. Unidentifiable sweepings were categorized as "Fines." For example, a newspaper on the floor would be placed in the "Newspaper" bin.
- Next, each bin of material was weighed and the weight of the material recorded by the CC. (Tare weights for the bins were determined before the beginning of the sorting period by taking the average weight of five bins.)
- After each material had been weighed, the sorted material was placed in a roll-off container for disposal.
- The empty bins were placed around the sorting table and the sorting of the next sample began.

Protocol for Illegal Materials in Street Basket Waste

The sorting procedure described above was also used for all Street Basket Waste. However, before the sorting of the Street Basket Waste began, a procedure to identify illegally disposed residential and commercial waste in the Street Basket sample took place. To determine the illegal use of street baskets for residential or commercial refuse disposal, the following protocol was used:

- Before sorting, each 200 to 250 pound street basket sample was placed on the sort table for inspection by the Crew Chief to identify suspected illegal residential or commercial waste.
- All closed opaque plastic bags the size of a shopping bag or larger were identified as potentially containing illegal material.
- The loose material found in clear plastic basket liners or opaque liners labeled with a Business Improvement District ("BID") logo were considered legal street basket waste.
- Any closed opaque plastic bags the size of a shopping bag or larger found within a BID bag were also identified as potentially containing illegal material.

Closed bags identified as potentially containing illegal material were opened.
■ If a bag contained any of the following materials, it was be classified as "residential":

- Addressed mail;
- Substantial quantities of home-use products, including: health and beauty aids, detergent bottles, family-sized drink containers, or other seemingly residential material; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggested home use.
- If a bag contained any of the following materials, it was classified as "commercial":
- Retail food preparation wastes (industrial-sized food/liquid containers, substantial quantities of identical packaging or unused products, cardboard boxes);
- Construction materials such as pieces of dry wall or other building materials; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggested office, retail, industrial, construction or food establishment waste.

Closed shopping bags not containing materials deemed residential or commercial, but suggesting street use (single use containers, newspapers, etc.) were considered legally disposed street basket waste.
For all bags identified as containing residential or commercial wastes, the following four procedures were followed:

- All such bags were individually photographed.
- The contents of each bag were recorded. The crew chief recorded this information on the Sample Detail Form.
- All such bags (regardless of size) were separated into two groups: residential bags, and commercial bags. The bag count was recorded on the Sample Detail Form.
- In each sample, bags identified as containing residential or commercial waste were weighed in two groups: residential bags, and commercial bags. The combined weights of the bags in each group (residential and commercial) were recorded on the Sample Detail Form.
In addition, each sample was examined for suspected instances of illegally disposed residential or commercial wastes not encased in closed bags as defined above - including instances of broken bags with spilling contents, as well as residential or commercial material loose in the street basket contents. These materials were photographed but not weighed and their presence noted on the Sample Detail Form.
After these procedures had been completed, all material was placed onto the sorting table and sorted according to the refuse sorting protocol.

All weights were recorded by the Crew Chief. In most cases, the tare weight of the containers was put into the scale so that only the net weight of the sorted material was recorded. When the weighing of all material in the sample had been completed, the sorted refuse and recycling was placed in an appropriate roll-off container and returned to the transfer station or processor.
The Crew Chief and crew than began sorting the next sample.

Multi-Unit Sorting

The procedure used for sorting waste for the Multi-Unit Study was similar to the procedure for sorting residential waste, with two exceptions. First, because the purpose of the Multi-Unit Study was to correlate building characteristics with recycling success, and not to characterize the building's waste, the list of material categories was modified. The same categories for MGP and Paper were used for the sorting of both residential and multi-unit samples. However, fewer non-recyclable categories were used in sorting multiunit samples to expedite sorting.

Second, a special protocol was used to identify multi-unit refuse from non-target buildings. The material categories used in sorting multi-unit refuse and recycling, and the protocol used to identify refuse from non-target buildings is presented in Volume 3 (Multi-Unit Study) of the Report.

Residential Recycling Sorting

The sorting of residential recycling took place at the Greenpoint MTS. The procedures used for sorting were identical to the procedures used for sorting residential refuse, with the following three exceptions:

- Samples of MGP and Paper, which were acquired separately, were sorted separately. Typically, MGP samples took longer to sort than Paper samples because MGP often included bulk items and MGP sorting involved subsorting and counting containers.
- Material from MGP samples that fell through the $1 / 2$-inch screen on the sorting table was categorized as "Mixed Cullet" because virtually all this material was broken glass. (In refuse sorting, this material was categorized as "Fines".) All material swept from the floor and the subsort tables was categorized as "Fines" unless, in the judgment of the CC , the material could be identified. In that case, it was placed in the appropriate bin and weighed.
- Sorted Paper and MGP was placed in roll-off containers and returned to the processors, rather than being disposed.

Moisture and Particulate Testing

Another field procedure was to collect material for moisture and particulate testing. During each sorting period, samples of refuse and recycling were randomly selected by the Data Management Team for moisture and particulate testing. The purpose of the test was to estimate how much of the weight of certain materials was made up of moisture and fugitive particulates that had migrated to the materials during compaction in the collection truck. For example, newspaper might have become soaked with moisture from food waste or small pieces of glass might adhere to clothing during compaction.

To determine the amount of moisture and particulates in the waste, 21 materials were targeted for testing. In each randomly-selected sample, 3 to 5 pounds of each target material was collected and double-bagged. These packets of materials were called Moisture Testing Units ("MTUs"). Usually, the work of collecting and bagging MTUs was done by the FS or LM with assistance from one or more sorters. Each sample might have had as many as 21 MTUs, although most samples did not include all of the targeted materials.

All MTUs were sent to a laboratory for testing and the results were reported to the Data Management Team for further analysis. A total of 641 MTUs were tested during the PWCS and 511 MTUs were tested during the four-season WCS. The full protocol for moisture and particulate testing is presented in Volume 2, Section 4.2.2.5 of the Report and the results of the testing are included in Volume 1, Section 7 of the Report.

Changes in Training and Procedures

During the 15 months between the first PWCS sorting period and the final WCS sorting period, numerous changes in training and field procedures took place as experience and circumstances dictated. Most of these changes were minor adjustments in field operations that had little or no impact on the overall outcome of the Study. However, five changes were particularly significant and these are discussed below.

- Allocated more time for set-up and training. During the PWCS, the professional staff arrived on-site on the evening before the first day of sorting and training took place that night. Early the next morning the sorting sites were set up and training began. Our experience during the PWCS led us to allocate a full day for set-up and training before the first day of sorting. Set-up activities included repairing or building sorting tables, placing labels on bins, taking tare weights of bins, and checking scales and other equipment. This additional time proved to be an excellent investment in terms of overall productivity.
- Moving the Data Management Team on-site. The Data Management Team operated from R.W. Beck's Orlando office during the PWCS. It was decided to move them onsite during the Fall of 2004 for the first WCS sorting period to provide more efficient exchange of information and greater flexibility. As the magnitude of the field operations increased, and with the implementation of the Multi-Unit Study, this change had great benefits.
- Change in the MGP Sampling Protocol. During the second PWCS sorting period when samples of MGP were being acquired, the Project Team became aware that the number and size of bulk items in some of the MGP samples had the potential to skew the results. Therefore, the sampling protocol was revised to minimize the potential "skewing" effect of bulk items. This change in protocol is discussed in detail in Volume 4, N of the Report. This change led to changes in training for Sample Managers.
- Modification to the Street Basket Sorting Protocol. At the beginning of the Fall Sorting Period, the protocol for sorting street basket waste was almost identical to the protocol for sorting residential refuse. However, it was quickly determined that modifications needed to be made to account for illegally disposed residential or
commercial waste in street baskets. The Project Team, in consultation with DSNY, developed a new component of the protocol which is described above. This change led to changes in the training and supervision of crews sorting street basket waste.
- Modification to the Multi-Unit Sorting Protocol. Before the beginning of the Spring Sorting Period, as the implementation of the Multi-Unit Study began, the protocol for sorting multi-unit refuse was established. However, quite early in the sorting period it became apparent that waste from non-target buildings was being found in the target building samples. To gain a better understanding of how much waste from non-target buildings was being collected, the multi-unit refuse sorting protocol was modified. This change led to additional staffing and training for the crews sorting multi-unit refuse. This change in protocol is discussed in more detail in Volume 3 of the Report.

Lessons Learned

The experience of the Project Team and DSNY during the PWCS and the WCS confirmed or altered ways in which these studies were conducted. As noted above, there were a number of changes in field operations during the PWCS and WCS. Some of these changes were necessary to accommodate the implementation of new facets of the Study and some were modifications in procedures suggested by the field staff based on their experience. These changes led to the development of new procedures, or the modification of procedures already in place. At the same time, certain activities that took place throughout the project proved to be extremely valuable. The most important lessons learned are described below.

1. Orientation visits to transfer stations

Before any field operation began, the Project Manager and Logistics Manager toured the four transfer stations that were to be used as sampling sites and the two Marine Transfer Stations that were to be used as sorting sites. This tour had several benefits. First, it introduced the Project Team to the Facility personnel with whom we would be working. Given the complexity of the sampling operation in particular, these personal introductions were very important. Second, the tour gave the Project Team a very clear idea of the physical limitations of each facility, allowing us to set realistic expectations about field operations. Third, at one transfer station the Project Team actually conducted an example of taking a sample to show the facility personnel what was involved. This gave the Project Team the confidence that the sampling protocol developed was reasonable. It is recommended that this type of orientation take place before the beginning of any major waste characterization study.

2. The PWCS

Although it had a distinctly different purpose and scope than the WCS and the Project Team's professional staff was very experienced in waste characterization studies, the PWCS provided an invaluable learning experience for our field personnel. From acquiring samples to collecting data to sorting material, the PWCS gave the Project Team excellent hands-on experience, useful knowledge of working and living in New York City, and helped to develop a strong working relationship with the DSNY staff. While it
may not be possible to arrange a small-scale study before the next major waste characterization project, it is recommended that a two- or three-day "scrimmage" be arranged before the official start of a major waste characterization study.

3. Changes in the Material Categories

The number of material categories used as the basis of the sorting protocol for both the PWCS and the WCS was larger than any previous waste characterization study with which the Project Team was familiar. Furthermore, during the WCS there were a number of changes in the material categories which called for changes in the sorting procedures. Some of these changes, such as the elimination of the sub-sorting of shoes, actually reduced the complexity of the sorting procedures. Other changes, such as the sub-sorting of single-serve and multi-serve bottles, increased the complexity of the sorting procedures. Not only did these changes affect the sorting operation, but it had repercussions in data management and reporting. More specifically, these changes led to inconsistencies in categories among seasons, making the reporting of results more complicated.

In addition, there were often items in the samples that appeared to fall outside or between the existing categories and these needed to be discussed and assigned. The recommendation as to how to assign these items was typically made by the Director of Sampling, the Field Supervisors, and the Project Team's Technical Advisor. The final decision was made by DSNY.

While changes in material categories in the middle of a study may be necessary to recognize new items appearing in the samples or to adjust for "lessons learned" during a previous sorting season, it is recommended that that changes in the material categories be kept to a minimum, to provide consistency in field operations and reporting.

4. Expanded set-up and training time of Field Staff

As noted above, virtually all of the Project Team's professional staff had previous experience with waste characterization work. Nevertheless, after the WCS fall sorting season, it was generally agreed among the field staff that more training at the beginning of each season was necessary for three reasons. First, given the magnitude of the project (the number of samples and the large number of materials, see above), it was felt that extra attention to the sampling, sorting and weighing procedures was required and this was best dealt with before the official sorting of samples began. Second, because sorting was taking place at two sites several miles apart, it was important to develop a consistent set of procedures. Third, the Field Supervisors and Crew Chiefs came from four different firms and staff changed from season to season. Fourth, in addition to training, extra time was needed to set up the sorting sites properly. This included repairing or building sorting tables, labeling bins, and checking equipment.
During the fall sorting period, set-up and training took place on the first day of the period. In the subsequent seasonal sorting period, field personnel arrived a full day before the sorting was to begin and training took place at that time. It is strongly recommended that adequate time for staff training be incorporated into each seasonal schedule.

5. Management of Back-Up Samples

During the WCS, the Project Team became more experienced in acquiring and managing back-up samples. Back-up samples are necessary because the WCS sampling plan calls for sorting a specific number of samples from each stream and each strata each season. There are a number of reasons why samples selected in the Sampling Plan may not be sorted, including DSNY trucks breaking down or tipping their loads early, errors acquiring samples (e.g., taking a sample from the wrong truck), or errors in sorting (e.g., accidentally disposing of material before it has been weighed). To replace samples lost because of these types of errors, it is important to plan to have back-up samples available.
A single back-up sample for each strata and stream requires a total of 25 samples (Refuse, MGP, and Paper for eight strata, plus street basket). Attention must be paid to the timing of the acquisition and disposal of the back-up samples. Acquiring and keeping the back-up samples too early may mean that the material that finally reaches the table might be three weeks old. Waiting too long to acquire a back-up sample might mean that the sample from that stratum is unavailable. For example, the last available refuse sample from the Medium Density/High Income strata might be lost because of a truck break-down. It is recommended that the management of back-up samples be an integral part of the Sampling Plan for each season.

6. Rotation of professional staff

The intensity of the sampling and sorting operations and the six-day per week schedule resulted in concerns about fatigue toward the end of the fall sorting period. Therefore, the Project Team arranged for one day off for professional staff members who requested it, usually during the middle week of the sorting period. This was a welcome break for the staff members and helped to keep efficiency high during the final days of the sorting period. It is recommended that staff working a six-day per week schedule for a threeweek (or more) sorting period be given the opportunity to have a day off.

7. Development of the Street Basket Waste Sorting Protocol during the fall sorting period

The Street Basket Waste Study, which began during the fall sorting period, called for two types of sorting procedures. First, the composition of the street basket waste needed to be determined. The procedures used for residential refuse were adopted for street basket waste, making the shift between the two streams relatively straight-forward. Second, a special protocol had to be developed to identify suspected illegal waste in the street basket samples. Unfortunately, the protocol could not be developed until samples of street basket waste were examined. The complete street basket protocol could not be set until part way through the sorting period. This meant that, during the fall sorting period, there were some street basket samples that were not sorted according to the final protocol. It is recommended that if streams of waste call for new protocols, that those protocols be developed before the sorting period begins. For example, it might have been possible to gather samples of street basket waste, examine them, and develop the protocol prior to the beginning of the sorting period.

8. Moving the Data Management Team on-site

During the PWCS and the fall sort, the Data Management Team worked in the Project Team's Orlando (FL) office. Data was sent via courier to Orlando where it was checked and entered into the project database. After the fall sorting period, it was decided to move the Data Manager to New York and an on-site office was set up in the hotel in which the Project Team was housed. For the winter sorting period, temporary workers were used for data entry. However, the training of the temporary workers was sometimes problematic and it was decided to bring the entire Data Management Team to New York for the subsequent sorting period.
In the spring and summer sorting periods, the Data Management Team worked in the onsite office, under the direction of the Data Manager. This arrangement proved to be the most efficient and effective method to collect, check and enter the sampling and sorting data. It is recommended that, for a study as large and complex as the WCS, the field data be managed on-site.

9. Improvements in Data Management and Documentation

Throughout the WCS, forms, labels, and reports were continually revised to make data entry clearer and more logical. Some revisions were necessary as material categories changed or new facets of the study, such as the Multi-Unit Study, were implemented. Other changes came about through suggestions by the DSNY or the professional staff. For example, initially toters with samples of waste were identified using black markers on duct tape. However, these labels sometimes came loose or the writing became smudged and difficult to read. Eventually, a system using plastic envelopes with paper labels inside were used. These labels were clearer and more resistant to damage or loss. Other improvements in data management and documentation included:

- Empty toters were tracked on a daily basis to ensure that toters would be available for sample acquisition each night.
- Printed stickers with sample information were produced to aid the process of completing Sample Detail Forms.
- Back-up samples were tracked and, once all samples from a strata had been sorted, the back-up samples were disposed.
- The DSAM provided a daily incident report.

It is recommended that the Project Team continually seek more efficient ways to gather and relay information.

10. Development of the Multi-Unit Sampling and Sorting Protocol

During the spring and summer sorting periods, the Multi-Unit Study ("MUS") began. The Sampling and Sorting protocols were established before the study began. Once the sorting period had begun, it became clear that the issue of waste from target buildings getting mixed with non-target building waste (i.e., non-target buildings were those not selected to be analyzed in the MUS) was more serious than had been anticipated. Therefore, the multi-unit sorting protocol was modified to account for this problem. The full MUS sorting protocol is presented in Volume 3 of the Report. It is recommended that
the Project Team and DSNY remain flexible to allow for changes in protocols as unforeseen circumstances dictate such changes.

11. Use of Tents, Lights, and Heaters during the Winter Sorting Period

In preparation for the winter sorting period, it was decided to use tents and heaters to protect sorting crews at both sorting sites. Even though the sorting operations took place in Marine Transfer Stations, these facilities are relatively open to the wind and the cold. The tents, lights and heaters were set up prior to the first day of sorting and remained up during the entire sorting period. Although the weather on most days was cold and windy enough to warrant the use of the tents and heaters, a few days were relatively warm. Nevertheless, it is recommend that, because of the uncertainty of winter weather in New York City, that tents, lights and heaters be used for winter sorting.

12. Providing Incentives to Temporary Workers

Although the temporary workers employed through ORI and Active Temporaries, Ltd. were largely hard-working and capable, we found that the six-day sorting schedule was taxing, especially because the workers got paid on Friday and, at first, many sorters did not return for work on Saturday. An incentive pay system designed to encourage sorters to work for the entire six-day week was implemented. While the system used was not optimal, it is recommended that in the future, a system of incentives be developed to encourage and reward diligent and high-quality work by temporary employees.

13. Refinement of Multi-Unit Building Surveying

In addition to the sampling and sorting of refuse and recycling, the MUS involved a series of building surveys designed to gather information about the physical and operational characteristics of the target buildings. The surveys were conducted by a group of Project Team members supported by the BWPRR staff and took place within a month after the buildings' waste had been sorted. In addition to the data on waste collected during the sorting period, some demographic and operation information was collected from City databases. All this information was potentially useful to surveyors going out into the field. However, initially all the information had not been collected and organized in time to give to surveyors. During the second round of MUS building surveys, after the summer sorting period, profiles of each building were developed and this helped consolidate the relevant information for the surveyors. It is recommended that, if this type of survey is conducted again, all information be collected, organized and distributed prior to the field work.

14. Communications Planning

The WCS made significant demands on all participants to communicate clearly and comprehensively about a range of issues, from the need for additional supplies to changes in the sampling and sorting protocols, to safety reminders, to the clarification of data forms. By the summer sorting period, the project was on a 21 -hour daily schedule in facilities in Brooklyn, Queens, and the Bronx. The Project Team developed a communications network to get information where it needed to be, however in retrospect,
a more formal approach would have been helpful. It is recommended that a formal communications plan become part of a large-scale WCS in the future.

15. Logistics

As the WCS progressed there were a number of small, but important changes that improved the work of the professional staff and temporary workers. These included:

- The use of the E-Z Pass for rental vehicles that regularly used bridges and/or tunnels.
- The 96-gallon toters worked very well for collecting and transporting waste samples. They were durable and easy to handle. Most lasted the entire 16-months of the PWCS and WCS. It is recommended that stackable toters be used.
- All directions obtained through MapQuest.com had to be tested in the field and were often found to be inaccurate.
- Clipboards with compartments were invaluable to Sample Managers, especially those who had to record data outside in inclement weather.
- The use of colored 4" x 6 " placards in plastic sleeves to record sample information on each toter increased the efficiency of the sampling operation and improved data management.
- Cell phones were essential for all field personnel.
- The use of an electric power washer was essential in cleaning toters and sorting bins at the end of each season of sorting.

Most of these suggestions were generated by field personnel and it is recommended that all members of the field team be encouraged to suggest ideas to improve the efficiency and quality of the field operations.
[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 4

Appendix B: WCS Structure

Appendix B

WCS Structure

Study Phase/ Season	Phase Abbreviation	Date Started	Date Ended	Residential Waste	Residential Waste By Housing Density and Income Strata	Residential Waste by Borough	Street Basket Waste	Multi-Unit Apartment Building Study (MUS) Concurrent?
Preliminary Waste Characterization Study	PWCS	May 15, 2004	June 12, 2004	Yes	No	Yes	No	No
Waste Characterization Study	WCS							
Fall 2004		October 18, 2004	November 6, 2004	Yes	Yes	No	Yes	No
Winter 2005		March 8, 2005	March 29, 2005	Yes	Yes	No	Yes	No
Spring 2005		May 9, 2005	May 27, 2005	Yes	Yes	No	Yes	Yes
Summer 2005		August 1, 2005	August 27, 2005	Yes	Yes	No	Yes	Yes
Annual		-	-	Yes	Yes	Yes	Yes	No

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix C: Operations Plans

This Appendix contains the actual Operations Plans submitted prior to each season of the PWCS and WCS. They are historical documents and have not been updated based on subsequent information received.
[This page intentionally left blank.]

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix C1: Operations Plan PWCS 2004

DEPARTMENT OF SANITATION OF NEW YORK CITY PRELIMINARY WASTE CHARACTERIZATION STUDY

PWCS Operations Plan

Introduction

The Department of Sanitation of New York City ("DSNY") has asked the R. W. Beck Project Team ("R. W. Beck") to develop an estimate of the composition of New York City's (the "City") refuse and recyclables. By "composition", we mean the percentage, by weight, of paper, plastic, metals, glass, yard waste, and other materials in the City's waste. R.W. Beck proposes to develop this estimate of composition by sorting samples of the City's refuse and recyclables.
The first part of this estimate is a Preliminary Waste Characterization Study ("PWCS") which is designed to provide a "snapshot" of the residential curbside refuse and recyclables. The plan presented below describes how the PWCS will be developed and carried out.

Sampling Plan

The first step in the PWCS is to develop a sampling plan which will be the basis for an accurate estimate of the City's refuse and recyclables composition. The accuracy of this estimate (i.e., how close the composition from the samples matches the composition of the entire City) will depend on a number of factors, including how carefully the Study is done, the size of the samples being sorted, the number of samples that are sorted, and the method for selecting the samples.

Refuse Sampling

The Refuse Sampling Plan ("RSP") is divided into four parts.

Sample Weight

The weight of each sample of refuse will be between 200 pounds and 250 pounds, based on current industry practice and studies by the USEPA and academic studies (e.g., Klee).

Sample Number

In a waste characterization study, the number of samples that are sorted affects the accuracy of the estimate. For example, if only one 200-pound sample of the City's refuse were sorted, it is very unlikely that the estimate resulting from sorting that single sample would match the composition of the City's entire curbside refuse. On the other hand, if hundreds of thousands of 200 -pound samples were sorted - enough samples so that every ounce of the City refuse and recyclables were sorted - the resulting estimate would be very accurate indeed. In fact, it would be perfectly accurate. So, how many samples should be sorted?

Preliminary Waste Characterization Study
July 22, 2004
Page 2

Before we answer the question about the number of samples, we should understand the nature of the material that will be sorted. If the material being sorted (i.e., the refuse) were consistently and homogeneously discarded by households, it would be relatively easy to arrive at an estimate. It would take very few samples to develop an estimate if there were only two materials in the refuse stream and they were always found in the same proportion in every sample. Of course this is not the case. Refuse, and to a lesser degree, recyclables are extremely variable. The percentage of each type of waste material can vary considerably among samples. Even from the same household, the type of waste can vary depending on when the sample is collected. For example, during the autumn, one would expect to find large amounts of leaves, but in the winter there will be few leaves or none. On the other hand, food waste will be found throughout the year. Because of the potential for variability between samples, a different number of samples may be required to obtain an accurate estimate for different types of waste. Continuing the example, since food waste is likely to be found more consistently than leaves, fewer samples would be required to obtain an accurate estimate of the food waste percentage in the refuse stream.

Typically, an estimate of the composition of waste is presented as three numbers: (1) the Sample Mean; (2) the Confidence Level; and (2) the Confidence Interval. The Sample Mean is the average percentage of a given material found in the samples sorted. For example, after sorting thirty samples of refuse, we will have a list of thirty percentages of paper waste. If the average of the thirty percentages of paper is 35 percent, then the Sample Mean of paper is 35 percent.
The Confidence Level and the Confidence Interval are intertwined concepts. Together, they allow statements to be made about the entire population from the sample taken. The Sample Mean is, after all, simply the average value of the samples; it is unlikely that the percentage of a given type of waste for the entire population matches the Sample Mean exactly. The Confidence Level and the Confidence Interval provide a way to convey how much the Sample Mean tell us about the entire population.
The Confidence Level indicates the degree of certainty that the Confidence Interval contains the population's mean value. The higher the Confidence Level, the greater our certainty that the mean of the entire population is contained within the Confidence Interval. For example, if the Confidence Interval around the Sample Mean - 33 percent to 37 percent for paper - is based on a Confidence Level of 90 percent, we can be 90 percent confident that the population's percentage of paper waste is contained in that interval. The purpose of the Confidence Level is to provide an indication of the accuracy of the sampling results. In waste characterization studies, a 90 percent Confidence Level is a widely accepted standard.
The third number used in describing the composition of the refuse is the Confidence Interval. This is an expression of the uncertainty regarding the population Mean. For example, our Sample Mean of 35 percent for paper waste may have a Confidence Interval of ± 7 percent, at a 90 percent Confidence Level. That is, based on our number of samples and results obtained, we would expect that 90 percent of the time, the amount of paper waste in the refuse of the entire population would be between 28 percent and 42 percent. Or, put another way, if we could

Preliminary Waste Characterization Study
July 22, 2004
Page 3
actually go out and determine the exact percentage of paper waste in our population, we are 90 percent certain that the value would be between 28 percent and 42 percent. If we wanted a more accurate estimate, we would have to sort more samples.

In recommending the number of samples of refuse and recyclables to sort, R. W. Beck considered not only the level of accuracy of the estimate, but the cost of providing this estimate and the variability of materials being sorted. As noted above, the variability of some material in the refuse is greater than other materials. Yard Waste is much more variable than food waste. Therefore, for a given number of samples, the estimate of some materials will be more accurate than the estimate for others. Sorting a few hundred samples of refuse may provide a Confidence Interval of ± 8 percent for paper, but a ± 30 percent for yard waste. To achieve a ± 8 percent for yard waste would require significantly more samples and be prohibitively expensive.
In practical terms, "variability" simply means the variation we are likely to find between samples. If we sort through 10 samples and each sample has between 28 percent to 32 percent of a given waste type, we can be pretty certain that the percentage of this waste type for the population as a whole lies in this general range. But if we sort through these same 10 samples and find results of 1 percent, 80 percent, 20 percent, 65 percent, and so forth, you can see that we are much less certain about the percentage of this waste type in the entire population.

There is a point of diminishing returns for waste sampling. After that point, the cost of achieving small increases in accuracy is high. Below that point, significant increases in accuracy can be achieved with relatively little cost.
R. W. Beck is recommending that at least 200 samples of refuse be sorted in the PWCS. The tables in Attachment 1 show the Confidence Level and Confidence Intervals from seven recent studies for seven categories of materials. It should be emphasized that the seven studies were not identical. There were differences among the seven waste streams and the goals of each of the clients. However, the general pattern is clear: the more samples that were sorted, the greater the accuracy of the estimate.
Because recyclables are a smaller, more homogeneous stream of materials, R. W. Beck is recommending that at least 100 samples of recyclable paper and 100 samples of recyclable metal, glass, and plastic ("MGP") be sorted. The type of information shown in Table 1 for refuse is not available for recyclables because very few of R. W. Beck's clients have requested a recyclables sort. Our recommendation is based on our experience in sorting refuse and our knowledge of the difference between the refuse and recyclables.

Sample Selection

In selecting samples from the City's curbside refuse for the PWCS, R. W. Beck and the DSNY agreed to use two criteria. First, the samples selected from each of the City's five boroughs would reflect the contribution of that borough to the City's waste stream as a whole. Second, the DSNY and R. W. Beck agreed that refuse collected early in the week might be both quantitatively and qualitatively different from refuse collected late in the week. The first day of

Preliminary Waste Characterization Study
July 22, 2004
Page 4
collection in the week will include refuse generated during the weekend and any weekdays before the collection day. To test this, it was decided to make a distinction between early week ("EW") samples and late week ("LW") samples.

That is, for sections of the City that receive 3-day a week collection (i.e., Monday-WednesdayFriday or Tuesday-Thursday-Saturday), the EW samples would be taken from the Monday and Tuesday routes and the LW samples would be taken from the Wednesday, Thursday, Friday, and Saturday routes. For sections of the City that receive 2-day a week collection (i.e., MondayWednesday, Tuesday-Thursday, or Wednesday-Saturday), the EW samples would be taken from the Monday,Tuesday and Wednesday routes and the LW samples would be taken from the Thursday, Friday, and Saturday routes.

To estimate the number of samples from each borough, the average amount of refuse collected from each borough each week in the City between July, 2004 and February, 2004 was used. These averages are shown in Table 1.

Table 1
Refuse Collected - July 2003 to February 2004

	Avg. Tons Collected (1)	\% of Avg. Refuse Collected	Number of Samples
Bronx	9,032	16%	31
Brooklyn	18,100	31%	63
Manhattan	10,431	18%	37
Queens	16,021	28%	54
Staten Island	4,328	7%	15
Total	57,912	100%	200
(1) Source: DSNY			

The Sampling Plan calls for the total number of samples from each borough to be those shown in Table 1.

To determine how many EW sample and how many LW samples would be acquired for the PSCS involved a three-step process. First, the average weekly tonnages collected for each day of the week in each borough was obtained from by the DSNY. Second, the percentage of waste from the first days of the week were determined.

For example, Manhattan has three-day a week refuse collection. The Manhattan routes are either Monday-Wednesday-Friday or Tuesday-Thursday-Saturday. Therefore, the first collection days in Manhattan are Monday and Tuesday. Based on data provided by the DSNY, it is estimated that 42 percent of Manhattan's refuse is collected on Monday and Tuesday (EW) and 58 percent is collected on the other four days of the week (LW).

Preliminary Waste Characterization Study
July 22, 2004
Page 5

On the other hand, Staten Island has two-day a week refuse collection and the first collection days on Staten Island are Monday, Tuesday, and Wednesday. DSNY data shows that EW collection represents 58 percent of the average collected per week and the LW collection represents 42 percent. Because both the Bronx and Brooklyn have a combination of 2-day a week and 3-day a week collection, the estimates had to be adjusted accordingly. The EW and LW percentages were then applied to the total number of samples from each borough, as shown in Table 1, to determine the number of EW and LW samples to be acquired for the PWCS. Table 2 shows the EW and LW percentages for each borough and the resulting number of EW and LW samples.

Table 2
Early Week and Late Week Percentages ${ }^{(1)}$

	EW Percent	LW Percent	EW Samples	LW Samples
Bronx	43%	55%	13	18
Brooklyn	41%	59%	26	37
Manhattan	42%	58%	16	21
Queens	57%	43%	31	23
Staten Island	58%	42%	9	6
Total			95	105

(1) Based on the average weekly tonnages from March 15 to April 11, 2004. Source: DSNY

To be sure that every pound of waste in the City has an equal opportunity to be sampled, R. W. Beck determined that only one sample per collection vehicle will be used.

To select the EW and LW samples from each borough, R. W. Beck obtained a list of the total number of routes on each day in each borough from the DSNY. From each list of routes, the appropriate number of samples was randomly selected. For example, to obtain the 21 LW routes for Manhattan, 21 routes were randomly selected from the 110 refuse collection routes on Friday in Manhattan. An identical process was used to determine the selected routes/samples for each borough.

Sample Collection

The samples will be acquired at one of two private transfers stations owned by Waste Management, Inc. ("WMI") and under contract with the DSNY to receive residential curbside refuse. The two transfer stations are WMI's Varick Road transfer station and Harlem River Yard transfer station. The DSNY has agreed to divert the trucks that have been selected for sampling to one of these two transfer stations. The drivers of these trucks as well as the scalehouse operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

Preliminary Waste Characterization Study
July 22, 2004
Page 6

When a selected truck arrives at the transfer station, an R. W. Beck Sample Manager will be notified. When the truck has tipped its load a front-end loader ("FEL") from the transfer station will take a randomly selected portion of the tipped load dump into two or three 96 -gallon toters. The random selection of the portion of the tipped load to be sampled will be made by the Sample Manager before the FEL begins to grab the sample.

The FEL will dump the selected portion of the load into toters that have been positioned by the Sample Manager and Assistant in an area designated by WMI. Once the refuse has been dumped into the toters, the FEL will manage the remainder of the tipped load as it normally would.

The Sample Manager and assistant will then weigh each toter to be sure that the sample of refuse weighs 200 pounds to 250 pounds. In a test conducted on May 7, 2004, it was found that a single 96 -gallon toter held approximately 150 pounds of refuse. Therefore, we estimate that, typically, two toters of refuse should contain one sample of waste. After the toters have been weighed, each toter will be marked with the date, Sample number, a Sample Code, the truck number. In addition, each sample will have a Sample Management Form which will be taped to the toters.

After the samples are weighed and labeled, they will be loaded on an R. W. Beck truck and transported to the Greenpoint Marine Transfer Station where they will be unloaded and positioned for sorting.

It is likely that some samples will contain bulky items that do not fit into 96-gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

Recyclables Sampling

It is anticipated that the sampling of recyclables will be similar to the sampling of refuse, but this protocol has not been fully developed at this time. A Recyclable Sampling Plan will be completed and submitted to the DSNY before any sorting of recyclables takes place.

Material Categories

Refuse Categories

The list of material categories to be used in the refuse sorting will be available on the first day of sorting.

Preliminary Waste Characterization Study
July 22, 2004
Page 7

Recyclables Categories

The list of material categories to be used in the recyclable sorting has not been completed at this time. It will be included with the Recyclables Sampling Plan before any sorting of recyclables takes place.

Field Procedures

Health and Safety Plan

R. W. Beck's current Health and Safety Plan ("HASP") is attached to this document as Attachment 2.

Sorting Procedures

Once the samples of refuse have been transported by the Sample Manager from private transfer stations to the Sorting Site (the Greenpoint Marine Transfer Station), the Site Supervisor will check in each of the samples, being sure that the Sample Management Forms and Sample labels are consistent.

After the Samples have been checked in, each Crew Chief and crew will begin sorting samples. The refuse will be sorted into 87 material categories. When all material has been sorted, the material falling through the $1 / 2$ " screen on the sorting table, called "fines", will be swept up and included as one of the material categories. All sorted materials will then be weighed. All weights will be recorded by the R. W. Beck Crew Chief. The tare weight of the containers will be put into the scale so that only the net weight of the sorted material is recorded. When the weighing of all material in the sample has been completed, the sorted refuse will be placed in a roll-off container and disposed.

The Crew Chief and crew will then begin sorting the next sample. Each crew is expected to sort and weigh an average of 10 samples per day. This average is based on our experience in previous waste characterization studies.

Staffing

The professional staff for the Refuse Sorting of the PWCS will include:
■ Tom Jones - Project Manager: Mr. Jones has been with R. W. Beck for the past 16 years and is currently a Senior Director of the firm. His work has included waste characterization studies, solid waste facility financings, and planning/implementation work.
■ Tanya Tarnecki - Site Supervisor: Ms. Tarnecki manages several waste management projects for Cascadia Consulting, including data collection and reporting waste characterization projects in King County, Washington, San Bernadino and Orange County, California.

■ Brian Scott, E.I.T. - Sample Manager: Mr. Scott, a Project Engineer, applies his engineering knowledge to both mechanical and civil engineering-based projects, with

Preliminary Waste Characterization Study
July 22, 2004
Page 8
emphasis on solid waste projects. Mr. Scott has conducted environmental compliance assessments and technical reviews and received waste characterization training in R. W. Beck Georgia Waste Characterization Study.

■ John Buri - Sample Manager: Mr. Buri's areas of specialty include rural economic and policy initiatives, human resource management and government information systems. He received waste characterization training in R. W. Beck Georgia Waste Characterization Study.
■ Sean Perera, E.I.T. - Crew Chief: Mr. Perera, a Civil/Environmental Engineer, joined R. W. Beck's National Water/Waste Practice in 2000 as a Consulting Engineer. His primary responsibilities include solid waste system design, solid waste management planning, management and consulting services for procurement and construction activities. He has participated in several waste characterization studies as both a Crew Chief and Field Supervisor.

- Rory Tipton, E.I.T.- Crew Chief: Mr. Tipton has more than two years of civil engineering experience working as a project engineer on solid waste projects. He has been responsible for engineering design, documentation, cost estimating, and production coordination for projects of varying size and complexity. He received waste characterization training in R. W. Beck Georgia Waste Characterization Study.

■ John Culbertson - Technical Advisor: Mr. Culbertson is a Project Manager in the Environmental Services Group with 11 years of experience in environmental and information management consulting. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and solid waste system financial and strategic analysis.

■ Deborah McDonough, E.I.T. - Data Manager: Ms. McDonough, an Engineer with R. W. Beck since 2001, is responsible for conducting transmission analyses and specializes in designing software programs, data management applications, and interactive graphical tools for use in projects associated with solid waste composition studies, locational marginal pricing, transmission power flow studies, transmission constraint analysis, and rate analyses. She is also Project Manager of the Georgia State Waste Characterization Study.

The professional staff for the Recyclables Sorting of the PWCS will include:

- Tom Jones - Project Manager: (see above)
- Sean Perera - Site Supervisor (see above)

■ Timothy Buwalda - Sample Manager: Mr. Buwalda is a Senior Engineer with more than 13 years of experience, specializing in waste reduction and materials recovery. His background includes comprehensive solid waste management and recycling experience in both municipal and private settings.

- Michael Giampetro, P.E. - Crew Chief: Mr. Giampetro, a Senior Engineer, has been responsible for on-site assignments for both domestic and international projects. His
experience includes workflow planning, material planning, finite element analysis ("FEA"), and combustion turbine performance testing. He received waste characterization training in R. W. Beck Georgia Waste Characterization Study.

■ Whitney Rusert - Crew Chief: Ms. Rusert, an Analyst with R. W. Beck, has had recent training on crew chiefing techniques at the Georgia Waste Characterization Study. She has past work experience in specialty plastics. Ms. Rusert is also assisting in several solid waste projects which are currently underway.
■ Jon Hoyle - Crew Chief: Mr. Hoyle, an Analyst/Project Manager, has an acute knowledge of accounting, finance, and operations as they pertain to the utility industry. Mr. Hoyle also has a background in information technology and is proficient in data management and manipulation, computer modeling, and information systems management.

- John Culbertson - Technical Advisor: (see above)

■ Deborah McDonough - Data Manager: (see above)

Staff Training

The first day of each sorting period will be devoted to staff training. The training for the Refuse Sort will be conducted by John Culbertson, the Technical Advisor and Charlie Scott of Cascadia Consulting. The individuals in charge of training for the recyclables sort have not yet been determined.

Training will include an introduction to the Study, a discussion of health and safety policies and practices, and an explanation of sorting and weighing procedures. The first couple of samples to be sorted will be used as means of teaching material categories, proper sorting technique, and safe practices.

Equipment

The safety equipment for each sorter is described in the HASP. Other equipment being used include:

■ Sample acquisition: 96-gallon toters, a battery-operated H\&V scale, brooms, shovels, rakes, and trucks with lift gates;
■ Sample sorting: A sorting table, bins for sorted materials, a battery-operated $\mathrm{H} \& \mathrm{~V}$ scale, hand rakes and small brooms;

- Post-Sort Disposal and Recycling;
- Post-Sort Disposal of Refuse; and
- The DSNY has agreed to provide roll-off containers for disposing of the sorted refuse and to remove the containers when they are full.

Preliminary Waste Characterization Study
July 22, 2004
Page 10

Post-Sort Recycling

The DSNY has agreed to provide roll-off containers for disposing of the sorted recyclables and to remove the containers when they are full.

Data Recording and QA/QC

Three types of data developed during the PWCS. The first type will be the Sample Management Form. As each sample is acquired, as described in the Sampling Plan above, information on the borough of origin, route, and truck number, will be recorded on a Sample Management Form filled out by the Sample Manager. The Sample Management Form will include the following information:

- The date on which the sample was acquired;
- The name of the transfer station from which the sample was acquired;
- The name of the Sample Manager and assistant;
- The Sample Number, which is the number of the sample acquired on that day;
- The count of the toters (i.e., 1 of 3);
- The Sample Code, which shows the borough , district, section and route of the truck from which the sample was taken. For example, Manhattan 1, Sec. 12, Rt. 3 indicates that the truck route from which this sample was taken was in Manhattan District 1, Section 1, Route 3;
- The truck number, which will be provided by DSNY when they assign a truck to the selected route;
- The weight of each toter in the sample; and
- The weight and description of any bulky waste items that are part of the sample. These will not be transported to the Sorting Site.

A copy of the Sample Management Form will be affixed to the sample when it is transported from the private transfer station to the Sorting Site. It will remain with the documentation for that sample.

The second type of data will be the material weight data recorded by the Crew Chief when the sorting of each sample is completed. This form, called the Sample Sort Form, will include the net weight of each category of waste that has been sorted and, in the case of some materials, a count of the items in the category (e.g., shoes).

When the sample has been sorted the Crew Chief and the Site Supervisor will review the forms for completeness and accuracy and sign them. At the end of the day, the Crew Chiefs, Site Supervisor, and Project Manager will review all the forms again and note any unusual samples or circumstances that may have affected the data.

Preliminary Waste Characterization Study
July 22, 2004
Page 11

The forms will then be faxed to the Data Manager who will have the data entered into an Access database. The Data Manager will check the data for completeness and accuracy. Once this procedure has been completed, the Data Manager will confer with the Project Manager and if they are satisfied that the data for that day of sampling is complete, it will be posted on the project website where the DSNY Project Manager can view the data.
The third type of data will be the results of the moisture and contamination testing that will be conducted by the Woods End Laboratory ("Woods End"). This data will be sent directly from Woods End to the Project Manager and Data Manager. The Data Manager will enter it into the database as it is received. The QA/QC procedure for this data is still being worked out with Woods End. When the procedure is completely defined, a copy of the procedure will be provided to the DSNY Project Manager.
This procedure for recording and checking the data will be reviewed during the PWCS and, if R. W. Beck believes that changes will make the procedures more efficient, without compromising completeness and accuracy, or more accurate and complete, we will recommend these changes to the DSNY.

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix C2: Operations Plan WCS Fall 2004

DEPARTMENT OF SANITATION OF NEW YORK CITY WASTE CHARACTERIZATION STUDY PHASE I

Phase I Operations Plan

I. Introduction

The following Operations Plan is submitted to the Department of Sanitation of New York City ("DSNY") for the Phase I Waste Characterization Study ("Phase I Study") under Contract \#82702BR00015. The Phase I Study includes three components:

A. Residential Study

The purpose of the Residential Study is to characterize New York City's (the "City's") residential refuse and recycling materials by income and housing density strata, accounting for seasonal variation over a twelve-month period. The Study will involve taking samples of residential refuse and recycling materials, sorting and weighing them to develop an estimate of composition of these materials. The Residential Study will also develop an estimate of generation (pounds/household/strata). The Sampling Plan, Material Categories, Field Procedures, and Data Management for the Residential Study are discussed below.

B. Street Basket Study

The purpose of the Street Basket Study is to characterize the City's street basket refuse based on dedicated street basket collection routes. The Street Basket Study will involve taking samples of street basket refuse, sorting and weighing them to develop an estimate of composition of these materials. The Street Basket Study will also develop an estimate of generation (pounds/street basket) for street baskets on dedicated routes. The Sampling Plan for the Street Basket Study is discussed below. The Material Categories, Field Procedures, and Data Management for the Street Basket Study will be similar to those for the Residential Study.

C. Multi-Unit Apartment Study

The purpose of the Multi-Unit Apartment Study is to identify the physical and operational characteristics of multi-unit apartment buildings that are correlated to successful recycling. The Multi-Unit Apartment Study will involve selecting 125 multi-unit apartment buildings at random and gathering information on key physical and operational characteristics. We will also develop a definition of successful recycling, including the recycling and capture rates and levels of contamination. During the winter, spring and summer sorting periods, samples of refuse and recycling materials from the 125 buildings will be sorted and weighed to establish the level of successful recycling for each building. Finally, we will develop correlations between building characteristics and the recycling success rate. The protocol for the Multi-Unit Apartment Building Study is currently being developed and will be submitted to the DSNY before any sorting begins. We anticipate that the Material Categories, Field Procedures, and Data

Management for the Multi-Unit Apartment Study will be similar to those for the Residential and Street Basket Studies.

The Phase I Study will be conducted by the R. W. Beck Project Team ("R. W. Beck") working with the DSNY. The plan presented below describes how the Phase I Study will be developed and carried out.

II. Sampling Plans

Each of the three components of the Phase I Study will involve characterizing refuse and recycling materials. This characterization will be accomplished by sorting samples of refuse and recyclables. The first step in this process is the selection of samples. A sampling plan, which describes the steps taken to obtain a sample for each of the three components, is presented below.

A. Residential Sampling Plan

The residential sampling plan involves designing a process for selecting samples of residential curbside refuse and recycling materials (i.e., paper and metal, glass and plastic ("MGP")). The process includes the following six steps:

1. Determining the income/density strata;
2. Determining the sample size;
3. Determining the sample weight;
4. Designing the sample selection process;
5. Developing the sample collection process; and
6. Developing refuse and recycling generation estimates.

Because the purpose of the Residential Study was to characterize the residential waste by income and density strata, the first step in the sampling plan was to determine and define these strata and identify them within the City.

i. Income/Density Strata

An income/housing density matrix was developed using U.S. Census data for the year 2000 for each of the 2,217 census tracts in New York City. Three income levels, based on median household income, and three housing density levels were used to create a nine-box matrix.

The income levels used were defined as:
■ Low Income $=$ Median household income below $\$ 30,763.00$;

- Medium Income $=$ Median household income between $\$ 30,763$ and $\$ 46,193$; and
- \quad High Income $=$ Median household income above $\$ 46,193$.

The housing density criteria were based on the number of structures within each census tract. The three housing density levels were defined as:

■ Low Density $=$ Census tracts in which 67 percent of the structures contain two or fewer units;

- Medium Density = All census tracts that are not in the High or Low categories; and

■ High Density $=$ Census tracts in which 67 percent of the structures contain ten or more units.

The resulting income/density matrix separated the City's census tracts by income and density, as shown in Table 1.

Table 1
Number of Census Tracts in Each Income/Density Stratum

	Low Income		Medium Income		High Income

Because so few census tracts are in the Low/Low stratum, it was decided to eliminate this stratum from the study and focus the study on the remaining eight strata.

Next, a map of the City was developed in which each of the nine strata was color-coded.
To identify the universe of existing refuse and recycling collection routes the DSNY provide a list of existing routes that fell entirely within contiguous census tracts of the same strata. The number of existing routes for each stratum is shown in Table 3 below.

The next step was to determine the number of samples that would be sorted.

ii. Sample Size

In a waste characterization study, the number of samples that are sorted affects the accuracy of the estimate. For example, if only one 200-pound sample of the City's refuse were sorted, it is very unlikely that the estimate resulting from sorting that single sample would match the composition of the City's entire curbside refuse. On the other hand, if hundreds of thousands of 200 pound samples were sorted - enough samples so that every ounce of the City refuse were sorted - the resulting estimate would be very accurate indeed. In fact, it would be perfectly accurate. So, how many samples should be sorted?

Before we answer the question about the number of samples, we should understand the nature of the materials that will be sorted. If the materials being sorted (i.e., the refuse and recycling materials) were consistently and homogeneously discarded by households, it would be relatively easy to arrive at an estimate. It would take very few samples to develop an estimate, if there were only two materials in the refuse stream and they were always found in the same proportion in every sample. Of course this is not the case. Refuse, and to a lesser degree, recyclables, are extremely variable. The percentage of each type of waste material can vary considerably among samples. Even from the same household, the type of waste can vary depending on when the
sample is collected. For example, during the autumn, one would expect to find large amounts of leaves, but in the winter there will be few leaves or none. On the other hand, food waste will be found throughout the year. Because of the potential for variability between samples, a different number of samples may be required to obtain an accurate estimate for different types of waste. Continuing the example, since food waste is likely to be found more consistently than leaves, fewer samples would be required to obtain an accurate estimate of the food waste percentage in the refuse stream.

Typically, an estimate of the composition of waste is presented as three numbers: (1) the Sample Mean; (2) the Confidence Level; and (3) the Confidence Interval. The Sample Mean is the average percentage of a given material found in the samples sorted. For example, after sorting 30 samples of refuse, we will have a list of 30 percentages of paper waste. If the average of the 30 percentages of paper is 35 percent, then the Sample Mean of paper is 35 percent.
The Confidence Level and the Confidence Interval are intertwined concepts. Together, they allow statements to be made about the entire population from the sample taken. The Sample Mean is, after all, simply the average value of the samples; it is unlikely that the percentage of a given type of waste for the entire population matches the Sample Mean exactly. The Confidence Level and the Confidence Interval provide a way to convey how much the Sample Mean tell us about the entire population.
The Confidence Level indicates the degree of certainty that the Confidence Interval contains the population's mean value. For example, if the Confidence Interval around the Sample Mean 33 percent to 37 percent for paper - is based on a Confidence Level of 90 percent, we can be 90 percent confident that the population's percentage of paper waste is contained in that interval. The purpose of the Confidence Level is to provide an indication of the accuracy of the sampling results. In waste characterization studies, a 90 percent Confidence Level is a widely accepted standard.

The third number used in describing the composition of the refuse is the Confidence Interval. This is an expression of the uncertainty regarding the population Mean. For example, our Sample Mean of 35 percent for paper waste may have a Confidence Interval of ± 7 percent, at a 90 percent Confidence Level. That is, based on the number of samples that have been sorted and results obtained, we would expect that 90 percent of the time, the amount of paper waste in the refuse of the entire population would be between 28 percent and 42 percent. Or, put another way, if we could actually go out and determine the exact percentage of paper waste in our population, we are 90 percent certain that the value would be between 28 percent and 42 percent. If we wanted a more accurate estimate, we would have to sort more samples.
In recommending the number of samples of refuse and recyclables to sort, R. W. Beck considered not only the level of accuracy of the estimate, but the cost of providing this estimate and the variability of materials being sorted. As noted above, the variability of some material in the refuse is greater than other materials. Yard Waste is much more variable than food waste. Therefore, for a given number of samples, the estimate of some materials will be more accurate than the estimate for others. Sorting a few hundred samples of refuse may provide a Confidence Interval of ± 8 percent for paper, but ± 30 percent for yard waste. To achieve ± 8 percent for yard waste would require significantly more samples and would probably be prohibitively expensive.

In practical terms, "variability" simply means the variation we are likely to find between samples. If we sort through ten samples and each sample has between 28 percent to 32 percent of a given waste type, we can be pretty certain that the percentage of this waste type for the population as a whole lies in this general range. But if we sort through these same ten samples and find results of 1 percent, 80 percent, 20 percent, 65 percent, and so forth, you can see that we are much less certain about the percentage of this waste type in the entire population.
There is a point of diminishing returns for waste sampling. After that point, the cost of achieving small increases in accuracy is high. Below that point, significant increases in accuracy can be achieved with relatively little cost.

In determining the number of samples to be sorted for the Phase I Residential Study, an accuracy goal ± 7.5 percent Confidence Interval for the major material groups at a 90 percent Confidence Level was requested by DSNY. In addition to this accuracy goal, R. W. Beck considered the eight income/density strata to be characterized and the need to account of seasonality in the waste stream. Also, R. W. Beck reviewed the Preliminary Waste Characterization Study ("PWCS") to note the variability exhibited in the PWCS results.
R. W. Beck is recommending that at least 200 samples of refuse be sorted for each strata, 50 samples per strata each season.
The results of the PWCS showed relatively little variability in Paper Recycling, but significant variability in the MGP. Therefore, R. W. Beck is recommending that 40 Paper Recycling samples per strata be sorted, 80 per season and 160 MGP samples per strata be sorted, 320 samples per season. Table 2 shows the number of samples recommended for the Phase I Residential Study.

Table 2
Sample Size for the Phase I Residential Study

	Samples per Strata	Samples per Season	Samples per Strata/Season	Total
Residential Refuse	200	400	50	1,600
Residential Paper Recycling	40	80	10	320
Residential MGP	160	$\mathbf{3 2 0}$	$\underline{80}$	1,280
Total	$\mathbf{4 0 0}$	$\mathbf{8 0 0}$	$\mathbf{1 4 0}$	$\mathbf{3 , 2 0 0}$

iii. Sample Weight

Based on current industry practice and studies by the USEPA and academic studies (e.g., Klee), it was determined that the weight of each sample of refuse would be between 200 pounds and 250 pounds.
Because recycling paper and MGP are generally less variable than refuse samples (i.e., contain fewer types of materials), and based on the results of the PWCS, it was determined that the weight of each sample of recycling paper and MGP would be between 100 and 125 pounds.

iv. Sample Selection

In selecting samples from the City's curbside refuse for the Phase I Residential Study, R. W. Beck and the DSNY agreed to use existing refuse and recycling collection routes that were entirely within census tracts for each of the eight income/density strata. Using an analysis of the census tracts and information on the existing collection routes provided by DSNY, the universe of available routes was developed. Table 3 shows the number of available collection routes for each of the eight income/density strata.

Table 3
Existing Collection Routes for Each Income/Density Strata

| | MGP | Paper | Refuse |
| :--- | ---: | ---: | ---: | ---: |
| High Income/High Density Strata | 31 | 66 | 194 |
| High Income/Medium Density Strata | 8 | 4 | 73 |
| High Income/Low Density Strata | 8 | 8 | 28 |
| Medium Income/High Density Strata | 116 | 116 | 269 |
| Medium Income/Medium Density Strata | 9 | 9 | 14 |
| Medium Income/Low Density Strata | 3 | 4 | 12 |
| Low Income/High Density Strata | 22 | 22 | 106 |
| Low Income/Medium Density Strata | $\mathbf{2 1}$ | $\underline{20}$ | $\mathbf{5 1}$ |
| Total | $\mathbf{2 1 8}$ | $\mathbf{2 4 9}$ | $\mathbf{7 4 7}$ |

From this universe of existing routes, sample routes were randomly chosen. Because certain strata had relatively few existing routes, sampling by replacement was used, meaning that it was possible that more than one sample might be taken from any one truck. However, all samples were selected randomly.

v. Sample Collection

a. Refuse Sample Collection

The samples of residential refuse will be acquired at one of two private transfers stations owned by Waste Management, Inc. ("WMI") and under contract with the DSNY to receive residential curbside refuse. The two transfer stations are WMI's Varick Street transfer station and Harlem River Yard transfer station. The DSNY has agreed to divert the trucks that have been selected for sampling to one of these two transfer stations. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

As a selected truck arrives at the transfer station, the R. W. Beck Sample Manager will be notified. When the truck has tipped its load a front-end loader ("FEL") from the transfer station will take a randomly selected portion of the tipped load dump into two or three 96 -gallon toters. The random selection of the portion of the tipped load to be sampled will be made by the Sample Manager before the FEL begins to grab the sample.

The FEL will dump the selected portion of the load into toters that have been positioned by the Sample Manager and Assistant in an area designated by WMI. Once the refuse has been dumped into the toters, the FEL will manage the remainder of the tipped load as it normally would.

The Sample Manager and assistant will then weigh each toter to be sure that the sample of refuse weighs 200 pounds to 250 pounds. In a test conducted on May 7, 2004, it was found that a single 96 -gallon toter held approximately 150 pounds of refuse. Therefore, we estimate that, typically, two toters of refuse should contain one sample of waste. After the toters have been weighed, each toter will be marked with the date, Sample number, a Sample Code, and the truck number. In addition, each sample will have a Sample Management Form which will be taped to the toters.

After the samples are weighed and labeled, they will be loaded on an R. W. Beck truck and transported to the North Shore Marine Transfer Station where they will be unloaded and positioned for sorting.
It is likely that some samples will contain bulky items that do not fit into 96-gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

b. Recycling Sampling

The samples of residential recycling Paper and MGP will be acquired at one of two processors under contract with the DSNY to receive residential curbside recycling. The two processors are Hugo Neu Schnitzer's East facility in Long Island City for MGP and Metropolitan Paper for Paper Recycling. The DSNY has agreed to divert the recycling collection trucks that have been selected for sampling to these two processors. The drivers of these trucks as well as the scalehouse operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

The procedure for acquiring samples will be identical to the procedure used as the private transfer stations, described above. However, based on our experience in other projects, the PWCS indicates that 100 to 125 samples of recycling material will, in most cases, require only one toter. The samples of Paper Recycling and MGP will be taken to the Greenpoint Marine Transfer Station where it will be sorted. It is likely that of the MGP samples will contain bulky items that do not fit into 96 -gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

vi. Waste Generation

Developing an estimate of average waste residential waste generation by strata will involve two steps. First, the Sample Manager will obtain the net weight of each truck selected for sampling. This information will be available from the facility scale house where all collection vehicles are weighed coming in and out of the facility.

Second, the number of housing units on the routes used for sampling will be obtained through the City's MapPluto database. By dividing the net weight of each truck by the number of households on that truck's route, an estimate of pounds per household will be calculated.

B. Street Basket Sampling Plan

The Street Basket sampling plan involves designing a process for selecting representative samples of street basket waste. The process includes the following six steps:

1. Determining the universe of street basket waste income/density strata;
2. Determining the sample size;
3. Determining the sample weight;
4. Designing the sample selection process;
5. Developing the sample collection process; and
6. Developing a street basket waste generation estimate.

Because the purpose of the Street Basket Study is to characterize street basket waste, the first step in the sampling plan was to determine what universe of street basket waste would be used for drawing samples.

i. The Universe of Street Basket Waste

The DSNY and R. W. Beck agreed to use the total number of dedicated street basket collection routes as the universe from which random samples of street basket refuse would be taken. Dedicated routes are those routes that collect only street basket waste. Routes that collect residential refuse as well as street basket refuse are excluded from this study. There are dedicated routes in all five of the City's boroughs. The DSNY provided a list of 107 dedicated routes with 644 loads.

ii. Sample Size

The results of the Seattle Litter Composition Study were reviewed to determine the variability of street basket waste. Based on this review, it was estimated that 200 samples of street basket waste would be expected to achieve a confidence interval of ± 7.5 percent for the major material groups - paper, plastic, metal, and glass. Each season 50 samples of street basket waste will be sorted.

iii. Sample Weight

The weight of samples will be the same as the weight of samples for residential refuse, for the reasons discussed in Section II. A. iii.

iv. Sample Selection

From the universe of 644 loads of street basket waste, 50 loads were randomly selected, using Excel's random number function. These loads were sent to DSNY to confirm that the routes were still available.

v. Sample Collection

Samples of street basket waste will be collected using procedures identical to those for collecting residential refuse.

vi. Generation Estimate

Developing an estimate of street basket generation will involve two steps. First, the Sample Manager will obtain the net weight of each truck selected for street basket waste sampling. This information will be available from the facility scale house where all collection vehicles are weighed coming in and out of the facility.
Second, the number of baskets on each dedicated street basket collection routes will be provided by DSNY. By dividing the net weight of each truck by the number of street baskets on that truck's route, an estimate of pounds per street basket will be calculated.

III. Material Categories

A. Refuse Categories

The list of material categories to be used in the refuse and street basket sorting was approved by DSNY.

B. Recyclables Categories

The list of material categories to be used in the refuse sorting was approved by DSNY.

C. Street Basket Categories

The material categories for street basket waste will be identical to the categories for refuse. In addition, sorting will seek to identify instances of illegally disposed residential or commercial waste.

IV. Field Procedures

A. Health and Safety Plan

R. W. Beck's current Health and Safety Plan ("HASP") has been submitted to the DSNY previously.

B. Sorting Procedures

Once the samples of refuse and recycling have been transported by the Sample Managers from private transfer stations or recycling processors to the sorting sites, the Field Supervisor at each sorting site will check in each of the samples to be certain that the Sample Management Forms and Sample labels are clear and consistent.

After the Samples have been checked in, each Crew Chief and crew will begin sorting samples. The refuse will be sorted into the material categories approved by DSNY. When all material has been sorted, the material falling through the $1 / 2$ " screen on the sorting table, called "fines", will be swept up and included as one of the material categories. All sorted materials will then be weighed. All weights will be recorded by the R. W. Beck Crew Chief. The tare weight of the containers will be put into the scale so that only the net weight of the sorted material is recorded. When the weighing of all material in the sample has been completed, the sorted refuse and recycling will be placed in an appropriate roll-off container and returned to the transfer station or processor.
The Crew Chief and crew will then begin sorting the next sample. Each crew is expected to sort and weigh approximately nine samples of refuse and MGP per day, and 15 samples of Paper Recycling per day. This average is based on our experience in the PWCS.

C. Staffing

The professional staff for the Refuse Sorting for of the Phase I Study will include:

- Tom Jones, Project Manager: Mr. Jones has been with R. W. Beck for the past 16 years and is currently a Senior Director of the firm. His work has included waste characterization studies, solid waste facility financings, and planning/implementation work.
■ Deborah McDonough, E.I.T. - Data Manager: Ms. McDonough, an Engineer with R. W. Beck since 2001, is responsible for conducting transmission analyses and specializes in designing software programs, data management applications, and interactive graphical tools for use in projects associated with solid waste composition studies, locational marginal pricing, transmission power flow studies, transmission constraint analysis, and rate analyses. She is also Project Manager of the Georgia State Waste Characterization Study.
- John Culbertson, Technical Advisor: Mr. Culbertson is a Project Manager in R. W. Beck's Environmental Services Group with 11 years of experience in environmental and information management consulting. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and solid waste system financial and strategic analysis.
- Mack Rugg, Residential Study Task Manager: Mr. Rugg is an employee of Camp Dresser McKee and an acknowledged expert in the field of waste characterization. He has managed numerous waste studies, including a current project in Bergen County, New Jersey.

■ Tanya Tarnecki, Street Basket Task Manager: Ms. Tarnecki manages several waste management projects for Cascadia Consulting, including data collection and reporting waste characterization projects in King County, Washington; and San Bernadino and Orange County, California.

■ Tim Buwalda, Multi-Unit Task Manager: Mr. Buwalda is a Senior Engineer with R. W. Beck with more than 13 years of experience, specializing in waste reduction and materials recovery. His background includes comprehensive solid waste management and recycling experience in both municipal and private settings.

- Ron Perkins, Director of Sampling: Mr. Perkins is a Senior Consultant with R. W. Beck and has 35 years experience in solid waste management internationally, including waste characterization and development of strategic plans for cost effective and sustainable waste reduction and recycling systems.
- Walt Davenport, Director of Sorting: Mr. Davenport has over 30 of experience in the solid waste profession as a private sector hauler/recycler and consultant. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and processing efficiency. He has managed numerous waste composition studies including PA Statewide, Alameda County, CA, and Montgomery County, MD Waste Composition studies.
■ Sean Perera, Logistics Manager: Mr. Perera, a Civil/Environmental Engineer, joined R. W. Beck's National Water/Waste Practice in 2000 as a Consulting Engineer. His primary responsibilities include solid waste system design, solid waste management planning, management and consulting services for procurement and construction activities. He has participated in several waste characterization studies as both a Crew Chief and Field Supervision.
- Tanya Tarnecki, Greenpoint Field Supervisor: (see above)

■ Rory Tipton, E.I.T., North Shore Field Supervisor: Mr. Tipton has more than two years of civil engineering experience working as a project engineer on solid waste projects. He has been responsible for engineering design, documentation, cost estimating, and production coordination for projects of varying size and complexity. He received waste characterization training in R. W. Beck's Georgia Waste Characterization Study.
■ Mike Rogers, Greenpoint Crew Chief \#1: Mr. Rogers is a special employee of R. W. Beck and has sorted waste professionally for the past 13 years. He has had hazardous materials training.
■ Karen Vickers, Greenpoint Crew Chief \#2: Ms. Vickers has ten years of experience in solid waste management and waste reduction project planning, educational outreach, and special events planning on the state and local government levels in the Southeast region. Previously, Ms. Vickers was employed as the Program Education Specialist for the Athens Clarke County Solid Waste Department, Recycling Division, in Athens, Georgia, as the State Recycling Coordinator for the Georgia Department of Community Affairs, and as a Recycling Coordinator for the City of Delray Beach, Florida. Ms. Vickers currently serves as the Vice President of the Georgia Recycling Coalition, and holds Faculty member status with the Solid Waste Association of North America.

- Katie Atkins, North Shore Crew Chief \#1: Ms. Atkins brings over ten years of experience teaching and developing environmental trainings. She specializes in conducting waste audits for schools and businesses and assists with Cascadia's waste composition field work.

■ Randy Bowen, North Shore Crew Chief \#2: Mr. Bowen has over 30 years of experience in the solid waste profession as a hauler/recycler and consultant. Mr. Bowen has worked as a manager in both the public and private sector and as a recycling business owner. Mr. Bowen's project experience includes: numerous waste classification/characterization studies, collection route auditing, composting, special events recycling, and project management.

■ Mike Lennon, North Shore Crew Chief \#3: Mr. Lennon provides in-the-field expertise for several of Cascadia's composition studies including a study of Tacoma, Washington school district waste and two materials sorts for a San Jose Material Recovery Facility.
■ Steve Baumgart, Sample Manager \#1 - MGP: Mr. Baumgart has over 12 years of experience at R. W. Beck working on solid waste management projects. He has managed and supported design teams in the development, planning and design of existing transfer/recycling station facilities. He has also worked with solid waste facility owners and operators in preparing facility master plans, permit applications, conceptual and final designs, program implementation scheduling, cost estimating, construction oversight, and independent engineering reviews.
■ Ramone Swan, Sample Manager \#2 - Refuse: Mr. Swan is an employee of Organics Resources, Inc. ("ORI").
■ Karin Olesky, Sample Manager \#3 - Paper: Ms. Olesky supports Cascadia projects through field work and data collection. For her master's thesis, she recently completed a year-long project to map the University of Washington's food services purchasing and initiated a food waste composting program.
■ Dieter Eckels, Sample Manager \#4 - Refuse: Mr. Eckels conducts data collection, research, and analysis in support of a number of Cascadia waste characterization projects including the 2003 and 2004 California Statewide Waste Composition Studies. His background includes collection system design for the University of Washington's program to re-use on-site cooking oil as bio-diesel for the campus fleet.
■ Susan Jarosch, Traffic Manager \#1: Ms. Jarosch is an Environmental Engineer who practices solid waste management consulting within R. W. Beck. Her project engineering experience includes landfill gas collection and leachate recirculation system development, landfill permitting, and other solid waste management construction and documentation. She also has experience as a crew chief for the New York Waste Characterization Study conducted earlier this year.

- Paul Johnson, Traffic Manager \#2: Mr. Johnson joined R. W. Beck as a Civil Engineer in 2002. He is experienced in environmental disciplines such as petroleum contaminated soil excavation, solid waste disposal area closure, and landfill inspection and monitoring. He has completed the OSHA 40-hour Hazardous Waste Training Course and is trained to collect water, soil, and gas samples.

D. Staff Training

The first day of the Fall Sorting Period will be devoted to staff training. The training will be conducted by John Culbertson, the Technical Advisor, and Walt Davenport, the Director of

Sorting. Training for the Sample Managers will be conducted by Tom Jones, Project Manager, and Ron Perkins, Director of Sampling.

Training will include an introduction to the Phase I Study, a discussion of health and safety policies and practices, and an explanation of sampling, sorting and weighing procedures. The first couple of samples to be sorted will be used as means of teaching material categories, proper sorting technique, and safe practices.

E. Equipment

The safety equipment for each sorter is described in the HASP. Other equipment being used includes:
■ Sample acquisition: 96-gallon toters, a battery-operated H\&V scale, brooms, shovels, rakes, and trucks with lift gates. All members of the Sampling teams will be equipped with hard hats, reflective vests, safety goggles, and gloves.
■ Sample sorting: A sorting table, bins for sorted materials, a battery-operated H\&V scale, hand rakes and small brooms. All members of the sorting crews will be equipped with Tyvek suits, safety goggles, and protective gloves.

F. Post-Sort Disposal and Recycling

i. Post-Sort Disposal of Refuse

The DSNY has agreed to provide roll-off containers for disposing of the sorted refuse and to remove the containers when they are full.

ii. Post-Sort Recycling

The DSNY has agreed to provide roll-off containers for disposing of the sorted recyclables and to remove the containers when they are full.

V. Data Recording and QA/QC

Three types of data will be developed during the Phase I Study. The first type will be the Sample Management Form. As each sample is acquired, as described in the Sampling Plan above, information on the borough of origin, route, and truck number, will be recorded on a Sample Management Form filled out by the Sample Manager. The Sample Management Form will include the following information:

- The date on which the sample was acquired;
- The name of the transfer station from which the sample was acquired;
- The name of the Sample Manager and assistant;
- The Sample Number, which is the number of the sample acquired on that day;

■ The count of the toters (i.e., 1 of 3);

- The Sample Code, which shows the borough, district, section and route of the truck from which the sample was taken. For example, Manhattan 1, Sec.12, Route 3 indicates that the
truck route from which this sample was taken was in Manhattan District 1, Section 1, Route 3;
- The truck number, which will be provided by DSNY when they assign a truck to the selected route;
- The weight of each toter in the sample; and
- The weight and description of any bulky waste items that are part of the sample. These will not be transported to the Sorting Site.

A copy of the Sample Management Form will be affixed to the sample when it is transported from the private transfer station to the Sorting Site. It will remain with the documentation for that sample.

The second type of data will be the material weight data recorded by the Crew Chief when the sorting of each sample is completed. This form, called the Sample Sort Form, will include the net weight of each category of waste that has been sorted and, in the case of some materials, a count of the items in the category (e.g., small appliances).
When the sample has been sorted the Crew Chief and the Field Supervisor will review the forms for completeness and accuracy and sign them. At the end of the day, the Crew Chiefs, Field Supervisor, and Project Manager will review all the forms again and note any unusual samples or circumstances that may have affected the data.
The forms will then be sent overnight to the Data Manager who will have the data entered into an Access database. The Data Manager and her staff will check the data for completeness and accuracy. Once this procedure has been completed, the Data Manager will confer with the Project Manager and if they are satisfied that the data for that day of sampling is complete, it will be provided to the DSNY Project Manager.
The third type of data will be the results of the moisture and particulate testing that will be conducted by the Woods End Laboratory ("Woods End"). Small (three to five-pound) portions of selected materials will be double-bagged and sent by courier to Woods End for analysis. The data resulting from this analysis will be sent directly from Woods End to the Project Manager and Data Manager. The Data Manager will enter it into the database as it is received.
This procedure for recording and checking the data will be reviewed during the Phase I Study and, if R. W. Beck believes that changes will make the procedures more efficient, without compromising completeness and accuracy, or more accurate and complete, we will recommend these changes to the DSNY.

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix C3: Operations Plan WCS Winter 2005

New York Waste Characterization
 Study
 Phase I Study
 Operations Plan for the Winter Sorting Period

New York City Department of Sanitation

February 2005
[This page intentionally left blank.]

DEPARTMENT OF SANITATION OF NEW YORK CITY WASTE CHARACTERIZATION STUDY PHASE I

Phase I Operations Plan
WINTER SORTING PERIOD

I. Introduction

The following Operations Plan is submitted to the Department of Sanitation of New York City ("DSNY") for the Phase I Waste Characterization Study ("Phase I Study") under Contract \#82702BR00015. The focus of this Operations Plan is the Winter Sort.

The Phase I Study includes three components:

A. Residential Study

The purpose of the Residential Study is to characterize New York City's (the "City's") residential refuse and recycling materials by income and housing density strata, accounting for seasonal variation over a twelve-month period. The Study will involve taking samples of residential refuse and recycling materials, sorting and weighing them to develop an estimate of composition of these materials. The Residential Study will also develop an estimate of generation (pounds/household/strata). The Sampling Plan, Material Categories, Field Procedures, and Data Management for the Residential Study are discussed below.

B. Street Basket Study

The purpose of the Street Basket Study is to characterize the City's street basket refuse based on dedicated street basket collection routes. The Street Basket Study will involve taking samples of street basket refuse, sorting and weighing them to develop an estimate of composition of these materials. The Street Basket Study will also develop an estimate of generation (pounds/street basket) for street baskets on dedicated routes. The Sampling Plan for the Street Basket Study is discussed below. The Material Categories, Field Procedures, and Data Management for the Street Basket Study will be similar to those for the Residential Study.

C. Multi-Unit Apartment Study

The purpose of the Multi-Unit Apartment Study is to identify the physical and operational characteristics of multi-unit apartment buildings that are correlated to successful recycling. The Multi-Unit Apartment Study will involve selecting 125 multi-unit apartment buildings at random and gathering information on key physical and operational characteristics. We will also develop a definition of successful recycling, incorporating recycling and capture rates and levels of contamination. During the spring and summer sorting periods, samples of refuse and recycling materials from the 125 buildings will be sorted and weighed to establish the level of successful recycling for each building. Finally, we will develop correlations between building
characteristics and the recycling success rate. The protocol for the Multi-Unit Apartment Building Study is currently being developed and will be submitted to the DSNY before any sorting begins. We anticipate that the Material Categories, Field Procedures, and Data Management for the Multi-Unit Apartment Study will be similar to those for the Residential and Street Basket Studies.

The Phase I Study will be conducted by the R. W. Beck Project Team ("R. W. Beck") working with the DSNY. The plan presented below describes how the Phase I Study will be developed and carried out during the winter sorting period.

II. Sampling Plans

Each of the three components of the Phase I Study will involve characterizing refuse and recycling materials. This characterization will be accomplished by sorting samples of refuse and recyclables. The first step in this process is the selection of samples. A sampling plan, which describes the steps taken to obtain a sample for each of the three components, is presented below.

A. Residential Sampling Plan

The residential sampling plan involves designing a process for selecting samples of residential curbside refuse and recycling materials (i.e., paper and metal, glass and plastic ("MGP")). The process includes the following six steps:

1. Determining the income/density strata;
2. Determining the sample size;
3. Determining the sample weight;
4. Designing the sample selection process;
5. Developing the sample collection process; and
6. Developing refuse and recycling generation estimates.

Because the purpose of the Residential Study is to characterize the residential waste by income and density strata, the first step in the sampling plan was to determine define these strata and identify them within the City.

i. Income/Density Strata

An income/housing density matrix was developed using U.S. Census data for the year 2000 for each of the 2,217 census tracts in New York City. Three income levels, based on median household income, and three housing density levels were used to create a nine-box matrix.

The income levels used were defined as:

Phase I Operations Plan
Winter Sorting Period
Page 3

- Low Income $=$ Median household income below $\$ 30,763$;
- Medium Income $=$ Median household income between $\$ 30,763$ and $\$ 46,193$; and
- High Income $=$ Median household income above $\$ 46,193$.

The housing density criteria were based on the number of structures within each census tract. The three housing density levels were defined as:

- Low Density = Census tracts in which 67 percent of the structures contain 2 or fewer units;
- Medium Density = All census tracts that are not in the High or Low categories; and
- High Density = Census tracts in which 67 percent of the structures contain 10 or more units.

The resulting income/density matrix separated the City's census tracts by income and density, as shown in Table 1.

Table 1
Number of Census Tracts in Each Income/Density Stratum

	Low Income	Medium Income	High Income	Total
Low Density	5	177	410	636
Medium Density	392	435	162	636
High Density	342	$\underline{127}$	$\underline{167}$	$\underline{636}$
Total	739	739	$\mathbf{7 3 9}$	$\mathbf{2 , 2 1 7}$

Because so few census tracts are in the Low/Low stratum, it was decided to eliminate this stratum from the study and focus the study on the remaining eight strata.
Next, a map of the City was developed in which each of the nine strata was color-coded. This map is shown in Appendix A.

To identify the universe of existing refuse and recycling collection routes, the DSNY provide a list of existing routes that fell entirely within contiguous census tracts of the same strata. The number of existing routes for each stratum is shown in Table 3 below.
The next step was to determine the number of samples that would be sorted.

ii. Sample Size

In a waste characterization study, the number of samples that are sorted affects the accuracy of the estimate. For example, if only one 200 pound sample of the City's refuse were sorted, it is very unlikely that the estimate resulting from sorting that single sample would match the composition of the City's entire curbside refuse. On the other hand, if hundreds of thousands of 200 pound samples were sorted - enough samples so that every ounce of the City refuse were sorted - the resulting estimate would be very accurate indeed. In fact, it would be perfectly accurate. So, how many samples should be sorted?

Phase I Operations Plan
Winter Sorting Period
Page 4

Before we answer the question about the number of samples, we should understand the nature of the materials that will be sorted. If the materials being sorted (i.e., the refuse and recycling materials) were consistently and homogeneously discarded by households, it would be relatively easy to arrive at an estimate. It would take very few samples to develop an estimate, if there were only two materials in the refuse stream and they were always found in the same proportion in every sample. Of course this is not the case. Refuse, and to a lesser degree, recyclables, are extremely variable. The percentage of each type of waste material can vary considerably among samples. Even from the same household, the type of waste can vary depending on when the sample is collected. For example, during the autumn, one would expect to find large amounts of leaves, but in the winter there will be few leaves or none. On the other hand, food waste will be found throughout the year. Because of the potential for variability between samples, a different number of samples may be required to obtain an accurate estimate for different types of waste. Continuing the example, since food waste is likely to be found more consistently than leaves, fewer samples would be required to obtain an accurate estimate of the food waste percentage in the refuse stream.

Typically, an estimate of the composition of waste is presented as three numbers: (1) the Sample Mean; (2) the Confidence Level; and (3) the Confidence Interval. The Sample Mean is the average percentage of a given material found in the samples sorted. For example, after sorting thirty samples of refuse, we will have a list of thirty percentages of paper waste. If the average of the thirty percentages of paper is 35 percent, then the Sample Mean of paper is 35 percent.
The Confidence Level and the Confidence Interval are intertwined concepts. Together, they allow statements to be made about the entire population from the sample taken. The Sample Mean is, after all, simply the average value of the samples; it is unlikely that the percentage of a given type of waste for the entire population matches the Sample Mean exactly. The Confidence Level and the Confidence Interval provide a way to convey how much the Sample Mean tell us about the entire population.
The Confidence Level indicates the degree of certainty that the Confidence Interval contains the population's mean value. For example, if the Confidence Interval around the Sample Mean - 33 percent to 37 percent for paper - is based on a Confidence Level of 90 percent, we can be 90 percent confident that the population's percentage of paper waste is contained in that interval. The purpose of the Confidence Level is to provide an indication of the accuracy of the sampling results. In waste characterization studies, a 90 percent Confidence Level is a widely accepted standard.
The third number used in describing the composition of the refuse is the Confidence Interval. This is an expression of the uncertainty regarding the population Mean. For example, our Sample Mean of 35 percent for paper waste may have a Confidence Interval of ± 7 percent, at a 90 percent Confidence Level. That is, based on the number of samples that have been sorted and results obtained, we would expect that 90 percent of the time, the amount of paper waste in the refuse of the entire population would be between 28 percent and 42 percent. Or, put another way, if we could actually go out and determine the exact percentage of paper waste in our

Phase I Operations Plan
Winter Sorting Period
Page 5
population, we are 90 percent certain that the value would be between 28 percent and 42 percent. If we wanted a more accurate estimate, we would have to sort more samples.

In recommending the number of samples of refuse and recyclables to sort, R. W. Beck considered not only the level of accuracy of the estimate, but the cost of providing this estimate and the variability of materials being sorted. As noted above, the variability of some material in the refuse is greater than other materials. Yard waste is much more variable than food waste. Therefore, for a given number of samples, the estimate of some materials will be more accurate than the estimate for others. Sorting a few hundred samples of refuse may provide a Confidence Interval of ± 8 percent for paper, but a ± 30 percent for yard waste. To achieve a ± 8 percent for yard waste would require significantly more samples and would probably be prohibitively expensive.
In practical terms, "variability" simply means the variation we are likely to find between samples. If we sort through 10 samples and each sample has between 28 percent to 32 percent of a given waste type, we can be pretty certain that the percentage of this waste type for the population as a whole lies in this general range. But if we sort through these same 10 samples and find results of 1 percent, 80 percent, 20 percent, 65 percent, and so forth, you can see that we are much less certain about the percentage of this waste type in the entire population.
There is a point of diminishing returns for waste sampling. After that point, the cost of achieving small increases in accuracy is high. Below that point, significant increases in accuracy can be achieved with relatively little cost.

In determining the number of samples to be sorted for the Phase I Residential Study, an accuracy goal ± 7.5 percent Confidence Interval for the major material groups at a 90 percent Confidence Level was requested by DSNY. In addition to this accuracy goal, R. W. Beck considered the eight income/density strata to be characterized and the need to account of seasonality in the waste stream. Also, R. W. Beck reviewed the Preliminary Waste Characterization Study ("PWCS") to note the variability exhibited in the PWCS results.
R. W. Beck is recommending that at least 200 samples of refuse be sorted for each strata, 50 samples per strata each season.

The results of the PWCS showed relatively little variability in Paper Recycling, but significant variability in the MGP. Therefore, R. W. Beck is recommending that 40 Paper Recycling samples per strata be sorted, 80 per season and 160 MGP samples per strata be sorted, 320 samples per season. Table 2 shows the number of samples recommended for the Phase I Residential Study.

Table 2
Sample Size for the Phase I Residential Study

	Samples per Strata	Samples per Season	Samples per Strata/Season	Total
Residential Refuse	200	400	50	1,600
Residential Paper Recycling	40	80	10	320
Residential MGP	160	$\mathbf{3 2 0}$	$\mathbf{8 0}$	$\mathbf{1 , 2 8 0}$
Total	$\mathbf{4 0 0}$	$\mathbf{8 0 0}$	$\mathbf{1 4 0}$	$\mathbf{3 , 2 0 0}$

iii. Sample Weight

Based on current industry practice and studies by the USEPA and academic studies (e.g., Klee), it was determined that the weight of each sample of refuse would be between 200 pounds and 250 pounds.
Because recycling paper and MGP tend are generally less variable than refuse samples (i.e., contain fewer types of materials), and based on the results of the PWCS, it was determined that the weight of each sample of recycling paper and MGP would be between 100 pounds and 125 pounds.

iv. Sample Selection

In selecting samples from the City's curbside refuse for the Phase I Residential Study, R. W. Beck and DSNY agreed to use existing refuse and recycling collection routes that were entirely within census tracts for each of the eight income/density strata. An analysis of the census tracts and information on the existing collection routes provided by DSNY, the universe of available routes was developed. Table 3 shows the number of available collection routes for each of the eight income/density strata.

Phase I Operations Plan
Winter Sorting Period
Page 7

Table 3
Pure Routes and Universe of Routes for Sampling

| | Refuse | | MGP | | Paper | | Total | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Strata | Pure | Universe | Pure | Universe | Pure | Universe | Pure | Universe |
| High Density/
 High Income | 43 | 564 | 18 | 90 | 36 | 198 | 97 | 852 |
| High Density/
 Low Income | 20 | 219 | 6 | 24 | 3 | 12 | 29 | 255 |
| High Density/
 Medium Income | 15 | 84 | 5 | 21 | 5 | 21 | 25 | 126 |
| Low Density/
 High Income | 67 | 792 | 49 | 345 | 49 | 345 | 165 | 1,482 |
| Low Density/ | 8 | 42 | 9 | 27 | 9 | 27 | 26 | 96 |
| Medium Income
 Medium Densityl | 2 | 36 | 1 | 9 | 2 | 12 | 5 | 57 |
| High Income | | | | | | | | |
| Medium Density/
 Low Income | 25 | 294 | 12 | 66 | 12 | 66 | 49 | 426 |
| Medium Density/ | 13 | 147 | 9 | 60 | 9 | 57 | 31 | 264 |
| Medium Income
 Total | 193 | 2,178 | 109 | 642 | 125 | 738 | 427 | 3,558 |

From this universe of existing routes, sample routes were randomly chosen. Because certain strata had relatively few existing routes, sampling by replacement was used, meaning that it was possible that more than one sample might be taken from any one truck. However, all samples were selected randomly. The tables with those randomly selected routes (refuse, recycling, and street basket) for the winter sorting period are included as Appendix B.

v. Sample Collection

a. Refuse Sample Collection

The samples of residential refuse will be acquired at one of two private transfers stations owned by Waste Management, Inc. ("WMI") and under contract with DSNY to receive residential curbside refuse. The two transfer stations are WMI's Varick Street transfer station and Harlem River Yard transfer station. DSNY has agreed to divert the trucks that have been selected for sampling to one of these two transfer stations. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

Phase I Operations Plan
Winter Sorting Period
Page 8

As a selected truck arrives at the transfer station, the R. W. Beck Sample Manager will be notified. When the truck has tipped its load a front-end loader ("FEL") from the transfer station will take a randomly selected portion of the tipped load dump into two or three 96 -gallon toters. The random selection of the portion of the tipped load to be sampled will be made by the Sample Manager before the FEL begins to grab the sample.

The FEL will dump the selected portion of the load into toters that have been positioned by the Sample Manager and Assistant in an area designated by WMI. Once the refuse has been dumped into the toters, the FEL will manage the remainder of the tipped load as it normally would.

The Sample Manager and assistant will then weigh each toter to be sure that the sample of refuse weighs 200 pounds to 250 pounds. In a test conducted on May 7, 2004, it was found that a single 96 -gallon toter held approximately 150 pounds of refuse. Therefore, we estimate that, typically, two toters of refuse should contain one sample of waste. After the toters have been weighed, each toter will be marked with the date, Sample number, a Sample Code, and the truck number. In addition, each sample will have a Sample Management Form which will be taped to the toters. The Sample Management Form is included as Appendix C.
After the samples are weighed and labeled, they will be loaded on an R. W. Beck truck and transported to the North Shore Marine Transfer Station where they will be unloaded and positioned for sorting.

It is likely that some samples will contain bulky items that do not fit into 96-gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

b. Recycling Sampling

The samples of residential recycling Paper and MGP will be acquired at one of two processors under contract with the DSNY to receive residential curbside recycling. The two processors are Hugo Neu Schnitzer East's facility in Long Island City for MGP and Metropolitan Paper for Paper Recycling. DSNY has agreed to divert the recycling collection trucks that have been selected for sampling to these two processors. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.
The procedure for acquiring samples will be identical to the procedure used as the private transfer stations described above. However, our experience in other projects, the PWCS, and the Fall Sort indicates that 100 to 125 samples of recycling material will, in most cases, require only one toter. The samples of Paper Recycling and MGP will be taken to the Greenpoint Marine Transfer Station where they will be sorted. It is likely that the MGP samples will contain bulky items that do not fit into 96 -gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of

Phase I Operations Plan
Winter Sorting Period
Page 9
the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

vi. Waste Generation

One facet of the Phase I Study is to develop generation rates for residential waste for the City. Generation rates refer to the average amount of refuse, MGP, and paper set out for collection by a household or person over a given period of time. Because the Residential Study examines the City's waste by housing-density and income strata, the generation rates were estimated by strata. Each stratum's generation rate is actually an average of individual generation rates of each household that comprise that stratum. In other words, we do not believe that each household in a given strata generates an identical amount of refuse, MGP, and paper. Rather, we believe that each stratum may have a unique average generation rate when we combine the individual households that comprise that stratum.

Residential Generation Rates

Information regarding tons collected is available at the District and Section levels. The City has 59 Community Districts and, within these Districts, 230 Sections. Information regarding population, number of households, and strata is available on the Census Tract level. The methodology used to estimate generation rates requires integrating the information available for the Census Tracts and the Section.

Using the New York City Department of City Planning's Land Use and Geographic Database for the five boroughs of New York City ("MapPluto"), we are able to assign Census Tracts to each Section. Because Census Tracts do not conform to Section boundaries, some Census Tracts belong to only one Section while others may be in two or more Sections. In cases where Census Tracts "bleed" over Section boundaries, it was initially assumed that Census Tracts reaching outside a given Section would be balanced by Census Tracts in adjacent Sections bleeding into that Section. The object was to split Census Tracts among Sections to appropriately account for the correct strata-composition of a given Section.
Since we know the number of households in each Census Tract, we can estimate the number of households in each Section by multiplying the households in each Census Tract by the number of Census Tracts assigned to a given Section. For example, MapPluto tells us that Manhattan District 6, Section 3 has seven Census Tracts. We know that the total number of households in these seven Census Tracts is 26,296 . We can check our work by comparing the sum of the households for all Sections in a District against the District totals. The sum of the estimated number of households in Section 3 of Manhattan District 6 is 91,252 . The total number of households in Manhattan District 6, as reported by DSNY, is 91,189 . These two figures are less than 1 percent of each other and indicate that our estimate of the number of households is reasonable.

For Districts where there was a significant discrepancy between the estimated number of households and the number of households reported, we mapped the Section and Census Tracts and adjusted the number of households per Section. For example, if a significant area of the Census Tract lay outside the Section to which it had been assigned, the number of households

Phase I Operations Plan
Winter Sorting Period
Page 10
assigned to the Section was adjusted. The number of households was again checked to see that our estimates were within 5 percent of the actual District totals.
Each Census Tract assigned to a Section had been placed in one of nine strata. We allocated the number of households in each Census to the appropriate strata for each Section. For example, MapPluto shows that the seven Census Tracts in Manhattan District 6, Section 3 are all in the High/High strata. Therefore, we can characterize Manhattan District 6 Section 3 as the High/High strata. It should be emphasized however that the generation rates for these Sections would not all be identical. They are individual instances of this strata's average generation rate. We can average them, weighted by the number of households in each Section, to estimate the strata's average generation rate. Of the 230 Sections in the City, 43 sections contained census tracts from the same strata.
In the remaining 187 Sections, the strata of the census tracts were mixed. For example, in Manhattan District 2 Section 1, MapPluto assigned eight census tracts from four different strata.

To calculate the generation rates we began by assuming that the population in each strata all discard exactly the average value (for their strata) that we seek. We know that this assumption is not exactly true (there is likely to be variation within each stratum regarding the amount of waste generated). Thus, we know that there will be some remaining discrepancy (" ε ") between our calculated tonnages for each Section and the actual tonnages observed.

The regression therefore seeks to estimate a single "tons per person" value for each stratum such that, when multiplied by the population of each stratum in a given Section, it closely approximates the known total tonnage for that Section. All Sections are included in this analysis, whether comprised of a single or multiple strata.

Example: Consider a simplified case where there are only 3 Sections and 2 strata.
In Section 1, there are 100 people in stratum A and 400 people in stratum B. Section 1 discards 190 tons of waste.
In Section 2, there are 300 people in stratum A and 200 people in stratum B. Section 2 discards 220 tons of waste.
In Section 3, there are 500 people in stratum A and 800 people in stratum B. Section 2 discards 500 tons of waste.
The regression analysis seeks to estimate the per-person average waste values for strata A and B using the following:
$100 * \mathrm{X} 1+400 * \mathrm{X} 2+\varepsilon=190$
$300 * \mathrm{X} 1+200 * \mathrm{X} 2+\varepsilon=220$
$500 * \mathrm{X} 1+800 * \mathrm{X} 2+\varepsilon=500$
In this case, $\mathrm{X} 1=0.49$ and $\mathrm{X} 2=0.33$ (tons per-person) are the estimates which best fit the given data.
In the actual analysis, we had data for 227 Sections upon which the estimates for the 9 strata were determined.

The documents supporting this approach and the results for the Fall Sort are presented in the Fall Sorting Period Report. This methodology will be used to develop residential generation rates for the Winter Sort.

Street Basket Generation Rates

To develop generation rates for the Street Basket Waste Study, we will use the net weight of the vehicles on the dedicated street basket collection routes from which samples were taken. This net weight will be divided by the number of baskets on the dedicated route to produce an average weight per street basket.

One complication in developing these generation rates is that certain street baskets are collected on more than one route. This route overlap makes it difficult to determine exactly how much time has elapsed since the basket was last collected. We are currently addressing this problem with DSNY and will report Street Basket Generation Rates when we have resolved this issue.

B. Street Basket Sampling Plan

The Street Basket sampling plan involves designing a process for selecting representative samples of street basket waste. The process includes the following six steps:

1. Determining the universe of street basket waste income/density strata;
2. Determining the sample size;
3. Determining the sample weight;
4. Designing the sample selection process;
5. Developing the sample collection process; and
6. Developing a street basket waste generation estimate

Because the purpose of the Street Basket Study is to characterize street basket waste, the first step in the sampling plan was to determine what universe of street basket waste would be used for drawing samples.

i. The Universe of Street Basket Waste

DSNY and R. W. Beck agreed to use the total number of dedicated street basket collection routes as the universe from which random samples of street basket refuse would be taken. Dedicated routes are those routes that collect only street basket waste. Routes that collect residential refuse as well as street basket refuse are excluded from this study. There are dedicated routes in all five of the City's boroughs. DSNY provided a list of 107 dedicated routes with 644 loads.

ii. Sample Size

The results of the Seattle Litter Composition Study were reviewed to determine the variability of street basket waste. Based on this review, it was estimated that 200 samples of street basket waste would be expected to achieve a confidence interval of ± 7.5 percent for the major material
groups - paper, plastic, metal, and glass. Each season 50 samples of street basket waste will be sorted.

iii. Sample Weight

The weight of samples will be the same as the weight of samples for residential refuse, for the reasons discussed in Section II. A. iii.

iv. Sample Selection

From the universe of 644 loads of street basket waste, 50 loads were randomly selected, using Excel's random number function. These loads were sent to DSNY to confirm that the routes were still available.

v. Sample Collection

Samples of street basket waste will be collected using procedures identical to those for collecting residential refuse.

III. Material Categories

A. Refuse Categories

The list of material categories to be used in the refuse and street basket sorting is presented in Appendix D.

B. Recyclables Categories

The list of material categories to be used in the recycling sorting is the same as the list of materials for refuse sorting and is presented in Appendix D.

C. Street Basket Categories

The material categories for street basket waste will be identical to the categories for refuse. In addition, sorting will seek to identify instances of illegally disposed residential or commercial waste.

IV. Field Procedures

A. Health and Safety Plan

R. W. Beck's current Health and Safety Plan ("HASP") has been submitted to DSNY previously and is included in Appendix E.

B. Sorting Procedures

Once the samples of refuse and recycling have been transported by the Sample Managers from private transfer stations or recycling processors to the sorting sites, the Field Supervisor at each sorting site will check in each of the samples to be certain that the Sample Management Forms and Sample labels are clear and consistent.

After the Samples have been checked in, each Crew Chief and crew will begin sorting samples. The refuse will be sorted into the material categories using the Sample Detail Form, shown in Appendix C. When all material has been sorted, the material falling through the $1 / 2$-inch screen on the sorting table, called "fines", will be swept up and included as one of the material categories. All sorted materials will then be weighed.

Protocol for Identifying and Accounting for Illegal Materials in Street Basket Waste

To determine the level illegal use of street baskets for residential or commercial refuse disposal, the following protocol will be used:

■ Before sorting, each 200 to 300-pound street basket sample will placed on the sort table for inspection by an R. W. Beck Crew Chief trained by DSNY staff to identify suspected illegal residential or commercial waste.

- All closed opaque plastic bags the size of a shopping bag or larger will be identified as potentially containing illegal material.
- The loose material found in clear plastic basket liners or opaque liners labeled with a Business Improvement District ("BID") logo will be considered legal street basket waste.

■ Any closed opaque plastic bags the size of a shopping bag or larger found within a BID bag will also be identified as potentially containing illegal material.

- Closed bags identified as potentially containing illegal material will be opened.
- If a bag contains any of the following materials, it will be classified as "residential":
- Addressed mail;
- Substantial quantities of home-use products, including: health and beauty aids, detergent bottles, family sized drink containers, or other seemingly residential material; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggest home use.
- If a bag contains any of the following materials, it will be classified as "commercial":
- Retail food preparation wastes (industrial sized food/liquid containers; substantial quantities of identical packaging or unused products, cardboard boxes);
- Construction materials such as pieces of dry wall or other building materials; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggested office, retail, industrial, construction or food establishment waste.

Closed shopping bags not containing materials deemed residential or commercial, but suggesting street use (single use containers, newspapers, etc.) will be considered legally disposed street basket waste.

Phase I Operations Plan
Winter Sorting Period
Page 14

For all bags identified as containing residential or commercial wastes, the following four procedures will be followed.

- All such bags will be individually photographed.

■ Each bag will have a written record describing its contents. The crew chief will record this information on the Sample Detail Form.

- All such bags will be counted (regardless of size) in two groups: residential bags, and commercial bags. The bag counts will be recorded on the Sample Detail Form.
- In each sample, bags identified as containing residential or commercial waste will be weighed in two groups: residential bags, and commercial bags. The combined weights of the bags in each group (residential and commercial) will be recorded on the Sample Detail Form.
In addition, each sample will be examined for suspected instances of illegally disposed residential or commercial wastes not encased in closed bags as defined above - including instances of broken bags with spilling contents, as well as residential or commercial material loose in the street basket contents. These materials will be photographed but not weighed and their presence noted on the Sample Detail Form. .
After these procedures have been completed, all material will be placed onto the sorting table and sorted according to the refuse sorting protocol.
All weights will be recorded by the R. W. Beck Crew Chief. The tare weight of the containers will be put into the scale so that only the net weight of the sorted material is recorded. When the weighing of all material in the sample has been completed, the sorted refuse and recycling will be placed in an appropriate roll-off container and returned to the transfer station or processor.
The Crew Chief and crew will then begin sorting the next sample. Each crew is expected to sort and weigh an approximately nine samples of refuse and MGP per day, and 15 samples of Paper Recycling per day. This average is based on our experience in the PWCS.

Moisture and Particulate Testing

Samples of refuse and recycling will be randomly selected for moisture and particulate testing. The purpose of the test is to estimate how much of the weight of certain materials is made up of moisture and fugitive particulates that migrate to the materials during compaction in the collection truck. Eighteen materials have been identified for testing. In each randomly-selected sample 3 to 5 pounds of each material will be collected and double-bagged. Each 3 to 5 pounds of material is called a Moisture Testing Unit ("MTU"). Therefore, each sample may have as many as 18 MTUs, although some samples may not include some of the targeted materials.
All MTUs will be sent to Woods End Laboratory for testing and results reported to the Project's data management team for analysis. During the Winter Sort, 12 samples will be randomly selected for testing.

Phase I Operations Plan
Winter Sorting Period
Page 15

A total of 500 MTUs will be tested during the Phase I study and the analysis of the results will be reported after the fourth season of sorting.

C. Staffing

The professional staff for the Winter Sorting Period will include:
■ Tom Jones, Project Manager: Mr. Jones has been with R. W. Beck for the past 16 years and is currently a Senior Director of the firm. His work has included waste characterization studies, solid waste facility financings, and planning/implementation work.
■ Deborah McDonough, E.I.T. - Data Manager: Ms. McDonough, an Engineer with R. W. Beck since 2001, is responsible for conducting transmission analyses and specializes in designing software programs, data management applications, and interactive graphical tools for use in projects associated with solid waste composition studies, locational marginal pricing, transmission power flow studies, transmission constraint analysis, and rate analyses. She is also Project Manager of the Georgia State Waste Characterization Study. Ms. McDonough has been the Data Manager since the beginning of the Project.

■ Joe Naviera, Assistant Data Manager: Mr. Naveira has an AS degree in Database Technology and recently joined R. W. Beck as a Data Administrator. He has assisted in the maintenance and development of databases for multiple clients, including the New York Department of Sanitation and R. W. Beck's disaster relief project throughout Florida.

■ John Culbertson, Technical Advisor: Mr. Culbertson is a Project Manager in R. W. Beck's Environmental Services Group with 11 years of experience in environmental and information management consulting. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and solid waste system financial and strategic analysis.
■ Mack Rugg, Residential Study Task Manager: Mr. Rugg is an employee of Camp Dresser McKee and an acknowledge expert in the field of waste characterization. He has managed numerous waste studies, including a current project in Bergen County, New Jersey.

- Tanya Tarnecki, Street Basket Task Manager: Ms. Tarnecki manages several waste management projects for Cascadia Consulting, including data collection and reporting waste characterization projects in King County, Washington; and San Bernadino and Orange County, California.

■ Tim Buwalda, Multi-Unit Apartment Task Manager: Mr. Buwalda is a Senior Engineer with R. W. Beck with more than 13 years of experience, specializing in waste reduction and materials recovery. His background includes comprehensive solid waste management and recycling experience in both municipal and private settings.

■ Steve Baumgart, Director of Sampling: Mr. Baumgart has over 12 years of experience at R. W. Beck working on solid waste management projects. He has managed and supported design teams in the development, planning and design of existing transfer/recycling station facilities. He has also worked with solid waste facility owners and operators in preparing
facility master plans, permit applications, conceptual and final designs, program implementation scheduling, cost estimating, construction oversight, and independent engineering reviews. Mr. Baumgart was a Sample Manager during the Fall Sorting Period.

■ Walt Davenport, Director of Sorting: Mr. Davenport has over 30 years of experience in the solid waste profession as a private sector hauler/recycler and consultant. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and processing efficiency. He has managed numerous waste composition studies including PA Statewide, Alameda County, CA, and Montgomery County, MD Waste Composition studies.

- Tanya Tarnecki, Greenpoint Field Supervisor: (see above)

■ Rory Tipton, E.I.T., North Shore Field Supervisor: Mr. Tipton has more than two years of civil engineering experience working as a project engineer on solid waste projects. He has been responsible for engineering design, documentation, cost estimating, and production coordination for projects of varying size and complexity. He received waste characterization training in R. W. Beck's Georgia Waste Characterization Study.

■ Brian Holt, Greenpoint Crew Chief: Mr. Holt has recently joined R.W. Beck and has been supervising crews for the firm's disaster recovery program in Florida.
■ Karen Vickers, Greenpoint Crew Chief \#2: Ms. Vickers has 10 years of experience in solid waste management and waste reduction project planning, educational outreach, and special events planning on the state and local government levels in the Southeast region. Previously, Ms. Vickers was employed as the Program Education Specialist for the Athens Clarke County Solid Waste Department, Recycling Division, in Athens, Georgia, as the State Recycling Coordinator for the Georgia Department of Community Affairs, and as a Recycling Coordinator for the City of Delray Beach, Florida. Ms. Vickers currently serves as the Vice President of the Georgia Recycling Coalition, and holds Faculty member status with the Solid Waste Association of North America.

- Katie Kennedy, North Shore Crew Chief: Ms. Kennedy performs research and analysis in support of waste composition and recycling analysis. Her recent field work including leading sorting crews for the Tacoma School District and the Sunshine Canyon Waste Composition Studies.
- Randy Bowen, North Shore Crew Chief: Mr. Bowen has over 30 years of experience in the solid waste profession as a hauler/recycler and consultant. Mr. Bowen has worked as a manager in both the public and private sector and as a recycling business owner. Mr. Bowen's project experience includes: numerous waste classification/characterization studies, collection route auditing, composting, special events recycling, and project management. Mr. Bowen was a Crew Chief during the PWCS and the Fall Sorting Period.
- Colleen Thumlert, North Shore Crew Chief: Ms. Thumlert has more than twelve years of teaching and developing environmental training programs. She specializes in developing
waste audits for schools and businesses and assists with Cascadia's waste composition and survey field work.
■ Marley Shoaf, North Shore Crew Chief: Ms. Shoaf performs waste and recycling audits of Seattle area businesses and facilitates stakeholder groups on environmental health topics, such as fish consumption and removal of toxic chemicals from school science labs. .

■ Susan Evans, North Shore Crew Chief: Ms. Evans teaches for the King County Master Recycler Composter Program. Her other project work volunteer coordination and outreach focused on waste prevention and recycling.

■ Hilliary Smith, Sample Manager: Ms. Smith developed the paper waste management policies for Bowdoin College. She teaches waste reduction, recycling, and environmental stewardship at Island Wood on Bainbridge Island, Washington.

- Sasha Evans, Sample Manager: Ms. Evans manages waste generation studies, rate studies, and California regulatory compliance projects. Her work includes the development and implementation of recycling programs, recycling ordinances, permits documents, and solid waste planning.

■ Teresa Lewandowski, Sample Manager: Ms. Lewandowski performs analysis for the annual diversion and disposal reporting to the California Integrated Waste Management Board. She also works on waste generation studies, technical reports, business surveys, and on-site waste audits.

■ Ramone Swan, Sample Manager: Mr. Swan is an employee of Organics Resources, Inc. ("ORI") and was a Sample Manager during the Fall Sorting Period.

- Bernice Siebuhr, Sample Manager: Ms. Siebuhr is an analyst for R. W. Beck's Electrical Facilities Practice and has worked with a variety of clients in Georgia and Florida. She also did field work for the firm's disaster recovery program.

■ Dieter Eckels, Sample Manager: Mr. Eckels conducts data collection, research, and analysis in support of a number of Cascadia waste characterization projects including the 2003 and 2004 California Statewide Waste Composition Studies. His background includes collection system design for the University of Washington's program to re-use on-site cooking oil as bio-diesel for the campus fleet. Mr. Eckles was a Sample Manager for the Fall Sorting Period.

- Paul Johnson, Sample Manager: Mr. Johnson joined R. W. Beck as a Civil Engineer in 2002. He is experienced in environmental disciplines such as petroleum contaminated soil excavation, solid waste disposal area closure, and landfill inspection and monitoring. He has completed the OSHA 40-hour Hazardous Waste Training Course and is trained to collect water, soil, and gas samples. Mr. Johnson was a Sample Manager during the Fall Sorting Period. .

D. Staff Training

Monday, February 28 and Tuesday, March 1, 2005 will be devoted to staff training. The training of Crew Chiefs will be conducted by John Culbertson, the Technical Advisor and Walt Davenport, the Director of Sorting. Training for the Sample Managers will be conducted by Tom Jones, Project Manager, and Steve Baumgart, Director of Sampling.
Training will include an introduction to the Phase I Study, a discussion of health and safety policies and practices, and an explanation of sampling, sorting and weighing procedures. The first couple of samples to be sorted will be used as means of teaching material categories, proper sorting technique, and safe practices.

E. Equipment

The safety equipment for each sorter is described in Appendix F, the HASP. Other equipment being used includes:
■ Sample acquisition: 96-gallon toters, a battery-operated H\&V scale, brooms, shovels, rakes, and trucks with lift gates. All members of the Sampling teams will be equipped with hard hats, reflective vests, safety goggles, and gloves.

■ Sample sorting: A sorting table, bins for sorted materials, a battery-operated H\&V scale, hand rakes and small brooms. All members of the sorting crews will be equipped with Tyvek suits, safety goggles, and protective gloves.

- In recognition of the potential for snow and cold weather during the winter sorting period, we have made arrangements for tents, propane heaters, and lights at both the Greenpoint and North Shore transfer stations to protect sorting crews. All workers have been told to wear warm clothing and supervisors will be reminded to check on and treat any workers that appear to be suffering from cold or fatigue.

F. Post-Sort Disposal and Recycling

i. Post-Sort Disposal of Refuse

DSNY has agreed to provide roll-off containers for disposing of the sorted refuse and to remove the containers when they are full.

ii. Post-Sort Recycling

DSNY has agreed to provide roll-off containers for disposing of the sorted recyclables and to remove the containers when they are full.

V. Data Recording and QA/QC

Three types of data will be developed during the Phase I Study. The first type will be the Sample Management Form. As each sample is acquired, as described in the Sampling Plan above, information on the borough of origin, route, and truck number, will be recorded on a Sample Management Form filled out by the Sample Manager. The Sample Management Form will include the following information:

- The date on which the sample was acquired;
- The name of the transfer station from which the sample was acquired;
- The name of the Sample Manager and assistant;
- The Sample Number, which is the number of the sample acquired on that day;

■ The count of the toters (i.e., 1 of 3);

- The Sample Code, which shows the borough, district, section and route of the truck from which the sample was taken. For example, Manhattan 1, Sec.12, Route. 3 indicates that the truck route from which this sample was taken was in Manhattan District 1, Section 1, Route 3;

■ The truck number, which will be provided by DSNY when they assign a truck to the selected route;

- The weight of each toter in the sample; and
- The weight and description of any bulky waste items that are part of the sample. These will not be transported to the Sorting Site.
A copy of the Sample Management Form will be affixed to the sample when it is transported from the private transfer station to the Sorting Site. It will remain with the documentation for that sample.
The second type of data will be the material weight data recorded by the Crew Chief when the sorting of each sample is completed. This form, called the Sample Sort Form, will include the net weight of each category of waste that has been sorted and, in the case of some materials, a count of the items in the category (e.g., small appliances).
When the sample has been sorted the Crew Chief and the Field Supervisor will review the forms for completeness and accuracy and sign them. At the end of the day, the Crew Chiefs, Field Supervisor, and Project Manager will review all the forms again and note any unusual samples or circumstances that may have affected the data.

The forms will put into the project's Access database by the Data Manager and her staff on-site. The Data Manager and her staff will check the data for completeness and accuracy. Once this procedure has been completed, the Data Manager will confer with the Project Manager and if they are satisfied that the data for that day of sampling is complete, it will be provided to the DSNY Project Manager.

The third type of data will be the results of the moisture and particulate testing that will be conducted by the Woods End Laboratory ("Woods End"). Small (3 pound to 5 pound) portions of selected materials will be double-bagged and sent by courier to Woods End for analysis. This data resulting from the analysis will be sent directly from Woods End to the Project Manager and Data Manager. The Data Manager will enter it into the database as it is received.

Phase I Operations Plan
Winter Sorting Period
Page 20

This procedure for recording and checking the data will be reviewed during the Phase I Study and, if R. W. Beck believes that changes will make the procedures more efficient, without compromising completeness and accuracy, or more accurate and complete, we will recommend these changes to DSNY.

Appendix A Map of Income/Density Strata in New York City

[This page intentionally left blank.]

sueld suoḷeıədo $\supset d d \forall \downarrow$ IO \wedge SOM כ人N
[This page intentionally left blank.]

Appendix B
 Randomly Selected Residential and Street Basket Routes

[This page intentionally left blank.]

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary $(1 / 28 / 2005)$									
Collection Date	Delivery Date	Borough	$$		(1)	$\begin{aligned} & \$ 1 \\ & \frac{\$}{5} \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 02/28/2005	Tuesday, 03/01/2005	Bronx	5	3	1		MGP		Hugo Neu Schnitzer
Monday, 02/28/2005	Tuesday, 03/01/2005	Bronx	5	3	1		Paper		Shepherd Ave (Metro Paper)
Monday, 02/28/2005	Tuesday, 03/01/2005	Bronx	5	3	3		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Bronx	5	3	4		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn North	3	3	1		Paper		Shepherd Ave (Metro Paper)
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn North	3	3	2		MGP		Hugo Neu Schnitzer
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn North	3	3	4		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn North	4	1	1		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn North	4	1	2		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn North	4	2	2		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Manhattan	2	3	1		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Manhattan	2	3	2		MGP		Hugo Neu Schnitzer
Monday, 02/28/2005	Tuesday, 03/01/2005	Manhattan	5		3	E	Street Basket		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Manhattan	6	3	3		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Manhattan	7		2	N	Street Basket		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Manhattan	8	1	1		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens East	7	1	1		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens East	13	5	3		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens East	13	6	2		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	1	4	3		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	1	4	4		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	2		1	D	Street Basket		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	4	3	1		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	5		1	E	Street Basket		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	6	9	1	N	Street Basket		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Monday, 02/28/2005	Tuesday, 03/01/2005	Staten Island	1	3	1		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Staten Island	2	2	1		Refuse		Varick Street
Monday, 02/28/2005	Tuesday, 03/01/2005	Staten Island	2	2	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 02/28/2005	Tuesday, 03/01/2005	Staten Island	3	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 02/28/2005	Tuesday, 03/01/2005	Staten Island	3	5	2		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Bronx	5	3	1		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Bronx	5	3	2		MGP		Hugo Neu Schnitzer
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Bronx	5	3	3		Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$$			$\begin{aligned} & \text { 雨 } \\ & \text { 心 } \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn North	3	3	5		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn North	4	1	4		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn North	4	2	6		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn South	7		2	E	Street Basket		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Brooklyn South	17	1	4		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	2	2	2		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	2		2	E	Street Basket		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	3	3	1		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	3	3	2		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	3		1	M	Street Basket		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	1	4		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	1	5		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	2	1		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	3	1		MGP		Hugo Neu Schnitzer
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	3	2		Paper		Shepherd Ave (Metro Paper)
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	5	3		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	8	5	5		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Manhattan	11		1	D	Street Basket		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens East	10	4	1		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens East	11	3	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens East	13	6	3		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens East	13	7	1		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens West	4	3	3		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens West	4	3	5		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens West	5	2	2		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Queens West	5	2	3		Refuse		Harlem River Yard
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	1		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	2		Refuse		Varick Street
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	3		Refuse		Varick Street

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	$$	$\begin{aligned} & \text { 듳 } \\ & \text { U } \\ & \text { © } \end{aligned}$	(1)	$\begin{aligned} & \pm \underline{む} \\ & \frac{1}{\omega} \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	1	4		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/01/2005	Wednesday, 03/02/2005	Staten Island	3	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	5	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	5	2	1		Paper		Shepherd Ave (Metro Paper)
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	5	2	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	5	3	1		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	5	3	3		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Bronx	7	2	4		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn North	4	2	1		Refuse		Varick Street
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	6	2	1		Paper		Shepherd Ave (Metro Paper)
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	17	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	17	1	2		Refuse		Varick Street
Wednesday, 03/02/2005	Thursday, 03/03/2005	Brooklyn South	17	1	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	2	3	2		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	7	2	2		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	7		1	N	Street Basket		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	7		2	N	Street Basket		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	8	2	3		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	8	3	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	8	3	1		Paper		Shepherd Ave (Metro Paper)
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	8	3	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/02/2005	Thursday, 03/03/2005	Manhattan	12		2	M	Street Basket		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	1	4	1		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	1	4	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	3	2	2		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	3	2	4		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Queens West	5		1	D	Street Basket		Harlem River Yard
Wednesday, 03/02/2005	Thursday, 03/03/2005	Staten Island	2	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	$$		-	雩	Sample Type	Samples taken from Dual Bin	Delivery Location
Wednesday, 03/02/2005	Thursday, 03/03/2005	Staten Island	2	4	3		Refuse		Varick Street
Wednesday, 03/02/2005	Thursday, 03/03/2005	Staten Island	3	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/02/2005	Thursday, 03/03/2005	Staten Island	3	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/03/2005	Friday, 03/04/2005	Bronx	4	2	2		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Bronx	5	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Bronx	5	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/03/2005	Friday, 03/04/2005	Bronx	5	3	3		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn North	4	2	2		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn North	4	2	3		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn North	4	3	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn North	4	3	3		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn North	4	3	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn South	6	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Brooklyn South	17	1	3		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	1		1	N	Street Basket		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	1		2	D	Street Basket		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	2		2	E	Street Basket		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	5		2	E	Street Basket		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	6	3	3		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	7	3	1		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	7	3	3		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	8	1	1		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	8	1	2		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	8	1	3		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	8	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	8	2	2		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Manhattan	8	2	3		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	7	1	1		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	7	1	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	7	3	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	7	3	4		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	10	4	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary $(1 / 28 / 2005)$									
Collection Date	Delivery Date	Borough	$$		-	$\begin{aligned} & \$ 1 \\ & \frac{\$}{5} \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	11	3	2		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	13	3	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	13	4	1		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	13	6	1		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens East	13	8	3		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	3	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	3	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	4	3	2		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	4	3	2		MGP		Hugo Neu Schnitzer
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	5	2	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	9	1	1		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	9	1	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	9	1	3		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	9	2	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	9	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/03/2005	Friday, 03/04/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Thursday, 03/03/2005	Friday, 03/04/2005	Staten Island	1	3	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/03/2005	Friday, 03/04/2005	Staten Island	2	2	1		Refuse		Varick Street
Thursday, 03/03/2005	Friday, 03/04/2005	Staten Island	3	5	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/04/2005	Saturday, 03/05/2005	Bronx	4	2	2		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Bronx	5	2	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Bronx	5	3	1		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Bronx	7	2	4		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Brooklyn North	4	1	1		Refuse		Varick Street
Friday, 03/04/2005	Saturday, 03/05/2005	Brooklyn North	4	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/04/2005	Saturday, 03/05/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Friday, 03/04/2005	Saturday, 03/05/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Friday, 03/04/2005	Saturday, 03/05/2005	Brooklyn South	6	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	2		2	M	Street Basket		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	3	1	1		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	5		3	E	Street Basket		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	6	3	1		Refuse		Harlem River Yard

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	$$		-	雩	Sample Type	Samples taken from Dual Bin	Delivery Location
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	7	2	2		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	7	3	2		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	8	2	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	8	4	1		Paper		Shepherd Ave (Metro Paper)
Friday, 03/04/2005	Saturday, 03/05/2005	Manhattan	8	4	2		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Queens East	13	4	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/04/2005	Saturday, 03/05/2005	Queens East	13	8	2		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Queens East	13	8	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	1	4	1		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	1	4	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	3	2	2		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	3	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	4	3	1		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	4	3	2		MGP		Hugo Neu Schnitzer
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	5	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	5	2	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	5	2	3		Refuse		Harlem River Yard
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	5	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/04/2005	Saturday, 03/05/2005	Queens West	5	2	4		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Friday, 03/04/2005	Saturday, 03/05/2005	Staten Island	3	1	1		Refuse		Varick Street
Friday, 03/04/2005	Saturday, 03/05/2005	Staten Island	3	1	2		Refuse		Varick Street
Friday, 03/04/2005	Saturday, 03/05/2005	Staten Island	3	4	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/04/2005	Saturday, 03/05/2005	Staten Island	3	4	3		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Bronx	5	1	2		MGP		Hugo Neu Schnitzer
Saturday, 03/05/2005	Monday, 03/07/2005	Bronx	5	1	4		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Bronx	5	2	2		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Bronx	5	3	3		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	2		2	D	Street Basket		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	3	3	2		MGP		Hugo Neu Schnitzer
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	4	1	1		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	4	1	3		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	4	2	1		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	4	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	4	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary $(1 / 28 / 2005)$									
Collection Date	Delivery Date	Borough	$$		(1)	$\begin{aligned} & \$ 1 \\ & \frac{\$}{5} \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn North	4	3	4		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn South	17	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Brooklyn South	17	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Manhattan	3	3	1		MGP		Hugo Neu Schnitzer
Saturday, 03/05/2005	Monday, 03/07/2005	Manhattan	8	4	1		MGP		Hugo Neu Schnitzer
Saturday, 03/05/2005	Monday, 03/07/2005	Manhattan	8	4	3		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Manhattan	8	5	2		MGP		Hugo Neu Schnitzer
Saturday, 03/05/2005	Monday, 03/07/2005	Queens East	7	1	2		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens East	7	6	1		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens East	7	6	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Saturday, 03/05/2005	Monday, 03/07/2005	Queens East	7	6	2		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens East	7	6	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	1	4	3		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	2		?	E	Street Basket		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	3	2	2		MGP		Hugo Neu Schnitzer
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	3	2	2		Paper		Shepherd Ave (Metro Paper)
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	3	2	4		Refuse		Harlem River Yard
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	5	2	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	5	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Queens West	5	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Staten Island	1		3	M	Street Basket		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Staten Island	3	2	2		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Staten Island	3	4	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/05/2005	Monday, 03/07/2005	Staten Island	3	6	1		Refuse		Varick Street
Saturday, 03/05/2005	Monday, 03/07/2005	Staten Island	3	6	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 03/07/2005	Tuesday, 03/08/2005	Bronx	4	2	2		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Bronx	4	2	3		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Bronx	5	3	1		MGP		Hugo Neu Schnitzer
Monday, 03/07/2005	Tuesday, 03/08/2005	Bronx	5	3	2		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Bronx	5	3	2		MGP		Hugo Neu Schnitzer
Monday, 03/07/2005	Tuesday, 03/08/2005	Bronx	7	2	5		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn North	3	3	1		Paper		Shepherd Ave (Metro Paper)
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn North	3	3	2		MGP		Hugo Neu Schnitzer

Collection Date	Delivery Date	Borough	$$		\# \# O O	志 に	Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn North	4	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn South	12		1	E	Street Basket		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Brooklyn South	13		1	?	Street Basket		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	2	3	1		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	2	3	2		MGP		Hugo Neu Schnitzer
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	5		1	D	Street Basket		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	8	1	1		MGP		Hugo Neu Schnitzer
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	8	3	1		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	8	3	3		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	8	4	3		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	8	5	2		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Manhattan	9		1	N	Street Basket		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens East	7	1	2		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens East	7	1	4		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens East	13	3	5		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens East	13	7	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	1	4	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	1	4	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	4	3	3		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	5		1	D	Street Basket		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	9	1	1		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	9	1	3		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	9	2	2		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	1	3	1		Refuse		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	2	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	2	2	3		Refuse		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	2	2	4		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	3	4	1		Refuse		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	3	5	3		Refuse		Varick Street
Monday, 03/07/2005	Tuesday, 03/08/2005	Staten Island	3	6	2		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Bronx	4	2	3		Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$$		\# \# O O	$\begin{aligned} & \$ \\ & \frac{\$}{1} \\ & \hline \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn North	3	3	5		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn North	4	1	3		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn North	4	1	4		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn South	6		1	E	Street Basket		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn South	14		1	D	Street Basket		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn South	17	1	2		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Brooklyn South	17	1	3		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	3	1	1		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	3	3	1		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	6	3	2		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	8	1	1		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	8	1	5		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	8	2	1		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	8	3	2		MGP		Hugo Neu Schnitzer
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Manhattan	8	3	4		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens East	11	3	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens East	11	3	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens East	13	7	1		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens East	13	7	4		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	1	4	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	4	3	2		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	4	3	3		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	4	3	5		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	5	2	2		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	5	2	3		Refuse		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	5		1	D	Street Basket		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Queens West	6	6	1	N	Street Basket		Harlem River Yard
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	2	2	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	1	2		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	1	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	1	3		Refuse		Varick Street

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	U 0 0 0 0		-	雩	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	1	4		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	5	2		Refuse		Varick Street
Tuesday, 03/08/2005	Wednesday, 03/09/2005	Staten Island	3	6	3		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	4	2	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	5	1	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	5	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	5	2	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	5	2	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	5	2	3		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	5	3	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Bronx	7	2	4		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn North	4	1	1		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn North	4	2	1		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn North	4	3	2		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn North	4	3	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn North	4	3	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	6	2	1		Paper		Shepherd Ave (Metro Paper)
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	17	1	1		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	17	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	17	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	17	1	3		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Brooklyn South	17	1	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	3	1	3		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	5		2	N	Street Basket		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	8	3	1		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	8	3	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	8	3	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	8	5	1		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	8	5	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	8	5	3		Paper		Shepherd Ave (Metro Paper)
Wednesday, 03/09/2005	Thursday, 03/10/2005	Manhattan	12		1	D	Street Basket		Harlem River Yard

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	$$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \text { © } \\ & \hline \end{aligned}$	(1)		Sample Type	Samples taken from Dual Bin	Delivery Location
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	7	1	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	7	3	5		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	10	4	1		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	12		1	E	Street Basket		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	13	3	4		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	13	5	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	13	5	3		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens East	13	7	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	1	4	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	1		1	D	Street Basket		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	3	2	1		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	3	2	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Queens West	5	2	2		Refuse		Harlem River Yard
Wednesday, 03/09/2005	Thursday, 03/10/2005	Staten Island	2	2	1		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Staten Island	2	2	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/09/2005	Thursday, 03/10/2005	Staten Island	2	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Staten Island	2	2	4		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/09/2005	Thursday, 03/10/2005	Staten Island	2	2	6		Refuse		Varick Street
Wednesday, 03/09/2005	Thursday, 03/10/2005	Staten Island	3	6	3		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Bronx	4	2	2		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Bronx	5	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/10/2005	Friday, 03/11/2005	Bronx	5	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/10/2005	Friday, 03/11/2005	Bronx	5	2	2		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn North	4	2	3		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn North	4	2	5		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn North	4	3	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn North	4	3	3		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn South	14		1	M	Street Basket		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Brooklyn South	17	1	3		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	2	2	1		Refuse		Harlem River Yard

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary $(1 / 28 / 2005)$									
Collection Date	Delivery Date	Borough	$$		(1)	$\begin{aligned} & \$ 1 \\ & \frac{\$}{5} \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	2	3	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	3	3	1		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	6	3	1		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	7	3	2		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	8	1	2		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	8	4	2		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Manhattan	12		2	M	Street Basket		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens East	7	1	2		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens East	7	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/10/2005	Friday, 03/11/2005	Queens East	7	3	4		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens East	10		1	E	Street Basket		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	4	3	1		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	4	3	1		MGP		Hugo Neu Schnitzer
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	4	3	2		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	4	3	3		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	5	2	2		Dual ${ }^{17}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	1	1		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	1	3		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	1	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	2	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/10/2005	Friday, 03/11/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Thursday, 03/10/2005	Friday, 03/11/2005	Staten Island	1	3	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/10/2005	Friday, 03/11/2005	Staten Island	2		2	M	Street Basket		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Staten Island	3	4	1		Refuse		Varick Street
Thursday, 03/10/2005	Friday, 03/11/2005	Staten Island	3	5	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn North	4	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn North	4	3	3		Refuse		Varick Street
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	6	2	1		Paper		Shepherd Ave (Metro Paper)
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	6	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	17	1	1		Refuse		Varick Street

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	U 0 0 0		-	雩	Sample Type	Samples taken from Dual Bin	Delivery Location
Friday, 03/11/2005	Saturday, 03/12/2005	Brooklyn South	17	1	3		Refuse		Varick Street
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	3	1	1		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	3	1	1		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	3	1	1		Paper		Shepherd Ave (Metro Paper)
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	3	1	3		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	5		4	E	Street Basket		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	6	3	1		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	6	3	2		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	8	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	8	3	2		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	8	4	1		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Manhattan	8	4	2		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Queens East	10	4	3		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	1	4	1		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	1	4	3		Refuse		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	3	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	3	2	1		Paper		Shepherd Ave (Metro Paper)
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	3	2	2		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	3	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	4	3	2		MGP		Hugo Neu Schnitzer
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	4		1	E	Street Basket		Harlem River Yard
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	5	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	5	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/11/2005	Saturday, 03/12/2005	Queens West	5	2	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Friday, 03/11/2005	Saturday, 03/12/2005	Staten Island	3	1	1		Refuse		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Bronx	4	2	3		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Bronx	5	1	4		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn North	4	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn North	4	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn North	4	2	4		Refuse		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn North	4	3	3		Refuse		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn North	4		?	D	Street Basket		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn South	17	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Collection Date	Delivery Date	Borough	$$	O O © ©		$\begin{aligned} & \text { 雨 } \\ & \text { 心 } \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Saturday, 03/12/2005	Monday, 03/14/2005	Brooklyn South	17	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/12/2005	Monday, 03/14/2005	Manhattan	3	3	1		MGP		Hugo Neu Schnitzer
Saturday, 03/12/2005	Monday, 03/14/2005	Manhattan	3	3	1		Paper		Shepherd Ave (Metro Paper)
Saturday, 03/12/2005	Monday, 03/14/2005	Manhattan	7	2	1		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Manhattan	8	4	1		MGP		Hugo Neu Schnitzer
Saturday, 03/12/2005	Monday, 03/14/2005	Manhattan	8	5	2		MGP		Hugo Neu Schnitzer
Saturday, 03/12/2005	Monday, 03/14/2005	Manhattan	8	5	3		MGP		Hugo Neu Schnitzer
Saturday, 03/12/2005	Monday, 03/14/2005	Queens East	7	1	2		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens East	8		6	D	Street Basket		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens East	10	4	3		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens East	13	3	2		Dual ${ }^{17}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/12/2005	Monday, 03/14/2005	Queens East	13	4	3		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	3	2	2		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	3	2	2		MGP		Hugo Neu Schnitzer
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	4		1	D	Street Basket		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	5	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/12/2005	Monday, 03/14/2005	Queens West	5	2	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Saturday, 03/12/2005	Monday, 03/14/2005	Staten Island	3	6	1		Refuse		Varick Street
Saturday, 03/12/2005	Monday, 03/14/2005	Staten Island	3	8	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/14/2005	Tuesday, 03/15/2005	Bronx	4	2	3		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Bronx	5	1	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Bronx	5	2	4		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Bronx	5	3	1		MGP		Hugo Neu Schnitzer
Monday, 03/14/2005	Tuesday, 03/15/2005	Bronx	5	3	1		Paper		Shepherd Ave (Metro Paper)
Monday, 03/14/2005	Tuesday, 03/15/2005	Bronx	5	3	2		MGP		Hugo Neu Schnitzer
Monday, 03/14/2005	Tuesday, 03/15/2005	Brooklyn North	4	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/14/2005	Tuesday, 03/15/2005	Brooklyn North	4	2	2		Refuse		Varick Street
Monday, 03/14/2005	Tuesday, 03/15/2005	Brooklyn North	4	2	4		Refuse		Varick Street
Monday, 03/14/2005	Tuesday, 03/15/2005	Brooklyn North	4	3	4		Refuse		Varick Street
Monday, 03/14/2005	Tuesday, 03/15/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Monday, 03/14/2005	Tuesday, 03/15/2005	Manhattan	1		1	N	Street Basket		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Manhattan	2	2	2		Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$\begin{aligned} & \overleftarrow{0} 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		\# \# O O	$\begin{aligned} & \text { 雨 } \\ & \text { 心 } \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 03/14/2005	Tuesday, 03/15/2005	Manhattan	2	3	3		Paper		Shepherd Ave (Metro Paper)
Monday, 03/14/2005	Tuesday, 03/15/2005	Manhattan	2		2	M	Street Basket		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Manhattan	3	1	3		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	7	1	1		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	7	1	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	7	1	4		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	10	4	4		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	11	3	1		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	11	3	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	13	3	5		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	13	5	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	13	7	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens East	13	7	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	1	4	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	1	4	3		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	4	3	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	4	3	4		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	5	2	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	9	2	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	9	2	2		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Monday, 03/14/2005	Tuesday, 03/15/2005	Staten Island	1	3	1		Refuse		Varick Street
Monday, 03/14/2005	Tuesday, 03/15/2005	Staten Island	2	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/14/2005	Tuesday, 03/15/2005	Staten Island	2	2	4		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 03/14/2005	Tuesday, 03/15/2005	Staten Island	2	2	5		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Bronx	5	2	3		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Bronx	5	3	2		MGP		Hugo Neu Schnitzer
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Bronx	5	3	4		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	1	1		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	2	3		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	2	6		Refuse		Varick Street

Collection Date	Delivery Date	Borough	$$	O O © ©		$\begin{aligned} & \text { 雨 } \\ & \text { 心 } \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn North	4	3	5		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	2		1	N	Street Basket		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	3	3	2		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	3	3	2		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	6	3	4		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	7		1	M	Street Basket		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	8	1	3		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	8	1	5		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	8	3	1		MGP		Hugo Neu Schnitzer
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Manhattan	8	5	4		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Queens West	1	4	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Queens West	4	3	1		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Queens West	5	2	3		Refuse		Harlem River Yard
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	2	2	5		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	2	4	3		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	1	2		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	1	3		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	1	4		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	2	4		Refuse		Varick Street
Tuesday, 03/15/2005	Wednesday, 03/16/2005	Staten Island	3	8	1		Refuse		Varick Street
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	4	2	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	2	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	2	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	2	3		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	5	3	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Bronx	7	2	4		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn North	2		1	E	Street Basket		Varick Street

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	$$	듳 © ©	\# \# O ¢		Sample Type	Samples taken from Dual Bin	Delivery Location
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn North	2		2	D	Street Basket		Varick Street
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn North	4	3	2		Dual ${ }^{17}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn North	4	3	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Wednesday, 03/16/2005	Thursday, 03/17/2005	Brooklyn South	17	1	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	6	3	3		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	8	1	3		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	8	2	3		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	8	3	1		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	8	3	2		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	8	3	2		MGP		Hugo Neu Schnitzer
Wednesday, 03/16/2005	Thursday, 03/17/2005	Manhattan	8	5	3		Paper		Shepherd Ave (Metro Paper)
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens East	7	3	5		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens East	10	4	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens East	13	5	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens East	13	6	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens East	13	7	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	1	4	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	1	4	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	1	4	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	1	4	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	3	2	4		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Queens West	5	2	2		Refuse		Harlem River Yard
Wednesday, 03/16/2005	Thursday, 03/17/2005	Staten Island	2	2	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Wednesday, 03/16/2005	Thursday, 03/17/2005	Staten Island	2	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Staten Island	2	2	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 03/16/2005	Thursday, 03/17/2005	Staten Island	2	2	4		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Bronx	5	2	1		Paper		Shepherd Ave (Metro Paper)

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary $(1 / 28 / 2005)$									
Collection Date	Delivery Date	Borough	$$		(1)	先	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 03/17/2005	Friday, 03/18/2005	Bronx	5	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn North	2		1	E	Street Basket		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn North	4	2	3		Refuse		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn North	4	3	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn North	4	3	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	6	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	17	1	2		Refuse		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Brooklyn South	17	1	3		Refuse		Varick Street
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	3	3	1		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	3		1	E	Street Basket		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	7	3	1		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	8	1	1		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	8	2	2		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	8	5	3		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Manhattan	11		1	M	Street Basket		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	7	1	1		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	7	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	7	1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	7	3	4		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	13	3	1		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	13	4	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	13	4	4		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens East	13	5	2		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	3	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	3	2	1		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	3	2	1		Paper		Shepherd Ave (Metro Paper)
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	4	3	2		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	4	3	2		MGP		Hugo Neu Schnitzer
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	5	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Collection Date	Delivery Date	Borough	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	을 O ©		$\begin{aligned} & \text { 出 } \\ & \text { 心 } \\ & \hline \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	1	1		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	1	3		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	1	3		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	1	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	1	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	2	2		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	2	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Queens West	9	2	4		Refuse		Harlem River Yard
Thursday, 03/17/2005	Friday, 03/18/2005	Staten Island	1	3	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Staten Island	1	3	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 03/17/2005	Friday, 03/18/2005	Staten Island	3	6	2		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Bronx	5	2	1		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Bronx	5	3	1		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Bronx	5	3	2		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Bronx	5	3	3		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Bronx	7	2	4		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn North	4	1	2		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn North	4	2	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn North	4	2	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn North	4	3	3		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	6	2	1		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	6	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	6	2	1		Paper		Shepherd Ave (Metro Paper)
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	6	2	2		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	6	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/18/2005	Saturday, 03/19/2005	Brooklyn South	17	1	2		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	3	1	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	3	1	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	3	1	1		Paper		Shepherd Ave (Metro Paper)
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	7	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	7	2	2		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	7	2	2		MGP		Hugo Neu Schnitzer

Table B-1 Residential Waste Characterization Study - Phase I Winter Sampling Summary (1/28/2005)									
Collection Date	Delivery Date	Borough	$$		-	雩	Sample Type	Samples taken from Dual Bin	Delivery Location
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	7	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	8	2	2		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	8	4	1		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	8	4	2		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Manhattan	11		1	M	Street Basket		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens East	13	8	1		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens East	13	8	3		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	1	4	2		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	1	4	3		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	3	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	3	2	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	3	2	2		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	3	2	2		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	3	2	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	3	2	3		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	4	3	1		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	4	3	2		MGP		Hugo Neu Schnitzer
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	4	3	2		Paper		Shepherd Ave (Metro Paper)
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	5	2	1		Refuse		Harlem River Yard
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	5	2	1		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/18/2005	Saturday, 03/19/2005	Queens West	5	2	4		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 03/18/2005	Saturday, 03/19/2005	Staten Island	3	1	1		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Staten Island	3	1	2		Refuse		Varick Street
Friday, 03/18/2005	Saturday, 03/19/2005	Staten Island	3	8	3		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 03/19/2005	Monday, 03/21/2005	Bronx	4	2	3		Refuse		Harlem River Yard
Saturday, 03/19/2005	Monday, 03/21/2005	Bronx	5	1	2		Refuse		Harlem River Yard
Saturday, 03/19/2005	Monday, 03/21/2005	Bronx	5	1	2		MGP		Hugo Neu Schnitzer
Saturday, 03/19/2005	Monday, 03/21/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Saturday, 03/19/2005	Monday, 03/21/2005	Bronx	5	1	3		Refuse		Harlem River Yard
Saturday, 03/19/2005	Monday, 03/21/2005	Bronx	5	3	3		Refuse		Harlem River Yard
Saturday, 03/19/2005	Monday, 03/21/2005	Brooklyn North	3	3	1		Paper		Shepherd Ave (Metro Paper)
Saturday, 03/19/2005	Monday, 03/21/2005	Brooklyn North	3	3	2		Refuse		Varick Street
Saturday, 03/19/2005	Monday, 03/21/2005	Brooklyn North	4	2	2		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
Saturday, 03/19/2005	Monday, 03/21/2005	Brooklyn North	4	2	3		Refuse		Varick Street
Saturday, 03/19/2005	Monday, 03/21/2005	Brooklyn North	4	2	4		Refuse		Varick Street

Table B-1
Residential Waste Characterization Study - Phase I

$$		$\begin{aligned} & \$ \\ & \frac{\$}{1} \\ & \hline \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
2	4		Refuse		Varick Street
3	1		Refuse		Varick Street
3	2		Refuse		Varick Street
2	1		Refuse		Varick Street
2	1		Refuse		Varick Street
2	2		Refuse		Varick Street
	1	M	Street Basket		Varick Street
1	2		Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
2	1		Refuse		Harlem River Yard
3	1		Refuse		Harlem River Yard
3	1		MGP		Hugo Neu Schnitzer
3	3		Paper		Shepherd Ave (Metro Paper)
2	3		Refuse		Harlem River Yard
3	3		Refuse		Harlem River Yard
3	3		Refuse		Harlem River Yard
3	4		Refuse		Harlem River Yard
4	1		Refuse		Harlem River Yard
4	1		MGP		Hugo Neu Schnitzer
4	2		MGP		Hugo Neu Schnitzer
5	2		MGP		Hugo Neu Schnitzer
3	1		Refuse		Harlem River Yard
5	2		Refuse		Harlem River Yard
6	2		Refuse		Harlem River Yard
7	2		Refuse		Harlem River Yard
4	2		Refuse		Harlem River Yard
2	1		Refuse		Harlem River Yard
2	2		MGP		Hugo Neu Schnitzer
2	4		Refuse		Harlem River Yard
3	2		Refuse		Harlem River Yard
2	1		Refuse		Harlem River Yard
2	3		Dual	MGP and paper	Hugo Neu LIC, then Shepherd
5	1		Refuse		Varick Street
5	2		Dual ${ }^{17}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

등 은 o																																	
	Monday, 03/21/2005																																
\#1 0				G00Z/6L/E0 'Kepınıеs																													-

Collection Date	Delivery Date	Borough	District	Section	Route	Shift	Sample Type	Delivery Location
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	6		3	M	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	5		1	N	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	1		1	E	Street Basket	Harlem River Yard
Friday, March 18, 2005	Saturday, March 19, 2005	Manhattan	9		1	N	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	5		1	E	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	1		2	D	Street Basket	Harlem River Yard
Tuesday, March 08, 2005	Wednesday, March 09, 2005	Manhattan	6		3	M	Street Basket	Harlem River Yard
Wednesday, March 16, 2005	Thursday, March 17, 2005	Queens West	1		1	N	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	4		1	M	Street Basket	Harlem River Yard
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	4		1	E	Street Basket	Harlem River Yard
Thursday, March 03, 2005	Friday, March 04, 2005	Bronx	4		1	E	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Queens East	12		1	D	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	4		1	M	Street Basket	Harlem River Yard
Monday, March 14, 2005	Tuesday, March 15, 2005	Queens East	7		1		Street Basket	Harlem River Yard
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Brooklyn South	12		1	D	Street Basket	Varick Street
Thursday, March 10, 2005	Friday, March 11, 2005	Manhattan	3		1	M	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Brooklyn North	4			E	Street Basket	Varick Street
Sunday, March 13, 2005	Monday, March 14, 2005	Manhattan	2		3	M	Street Basket	Harlem River Yard
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Brooklyn South	11		2	M	Street Basket	Varick Street
Monday, February 28, 2005	Tuesday, March 01, 2005	Brooklyn South	18				Street Basket	Varick Street
Monday, March 14, 2005	Tuesday, March 15, 2005	Manhattan	10		1	M	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	4		1	N	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	3		1	N	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	1		1	N	Street Basket	Harlem River Yard
Monday, March 14, 2005	Tuesday, March 15, 2005	Manhattan	8		2	E	Street Basket	Harlem River Yard
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	7		1	E	Street Basket	Harlem River Yard
Monday, February 28, 2005	Tuesday, March 01, 2005	Brooklyn North	2		2	D	Street Basket	Varick Street
Friday, March 11, 2005	Saturday, March 12, 2005	Manhattan	4		1	E	Street Basket	Harlem River Yard
Tuesday, March 15, 2005	Wednesday, March 16, 2005	Queens East	11		1	E	Street Basket	Harlem River Yard
Friday, March 04, 2005	Saturday, March 05, 2005	Brooklyn North	2		2	D	Street Basket	Varick Street
Friday, March 04, 2005	Saturday, March 05, 2005	Queens East	14		1		Street Basket	Harlem River Yard
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Brooklyn South	17		1		Street Basket	Varick Street
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Bronx	7			D	Street Basket	Harlem River Yard
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	5		2	N	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Queens East	12		1	E	Street Basket	Harlem River Yard
Friday, March 04, 2005	Saturday, March 05, 2005	Staten Island	1		2	M	Street Basket	Varick Street

Collection Date	Delivery Date	Borough	District	Section	Route	Shift	Sample Type	Delivery Location
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Brooklyn South	14		1	M	Street Basket	Varick Street
Tuesday, March 08, 2005	Wednesday, March 09, 2005	Manhattan	2		1	D	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Bronx	6		2	E	Street Basket	Harlem River Yard
Monday, March 14, 2005	Tuesday, March 15, 2005	Queens West	2		1	M	Street Basket	Harlem River Yard
Monday, February 28, 2005	Tuesday, March 01, 2005	Brooklyn South	11		1	M	Street Basket	Varick Street
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	4		1	N	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Queens West	5		1	D	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Bronx	6		1	E	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Brooklyn South	11		3	M	Street Basket	Varick Street
Friday, March 18, 2005	Saturday, March 19, 2005	Queens East	10		1	E	Street Basket	Harlem River Yard
Friday, March 11, 2005	Saturday, March 12, 2005	Manhattan	5		2	E	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Manhattan	10		1	M	Street Basket	Harlem River Yard
Saturday, March 19, 2005	Monday, March 21, 2005	Manhattan	10		1	D	Street Basket	Harlem River Yard
Wednesday, March 16, 2005	Thursday, March 17, 2005	Manhattan	9		1	M	Street Basket	Harlem River Yard
Saturday, March 19, 2005	Monday, March 21, 2005	Manhattan	12		2	M	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	5		1	M	Street Basket	Harlem River Yard
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	2		1	N	Street Basket	Harlem River Yard
Tuesday, March 08, 2005	Wednesday, March 09, 2005	Manhattan	5		1	E	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Brooklyn South	6		1	E	Street Basket	Varick Street
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	1		2	E	Street Basket	Harlem River Yard
Sunday, March 13, 2005	Monday, March 14, 2005	Manhattan	1		1	M	Street Basket	Harlem River Yard
Sunday, March 20, 2005	Monday, March 21, 2005	Manhattan	7		1	M	Street Basket	Harlem River Yard
Sunday, March 20, 2005	Monday, March 21, 2005	Manhattan	9		1	M	Street Basket	Harlem River Yard
Wednesday, March 16, 2005	Thursday, March 17, 2005	Manhattan	12		1	M	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	6		3	M	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Brooklyn North	5		1	E	Street Basket	Varick Street
Tuesday, March 08, 2005	Wednesday, March 09, 2005	Manhattan	2		1	N	Street Basket	Harlem River Yard
Friday, March 04, 2005	Saturday, March 05, 2005	Bronx	4		1	D	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Queens East	8		4	D	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	6		1	E	Street Basket	Harlem River Yard
Friday, March 18, 2005	Saturday, March 19, 2005	Manhattan	7		1	M	Street Basket	Harlem River Yard
Friday, March 04, 2005	Saturday, March 05, 2005	Brooklyn North	1		1	E	Street Basket	Varick Street
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	5		3	E	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Manhattan	8		1	E	Street Basket	Harlem River Yard
Sunday, March 20, 2005	Monday, March 21, 2005	Queens East	7		1	M	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Brooklyn South	9		1	N	Street Basket	Varick Street

Collection Date	Delivery Date	Borough	District	Section	Route	Shift	Sample Type	Delivery Location
Friday, March 11, 2005	Saturday, March 12, 2005	Manhattan	5		1	D	Street Basket	Harlem River Yard
Wednesday, March 16, 2005	Thursday, March 17, 2005	Manhattan	12		1	N	Street Basket	Harlem River Yard
Sunday, March 13, 2005	Monday, March 14, 2005	Manhattan	5		1	N	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Bronx	7			D	Street Basket	Harlem River Yard
Monday, March 14, 2005	Tuesday, March 15, 2005	Queens West	1		1	E	Street Basket	Harlem River Yard
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Bronx	4		1	D	Street Basket	Harlem River Yard
Saturday, March 05, 2005	Monday, March 07, 2005	Brooklyn South	16		2	M	Street Basket	Varick Street
Saturday, March 19, 2005	Monday, March 21, 2005	Manhattan	11		1	M	Street Basket	Harlem River Yard
Sunday, March 13, 2005	Monday, March 14, 2005	Manhattan	2		1	M	Street Basket	Harlem River Yard
Tuesday, March 15, 2005	Wednesday, March 16, 2005	Manhattan	10		1	D	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	3		5	D	Street Basket	Harlem River Yard
Thursday, March 10, 2005	Friday, March 11, 2005	Manhattan	5		1	N	Street Basket	Harlem River Yard
Friday, March 04, 2005	Saturday, March 05, 2005	Brooklyn North	1		2	D	Street Basket	Varick Street
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	5		1	N	Street Basket	Harlem River Yard
Tuesday, March 15, 2005	Wednesday, March 16, 2005	Manhattan	11		1	D	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Manhattan	7		1	N	Street Basket	Harlem River Yard
Sunday, March 06, 2005	Monday, March 07, 2005	Queens East	14		1		Street Basket	Harlem River Yard
Saturday, March 19, 2005	Monday, March 21, 2005	Queens East	8		6	M	Street Basket	Harlem River Yard
Saturday, March 12, 2005	Monday, March 14, 2005	Manhattan	2		1	D	Street Basket	Harlem River Yard
Saturday, March 19, 2005	Monday, March 21, 2005	Manhattan	12		1	N	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Bronx	6		2	E	Street Basket	Harlem River Yard
Friday, March 04, 2005	Saturday, March 05, 2005	Brooklyn North	8		1	E	Street Basket	Varick Street
Wednesday, March 02, 2005	Thursday, March 03, 2005	Brooklyn North	2		1	N	Street Basket	Varick Street
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Bronx	6		2	E	Street Basket	Harlem River Yard
Thursday, March 10, 2005	Friday, March 11, 2005	Manhattan	6		1	E	Street Basket	Harlem River Yard
Wednesday, March 16, 2005	Thursday, March 17, 2005	Queens West	4		1	E	Street Basket	Harlem River Yard
Thursday, March 03, 2005	Friday, March 04, 2005	Bronx	7			E	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Brooklyn North	2		2	M	Street Basket	Varick Street
Saturday, March 05, 2005	Monday, March 07, 2005	Brooklyn North	2		2	D	Street Basket	Varick Street
Wednesday, March 16, 2005	Thursday, March 17, 2005	Brooklyn North	2		2	D	Street Basket	Varick Street
Thursday, March 10, 2005	Friday, March 11, 2005	Brooklyn South	14		1	M	Street Basket	Varick Street
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Manhattan	3		1	M	Street Basket	Harlem River Yard
Tuesday, March 01, 2005	Wednesday, March 02, 2005	Manhattan	11		1	D	Street Basket	Harlem River Yard
Wednesday, March 02, 2005	Thursday, March 03, 2005	Manhattan	7		1	N	Street Basket	Harlem River Yard
Thursday, March 03, 2005	Friday, March 04, 2005	Manhattan	1		1	N	Street Basket	Harlem River Yard
Thursday, March 03, 2005	Friday, March 04, 2005	Manhattan	1		2	D	Street Basket	Harlem River Yard

Table B-2

Collection Date	Delivery Date	Borough	District	Section	Route	Shift	Sample Type	Delivery Location
Thursday, March 03, 2005	Friday, March 04, 2005	Manhattan	5		2	E	Street Basket	Harlem River Yard
Monday, March 07, 2005	Tuesday, March 08, 2005	Manhattan	5		1	D	Street Basket	Harlem River Yard
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	5		2	N	Street Basket	Harlem River Yard
Wednesday, March 09, 2005	Thursday, March 10, 2005	Manhattan	12		1	D	Street Basket	Harlem River Yard
Monday, March 14, 2005	Tuesday, March 15, 2005	Manhattan	1		1	N	Street Basket	Harlem River Yard
Tuesday, March 15, 2005	Wednesday, March 16, 2005	Manhattan	2		1	N	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Manhattan	3		1	E	Street Basket	Harlem River Yard
Thursday, March 17, 2005	Friday, March 18, 2005	Manhattan	11		1	M	Street Basket	Harlem River Yard
Friday, March 18, 2005	Saturday, March 19, 2005	Manhattan	11		1	M	Street Basket	Harlem River Yard
Monday, February 28, 2005	Tuesday, March 01, 2005	Queens West	5		1	E	Street Basket	Harlem River Yard

[This page intentionally left blank.]

Appendix C
 Sample Management Form and Sample Detail Form

[This page intentionally left blank.]

Toter Wts:
Sort Date: \qquad
\square
Crew Chief: \qquad
Recycling Sample Detail Form

Grp	Mat.\# Material		Data	Moisture Sample
$\frac{\ddot{0}}{\stackrel{\rightharpoonup}{0}}$	1	Newspaper		
	2	Plain OCC/Kraft Paper		
	3	High Grade Paper		
	4	Mixed Low Grade Paper		
	5	Phone Books/Paperbacks		
	6	Paper Bags		
	7	Polycoated Paper Containers		
	8	Compostable/Soiled Paper/Waxed OCC/Kraft		
	9	Single Use Paper Plates, Cups		
	10	Other Nonrecyclable Paper		
	14	\#1 PET Tubs/Trays/Other Containers		
	15	\#2 HDPE Tubs/Trays/Other Containers		
	20	\#3 PVC Tubs		
	21	\#4 LDPE Tubs		
	22	\#5 PP Tubs		
	23	\#7 Other Tubs		
	24	Soda Crates and Bottle Carriers		
	25	Other PVC		
	26	Rigid Polystyrene Containers and Packaging		
	27	Expanded Polystyrene Containers and Packaging		
	28	Other Rigid Containers/Packaging		
	29	Plastic Bags		
	30	Other Film		
	31	Single Use Plastic Plates, Cups, Cutlery, Etc.		
	32	Other Plastics Materials		
$\begin{aligned} & \text { 品 } \\ & \text { שٌ } \end{aligned}$	36	Mixed Cullet		
	38	Other Glass		
$\stackrel{\text { Ĩ }}{2}$	40	Aluminum Foil/Containers		
	41	Other Aluminum		
	42	Other Non-Ferrous		
	43	Tin Food Cans		
	44	Empty Aerosol Cans		
	45	Other Ferrous		
	46	Mixed Metals		
	64	Small Appliances: Ferrous		
	65	Small Appliances: Non-Ferrous		
	66	Small Appliances: Plastic		
	67	Audio/Visual Equipment: Cell Phones		
			count	
	68	Audio/Visual Equipment: Other		
	69	Computer Monitors		
	70	Televisions		
	71	Other Computer Equipment		亲

Toter Wts： \qquad
Sort Date： \qquad
\square
Crew Chief： \qquad
Recycling Sample Detail Form

Grp	Mat．\＃	Material	Data	Moisture Sample
	47	Leaves And Grass		
	48	Prunings		
	49	Stumps／Limbs		
	50	Food		
	51	Wood Furniture／Furniture Pieces		
	52	Non－C\＆D Untreated Wood		
	53	Non－Clothing Textiles		
	54	Clothing Textiles		
	55	Carpet／Upholstery		
	56	Disposable Diapers and Sanitary Products		
	57	Animal By－Products		
	58	Rubber Products		行
	59	Shoes		$\underline{\sim}$
	60	Other Leather Products		
	61	Fines		行
	62	Upholstered or Other Organic－Type Furniture		
	63	Miscellaneous Organics		碞
$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	73	Untreated Dimension Lumber，Pallets，Crates		
	74	Treated／Contaminated Wood		$\boldsymbol{*} \boldsymbol{R}$
	75	Gypsum Scrap		
	76	Rock／Concrete／Bricks		
	77	Other Construction Debris		
	78	Miscellaneous Inorganics		
	79	Ceramics		
坣	80	Oil Filters		
	81	Antifreeze		
	82	Wet－Cell Batteries		
	83	Gasoline／Kerosene／Motor Oil／Diesel Fuel		
	84	Latex Paints／Water－Based Adhesives／Glues		
	85	Oil－Based Paints／Solvent－Based Adhesives／Glues		
	86	Pesticides／Herbicides／Rodenticides		
	87	Dry－Cell Batteries		
	88	Fluorescent Tubes		
	89	Mercury－Laden Wastes		
	90	Compressed Gas Cylinders，Fire Extinguishers		
	91	Home Medical Products		碞
	92	Other Potentially Harmful Wastes		

Appendix D
 Material Category Definitions

[This page intentionally left blank.]

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

Grp	Mat. \#	Material	MATERIAL CATEGORIES Description	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { on } \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$		麇	
$\begin{aligned} & \overleftarrow{む} \\ & \stackrel{\circ}{0} \end{aligned}$	1	Newspaper	Printed ground wood newsprint (Advertising "slicks" - glossy paper - if found mixed with newspaper; otherwise, ad slicks are included with mixed low grade.).				\checkmark
	2	Plain OCC/Kraft Paper	Old unwaxed/uncoated corrugated container boxes, and Kraft paper other than paper bags				\checkmark
	3	High Grade Paper	White and lightly colored bond, rag, or stationary grade paper. This includes white or lightly colored sulfite/sulfate bond, copy papers, notebook paper, envelopes, Continuous-feed sulfite/sulfate computer printouts and forms of all types.				\checkmark
	4	Mixed Low Grade Paper	Includes junk mail, magazines, colored papers, bleached Kraft other than bags, boxboard, mailing tubes, carbonless copy paper, ground wood computer printouts				\checkmark
	5	Phone Books/Paperbacks	Paperback books and telephone directories				\checkmark
	6	Paper Bags	White, brown or other colored paper bags				\checkmark
	7	Polycoated Paper Containers	Beverage containers made of bleached and unbleached paperboard coated with HDPE film. This includes polycoated milk and juice containers, and aseptic juice containers, including those with plastic spouts attached. Excludes juice concentrate cans, ice cream containers.				\checkmark
	8	Compostable/Soiled Paper/Waxed OCC/Kraft	Waxed papers and cardboards; other papers that were soiled with food during use (e.g., pizza box inserts); paper towels, wipes and napkins. Excludes paper plates, platters, cups, and bowls.				\checkmark
	9	Single Use Paper Plates, Cups	Paper plates, platters, cups and bowls				\checkmark
	10	Other Nonrecyclable Paper	Polycoated frozen food and ice cream containers/packaging and other polycoated papers (excluding cups, plates, bowls and platters; milk/juice cartons, and aseptic packaging); paper with other materials attached (e.g. orange juice cans, nut cans, ajax/comet containers)				\checkmark
	11	PET Bottles	\#1 Polyethylene terephthalate translucent bottles and jars.	D/N/P	\checkmark	\checkmark	\checkmark
	12	HDPE Bottles: Natural	High-density translucent polyethylene (\#2) milk, juice, beverage, oil, vinegar, distilled water bottles with necks and jars	N/P	\checkmark	\checkmark	\checkmark
	13	HDPE Bottles: Colored	High-density colored polyethylene (\#2) bottles. Liquid detergent bottles, some hair care bottles with necks and jars	N/P	\checkmark	\checkmark	\checkmark
	14	\#1 PET Tubs/Trays/Other Containers	Wide mouth tubs and trays without a neck, such as yogurt, cottage cheese, and margarine embossed with \#1.				
	15	$\begin{array}{\|l} \text { \#2 HDPE Tubs/Trays/Other } \\ \text { Containers } \\ \hline \end{array}$	Wide mouth tubs and trays without a neck, such as yogurt, cottage cheese, and margarine embossed with \#2.				
	16	\#3 PVC Bottles	Plastic bottles displaying a \#3	N/P	\checkmark	\checkmark	
	17	\#4 LDPE Bottles	Plastic bottles displaying a \#4	N/P	\checkmark	\checkmark	
	18	\#5 PP Bottles	Plastic bottles displaying a \#5	N/P	\checkmark	\checkmark	
	19	\#7 Other Bottles	Plastic bottles displaying a \#7	N/P	\checkmark	\checkmark	
	20	\#3 PVC Tubs	\#3 injection molded tubs				
	21	\#4 LDPE Tubs	\#4 injection molded tubs				
	22	\#5 PP Tubs	\#5 injection molded tubs				
	23	\#7 Other Tubs	\#7 injection molded tubs				
	24	Soda Crates and Bottle Carriers	Self Explanatory				
	25	Other PVC	Plumbing pipe, identifiable PVC packaging other than PVC bottles/tubs				
	26	Rigid Polystyrene Containers and Packaging	\#6 clear trays, salad containers/trays, clamshells, cookie tray inserts, dairy tubs, CD Boxes				\checkmark
	27	Expanded Polystyrene Containers and Packaging	Includes packaging and finished products made of expanded polystyrene. Excludes styrofoam plates, cups, bowls, takeout clamshells, and platters.				

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

Grp Mat. \quad Material			Description			E	
$\begin{aligned} & \dot{\dot{J}} \\ & \frac{\dot{\omega}}{\bar{I}} \end{aligned}$	69	Computer Monitors	Items other than televisions containing a cathode ray tube (CRT) such as computer monitors and laptops.				
$\left\lvert\, \begin{gathered} 0 \\ \text { E } \end{gathered}\right.$	70	Televisions	Television sets containing a cathode ray tube (CRT).				
$\stackrel{\dot{2}}{\stackrel{\rightharpoonup}{4}}$	71	Other Computer Equipment	Computer items not containing CRTs such as processors, mice and mouse pads, keyboards, disk drives, calculators, etc.				
$\begin{aligned} & \tilde{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	73	Untreated Dimension Lumber, Pallets, Crates	Untreated, milled lumber commonly used in construction for framing and related uses. Pallets and wooden crates.				
	74	Treated/Contaminated Wood	Lumber and wood products that have been painted or treated so as to render them difficult to compost (with generally 50% or more of the surface area treated). This includes painted and chemically treated lumber, plywood, strandboard, and particleboard.				
	75	Gypsum Scrap	Calcium sulfate dehydrate sandwiched between heavy layers of Kraft-type paper. Also known as drywall.				
	76	Rock/Concrete/Bricks	Rock gravel larger than $2^{\prime \prime}$ diameter, Portland cement mixtures (set or unset), and fired-clay bricks.				
	77	Other Construction Debris	Construction debris (other than wood) that cannot be classified elsewhere, and mixed fine building material scraps. For example, floor sweepings from construction activities containing sawdust, nails, wire, etc. Also: asphaltic roofing and fiberglass insulation.				
نٌ	78	Miscellaneous Inorganics	Other inorganic materials not classified elsewhere.				
	79	Ceramics	Whole or fragmented ceramic or porcelain products larger than $1 / 2$ inch screen				
急	80	Oil Filters	Metal oil filters used in cars and other automobiles.				
	81	Antifreeze	Self Explanatory				
	82	Wet-Cell Batteries	Wet-cell batteries of various sizes and types as commonly used in automobiles.				
	83	Gasoline/Kerosene/Motor Oil/Diesel Fuel	Gasoline, diesel fuel, and fuel oils. Lubricating oils, primarily used in vehicles but including other types with similar characteristics.				
	84	Latex Paints/Water-Based Adhesives/Glues	Water-based paints and similar products.				
	85	Oil-Based Paints/SolventBased Adhesives/Glues	Solvent-based paints, varnishes, glues and similar products. Various solvents, including chlorinated and flammable solvents, paint strippers, solvents contaminated with other products such as paints, degreasers and some other cleaners if the primary ingredient.				
	86	Pesticides/Herbicides/Rodenti cides	Variety of poisons with the purpose of discouraging or killing insects, weeds, vermin, or microorganisms. Fungicides and wood preservatives, such as pentachlorophenol, are also included.				
	87	Dry-Cell Batteries	Dry-cell batteries of various sizes and types as commonly used in households. Includes cell phone and button cell batteries.				
	88	Fluorescent Tubes	Fluorescent light tubes and compact fluorescent bulbs (CFL).				
	89	Mercury-Laden Wastes	Thermostats, thermometors, and other items containing mercury.				
	90	Compressed Gas Cylinders, Fire Extinguishers	Self Explanatory				
	91	Home Medical Products	Syringes, IV bags, medical tubing, and other home medical products and supplies.				
	92	Other Potentially Harmful Wastes	Explosives, Smoke detectors, Asbestos, Caustic acids and bases whose primary purpose is to clean surfaces, unclog drains, or perform other actions; photography chemicals, chemistry sets. Household disinfectants. Pool chemicals.				

Appendix E R. W. Beck Health
and Safety Plan
[This page intentionally left blank.]

R.W. BECK, Inc.
 Health and Safety Plan for Waste Composition Field Sorting

Date: April 29, 2004

Introduction

Corporate Safety Policy

R.W. Beck, Inc. believes that the health and safety of its employees is of paramount importance. The issue of health and safety is particularly important in conducting solid waste composition field sorting. The terms "waste sort," "waste composition study," "waste characterization study," and the like may be used interchangeably, and all relate to any project that requires the manual handling of municipal solid waste ("MSW") and subsequent sorting and weighing MSW to determine the percentage of different components in the MSW stream.

To address this issue, the following Health and Safety Plan ("HASP") has been developed to provide guidelines to Project Managers, Field Supervisors, Crew Chiefs, and other field workers ("Field Personnel") involved in R.W. Beck's waste characterization studies. This Plan has also been prepared for distribution to third parties, such as R. W. Beck's clients who are commissioning the waste composition study, solid waste management facility managers who may be hosting a waste composition study, and subconsultants retained by the firm to assist with the performance of any of the on-site activities of a waste composition study.

Objectives of the Plan

R.W. Beck's HASP for Waste Characterization Field Sorting has the following four objectives:

- To align R. W. Beck's health and safety efforts with policies and procedures that are already in place at the solid waste management facilities that host waste composition studies,
- To describe the roles and responsibilities of professional staff regarding health and safety,
- To describe the personal and site safety equipment that must be provided at all waste sorting sites,
- To provide field personnel with a description of the safety procedures to be followed in waste sorting,
- To describe the training and monitoring that R. W. Beck field personnel, subconsultants, and temporary workers must undergo before engaging in waste sorting activities.

Host Facility Health and Safety Coordination

Facilities at which R.W. Beck will sort waste may be owned and operated by third parties that have their own health and safety plans and procedures. It is important that, as guests at the facility, R.W. Beck's workers understand and adhere to the facility's health and safety plan. Adherence to the facility plan may include:

- Confining our waste sorting activities to the areas designated by the facility's owner/operator
- Wearing safety equipment required by the facility's owner/operator, and
- Understanding emergency plans and procedures.

It is important that the Field Supervisor or Project Manager work closely with the facility's owner/operator to integrate operations, including training staff regarding health and safety planning. Specific hold harmless of indemnification requirements by the Host Facility should be reviewed in accordance with the firm's Authorization Policy.

Staff Roles and Responsibilities

Every waste characterization study is unique in some way. Differences in the scope of work, size of the project, and sorting sites, for example, will require different configurations of staffing. However, for the purposes of this Health and Safety Plan, the responsibilities of four types of professionals are described here: (1) Safety Manager, (2) Project Manager, (3) Field Supervisor, and (4) Crew Chief. Some of these roles may overlap in practice. Their roles and responsibilities in the safety effort are described below.

Safety Manager

The Safety Manager is an R. W. Beck employee who is responsible for overseeing the health and safety policies and practices for all waste characterization projects across the firm. This responsibility includes seeing that the HASP is up-to-date, that an appropriate level of safety training for professional staff and temporary workers is maintained, that the most appropriate safety equipment is available to sorting crews, and that issues relating to the health and safety on waste characterization projects have been addressed. The Safety Manager is also responsible for communicating significant HASP changes or updates, newly acquired waste composition-related projects, and any health or safetyrelated events that occur while performing a waste composition study to R. W. Beck's Risk Management Department so that the firm can comprehensively and accurately monitor the success of the Plan.

Project Manager

The Project Manager of a waste characterization study has overall responsibility for the safety and health of all members of his Project Team. Although he/she will delegate some
of these responsibilities to the Field Supervisor and Crew Chief(s), the Project Manager remains the primary responsible party. The Project Manager must be an R. W. Beck employee.

The Project Manager is responsible for developing a project budget, schedule, and scope of work that provides the time and funds for conducting a safe waste sort. Proper safety equipment (see Section \qquad - Safety Equipment) must be obtained and issued to workers, and the training of the professional staff and temporary workers must take place before any actual sorting begins. This training is discussed in more detail below. The Project Manager must instill in his/her Project Team an attitude of prudence and care in carrying out the sort.

The Project Manager is also responsible for coordinating with host facility management regarding risk management issues such as waivers, indemnification, and/or adding the host facility as an additional insured to Beck's insurance policy(s), if required.

The Project Manager is not required to participate in any phases of the on-site waste sorting. However, when less experienced Field Supervisors or Crew Chiefs may be involved, the Project Manager should use professional judgment in deciding whether to observe and/or participate on the initial day of field sorting to assure that health and safety practices are being followed, and to communicate to the client, host facility manager, or other parties in the event of any problems. The Project Manager is also responsible for performing periodic observations, as appropriate, to assure that HASP standards are met.

Field Supervisor

The Field Supervisor is generally the most experienced and knowledgeable member of the field sorting team. The Field Supervisor will be the primary contact with the sorting site owner/operator, coordinating sorting activities with other site activities, and supporting any incidents that may occur.

The Field Supervisor has overall responsibility for the sorting site, including the designation of the area where the sorting will take place. In addition to securing the sorting site (i.e. identifying and marking the boundaries of the sorting site), the Field Supervisor should ensure that the sort workers are protected from other equipment and activities on the site. Typically, the Field Supervisor will oversee the selection, delivery, and queuing of samples. The Field Supervisor has the authority to reject any samples and/or immediately terminate any staff who have not following appropriate health and safety practices.

Crew Chief

The Crew Chief is the individual most directly responsible for the health and safety of the individuals sorting waste. The Crew Chief does not have to be an R. W. Beck employee.
$\mathrm{He} /$ She should take a leading role in pre-sort training, be sure that sorting workers have proper personal protective equipment, and that safe sorting procedures are followed throughout the project. As the supervisor working most closely with sorters, the Crew Chief must be alert to unsafe practices (e.g. shoving a hand into the middle of a pile of waste) and warn workers about these practices when they occur. The Crew Chief may be the first person to see an accident and must take appropriate action immediately. The Crew Chief has the authority to immediately terminate sort employees not following appropriate health and safety practices.

Sorter

Sort laborers for waste composition studies may be acquired from multiple organizations, including temporary staffing companies, subconsultants, college or high school internship programs, prison labor programs, professional solid waste trade association membership, and volunteers from numerous other sources (including the client organization and from within R. W. Beck during waste sort training). Regardless of the labor source, sorters are responsible for observing the training provided at the outset of a sort, adhering to the proper health and safety practices throughout the sort, wearing the appropriate personal protective equipment while engaged in sorting, and following the directions provided by the Crew Chief and Field Supervisor at all times. Any sorter not following directions may be terminated immediately without cause.

All MSW site employees, regardless of their level of authority, have the responsibility to report unsafe conditions immediately to their supervisor or to the clients on-site representative.

Safety Equipment

Personal Protection Equipment ("PPE")
The selection of Personal Protective Equipment is based upon a thorough analysis of anticipated and actual hazards on the MSW site.

PPE is broken down into two classes: (1) PPE that must be worn at all times during any sorting of MSW, and (2) PPE that may be required in addition to the required PPE, depending on local host facility requirements and/or work conditions.

The following safety equipment may be provided for each member of the sorting crew (both professional staff and temporary workers), depending on the host facility requirements and comfort.

- Protective coveralls
- Protective eyewear
- Ear plugs
- Dust mask
- Hard hat
- Reflective vest
- Puncture-resistant gloves, and
- Back-support belts
- Would traffic vests be appropriate in some cases?

We require all workers to wear a sturdy work boot, although we do not supply these. A more detailed description of the personal safety equipment is presented in Appendix A. At a minimum, the following equipment must be worn at all times by all members of the sorting crew.

- Protective coveralls
- Protective eyewear
- Puncture-resistant gloves
- Boots

Other PPE may be required depending on the policy of the facility operator or the judgment of the Crew Chief and/or Field Supervisor.

Site Safety Equipment

In addition to the personal safety equipment provided to each worker, each sorting site will have the following equipment,

- A Industrial First Aid Kit;
- An Eye-Wash kit or five eye wash bottles per crew person;
- Moist towelettes;
- Traffic cones;
- Yellow caution tape;
- A fire extinguisher;
- A cell phone or facility-maintained two-way radio ;
- Insect Repellent;
- Ice chest with drinks;
- Tent, if appropriate, and
- Heaters, if necessary.
- Emergency notification information

A more detailed description of the site safety equipment is provided in Appendix B.

Field Sorting Safety Procedures

Site Layout

Waste sorting may take place at a variety of venues - landfills, transfer stations, or other facilities. Before any sorting takes place, an R.W. Beck supervisor must inspect the site for the following::

1. Sorting activities will be well away from other activities, such as equipment and vehicle operations, that might endanger or impede waste sorting work.
2. There is adequate room to carry out the sorting activities, including the receiving and queuing samples and the disposal and recycling of sorted waste. This includes safety precautions in the refuse trucks being used.
3. If the site is outside and extreme weather may be encountered, provisions should be made for a tent or other temporary shelter to be erected.
4. Arrangements for toilet facilities and a "break" area have been made, and;
5. Access to the site by a vehicle moving the sorting equipment and crew on and off the site is available. Or: Transportation of equipment and sort personnel to and from the site is available.

Once a suitable site has been located, the Project Manager or the Field Supervisor will schedule the sort at a time agreed to by the Client and the site owner/operator. When the schedule has been determined, arrangements will be made to deliver sorting and safety equipment to the site.

If the Sorting Site is close to operational activities at the facility, it should be marked with traffic cones or high visibility warning tape so that it is clear to all Field Personnel, subconsultants, temporary workers, and facility workers exactly what area is designated for the sorting activities. It must be made clear that all areas which are not designated for sorting activities are strictly off-limits. See Appendix C for a typical sorting site layout.

MSW Facility Safety Procedures

If the sorting site is located at a facility that disposes, transfers, or otherwise processes MSW, R.W. Beck's Project Manager or Field Supervisor should meet with the Site Owner/Operator to coordinate the safety procedures at the site with R.W. Beck's safety procedures. For example, the site may require the wearing of reflective vests and this must become a requirement for the sorting crew on this project. This meeting must take place before any sorting commences.

The Site Manager should outline the facility's health and safety plan and explain the facility's emergency procedures. The location of the nearest hospital, emergency services, and poison control offices should be obtained from the Site Owner/Operator.
R.W. Beck's Supervisor should provide the Site Owner/Operator with a copy of our Health and Safety Plan, explain our safety procedures, and provide documentation of safety training for the Field Personnel, subconsultants, and temporary workers on the waste sort. During this exchange of information, any potential conflicts in approach or procedures should be resolved and both parties should be clear regarding safety and health issues.

The Project Manager should be prepared to sign an indemnification form, and possibly to add the host landfill as an additional insured on R. W. Beck's general liability policy.

Communications

It is important that supervisory staff be able to communicate with each other at all times. If one of the professional staff must leave the site for some reason, he/she should make it clear where they are going, when they will return, and what steps should be taken in case of an emergency. If, for example, the Crew Chief must leave the site, the Field Supervisor should take over the Crew Chief's duties at the sorting table. Either the Field Supervisor or Crew Chief, or both, should have a working cell phone or a facilitymanaged two-way radio (a standard item in the Site Safety Equipment) in case of an emergency.

Site Control

The integrity of the sorting site must be maintained at all times. Where appropriate, the area boundaries should be marked. Workers should understand that they must remain within the sort site and that other are on the site are prohibited. Both the Field Supervisor and the Crew Chief are responsible to see that sorting activities and workers stay within the sorting area.

There should be no smoking, eating, or drinking during sorting activities. Food and nonalcoholic liquids must be consumed away from the sorting area. Drinks should be taken in single-use disposable cups or from the original single serve containers. Personal hygiene practices such a hand washing and removal of contaminated coveralls should be conducted prior to eating, drinking or smoking.

Ergonomics

Waste sorts often involve moving and lifting containers of waste that may weigh 100 lbs or more. To prevent back strain and pulled muscles, staff must be trained in proper lifting techniques as part of the pre-sort training. When heavy containers must be moved or lifted, the Crew Chief should assign an appropriate number of workers and material handling equipment to the job.

Environmental Conditions

Extreme Heat

The risk of heat stress can be significant in summer sorts where the temperature and humidity are high. In these conditions, Crew Chiefs should monitor workers for signs of fatigue and listlessness. Breaks in the work schedule, plenty of fluids, and clothing which allows sweat to evaporate can all help to alleviate the dangers of heat stress.

Extreme Cold

Winter sorts may take place at sites with very low temperatures and high winds. Protection from the cold should include proper clothing, walls on the tent to lessen the effects of wind, and electric or gas heaters (properly ventilated). Crew Chiefs should be alert for indications of cold-effects, such as shivering and fatigue.

Fatigue

Most projects have tight schedules and the uncertainties associated with the delivery of solid waste to a landfill or transfer station can interrupt this schedule. As a result, there is usually pressure to work as long and as quickly as possible. This, in turn, can lead to carelessness and worker fatigue. Regular breaks in sorting should be built into the schedule to provide for rest and recuperation. Typically these breaks include 15 minute breaks in the morning and afternoon and a 30-60 lunch break. If sorting goes beyond 8 hours, additional breaks should be scheduled. The judgment of the Crew Chief is critical. Workers showing signs of fatigue should be given an opportunity to rest, especially if they are becoming careless or tired.

Injury Prevention

Three of the most common sources of potential injury in waste sorting are:

- Careless handling of waste,
- Lifting heavy objects, including containers of materials, and
- Walking into areas where heavy equipment is operating.

Risks associated with handling mixed solid waste can include contact with hazardous materials, sharps, and other potentially dangerous objects. Controls against injury associated with those risks are:
(1) Wear proper safety equipment at all times and
(2) Know what you are picking up. Never reach into the middle of a pile of waste to pull out material. Always select only material or objects you can see. Hand rakes can be used to spread out a pile of waste; hands or arms should never be used. Using the punctureresistant gloves provided to the crew, sorters can more safely remove needles, broken glass, and sharpened metal from a pile of waste, if the sorter sees what he/she is removing and handles it with care.

Unidentifiable Liquids, Powders, or Medical Waste

Unidentifiable liquids or powders should be treated as hazardous. If there is any question about any material or object, the sorter should immediately stop sorting and notify the Crew Chief. If, at any time, the Crew Chief believes that the sample being sorted includes institutional medical waste or a significant amount of hazardous materials, the crew should stop sorting. The Crew Chief and Field Supervisor should confer and determine if that sample should be discarded without further sorting. The sorting of institutional medical waste and commercial hazardous waste is not performed by R. W. Beck, and the responsibility for handling this material shall be solely with the host facility in the event such material is encountered. It is the responsibility of the Field Supervisor to alert the host facility management.

Lifting Controls

The Crew Chief direct lifting activities at all times. Specifically, the Crew Chief should be sure workers asked to move or lift heavy containers of waste have help available from other members of the crew. Items that cannot be lifted safely by multiple sort laborers shall not be manually weighed and shall be removed by other means. If back injuries or muscle pulls do occur, the Crew Chief should have the worker rest and decide if the injury is severe enough to warrant medical attention.

Both the Field Supervisor and the Crew Chief must see that the sorting area is clearly marked and that the sorting crew understands where the boundaries are. Moving through the area outside the sorting area should be done only with the permission and guidance of the Crew Chief.

Bloodborne Pathogens

Injuries involving cuts and puncture wounds can potentially offer an entry-point for bloodborne pathogens, such as those carrying Hepatitis and HIV. Every cut and puncture wound should be treated and the following steps should be taken by the Crew Chief or Field Supervisor:

- Using sterile gloves, immediately clean the wound with antiseptic and wrap in gauze;
- Place the needle or object causing the wound in a plastic bag;
- If, in the judgment of the Crew Chief and Field Supervisor, the wound caused by a hypodermic needle or a metal object, poses a health or safety risk to the worker, the worker will be taken to the nearest hospital or clinic for evaluation and treatment;
- Notify the Site owner/operator, the Employment Agency (if the patient is a temporary worker), and the Project Manager, who in turn should alert the Safety Manager; and the R.W. Beck Risk Manager.
- Document the incident on an accident report form and submit the completed form to the Safety Manager.

Similar steps should be taken if the worker has been exposed to potentially hazardous material and shows abnormal or unusual symptoms.

Accident Reporting \& Investigation

As a part of the Site Training of the crew, the Field Supervisor should educate workers so they are familiar with the Emergency Contact Information Sheet (see Appendix D) and that it is clearly posted in the sorting area.

All accidents must be reported in writing by the Crew Chief or Field Supervisor, using the Accident Report Form shown in Appendix E. A copy of the completed form should provided to the Site Owner/Operator, the Employment Agency (if the patient is a temporary worker), the Project Manager, who in turn notifies the Safety Manager.

It is the responsibility of the Safety Manager to maintain a file of completed accident report forms and to see that the "lessons learned" for accidents are incorporated into the HASP. Root cause analysis should be the goal of all accident/incident investigations.

Health and Safety Training

All members of a crew responsible for sorting waste must undergo, at a minimum, the training outlined below.

Professional Staff Training

R.W. Beck's professional staff should, at a minimum, have 8 hours of pre-sort training and serve a 2-day apprenticeship before taking on the role of Crew Chief. The pre-sort training must include review and understanding of the HASP and viewing R.W. Beck's safety videos. Training related to other aspects of the sort, such as material identification can also be done during this 8 -hour period. Professional staff should have a current tetanus booster.

A Crew Chief should work for at least one full week before being considered for the position of Field Supervisor.

Sorter Training

Before any waste sorting takes place, the Crew Chief and/or Field Supervisor must review relevant sections of the R.W. Beck HASP with temporary workers, be sure that all safety procedures are clear, and that all questions from the sorters have been answered. A Sorter Training Acknowledgment Form is presented in Appendix E.

Next, a "test sort" should be run at a very slow pace to be certain that all safety equipment is being worn properly and that sorters understand the safe and proper way to sort samples of waste.

At the beginning of each day of the sort, the Crew Chief should take a few minutes to check that all safety equipment is being worn and is in good shape. The Crew Chief should also remind the crew about safe sorting and go over the lessons learned from any accidents, or near accidents that have occurred.

Appendix A: Personal Protection Equipment

Personal Protection Equipment ("PPE") will be supplied to all workers sorting waste to protect them from the various hazards that might be encountered in carrying out their work. Some of the PPE is mandatory and must be worn at all times by all workers. Other PPE may be worn depending on the weather, site conditions, policy of the sorting site, and judgment of the Crew Chief and Field Supervisor.

The mandatory PPE include:

- Protective coveralls - Tyvek or cotton coveralls must be worn at all times to protect worker's clothing from accidental spills, offer an added layer of warmth in cold weather conditions, and provide added visibility to worker's on the site.
- Puncture-resistant gloves - Rubber, plastic, or leather gloves must be worn while sorting waste. They are designed to protect sorters from accidental cuts or punctures from needles, broken glass, and sharpened metal. A latex or cotton inner glove will also be provided.
- Our preferred gloves are MAPA Stanzoil Heavy-Duty Neoprene Gloves
- Also, recommended are Wells Lamont Puncture- and cut-resistant gloves and Wells Lamont Drivers gloves.
- Protective Eyewear - to provide splash/spatter protection for the sorters
- Our preferred eyewear protection is the Uvex Astro 3001 for "over the glasses" style for sorters who need to wear their own glasses and Crews Klondike for others.
- Sturdy work boots in good repair

PPE which may be worn, at the discretion of the Crew Chief or Field Supervisor include:

- Back-support belts
- Dust Masks - a dust mask should provide protection from dust and MSW particulates.
- Our preferred dust mask is the 3M 3-panel disposable Respirator
- Also recommended are the AOSafety "Pleats Plus" and the Wils0n Saf-T-FIT N95 Respirators.
- Ear plugs
- Hard hat
- Reflective vest
- Steel-toed boots

All pieces of equipment listed above will be available to all crew members at any time.

Appendix B: Site Safety Equipment

Site Safety Equipment ("SSE") will be available at all times on the sorting site to protect workers from hazards and provide emergency first aid. The standard SSE includes:

- A Industrial First Aid Kit - an OSHA-rated 25-person first aid kit or better
- An Eye-Wash kit or five eye wash bottles per crew.
- Moist towelettes
- Traffic cones - four cones to help demarcate the sorting area
- Yellow caution tape - to mark the sorting area.
- A fire extinguisher - a multi-purpose extinguisher that can be used on ordinary combustibles, flammable liquids, and electrically energized fires.
- A cell phone or facility-managed two-way radio
- Insect Repellent
- Ice chest with drinks

If site conditions and weather warrant, a tent will be provided to protect against sun, rain, and wind. Side flaps may also be installed if the weather is cold and/or windy. For very cold conditions, a gas or electric heater may be used. If a gas heater is used, adequate ventilation must be arranged.

Appendix C: Accident Report Forms

Sort Dates:

Sort Site Information
Location:
Office Telephone:
General Manager:
Site Manager:
Field Supervisor:
Crew Chief(s):

Description of Accident:

- Date
- Name of Injured Person

Actions Taken:

Reported by: \qquad
Date:

Appendix D: Emergency Contact Form

Sort Dates:

Sort Site Information

Location:
Office Telephone:
General Manager:
Site Manager:

Field Supervisor:

Crew Chief(s):

Local Hospital

Name:
Address:
Telephone:
Directions from Sort Site:

Emergency Medical Services

Name:
Address:
Telephone:
Directions from Sort Site:
Police
Name:
Address:
Telephone:
Directions from Sort Site
Fire
Name:
Address:
Telephone:

Directions from Sort Site

Poison Control Center

Telephone:
R.W. Beck Office
R.W. Beck, Inc
Suite 300
800 N. Magnolia Ave.
PO Box 538814
Orlando, FL 32803
(407) 422-4911
Contact: Debbie McDonough, John Culbertson
Safety Managr:

Safety Manager:

Appendix E: Sorter Training Acknowledgment Form

A critical element of training personnel to sort refuse is health and safety training. Before any work can begin, all sorting personnel are trained in safe procedures for handling and sorting waste. This training includes the following topics.

- Purpose of the waste sort
- Site layout - Landfill hazards
- Introduction to professional staff roles and responsibilities
- Sorters responsibilities
- Punctuality
- Rest
- No drugs or alcohol
- No smoking
- Prescribed medications
- Sort Safety Procedures
- Waste handling
- Use of Personal Protective Equipment
- Site Safety Equipment
- Designated work and break areas
- Ergonomics
- Safe lifting to avoid back stress
- Environmental Conditions
- Heat Stress
- Cold
- Fatigue
- Injury Prevention
- Hazardous Wastes
- Bloodborne Pathogens
- Emergency Procedures
- Accident Reporting
- Training Sort

Acknowledgement

I acknowledge that the professional staff from R.W. Beck has discussed and explained the topics listed above, addressed any question I have about these topics, and conducted a training sort to demonstrate the safe handling and sorting of waste.

Signed \qquad Date \qquad

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix C4: Operations Plan WCS Spring 2005

New York Waste Characterization
 Study
 Phase I Study
 Operations Plan for the Spring Sorting Period

New York City Department of Sanitation

May 2005
[This page intentionally left blank.]

DEPARTMENT OF SANITATION OF NEW YORK CITY WASTE CHARACTERIZATION STUDY PHASE I

Phase I Operations Plan

SPRING SORTING PERIOD

I. Introduction

The following Operations Plan is submitted to the Department of Sanitation of New York City ("DSNY") for the Phase I Waste Characterization Study ("Phase I Study") under Contract \#82702BR00015. The focus of this Operations Plan is the Spring Sorting Period which is scheduled to take place from Monday, May 9 through Tuesday, May 31, 2005.

The Phase I Study includes three components:

A. Residential Study

The purpose of the Residential Study is to characterize New York City's (the "City's") residential refuse and recycling materials by income and housing density strata, accounting for seasonal variation over a twelve-month period. The Study will involve taking samples of residential refuse and recycling materials, sorting and weighing them to develop an estimate of composition of these materials. The Residential Study will also develop an estimate of generation (pounds/household/strata). The Sampling Plan, Material Categories, Field Procedures, and Data Management for the Residential Study are discussed below.

B. Street Basket Study

The purpose of the Street Basket Study is to characterize the City's street basket refuse based on dedicated street basket collection routes. The Street Basket Study will involve taking samples of street basket refuse, sorting and weighing them to develop an estimate of composition of these materials. The Street Basket Study will also develop an estimate of generation (pounds/street basket) for street baskets on dedicated routes. The Sampling Plan for the Street Basket Study is discussed below. The Material Categories, Field Procedures, and Data Management for the Street Basket Study will be similar to those for the Residential Study.

C. Multi-Unit Apartment Study

The purpose of the Multi-Unit Apartment Study is to identify the physical and operational characteristics of multi-unit apartment buildings that are correlated to successful recycling. The Multi-Unit Apartment Study will involve selecting 125 multi-unit apartment buildings at random and gathering information on key physical and operational characteristics. A definition of successful recycling, incorporating diversion and capture rates and levels of contamination, will be developed as part of the Study. During the Spring and Summer Sorting Periods, samples of refuse and recycling materials from the 125 buildings will be sorted and weighed to establish the
level of successful recycling for each building. Finally, correlations between building characteristics and the recycling success rate will be developed. The full protocol for the MultiUnit Apartment Building Study will be submitted to the DSNY before any sorting begins. We anticipate that the Material Categories, Field Procedures, and Data Management for the Multi-Unit Apartment Study will be similar to those for the Residential and Street Basket Studies.
The Phase I Study will be conducted by the R. W. Beck Project Team ("R. W. Beck") working with the DSNY. The plan presented below describes how the Phase I Study will be developed and carried out during the Spring Sorting Period.

II. Sampling Plans

Each of the three components of the Phase I Study will involve characterizing refuse and recycling materials. This characterization will be accomplished by sorting samples of refuse and recyclables. The first step in this process is the selection of samples. A sampling plan, which describes the steps taken to obtain a sample for each of the three components, is presented below.

A. Residential Sampling Plan

The residential sampling plan involves designing a process for selecting samples of residential curbside refuse and recycling materials (i.e., paper and metal, glass and plastic ("MGP")). The process includes the following six steps:

1. Determining the income/density strata;
2. Determining the sample size;
3. Determining the sample weight;
4. Designing the sample selection process;
5. Developing the sample collection process; and
6. Developing refuse and recycling generation estimates.

Because the purpose of the Residential Study is to characterize the residential waste by income and density strata, the first step in the sampling plan was to determine define these strata and identify them within the City.

i. Income/Density Strata

An income/housing density matrix was developed using U.S. Census data for the year 2000 for each of the 2,217 census tracts in New York City. Three income levels, based on median household income, and three housing density levels were used to create a nine-box matrix.
The income levels used were defined as:

Phase I Operations Plan

■ Low Income $=$ Median household income below $\$ 30,763$;
■ Medium Income $=$ Median household income between $\$ 30,763$ and $\$ 46,193$; and

- High Income $=$ Median household income above $\$ 46,193$.

The housing density criteria were based on the number of structures within each census tract. The three housing density levels were defined as:

- Low Density = Census tracts in which 67 percent of the structures contain 2 or fewer units;
- Medium Density = All census tracts that are not in the High or Low categories; and
- High Density = Census tracts in which 67 percent of the structures contain 10 or more units.

The resulting income/density matrix separated the City's census tracts by income and density, as shown in Table 1.

Table 1
Number of Census Tracts in Each Income/Density Stratum

	Low Income	Medium Income	High Income	Total
Low Density	5	177	410	636
Medium Density	392	435	162	636
High Density	342	$\underline{127}$	$\underline{167}$	$\underline{636}$
Total	$\mathbf{7 3 9}$	$\mathbf{7 3 9}$	$\mathbf{7 3 9}$	$\mathbf{2 , 2 1 7}$

Because so few census tracts are in the Low/Low stratum, it was decided to eliminate this stratum from the study and focus the study on the remaining eight strata.
Next, a map of the City was developed in which each of the nine strata was color-coded. This map is shown in Appendix A.
To identify the universe of existing refuse and recycling collection routes, the DSNY provide a list of existing routes that fell entirely within contiguous census tracts of the same strata. The number of existing routes for each stratum is shown in Table 3 below.
The next step was to determine the number of samples that would be sorted.

ii. Sample Size

In a waste characterization study, the number of samples that are sorted affects the accuracy of the estimate. For example, if only one 200 pound sample of the City's refuse were sorted, it is very unlikely that the estimate resulting from sorting that single sample would match the composition of the City's entire curbside refuse. On the other hand, if hundreds of thousands of 200 pound samples were sorted - enough samples so that every ounce of the City refuse were sorted - the resulting estimate would be very accurate indeed. In fact, it would be perfectly accurate. So, how many samples should be sorted?

Phase I Operations Plan
Spring Sorting Period
Page 4

Before we answer the question about the number of samples, we should understand the nature of the materials that will be sorted. If the materials being sorted (i.e., the refuse and recycling materials) were consistently and homogeneously discarded by households, it would be relatively easy to arrive at an estimate. It would take very few samples to develop an estimate, if there were only two materials in the refuse stream and they were always found in the same proportion in every sample. Of course this is not the case. Refuse, and to a lesser degree, recyclables, are extremely variable. The percentage of each type of waste material can vary considerably among samples. Even from the same household, the type of waste can vary depending on when the sample is collected. For example, during the autumn, one would expect to find large amounts of leaves, but in the winter there will be few leaves or none. On the other hand, food waste will be found throughout the year. Because of the potential for variability between samples, a different number of samples may be required to obtain an accurate estimate for different types of waste. Continuing the example, since food waste is likely to be found more consistently than leaves, fewer samples would be required to obtain an accurate estimate of the food waste percentage in the refuse stream.

Typically, an estimate of the composition of waste is presented as three numbers: (1) the Sample Mean; (2) the Confidence Level; and (3) the Confidence Interval. The Sample Mean is the average percentage of a given material found in the samples sorted. For example, after sorting thirty samples of refuse, we will have a list of thirty percentages of paper waste. If the average of the thirty percentages of paper is 35 percent, then the Sample Mean of paper is 35 percent.
The Confidence Level and the Confidence Interval are intertwined concepts. Together, they allow statements to be made about the entire population from the sample taken. The Sample Mean is, after all, simply the average value of the samples; it is unlikely that the percentage of a given type of waste for the entire population matches the Sample Mean exactly. The Confidence Level and the Confidence Interval provide a way to convey how much the Sample Mean tell us about the entire population.
The Confidence Level indicates the degree of certainty that the Confidence Interval contains the population's mean value. For example, if the Confidence Interval around the Sample Mean - 33 percent to 37 percent for paper - is based on a Confidence Level of 90 percent, we can be 90 percent confident that the population's percentage of paper waste is contained in that interval. The purpose of the Confidence Level is to provide an indication of the accuracy of the sampling results. In waste characterization studies, a 90 percent Confidence Level is a widely accepted standard.
The third number used in describing the composition of the refuse is the Confidence Interval. This is an expression of the uncertainty regarding the population Mean. For example, our Sample Mean of 35 percent for paper waste may have a Confidence Interval of ± 7 percent, at a 90 percent Confidence Level. That is, based on the number of samples that have been sorted and results obtained, we would expect that 90 percent of the time, the amount of paper waste in the refuse of the entire population would be between 28 percent and 42 percent. Or, put another way, if we could actually go out and determine the exact percentage of paper waste in our

Phase I Operations Plan
Spring Sorting Period
Page 5
population, we are 90 percent certain that the value would be between 28 percent and 42 percent. If we wanted a more accurate estimate, we would have to sort more samples.

In recommending the number of samples of refuse and recyclables to sort, R. W. Beck considered not only the level of accuracy of the estimate, but the cost of providing this estimate and the variability of materials being sorted. As noted above, the variability of some material in the refuse is greater than other materials. Yard waste is much more variable than food waste. Therefore, for a given number of samples, the estimate of some materials will be more accurate than the estimate for others. Sorting a few hundred samples of refuse may provide a Confidence Interval of ± 8 percent for paper, but a ± 30 percent for yard waste. To achieve a ± 8 percent for yard waste would require significantly more samples and would probably be prohibitively expensive.
In practical terms, "variability" simply means the variation we are likely to find between samples. If we sort through 10 samples and each sample has between 28 percent to 32 percent of a given waste type, we can be pretty certain that the percentage of this waste type for the population as a whole lies in this general range. But if we sort through these same 10 samples and find results of 1 percent, 80 percent, 20 percent, 65 percent, and so forth, you can see that we are much less certain about the percentage of this waste type in the entire population.
There is a point of diminishing returns for waste sampling. After that point, the cost of achieving small increases in accuracy is high. Below that point, significant increases in accuracy can be achieved with relatively little cost.
In determining the number of samples to be sorted for the Phase I Residential Study, an accuracy goal ± 7.5 percent Confidence Interval for the major material groups at a 90 percent Confidence Level was requested by DSNY. In addition to this accuracy goal, R. W. Beck considered the eight income/density strata to be characterized and the need to account of seasonality in the waste stream. Also, R. W. Beck reviewed the Preliminary Waste Characterization Study ("PWCS") to note the variability exhibited in the PWCS results.
R. W. Beck is recommending that at least 200 samples of refuse be sorted for each strata, 50 samples per strata each season.
The results of the PWCS and the Fall Sort for Phase I showed relatively little variability in Paper Recycling, but significant variability in the MGP. Therefore, R. W. Beck is recommending that 40 Paper Recycling samples per strata be sorted, 80 per season and 160 MGP samples per strata be sorted, 320 samples per season. Table 2 shows the number of samples recommended for the Phase I Residential Study.

Phase I Operations Plan
Spring Sorting Period
Page 6

Table 2
Sample Size for the Phase I Residential Study

	Samples per Strata	Samples per Season	Samples per Strata/Season	Total
Residential Refuse	200	400	50	1,600
Residential Paper Recycling	40	80	10	320
Residential MGP	160	$\mathbf{3 2 0}$	$\underline{80}$	$\mathbf{1 , 2 8 0}$
Total	$\mathbf{4 0 0}$	$\mathbf{8 0 0}$	$\mathbf{1 4 0}$	$\mathbf{3 , 2 0 0}$

iii. Sample Weight

Based on current industry practice and studies by the USEPA and academic studies (e.g., Klee), it was determined that the weight of each sample of refuse would be between 200 pounds and 250 pounds.

Because recycling paper and MGP tend are generally less variable than refuse samples (i.e., contain fewer types of materials), and based on the results of the PWCS, it was determined that the weight of each sample of recycling paper and MGP would be between 100 pounds and 125 pounds.

iv. Sample Selection

In selecting samples from the City's curbside refuse for the Phase I Residential Study, R. W. Beck and DSNY agreed to use existing refuse and recycling collection routes that were entirely within census tracts for each of the eight income/density strata. An analysis of the census tracts and information on the existing collection routes provided by DSNY, the universe of available routes was developed. Table 3 shows the number of available collection routes for each of the eight income/density strata.

Phase I Operations Plan
Spring Sorting Period
Page 7

Table 3
Pure Routes and Universe of Routes for Sampling (1)

	Refuse		MGP		Paper		Total	
Strata	Pure	Universe	Pure	Universe	Pure	Universe	Pure	Universe
High Density/ High Income	43	564	18	90	36	198	97	852
High Density/ Low Income	20	219	6	24	3	12	29	255
High Density/ Medium Income Low Density/	15	84	5	21	5	21	25	126
High Income	67	792	49	345	49	345	165	1,482
Low Density/ Medium Income	8	42	9	27	9	27	26	96
Medium Density/	2	36	1	9	2	12	5	57
High Income Medium Densityl Low Income	25	294	12	66	12	66	49	426
Medium Density/ Medium Income	13	147	9	60	9	57	31	264
Total								

(1) Pure Routes are existing DSNY collection routes which are wholly contained in a single density/income stratum. The universe of routes is the total number of times the pure route is collected during the three-week Sorting Period.

From this universe of existing routes, sample routes were randomly chosen. Because certain strata had relatively few existing routes, sampling by replacement was used, meaning that it was possible that more than one sample might be taken from any one truck. However, all samples were selected randomly. The tables with those randomly selected routes (refuse, recycling, and street basket) for the Spring Sorting Period are included as Appendix B.

v. Sample Collection

a. Refuse Sample Collection

The samples of residential refuse will be acquired at one of two private transfers stations owned by Waste Management, Inc. ("WMI") and under contract with DSNY to receive residential curbside refuse. The two transfer stations are WMI's Varick Street transfer station and Harlem River Yard transfer station. DSNY has agreed to divert the trucks that have been selected for sampling to one of these two transfer stations. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

Phase I Operations Plan
Spring Sorting Period
Page 8

As a selected truck arrives at the transfer station, the R. W. Beck Sample Manager will be notified. When the truck has tipped its load a front-end loader ("FEL") from the transfer station will take a randomly selected portion of the tipped load dump into two or three 96 -gallon toters. The random selection of the portion of the tipped load to be sampled will be made by the Sample Manager before the FEL begins to grab the sample.

The FEL will dump the selected portion of the load into toters that have been positioned by the Sample Manager and Assistant in an area designated by WMI. Once the refuse has been dumped into the toters, the FEL will manage the remainder of the tipped load as it normally would.

The Sample Manager and assistant will then weigh each toter to be sure that the sample of refuse weighs 200 pounds to 250 pounds. In a test conducted on May 7, 2004, it was found that a single 96 -gallon toter held approximately 150 pounds of refuse. Therefore, we estimate that, typically, two toters of refuse should contain one sample of waste. After the toters have been weighed, each toter will be marked with the date, Sample number, a Sample Code, and the truck number. In addition, each sample will have a Sample Management Form which will be taped to the toters. The Sample Management Form is included as Appendix C.
After the samples are weighed and labeled, they will be loaded on an R. W. Beck truck and transported to the North Shore Marine Transfer Station where they will be unloaded and positioned for sorting.
It is likely that some samples will contain bulky items that do not fit into 96-gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

b. Recycling Sampling

The samples of residential recycling Paper and MGP will be acquired at one of two processors under contract with the DSNY to receive residential curbside recycling. The two processors are Hugo Neu Schnitzer East's facility in Long Island City for MGP and Metropolitan Paper for Paper Recycling. DSNY has agreed to divert the recycling collection trucks that have been selected for sampling to these two processors. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

The procedure for acquiring samples will be identical to the procedure used as the private transfer stations described above. However, our experience in other projects, the PWCS, and the Fall Sort indicates that 100 to 125 samples of recycling material will, in most cases, require only one toter. The samples of Paper Recycling and MGP will be taken to the Greenpoint Marine Transfer Station where they will be sorted. It is likely that the MGP samples will contain bulky items that do not fit into 96 -gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of

Phase I Operations Plan
Spring Sorting Period
Page 9
the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

vi. Waste Generation

One facet of the Phase I Study is to develop generation rates for residential waste for the City. Generation rates refer to the average amount of refuse, MGP, and paper set out for collection by a household or person over a given period of time. Because the Residential Study examines the City's waste by housing-density and income strata, the generation rates were estimated by strata. Each stratum's generation rate is actually an average of individual generation rates of each household that comprise that stratum. In other words, we do not believe that each household in a given strata generates an identical amount of refuse, MGP, and paper. Rather, we believe that each stratum may have a unique average generation rate when we combine the individual households that comprise that stratum.

Residential Generation Rates

Information regarding tons collected is available at the District and Section levels. The City has 59 Community Districts and, within these Districts, 230 Sections. Information regarding population, number of households, and strata is available on the Census Tract level. The methodology used to estimate generation rates requires integrating the information available for the Census Tracts and the Section.

Using the New York City Department of City Planning's Land Use and Geographic Database for the five boroughs of New York City ("MapPluto"), we are able to assign Census Tracts to each Section. Because Census Tracts do not conform to Section boundaries, some Census Tracts belong to only one Section while others may be in two or more Sections. In cases where Census Tracts "bleed" over Section boundaries, it was initially assumed that Census Tracts reaching outside a given Section would be balanced by Census Tracts in adjacent Sections bleeding into that Section. The object was to split Census Tracts among Sections to appropriately account for the correct strata-composition of a given Section.
Since we know the number of households in each Census Tract, we can estimate the number of households in each Section by multiplying the households in each Census Tract by the number of Census Tracts assigned to a given Section. For example, MapPluto tells us that Manhattan District 6, Section 3 has seven Census Tracts. We know that the total number of households in these seven Census Tracts is 26,296 . We can check our work by comparing the sum of the households for all Sections in a District against the District totals. The sum of the estimated number of households in Section 3 of Manhattan District 6 is 91,252 . The total number of households in Manhattan District 6, as reported by DSNY, is 91,189 . These two figures are less than 1 percent of each other and indicate that our estimate of the number of households is reasonable.

For Districts where there was a significant discrepancy between the estimated number of households and the number of households reported, we mapped the Section and Census Tracts and adjusted the number of households per Section. For example, if a significant area of the Census Tract lay outside the Section to which it had been assigned, the number of households

Phase I Operations Plan
Spring Sorting Period
Page 10
assigned to the Section was adjusted. The number of households was again checked to see that our estimates were within 5 percent of the actual District totals.
Each Census Tract assigned to a Section had been placed in one of nine strata. We allocated the number of households in each Census to the appropriate strata for each Section. For example, MapPluto shows that the seven Census Tracts in Manhattan District 6, Section 3 are all in the High/High strata. Therefore, we can characterize Manhattan District 6 Section 3 as the High/High strata. It should be emphasized however that the generation rates for these Sections would not all be identical. They are individual instances of this strata's average generation rate. We can average them, weighted by the number of households in each Section, to estimate the strata's average generation rate. Of the 230 Sections in the City, 43 sections contained census tracts from the same strata.
In the remaining 187 Sections, the strata of the census tracts were mixed. For example, in Manhattan District 2 Section 1, MapPluto assigned eight census tracts from four different strata.

To calculate the generation rates we began by assuming that the population in each strata all discard exactly the average value (for their strata) that we seek. We know that this assumption is not exactly true (there is likely to be variation within each stratum regarding the amount of waste generated). Thus, we know that there will be some remaining discrepancy (" ε ") between our calculated tonnages for each Section and the actual tonnages observed.

The regression therefore seeks to estimate a single "tons per person" value for each stratum such that, when multiplied by the population of each stratum in a given Section, it closely approximates the known total tonnage for that Section. All Sections are included in this analysis, whether comprised of a single or multiple strata.

Example: Consider a simplified case where there are only 3 Sections and 2 strata.
In Section 1, there are 100 people in stratum A and 400 people in stratum B. Section 1 discards 190 tons of waste.
In Section 2, there are 300 people in stratum A and 200 people in stratum B. Section 2 discards 220 tons of waste.
In Section 3, there are 500 people in stratum A and 800 people in stratum B. Section 2 discards 500 tons of waste.
The regression analysis seeks to estimate the per-person average waste values for strata A and B using the following:
$100 * \mathrm{X} 1+400 * \mathrm{X} 2+\varepsilon=190$
$300 * \mathrm{X} 1+200 * \mathrm{X} 2+\varepsilon=220$
$500 * \mathrm{X} 1+800 * \mathrm{X} 2+\varepsilon=500$
In this case, $\mathrm{X} 1=0.49$ and $\mathrm{X} 2=0.33$ (tons per-person) are the estimates which best fit the given data.
In the actual analysis, we had data for 227 Sections upon which the estimates for the 9 strata were determined.

The documents supporting this approach and the results for the Fall Sort and Winter Sort are presented in the Fall and Winter Sorting Period Reports. This methodology will be used to develop residential generation rates for the Spring Sort.

B. Street Basket Sampling Plan

The Street Basket sampling plan involves designing a process for selecting representative samples of street basket waste. The process includes the following five steps:

1. Determining the universe of street basket waste income/density strata;
2. Determining the sample size;
3. Determining the sample weight;
4. Designing the sample selection process; and
5. Developing the sample collection process.

Because the purpose of the Street Basket Study is to characterize street basket waste, the first step in the sampling plan was to determine what universe of street basket waste would be used for drawing samples.

i. The Universe of Street Basket Waste

DSNY and R. W. Beck agreed to use the total number of dedicated street basket collection routes as the universe from which random samples of street basket refuse would be taken. Dedicated routes are those routes that collect only street basket waste. Routes that collect residential refuse as well as street basket refuse are excluded from this study. There are dedicated routes in all five of the City's boroughs.

ii. Sample Size

The results of the Seattle Litter Composition Study were reviewed to determine the variability of street basket waste. Based on this review, it was estimated that 200 samples of street basket waste would be expected to achieve a confidence interval of ± 7.5 percent for the major material groups - paper, plastic, metal, and glass. Each season 50 samples of street basket waste will be sorted.

iii. Sample Weight

The weight of samples will be the same as the weight of samples for residential refuse, for the reasons discussed in Section II. A. iii.

Phase I Operations Plan
Spring Sorting Period
Page 12
iv. Sample Selection

From the universe of dedicated street basket routes, 55 routes (50 target routes and 5 back-up routes) have been randomly selected, using Excel's random number function. These routes were sent to DSNY.

v. Sample Collection

Samples of street basket waste will be collected from 50 routes, using procedures identical to those for collecting residential refuse.

C. Multi-Unit Study Sampling Plan

The Multi-Unit Sampling Plan involves selecting buildings for the Multi-Unit Study and determining the most appropriate procedure for sampling the refuse and recycling. The development of the plan involved - steps.

1. Determining the Universe of multi-unit buildings
2. Determining the sample size
3. Determining the sample weight
4. Designing the sample selection process
5. Developing the sample collection process

Because purpose of the Multi-Unit Study is to correlate recycling success with selected physical and operational building characteristics, the first step in the sampling plan was to determine the universe of multi-unit buildings.

i. The Universe of Multi-Unit Buildings

The buildings for the Multi-Unit Study were selected from among the multi-unit buildings of six units or more in the New York City Department of City Planning, MapPluto database.

ii. Determining Sample Size

The Multi-Unit Sampling Plan will involve selecting refuse and recycling samples from 125 randomly-selected buildings. Six-seven of these buildings have been targeted for the Spring Sorting Period.

The sample size of 125 buildings was determined by the physical and operational characteristics that were being used in the Multi-Unit Study. It was decided that any characteristic that existed in at least 10 percent of all buildings in the City should be able to be adequately sampled by the Study. If a characteristic were in fewer than 10 percent of all buildings, that characteristic could not be adequately examined.
Based on this 10-percent minimum, a sample size of 125 buildings was set. If one of the characteristics we selected was in 10 percent of all buildings in New York City, with a sample size of 125 buildings, the expectation would be that roughly 10 to 12 of those buildings would have that characteristic. This would be enough buildings to test for the characteristic. For

Phase I Operations Plan
Spring Sorting Period
Page 13
characteristics that were more common, of course, more buildings would be expected to have that characteristic. The list of multi-unit collections for the Spring Sort are shown in Appendix B.

iii. Determining Sample Weight

The weight of the Multi-Unit samples will be the same as the weight of samples for the residential refuse, for the reasons discussed in Section II.A.iii. Because "recycling success" was being measured, it was decided to sort all recyclables. In effect, the recycling sample weight will consist of all materials set out for recycling.

iv. Determining Sample Selection Process

To measure and compare recycling success, it was necessary to have a profile of refuse disposal and recycling for each building in the Multi-Unit Study. To develop this profile, it was decided to sample and sort refuse and recycling over one week. For buildings with three-day per week refuse collection, refuse samples from each of the three days will be acquired. For buildings with two-day per week refuse collection, refuse samples from both collection days will be acquired. All residences have recycling picked up one day per week and this day always coincides with a refuse collection day.
Furthermore, it was decided that the recycling sample would be acquired on the last refuse collection day of a collection cycle. For example, if a building had Monday-Wednesday-Friday refuse collection and recycling collection on Monday, the refuse samples would be acquired on Wednesday and Friday and both refuse and recycling would be collected on the following Monday. In this way, all materials placed on the curb for collection during a week from each building would be examined in the Study.

v. Determining the Sample Collection Process

DSNY has arranged special a collection for buildings in the Multi-Unit Study. Dual-bin collection trucks will be used to collect both refuse and recycling. Each administrative borough in the city will send trucks collect from the buildings in their service area. The dual-bin collection trucks may collect refuse from one or two buildings, or may collect both refuse and recycling from a single building.
All trucks collecting waste from buildings from Queens or Brooklyn will deliver their loads to the Varick Street transfer station. Truck collecting waste from Manhattan or the Bronx will deliver their loads to Harlem River Yards.

The sampling team will collect multi-unit refuse samples using a procedure similar to that used for collecting samples of residential refuse and street basket waste. However, for multi-unit samples with bulk items, the bulk items will be weighed and the weight recorded, but the sample will contain a minimum of 200 pounds of bagged or loose refuse.

As noted above, the sampling team will collect all recycling delivered from each building, including all bulk items. A more detailed discussion of the multi-unit sampling protocol is included in Appendix C, along with a multi-unit sample management form.

Phase I Operations Plan
Spring Sorting Period
Page 14

III. Material Categories

A. Refuse Categories

The list of material categories to be used in the refuse and street basket sorting is presented in Appendix D.

B. Recyclables Categories

The list of material categories to be used in the recycling sorting is the same as the list of materials for refuse sorting and is presented in Appendix D.

C. Street Basket Categories

The material categories for street basket waste will be identical to the categories for refuse. In addition, sorting will seek to identify instances of illegally disposed residential or commercial waste.

D. Multi-Unit Categories

Although the material categories used for the multi-unit study will be the same as those used for the residential refuse and recycling studies, some of these categories will be collapsed into fewer sorting categories, as shown on the Multi-Unit Sample Detail Form in Appendix E.

IV. Field Procedures

A. Health and Safety Plan

R. W. Beck's current Health and Safety Plan ("HASP") has been submitted to DSNY previously and is included in Appendix F.

B. Sorting Procedures

Once the samples of refuse and recycling have been transported by the Sample Managers from private transfer stations or recycling processors to the sorting sites, the Field Supervisor at each sorting site will check in each of the samples to be certain that the Sample Management Forms and Sample labels are clear and consistent.

After the Samples have been checked in, each Crew Chief and crew will begin sorting samples. The refuse will be sorted into the material categories using the Sample Detail Form, shown in Appendix E. When all material has been sorted, the material falling through the $1 / 2$-inch screen on the sorting table, called "fines", will be swept up and included as one of the material categories. All sorted materials will then be weighed.

Protocol for Identifying and Accounting for Illegal Materials in Street Basket Waste

To determine the level illegal use of street baskets for residential or commercial refuse disposal, the following protocol will be used:
■ Before sorting, each 200 to 300-pound street basket sample will placed on the sort table for inspection by an R. W. Beck Crew Chief trained by DSNY staff to identify suspected illegal residential or commercial waste.

- All closed opaque plastic bags the size of a shopping bag or larger will be identified as potentially containing illegal material.
- The loose material found in clear plastic basket liners or opaque liners labeled with a Business Improvement District ("BID") logo will be considered legal street basket waste.
■ Any closed opaque plastic bags the size of a shopping bag or larger found within a BID bag will also be identified as potentially containing illegal material.
- Closed bags identified as potentially containing illegal material will be opened.
- If a bag contains any of the following materials, it will be classified as "residential":
- Addressed mail;
- Substantial quantities of home-use products, including: health and beauty aids, detergent bottles, family sized drink containers, or other seemingly residential material; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggest home use.
- If a bag contains any of the following materials, it will be classified as "commercial":
- Retail food preparation wastes (industrial sized food/liquid containers; substantial quantities of identical packaging or unused products, cardboard boxes);
- Construction materials such as pieces of dry wall or other building materials; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggested office, retail, industrial, construction or food establishment waste.

Closed shopping bags not containing materials deemed residential or commercial, but suggesting street use (single use containers, newspapers, etc.) will be considered legally disposed street basket waste.
For all bags identified as containing residential or commercial wastes, the following four procedures will be followed:

- All such bags will be individually photographed.

■ Each bag will have a written record describing its contents. The crew chief will record this information on the Sample Detail Form.

Phase I Operations Plan
Spring Sorting Period
Page 16

- All such bags will be counted (regardless of size) in two groups: residential bags, and commercial bags. The bag counts will be recorded on the Sample Detail Form.
■ In each sample, bags identified as containing residential or commercial waste will be weighed in two groups: residential bags, and commercial bags. The combined weights of the bags in each group (residential and commercial) will be recorded on the Sample Detail Form.
In addition, each sample will be examined for suspected instances of illegally disposed residential or commercial wastes not encased in closed bags as defined above - including instances of broken bags with spilling contents, as well as residential or commercial material loose in the street basket contents. These materials will be photographed but not weighed and their presence noted on the Sample Detail Form (as shown in Appendix E).
After these procedures have been completed, all material will be placed onto the sorting table and sorted according to the refuse sorting protocol.
All weights will be recorded by the R. W. Beck Crew Chief. The tare weight of the containers will be put into the scale so that only the net weight of the sorted material is recorded. When the weighing of all material in the sample has been completed, the sorted refuse and recycling will be placed in an appropriate roll-off container and returned to the transfer station or processor.
The Crew Chief and crew will then begin sorting the next sample. Each crew is expected to sort and weigh an approximately nine samples of refuse and MGP per day, and 15 samples of Paper Recycling per day. This average is based on our experience in the PWCS.

Multi-Unit Sorting

Because the purpose of the multi-unit study was to correlate building characteristics with recycling success, and not characterize the building's waste, a different protocol will be used to sort the multi-unit refuse and recycling. The Multi-Unit Sample Detail Form illustrates this protocol and is included as Appendix E.

Moisture and Particulate Testing

Samples of refuse and recycling will be randomly selected for moisture and particulate testing. The purpose of the test is to estimate how much of the weight of certain materials is made up of moisture and fugitive particulates that migrate to the materials during compaction in the collection truck. Eighteen materials have been identified for testing. In each randomly-selected sample 3 to 5 pounds of each material will be collected and double-bagged. Each 3 to 5 pounds of material is called a Moisture Testing Unit ("MTU"). Therefore, each sample may have as many as 18 MTUs, although some samples may not include some of the targeted materials.
All MTUs will be sent to Woods End Laboratory for testing and results reported to the Project's data management team for analysis. During the Spring Sort, 12 samples will be randomly selected for testing.
A total of 500 MTUs will be tested during the Phase I study and the analysis of the results will be reported after the fourth season of sorting.

Phase I Operations Plan
Spring Sorting Period
Page 17

C. Staffing

The professional staff for the Spring Sorting Period will include:

- Tom Jones, Project Manager: Mr. Jones has been with R. W. Beck for the past 16 years and is currently a Senior Director of the firm. His work has included waste characterization studies, solid waste facility financings, and planning/implementation work.

■ Deborah McDonough, E.I.T. - Data Manager: Ms. McDonough, an Engineer with R. W. Beck since 2001, is responsible for conducting transmission analyses and specializes in designing software programs, data management applications, and interactive graphical tools for use in projects associated with solid waste composition studies, locational marginal pricing, transmission power flow studies, transmission constraint analysis, and rate analyses. She is also Project Manager of the Georgia State Waste Characterization Study. Ms. McDonough has been the Data Manager since the beginning of the Project.
■ Joe Naviera, Assistant Data Manager: Mr. Naveira has an AS degree in Database Technology and recently joined R. W. Beck as a Data Administrator. He has assisted in the maintenance and development of databases for multiple clients, including the New York Department of Sanitation and R. W. Beck's disaster relief project throughout Florida.

- John Culbertson, Technical Advisor: Mr. Culbertson is a Project Manager in R. W. Beck's Environmental Services Group with 11 years of experience in environmental and information management consulting. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and solid waste system financial and strategic analysis.
- Mack Rugg, Residential Study Task Manager: Mr. Rugg is an employee of Camp Dresser McKee and an acknowledge expert in the field of waste characterization. He has managed numerous waste studies, including a current project in Bergen County, New Jersey.

■ Tanya Tarnecki, Street Basket Task Manager: Ms. Tarnecki manages several waste management projects for Cascadia Consulting, including data collection and reporting waste characterization projects in King County, Washington; and San Bernadino and Orange County, California.
■ Tim Buwalda, Multi-Unit Apartment Task Manager: Mr. Buwalda is a Senior Engineer with R. W. Beck with more than 13 years of experience, specializing in waste reduction and materials recovery. His background includes comprehensive solid waste management and recycling experience in both municipal and private settings.
■ Walt Davenport, Director of Sorting: Mr. Davenport has over 30 years of experience in the solid waste profession as a private sector hauler/recycler and consultant. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and processing efficiency. He has managed numerous waste composition studies including PA Statewide, Alameda County, CA, and Montgomery County, MD Waste Composition studies.

- Tanya Tarnecki, Greenpoint Field Supervisor: (see above)
- Brian Holt, Greenpoint Crew Chief: Mr. Holt has recently joined R.W. Beck and has been supervising crews for the firm's disaster recovery program in Florida.
■ Karen Vickers, Greenpoint Field Supervisor: Ms. Vickers has 10 years of experience in solid waste management and waste reduction project planning, educational outreach, and special events planning on the state and local government levels in the Southeast region. Previously, Ms. Vickers was employed as the Program Education Specialist for the Athens Clarke County Solid Waste Department, Recycling Division, in Athens, Georgia, as the State Recycling Coordinator for the Georgia Department of Community Affairs, and as a Recycling Coordinator for the City of Delray Beach, Florida. Ms. Vickers currently serves as the Vice President of the Georgia Recycling Coalition, and holds Faculty member status with the Solid Waste Association of North America. She worked as a Crew Chief in the Fall and Winter Sorts.

■ Katie Kennedy, North Shore Crew Chief: Ms. Kennedy performs research and analysis in support of waste composition and recycling analysis. Her recent field work including leading sorting crews for the Tacoma School District and the Sunshine Canyon Waste Composition Studies.
■ Marley Shoaf, North Shore Crew Chief: Ms. Shoaf performs waste and recycling audits of Seattle area businesses and facilitates stakeholder groups on environmental health topics, such as fish consumption and removal of toxic chemicals from school science labs.
■ Susan Evans, North Shore Crew Chief: Ms. Evans teaches for the King County Master Recycler Composter Program. Her other project work volunteer coordination and outreach focused on waste prevention and recycling.

■ Hilliary Smith, Sample Manager: Ms. Smith developed the paper waste management policies for Bowdoin College. She teaches waste reduction, recycling, and environmental stewardship at Island Wood on Bainbridge Island, Washington.

- Sasha Evans, Sample Manager: Ms. Evans manages waste generation studies, rate studies, and California regulatory compliance projects. Her work includes the development and implementation of recycling programs, recycling ordinances, permits documents, and solid waste planning.
- Teresa Lewandowski, Sample Manager: Ms. Lewandowski performs analysis for the annual diversion and disposal reporting to the California Integrated Waste Management Board. She also works on waste generation studies, technical reports, business surveys, and on-site waste audits.

■ Ramon Swann, Sample Manager: Mr. Swan is an employee of Organics Resources, Inc. ("ORI") and was a Sample Manager during the Fall and Winter Sorting Periods.

- Bernice Siebuhr, Sample Manager: Ms. Siebuhr is an analyst for R. W. Beck's Electrical Facilities Practice and has worked with a variety of clients in Georgia and Florida. She also did field work for the firm's disaster recovery program.
- Dieter Eckels, Sample Manager: Mr. Eckels conducts data collection, research, and analysis in support of a number of Cascadia waste characterization projects including the 2003 and 2004 California Statewide Waste Composition Studies. His background includes collection system design for the University of Washington's program to re-use on-site cooking oil as bio-diesel for the campus fleet. Mr. Eckels was a Sample Manager for the Fall Sorting Period.

■ Lyndsay Hazen, North Shore Crew Chief: Ms. Hazen provides research and analysis in support of waste composition and recycling research projects at Cascadia. Her previous experience includes work with the University of Vermont's Department of Solid Waste and Recycling, and organizing waste audits in the schools dormitories.

■ Alan Her, Sample Manager: Mr. Her assists with Cascadia's field research data collection. His previous research experience includes the design, data collection, and analysis for a study detailing the nesting begging calls of red-winged blackbirds.
During the Spring Sort, other professional staff may join those listed above.

D. Staff Training

Monday, May 9, 2005 will be devoted to staff training. The training of Crew Chiefs will be conducted by Walt Davenport, the Director of Sorting. Training for the Sample Managers will be conducted by Tom Jones, Project Manager, and Dieter Eckels, Director of Sampling.
Training will include an introduction to the Phase I Study, a discussion of health and safety policies and practices, and an explanation of sampling, sorting and weighing procedures. The first couple of samples to be sorted will be used as means of teaching material categories, proper sorting technique, and safe practices.

E. Equipment

The safety equipment for each sorter is described in Appendix F, the HASP. Other equipment being used includes:
■ Sample acquisition: 96-gallon toters, a battery-operated H\&V scale, brooms, shovels, rakes, and trucks with lift gates. All members of the Sampling teams will be equipped with hard hats, reflective vests, safety goggles, and gloves.

- Sample sorting: A sorting table, bins for sorted materials, a battery-operated $\mathrm{H} \& \mathrm{~V}$ scale, hand rakes and small brooms. All members of the sorting crews will be equipped with Tyvek suits, safety goggles, and protective gloves.

F. Post-Sort Disposal and Recycling

i. Post-Sort Disposal of Refuse

DSNY has agreed to provide roll-off containers for disposing of the sorted refuse and to remove the containers when they are full.

ii. Post-Sort Recycling

DSNY has agreed to provide roll-off containers for disposing of the sorted recyclables and to remove the containers when they are full.

V. Data Recording and QA/QC

Three types of data will be developed during the Phase I Study. The first type will be the Sample Management Form. As each sample is acquired, as described in the Sampling Plan above, information on the borough of origin, route, and truck number, will be recorded on a Sample Management Form filled out by the Sample Manager. The Sample Management Form will include the following information:

- The date on which the sample was acquired;
- The name of the transfer station from which the sample was acquired;
- The name of the Sample Manager and assistant;
- The Sample Number, which is the number of the sample acquired on that day;
- The count of the toters (i.e., 1 of 3);
- The Sample Code, which shows the borough, district, section and route of the truck from which the sample was taken. For example, Manhattan 1, Sec.12, Route. 3 indicates that the truck route from which this sample was taken was in Manhattan District 1, Section 1, Route 3;
- The truck number, which will be provided by DSNY when they assign a truck to the selected route;
- The weight of each toter in the sample; and

■ The weight and description of any bulky waste items that are part of the sample. These will not be transported to the Sorting Site.
A copy of the Sample Management Form will be affixed to the sample when it is transported from the private transfer station to the Sorting Site. It will remain with the documentation for that sample.

The second type of data will be the material weight data recorded by the Crew Chief when the sorting of each sample is completed. This form, called the Sample Sort Form, will include the net weight of each category of waste that has been sorted and, in the case of some materials, a count of the items in the category (e.g., small appliances).

When the sample has been sorted the Crew Chief and the Field Supervisor will review the forms for completeness and accuracy and sign them. At the end of the day, the Crew Chiefs, Field Supervisor, and Project Manager will review all the forms again and note any unusual samples or circumstances that may have affected the data.
The forms will put into the project's Access database by the Data Manager and her staff on-site. The Data Manager and her staff will check the data for completeness and accuracy. Once this procedure has been completed, the Data Manager will confer with the Project Manager and if they are satisfied that the data for that day of sampling is complete, it will be provided to the DSNY Project Manager.
The third type of data will be the results of the moisture and particulate testing that will be conducted by the Woods End Laboratory ("Woods End"). Small (3 pound to 5 pound) portions of selected materials will be double-bagged and sent by courier to Woods End for analysis. This data resulting from the analysis will be sent directly from Woods End to the Project Manager and Data Manager. The Data Manager will enter it into the database as it is received.

This procedure for recording and checking the data will be reviewed during the Phase I Study and, if R. W. Beck believes that changes will make the procedures more efficient, without compromising completeness and accuracy, or more accurate and complete, we will recommend these changes to DSNY.

Attachments

Appendix A - Map of the Census Tracks by Strata
Appendix B - Spring Sort Sampling Routes
Appendix C - Sample Management Forms
Appendix D - Material Categories
Appendix E - Sample Detail Forms
Appendix F - Health and Safety Plan

Appendix A Income/Density Strata in New York City

Figure A-1
Census Tracts by Strata Bronx

Figure A-2
Census Tracts by Strata Brooklyn

Figure A-3

Census Tracts by Strata Manhattan

Figure A-4

Census Tracts by Strata

 Queens

Figure A-5
Census Tracts by Strata Staten Island

Appendix B Spring Sort Sampling Routes

	Delivery Location
	Varick
	Harlem River Yards
	Harlem River Yards
	Varick
	Harlem River Yards
	Varick
	Varick
	Varick
	Varick
SMALL	Varick
MALL	Varick
SMALL	Varick

6и!!эКэәу ๖จə||0フ
 әр!s u!̣

$\begin{aligned} & \underset{\sim}{u} \\ & \frac{\sim}{4} \\ & \hline \end{aligned}$

 Spring Sorting Period
Multi-Unit Sampling Routes
Spring Sorting Period

6и!!эКэәу $\mathfrak{\downarrow} \mathfrak{\text { IIO〕 }}$ $\stackrel{\oplus}{\infty} \stackrel{\oplus}{\infty} \stackrel{0}{\sim}$
 $\stackrel{\infty}{\infty} \stackrel{0}{2}$ \qquad

Collection/Delivery Date	Address	Borough		¢ \# ¢ ¢	Truck Number
Thursday, May 12, 2005	1681 Palmetto Street	Queens West	5	3	
Friday, May 13, 2005	3026 Holland Avenue	Bronx	12	1	
Friday, May 13, 2005	183 Guernsey Street	Brooklyn North	1	1	
Friday, May 13, 2005	234 Rodney Street	Brooklyn North	1	4	
Friday, May 13, 2005	64 Clark Street	Brooklyn North	2	1	
Friday, May 13, 2005	244 Vanderbilt Avenue	Brooklyn North	2	4	
Friday, May 13, 2005	1020 Bedford Avenue	Brooklyn North	3	2	
Friday, May 13, 2005	433 Jefferson Avenue	Brooklyn North	3	3	
Friday, May 13, 2005	437 Jefferson Avenue	Brooklyn North	3	3	
Friday, May 13, 2005	170 Suydam Street	Brooklyn North	4	1	
Friday, May 13, 2005	23-78 38th Street	Queens West	1	2	
Friday, May 13, 2005	30-27 33rd Street	Queens West	1	4	
Friday, May 13, 2005	94-19 66th Avenue	Queens West	6	2	
Saturday, May 14, 2005	323 E 21st Street	Manhattan	6	1	
Saturday, May 14, 2005	602 W 157th Street	Manhattan	12	1	
Saturday, May 14, 2005	1064 Teller Avenue	Bronx	4	2	
Saturday, May 14, 2005	2420 Beaumont Avenue	Bronx	6	1	
Saturday, May 14, 2005	2321 Beaumont Avenue	Bronx	6	1	
Saturday, May 14, 2005	212 Huron Street	Brooklyn North	1	1	
Saturday, May 14, 2005	484 Clinton Avenue	Brooklyn North	2	3	
Saturday, May 14, 2005	460 Pulaski Street	Brooklyn North	3	1	
Saturday, May 14, 2005	1126 Willoughby Ave.	Brooklyn North	4	1	
Saturday, May 14, 2005	320 Suydam Street	Brooklyn North	4	1	
Saturday, May 14, 2005	311 Stanhope Street	Brooklyn North	4	2	
Saturday, May 14, 2005	32-82 30th Street	Queens West	1	3	
Saturday, May 14, 2005	34-33 30th Street	Queens West	1	6	
Saturday, May 14, 2005	45-25 39th Place	Queens West	2	3	
Saturday, May 14, 2005	37-25 90th Street	Queens West	3	3	
Saturday, May 14, 2005	44-10 Ketcham Street	Queens West	4	2	
Saturday, May 14, 2005	101-33 108th Street	Queens West	9	1	
Monday, May 16, 2005	223 Sullivan Street	Manhattan	2	2	
Monday, May 16, 2005	199 E. 4th Street	Manhattan	3	3	

					$\begin{aligned} & \text { v} \\ & \frac{0}{\pi} \\ & \lambda \end{aligned}$	$\begin{aligned} & \frac{y}{U} \\ & \frac{i n}{\sqrt{0}} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{y}{1} \\ & > \end{aligned}$	$\begin{aligned} & \text { v} \\ & \frac{0}{\pi} \\ & \lambda \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{y}{\bar{T}} \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{1}{\pi} \\ & \lambda \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{\bar{x}}{\bar{T}} \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{y}{\bar{T}} \\ & > \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{1}{\pi} \\ & \lambda \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{y}{\bar{T}} \\ & > \end{aligned}$	$\begin{aligned} & \frac{.}{0} \\ & \frac{0}{\overline{0}} \\ & > \end{aligned}$	$\begin{aligned} & \frac{4}{4} \\ & \frac{0}{C} \\ & \gg \end{aligned}$										$\begin{aligned} & \frac{4}{0} \\ & \frac{1}{n} \\ & > \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{i n}{\pi} \\ & \lambda \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \stackrel{i n}{\sqrt{x}} \\ & \lambda \end{aligned}$	$\begin{aligned} & \frac{4}{0} \\ & \frac{1}{10} \\ & > \end{aligned}$	$\begin{aligned} & \frac{4}{4} \\ & \frac{0}{C} \\ & 7 \end{aligned}$	$\begin{aligned} & \frac{y}{0} \\ & \frac{1}{\pi} \\ & \lambda \end{aligned}$	－
әр！S U！日					$\frac{1}{2}$			$\stackrel{\perp}{\vdots}$	$\underset{\omega}{\vdots}$	$\frac{1}{2}$			$\frac{\perp}{\vdots}$	$\underset{\omega}{\vdots}$	$\underset{\omega}{\vdots}$	$\underset{\omega}{\vdots}$										$\frac{1}{4}$			$\frac{1}{4}$	$\underset{\omega}{\vdots}$		
би！ןэкэәу 	\bigcirc	\bigcirc	읃	읃	$\stackrel{\varrho}{\boldsymbol{\omega}}$	읃	읃	$\stackrel{』}{\stackrel{\infty}{\sim}}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{\mathscr{\infty}}{\stackrel{0}{\sim}}$	읃	읃	$\stackrel{\oplus}{\stackrel{1}{\lambda}}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\otimes}{\otimes}$	읃	읃	읃	읃	읃	읃	읃	읃	읃	$\stackrel{\mathscr{N}}{\boldsymbol{\infty}}$	읃	읃	$\stackrel{』}{\stackrel{\infty}{2}}$	$\stackrel{\otimes}{\otimes}$	\bigcirc	\bigcirc
әp！S U！я								$$					$\begin{aligned} & \text { 山 } \\ & \text { O} \\ & \text { r } \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$										$\begin{aligned} & 山 \\ & 0 \\ & \underset{\sim}{5} \\ & \hline \end{aligned}$			山 O ¢ ¢			

Collection／Delivery Date	Address	Borough	\＃	¢	Truck Number
Monday，May 16， 2005	125 E．30th Street	Manhattan	5	1	
Monday，May 16， 2005	112 W．71st Street	Manhattan	7	1	
Monday，May 16， 2005	604 West 115th Street	Manhattan	9	1	
Monday，May 16， 2005	240 W．111th Street	Manhattan	10	1	
Monday，May 16， 2005	183 Guernsey Street	Brooklyn North	1	1	
Monday，May 16， 2005	64 Clark Street	Brooklyn North	2	1	
Monday，May 16， 2005	1020 Bedford Avenue	Brooklyn North	3	2	
Monday，May 16， 2005	433 Jefferson Avenue	Brooklyn North	3	3	
Monday，May 16， 2005	437 Jefferson Avenue	Brooklyn North	3	3	
Monday，May 16， 2005	170 Suydam Street	Brooklyn North	4	1	
Monday，May 16， 2005	532A Henry Street	Brooklyn South	6	2	
Monday，May 16， 2005	1140 President Street	Brooklyn South	9	1	
Monday，May 16， 2005	34－34 33rd Street	Queens West	1	4	
Monday，May 16， 2005	31－42 32nd Street	Queens West	1	4	
Monday，May 16， 2005	104－51 39th Avenue	Queens West	3	3	
Monday，May 16， 2005	108－50 39th Avenue	Queens West	3	3	
Tuesday，May 17， 2005	306 W．21st Street	Manhattan	4	1	
Tuesday，May 17， 2005	445 W．36th Street	Manhattan	4	2	
Tuesday，May 17， 2005	323 E 21st Street	Manhattan	6	1	
Tuesday，May 17， 2005	242 W 71st Street	Manhattan	7	1	
Tuesday，May 17， 2005	602 W 157th Street	Manhattan	12	1	
Tuesday，May 17， 2005	29 Arden Street	Manhattan	12	3	
Tuesday，May 17， 2005	605 W．184th Street	Manhattan	12	3	
Tuesday，May 17， 2005	2420 Beaumont Avenue	Bronx	6	1	
Tuesday，May 17， 2005	2321 Beaumont Avenue	Bronx	6	1	
Tuesday，May 17， 2005	212 Huron Street	Brooklyn North	1	1	
Tuesday，May 17， 2005	484 Clinton Avenue	Brooklyn North	2	3	
Tuesday，May 17， 2005	460 Pulaski Street	Brooklyn North	3	1	
Tuesday，May 17， 2005	1126 Willoughby Ave．	Brooklyn North	4	1	
Tuesday，May 17， 2005	320 Suydam Street	Brooklyn North	4	1	
Tuesday，May 17， 2005	470 Ocean Parkway	Brooklyn South	12	1	
Tuesday，May 17， 2005	1803 Beverly Road	Brooklyn South	14	1	

			Delivery Location
	no		Varick
LARGE	yes	SMALL	Varick
	no		Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Varick
LARGE	yes	SMALL	Varick
	no		Varick
	no		Varick
	no		Varick
LARGE	yes	SMALL	Varick
LARGE	yes	SMALL	Varick
	no		Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Varick
LARGE	yes	SMALL	Varick
LARGE	yes	SMALL	Varick
	no		Varick
	no		Varick
	no		Varick

Table B－1
Multi－Unit Sampling Routes
Spring Sorting Period
әธnıəу

Table B－1
Multi－Unit Sampling Routes
Spring Sorting Period

Multi-Unit Sampling Routes
 Spring Sorting Period

		$\begin{aligned} & \stackrel{0}{0} \\ & i= \\ & : \overline{i n} \end{aligned}$	Delivery Location
	no		Varick
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Varick
	no		Varick
LARGE	yes	SMALL	Varick
	no		Varick
LARGE	yes	SMALL	Varick
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Varick
LARGE	yes	SMALL	Varick
	no		Varick
	no		Varick
LARGE	yes	SMALL	Varick
LARGE	yes	SMALL	Varick
	no		Harlem River Yards
	no		Harlem River Yards
LARGE	yes	SMALL	Harlem River Yards
	no		Varick
LARGE	yes	SMALL	Varick

	$\begin{aligned} & \frac{.0}{y} \\ & \frac{\bar{x}}{\pi} \\ & > \end{aligned}$	$\begin{aligned} & \frac{.0}{\sqrt{x}} \\ & 7 \end{aligned}$		$\begin{aligned} & \frac{v}{0} \\ & \frac{\overline{1}}{10} \end{aligned}$			$\begin{aligned} & \frac{י 匕}{0} \\ & \frac{i 匕}{\pi} \end{aligned}$	$\begin{aligned} & \frac{.0}{x} \\ & \frac{i}{\pi} \end{aligned}$	$\begin{aligned} & \frac{y}{i n} \\ & \frac{i n}{\pi} \end{aligned}$	$\begin{aligned} & \frac{V}{0} \\ & \frac{1}{\pi} \\ & \hline \end{aligned}$	$\stackrel{1}{\mathbb{4}}$	10	\bullet	の	\cdots	$\stackrel{\sim}{\sim}$	$\stackrel{ }{ }$	\bigcirc	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{*}$	N	\pm	N			\bullet	0	O	\bigcirc	$\stackrel{\text { ㅇ}}{\text { }}$
әp！S U！g	$\frac{1}{3}$	$\underset{e}{\underset{~}{⿺}}$	$\frac{-1}{\underset{~}{⿺}} \underset{e}{2}$	$\frac{-1}{\underset{~}{4}}$	$\underset{e}{\underset{e}{⿺}}$	$\frac{-1}{\underset{e}{⿺}}$	$\underset{e}{2}$	$\underset{e}{\underset{i}{4}}$	$\frac{-1}{\frac{1}{4}}$	$\frac{1}{2}$	3	－	O	－	N	－	∞	\cdots	\bigcirc	\checkmark	\checkmark	N	－		－	－	0	－	\bigcirc	\％
6u！ןэКэәу ¡ગ્॥૦૭	$\stackrel{\oplus}{\varnothing}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\otimes}{\otimes}$	$\stackrel{\otimes}{\infty}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$$	$\begin{aligned} & \boldsymbol{O} \\ & \mathbf{y} \\ & \mathbf{m} \end{aligned}$	\bigcirc	－	O	O	O	－	O	0	N	m	\cdots	0		－	\checkmark	\leftharpoondown	\checkmark	\bigcirc	\cdots
әp！S U！¢	$\begin{aligned} & \mathrm{u} \\ & \mathbf{0} \\ & \underset{\sim}{x} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ய } \\ & \underset{\sim}{0} \\ & \stackrel{y}{4} \end{aligned}$	$$	$$	$$	$\begin{aligned} & \text { ய } \\ & \text { O} \\ & \frac{1}{4} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 山 } \\ & 0 \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \mathbf{z} \\ & \mathbf{y} \end{aligned}$	－	0	\checkmark	N	10	\checkmark	∞	\bigcirc	\bigcirc	10	N	v			－	0	O	\bigcirc	耳
$\begin{aligned} & \text { әsnfəy } \\ & \text { ¥כәןן } \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{\underset{\sim}{\infty}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{\underset{\sim}{\infty}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\mathscr{\infty}}{\otimes}$	$\stackrel{\infty}{\otimes}$	$\stackrel{\mathscr{\infty}}{\infty}$	$\stackrel{\infty}{\boldsymbol{D}}$	$\stackrel{0}{\infty}$	$\underset{\infty}{\boldsymbol{\infty}}$	\bigcirc	－	\bigcirc	N	\bigcirc	\checkmark	\checkmark	\cdots	－	\sim	O	N		－	0	0	－	0	F

Table B－1
Multi－Unit Sampling Routes Spring Sorting Period

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road

	$\left\lvert\, \frac{0}{0}\right.$	$\left\|\begin{array}{l} 0 \\ 0 \\ \sum \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ \Sigma \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ \Sigma \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ \sum \end{array}\right\|$	$\frac{0}{0}$	$\left\lvert\, \begin{aligned} & \overline{\mathrm{x}} \\ & \hat{\mathrm{O}} \end{aligned}\right.$	$\begin{aligned} & \overline{F_{0}} \\ & \overrightarrow{2} \\ & \hline \end{aligned}$	$\stackrel{0}{0} \mid$	$\left\|\frac{0}{0}\right\|$	$\left.\begin{array}{\|c} \bar{\pi} \\ \overrightarrow{0} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c} \bar{\pi} \\ \overrightarrow{0} \end{array} \right\rvert\,$	$\begin{array}{\|c} \bar{\pi} \\ \hat{0} \end{array}$	$\begin{array}{\|c} \bar{\sigma} \\ \bar{x} \\ 0 \end{array}$	$\begin{aligned} & \bar{\sigma} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\begin{array}{\|l} \overline{\bar{x}} \\ \frac{1}{2} \\ \hline \end{array}$	$\left.\begin{array}{\|c} \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{0} \\ \stackrel{\circ}{2} \end{array} \right\rvert\,$	$\left\|\begin{array}{l} \bar{\omega} \\ \stackrel{\rightharpoonup}{\sigma} \\ \stackrel{\rightharpoonup}{0} \end{array}\right\|$	$\left\|\begin{array}{l} \dot{\omega} \\ \stackrel{\rightharpoonup}{\widetilde{\omega}} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \overline{\widetilde{N}} \\ \hat{\square} \end{array}\right\|$			$\left\|\begin{array}{l} 0 \\ \frac{0}{4} \\ \frac{\rightharpoonup}{0} \\ \underset{\sim}{2} \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ \frac{0}{2} \\ \frac{2}{0} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\otimes} \\ & \stackrel{y}{\omega} \\ & \underset{\sim}{\otimes} \end{aligned}$	$\begin{gathered} \underset{\sim}{\infty} \\ \stackrel{N}{\omega} \\ \underset{\sim}{2} \end{gathered}$		$\begin{aligned} & \stackrel{\otimes}{N} \\ & \stackrel{N}{2} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{gathered} \stackrel{0}{0} \\ \frac{0}{4} \\ \stackrel{\rightharpoonup}{\varkappa} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\otimes} \\ & \stackrel{N}{2} \\ & \underset{\sim}{\otimes} \end{aligned}$							$\begin{aligned} & 0 \\ & \substack{0 \\ \hline \\ \underset{\sim}{2} \\ \hline} \end{aligned}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{y}{4} \\ \underset{\sim}{\otimes} \end{gathered}$	$\begin{aligned} & 0 \\ & \substack{0 \\ \hline \\ \underset{\sim}{2} \\ \hline} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\omega} \\ & \stackrel{N}{\omega} \\ & \underset{\sim}{2} \end{aligned}$		
əұnoy	\checkmark	N	-	N	N	-	N	\checkmark	N	\checkmark	N	N	-	\checkmark	N	-	\cdots	-	\checkmark	\checkmark	-	\cdots	N	\sim	ナ	N	\checkmark	-	\checkmark	-	0	-	\cdots	-	N	\bullet	N	N	-	N	\sim	-	-
uо!łэes	\checkmark	m	m	m	\cdots	m	15	10	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	m	\checkmark	\checkmark	m	m	\sim	m	m	N	-	\checkmark	N	m	N	-	-	N	-	-	m	\checkmark	N	\sim	\sim	m	m

$\begin{aligned} & \text { 딩 } \\ & 0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$											4 0				$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \substack{0 \\ \omega \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{aligned}\right. ;$		$\left\|\begin{array}{c} \frac{c}{0} \\ \stackrel{N}{N} \\ \frac{0}{N} \\ \frac{N}{N} \\ \mathbb{N} \end{array}\right\|$			$\left\lvert\, \begin{gathered} \mathbb{N} \\ \stackrel{0}{0} \\ \frac{0}{0} \\ \frac{0}{0} \\ \mathbb{N} \end{gathered}\right.,$		$\left\|\begin{array}{l} x \\ \stackrel{x}{0} \\ \mathbf{0} \end{array}\right\|$		$\left\|\begin{array}{c} x \\ \frac{x}{0} \\ \end{array}\right\|$								(1)
																	s00Z/60/G0 'Kepuow															
											(1)						¢												-	$\left\lvert\, \begin{aligned} & \text { n } \\ & \text { O} \\ & \text { Non } \\ & \end{aligned}\right.$		

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Varick Road
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road

Refuse, Street Basket, and Recycling Routes Spring Sorting Period

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard

$\begin{aligned} & \text { 둥 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$																					0 							$\left\|\frac{\overline{\mathrm{o}}}{\mathrm{~m}}\right\|$				$\left\|\begin{array}{l} \frac{0}{0} \\ \stackrel{0}{0} \\ \frac{1}{c} \\ \end{array}\right\|$				
																				$\begin{aligned} & 0 \\ & \stackrel{y}{5} \\ & \stackrel{1}{0} \\ & 0 \\ & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	-		Wednesday, 05/11/200								Wednesday, 05/11/2005					O
$\begin{aligned} & \stackrel{y}{0} \\ & 0 \\ & 0 \\ & 00 \\ & \vdots 0 \\ & \overline{0} \\ & 0 \end{aligned}$																					coll	-	-	U	2		¢	-		20	O20	-				

Refuse, Street Basket, and Recycling Routes

Sample taken from Dual Bin	Delivery Location
	Harlem River Yard
	Varick Road
	Varick Road
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC

UO!

Refuse, Street Basket, and Recycling Routes

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
	Harlem River Yard
	Varick Road
	Harlem River Y ard
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road
	Varick Road
	Varick Road

ᄃ 0 0 0 0 0				$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{0} \\ \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \\ \hline \end{gathered} .\right.$																		$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			-			$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$								
		Thursday, 05/12/2005																1 						$\begin{aligned} & \circ \\ & 0 \\ & \underset{N}{N} \end{aligned}$				N	-	-			\square		hursday, 05/12/2005	102	O20
																	-	20				-		$\begin{array}{l\|} \hline 0 \\ 0 \\ \\ \\ 0 \\ 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{array}$				3	N	-			$\left\|\begin{array}{c} 0 \\ \underset{y}{y} \\ \stackrel{y}{n} \\ \hline \end{array}\right\|$			Wednesday, 05/11/20	

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
	Metropolitan (Shepherd Ave)
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard

$\begin{aligned} & \text { c } \\ & 0 \\ & 0 \\ & 0 . \\ & 0 . \\ & 0 \end{aligned}$														$\left\|\begin{array}{c} x \\ \frac{x}{2} \\ \frac{0}{\omega} \end{array}\right\|$	$\left\|\begin{array}{l} \times \\ \stackrel{x}{0} \\ \frac{0}{\omega} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \frac{x}{0} \\ \mathbf{0} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} \times \\ \frac{x}{\partial} \\ \frac{0}{\omega} \end{array}\right\|$																					$\left\|\begin{array}{l} x \\ \frac{1}{0} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \text { x } \\ \text { on } \end{array}\right\|$			$\left\|\begin{array}{l} x \\ \frac{1}{0} \\ \frac{0}{\omega} \end{array}\right\|$	-
$\begin{aligned} & \stackrel{y}{ \pm} \\ & 0 \\ & \frac{\lambda}{0} \\ & \stackrel{\Delta}{0} \\ & \overline{0} \end{aligned}$																																											
Collection Date	Thursday, 05/12/2005									Friday, 05/13/2005	Friday, 05/13/2005		Friday, 05/13/2005				Friday, 05/13/2005					Friday, 05/13/2005				Friday, 05/13/2005		Friday, 05/13/2005		Friday, 05/13/2005						Friday, 05/13/2005			Friday, 05/13/2005	Friday, 05/13/2005			

Sample taken from Dual Bin	Delivery Location
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Varick Road
	Varick Road
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Metropolitan (Shepherd Ave)
	Harlem River Yard

Sample taken from Dual Bin	Delivery Location
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Varick Road
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
	Harlem River Yard

Refuse, Street Basket, and Recycling Routes

Sample taken from Dual Bin	Delivery Location
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road

ł!

																			$\left\|\begin{array}{l} x \\ \frac{x}{0} \\ \frac{0}{\omega} \end{array}\right\|$													$\left\|\begin{array}{l} x \\ \frac{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \stackrel{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$		$\left\|\begin{array}{l} x \\ \frac{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \frac{1}{2} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \frac{x}{0} \\ \frac{0}{0} \end{array}\right\|$				$\left\|\begin{array}{c} \frac{0}{c} \\ \frac{0}{\omega} \\ \frac{0}{c} \\ \underset{\omega}{0} \\ \stackrel{\pi}{\omega} \end{array}\right\|$		
	G00Z/6L/GO 'Keps.nपц															6 		\circ 													\circ 0 		0 				\circ 0 						
0 0				G00Z/8L/G0 ‘रерsəuрәM	0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 3 3	G00Z/8L/G0 ‘रерsәuрәM		0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 3	0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 3			0 0 0 0 0 0 0 2 2 0 0 0 0 0 3 3	0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 3 3		0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 3							1 0 0 0 0 0 0 2 2 0 0 0 0 0 0 3	1 0 N 0 0 0 2 2 0 0 0 0 0 3 3									10 0 7 0 3		10 0 0 0 0 0 0 0 7 7 0 0 0 0 0 0 0 3									

Refuse，Street Basket，and Recycling Routes

Sample taken from Dual Bin	Delivery Location
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
	Metropolitan（Shepherd Ave）
MGP \＆Paper	Hugo Neu LIC，then Shepherd

UO！
$\mathfrak{y ! ⿰ 丿 丿 心 夊}$

Sample taken from Dual Bin	Delivery Location
	Metropolitan (Shepherd Ave)
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Sample taken from Dual Bin	Delivery Location		
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor		
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor		
	Hugo Neu Schnitzer LIC		
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor		
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor		
	Metropolitan (Shepherd Ave)		
	Metropolitan (Shepherd Ave)		
	Metropolitan (Shepherd Ave)		
MGP \& Paper	Hugo Neu LIC, then Shepherd		
	Harlem River Yard		
	Varick Road		
	Harlem River Yard		
	Varick Road		
	Varick Road		
	Harlem River Yard		
	Varick Road		
	Harlem River Yard		
	Hugo Neu Schnitzer LIC		
	Hugo Neu Schnitzer LIC		
	Hugo Neu Schnitzer LIC		
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor		
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor		eriod
:---			
mple Ty			
Dual $^{\text {IT }}$			
Dual 11			
MGP			
MGP			

 $\bar{\Delta}$
 Refuse

 Refuse
 Refuse
Refuse
Refuse Refuse Refuse
Refuse

 Refuse

 $\stackrel{0}{0}$
 Dual ${ }^{\text {TI }}$

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road

$\begin{aligned} & \text { c } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		\mathfrak{w}				$\left\|\begin{array}{c} \times \\ \frac{x}{0} \\ \frac{0}{\omega} \end{array}\right\|$	$\left\|\begin{array}{l} \times \\ \stackrel{x}{\partial} \\ \frac{0}{\omega} \end{array}\right\|$												$\left\|\begin{array}{l} x \\ \frac{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{c} \times \\ \frac{x}{0} \\ \frac{0}{\omega} \end{array}\right\|$	$\left\|\begin{array}{l} \times \\ \stackrel{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{l} \times \\ \stackrel{x}{\partial} \\ \frac{0}{\infty} \end{array}\right\|$					$\left\|\begin{array}{l} \times \\ \frac{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \stackrel{x}{0} \\ \frac{0}{\infty} \end{array}\right\|$															
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{\lambda}{0} \\ & \frac{\lambda}{0} \\ & \frac{\lambda}{0} \\ & 0 \end{aligned}$	Monday, 05/23/2005	Monday, 05/23/2005																																		Monday, 05/23/2005	Monday, 05/23/2005	Monday, 05/23/2005		Monday, 05/23/2005	Monday, 05/23/2005		
0 0	Saturday, 05/21/2005	Saturday, 05/21/2005														Saturday, 05/21/2005							Saturday, 05/21/2005	Saturday, 05/21/2005						Saturday, 05/21/2005							Saturday, 05/21/2005						

Sample taken from Dual Bin	Delivery Location
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road

Refuse, Street Basket, and Recycling Routes

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road

$\begin{aligned} & \text { c. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \sum_{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$			$\left\|\begin{array}{c} x \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}\right\|$		\mathfrak{c}																			단		$\left\|\begin{array}{c} x \\ \frac{x}{0} \\ \end{array}\right\|$	$\begin{aligned} & \overline{\widetilde{T}} \\ & \stackrel{\rightharpoonup}{\tilde{N}} \\ & \stackrel{1}{c} \end{aligned}$				(\%
				\square			1 				Wednesday, 05/25/2005																			$\begin{gathered} 20 \\ 0 \\ 0 \\ N \\ \\ \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{gathered}$	$\begin{gathered} 0 \\ N \\ \vdots \\ N \\ \vdots \\ \vdots \\ \vdots \end{gathered}$				
$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0 . \\ & 0 . \end{aligned}$																						¢			-	-	Un		(10		$\stackrel{N}{N}$		$.$	-	-

Sample taken from Dual Bin	Delivery Location
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC

UO!

$\begin{aligned} & \text { 气 } \\ & \text { O} \\ & \text { ò } \\ & \mathbf{0} \end{aligned}$										\square											$\left\|\begin{array}{c} x \\ \text { o} \\ \text { on } \end{array}\right\|$	$\left\|\begin{array}{c} x \\ \frac{1}{0} \\ \frac{0}{\infty} \end{array}\right\|$						$\left\|\begin{array}{c} \stackrel{\omega}{\tilde{0}} \\ \underset{\sim}{\omega} \\ \stackrel{\omega}{\mathscr{O}} \\ \stackrel{\omega}{2} \end{array}\right\|$				$\begin{aligned} & \frac{0}{c} \\ & \frac{\pi}{\pi} \\ & \frac{0}{c} \\ & \bar{\omega} \\ & \stackrel{\pi}{\omega} \end{aligned}$	$\begin{aligned} & \frac{0}{6} \\ & \frac{\pi}{\pi} \\ & \frac{0}{c} \\ & \bar{\omega} \\ & \frac{\pi}{\omega} \end{aligned}$				$\boxed{0}$ 0 3 0 $\stackrel{0}{0}$ 0 0 0 0	$\left\|\begin{array}{c} 0 \\ \frac{1}{0} \\ \frac{0}{0} \\ \frac{1}{0} \\ \frac{0}{\pi} \\ \stackrel{\omega}{\omega} \end{array}\right\|$					0 $\frac{C}{0}$ 00 0 0 0 0 0 0
																Wednesday, 05/25/2005			2 		2 		\sim 				Thursday, 05/26/2005		Thursday, 05/26/2005	Thursday, 05/26/2005	Thursday, 05/26/2005			Thursday, 05/26/2005		2 							
0 0																			Wednesday, 05/25/2005								Wednesday, 05/25/2005	1 0 N N N N 0 0 2 2 0 0 0 0 0 0 3	Wednesday, 05/25/2005	1 0 N N N N 0 0 2 2 0 0 0 0 0 0 3 3	Wednesday, 05/25/2005										1 0 N N N N 0 0 2 2 0 0 0 0 0 0 3 3		

Refuse, Street Basket, and Recycling Routes

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Hugo Neu Schnitzer LIC

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC，then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
	Hugo Neu Schnitzer LIC
	Metropolitan（Shepherd Ave）
MGP \＆Paper	Hugo Neu LIC，then Shepherd
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Varick Road
	Varick Road
	Varick Road
	Harlem River Yard
	Varick Road
	Harlem River Yard
	Harlem River Yard
	Harlem River Yard

$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$															$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \infty \\ & \lambda_{1}^{\infty} \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\pi}{0} \\ & \stackrel{0}{0} \\ & \frac{\pi}{c} \end{aligned}$	－	$\left\lvert\, \begin{aligned} & x \\ & \stackrel{x}{0} \\ & \end{aligned}\right.$	$\left\|\begin{array}{c} \frac{c}{0} \\ \vdots \\ \frac{0}{2} \\ \frac{1}{0} \\ \end{array}\right\|$					$\begin{gathered} 0 \\ \frac{c}{0} \\ \frac{0}{0} \\ 0 \\ 0 \\ \stackrel{0}{0} \\ \stackrel{0}{2} \end{gathered}$					
	\mathfrak{c}							$\begin{array}{c\|c} 3 \\ 3 & 0 \\ 0 \\ 0 \\ \hline \end{array}$			n 						n	2 			2 	$\begin{aligned} & 0 \\ & \mathbf{O} \\ & \\ & \\ & \vdots \\ & \end{aligned}$		$\left.\begin{array}{\|c} 0 \\ 0 \\ \\ \\ \end{array} \right\rvert\,$			$\begin{aligned} & 0 \\ & \mathbf{O} \\ & \mathbf{N} \\ & \\ & \\ & \hline \end{aligned}$				$\left\|\begin{array}{c} \mathrm{O} \\ \mathbf{O} \\ \mathrm{~N} \\ \mathrm{~N} \\ \mathrm{~N} \end{array}\right\|$	$\begin{gathered} 0 \\ 0 \\ \\ \\ \stackrel{\rightharpoonup}{0} \end{gathered}$		$$	¢		
$\overline{\bar{\circ}}$		$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	8			든		$\underbrace{0}_{0}$				水					交		票		$\left\lvert\, \begin{gathered} \vec{x} \\ \frac{\rightharpoonup}{2} \\ \frac{2}{4} \end{gathered}\right.$			－	$\left\lvert\, \begin{aligned} & \frac{2}{\mathbf{1}} \\ & \frac{0}{2} \\ & \frac{1}{2} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \frac{त}{0} \\ & \stackrel{0}{2} \end{aligned}\right.$	鬲\|:		－			$\begin{gathered} \frac{2}{\mathbf{x}} \\ \frac{20}{2} \end{gathered}$		豪	$\left\|\begin{array}{l} \frac{3}{ㅇ} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$		年
										$\left\|\begin{array}{c} 2 \\ 0 \\ \mathbf{N} \\ \mathbf{N} \\ \\ \end{array}\right\|$	$\left\lvert\, \begin{gathered} 2 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \\ \end{gathered}\right.$	\sim 		2			$\left\|\begin{array}{c} 2 \\ 0 \\ 0 \\ \vdots \\ \\ \\ \hline \end{array}\right\|$			$\left\lvert\, \begin{gathered} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ \\ 0 \end{gathered}\right.$	$\left\|\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ \\ \\ \hline \end{array}\right\|$		$\begin{gathered} 0 \\ 0 \\ \underset{N}{0} \\ \stackrel{N}{0} \\ \stackrel{0}{0} \end{gathered}$		¢							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$				$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \stackrel{N}{0} \end{gathered}$	
$\begin{aligned} & \dot{\tilde{0}} \\ & \stackrel{\overline{0}}{\dot{0}} \end{aligned}$												䍑						$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$				$\begin{aligned} & 5=1 \\ & 5 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \text { तो } \\ & \frac{0}{0} \\ & \frac{0}{y} \\ & \text { 도 } \end{aligned}$			$\stackrel{\rightharpoonup}{4}$	－				今	令			（1）

Sample taken from Dual Bin	Delivery Location
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Hugo Neu Schnitzer LIC
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
	Metropolitan (Shepherd Ave)
MGP \& Paper	Hugo Neu LIC, then Shepherd
	Harlem River Yard
	Varick Road
	Varick Road
	Varick Road

Refuse, Street Basket, and Recycling Routes

Table B-2
Refuse, Street Basket, and Recycling Routes

Collection Date	Delivery Date	Borough	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		\#	Sample Type	Sample taken from Dual Bin	Delivery Location
Friday, 05/27/2005	Saturday, 05/28/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Friday, 05/27/2005	Saturday, 05/28/2005	Queens West	9	2	3	Refuse		Harlem River Yard
Friday, 05/27/2005	Saturday, 05/28/2005	Queens West	9	1	5	Refuse		Harlem River Yard
Friday, 05/27/2005	Saturday, 05/28/2005	Staten Island	3	1	1	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Staten Island	1	3	6	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Queens West	9	2	1	Refuse		Harlem River Yard
Friday, 05/27/2005	Saturday, 05/28/2005	Queens West	9	1	2	Refuse		Harlem River Yard
Friday, 05/27/2005	Saturday, 05/28/2005	Brooklyn South	6	2	1	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Brooklyn South	6	2	1	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Brooklyn South	6	2	1	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Brooklyn North	4	2	4	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Brooklyn North	3	3	1	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Brooklyn South	17	1	3	Refuse		Varick Road
Friday, 05/27/2005	Saturday, 05/28/2005	Queens West	1	4	3	Refuse		Harlem River Yard

Appendix C Sample Management Forms

New York Waste Characterization Study
 Phase I - Multi-Unit Apartment Study

Sampling Protocol

The following protocol describes the procedures for taking samples of refuse and recycling materials for the Multi-Unit Study ("MUS").

During the Spring Sorting Period, 67 buildings have been targeted for sampling. The DSNY will arrange special collections for each of the 67 buildings which will provide one-week's refuse and recycling from each building. We will acquire two or three refuse samples (depending on the building's normal collection schedule) and one recycling sample from each building.

A different protocol will be used to collect samples of refuse and recycling.
MUS samples will be collected by the RW Beck Sampling Teams six days per week (Monday through Saturday) from 5:00am to 4:00pm at Harlem River Yards ("HRY") and Varick.

The R.W. Beck Sampling Team (the "Sampling Team") will receive the numbers of the DSNY trucks delivering Multi-Unit refuse and recycling from the BWRRR Staff on site. The protocol for receiving and distributing truck ID number has already been approved.

The DSNY will deliver their loads in dual-bin trucks, and, in most cases, refuse from two buildings will be delivered in single truck (one building's refuse in each bin). In other cases, the dual-bin truck may include refuse and recycling from a single building or, in rare cases, only refuse from a single building. The Sample Manager must get the address of the building(s) from which the refuse and/or recycling has come from the truck driver. If refuse from two buildings are delivered, the Sample Manger must find out the correct address for each compartment of refuse.

Collection of MUS Refuse Samples

Each day, the R.W. Beck Sampling Teams will be given the numbers of the DSNY trucks that are scheduled to deliver refuse samples. The DSNY trucks will deliver their loads in dual-bin trucks and, in most cases, refuse from two buildings will be in a single truck (one building's refuse in each bin). In other cases, the dual-bin truck will include both refuse and recycling from a single building.

The DSNY driver will empty one bin on to the tipping floor of the transfer station. From the DSNY driver, the Sample Manager must get the address of the building from which the waste on the floor was collected. Once the load from the first buildings has been tipped, a front-end loader from the transfer station will pick-up a portion of the tipped load that has been designated by the Sample Manager. The Sample Manager and his/her assistant will then pull 215lbs to 250lbs of refuse from the FEL bucket into 1 or 2 toters. The toters should be weighed to be sure that the minimum weight (215 lbs) has been collected. The toters should then be marked (see below) and, when all refuse samples are collected, they should be taken to North Shore MTS.

If the portion of the tipped load selected by the Sample Manager includes one or more bulky items (e.g. a sofa or chair), that item must be weighed and the weight recorded on the Sample Management form. The bulky item should be left at the transfer station and not taken to the North Shore MTS. The refuse sample should consist of at least 2151 bs of refuse - no bulky items.

Refuse Sample Labels

Each refuse sample should have the following information marked on each toter in the sample:

- Date on the sample was collected
- Address of the building from which the sample was taken
- Note that the sample is refuse
- The truck number from which the sample was taken
- The number of toters comprising the sample (e.g. " 1 of 1 " or 1 of 2 ")

The labels should be accurate, complete, and legible. PLEASE PRINT.

Collection of MUS Recycling Samples

The recycling material from each building in the MUS will be delivered in the same dual-bin truck that delivers that building's refuse for that day. However, the procedure for collecting the recycling materials will be quite different.

The Sampling Team must take all recycling material that is delivered from each building. Once the truck has tipped its load of recycling materials, any bulk items (e.g. refrigerators, stoves) must be weighed, the weight noted on the Sample Management Form, and set aside.

The remaining paper, bottles and cans should be placed in special plastic bags. Broken glass or sharp metal items may be placed in a toter. Each bag or toter should be labeled (see below), weighed and the weight noted on the Sample Management Form. The entire amount of recycling material from a building is the recycling sample.

The bags and toters of recycling samples, as well as the bulk items, should be loaded into the Ryder truck, and taken to Greenpoint MTS.

Each recycling sample should have the following information marked on each bag, toter, and bulk item in the sample:

- Date on the sample was collected
- Address of the building from which the sample was taken
- Note that the sample is recycling
- The truck number from which the sample was taken

The labels should be accurate, complete, and legible. PLEASE PRINT.

Truck Weights

In order to estimate the level of recycling, the net weight of all materials delivered by DSNY must be determined. Below, are the three possible cases and how the estimates should be calculated. In all cases, the Sample Manager must obtain the gross weight of the truck entering the transfer station and the weight of the empty truck after it has tipped its load.

- Dual-bin truck with refuse from one building: The difference between the gross weight of the truck entering the transfer station and the weight of the empty truck will be the net weight of the refuse in the truck.

Dual-bin truck with refuse from two buildings: The DSNY driver will tip the contents of one compartment. Go out and have the truck re-weighed with only one compartment full. The Sample Manager will take a sample from the tipped load. When the truck returns, the driver will tip the contents of the second compartment and weigh out.The Sample Manager will take a sample from the second compartment. The Sample Manager will then obtain three weights for this truck: (1) the gross weight of the full truck, (2) the weight of the truck with one compartment full, and (3) the weight of the empty truck. To calculate the net weight of the refuse in the first compartment, subtract weight (2) from weight (1). To calculate the net weight of the refuse from the second compartment, subtract weight (3) from weight (2).

Dual-bin truck with refuse and recycling from a single building: The DSNY driver may tip either compartment. If the compartment contains refuse, the Sample Manager will take a sample. The DSNY driver will then tip the second compartment and the Sampling Team will take all recycling materials including bulky items and weigh them. The Sample Manager will then have three weights for this truck: (1) the gross weight of the full truck, (2) the total weight of the recycling materials, and (3) the weight of the empty truck. To calculate the net weight of the refuse in the first compartment, subtract the combined weights of (2) and (3) from weight (1).

An example of the Sample Management Form is attached.

New York City Department of Sanitation
Waste Characterization Study - Phase I Multi-Unit Study Sample Detail Form

(Use commas to separate weights if needed)

			(Use commas to separate weights if needed)
	Date	Toter \#1 Weight	
		Toter \#2 Weight	
	Refuse	Toter \#3 Weight	
Mat \#	Material		
1	PAPER	Newspaper	
2		Plain OCC/Kraft Paper	
3		High Grade Paper	
4		Mixed Low Grade Paper	
5		Phone Books/Paperbacks	
6		Paper Bags	
7		Polycoated Paper Containers	
8		Compostable/Soiled Paper/Waxed Kraft OCC	
9		Single Use Plates and Cups	
10		Other Non-Recyclable Paper	
11	PLASTIC	PET Bottles	
12		HDPE Natural Bottles	
13		HDPE Colored Bottles	
14		\#1-\#2 Tubs	
15		\#3-\#7 Bottles	
16		\#3-\#7 Tubs	
17		Soda Crates and Bottle Carriers	
18		Other PVC	
19		Rigid Polystyrene Containers and Packaging	
20		Expanded Polystyrene Containers and Packaging	
21		Other Rigid Containers/Packaging	
22		Plastic Bags	
23		Other Film	
24		Single Use Plates, Cups, and Cutlery	
25		Other Plastic Materials	
26	GLASS	Clear Container Glass	
27		Green Container Glass	
28		Brown Container Glass	
29		Mixed Cullet	
30		Other Glass Bottles	
31		Other Glass	
32	METAL	Aluminum Cans	
33		Aluminum Foil/Containers	
34		Other Aluminum	
35		Other Non-Ferrous	
36		Tin Food Cans	
37		Empty Aerosol Cans	
38		Other Ferrous	
39		Mixed Metals	
40	DURABLES	Appliances (Ferrous)	
41		Appliances (Non-Ferrous)	
42		Appliances (Non-Metal)	
43		Electronics	
44		Furniture	
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & \hline \end{aligned}$	ORGANICS	Yard Waste	
		Food Waste	
		Other Organics	
48	OTHER	C\&D	

\qquad tons or pounds (circle one)

Appendix D
 Materials Category List

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

Grp \# \# Material			Description		\# 0 0 8 0	U	
$$	1	Newspaper	Printed ground wood newsprint (Advertising "slicks" - glossy paper - if found mixed with newspaper; otherwise, ad slicks are included with mixed low grade.).				\checkmark
	2	Plain OCC/Kraft Paper	Old unwaxed/uncoated corrugated container boxes, and Kraft paper other than paper bags				\checkmark
	3	High Grade Paper	White and lightly colored bond, rag, or stationary grade paper. This includes white or lightly colored sulfite/sulfate bond, copy papers, notebook paper, envelopes, Continuous-feed sulfite/sulfate computer printouts and forms of all types.				\checkmark
	4	Mixed Low Grade Paper	Includes junk mail, magazines, colored papers, bleached Kraft other than bags, boxboard, mailing tubes, carbonless copy paper, ground wood computer printouts				\checkmark
	5	Phone Books/Paperbacks	Paperback books and telephone directories				\checkmark
	6	Paper Bags	White, brown or other colored paper bags				\checkmark
	7	Polycoated Paper Containers	Beverage containers made of bleached and unbleached paperboard coated with HDPE film. This includes polycoated milk and juice containers, and aseptic juice containers, including those with plastic spouts attached. Excludes juice concentrate cans, ice cream containers.				\checkmark
	8	Compostable/Soiled Paper/Waxed OCC/Kraft	Waxed papers and cardboards; other papers that were soiled with food during use (e.g., pizza box inserts); paper towels, wipes and napkins. Excludes paper plates, platters, cups, and bowls.				\checkmark
	9	Single Use Paper Plates, Cups	Paper plates, platters, cups and bowls				\checkmark
	10	Other Nonrecyclable Paper	Polycoated frozen food and ice cream containers/packaging and other polycoated papers (excluding cups, plates, bowls and platters; milk/juice cartons, and aseptic packaging); paper with other materials attached (e.g. orange juice cans, nut cans, ajax/comet containers)				\checkmark
$\begin{aligned} & \text { 烒 } \\ & \frac{\tilde{\sigma}}{\sim} \end{aligned}$	11	PET Bottles	\#1 Polyethylene terephthalate translucent bottles and jars.	D/N/P	\checkmark	\checkmark	\checkmark
	12	HDPE Bottles: Natural	High-density translucent polyethylene (\#2) milk, juice, beverage, oil, vinegar, distilled water bottles with necks and jars	N/P	\checkmark	\checkmark	\checkmark
	13	HDPE Bottles: Colored	High-density colored polyethylene (\#2) bottles. Liquid detergent bottles, some hair care bottles with necks and jars	N/P	\checkmark	\checkmark	\checkmark
	14	\#1 PET Tubs/Trays/Other Containers	Wide mouth tubs and trays without a neck, such as yogurt, cottage cheese, and margarine embossed with \#1.				
	15	\#2 HDPE Tubs/Trays/Other Containers	Wide mouth tubs and trays without a neck, such as yogurt, cottage cheese, and margarine embossed with \#2.				
	16	\#3 PVC Bottles	Plastic bottles displaying a \#3	N/P	\checkmark	\checkmark	
	17	\#4 LDPE Bottles	Plastic bottles displaying a \#4	N/P	\checkmark	\checkmark	
	18	\#5 PP Bottles	Plastic bottles displaying a \#5	N/P	\checkmark	\checkmark	
	19	\#7 Other Bottles	Plastic bottles displaying a \#7	N/P	\checkmark	\checkmark	
	20	\#3 PVC Tubs	\#3 injection molded tubs				
	21	\#4 LDPE Tubs	\#4 injection molded tubs				
	22	\#5 PP Tubs	\#5 injection molded tubs				
	23	\#7 Other Tubs	\#7 injection molded tubs				
	24	Soda Crates and Bottle Carriers	Self Explanatory				
	25	Other PVC	Plumbing pipe, identifiable PVC packaging other than PVC bottles/tubs				
	26	Rigid Polystyrene Containers and Packaging	\#6 clear trays, salad containers/trays, clamshells, cookie tray inserts, dairy tubs, CD Boxes				\checkmark
	27	Expanded Polystyrene Containers and Packaging	Includes packaging and finished products made of expanded polystyrene. Excludes styrofoam plates, cups, bowls, takeout clamshells, and platters.				

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I

 MATERIAL CATEGORIES

 MATERIAL CATEGORIES}| Grp | $\begin{gathered} \text { Mat. } \\ \# \end{gathered}$ | Material | MATERIAL CATEGORIES Description | 葡 | \# 0 0 \% | 弟 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 46 | Mixed Metals | Items that are predominately metal with other materials attached such as motors, insulated wire, and finished products containing a mixture of metals, or metals and other materials, that are not classified in the "appliances" section below. | | | | |
| | 47 | Leaves And Grass | Non-woody plant materials from a yard or garden area, including grass clippings, leaves, weeds, and garden wastes. | | | | |
| | 48 | Prunings | Cut prunings, $6^{\prime \prime}$ or less in diameter, from bushes, shrubs, and trees. | | | | |
| | 49 | Stumps/Limbs | Compostable prunings or stumps 6" or greater in diameter. | | | | |
| | 50 | Food | Food wastes and scraps, including bone, rinds, etc. Excludes the weight of food containers, except when container weight is not appreciable compared to the food inside. | | | | |
| | 51 | Wood Furniture/Furniture Pieces | Furniture or furniture pieces made of wood. | | | | |
| | 52 | Non-C\&D Untreated Wood | Untreated wood products not associated with C\&D activities, popsicle sticks, chopsticks, wooden spoons, and other miscellaneous household wood products. Does not include furniture. | | | | |
| | 53 | Non-Clothing Textiles | Non-clothing fabrics made of rag stock fabric materials including natural and synthetic textiles such as cotton, wool, silk, woven nylon, rayon, and polyester. Includes handbags, linens, draperies, tablecloths, nylon rope, stuffed toys. | | | | \checkmark |
| | 54 | Clothing Textiles | Clothing textiles, not including shoes. | | | | \checkmark |
| | 55 | Carpet/Upholstery | General category of flooring applications and non-rag stock textiles consisting of various natural or synthetic fibers bonded to some type of backing material. | | | | |
| | 56 | Disposable Diapers and Sanitary Products | Diapers and sanitary products made from a combination of fibers, synthetic, and/or natural, and made for the purpose of single use. This includes disposable baby diapers, adult protective undergarments, and feminine hygiene products. | | | | |
| | 57 | Animal By-Products | Animal carcasses not resulting from food storage or preparation, animal wastes, and kitty litter. | | | | |
| | 58 | Rubber Products | Finished products and scrap materials made of natural and synthetic rubber, such as bath mats, inner tubes, rubber hoses, foam rubber, tire pieces, latex gloves. Does not include shoes and boots that are predominantly rubber. | | | | |
| | 59 | Shoes | Shoes, sneakers or boots. | | | | |
| | 60 | Other Leather Products | Leather jackets, belts, bags, purses, and other non-shoe leather products. | | | | |
| | 61 | Fines | Fines smaller than $1 / 2$ inch screen | | | | |
| | 62 | Upholstered or Other OrganicType Furniture | Crushed upholstered furniture (if an equal mix of wood, and other organic materials not classified above.) Does not include mostly wood furniture or items that would be included under "Textiles") | | | | |
| | 63 | Miscellaneous Organics | Wax, bar soap, cigarette butts, briquettes, and fireplace, burn barrel and fire pit ash, vacuum cleaner bags and contents. | | | | |
| | 64 | Small Appliances: Ferrous | Small electric appliances such as toasters, microwave ovens, power tools, curling irons, and light fixtures that are more than 50% metal to which a magnet would stick. | | | | |
| | 65 | Small Appliances: NonFerrous | Small electric appliances such as toasters, microwave ovens, power tools, curling irons, and light fixtures that are more than 50% metal to which a magnet would NOT stick. | | | | |
| | 66 | Small Appliances: Plastic | Small electric appliances such as toasters, microwave ovens, power tools, curling irons, and light fixtures that are less than 50% metal. | | | | |
| | 67 | Audio/Visual Equipment: Cell Phones | Cell phones | | | \checkmark | |
| | 68 | $\begin{aligned} & \text { Audio/Visual Equipment: } \\ & \text { Other } \end{aligned}$ | Telephones, Stereos, radios, tape decks, VCRs, etc. | | | | |

NEW YORK CITY DEPARTMENT OF SANITATION WASTE COMPOSITION STUDY - PHASE I
 MATERIAL CATEGORIES

Appendix E Sample Detail Forms

Toter Wts： \qquad

Sample Detail Form

Grp	at．	Material	Data	Moisture Sample
$\begin{gathered} \overleftarrow{0} \\ \stackrel{\text { ® }}{0} \end{gathered}$	1	Newspaper		
	2	Plain OCC／Kraft Paper		
	3	High Grade Paper		
	4	Mixed Low Grade Paper		
	5	Phone Books／Paperbacks		
	6	Paper Bags		
	7	Polycoated Paper Containers		
	8	Compostable／Soiled Paper／Waxed OCC／Kraft		
	9	Single Use Paper Plates，Cups		
	10	Other Nonrecyclable Paper		
	14	\＃1 PET Tubs／Trays／Other Containers		
	15	\＃2 HDPE Tubs／Trays／Other Containers		
	20	\＃3 PVC Tubs		
	21	\＃4 LDPE Tubs		
	22	\＃5 PP Tubs		\％iskis
	23	\＃7 Other Tubs		
	24	Soda Crates and Bottle Carriers		
	25	Other PVC		
	26	Rigid Polystyrene Containers and Packaging		
	27	Expanded Polystyrene Containers and Packaging		
	28	Other Rigid Containers／Packaging		
	29	Plastic Bags		
	30	Other Film		
	31	Single Use Plastic Plates，Cups，Cutlery，Etc．		
	32	Other Plastics Materials		
¢	36	Mixed Cullet		
	38	Other Glass		
$\sum_{i}^{\text {IN }}$	40	Aluminum Foil／Containers		
	41	Other Aluminum		Skikiki＊
	42	Other Non－Ferrous		
	43	Tin Food Cans		
	44	Empty Aerosol Cans		
	45	Other Ferrous		
	46	Mixed Metals		
	64	Small Appliances：Ferrous		
	65	Small Appliances：Non－Ferrous		
	66	Small Appliances：Plastic		
	67	Audio／Visual Equipment：Cell Phones	count	
	68	Audio／Visual Equipment：Other		
	69	Computer Monitors		
	70	Televisions		交䔨沙泫
	71	Other Computer Equipment		

Toter Wts： \qquad

Sample Detail Form

Grp	Mat．	Material	Data	Moisture Sample
	47	Leaves And Grass		
	48	Prunings		
	49	Stumps／Limbs		
	50	Food		
	51	Wood Furniture／Furniture Pieces		
	52	Non－C\＆D Untreated Wood		
	53	Non－Clothing Textiles		
	54	Clothing Textiles		
	55	Carpet／Upholstery		
	56	Disposable Diapers and Sanitary Products		
	57	Animal By－Products		
	58	Rubber Products		
	59	Shoes		
	60	Other Leather Products		
	61	Fines		
	62	Upholstered or Other Organic－Type Furniture		
	63	Miscellaneous Organics		S．i．i，
$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \text { む } \end{aligned}$	73	Untreated Dimension Lumber，Pallets，Crates		
	74	Treated／Contaminated Wood		
	75	Gypsum Scrap		
	76	Rock／Concrete／Bricks		
	77	Other Construction Debris		
$\begin{aligned} & \dot{0} \\ & \sum \end{aligned}$	78	Miscellaneous Inorganics		
	79	Ceramics		
壱	80	Oil Filters		
	81	Antifreeze		¢
	82	Wet－Cell Batteries		\％isisisisis
	83	Gasoline／Kerosene／Motor Oil／Diesel Fuel		
	84	Latex Paints／Water－Based Adhesives／Glues		\％\％\lll \lll
	85	Oil－Based Paints／Solvent－Based Adhesives／Glues		\％\％\％＜\％\％\％＜
	86	Pesticides／Herbicides／Rodenticides		\％ i 洨isisis
	87	Dry－Cell Batteries		Fisisisisisk
	88	Fluorescent Tubes		\％sisisisk
	89	Mercury－Laden Wastes		
	90	Compressed Gas Cylinders，Fire Extinguishers		
	91	Home Medical Products		\％\％\％\ll \％\％\％
	92	Other Potentially Harmful Wastes		

	${ }_{8}$	践	寿			${ }_{8}$	旁					
	8	－	¢	${ }^{\text {8，}}$	${ }_{8}$	－	棓					
	断	搝	－	憬	憬	號	E検					
	\％	\％	年	\％	詨	\％		年		\％	会	\％
	誴	\％	为	$\stackrel{1}{2}$		譫		侤		立	\％	\％
$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$										圱	兑	管
	＝	\simeq	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{ }{ }$	$\stackrel{\infty}{\sim}$	\bigcirc	m	\＃	m	¢	－
	$\begin{aligned} & \text { İ } \\ & \frac{0}{0} \end{aligned}$							\％	\％	$\begin{aligned} & \hat{\hat{U}} \\ & \underset{\widehat{U}}{1} \end{aligned}$	－	这
Ef\|				${ }^{\text {ग̣¢ }}$［Id						${ }_{\text {SEIS }}$		［セャワ

\qquad

Appendix F R. W. Beck Health and Safety Plan

R.W. BECK, Inc. Health and Safety Plan for Waste Composition Field Sorting

Date: April 29, 2004

Introduction

Corporate Safety Policy

R.W. Beck, Inc. believes that the health and safety of its employees is of paramount importance. The issue of health and safety is particularly important in conducting solid waste composition field sorting. The terms "waste sort," "waste composition study," "waste characterization study," and the like may be used interchangeably, and all relate to any project that requires the manual handling of municipal solid waste ("MSW") and subsequent sorting and weighing MSW to determine the percentage of different components in the MSW stream.

To address this issue, the following Health and Safety Plan ("HASP") has been developed to provide guidelines to Project Managers, Field Supervisors, Crew Chiefs, and other field workers ("Field Personnel") involved in R.W. Beck's waste characterization studies. This Plan has also been prepared for distribution to third parties, such as R. W. Beck's clients who are commissioning the waste composition study, solid waste management facility managers who may be hosting a waste composition study, and subconsultants retained by the firm to assist with the performance of any of the on-site activities of a waste composition study.

Objectives of the Plan

R.W. Beck's HASP for Waste Characterization Field Sorting has the following four objectives:

- To align R. W. Beck's health and safety efforts with policies and procedures that are already in place at the solid waste management facilities that host waste composition studies,
- To describe the roles and responsibilities of professional staff regarding health and safety,
- To describe the personal and site safety equipment that must be provided at all waste sorting sites,
- To provide field personnel with a description of the safety procedures to be followed in waste sorting,
- To describe the training and monitoring that R. W. Beck field personnel, subconsultants, and temporary workers must undergo before engaging in waste sorting activities.

Host Facility Health and Safety Coordination

Facilities at which R.W. Beck will sort waste may be owned and operated by third parties that have their own health and safety plans and procedures. It is important that, as guests at the facility, R.W. Beck's workers understand and adhere to the facility's health and safety plan. Adherence to the facility plan may include:

- Confining our waste sorting activities to the areas designated by the facility's owner/operator
- Wearing safety equipment required by the facility's owner/operator, and
- Understanding emergency plans and procedures.

It is important that the Field Supervisor or Project Manager work closely with the facility's owner/operator to integrate operations, including training staff regarding health and safety planning. Specific hold harmless of indemnification requirements by the Host Facility should be reviewed in accordance with the firm's Authorization Policy.

Staff Roles and Responsibilities

Every waste characterization study is unique in some way. Differences in the scope of work, size of the project, and sorting sites, for example, will require different configurations of staffing. However, for the purposes of this Health and Safety Plan, the responsibilities of four types of professionals are described here: (1) Safety Manager, (2) Project Manager, (3) Field Supervisor, and (4) Crew Chief. Some of these roles may overlap in practice. Their roles and responsibilities in the safety effort are described below.

Safety Manager

The Safety Manager is an R. W. Beck employee who is responsible for overseeing the health and safety policies and practices for all waste characterization projects across the firm. This responsibility includes seeing that the HASP is up-to-date, that an appropriate level of safety training for professional staff and temporary workers is maintained, that the most appropriate safety equipment is available to sorting crews, and that issues relating to the health and safety on waste characterization projects have been addressed. The Safety Manager is also responsible for communicating significant HASP changes or updates, newly acquired waste composition-related projects, and any health or safetyrelated events that occur while performing a waste composition study to R. W. Beck's Risk Management Department so that the firm can comprehensively and accurately monitor the success of the Plan.

Project Manager

The Project Manager of a waste characterization study has overall responsibility for the safety and health of all members of his Project Team. Although he/she will delegate some
of these responsibilities to the Field Supervisor and Crew Chief(s), the Project Manager remains the primary responsible party. The Project Manager must be an R. W. Beck employee.

The Project Manager is responsible for developing a project budget, schedule, and scope of work that provides the time and funds for conducting a safe waste sort. Proper safety equipment (see Section \qquad - Safety Equipment) must be obtained and issued to workers, and the training of the professional staff and temporary workers must take place before any actual sorting begins. This training is discussed in more detail below. The Project Manager must instill in his/her Project Team an attitude of prudence and care in carrying out the sort.

The Project Manager is also responsible for coordinating with host facility management regarding risk management issues such as waivers, indemnification, and/or adding the host facility as an additional insured to Beck's insurance policy(s), if required.

The Project Manager is not required to participate in any phases of the on-site waste sorting. However, when less experienced Field Supervisors or Crew Chiefs may be involved, the Project Manager should use professional judgment in deciding whether to observe and/or participate on the initial day of field sorting to assure that health and safety practices are being followed, and to communicate to the client, host facility manager, or other parties in the event of any problems. The Project Manager is also responsible for performing periodic observations, as appropriate, to assure that HASP standards are met.

Field Supervisor

The Field Supervisor is generally the most experienced and knowledgeable member of the field sorting team. The Field Supervisor will be the primary contact with the sorting site owner/operator, coordinating sorting activities with other site activities, and supporting any incidents that may occur.

The Field Supervisor has overall responsibility for the sorting site, including the designation of the area where the sorting will take place. In addition to securing the sorting site (i.e. identifying and marking the boundaries of the sorting site), the Field Supervisor should ensure that the sort workers are protected from other equipment and activities on the site. Typically, the Field Supervisor will oversee the selection, delivery, and queuing of samples. The Field Supervisor has the authority to reject any samples and/or immediately terminate any staff who have not following appropriate health and safety practices.

Crew Chief

The Crew Chief is the individual most directly responsible for the health and safety of the individuals sorting waste. The Crew Chief does not have to be an R. W. Beck employee.
$\mathrm{He} /$ She should take a leading role in pre-sort training, be sure that sorting workers have proper personal protective equipment, and that safe sorting procedures are followed throughout the project. As the supervisor working most closely with sorters, the Crew Chief must be alert to unsafe practices (e.g. shoving a hand into the middle of a pile of waste) and warn workers about these practices when they occur. The Crew Chief may be the first person to see an accident and must take appropriate action immediately. The Crew Chief has the authority to immediately terminate sort employees not following appropriate health and safety practices.

Sorter

Sort laborers for waste composition studies may be acquired from multiple organizations, including temporary staffing companies, subconsultants, college or high school internship programs, prison labor programs, professional solid waste trade association membership, and volunteers from numerous other sources (including the client organization and from within R. W. Beck during waste sort training). Regardless of the labor source, sorters are responsible for observing the training provided at the outset of a sort, adhering to the proper health and safety practices throughout the sort, wearing the appropriate personal protective equipment while engaged in sorting, and following the directions provided by the Crew Chief and Field Supervisor at all times. Any sorter not following directions may be terminated immediately without cause.

All MSW site employees, regardless of their level of authority, have the responsibility to report unsafe conditions immediately to their supervisor or to the clients on-site representative.

Safety Equipment

Personal Protection Equipment ("PPE")
The selection of Personal Protective Equipment is based upon a thorough analysis of anticipated and actual hazards on the MSW site.

PPE is broken down into two classes: (1) PPE that must be worn at all times during any sorting of MSW, and (2) PPE that may be required in addition to the required PPE, depending on local host facility requirements and/or work conditions.

The following safety equipment may be provided for each member of the sorting crew (both professional staff and temporary workers), depending on the host facility requirements and comfort.

- Protective coveralls
- Protective eyewear
- Ear plugs
- Dust mask
- Hard hat
- Reflective vest
- Puncture-resistant gloves, and
- Back-support belts
- Would traffic vests be appropriate in some cases?

We require all workers to wear a sturdy work boot, although we do not supply these. A more detailed description of the personal safety equipment is presented in Appendix A. At a minimum, the following equipment must be worn at all times by all members of the sorting crew.

- Protective coveralls
- Protective eyewear
- Puncture-resistant gloves
- Boots

Other PPE may be required depending on the policy of the facility operator or the judgment of the Crew Chief and/or Field Supervisor.

Site Safety Equipment

In addition to the personal safety equipment provided to each worker, each sorting site will have the following equipment,

- A Industrial First Aid Kit;
- An Eye-Wash kit or five eye wash bottles per crew person;
- Moist towelettes;
- Traffic cones;
- Yellow caution tape;
- A fire extinguisher;
- A cell phone or facility-maintained two-way radio ;
- Insect Repellent;
- Ice chest with drinks;
- Tent, if appropriate, and
- Heaters, if necessary.
- Emergency notification information

A more detailed description of the site safety equipment is provided in Appendix B.

Field Sorting Safety Procedures

Site Layout

Waste sorting may take place at a variety of venues - landfills, transfer stations, or other facilities. Before any sorting takes place, an R.W. Beck supervisor must inspect the site for the following::

1. Sorting activities will be well away from other activities, such as equipment and vehicle operations, that might endanger or impede waste sorting work.
2. There is adequate room to carry out the sorting activities, including the receiving and queuing samples and the disposal and recycling of sorted waste. This includes safety precautions in the refuse trucks being used.
3. If the site is outside and extreme weather may be encountered, provisions should be made for a tent or other temporary shelter to be erected.
4. Arrangements for toilet facilities and a "break" area have been made, and;
5. Access to the site by a vehicle moving the sorting equipment and crew on and off the site is available. Or: Transportation of equipment and sort personnel to and from the site is available.

Once a suitable site has been located, the Project Manager or the Field Supervisor will schedule the sort at a time agreed to by the Client and the site owner/operator. When the schedule has been determined, arrangements will be made to deliver sorting and safety equipment to the site.

If the Sorting Site is close to operational activities at the facility, it should be marked with traffic cones or high visibility warning tape so that it is clear to all Field Personnel, subconsultants, temporary workers, and facility workers exactly what area is designated for the sorting activities. It must be made clear that all areas which are not designated for sorting activities are strictly off-limits. See Appendix C for a typical sorting site layout.

MSW Facility Safety Procedures

If the sorting site is located at a facility that disposes, transfers, or otherwise processes MSW, R.W. Beck's Project Manager or Field Supervisor should meet with the Site Owner/Operator to coordinate the safety procedures at the site with R.W. Beck's safety procedures. For example, the site may require the wearing of reflective vests and this must become a requirement for the sorting crew on this project. This meeting must take place before any sorting commences.

The Site Manager should outline the facility's health and safety plan and explain the facility's emergency procedures. The location of the nearest hospital, emergency services, and poison control offices should be obtained from the Site Owner/Operator.
R.W. Beck's Supervisor should provide the Site Owner/Operator with a copy of our Health and Safety Plan, explain our safety procedures, and provide documentation of safety training for the Field Personnel, subconsultants, and temporary workers on the waste sort. During this exchange of information, any potential conflicts in approach or procedures should be resolved and both parties should be clear regarding safety and health issues.

The Project Manager should be prepared to sign an indemnification form, and possibly to add the host landfill as an additional insured on R. W. Beck's general liability policy.

Communications

It is important that supervisory staff be able to communicate with each other at all times. If one of the professional staff must leave the site for some reason, he/she should make it clear where they are going, when they will return, and what steps should be taken in case of an emergency. If, for example, the Crew Chief must leave the site, the Field Supervisor should take over the Crew Chief's duties at the sorting table. Either the Field Supervisor or Crew Chief, or both, should have a working cell phone or a facilitymanaged two-way radio (a standard item in the Site Safety Equipment) in case of an emergency.

Site Control

The integrity of the sorting site must be maintained at all times. Where appropriate, the area boundaries should be marked. Workers should understand that they must remain within the sort site and that other are on the site are prohibited. Both the Field Supervisor and the Crew Chief are responsible to see that sorting activities and workers stay within the sorting area.

There should be no smoking, eating, or drinking during sorting activities. Food and nonalcoholic liquids must be consumed away from the sorting area. Drinks should be taken in single-use disposable cups or from the original single serve containers. Personal hygiene practices such a hand washing and removal of contaminated coveralls should be conducted prior to eating, drinking or smoking.

Ergonomics

Waste sorts often involve moving and lifting containers of waste that may weigh 100 lbs or more. To prevent back strain and pulled muscles, staff must be trained in proper lifting techniques as part of the pre-sort training. When heavy containers must be moved or
lifted, the Crew Chief should assign an appropriate number of workers and material handling equipment to the job.

Environmental Conditions

Extreme Heat

The risk of heat stress can be significant in summer sorts where the temperature and humidity are high. In these conditions, Crew Chiefs should monitor workers for signs of fatigue and listlessness. Breaks in the work schedule, plenty of fluids, and clothing which allows sweat to evaporate can all help to alleviate the dangers of heat stress.

Extreme Cold

Winter sorts may take place at sites with very low temperatures and high winds. Protection from the cold should include proper clothing, walls on the tent to lessen the effects of wind, and electric or gas heaters (properly ventilated). Crew Chiefs should be alert for indications of cold-effects, such as shivering and fatigue.

Fatigue

Most projects have tight schedules and the uncertainties associated with the delivery of solid waste to a landfill or transfer station can interrupt this schedule. As a result, there is usually pressure to work as long and as quickly as possible. This, in turn, can lead to carelessness and worker fatigue. Regular breaks in sorting should be built into the schedule to provide for rest and recuperation. Typically these breaks include 15 minute breaks in the morning and afternoon and a 30-60 lunch break. If sorting goes beyond 8 hours, additional breaks should be scheduled. The judgment of the Crew Chief is critical. Workers showing signs of fatigue should be given an opportunity to rest, especially if they are becoming careless or tired.

Injury Prevention

Three of the most common sources of potential injury in waste sorting are:

- Careless handling of waste,
- Lifting heavy objects, including containers of materials, and
- Walking into areas where heavy equipment is operating.

Risks associated with handling mixed solid waste can include contact with hazardous materials, sharps, and other potentially dangerous objects. Controls against injury associated with those risks are:
(1) Wear proper safety equipment at all times and
(2) Know what you are picking up. Never reach into the middle of a pile of waste to pull out material. Always select only material or objects you can see. Hand rakes can be used
to spread out a pile of waste; hands or arms should never be used. Using the punctureresistant gloves provided to the crew, sorters can more safely remove needles, broken glass, and sharpened metal from a pile of waste, if the sorter sees what he/she is removing and handles it with care.

Unidentifiable Liquids, Powders, or Medical Waste

Unidentifiable liquids or powders should be treated as hazardous. If there is any question about any material or object, the sorter should immediately stop sorting and notify the Crew Chief. If, at any time, the Crew Chief believes that the sample being sorted includes institutional medical waste or a significant amount of hazardous materials, the crew should stop sorting. The Crew Chief and Field Supervisor should confer and determine if that sample should be discarded without further sorting. The sorting of institutional medical waste and commercial hazardous waste is not performed by R. W. Beck, and the responsibility for handling this material shall be solely with the host facility in the event such material is encountered. It is the responsibility of the Field Supervisor to alert the host facility management.

Lifting Controls

The Crew Chief direct lifting activities at all times. Specifically, the Crew Chief should be sure workers asked to move or lift heavy containers of waste have help available from other members of the crew. Items that cannot be lifted safely by multiple sort laborers shall not be manually weighed and shall be removed by other means. If back injuries or muscle pulls do occur, the Crew Chief should have the worker rest and decide if the injury is severe enough to warrant medical attention.

Both the Field Supervisor and the Crew Chief must see that the sorting area is clearly marked and that the sorting crew understands where the boundaries are. Moving through the area outside the sorting area should be done only with the permission and guidance of the Crew Chief.

Bloodborne Pathogens

Injuries involving cuts and puncture wounds can potentially offer an entry-point for bloodborne pathogens, such as those carrying Hepatitis and HIV. Every cut and puncture wound should be treated and the following steps should be taken by the Crew Chief or Field Supervisor:

- Using sterile gloves, immediately clean the wound with antiseptic and wrap in gauze;
- Place the needle or object causing the wound in a plastic bag;
- If, in the judgment of the Crew Chief and Field Supervisor, the wound caused by a hypodermic needle or a metal object, poses a health or safety risk to the worker, the worker will be taken to the nearest hospital or clinic for evaluation and treatment;
- Notify the Site owner/operator, the Employment Agency (if the patient is a temporary worker), and the Project Manager, who in turn should alert the Safety Manager; and the R.W. Beck Risk Manager.
- Document the incident on an accident report form and submit the completed form to the Safety Manager.

Similar steps should be taken if the worker has been exposed to potentially hazardous material and shows abnormal or unusual symptoms.

Accident Reporting \& Investigation

As a part of the Site Training of the crew, the Field Supervisor should educate workers so they are familiar with the Emergency Contact Information Sheet (see Appendix D) and that it is clearly posted in the sorting area.

All accidents must be reported in writing by the Crew Chief or Field Supervisor, using the Accident Report Form shown in Appendix E. A copy of the completed form should provided to the Site Owner/Operator, the Employment Agency (if the patient is a temporary worker), the Project Manager, who in turn notifies the Safety Manager.

It is the responsibility of the Safety Manager to maintain a file of completed accident report forms and to see that the "lessons learned" for accidents are incorporated into the HASP. Root cause analysis should be the goal of all accident/incident investigations.

Health and Safety Training

All members of a crew responsible for sorting waste must undergo, at a minimum, the training outlined below.

Professional Staff Training

R.W. Beck's professional staff should, at a minimum, have 8 hours of pre-sort training and serve a 2-day apprenticeship before taking on the role of Crew Chief. The pre-sort training must include review and understanding of the HASP and viewing R.W. Beck's safety videos. Training related to other aspects of the sort, such as material identification can also be done during this 8 -hour period. Professional staff should have a current tetanus booster.

A Crew Chief should work for at least one full week before being considered for the position of Field Supervisor.

Sorter Training

Before any waste sorting takes place, the Crew Chief and/or Field Supervisor must review relevant sections of the R.W. Beck HASP with temporary workers, be sure that all
safety procedures are clear, and that all questions from the sorters have been answered. A Sorter Training Acknowledgment Form is presented in Appendix E.

Next, a "test sort" should be run at a very slow pace to be certain that all safety equipment is being worn properly and that sorters understand the safe and proper way to sort samples of waste.

At the beginning of each day of the sort, the Crew Chief should take a few minutes to check that all safety equipment is being worn and is in good shape. The Crew Chief should also remind the crew about safe sorting and go over the lessons learned from any accidents, or near accidents that have occurred.

Appendix A: Personal Protection Equipment

Personal Protection Equipment ("PPE") will be supplied to all workers sorting waste to protect them from the various hazards that might be encountered in carrying out their work. Some of the PPE is mandatory and must be worn at all times by all workers. Other PPE may be worn depending on the weather, site conditions, policy of the sorting site, and judgment of the Crew Chief and Field Supervisor.

The mandatory PPE include:

- Protective coveralls - Tyvek or cotton coveralls must be worn at all times to protect worker's clothing from accidental spills, offer an added layer of warmth in cold weather conditions, and provide added visibility to worker's on the site.
- Puncture-resistant gloves - Rubber, plastic, or leather gloves must be worn while sorting waste. They are designed to protect sorters from accidental cuts or punctures from needles, broken glass, and sharpened metal. A latex or cotton inner glove will also be provided.
- Our preferred gloves are MAPA Stanzoil Heavy-Duty Neoprene Gloves
- Also, recommended are Wells Lamont Puncture- and cut-resistant gloves and Wells Lamont Drivers gloves.
- Protective Eyewear - to provide splash/spatter protection for the sorters
- Our preferred eyewear protection is the Uvex Astro 3001 for "over the glasses" style for sorters who need to wear their own glasses and Crews Klondike for others.
- Sturdy work boots in good repair

PPE which may be worn, at the discretion of the Crew Chief or Field Supervisor include:

- Back-support belts
- Dust Masks - a dust mask should provide protection from dust and MSW particulates.
- Our preferred dust mask is the 3M 3-panel disposable Respirator
- Also recommended are the AOSafety "Pleats Plus" and the Wils0n Saf-T-FIT N95 Respirators.
- Ear plugs
- Hard hat
- Reflective vest
- Steel-toed boots

All pieces of equipment listed above will be available to all crew members at any time.

Appendix B: Site Safety Equipment

Site Safety Equipment ("SSE") will be available at all times on the sorting site to protect workers from hazards and provide emergency first aid. The standard SSE includes:

- A Industrial First Aid Kit - an OSHA-rated 25-person first aid kit or better
- An Eye-Wash kit or five eye wash bottles per crew.
- Moist towelettes
- Traffic cones - four cones to help demarcate the sorting area
- Yellow caution tape - to mark the sorting area.
- A fire extinguisher - a multi-purpose extinguisher that can be used on ordinary combustibles, flammable liquids, and electrically energized fires.
- A cell phone or facility-managed two-way radio
- Insect Repellent
- Ice chest with drinks

If site conditions and weather warrant, a tent will be provided to protect against sun, rain, and wind. Side flaps may also be installed if the weather is cold and/or windy. For very cold conditions, a gas or electric heater may be used. If a gas heater is used, adequate ventilation must be arranged.

Appendix C: Accident Report Forms

Sort Dates:

Sort Site Information

Location:
Office Telephone:
General Manager:
Site Manager:

Field Supervisor:

Crew Chief(s):

Description of Accident:

- Date
- Name of Injured Person

Actions Taken:

Reported by:
Date: \qquad

Appendix D: Emergency Contact Form

Sort Dates:

Sort Site Information

Location:
Office Telephone:
General Manager:
Site Manager:
Field Supervisor:
Crew Chief(s):
Local Hospital
Name:
Address:
Telephone:
Directions from Sort Site:

Emergency Medical Services

Name:
Address:
Telephone:
Directions from Sort Site:

Police

Name:
Address:
Telephone:
Directions from Sort Site
Fire
Name:
Address:
Telephone:
Directions from Sort Site
Poison Control Center
Telephone:

R.W. Beck Office

R.W. Beck, Inc

Suite 300
800 N. Magnolia Ave.
PO Box 538814
Orlando, FL 32803
(407) 422-4911

Contact: Debbie McDonough, John Culbertson
Safety Manager:

Appendix E: Sorter Training Acknowledgment Form

A critical element of training personnel to sort refuse is health and safety training. Before any work can begin, all sorting personnel are trained in safe procedures for handling and sorting waste. This training includes the following topics.

- Purpose of the waste sort
- Site layout - Landfill hazards
- Introduction to professional staff roles and responsibilities
- Sorters responsibilities
- Punctuality
- Rest
- No drugs or alcohol
- No smoking
- Prescribed medications
- Sort Safety Procedures
- Waste handling
- Use of Personal Protective Equipment
- Site Safety Equipment
- Designated work and break areas
- Ergonomics
- Safe lifting to avoid back stress
- Environmental Conditions
- Heat Stress
- Cold
- Fatigue
- Injury Prevention
- Hazardous Wastes
- Bloodborne Pathogens
- Emergency Procedures
- Accident Reporting
- Training Sort

Acknowledgement

I acknowledge that the professional staff from R.W. Beck has discussed and explained the topics listed above, addressed any question I have about these topics, and conducted a training sort to demonstrate the safe handling and sorting of waste.

Signed \qquad Date \qquad

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix C5: Operations Plan WCS Summer 2005

New York Waste Characterization
 Study
 Phase I Study
 Operations Plan for the Summer Sorting Period
 Draft 1, version 1
 New York City Department of Sanitation

August 2005
[This page intentionally left blank.]

DEPARTMENT OF SANITATION OF NEW YORK CITY WASTE CHARACTERIZATION STUDY PHASE I
 Phase I Operations Plan
 SUMMER SORTING PERIOD

I. Introduction

The following Operations Plan is submitted to the Department of Sanitation of New York City ("DSNY") for the Phase I Waste Characterization Study ("Phase I Study") under Contract \#82702BR00015. The focus of this Operations Plan is the Summer Sorting Period which is scheduled to take place from Wednesday, August 3 through Saturday, August 27, 2005.

The Phase I Study includes three components:

A. Residential Study

The purpose of the Residential Study is to characterize New York City's (the "City's") residential refuse and recycling materials by income and housing density strata, accounting for seasonal variation over a twelve-month period. The Study will involve taking samples of residential refuse and recycling materials, sorting and weighing them to develop an estimate of composition of these materials. The Residential Study will also develop an estimate of generation (pounds/household/strata). The Sampling Plan, Material Categories, Field Procedures, and Data Management for the Residential Study are discussed below.

B. Street Basket Study

The purpose of the Street Basket Study is to characterize the City's street basket refuse based on dedicated street basket collection routes. The Street Basket Study will involve taking samples of street basket refuse, sorting and weighing them to develop an estimate of composition of these materials. The Street Basket Study will also develop an estimate of generation (pounds/street basket) for street baskets on dedicated routes. The Sampling Plan for the Street Basket Study is discussed below. The Material Categories, Field Procedures, and Data Management for the Street Basket Study will be similar to those for the Residential Study.

C. Multi-Unit Apartment Study

The purpose of the Multi-Unit Apartment Study is to identify the physical and operational characteristics of multi-unit apartment buildings that are correlated to successful recycling. The Multi-Unit Apartment Study will involve selecting 125 multi-unit apartment buildings at random and gathering information on key physical and operational characteristics. A definition of successful recycling, incorporating diversion and capture rates and levels of contamination, will be developed as part of the Study. By the end of the Summer Sorting Period, samples of refuse and recycling materials from the 125 buildings will be sorted and weighed to establish the level

Phase I Operations Plan Summer Sorting Period
Page 2
of successful recycling for each building. Finally, correlations between building characteristics and the recycling success rate will be developed. The full protocol for the Multi-Unit Apartment Building Study will be submitted to the DSNY before any sorting begins. We anticipate that the Material Categories, Field Procedures, and Data Management for the Multi-Unit Apartment Study will be similar to those for the Residential and Street Basket Studies.

The Phase I Study will be conducted by the R. W. Beck Project Team ("R. W. Beck") working with the DSNY. The plan presented below describes how the Phase I Study will be developed and carried out during the Summer Sorting Period.

II. Sampling Plans

Each of the three components of the Phase I Study will involve characterizing refuse and recycling materials. This characterization will be accomplished by sorting samples of refuse and recyclables. The first step in this process is the selection of samples. A sampling plan, which describes the steps taken to obtain a sample for each of the three components, is presented below.

A. Residential Sampling Plan

The residential sampling plan involves designing a process for selecting samples of residential curbside refuse and recycling materials (i.e., paper and metal, glass and plastic ("MGP")). The process includes the following six steps:
i. Determining the income/density strata;
ii. Determining the sample size;
iii. Determining the sample weight;
iv. Designing the sample selection process;
v. Developing the sample collection process; and
vi. Developing refuse and recycling generation estimates.

Because the purpose of the Residential Study is to characterize the residential waste by income and density strata, the first step in the sampling plan was to determine/define these strata and identify them within the City.

i. Income/Density Strata

An income/housing density matrix was developed using U.S. Census data for the year 2000 for each of the 2,217 census tracts in New York City. Three income levels, based on median household income, and three housing density levels were used to create a nine-box matrix.
The income levels used were defined as:

■ Low Income $=$ Median household income below $\$ 30,763$;

- Medium Income $=$ Median household income between $\$ 30,763$ and $\$ 46,193$; and
- \quad High Income $=$ Median household income above $\$ 46,193$.

The housing density criteria were based on the number of structures within each census tract. The three housing density levels were defined as:

■ Low Density $=$ Census tracts in which 67 percent of the structures contain two or fewer units;

- Medium Density = All census tracts that are not in the High or Low categories; and

■ High Density $=$ Census tracts in which 67 percent of the structures contain ten or more units.

The resulting income/density matrix separated the City's census tracts by income and density, as shown in Table 1.

Table 1
Number of Census Tracts in Each Income/Density Stratum

	Low Income	Medium Income	High Income	Total
Low Density	5	177	410	636
Medium Density	392	435	162	636
High Density	342	$\mathbf{1 2 7}$	$\underline{167}$	$\underline{636}$
Total	$\mathbf{7 3 9}$	$\mathbf{7 3 9}$	$\mathbf{7 3 9}$	$\mathbf{2 , 2 1 7}$

Because so few census tracts are in the Low/Low stratum, it was decided to eliminate this stratum from the study and focus the study on the remaining eight strata.

Next, a map of the City was developed in which each of the nine strata was color-coded. This map is shown in Appendix A.

To identify the universe of existing refuse and recycling collection routes, the DSNY provide a list of existing routes that fell entirely within contiguous census tracts of the same strata. The number of existing routes for each stratum is shown in Table 3 below.
The next step was to determine the number of samples that would be sorted.

ii. Sample Size

In a waste characterization study, the number of samples that are sorted affects the accuracy of the estimate. For example, if only one 200 pound sample of the City's refuse were sorted, it is very unlikely that the estimate resulting from sorting that single sample would match the composition of the City's entire curbside refuse. On the other hand, if hundreds of thousands of 200 pound samples were sorted - enough samples so that every ounce of the City refuse were

Phase I Operations Plan Summer Sorting Period
Page 4
sorted - the resulting estimate would be very accurate indeed. In fact, it would be perfectly accurate. So, how many samples should be sorted?
Before we answer the question about the number of samples, we should understand the nature of the materials that will be sorted. If the materials being sorted (i.e., the refuse and recycling materials) were consistently and homogeneously discarded by households, it would be relatively easy to arrive at an estimate. It would take very few samples to develop an estimate, if there were only two materials in the refuse stream and they were always found in the same proportion in every sample. Of course this is not the case. Refuse, and to a lesser degree, recyclables, are extremely variable. The percentage of each type of waste material can vary considerably among samples. Even from the same household, the type of waste can vary depending on when the sample is collected. For example, during the autumn, one would expect to find large amounts of leaves, but in the winter there will be few leaves or none. On the other hand, food waste will be found throughout the year. Because of the potential for variability between samples, a different number of samples may be required to obtain an accurate estimate for different types of waste. Continuing the example, since food waste is likely to be found more consistently than leaves, fewer samples would be required to obtain an accurate estimate of the food waste percentage in the refuse stream.
Typically, an estimate of the composition of waste is presented as three numbers: (1) the Sample Mean; (2) the Confidence Level; and (3) the Confidence Interval. The Sample Mean is the average percentage of a given material found in the samples sorted. For example, after sorting thirty samples of refuse, we will have a list of thirty percentages of paper waste. If the average of the thirty percentages of paper is 35 percent, then the Sample Mean of paper is 35 percent.
The Confidence Level and the Confidence Interval are intertwined concepts. Together, they allow statements to be made about the entire population from the sample taken. The Sample Mean is, after all, simply the average value of the samples; it is unlikely that the percentage of a given type of waste for the entire population matches the Sample Mean exactly. The Confidence Level and the Confidence Interval provide a way to convey how much the Sample Mean tell us about the entire population.
The Confidence Level indicates the degree of certainty that the Confidence Interval contains the population's mean value. For example, if the Confidence Interval around the Sample Mean 33 percent to 37 percent for paper - is based on a Confidence Level of 90 percent, we can be 90 percent confident that the population's percentage of paper waste is contained in that interval. The purpose of the Confidence Level is to provide an indication of the accuracy of the sampling results. In waste characterization studies, a 90 percent Confidence Level is a widely accepted standard.

The third number used in describing the composition of the refuse is the Confidence Interval. This is an expression of the uncertainty regarding the population Mean. For example, our Sample Mean of 35 percent for paper waste may have a Confidence Interval of ± 7 percent, at a 90 percent Confidence Level. That is, based on the number of samples that have been sorted and results obtained, we would expect that 90 percent of the time, the amount of paper waste in the refuse of the entire population would be between 28 percent and 42 percent. Or, put another

Phase I Operations Plan
Summer Sorting Period
Page 5
way, if we could actually go out and determine the exact percentage of paper waste in our population, we are 90 percent certain that the value would be between 28 percent and 42 percent. If we wanted a more accurate estimate, we would have to sort more samples.

In recommending the number of samples of refuse and recyclables to sort, R. W. Beck considered not only the level of accuracy of the estimate, but the cost of providing this estimate and the variability of materials being sorted. As noted above, the variability of some material in the refuse is greater than other materials. Yard waste is much more variable than food waste. Therefore, for a given number of samples, the estimate of some materials will be more accurate than the estimate for others. Sorting a few hundred samples of refuse may provide a Confidence Interval of ± 8 percent for paper, but a ± 30 percent for yard waste. To achieve a ± 8 percent for yard waste would require significantly more samples and would probably be prohibitively expensive.
In practical terms, "variability" simply means the variation we are likely to find between samples. If we sort through ten samples and each sample has between 28 percent to 32 percent of a given waste type, we can be pretty certain that the percentage of this waste type for the population as a whole lies in this general range. But if we sort through these same ten samples and find results of 1 percent, 80 percent, 20 percent, 65 percent, and so forth, you can see that we are much less certain about the percentage of this waste type in the entire population.

There is a point of diminishing returns for waste sampling. After that point, the cost of achieving small increases in accuracy is high. Below that point, significant increases in accuracy can be achieved with relatively little cost.

In determining the number of samples to be sorted for the Phase I Residential Study, an accuracy goal ± 7.5 percent Confidence Interval for the major material groups at a 90 percent Confidence Level was requested by DSNY. In addition to this accuracy goal, R. W. Beck considered the eight income/density strata to be characterized and the need to account of seasonality in the waste stream. Also, R. W. Beck reviewed the Preliminary Waste Characterization Study ("PWCS") to note the variability exhibited in the PWCS results.
R. W. Beck is recommending that at least 200 samples of refuse be sorted for each strata, 50 samples per strata each season.

The results of the PWCS and the Fall, Winter and Spring Sorts for Phase I showed relatively little variability in Paper Recycling, but significant variability in the MGP. Therefore, R. W. Beck is recommending that 40 Paper Recycling samples per strata be sorted, 80 per season and 160 MGP samples per strata be sorted, 320 samples per season. Table 2 shows the number of samples recommended for the Phase I Residential Study.

Table 2
Sample Size for the Phase I Residential Study

	Samples per Strata	Samples per Season	Samples per Strata/Season	Total
Residential Refuse	200	400	50	1,600
Residential Paper Recycling	40	80	10	320
Residential MGP	160	$\mathbf{3 2 0}$	$\mathbf{8 0}$	$\mathbf{1 , 2 8 0}$
Total	$\mathbf{4 0 0}$	$\mathbf{8 0 0}$	$\mathbf{1 4 0}$	$\mathbf{3 , 2 0 0}$

iii. Sample Weight

Based on current industry practice and studies by the USEPA and academic studies (e.g., Klee), it was determined that the weight of each sample of refuse would be between 200 pounds and 250 pounds.

Because recycling paper and MGP tend are generally less variable than refuse samples (i.e., contain fewer types of materials), and based on the results of the PWCS, it was determined that the weight of each sample of recycling paper and MGP would be between 100 pounds and 125 pounds.

iv. Sample Selection

In selecting samples from the City's curbside refuse for the Phase I Residential Study, R. W. Beck and DSNY agreed to use existing refuse and recycling collection routes that were entirely within census tracts for each of the eight income/density strata. An analysis of the census tracts and information on the existing collection routes provided by DSNY, the universe of available routes was developed. Table 3 shows the number of available collection routes for each of the eight income/density strata.

Phase I Operations Plan Summer Sorting Period
Page 7

Table 3
Pure Routes and Universe of Routes for Summer Sort Sampling (1)

	Refuse		MGP		Paper		Total	
Strata	Pure	Universe	Pure	Universe	Pure	Universe	Pure	Universe
High Density / High Income	38	499	20	88	39	184	97	771
High Density / Medium Income-	26	343	9	54	9	54	44	451
High Density /	22	273	7	30	4	21	33	324
Low Income								
Medium Density / High Income	3	37	2	9	2	14	7	60
Medium Density / Medium Income	14	186	9	58	9	53	32	297
Medium Density / Low Income	26	330	13	69	12	63	51	462
Low Density / High Income	77	996	55	393	55	393	187	1,782
Low Density / Medium Income	21	274	18	118	18	118	57	510
Total								

(1) Pure Routes are existing DSNY collection routes which are wholly contained in a single density/income stratum. The universe of routes is the total number of times the pure route is collected during the three-week Sorting Period.

From this universe of existing routes, sample routes were randomly chosen. Because certain strata had relatively few existing routes, sampling by replacement was used, meaning that it was possible that more than one sample might be taken from any one truck. However, all samples were selected randomly. The tables with those randomly selected routes (refuse, recycling, and street basket) for the Summer Sorting Period are included as Appendix B.

v. Sample Collection

a. Refuse Sample Collection

The samples of residential refuse will be acquired at one of two private transfers stations owned by Waste Management, Inc. ("WMI") and under contract with DSNY to receive residential curbside refuse. The two transfer stations are WMI's Varick Street transfer station and Harlem River Yard transfer station. DSNY has agreed to divert the trucks that have been selected for sampling to one of these two transfer stations. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.

Phase I Operations Plan Summer Sorting Period
Page 8

As a selected truck arrives at the transfer station, the R. W. Beck Sample Manager will be notified. When the truck has tipped its load a front-end loader ("FEL") from the transfer station will take a randomly selected portion of the tipped load dump into two or three 96 -gallon toters. The random selection of the portion of the tipped load to be sampled will be made by the Sample Manager before the FEL begins to grab the sample.

The FEL will dump the selected portion of the load into toters that have been positioned by the Sample Manager and Assistant in an area designated by WMI. Once the refuse has been dumped into the toters, the FEL will manage the remainder of the tipped load as it normally would.

The Sample Manager and assistant will then weigh each toter to be sure that the sample of refuse weighs 200 pounds to 250 pounds. In a test conducted on May 7,2004 , it was found that a single 96 -gallon toter held approximately 150 pounds of refuse. Therefore, we estimate that, typically, two toters of refuse should contain one sample of waste. After the toters have been weighed, each toter will be marked with the date, Sample number, a Sample Code, and the truck number. In addition, each sample will have a Sample Management Form which will be taped to the toters. The Sample Management Form is included as Appendix C.

After the samples are weighed and labeled, they will be loaded on an R. W. Beck truck and transported to the North Shore Marine Transfer Station where they will be unloaded and positioned for sorting.
It is likely that some samples will contain bulky items that do not fit into 96-gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

b. Recycling Sampling

The samples of residential recycling Paper and MGP will be acquired at one of two processors under contract with the DSNY to receive residential curbside recycling. The two processors are Hugo Neu Schnitzer East's facility in Long Island City for MGP and Metropolitan Paper for Paper Recycling. DSNY has agreed to divert the recycling collection trucks that have been selected for sampling to these two processors. The drivers of these trucks as well as the scale-house operator at the transfer station will have been notified ahead of time that the truck is to be sampled.
The procedure for acquiring samples will be identical to the procedure used as the private transfer stations described above. However, our experience in other projects, the PWCS, and the Fall Sort indicates that 100 to 125 samples of recycling material will, in most cases, require only one toter. The samples of Paper Recycling and MGP will be taken to the Greenpoint Marine Transfer Station where they will be sorted. It is likely that the MGP samples will contain bulky items that do not fit into 96 -gallon toters. When this occurs, the bulky items will be manually set aside. The Sample Manager will weigh the item and record the weight and a description of the item on the Sample Management Form. This information will be included when the remainder of the sample is sorted and weighed at the sorting site.

Phase I Operations Plan Summer Sorting Period Page 9

vi. Waste Generation

One facet of the Phase I Study is to develop generation rates for residential waste for the City. Generation rates refer to the average amount of refuse, MGP, and paper set out for collection by a household or person over a given period of time. Because the Residential Study examines the City's waste by housing-density and income strata, the generation rates were estimated by strata. Each stratum's generation rate is actually an average of individual generation rates of each household that comprise that stratum. In other words, we do not believe that each household in a given strata generates an identical amount of refuse, MGP, and paper. Rather, we believe that each stratum may have a unique average generation rate when we combine the individual households that comprise that stratum.

Residential Generation Rates

Information regarding tons collected is available at the District and Section levels. The City has 59 Community Districts and, within these Districts, 230 Sections. Information regarding population, number of households, and strata is available on the Census Tract level. The methodology used to estimate generation rates requires integrating the information available for the Census Tracts and the Section.

Using the New York City Department of City Planning's Land Use and Geographic Database for the five boroughs of New York City ("MapPluto"), we are able to assign Census Tracts to each Section. Because Census Tracts do not conform to Section boundaries, some Census Tracts belong to only one Section while others may be in two or more Sections. In cases where Census Tracts "bleed" over Section boundaries, it was initially assumed that Census Tracts reaching outside a given Section would be balanced by Census Tracts in adjacent Sections bleeding into that Section. The object was to split Census Tracts among Sections to appropriately account for the correct strata-composition of a given Section.

Since we know the number of households in each Census Tract, we can estimate the number of households in each Section by multiplying the households in each Census Tract by the number of Census Tracts assigned to a given Section. For example, MapPluto tells us that Manhattan District 6, Section 3 has seven Census Tracts. We know that the total number of households in these seven Census Tracts is 26,296 . We can check our work by comparing the sum of the households for all Sections in a District against the District totals. The sum of the estimated number of households in Section 3 of Manhattan District 6 is 91,252 . The total number of households in Manhattan District 6, as reported by DSNY, is 91,189 . These two figures are less than 1 percent of each other and indicate that our estimate of the number of households is reasonable.

For Districts where there was a significant discrepancy between the estimated number of households and the number of households reported, we mapped the Section and Census Tracts and adjusted the number of households per Section. For example, if a significant area of the Census Tract lay outside the Section to which it had been assigned, the number of households assigned to the Section was adjusted. The number of households was again checked to see that our estimates were within 5 percent of the actual District totals.

Phase I Operations Plan Summer Sorting Period
Page 10

Each Census Tract assigned to a Section had been placed in one of nine strata. We allocated the number of households in each Census to the appropriate strata for each Section. For example, MapPluto shows that the seven Census Tracts in Manhattan District 6, Section 3 are all in the High/High strata. Therefore, we can characterize Manhattan District 6, Section 3 as the High/High strata. It should be emphasized however that the generation rates for these Sections would not all be identical. They are individual instances of this strata's average generation rate. We can average them, weighted by the number of households in each Section, to estimate the strata's average generation rate. Of the 230 Sections in the City, 43 sections contained census tracts from the same strata.

In the remaining 187 Sections, the strata of the census tracts were mixed. For example, in Manhattan District 2, Section 1, MapPluto assigned eight census tracts from four different strata.

To calculate the generation rates we began by assuming that the population in each strata all discard exactly the average value (for their strata) that we seek. We know that this assumption is not exactly true (there is likely to be variation within each stratum regarding the amount of waste generated). Thus, we know that there will be some remaining discrepancy (" ε ") between our calculated tonnages for each Section and the actual tonnages observed.

The regression therefore seeks to estimate a single "tons per person" value for each stratum such that, when multiplied by the population of each stratum in a given Section, it closely approximates the known total tonnage for that Section. All Sections are included in this analysis, whether comprised of a single or multiple strata.

Example: Consider a simplified case where there are only three Sections and two strata.
In Section 1, there are 100 people in stratum A and 400 people in stratum B. Section 1 discards 190 tons of waste.
In Section 2, there are 300 people in stratum A and 200 people in stratum B. Section 2 discards 220 tons of waste.
In Section 3, there are 500 people in stratum A and 800 people in stratum B. Section 2 discards 500 tons of waste.
The regression analysis seeks to estimate the per-person average waste values for strata A and B using the following:
$100 * \mathrm{X} 1+400 * \mathrm{X} 2+\varepsilon=190$
$300 * \mathrm{X} 1+200 * \mathrm{X} 2+\varepsilon=220$
$500 * \mathrm{X} 1+800 * \mathrm{X} 2+\varepsilon=500$
In this case, $\mathrm{X} 1=0.49$ and $\mathrm{X} 2=0.33$ (tons per-person) are the estimates which best fit the given data.

In the actual analysis, we had data for 227 Sections upon which the estimates for the nine strata were determined.

The documents supporting this approach and the results for the Fall, Winter and Spring Sorts are presented in the Fall, Winter and Spring Sorting Period Reports. This methodology will be used to develop residential generation rates for the Summer Sort.

B. Street Basket Sampling Plan

The Street Basket sampling plan involves designing a process for selecting representative samples of street basket waste. The process includes the following five steps:
i. Determining the universe of street basket waste income/density strata;
ii. Determining the sample size;
iii. Determining the sample weight;
iv. Designing the sample selection process; and
v. Developing the sample collection process.

Because the purpose of the Street Basket Study is to characterize street basket waste, the first step in the sampling plan was to determine what universe of street basket waste would be used for drawing samples.

i. The Universe of Street Basket Waste

DSNY and R. W. Beck agreed to use the total number of dedicated street basket collection routes as the universe from which random samples of street basket refuse would be taken. Dedicated routes are those routes that collect only street basket waste. Routes that collect residential refuse as well as street basket refuse are excluded from this study. There are dedicated routes in all five of the City's boroughs.

ii. Sample Size

The results of the Seattle Litter Composition Study were reviewed to determine the variability of street basket waste. Based on this review, it was estimated that 200 samples of street basket waste would be expected to achieve a confidence interval of ± 7.5 percent for the major material groups - paper, plastic, metal, and glass. Each season 50 samples of street basket waste will be sorted.

iii. Sample Weight

The weight of samples will be the same as the weight of samples for residential refuse, for the reasons discussed in Section II. A. iii.

iv. Sample Selection

From the universe of dedicated street basket routes, 55 routes (50 target routes and 5 back-up routes) have been randomly selected, using Excel's random number function. These routes were sent to DSNY.

v. Sample Collection

Samples of street basket waste will be collected from 50 routes, using procedures identical to those for collecting residential refuse.

C. Multi-Unit Study Sampling Plan

The Multi-Unit Sampling Plan involves selecting buildings for the Multi-Unit Study and determining the most appropriate procedure for sampling the refuse and recycling. The development of the plan involved five steps.
i. Determining the universe of multi-unit buildings;
ii. Determining the sample size;
iii. Determining the sample weight;
iv. Designing the sample selection process; and
v. Developing the sample collection process.

Because the purpose of the Multi-Unit Study is to correlate recycling success with selected physical and operational building characteristics, the first step in the sampling plan was to determine the universe of multi-unit buildings.

i. The Universe of Multi-Unit Buildings

The buildings for the Multi-Unit Study were selected from among the multi-unit buildings of six units or more in the New York City Department of City Planning, MapPluto database. Public Housing and buildings with mixed residential and commercial use have been excluded from this Study.

ii. Determining Sample Size

The Multi-Unit Sampling Plan will involve selecting refuse and recycling samples from 125 randomly-selected buildings. Ninety-four of these buildings have been targeted for the Summer Sorting Period.

The sample size of 125 buildings was determined by the physical and operational characteristics that were being used in the Multi-Unit Study. It was decided that any characteristic that existed in at least 10 percent of all buildings in the City should be able to be adequately sampled by the Study. If a characteristic were in fewer than 10 percent of all buildings, that characteristic could not be adequately examined.

Based on this 10 percent minimum, a sample size of 125 buildings was set. If one of the characteristics we selected was in 10 percent of all buildings in New York City, with a sample size of 125 buildings, the expectation would be that roughly ten to twelve of those buildings would have that characteristic. This would be enough buildings to test for the characteristic. For characteristics that were more common, of course, more buildings would be expected to have that characteristic. The list of multi-unit collections for the Summer Sort are shown in Appendix B.

iii. Determining Sample Weight

The weight of the Multi-Unit samples will be the same as the weight of samples for the residential refuse, for the reasons discussed in Section II. A. iii. Because "recycling success"

Phase I Operations Plan Summer Sorting Period
Page 13
was being measured, it was decided to sort all recyclables. In effect, the recycling sample weight will consist of all materials set out for recycling.

iv. Determining Sample Selection Process

To measure and compare recycling success, it was necessary to have a profile of refuse disposal and recycling for each building in the Multi-Unit Study. To develop this profile, it was decided to sample and sort refuse and recycling over one week. For buildings with three-day per week refuse collection, refuse samples from each of the three days will be acquired. For buildings with two-day per week refuse collection, refuse samples from both collection days will be acquired. All residences have recycling picked up one day per week and this day always coincides with a refuse collection day.

Furthermore, it was decided that the recycling sample would be acquired on the last refuse collection day of a collection cycle. For example, if a building had Monday-Wednesday-Friday refuse collection and recycling collection on Monday, the refuse samples would be acquired on Wednesday and Friday and both refuse and recycling would be collected on the following Monday. In this way, all materials placed on the curb for collection during a week from each building would be examined in the Study.

v. Determining the Sample Collection Process

DSNY has arranged a special collection for buildings in the Multi-Unit Study. Dual-bin collection trucks will be used to collect both refuse and recycling. Each administrative borough in the City will send trucks collecting from the buildings in their service area. The dual-bin collection trucks may collect refuse from one or two buildings, or may collect both refuse and recycling from a single building.
All trucks collecting waste from buildings from Queens or Brooklyn will deliver their loads to the Varick Street transfer station. Trucks collecting waste from Manhattan or the Bronx will deliver their loads to Harlem River Yards.

The sampling team will collect multi-unit refuse samples using a procedure similar to that used for collecting samples of residential refuse and street basket waste. However, for multi-unit samples with bulk items, the bulk items will be weighed and the weight recorded, but the sample will contain a minimum of 200 pounds of bagged or loose refuse.
As noted above, the sampling team will collect all recycling delivered from each building, including all bulk items. A more detailed discussion of the multi-unit sampling protocol is included in Appendix C, along with a multi-unit sample management form.

III. Material Categories

A. Refuse Categories

The list of material categories to be used in the refuse and street basket sorting is presented in Appendix D.

B. Recyclables Categories

The list of material categories to be used in the recycling sorting is the same as the list of materials for refuse sorting and is presented in Appendix D.

C. Street Basket Categories

The material categories for street basket waste will be identical to the categories for refuse. In addition, sorting will seek to identify instances of illegally disposed residential or commercial waste.

D. Multi-Unit Categories

Although the material categories used for the multi-unit study will be the same as those used for the residential refuse and recycling studies, some of these categories will be collapsed into fewer sorting categories, as shown on the Multi-Unit Sample Detail Form in Appendix E.

IV. Field Procedures

A. Health and Safety Plan

R. W. Beck's current Health and Safety Plan ("HASP") has been submitted to DSNY previously and is included in Appendix F.

B. Sorting Procedures

Once the samples of refuse and recycling have been transported by the Sample Managers from private transfer stations or recycling processors to the sorting sites, the Field Supervisor at each sorting site will check in each of the samples to be certain that the Sample Management Forms and Sample labels are clear and consistent.

After the Samples have been checked in, each Crew Chief and crew will begin sorting samples. The refuse will be sorted into the material categories using the Sample Detail Form, shown in Appendix E. When all material has been sorted, the material falling through the $1 / 2$-inch screen on the sorting table, called "fines", will be swept up and included as one of the material categories. All sorted materials will then be weighed.

Protocol for Identifying and Accounting for Illegal Materials in Street Basket Waste

To determine the level of illegal use of street baskets for residential or commercial refuse disposal, the following protocol will be used:
■ Before sorting, each 200 to 300-pound street basket sample will placed on the sort table for inspection by an R. W. Beck Crew Chief trained by DSNY staff to identify suspected illegal residential or commercial waste.

- All closed opaque plastic bags the size of a shopping bag or larger will be identified as potentially containing illegal material.
- The loose material found in clear plastic basket liners or opaque liners labeled with a Business Improvement District ("BID") logo will be considered legal street basket waste.

■ Any closed opaque plastic bags the size of a shopping bag or larger found within a BID bag will also be identified as potentially containing illegal material.

- Closed bags identified as potentially containing illegal material will be opened.
- If a bag contains any of the following materials, it will be classified as "residential":
- Addressed mail;
- Substantial quantities of home-use products, including: health and beauty aids, detergent bottles, family sized drink containers, or other seemingly residential material; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggest home use.
- If a bag contains any of the following materials, it will be classified as "commercial":
- Retail food preparation wastes (industrial sized food/liquid containers, substantial quantities of identical packaging or unused products, cardboard boxes);
- Construction materials such as pieces of dry wall or other building materials; and
- Other case-dependent contents that, in the opinion of the Crew Chief, suggest office, retail, industrial, construction or food establishment waste.

Closed shopping bags not containing materials deemed residential or commercial, but suggesting street use (single use containers, newspapers, etc.) will be considered legally disposed street basket waste.

For all bags identified as containing residential or commercial wastes, the following four procedures will be followed:

- All such bags will be individually photographed.

■ Each bag will have a written record describing its contents. The Crew Chief will record this information on the Sample Detail Form.

- All such bags will be counted (regardless of size) in two groups: residential bags and commercial bags. The bag counts will be recorded on the Sample Detail Form.

■ In each sample, bags identified as containing residential or commercial waste will be weighed in two groups: residential bags and commercial bags. The combined weights of the bags in each group (residential and commercial) will be recorded on the Sample Detail Form.

In addition, each sample will be examined for suspected instances of illegally disposed residential or commercial wastes not encased in closed bags as defined above - including instances of broken bags with spilling contents, as well as residential or commercial material loose in the street basket contents. These materials will be photographed but not weighed and their presence noted on the Sample Detail Form (as shown in Appendix E).

Phase I Operations Plan
Summer Sorting Period
Page 16

After these procedures have been completed, all material will be placed onto the sorting table and sorted according to the refuse sorting protocol.
All weights will be recorded by the R. W. Beck Crew Chief. The tare weight of the containers will be put into the scale so that only the net weight of the sorted material is recorded. When the weighing of all material in the sample has been completed, the sorted refuse and recycling will be placed in an appropriate roll-off container and returned to the transfer station or processor.
The Crew Chief and crew will then begin sorting the next sample. Each crew is expected to sort and weigh approximately nine samples of refuse and MGP per day, and 15 samples of Paper Recycling per day. This average is based on our experience in the PWCS.

Multi-Unit Sorting

Because the purpose of the multi-unit study was to correlate building characteristics with recycling success, and not characterize the building's waste, a different protocol will be used to sort the multi-unit refuse and recycling. The Multi-Unit Sample Detail Form illustrates this protocol and is included as Appendix E.

Moisture and Particulate Testing

Samples of refuse and recycling will be randomly selected for moisture and particulate testing. The purpose of the test is to estimate how much of the weight of certain materials is made up of moisture and fugitive particulates that migrate to the materials during compaction in the collection truck. Eighteen materials have been identified for testing. In each randomly-selected sample three to five pounds of each material will be collected and double-bagged. Each three to five pounds of material is called a Moisture Testing Unit ("MTU"). Therefore, each sample may have as many as 18 MTUs, although some samples may not include some of the targeted materials.
All MTUs will be sent to Woods End Laboratory for testing and results reported to the Project's data management team for analysis. During the Summer Sort, twelve samples will be randomly selected for testing.

A total of 500 MTUs will be tested during the Phase I study and the analysis of the results will be reported after the fourth season of sorting.

C. Staffing

The professional staff for the Summer Sorting Period will include:
■ Tom Jones, Project Manager: Mr. Jones has been with R. W. Beck for the past 16 years and is currently a Senior Director of the firm. His work has included waste characterization studies, solid waste facility financings, and planning/implementation work.
■ Deborah McDonough, E.I.T. - Data Manager: Ms. McDonough, an Engineer with R. W. Beck since 2001, is responsible for conducting transmission analyses and specializes in designing software programs, data management applications, and interactive graphical tools for use in projects associated with solid waste composition studies, locational marginal pricing, transmission power flow studies, transmission constraint analysis, and rate

Phase I Operations Plan
Summer Sorting Period
Page 17
analyses. She is also Project Manager of the Georgia State Waste Characterization Study. Ms. McDonough has been the Data Manager since the beginning of the Project.

■ Joe Naviera, Data Analyst: Mr. Naveira has an AS degree in Database Technology and recently joined R. W. Beck as a Data Administrator. He has assisted in the maintenance and development of databases for multiple clients, including the New York Department of Sanitation and R. W. Beck's Disaster Relief project throughout Florida.

■ Navid Nowakhtar, Data Manager: Mr. Nowakhtar has a BS degree in Computer Engineering and has been with R. W. Beck as an Analyst since 2001, working primarily in the areas of spreadsheet programming, modeling, power supply planning projects for municipal electric authorities, statistics analysis and solid waste consulting support. Working in both the Energy and Solid Waste practices, he has been involved with database development and data management for R. W. Beck's City of Orlando and Lake County Disaster Recovery projects. He has also developed databases for use with locational marginal pricing studies, and regularly maintains a proprietary database for R. W. Beck's Public Relations Department.

■ Jonathan Nunes, Task Manager: Mr. Nunes is a Senior Economist and has been with R. W. Beck since 1993. In addition to participating in various power supply planning activities, he has assisted in several strategic planning activities undertaken by municipal joint-action agencies and contributed to internal and external planning efforts using analytical tools developed in the fields of systems thinking and systems dynamics.

■ Kyle Hoyle, Data Analyst: Mr. Hoyle joins the Project as an intern from the University of Florida, Gainesville, where he is pursuing a degree in Business Administration. Along with assisting in research and analysis for this project, he has been involved in the Georgia State Waste Characterization Study.

■ James Jian, Data Analyst: Mr. Jian recently joined R. W. Beck with a background as a data administrator working at Oracle and Disney. He holds an AS degree in computer programming analysis and Oracle database technology. Mr. Jian has assisted in the development and maintenance of databases for the New York Department of Sanitation, and for a report prepared for the Georgia State Waste Characterization Study.

■ Mack Rugg, Technical Advisor: Mr. Rugg is an employee of CDM and an acknowledged expert in the field of waste characterization. He has managed numerous waste studies, including a recent project in Bergen County, New Jersey.

- Sean Perera, Logistics Manager: Mr. Perera joined R. W. Beck in 2001 and is a member of the Water and Waste Resources Practice. He has held numerous roles throughout the life of the Project, acting at various times as Logistics Manager, Crew Chief and Sample Manager. In his role as Logistics Manager, Mr. Perera is responsible for coordinating daily sample collection and sorting activities. Prior to this study, Mr. Perera has taken part in numerous waste characterization projects.
- Dieter Eckels, Director of Sampling (nights): Mr. Eckels conducts data collection, research, and analysis in support of a number of Cascadia waste characterization projects including

Phase I Operations Plan
Summer Sorting Period
Page 18
the 2003 and 2004 California Statewide Waste Composition Studies. His background includes collection system design for the University of Washington's program to re-use onsite cooking oil as bio-diesel for the campus fleet. Mr. Eckels was a Sample Manager for the Fall and Winter Sorting Periods, and acted as the Director of Sampling for the Spring Sort.

■ Lyndsay Hazen, Sample Manager (nights): Ms. Hazen provides research and analysis in support of waste composition and recycling research projects at Cascadia. Her previous experience includes work with the University of Vermont's Department of Solid Waste and Recycling, and organizing waste audits in the school's dormitories.
■ Cat Koehn, Sample Manager (nights): Ms. Koehn brings several years of education and team management experience to Cascadia's field data collection activities. Cat has a background in management systems and non-profit management.
■ Momo Savovic, Sample Manager (nights): Mr. Savovic has been an employee of R. W. Beck since 1999. He has over 22 years of national and international experience in consulting engineering with project experience including project management; organization assessments/facilitation services; infrastructure design; and planning, design and construction management. Most recently, Mr. Savovic has worked with R. W. Beck's Florida Emergency Response Team, assisting in the coordination and execution of debris removal.

■ Tom Bradbury, Sample Manager (nights): Mr. Beck is a Project Assistant in R. W. Beck's Seattle office, which he joined in 2001. His responsibilities include shop drawing control, preparation and submittal of technical specifications and reports as well as quality control for drawing submittals. He has assisted in the preparation of several major reports.

■ Marcie Puskarik, Sample Manager (nights): Ms. Puskarik is an employee of CDM and a Level 2 Environmental Scientist. She is experienced in sampling management, including hazardous materials sampling, and is currently involved in several remedial projects across New Jersey.
■ Ramon Swann, Sample Manager (nights): Mr. Swan is an employee of Organics Resources, Inc. ("ORI") and was a Sample Manager during the Fall, Winter and Spring Sorting Periods.

■ Ken Marino, Sample Manager (nights) (multi-unit): Mr. Marino has been employed by R. W. Beck for over 25 years and is a Senior Director. He has been involved in solid waste tip fee analysis and waste-to-energy, landfill and materials recovery facility financings.
■ Mike Burns, Sample Manager (nights) (multi-unit): Mr. Burns is a Senior Financial Analyst with R. W. Beck and has assisted in the preparation of reports and other documents in connection with financing of cogeneration and solid waste facilities.

■ Bernice Siebuhr, Sample Manager (nights) (multi-unit): Ms. Siebuhr is an analyst for R. W. Beck's Electrical Facilities Practice and has worked with a variety of clients in Georgia and Florida. She also did field work for the firm's Disaster Recovery program.

- Walt Davenport, Director of Sorting: Mr. Davenport has over 30 years of experience in the solid waste profession as a private sector hauler/recycler and consultant. His specific areas of expertise include solid waste and recycling collection efficiency; waste composition and generation; and processing efficiency. He has managed numerous waste composition studies including Pennsylvania Statewide; Alameda County, California; and Montgomery County, Maryland Waste Composition studies.

■ Tanya Tarnecki, Field Supervisor - Northshore: Ms. Tarnecki manages several waste management projects for Cascadia Consulting, including data collection and reporting waste characterization projects in King County, Washington; and San Bernadino and Orange County, California.

■ Don Birnesser, Crew Chief - Northshore: Mr. Birnesser is an employee of R. W. Beck and has over 26 years of experience as a Project Manager and Environmental Engineer in a variety of solid waste, air quality and wastewater sludge management projects. He has managed and participated in projects including recycling collection; resource recovery facilities; MRFs; composting facilities; transfer stations; boiler plants; combined cycle cogeneration plants; and landfills.

■ Hilliary Smith, Crew Chief - Northshore: Ms. Smith developed the paper waste management policies for Bowdoin College. She teaches waste reduction, recycling, and environmental stewardship at Island Wood on Bainbridge Island, Washington.

■ Mike Rogers, Crew Chief - Northshore: Mr. Rogers, an employee with R. W. Beck, has wide experience in waste compositions studies. Mr. Rogers has worked on Alameda County, California; Georgia Statewide; and Montgomery County, Maryland Waste Composition studies along with many other studies with another Mid-west firm. His specific area of expertise is material identification, data collection, and management of the sort crews.

■ Karin Olefsky, Crew Chief - Northshore: Ms. Olefsky supports Cascadia projects through field work, data collection and waste composition analysis. Her recent work at Cascadia includes recycling program analysis for the University of Utah and a statewide waste characterization analysis for California.

■ Katie Adkins, Crew Chief - Northshore: Ms. Atkins teaches and develops environmental trainings, and also specializes in conducting waste audits for schools and businesses.

■ Katie Kennedy, Crew Chief - Northshore: Ms. Kennedy performs research and analysis in support of waste composition and recycling analysis. Her recent field work includes leading sorting crews for the Tacoma School District and the Sunshine Canyon Waste Composition Studies.

■ Marley Shoaf, Crew Chief - Northshore: Ms. Shoaf performs waste and recycling audits of Seattle area businesses and facilitates stakeholder groups on environmental health topics, such as fish consumption and removal of toxic chemicals from school science labs.
■ Nick Simons, Crew Chief - Northshore (multi-unit): Mr. Simons is an environmental engineer with CDM, with a variety of experience in solid waste management projects
including field work and report preparation. In addition to working as a Crew Chief on the New York City Waste Characterization Study in May 2005, Mr. Simons recently managed sample collection and sorting operations for a waste characterization study of a pilot curbside recycling program in Illinois. Mr. Simons has also worked on a four-season waste characterization study in Bergen County, New Jersey; a two-season waste characterization study in Salina, Kansas; and a waste characterization study of thirteen selected state facilities throughout Illinois. In addition, Mr. Simons has assisted with the development of a solid waste management plan for an Illinois county and is currently working on a Zero Waste Planning project.

■ Peter Sander, Crew Chief - Northshore (multi-unit): Mr. Sander represents R. W. Beck as an employee with a wide range of experience in programs associated with debris management from natural disasters. Prior to this assignment, he has been on site in Florida with the R. W. Beck Disaster Recovery Team. During this time, his roles have included Crew Monitor, Tower Monitor, Debris Removal Supervisor, and Administrator, where he managed the daily collection of records. Prior to this study, Mr. Rogers has taken part in numerous waste characterization projects.

■ Rory Tipton, Field Supervisor - Greenpoint: Mr. Tipton has more than two years of civil engineering experience working as a project engineer on solid waste projects. He has been responsible for engineering design, documentation, cost estimating and production coordination for projects of varying size and complexity. He received waste characterization training in R. W. Beck's Georgia Waste Characterization Study.
■ Byron Jones, Crew Chief - Greenpoint: Mr. Jones is employed by R. W. Beck and has extensive experience in debris management associated with natural disasters. Most recently, he has been on site with R. W. Beck's Florida Disaster Recovery Team working variously as a Crew Monitor, Tower Monitor, Debris Removal Supervisor, and as an Administrator, managing the daily collection of records. Prior to this study, Mr. Jones has taken part in numerous waste characterization projects.

- Eric Harrison, Crew Chief - Greenpoint: Mr. Harrison is an engineer with R. W. Beck's management consulting practice. Since joining the firm in 2001, he has assisted on various power flow studies; generation interconnection evaluations; transmission deliverability evaluations; product cost modeling; and the Disaster Relief projects in Florida.
■ Kerri Genden, Crew Chief - Greenpoint: Ms. Genden is a Financial Analyst with R. W. Beck and holds a Finance Major from the University of Central Florida. She has assisted with several solid waste system analyses and assisted with disaster debris and monitoring for various communities in Florida.

■ Mary Chamberlain, Crew Chief - Greenpoint: Ms. Chamberlain has been with R. W. Beck since 2001 and is an Environmental Analyst with R. W. Beck's Minneapolis office. Much of her work has been in the areas of solid waste and recycling collection feasibility and efficiency. She has assisted state and local agencies in conducting waste and recycling composition studies. Ms. Chamberlain recently assisted with the Multi-Unit Building Recycling Survey for the New York Department of Sanitation.

■ Raymond Randall, Crew Chief - Greenpoint: Mr. Randall is a Senior Consultant and Project Manager with R. W. Beck, and has been with the firm for 13 years. Mr. Randall has conducted waste characterization studies throughout Florida; Georgia; Pennsylvania; Montgomery County, Maryland; and Phoenix, Arizona. Mr. Randall also has extensive experience in solid waste collection efficiency studies.

■ Wade Kilpatrick, Crew Chief - Greenpoint: Mr. Kilpatrick is employed by R. W. Beck and has extensive experience in debris management associated with natural disasters. Most recently, he has been on site with R. W. Beck's Florida Disaster Recovery Team working variously as a Debris Removal Supervisor, Crew and Tower Monitor, and as an Administrator, where he managed the daily collection of records. Prior to this study, Mr. Kilpatrick has taken part in numerous waste characterization projects.

■ Sandy Childs, Crew Chief - Greenpoint (multi-unit): Ms. Childs joined the firm in August of 2004 after over 15 years in the plastics recycling industry. She specializes in technical assistance for recycling programs in the areas of plastics identification, collection, processing and marketing. She also develops recycling programs for venues and events, and is an expert trainer, facilitator, technical writer and editor.

During the Summer Sort, other professional staff may join those listed above.

D. Staff Training

Wednesday, August 3, and Monday, August 8, 2005 will be devoted to staff training. The training of Crew Chiefs will be conducted by Walt Davenport, the Director of Sorting. Training for the Sample Managers will be conducted by Tom Jones, Project Manager, and Dieter Eckels, Director of Sampling.

Training will include an introduction to the Phase I Study, a discussion of health and safety policies and practices, and an explanation of sampling, sorting and weighing procedures. The first couple of samples to be sorted will be used as means of teaching material categories, proper sorting technique, and safe practices.

E. Equipment

The safety equipment for each sorter is described in Appendix F, the HASP. Other equipment being used includes:

■ Sample acquisition: 96-gallon toters, a battery-operated H\&V scale, brooms, shovels, rakes, and trucks with lift gates. All members of the Sampling teams will be equipped with hard hats, reflective vests, safety goggles, and gloves.

- Sample sorting: A sorting table, bins for sorted materials, a battery-operated H\&V scale, hand rakes and small brooms. All members of the sorting crews will be equipped with Tyvek suits, safety goggles, and protective gloves.

F. Post-Sort Disposal and Recycling

i. Post-Sort Disposal of Refuse

DSNY has agreed to provide roll-off containers for disposing of the sorted refuse and to remove the containers when they are full.

ii. Post-Sort Recycling

DSNY has agreed to provide roll-off containers for disposing of the sorted recyclables and to remove the containers when they are full.

V. Data Recording and QA/QC

Three types of data will be developed during the Phase I Study. The first type will be the Sample Management Form. As each sample is acquired, as described in the Sampling Plan above, information on the borough of origin, route, and truck number, will be recorded on a Sample Management Form filled out by the Sample Manager. The Sample Management Form will include the following information:

- The date on which the sample was acquired;
- The name of the transfer station from which the sample was acquired;
- The name of the Sample Manager and assistant;
- The Sample Number, which is the number of the sample acquired on that day;
- The count of the toters (i.e., 1 of 3);
- The Sample Code, which shows the borough, district, section and route of the truck from which the sample was taken. For example, Manhattan 1, Sec.12, Route 3 indicates that the truck route from which this sample was taken was in Manhattan District 1, Section 1, Route 3;

■ The truck number, which will be provided by DSNY when they assign a truck to the selected route;

- The weight of each toter in the sample; and
- The weight and description of any bulky waste items that are part of the sample. These will not be transported to the Sorting Site.

A copy of the Sample Management Form will be affixed to the sample when it is transported from the private transfer station to the Sorting Site. It will remain with the documentation for that sample.
The second type of data will be the material weight data recorded by the Crew Chief when the sorting of each sample is completed. This form, called the Sample Sort Form, will include the net weight of each category of waste that has been sorted and, in the case of some materials, a count of the items in the category (e.g., small appliances).

When the sample has been sorted the Crew Chief and the Field Supervisor will review the forms for completeness and accuracy and sign them. At the end of the day, the Crew Chiefs, Field Supervisor, and Project Manager will review all the forms again and note any unusual samples or circumstances that may have affected the data.

The forms will put into the project's Access database by the Data Manager and her staff on-site. The Data Manager and her staff will check the data for completeness and accuracy. Once this procedure has been completed, the Data Manager will confer with the Project Manager and if they are satisfied that the data for that day of sampling is complete, it will be provided to the DSNY Project Manager.

The third type of data will be the results of the moisture and particulate testing that will be conducted by the Woods End Laboratory ("Woods End"). Small (three pound to five pound) portions of selected materials will be double-bagged and sent by courier to Woods End for analysis. This data resulting from the analysis will be sent directly from Woods End to the Project Manager and Data Manager. The Data Manager will enter it into the database as it is received.
This procedure for recording and checking the data will be reviewed during the Phase I Study and, if R. W. Beck believes that changes will make the procedures more efficient, without compromising completeness and accuracy, or more accurate and complete, we will recommend these changes to DSNY.

Attachments

Appendix A - Map of the Census Tracts by Strata
Appendix B - Summer Sort Sampling Routes
Appendix C - Sample Management Forms
Appendix D - Material Categories
Appendix E-Sample Detail Forms
Appendix F - Health and Safety Plan
[This page intentionally left blank.]

Appendix A
 Map of the Census Tracts by Strata

[This page intentionally left blank.]

Figure A-1
Census Tracts by Strata Bronx

Figure A-2
Census Tracts by Strata Brooklyn

Figure A-3

Census Tracts by Strata Manhattan

Figure A-4

Census Tracts by Strata Queens

Figure A-5

Census Tracts by Strata Staten Island

[This page intentionally left blank.]

Appendix B
 Summer Sort Sampling Routes

[This page intentionally left blank.]
Table B-1
Multi-Unit Sampling Routes
Summer Sorting Period

Collection Date	Address	Borough	$\begin{aligned} & \text { U } \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$			Bin Side		Bin Side	Delivery Location
Wednesday, August 03, 2005	136 West 92 Street	Manhattan	7	4	yes		no		Harlem River Yards
Wednesday, August 03, 2005	157-159 West 106 Street	Manhattan	7	5	yes		no		Harlem River Yards
Wednesday, August 03, 2005	27 East 62 Street	Manhattan	8	1	yes		no		Harlem River Yards
Wednesday, August 03, 2005	159 Norman Avenue	Brooklyn North	1	1	yes		no		Varick Street
Wednesday, August 03, 2005	1298 De Kalb Avenue	Brooklyn North	4	1	yes		no		Varick Street
Wednesday, August 03, 2005	147 Jefferson Street	Brooklyn North	4	1	yes		no		Varick Street
Wednesday, August 03, 2005	72160 Street	Brooklyn South	7	4	yes		no		Varick Street
Wednesday, August 03, 2005	1888 West 9 Street	Brooklyn South	11	6	yes		no		Varick Street
Thursday, August 04, 2005	309 West 106 Street	Manhattan	7	5	yes		no		Harlem River Yards
Thursday, August 04, 2005	238 Troutman Street	Brooklyn North	4	1	yes		no		Varick Street
Thursday, August 04, 2005	4814 Avenue	Brooklyn South	6	5	yes		no		Varick Street
Friday, August 05, 2005	168 Attorney Street	Manhattan	3	2	yes		no		Harlem River Yards
Friday, August 05, 2005	10 West 87 Street	Manhattan	7	3	yes		no		Harlem River Yards
Friday, August 05, 2005	116 West 87 Street	Manhattan	7	3	yes		no		Harlem River Yards
Friday, August 05, 2005	136 West 92 Street	Manhattan	7	4	yes		no		Harlem River Yards
Friday, August 05, 2005	157-159 West 106 Street	Manhattan	7	5	yes		no		Harlem River Yards
Friday, August 05, 2005	27 East 62 Street	Manhattan	8	1	yes		no		Harlem River Yards
Friday, August 05, 2005	159 Norman Avenue	Brooklyn North	1	1	yes		no		Varick Street
Friday, August 05, 2005	32 Pierrepont Street	Brooklyn North	2	1	yes		no		Varick Street
Friday, August 05, 2005	91 Remsen Street	Brooklyn North	2	1	yes		no		Varick Street
Friday, August 05, 2005	294 Willoughby Avenue	Brooklyn North	3	1	yes		no		Varick Street
Friday, August 05, 2005	1298 De Kalb Avenue	Brooklyn North	4	1	yes		no		Varick Street
Friday, August 05, 2005	147 Jefferson Street	Brooklyn North	4	1	yes		no		Varick Street
Friday, August 05, 2005	564 Evergreen Avenue	Brooklyn North	4	3	yes		no		Varick Street
Friday, August 05, 2005	4139 Street	Brooklyn South	6	5	yes		no		Varick Street
Friday, August 05, 2005	709 Henry Street	Brooklyn South	6	1	yes		no		Varick Street
Saturday, August 06, 2005	309 West 106 Street	Manhattan	7	5	yes		no		Harlem River Yards
Saturday, August 06, 2005	94 Diamond Street	Brooklyn North	1	3	yes		no		Varick Street
Saturday, August 06, 2005	238 Troutman Street	Brooklyn North	4	1	yes		no		Varick Street
Saturday, August 06, 2005	316 Covert Street	Brooklyn North	4	3	yes		no		Varick Street
Saturday, August 06, 2005	72160 Street	Brooklyn South	7	4	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 06, 2005	1888 West 9 Street	Brooklyn South	11	6	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 06, 2005	8020 Bay Parkway	Brooklyn South	11	3	yes		no		Varick Street
Saturday, August 06, 2005	711 Montauk Court	Brooklyn South	13	1	yes		no		Varick Street
Monday, August 08, 2005	122 Waverly Place	Manhattan	2	2	yes		no		Harlem River Yards
Monday, August 08, 2005	168 Attorney Street	Manhattan	3	2	yes		no		Harlem River Yards

Table B－1
Multi－Unit Sampling Routes

																										0 $⿳ 亠 口 冋 ⿱ ㇒ ⿻ 二 乚 力$										
O 0 0 0							$\frac{1}{4} \sum_{i}^{2}$		$\begin{aligned} & -2 \\ & \frac{1}{4} \\ & \sum \\ & \infty \\ & \hline \end{aligned}$		$\frac{-1}{\stackrel{1}{4}}$	$\begin{array}{\|c} \frac{1}{4} \\ \sum_{i}^{2} \\ \hline \end{array}$				$\frac{-1}{\stackrel{1}{4}}$	$\begin{aligned} & -1 \\ & \frac{1}{4} \\ & \sum_{\infty}^{2} \end{aligned}$			$\frac{-1}{\stackrel{1}{4}} \underset{\substack{2 \\ \hline}}{ }$										$\begin{aligned} & -2 \\ & \frac{1}{4} \\ & \sum_{\infty} \\ & \hline \end{aligned}$						$\frac{\text { d }}{\text { 而 }}$
би！ןюКәәу ¡コə॥○	읃	읃	읃	읃	읃	읃	$\begin{array}{\|c} 0 \\ 0 \\ \hline \end{array}$	읃	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	읃	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{0}$	을	읃	읃	$\begin{aligned} & \mathbf{0} \\ & \mathbf{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathscr{0} \\ & \\ & \hline \end{aligned}$	읃	읃	$\stackrel{\infty}{\infty}$	은	읃	읃	\bigcirc	읃	읃	은	읃	읃	$\begin{array}{\|l\|} \infty \\ 0 \\ \end{array}$	을	응	을	읃	읃	$\stackrel{\sim}{\triangle}$
							$\left.\begin{array}{\|c} \mathbf{~} \\ 0 \\ \frac{1}{4} \\ \mathbf{y} \end{array} \right\rvert\,$				$\begin{array}{\|l\|} \hline \mathbf{0} \\ \mathbf{\alpha} \\ \mathbf{4} \\ \hline \end{array}$																									山 O O ¢
$\begin{aligned} & \text { əsnıəy } \\ & \ddagger כ \partial \mid 0 う \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & > \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l\|} \infty \\ \mathbb{D} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & 2 \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \mathbf{0} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	$\begin{array}{\|l\|} \infty \\ \mathbf{D} \\ \hline \end{array}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \mathbf{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \end{aligned}$	$\left.\begin{array}{\|l\|} \infty \\ \infty \\ \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\left.\begin{array}{\|l\|} \infty \\ \infty \\ \end{array} \right\rvert\,$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{ \pm}$	$\mathscr{\sim}$
U0！		\checkmark	－	N	\cdots	m	テ	N	\sim	－	－	－	－	\leftharpoondown	－	\leftharpoondown	\checkmark	\cdots	N	15	－	N	N	10	\checkmark	N	N	－	m	\bigcirc	N	\checkmark	m	m	N	－
¥७！ıS！	－	\checkmark	0	ω	\sim	\sim	N	N	N	N	∞	\leftharpoondown	N	N	m	ナ	\checkmark	\checkmark	－	\bigcirc	の	os	$\stackrel{\sim}{\square}$	N	ナ	ナ	\checkmark	10	\bigcirc	N	入	v	－	\cdots	\checkmark	\checkmark
$\begin{aligned} & \text { c } \\ & \hline \overline{0} \\ & \text { 은 } \\ & \infty \end{aligned}$																																				
								\circ 0	2 0 				Monday，August 08， 2005				Monday，August 08， 2005																	Tuesday，August 09， 2005	2 	

Table B-1
Multi-Unit Sampling Routes

Collection Date	Address	Borough	$$	$\begin{aligned} & \text { 들 } \\ & \text { © } \\ & \text { © } \end{aligned}$		Bin Side		Bin Side	Delivery Location
Tuesday, August 09, 2005	316 Covert Street	Brooklyn North	4	3	yes		no		Varick Street
Tuesday, August 09, 2005	635 Vermont Street	Brooklyn North	5	4	yes		no		Varick Street
Tuesday, August 09, 2005	4139 Street	Brooklyn South	6	5	yes	LARGE	yes	SMALL	Varick Street
Tuesday, August 09, 2005	4963 Street	Brooklyn South	6	4	yes		no		Varick Street
Tuesday, August 09, 2005	652 Carroll Street	Brooklyn South	6	4	yes		no		Varick Street
Tuesday, August 09, 2005	709 Henry Street	Brooklyn South	6	1	yes	LARGE	yes	SMALL	Varick Street
Tuesday, August 09, 2005	788 President Street	Brooklyn South	6	4	yes		no		Varick Street
Tuesday, August 09, 2005	1469 President Street	Brooklyn South	9	1	yes		no		Varick Street
Tuesday, August 09, 2005	1706 Union Street	Brooklyn South	9	1	yes		no		Varick Street
Tuesday, August 09, 2005	346 Marion Street	Brooklyn South	16	2	yes		no		Varick Street
Wednesday, August 10, 2005	122 Waverly Place	Manhattan	2	2	yes		no		Harlem River Yards
Wednesday, August 10, 2005	168 Attorney Street	Manhattan	3	2	yes	LARGE	yes	SMALL	Harlem River Yards
Wednesday, August 10, 2005	260 West 22 Street	Manhattan	4	1	yes		no		Harlem River Yards
Wednesday, August 10, 2005	328 West 17 Street	Manhattan	4	1	yes		no		Harlem River Yards
Wednesday, August 10, 2005	111 East 31 Street	Manhattan	5	1	yes		no		Harlem River Yards
Wednesday, August 10, 2005	243 East 33 Street	Manhattan	6	2	yes		no		Harlem River Yards
Wednesday, August 10, 2005	10 West 87 Street	Manhattan	7	3	yes	LARGE	yes	SMALL	Harlem River Yards
Wednesday, August 10, 2005	116 West 87 Street	Manhattan	7	3	yes	LARGE	yes	SMALL	Harlem River Yards
Wednesday, August 10, 2005	148 West 75 Street	Manhattan	7	2	yes		no		Harlem River Yards
Wednesday, August 10, 2005	54 West 70 Street	Manhattan	7	1	yes		no		Harlem River Yards
Wednesday, August 10, 2005	32 Pierrepont Street	Brooklyn North	2	1	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 10, 2005	91 Remsen Street	Brooklyn North	2	1	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 10, 2005	294 Willoughby Avenue	Brooklyn North	3	1	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 10, 2005	564 Evergreen Avenue	Brooklyn North	4	3	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 10, 2005	636 Kosciuszko Street	Brooklyn North	4	2	yes		no		Varick Street
Wednesday, August 10, 2005	1048 Union Street	Brooklyn South	9	1	yes		no		Varick Street
Wednesday, August 10, 2005	150 Lefferts Avenue	Brooklyn South	9	2	yes		no		Varick Street
Wednesday, August 10, 2005	8020 Bay Parkway	Brooklyn South	11	3	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 10, 2005	3047 Brighton 2 Street	Brooklyn South	13	2	yes		no		Varick Street
Wednesday, August 10, 2005	711 Montauk Court	Brooklyn South	13	1	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 11, 2005	363 West 20 Street	Manhattan	4	1	yes		no		Harlem River Yards
Thursday, August 11, 2005	416 West 23 Street	Manhattan	4	2	yes		no		Harlem River Yards
Thursday, August 11, 2005	453 West 36 Street	Manhattan	4	2	yes		no		Harlem River Yards
Thursday, August 11, 2005	1785 Avenue	Manhattan	5	1	yes		no		Harlem River Yards
Thursday, August 11, 2005	316 East 55 Street	Manhattan	6	3	yes		no		Harlem River Yards
Thursday, August 11, 2005	335 West 76 Street	Manhattan	7	2	yes		no		Harlem River Yards

Table B-1
Multi-Unit Sampling Routes

Collection Date	Address	Borough		$$		Bin Side	$\begin{aligned} & \text { 오 } \\ & \text { 흥 } \\ & \overline{\bar{O}} \text { 엉 } \\ & \text { OU } \\ & \hline \end{aligned}$	Bin Side	Delivery Location
Thursday, August 11, 2005	682 Academy Street	Manhattan	12	4	yes		no		Harlem River Yards
Thursday, August 11, 2005	94 Diamond Street	Brooklyn North	1	3	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 11, 2005	592 Quincy Street	Brooklyn North	3	3	yes		no		Varick Street
Thursday, August 11, 2005	188 Stockholm Street	Brooklyn North	4	2	yes		no		Varick Street
Thursday, August 11, 2005	316 Covert Street	Brooklyn North	4	3	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 11, 2005	1469 President Street	Brooklyn South	9	1	yes		no		Varick Street
Thursday, August 11, 2005	1706 Union Street	Brooklyn South	9	1	yes		no		Varick Street
Thursday, August 11, 2005	346 Marion Street	Brooklyn South	16	2	yes		no		Varick Street
Thursday, August 11, 2005	2617 Newkirk Avenue	Brooklyn South	17	5	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	122 Waverly Place	Manhattan	2	2	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	260 West 22 Street	Manhattan	4	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	328 West 17 Street	Manhattan	4	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	111 East 31 Street	Manhattan	5	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	243 East 33 Street	Manhattan	6	2	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	148 West 75 Street	Manhattan	7	2	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	54 West 70 Street	Manhattan	7	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 12, 2005	636 Kosciuszko Street	Brooklyn North	4	2	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	635 Vermont Street	Brooklyn North	5	4	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	4963 Street	Brooklyn South	6	4	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	652 Carroll Street	Brooklyn South	6	4	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	788 President Street	Brooklyn South	6	4	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	1048 Union Street	Brooklyn South	9	1	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	150 Lefferts Avenue	Brooklyn South	9	2	yes	LARGE	yes	SMALL	Varick Street
Friday, August 12, 2005	3047 Brighton 2 Street	Brooklyn South	13	2	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 13, 2005	102 Greenwich Avenue	Manhattan	2	3	yes		no		Harlem River Yards
Saturday, August 13, 2005	363 West 20 Street	Manhattan	4	1	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	416 West 23 Street	Manhattan	4	2	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	453 West 36 Street	Manhattan	4	2	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	1785 Avenue	Manhattan	5	1	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	316 East 55 Street	Manhattan	6	3	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	335 West 76 Street	Manhattan	7	2	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	682 Academy Street	Manhattan	12	4	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 13, 2005	592 Quincy Street	Brooklyn North	3	3	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 13, 2005	188 Stockholm Street	Brooklyn North	4	2	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 13, 2005	1469 President Street	Brooklyn South	9	1	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 13, 2005	1706 Union Street	Brooklyn South	9	1	yes	LARGE	yes	SMALL	Varick Street

Table B-1
Multi-Unit Sampling Routes

Collection Date	Address	Borough	는 W	$\begin{aligned} & . \overline{I ̇} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		Bin Side		Bin Side	Delivery Location
Saturday, August 13, 2005	346 Marion Street	Brooklyn South	16	2	yes	LARGE	yes	SMALL	Varick Street
Monday, August 15, 2005	537-539 West 150 Street	Manhattan	9	3	yes		no		Harlem River Yards
Monday, August 15, 2005	603 West 146 Street	Manhattan	9	3	yes		no		Harlem River Yards
Monday, August 15, 2005	610 West 143 Street	Manhattan	9	3	yes		no		Harlem River Yards
Monday, August 15, 2005	203 West 121 Street	Manhattan	10	1	yes		no		Harlem River Yards
Monday, August 15, 2005	239 West 120 Street	Manhattan	10	1	yes		no		Harlem River Yards
Monday, August 15, 2005	273 West 146 Street	Manhattan	10	3	yes		no		Harlem River Yards
Monday, August 15, 2005	18623 Avenue	Manhattan	11	1	yes		no		Harlem River Yards
Monday, August 15, 2005	608 West 191 Street	Manhattan	12	3	yes		no		Harlem River Yards
Tuesday, August 16, 2005	102 Greenwich Avenue	Manhattan	2	3	yes		no		Harlem River Yards
Tuesday, August 16, 2005	225 East 89 Street	Manhattan	8	5	yes		no		Harlem River Yards
Tuesday, August 16, 2005	379-381 Edgecombe Ave	Manhattan	9	3	yes		no		Harlem River Yards
Tuesday, August 16, 2005	31 West 130 Street	Manhattan	10	2	yes		no		Harlem River Yards
Wednesday, August 17, 2005	537-539 West 150 Street	Manhattan	9	3	yes		no		Harlem River Yards
Wednesday, August 17, 2005	603 West 146 Street	Manhattan	9	3	yes		no		Harlem River Yards
Wednesday, August 17, 2005	610 West 143 Street	Manhattan	9	3	yes		no		Harlem River Yards
Wednesday, August 17, 2005	203 West 121 Street	Manhattan	10	1	yes		no		Harlem River Yards
Wednesday, August 17, 2005	239 West 120 Street	Manhattan	10	1	yes		no		Harlem River Yards
Wednesday, August 17, 2005	273 West 146 Street	Manhattan	10	3	yes		no		Harlem River Yards
Wednesday, August 17, 2005	18623 Avenue	Manhattan	11	1	yes		no		Harlem River Yards
Wednesday, August 17, 2005	608 West 191 Street	Manhattan	12	3	yes		no		Harlem River Yards
Wednesday, August 17, 2005	75 West 238 Street	Bronx	8	1	yes		no		Harlem River Yards
Thursday, August 18, 2005	102 Greenwich Avenue	Manhattan	2	3	yes	LARGE	yes	SMALL	Harlem River Yards
Thursday, August 18, 2005	225 East 89 Street	Manhattan	8	5	yes		no		Harlem River Yards
Thursday, August 18, 2005	379-381 Edgecombe Ave	Manhattan	9	3	yes		no		Harlem River Yards
Thursday, August 18, 2005	31 West 130 Street	Manhattan	10	2	yes		no		Harlem River Yards
Thursday, August 18, 2005	23-04 29 Avenue	Queens West	1	3	yes		no		Varick Street
Thursday, August 18, 2005	84-09 Talbot Street	Queens West	9	4	yes		no		Varick Street
Friday, August 19, 2005	537-539 West 150 Street	Manhattan	9	3	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 19, 2005	603 West 146 Street	Manhattan	9	3	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 19, 2005	610 West 143 Street	Manhattan	9	3	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 19, 2005	203 West 121 Street	Manhattan	10	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 19, 2005	239 West 120 Street	Manhattan	10	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 19, 2005	273 West 146 Street	Manhattan	10	3	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 19, 2005	18623 Avenue	Manhattan	11	1	yes	LARGE	yes	SMALL	Harlem River Y ards
Friday, August 19, 2005	608 West 191 Street	Manhattan	12	3	yes	LARGE	yes	SMALL	Harlem River Yards

Table B－1
Multi－Unit Sampling Routes

																					0 $⿳ 亠 口 冋$														
								$\frac{1}{4}$	$\frac{-1}{\frac{1}{4}} \underset{\infty}{2}$	$\left.\begin{aligned} & -1 \\ & \frac{2}{4} \\ & \underset{\infty}{2} \end{aligned} \right\rvert\,$												$\begin{aligned} & -1 \\ & \frac{1}{4} \\ & \sum \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{\frac{1}{2}} \\ & \sum_{\infty}^{2} \end{aligned}$						$\underset{\infty}{\sum}$					$\frac{-1}{\frac{1}{4}} \underset{\substack{e}}{ }$	
би！І๐Кэәу ¡əગ॥○	－	은	읃	읃	읃	읃	읃	$\begin{array}{\|l\|l} 0 \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	읃	읃	읃	읃	읃	읃	읃	은	읃	읃	읃	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	$\begin{array}{\|l\|} \infty \\ \\ \hline \end{array}$	읃	읃	읃	읃	읃	$\stackrel{\infty}{\infty}$	을		읃	은	$\stackrel{\sim}{ \pm}$	읃
								$\left\lvert\, \begin{array}{l\|l\|} \hline \mathbf{0} \\ \mathbf{o} \\ \underset{y}{4} \\ \hline \end{array}\right.$	$\begin{array}{\|c\|} \hline \mathbf{0} \\ \mathbf{\alpha} \\ \mathbf{4} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{y} \\ \mathbf{y} \\ \mathbf{4} \\ \hline \end{array}$												$\begin{array}{\|l\|} \hline \mathbf{0} \\ \text { a } \\ \mathbf{4} \\ \hline \end{array}$	$\left\|\begin{array}{l} \mathbf{0} \\ \frac{0}{4} \\ \frac{1}{4} \end{array}\right\|$												
$\begin{aligned} & \text { әsnıəy } \\ & \downarrow \partial \partial \mid ן 0 う \end{aligned}$	$\begin{array}{\|l\|} \infty \\ 0 \\ \hline \end{array}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l\|} \hline 0 \\ \mathbf{2} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \mathbf{0} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l\|} \hline \infty \\ \mathbf{0} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \\ \hline \end{array}$	$\begin{array}{\|l} \infty \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \mathbf{0} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \mathbf{0} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \hline \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \infty \\ \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \\ \hline \end{array}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l\|} \hline \infty \\ \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \\ \hline \end{array}$	$$	$\stackrel{\infty}{\otimes}$	$\underset{\sim}{\infty}$	$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \hline \\ \hline \end{array}$	$\stackrel{\infty}{\infty}$	$\mathscr{\Phi}$	－	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \hline \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\sim}$
U0！	～	N	－	\leftharpoondown	\bigcirc	N	ナ	5	m	N	－	－	N	ナ	\checkmark	N	－	\leftharpoondown	N	N	－	－	m	－	\checkmark	\cdots	m	\cdots	\checkmark			N	－	\leftharpoondown	5
¥७！ıS！	0	\bigcirc	∞	은	\checkmark	\checkmark	\sim	∞	∞	은	N	＊	\bigcirc	\leftharpoondown	\leftharpoondown	\leftharpoondown	N	5	ω	\bigcirc	N	∞	－	\leftharpoondown	\leftharpoondown	10	5	∞	os	，		\bigcirc	N	으	－
등 응 0	$\begin{aligned} & \text { x } \\ & \stackrel{y}{0} \\ & \text { in } \end{aligned}$	$\begin{array}{\|l\|l} \times \\ \stackrel{x}{0} \\ \frac{1}{0} \end{array}$	$\begin{array}{\|l\|} \hline \times \\ \text { 응 } \\ \text { nun } \\ \hline \end{array}$						$\begin{aligned} & \stackrel{c}{\widetilde{0}} \\ & \frac{\pi}{0} \\ & \frac{\pi}{c} \\ & \frac{1}{2} \end{aligned}$			$\begin{array}{\|l\|} \hline \times \\ \text { 을 } \\ \text { in } \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline \times \\ \text { co } \\ \text { on } \end{array}$	$\left\|\begin{array}{c} x \\ \stackrel{x}{0} \\ \frac{1}{2} \end{array}\right\|$										$\left\lvert\, \begin{aligned} & \ddot{0} \\ & \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline} \\ & \hline \end{aligned}\right.$						든	$\left.\begin{aligned} & x \\ & \frac{x}{0} \\ & \frac{1}{0} \end{aligned} \right\rvert\,$	
							$\left\lvert\, \begin{gathered} 0 \\ \frac{0}{N} \\ \frac{0}{4} \\ 0 \\ \frac{\mathrm{~J}}{\frac{1}{2}} \\ \hline \end{gathered}\right.$						2376 Webster Avenue																			$2376 \text { Webster Avenue }$			
						Friday，August 19， 2005	Friday，August 19， 2005																							N	－			$\stackrel{0}{\circ}$	

Table B-1
Multi-Unit Sampling Routes

Collection Date	Address	Borough	$\begin{aligned} & \text { U } \\ & 0.0 \\ & \hline 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { © } \\ & \hline \end{aligned}$		Bin Side		Bin Side	Delivery Location
Tuesday, August 23, 2005	34-51 9 Street	Queens West	1	6	yes	LARGE	yes	SMALL	Varick Street
Tuesday, August 23, 2005	45-35 42 Street	Queens West	2	3	yes		no		Varick Street
Tuesday, August 23, 2005	40-51 Denman Street	Queens West	4	2	yes	LARGE	yes	SMALL	Varick Street
Tuesday, August 23, 2005	71-14 65 Place	Queens West	5	4	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 24, 2005	703 East 137 Street	Bronx	1	2	yes		no		Harlem River Yards
Wednesday, August 24, 2005	539 Coster Street	Bronx	2	1	yes		no		Harlem River Yards
Wednesday, August 24, 2005	1821 Dr M L King Jr Blvd	Bronx	5	1	yes		no		Harlem River Yards
Wednesday, August 24, 2005	2005 Monterey Avenue	Bronx	6	2	yes	LARGE	yes	SMALL	Harlem River Yards
Wednesday, August 24, 2005	2009 Mapes Avenue	Bronx	6	2	yes	LARGE	yes	SMALL	Harlem River Yards
Wednesday, August 24, 2005	50 East 191 Street	Bronx	7	1	yes		no		Harlem River Yards
Wednesday, August 24, 2005	25-18 33 Street	Queens West	1	4	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 24, 2005	25-31 32 Street	Queens West	1	4	yes	LARGE	yes	SMALL	Varick Street
Wednesday, August 24, 2005	45-53 40 Street	Queens West	2	3	yes		no		Varick Street
Wednesday, August 24, 2005	35-65 86 Street	Queens West	3	2	yes		no		Varick Street
Wednesday, August 24, 2005	1724 Harman Street	Queens West	5	3	yes		no		Varick Street
Thursday, August 25, 2005	916 East 169 Street	Bronx	2	1	yes	LARGE	yes	SMALL	Harlem River Yards
Thursday, August 25, 2005	1215 Brook Avenue	Bronx	3	1	yes		no		Harlem River Yards
Thursday, August 25, 2005	180 East 163 Street	Bronx	4	1	yes	LARGE	yes	SMALL	Harlem River Yards
Thursday, August 25, 2005	2376 Webster Avenue	Bronx	6	2	yes	LARGE	yes	SMALL	Harlem River Yards
Thursday, August 25, 2005	2287 Loring Place North	Bronx	7	1	yes		no		Harlem River Yards
Thursday, August 25, 2005	24-25 28 Street	Queens West	1	1	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 25, 2005	24-63 27 Street	Queens West	1	1	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 25, 2005	1715 Woodbine Street	Queens West	5	3	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 25, 2005	1877 Putnam Avenue	Queens West	5	3	yes	LARGE	yes	SMALL	Varick Street
Thursday, August 25, 2005	1882 Putnam Avenue	Queens West	5	3	yes	LARGE	yes	SMALL	Varick Street
Friday, August 26, 2005	703 East 137 Street	Bronx	1	2	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 26, 2005	539 Coster Street	Bronx	2	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 26, 2005	1821 Dr M L King Jr Blvd	Bronx	5	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 26, 2005	50 East 191 Street	Bronx	7	1	yes	LARGE	yes	SMALL	Harlem River Yards
Friday, August 26, 2005	30-53 49 Street	Queens West	1	5	yes	LARGE	yes	SMALL	Varick Street
Friday, August 26, 2005	45-35 42 Street	Queens West	2	3	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 27, 2005	1215 Brook Avenue	Bronx	3	1	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 27, 2005	2287 Loring Place North	Bronx	7	1	yes	LARGE	yes	SMALL	Harlem River Yards
Saturday, August 27, 2005	45-53 40 Street	Queens West	2	3	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 27, 2005	35-65 86 Street	Queens West	3	2	yes	LARGE	yes	SMALL	Varick Street
Saturday, August 27, 2005	1724 Harman Street	Queens West	5	3	yes	LARGE	yes	SMALL	Varick Street

Table B-1
Multi-Unit Sampling Routes
Summer Sorting Period

Collection Date	Delivery Date	Borough	$$		\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	2	2	1	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	3	3	1	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	8	4	2	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	2	2	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	2	3	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	7	3	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	8	3	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	2	0	1	SB		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	4	0	1	SB		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	5	0	1	SB		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	10	0	1	SB		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Manhattan	12	0	1	SB		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Bronx	5	1	1	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Bronx	5	1	2	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Bronx	5	1	1	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/06/2005	Monday, 08/08/2005	Bronx	5	2	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Bronx	5	2	2	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn North	4	2	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn North	3	3	1	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn North	4	1	1	Refuse		Varick Street
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn North	4	2	2	Refuse		Varick Street
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn North	2	0	1	SB		Varick Street
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn South	17	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Saturday, 08/06/2005	Monday, 08/08/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	5	2	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	9	2	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	9	2	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	5	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	9	2	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	3	2	1	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	3	2	2	MGP		Hugo Neu LIC
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	3	2	2	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	1	4	2	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	3	2	2	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$\begin{aligned} & \text { U } \\ & \hline 0.0 \\ & \hline 0.0 \end{aligned}$		O \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	5	2	2	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	9	1	2	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	9	1	5	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Queens West	9	2	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	7	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	7	1	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	7	3	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	13	4	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	7	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	13	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Queens East	13	8	1	Refuse		Harlem River Yard
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	1	3	5	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	3	4	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	3	4	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	3	5	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	3	6	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	3	1	3	Refuse		Varick Street
Saturday, 08/06/2005	Monday, 08/08/2005	Staten Island	3	2	3	Refuse		Varick Street
Sunday, 08/07/2005	Monday, 08/08/2005	Manhattan	3	0	2	SB		Harlem River Yard
Sunday, 08/07/2005	Monday, 08/08/2005	Manhattan	7	0	1	SB		Harlem River Yard
Sunday, 08/07/2005	Monday, 08/08/2005	Manhattan	8	0	2	SB		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	2	2	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	2	3	2	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	3	1	4	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	6	3	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	7	3	2	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	7	3	3	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	8	4	2	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	3	0	1	SB		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Manhattan	5	0	2	SB		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Bronx	5	3	2	MGP		Hugo Neu LIC
Monday, 08/08/2005	Tuesday, 08/09/2005	Bronx	4	2	4	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Bronx	5	2	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Bronx	5	3	2	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$$		\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 08/08/2005	Tuesday, 08/09/2005	Bronx	7	2	3	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Bronx	4	0	2	SB		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	4	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	3	3	2	MGP		Hugo Neu LIC
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	4	1	1	Refuse		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	4	2	3	Refuse		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	4	3	1	Refuse		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	4	3	3	Refuse		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn North	1	0	2	SB		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Brooklyn South	17	1	2	Refuse		Varick Street
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	1	4	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	1	4	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	1	4	3	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	3	2	2	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	4	3	6	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens East	13	7	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens East	13	7	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens East	7	1	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens East	7	1	4	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens East	7	6	2	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Queens East	10	4	1	Refuse		Harlem River Yard
Monday, 08/08/2005	Tuesday, 08/09/2005	Staten Island	3	1	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/08/2005	Tuesday, 08/09/2005	Staten Island	2	2	5	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/08/2005	Tuesday, 08/09/2005	Staten Island	3	1	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/08/2005	Tuesday, 08/09/2005	Staten Island	2	4	2	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Manhattan	8	3	2	MGP		Hugo Neu LIC
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Manhattan	3	1	3	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Manhattan	8	4	3	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Manhattan	6	0	2	SB		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Bronx	5	3	1	MGP		Hugo Neu LIC
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Bronx	5	3	2	MGP		Hugo Neu LIC
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Bronx	5	3	4	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough		$\begin{aligned} & \text { ᄃ } \\ & \text { OU } \\ & \text { © } \end{aligned}$	\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn North	4	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn North	3	3	5	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn North	4	1	1	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn North	4	2	3	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn South	17	1	4	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Brooklyn South	6	0	1	SB		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	1	4	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	1	4	2	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	1	4	3	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	4	3	4	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	5	2	1	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens West	9	2	1	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens East	13	8	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens East	7	1	1	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Queens East	13	5	3	Refuse		Harlem River Yard
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	1	3	4	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	2	4	4	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	1	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	3	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	4	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	1	5	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	4	3	Refuse		Varick Street
Tuesday, 08/09/2005	Wednesday, 08/10/2005	Staten Island	3	6	2	Refuse		Varick Street
Wednesday, 08/10/2005	Thursday, 08/11/2005	Manhattan	7	3	1	MGP		Hugo Neu LIC
Wednesday, 08/10/2005	Thursday, 08/11/2005	Manhattan	7	3	3	MGP		Hugo Neu LIC
Wednesday, 08/10/2005	Thursday, 08/11/2005	Manhattan	8	3	4	Paper		Shepherd Ave (Metro Paper)
Wednesday, 08/10/2005	Thursday, 08/11/2005	Manhattan	3	3	3	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	5	2	1	MGP		Hugo Neu LIC
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	5	2	2	MGP		Hugo Neu LIC

Collection Date	Delivery Date	Borough			\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	4	2	1	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	5	1	1	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	7	2	1	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	7	2	2	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	8	1	2	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Bronx	7	0	1	SB		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Brooklyn North	4	3	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Wednesday, 08/10/2005	Thursday, 08/11/2005	Brooklyn North	4	3	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Wednesday, 08/10/2005	Thursday, 08/11/2005	Brooklyn South	17	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/10/2005	Thursday, 08/11/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Wednesday, 08/10/2005	Thursday, 08/11/2005	Brooklyn South	6	2	2	Paper		Shepherd Ave (Metro Paper)
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens West	3	2	4	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens West	5	2	3	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens West	9	1	5	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	13	5	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	7	1	1	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	7	1	3	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	7	1	4	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	13	3	3	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	13	4	2	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	13	6	4	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	13	8	2	Refuse		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Queens East	10	0	1	SB		Harlem River Yard
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	3	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	3	1	5	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	2	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	3	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	3	2	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	3	1	3	Refuse		Varick Street
Wednesday, 08/10/2005	Thursday, 08/11/2005	Staten Island	3	6	1	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	7	3	1	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	8	1	1	MGP		Hugo Neu LIC

Collection Date	Delivery Date	Borough	U 	$\begin{aligned} & \text { 을 } \\ & \text { © } \\ & \text { © } \end{aligned}$	¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	8	2	1	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	8	2	2	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	8	1	4	Paper		Shepherd Ave (Metro Paper)
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	3	1	2	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	7	2	2	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	7	3	3	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	6	0	1	SB		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Manhattan	7	0	1	SB		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Bronx	5	2	1	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Bronx	5	2	1	Paper		Shepherd Ave (Metro Paper)
Thursday, 08/11/2005	Friday, 08/12/2005	Bronx	5	2	2	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Bronx	7	2	2	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Brooklyn North	4	3	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Brooklyn South	6	2	2	Paper		Shepherd Ave (Metro Paper)
Thursday, 08/11/2005	Friday, 08/12/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Brooklyn South	17	1	2	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	9	1	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	5	2	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	9	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	3	2	1	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	4	3	2	MGP		Hugo Neu LIC
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	4	3	1	Paper		Shepherd Ave (Metro Paper)
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	3	2	3	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	4	3	3	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	7	1	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	7	3	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	13	4	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	7	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	7	3	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	13	3	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Queens East	11	3	1	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough		$\begin{aligned} & \text { ᄃ } \\ & \text { OU } \\ & \text { © } \end{aligned}$	\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	1	3	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	1	3	5	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	3	5	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	1	3	1	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	1	3	2	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	1	3	3	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	2	4	5	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	3	1	2	Refuse		Varick Street
Thursday, 08/11/2005	Friday, 08/12/2005	Staten Island	3	4	1	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	3	1	1	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	3	3	1	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	2	2	1	Paper		Shepherd Ave (Metro Paper)
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	3	1	1	Paper		Shepherd Ave (Metro Paper)
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	3	1	3	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	7	3	3	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	8	1	2	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	8	2	2	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	1	0	2	SB		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Manhattan	8	0	1	SB		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Bronx	5	1	1	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Bronx	5	1	1	Paper		Shepherd Ave (Metro Paper)
Friday, 08/12/2005	Saturday, 08/13/2005	Bronx	4	2	2	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Bronx	5	3	3	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Bronx	7	2	4	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn North	4	2	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn North	4	3	2	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn North	3	0	1	SB		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn North	5	0	1	SB		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	6	2	2	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	6	2	2	Paper		Shepherd Ave (Metro Paper)
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	6	2	3	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Brooklyn South	17	1	3	Refuse		Varick Street

Collection Date	Delivery Date	Borough	$\begin{aligned} & \stackrel{U}{4} \\ & 0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { C} \\ & \text { OU } \\ & \text { © } \\ & 0 \end{aligned}$	\# O O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	5	2	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	9	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	3	2	1	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	3	2	2	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	4	3	1	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	4	3	2	MGP		Hugo Neu LIC
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	3	2	1	Paper		Shepherd Ave (Metro Paper)
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	1	4	1	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	3	2	2	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	4	3	4	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Queens West	2	0	1	SB		Harlem River Yard
Friday, 08/12/2005	Saturday, 08/13/2005	Queens East	10	4	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Friday, 08/12/2005	Saturday, 08/13/2005	Queens East	7	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Queens East	7	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Queens East	7	1	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	1	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	1	3	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	1	3	6	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	3	8	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	1	3	4	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	3	1	1	Refuse		Varick Street
Friday, 08/12/2005	Saturday, 08/13/2005	Staten Island	3	1	2	Refuse		Varick Street
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	3	3	1	MGP		Hugo Neu LIC
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	6	3	1	MGP		Hugo Neu LIC
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	8	4	1	MGP		Hugo Neu LIC
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	8	4	2	MGP		Hugo Neu LIC
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	8	5	2	MGP		Hugo Neu LIC
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	7	2	2	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	7	2	3	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	6	3	3	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	7	3	3	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	8	1	1	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	8	1	3	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$$		\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Saturday, 08/13/2005	Monday, 08/15/2005	Manhattan	4	0	1	SB		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Bronx	5	1	1	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Bronx	5	2	1	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Bronx	5	2	2	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Bronx	8	1	1	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Brooklyn North	3	3	1	MGP		Hugo Neu LIC
Saturday, 08/13/2005	Monday, 08/15/2005	Brooklyn South	17	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/13/2005	Monday, 08/15/2005	Brooklyn South	17	1	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/13/2005	Monday, 08/15/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Saturday, 08/13/2005	Monday, 08/15/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Saturday, 08/13/2005	Monday, 08/15/2005	Brooklyn South	9	0	1	SB		Varick Street
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	5	2	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	5	2	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	5	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	3	2	1	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	3	2	2	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Queens West	4	3	4	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Queens East	7	3	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Saturday, 08/13/2005	Monday, 08/15/2005	Queens East	7	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Queens East	7	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Queens East	7	6	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Queens East	10	4	2	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Queens East	13	5	1	Refuse		Harlem River Yard
Saturday, 08/13/2005	Monday, 08/15/2005	Staten Island	1	3	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Staten Island	1	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/13/2005	Monday, 08/15/2005	Staten Island	1	3	3	Refuse		Varick Street
Saturday, 08/13/2005	Monday, 08/15/2005	Staten Island	2	2	4	Refuse		Varick Street
Saturday, 08/13/2005	Monday, 08/15/2005	Staten Island	3	4	2	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	2	3	1	MGP		Hugo Neu LIC
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	2	3	2	MGP		Hugo Neu LIC
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	2	3	2	Paper		Shepherd Ave (Metro Paper)
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	8	1	1	Paper		Shepherd Ave (Metro Paper)
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	2	3	1	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	3	3	2	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough		응 © ©		Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	7	2	1	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	8	1	2	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	8	2	3	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	8	5	3	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	4	0	1	SB		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Manhattan	9	0	1	SB		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Bronx	5	3	1	Paper		Shepherd Ave (Metro Paper)
Monday, 08/15/2005	Tuesday, 08/16/2005	Bronx	5	2	3	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Bronx	5	3	1	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Bronx	5	3	3	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Bronx	7	2	1	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Bronx	6	0	2	SB		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn North	4	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn North	3	3	1	MGP		Hugo Neu LIC
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn North	3	3	2	MGP		Hugo Neu LIC
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn North	3	3	1	Paper		Shepherd Ave (Metro Paper)
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn North	3	3	3	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn North	4	2	5	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn South	17	1	3	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Brooklyn South	17	1	5	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens West	1	4	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens West	1	4	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens West	5	2	3	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens West	9	1	3	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens East	11	3	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens East	13	7	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens East	13	5	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens East	7	3	4	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens East	13	3	2	Refuse		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Queens East	8	0	1	SB		Harlem River Yard
Monday, 08/15/2005	Tuesday, 08/16/2005	Staten Island	3	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/15/2005	Tuesday, 08/16/2005	Staten Island	3	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor

Collection Date	Delivery Date	Borough	$$	$\begin{aligned} & \text { 듳 } \\ & \text { © } \\ & \text { © } \end{aligned}$	\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 08/15/2005	Tuesday, 08/16/2005	Staten Island	1	3	1	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Staten Island	2	4	5	Refuse		Varick Street
Monday, 08/15/2005	Tuesday, 08/16/2005	Staten Island	3	1	2	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Manhattan	8	3	1	MGP		Hugo Neu LIC
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Manhattan	3	1	2	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Manhattan	8	1	4	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Manhattan	8	4	2	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Manhattan	8	5	3	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Manhattan	6	0	1	SB		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Bronx	5	3	1	MGP		Hugo Neu LIC
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Bronx	4	2	3	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Bronx	5	1	1	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Bronx	5	1	2	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Bronx	5	2	1	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Bronx	7	2	2	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn North	4	1	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn North	4	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn North	3	3	3	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn North	3	3	4	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn North	4	1	1	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn North	4	1	2	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens West	1	4	4	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens West	3	2	4	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens West	5	2	4	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens West	9	1	2	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens West	9	1	3	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens East	7	3	3	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Queens East	13	5	2	Refuse		Harlem River Yard
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Staten Island	3	2	4	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Staten Island	2	2	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Staten Island	1	3	3	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Staten Island	2	2	5	Refuse		Varick Street

Collection Date	Delivery Date	Borough	$$		\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Staten Island	3	1	2	Refuse		Varick Street
Tuesday, 08/16/2005	Wednesday, 08/17/2005	Staten Island	3	1	4	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	7	3	1	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	7	3	2	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	7	3	3	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	8	5	2	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	8	3	3	Paper		Shepherd Ave (Metro Paper)
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	2	3	1	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	3	3	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	8	1	1	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	8	1	3	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	8	3	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	8	5	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	1	0	1	SB		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	3	0	1	SB		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	5	0	1	SB		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	5	0	4	SB		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	9	0	1	SB		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Manhattan	12	0	2	SB		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	5	2	1	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	5	2	2	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	5	2	1	Paper		Shepherd Ave (Metro Paper)
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	5	1	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	5	2	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	5	3	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	7	2	4	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Bronx	8	1	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn North	4	3	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn North	3	3	4	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn North	4	1	3	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn North	4	2	2	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn North	4	3	3	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn South	17	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn South	6	2	1	Paper		Shepherd Ave (Metro Paper)

Collection Date	Delivery Date	Borough		$\begin{aligned} & \stackrel{C}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn South	6	2	2	Paper		Shepherd Ave (Metro Paper)
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Brooklyn South	6	2	3	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens West	5	2	1	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens West	9	1	4	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens West	9	1	5	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens East	7	1	4	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens East	7	3	1	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Queens East	13	4	1	Refuse		Harlem River Yard
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	3	2	4	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	2	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	3	1	5	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	1	3	1	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	3	1	2	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	3	1	3	Refuse		Varick Street
Wednesday, 08/17/2005	Thursday, 08/18/2005	Staten Island	3	5	1	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	2	3	1	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	7	3	1	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	8	1	1	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	8	2	2	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	8	1	4	Paper		Shepherd Ave (Metro Paper)
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	8	3	2	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	8	4	3	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	8	5	3	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Manhattan	2	0	1	SB		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Bronx	5	2	1	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Bronx	4	2	2	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Bronx	5	1	4	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Bronx	5	3	1	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn North	3	3	2	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn North	3	3	4	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn North	4	1	2	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn North	4	2	4	Refuse		Varick Street

Collection Date	Delivery Date	Borough	$$		\# ¢ O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn North	1	0	1	SB		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	5	2	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	9	1	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	5	2	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	4	3	1	MGP		Hugo Neu LIC
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	3	2	1	Paper		Shepherd Ave (Metro Paper)
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	1	4	1	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	3	2	2	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	5	2	3	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	9	1	1	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	9	1	3	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens West	4	0	1	SB		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	7	3	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	10	4	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	7	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	7	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	7	6	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	13	4	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	7	1	3	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	7	3	3	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	10	4	2	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	13	3	2	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Queens East	13	7	2	Refuse		Harlem River Yard
Thursday, 08/18/2005	Friday, 08/19/2005	Staten Island	1	3	6	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/18/2005	Friday, 08/19/2005	Staten Island	3	6	3	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Thursday, 08/18/2005	Friday, 08/19/2005	Staten Island	3	4	4	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Thursday, 08/18/2005	Friday, 08/19/2005	Staten Island	1	3	1	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Staten Island	3	2	2	Refuse		Varick Street
Thursday, 08/18/2005	Friday, 08/19/2005	Staten Island	3	6	1	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	3	1	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	3	3	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	6	3	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	7	2	1	MGP		Hugo Neu LIC

Collection Date	Delivery Date	Borough		-	\# O O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	8	2	2	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	8	4	2	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	8	4	2	Paper		Shepherd Ave (Metro Paper)
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	3	3	2	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	8	5	1	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Manhattan	11	0	1	SB		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	5	1	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	5	1	1	Paper		Shepherd Ave (Metro Paper)
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	4	2	1	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	4	2	3	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	5	1	2	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	5	1	3	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	5	2	1	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	5	2	2	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Bronx	7	2	3	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn North	4	2	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn North	4	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn North	4	2	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn North	4	2	2	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn North	4	3	1	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	6	2	2	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	6	2	1	Paper		Shepherd Ave (Metro Paper)
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	6	2	3	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Brooklyn South	17	1	3	Refuse		Varick Street
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	5	2	1	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	5	2	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	9	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	9	2	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	3	2	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	4	3	1	MGP		Hugo Neu LIC
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	1	4	2	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	3	2	2	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$\begin{aligned} & \ddot{U} \\ & 0.0 \\ & 0.0 \end{aligned}$		\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	4	3	3	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	4	3	4	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens West	4	3	5	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	7	3	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	10	4	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	7	1	2	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	7	1	4	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	7	6	2	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	13	4	3	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	13	7	3	Refuse		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Queens East	10	0	1	SB		Harlem River Yard
Friday, 08/19/2005	Saturday, 08/20/2005	Staten Island	1	3	5	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Friday, 08/19/2005	Saturday, 08/20/2005	Staten Island	3	8	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	2	2	1	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	3	3	1	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	6	3	1	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	8	4	2	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	8	5	1	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	8	5	2	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	3	3	1	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	2	2	1	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	2	3	1	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	3	3	2	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	8	2	2	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	8	5	3	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	3	0	1	SB		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	5	0	4	SB		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Manhattan	7	0	2	SB		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Bronx	5	1	1	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Bronx	5	1	2	MGP		Hugo Neu LIC
Saturday, 08/20/2005	Monday, 08/22/2005	Bronx	5	1	1	Paper		Shepherd Ave (Metro Paper)
Saturday, 08/20/2005	Monday, 08/22/2005	Bronx	5	1	2	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Bronx	5	2	1	Refuse		Harlem River Yard
Saturday, 08/20/2005	Monday, 08/22/2005	Bronx	5	3	1	Refuse		Harlem River Yard

Sample Type	Samples taken from Dual Bin	Delivery Location
Refuse		Harlem River Yard
MGP		Hugo Neu LIC
Refuse		Varick Street
Refuse		Varick Street
Refuse		Varick Street
Refuse		Varick Street
SB		Varick Street
Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Refuse		Varick Street
Refuse		Varick Street
Refuse		Varick Street
Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
MGP		Hugo Neu LIC
MGP		Hugo Neu LIC
MGP		Hugo Neu LIC
Refuse		Harlem River Yard
Refuse		Harlem River Yard
Refuse		Harlem River Yard
Refuse		Harlem River Yard
Refuse		Harlem River Yard
Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Refuse		Harlem River Yard
Refuse		Harlem River Yard
Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Refuse		Varick Street
Refuse		Varick Street
Refuse		Varick Street

$\begin{aligned} & \text { 등 } \\ & \text { O} \\ & \text { 으 } \\ & \text { n } \end{aligned}$	$\left\lvert\, \begin{aligned} & x \\ & \frac{x}{0} \\ & \stackrel{0}{\omega} \end{aligned}\right.$																																		
						Monday, 08/22/2005																								Monday, 08/22/2005					
$\begin{aligned} & 00 \\ & \text { O} \\ & \text { 을 } \\ & \bar{O} \\ & 0 \end{aligned}$																										\circ 									

Collection Date	Delivery Date	Borough	$$	$\begin{aligned} & \text { 气㐅} \\ & \text { OU } \\ & \text { © } \\ & \hline \end{aligned}$	\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Saturday, 08/20/2005	Monday, 08/22/2005	Staten Island	2	4	4	Refuse		Varick Street
Saturday, 08/20/2005	Monday, 08/22/2005	Staten Island	3	5	1	Refuse		Varick Street
Saturday, 08/20/2005	Monday, 08/22/2005	Staten Island	3	5	4	Refuse		Varick Street
Sunday, 08/21/2005	Monday, 08/22/2005	Manhattan	2	0	1	SB		Harlem River Yard
Sunday, 08/21/2005	Monday, 08/22/2005	Manhattan	2	0	3	SB		Harlem River Yard
Sunday, 08/21/2005	Monday, 08/22/2005	Manhattan	6	0	1	SB		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	2	3	2	MGP		Hugo Neu LIC
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	8	1	1	MGP		Hugo Neu LIC
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	2	3	1	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	7	3	2	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	7	3	3	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	8	2	1	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	8	2	3	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Manhattan	8	4	2	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	5	3	1	MGP		Hugo Neu LIC
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	5	3	2	MGP		Hugo Neu LIC
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	4	2	3	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	5	2	3	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	5	3	4	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	7	2	4	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Bronx	8	1	3	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	4	1	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	3	3	2	MGP		Hugo Neu LIC
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	3	3	3	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	3	3	6	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	4	1	2	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	4	1	3	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	4	2	5	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn North	4	3	2	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	1	4	2	Dual	MGP \& Paper	Hugo Neu LIC, then Shepherd
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	1	4	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	1	4	1	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	1	4	2	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	1	4	4	Refuse		Harlem River Yard

Collection Date	Delivery Date	Borough	$$	$\begin{aligned} & \text { 을 } \\ & \text { © } \\ & \text { © } \end{aligned}$	\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	4	3	5	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	4	3	6	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	9	2	2	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	9	2	3	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens West	9	2	4	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens East	13	5	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens East	13	8	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens East	7	3	4	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens East	13	5	1	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Queens East	13	7	1	Refuse		Harlem River Yard
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	3	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	3	1	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	1	3	7	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	2	2	2	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	3	1	1	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	3	1	2	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	3	2	2	Refuse		Varick Street
Monday, 08/22/2005	Tuesday, 08/23/2005	Staten Island	3	6	2	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Manhattan	8	3	3	Paper		Shepherd Ave (Metro Paper)
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Manhattan	7	3	1	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Manhattan	8	2	3	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Manhattan	8	3	2	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Manhattan	8	5	3	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Bronx	5	3	1	MGP		Hugo Neu LIC
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Bronx	4	2	2	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Bronx	7	2	3	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Bronx	4	0	2	SB		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn North	4	1	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn North	3	3	2	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn North	4	1	1	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn North	4	3	3	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn South	6	2	1	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn South	17	1	1	Refuse		Varick Street

Collection Date	Delivery Date	Borough	$$		\# \# O ¢	Sample Type	Samples taken from Dual Bin	Delivery Location
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Brooklyn South	17	1	4	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	1	4	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	1	4	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	1	4	2	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	3	2	1	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	4	3	1	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	4	3	5	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	5	2	2	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	9	2	1	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens West	2	0	1	SB		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens East	13	8	2	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens East	7	1	4	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens East	7	3	2	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Queens East	10	4	2	Refuse		Harlem River Yard
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Staten Island	3	1	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Staten Island	2	4	1	Refuse		Varick Street
Tuesday, 08/23/2005	Wednesday, 08/24/2005	Staten Island	3	6	3	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Manhattan	7	3	1	MGP		Hugo Neu LIC
Wednesday, 08/24/2005	Thursday, 08/25/2005	Manhattan	8	5	2	MGP		Hugo Neu LIC
Wednesday, 08/24/2005	Thursday, 08/25/2005	Manhattan	3	1	1	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Manhattan	7	2	3	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	5	2	1	MGP		Hugo Neu LIC
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	4	2	1	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	5	1	3	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	5	2	3	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	5	3	2	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	8	1	2	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Bronx	4	0	1	SB		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn North	4	3	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn North	4	1	1	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn North	4	3	1	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	17	1	3	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	6	2	1	MGP		Hugo Neu LIC
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	6	2	1	Paper		Shepherd Ave (Metro Paper)
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	6	2	2	Paper		Shepherd Ave (Metro Paper)

Collection Date	Delivery Date	Borough		-	$\begin{aligned} & \text { \# } \\ & \stackrel{\rightharpoonup}{\square} \\ & \hline \end{aligned}$	Sample Type	Samples taken from Dual Bin	Delivery Location
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	6	2	2	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	6	2	3	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Brooklyn South	17	1	1	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Queens West	4	3	2	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Queens East	13	7	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/24/2005	Thursday, 08/25/2005	Queens East	7	1	4	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Queens East	13	6	4	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Queens East	13	7	4	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Queens East	13	8	3	Refuse		Harlem River Yard
Wednesday, 08/24/2005	Thursday, 08/25/2005	Staten Island	2	2	1	Dual ${ }^{(1)}$	MGP	Hugo Neu LIC, then paper vendor assigned by supervisor
Wednesday, 08/24/2005	Thursday, 08/25/2005	Staten Island	1	3	3	Refuse		Varick Street
Wednesday, 08/24/2005	Thursday, 08/25/2005	Staten Island	2	2	4	Refuse		Varick Street

(1) Signifies sampling of MGP only from a dual bin truck.
[This page intentionally left blank.]

Appendix C Sample Management Forms

[This page intentionally left blank.]

New York Waste Characterization Study Phase I - Multi-Unit Apartment Study

Sampling Protocol

The following protocol describes the procedures for taking samples of refuse and recycling materials for the Multi-Unit Study ("MUS").
During the Summer Sorting Period, 94 buildings have been targeted for sampling. The DSNY will arrange special collections for each of the 94 buildings which will provide one-week's refuse and recycling from each building. We will acquire two or three refuse samples (depending on the building's normal collection schedule) and one recycling sample from each building.

A different protocol will be used to collect samples of refuse and recycling.
MUS samples will be collected by the R. W. Beck Sampling Teams six days per week (Monday through Saturday) from 4:00 am to 4:00 pm at Harlem River Yards ("HRY") and Varick.

The R. W. Beck Sampling Team (the "Sampling Team") will receive the numbers of the DSNY trucks delivering Multi-Unit refuse and recycling from the BWRRR Staff on site. The protocol for receiving and distributing truck ID numbers has already been approved.
The DSNY will deliver their loads in dual-bin trucks, and, in most cases, refuse from two buildings will be delivered in a single truck (one building's refuse in each bin). In other cases, the dual-bin truck may include refuse and recycling from a single building or, in rare cases, only refuse from a single building. The Sample Manager must get the address of the building(s) from which the refuse and/or recycling has come from the truck driver. If refuse from two buildings is delivered, the Sample Manger must find out the correct address for each compartment of refuse.

Collection of MUS Refuse Samples

Each day, the R. W. Beck Sampling Teams will be given the numbers of the DSNY trucks that are scheduled to deliver refuse samples. The DSNY trucks will deliver their loads in dual-bin trucks and, in most cases, refuse from two buildings will be in a single truck (one building's refuse in each bin). In other cases, the dual-bin truck will include both refuse and recycling from a single building.

The DSNY driver will empty one bin on to the tipping floor of the transfer station. From the DSNY driver, the Sample Manager must get the address of the building from which the waste on the floor was collected. Once the load from the first buildings has been tipped, a front-end loader from the transfer station will pick-up a portion of the tipped load that has been designated by the Sample Manager. The Sample Manager and his/her assistant will then pull 215 pounds to 250 pounds of refuse from the FEL bucket into one or two toters. The toters should be weighed to be sure that the minimum weight (215 pounds) has been collected. The toters should then be marked
(see below) and, when all refuse samples are collected, they should be taken to North Shore MTS.

If the portion of the tipped load selected by the Sample Manager includes one or more bulky items (e.g., a sofa or chair), that item must be weighed and the weight recorded on the Sample Management form. The bulky item should be left at the transfer station and not taken to the North Shore MTS. The refuse sample should consist of at least 215 pounds of refuse - no bulky items.

Refuse Sample Labels

Each refuse sample should have the following information marked on each toter in the sample:
■ Date on which the sample was collected;

- Address of the building from which the sample was taken;
- Note that the sample is refuse;
- The truck number from which the sample was taken; and

■ The number of toters comprising the sample (e.g., " 1 of 1 " or 1 of 2 ").
The labels should be accurate, complete, and legible. PLEASE PRINT.

Collection of MUS Recycling Samples

The recycling material from each building in the MUS will be delivered in the same dual-bin truck that delivers that building's refuse for that day. However, the procedure for collecting the recycling materials will be quite different.
The Sampling Team must take all recycling material that is delivered from each building. Once the truck has tipped its load of recycling materials, any bulk items (e.g., refrigerators, stoves) must be weighed, the weight noted on the Sample Management Form, and set aside.

The remaining paper, bottles and cans should be placed in special plastic bags. Broken glass or sharp metal items may be placed in a toter. Each bag or toter should be labeled (see below), weighed and the weight noted on the Sample Management Form. The entire amount of recycling material from a building is the recycling sample.

The bags and toters of recycling samples, as well as the bulk items, should be loaded into the Ryder truck, and taken to Greenpoint MTS.

Each recycling sample should have the following information marked on each bag, toter, and bulk item in the sample:

- Date on which the sample was collected;
- Address of the building from which the sample was taken;
- Note that the sample is recycling; and
- The truck number from which the sample was taken.

The labels should be accurate, complete, and legible. PLEASE PRINT.

Truck Weights

In order to estimate the level of recycling, the net weight of all materials delivered by DSNY must be determined. Below are the three possible cases and how the estimates should be calculated. In all cases, the Sample Manager must obtain the gross weight of the truck entering the transfer station and the weight of the empty truck after it has tipped its load.

- Dual-bin truck with refuse from one building: The difference between the gross weight of the truck entering the transfer station and the weight of the empty truck will be the net weight of the refuse in the truck.
■ Dual-bin truck with refuse from two buildings: The DSNY driver will tip the contents of one compartment, then go out and have the truck re-weighed with only one compartment full. The Sample Manager will take a sample from the tipped load. When the truck returns, the driver will tip the contents of the second compartment and weigh out. The Sample Manager will take a sample from the second compartment. The Sample Manager will then obtain three weights for this truck: (1) the gross weight of the full truck; (2) the weight of the truck with one compartment full; and (3) the weight of the empty truck. To calculate the net weight of the refuse in the first compartment, subtract weight (2) from weight (1). To calculate the net weight of the refuse from the second compartment, subtract weight (3) from weight (2).
- Dual-bin truck with refuse and recycling from a single building: The DSNY driver may tip either compartment. If the compartment contains refuse, the Sample Manager will take a sample. The DSNY driver will then tip the second compartment and the Sampling Team will take all recycling materials including bulky items and weigh them. The Sample Manager will then have three weights for this truck: (1) the gross weight of the full truck; (2) the total weight of the recycling materials; and (3) the weight of the empty truck. To calculate the net weight of the refuse in the first compartment, subtract the combined weights of (2) and (3) from weight (1).

An example of the Sample Management Form is attached.

New York City Department of Sanitation
Waste Characterization Study - Phase I SAMPLE MANAGEMENT FORM

Net Weight of Truck Load: \qquad tons or pounds (circle one)

New York City Department of Sanitation
Waste Characterization Study - Phase I
VISUAL BULK ITEM INSPECTION FORM

Visually Inspected Bulk Items				
No.	Bulk Item	General Size	Quantity	Description
Sample 1	Refrigerators	Full Size (Between 5 \& 6 ft)	2	One was complete, one was missing the doors; heaviest mtrl=ferrous metal
Sample 2	Sofa	Full Size (Between 5 \& 6 ft)	3	One was leather; Two were other textiles; one that was not leather may be a sofa bed
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

New York City Department of Sanitation
 Waste Characterization Study - Phase I
 MULTI-UNIT STUDY SAMPLE MANAGEMENT FORM

Outgoing Truck Weight (AFTER sample has been dumped): \qquad tons or pounds (circle one)

Appendix D Material Categories

[This page intentionally left blank.]

Grp	Mat. \#	Material	EW YORK CITY DEPARTMENT OF SANITATION COMPOSITION STUDY - PHASE I - SUMMER SORT MATERIAL CATEGORIES Description				令
	29	Plastic Bags: Shopping Bags	Plastic bags, including labeled grocery and merchandise film bags not heavily soiled with food.				\checkmark
	29.1	Plastic Bags: Dry Cleaning \& Newspaper Bags	Plastic dry cleaner bags and newspaper polyethylene film bags not heavily soiled with food.				\checkmark
	30	Film: Other	Film packaging not defined above or below; is woven together (e.g., grain bags); 6-pack rings, contains multiple layers of film, shrink wrap, packaging film, or other materials that have been fused together (e.g., potato chip bags).				\checkmark
	30.1	Film: Garbage/Recycling Bags	Garbage or recycling bags				\checkmark
	31	Single Use Plastic Plates, Cups, Cutlery, Etc.	Plastic spoons, forks, knives, plates, cups, bowls, and platters of various resins, including styrofoam. Includes cup lids \& plastic straws.				\checkmark
	32	Plastic Materials: Other	Items that are predominately plastic with other materials attached - pens, lighters, toys, and 3-ring binders, single use cameras. Finished plastic products made entirely of plastic such as vinyl hose disposalable cleaning or kitchen implements -- DOES NOT INCLUDE PLASTIC CRATES AND SODA BOTTLE CARRIERS.				
	32.1	Plastic Materials: Personal Hygiene	Personal hygiene items that are predominately plastic with other materials attached - razors, toilet seats, brushes, hair accessories, feminine hygiene items, toothbrushes, shower curtains/mats, soap holders, anything that comes into contact with a body part or is bathroom related.				
	32.2	Plastic Materials: Toys/Housewares	Toy and houseware items that are predominately plastic with other materials attached. Examples: racks, kitchen implements, trays, jewelry, statues, bric-a-brac, office supplies, brooms, mops -- BUT NOT DISPOSABLE CLEANING OR KITCHEN IMPLEMENTS				
$\begin{aligned} & \text { ू } \\ & \text { \% } \end{aligned}$	33	Clear Container Glass	Manually sortable CLEAR glass that is greater than 3" x 3"; Classify containers as "deposit" or "potential deposit" only if intact or with neck missing; not if in pieces.	$\begin{array}{\|c} \mathrm{D} / \mathrm{N} / \\ \mathrm{P} \end{array}$		\checkmark	
	34	Green Container Glass	Manually sortable GREEN glass that is greater than 3" x 3" Classify containers as "deposit" or "potential deposit" only if intact or with neck missing; not if in pieces.	$\begin{array}{\|c} \mathrm{D} / \mathrm{N} / \\ \mathrm{P} \end{array}$		\checkmark	
	35	Brown Container Glass	Manually sortable BROWN glass that is greater than 3" x 3" Classify containers as "deposit" or "potential deposit" only if intact or with neck missing; not if in pieces.	$\begin{array}{\|c} \mathrm{D} / \mathrm{N} / \\ \mathrm{P} \end{array}$		\checkmark	
	36	Mixed Cullet	Clear, green or brown glass not manually sortable (under 3" x 3"); glass shards.				
	37	Blue, Red, Yellow Container Glass	Manually sortable BLUE, RED, or YELLOW glass that is greater than 3" x 3" Classify containers as "deposit" or "potential deposit" only if intact or with neck missing; not if in pieces.	$\begin{array}{\|c} \mathrm{D} / \mathrm{N} / \\ \mathrm{P} \end{array}$		\checkmark	
	38	Other Glass	Window glass, mirrors, light bulbs (except fluorescent tubes), glassware, glass ash trays, perfume and nail polish bottles, etc.				
$\stackrel{\text { IV }}{\stackrel{5}{0}}$	39	Aluminum Cans	Aluminum beverage cans (UBC) and bi-metal cans made mostly of aluminum.	$\begin{array}{\|c} \hline \mathrm{D} / \mathrm{N} / \\ \mathrm{P} \end{array}$		\checkmark	\checkmark
	40	Aluminum: Foil/Containers	Aluminum food containers, trays, pet food cans and foil.				\checkmark
	41	Aluminum: Other	Aluminum products and scrap that are 50% or more aluminum, that do not fit in one of the other aluminum categories. DOES NOT INCLUDE ALUMINUM APPLIANCES. May include nail files and other personal hygiene related and aluminum wire hangers.				

Grp	Mat. \#	Material	W YORK CITY DEPARTMENT OF SANITATION COMPOSITION STUDY - PHASE I - SUMMER SORT MATERIAL CATEGORIES Description		
$\begin{aligned} & \text { U } \\ & \text { En } \\ & \text { 品 } \\ & 0 \end{aligned}$	47	Leaves And Grass	Non-woody plant materials from a yard or garden area, including grass clippings, leaves, weeds, and cut flowers (delete: garden wastes).		
	48	Prunings	Cut prunings, $6^{\prime \prime}$ or less in diameter, from bushes, shrubs, and trees.		
	49	Stumps/Limbs	Compostable prunings or stumps 6" or greater in diameter.		
	50	Food	Food wastes and scraps, including bone, rinds, etc. Excludes the weight of food containers, except when container weight is not appreciable compared to the food inside.		
	51	Wood Furniture/Pieces	Furniture or furniture pieces made of wood.		
	52	Non-C\&D Untreated Wood	Untreated wood products not associated with C\&D activities, popsicle sticks, chopsticks, wooden spoons, and other miscellaneous household wood products. Does not include furniture.		
	53	Non-Clothing Textiles	Non-clothing fabrics made of rag stock fabric materials including natural and synthetic textiles such as cotton, wool, silk, woven nylon, rayon, polyester. Includes handbags, linens, draperies, tablecloths, nylon rope, stuffed toys.		\checkmark
	54	Clothing Textiles	Clothing textiles, DOES NOT INCLUDE SHOES.		\checkmark
	55	Carpet/Carpet Padding	General category of flooring applications and non-rag stock textiles consisting of various natural or synthetic fibers bonded to some type of backing material.		
	56	Disposable Diapers and Sanitary Products	Diapers and sanitary products made from a combination of fibers, synthetic, and/or natural, and made for the purpose of single use. This includes disposable baby diapers, adult protective undergarments, and feminine hygiene products.		
	57	Animal By-Products	Animal carcasses not resulting from food storage or preparation, animal wastes, and kitty litter.		
	58	Rubber Products	Finished products and scrap materials made of natural and synthetic rubber, such as bath mats, inner tubes, rubber hoses, foam rubber, tire pieces, latex gloves. Does not include shoes and boots that are predominantly rubber.		
	59	Shoes	Shoes, sneakers or boots.		
	60	Other Leather Products	Leather jackets, belts, bags, purses, and other non-shoe leather products.		
	61	Fines	Fines smaller than 1/2 inch screen		
	62	Upholstered or Other OrganicType Furniture	Crushed upholstered furniture (if an equal mix of wood, and other organic materials not classified above.) DOES NOT INCLUDE MOSTLY WOOD FURNATURE OR ITEMS THAT WOULD BE INCLUDED UNDER "TEXTILES")		
	63	Miscellaneous Organics	Wax, bar soap, cigarette butts, briquettes, and fireplace, burn barrel and fire pit ash, vacuum cleaner bags and contents.		
	64	Appliances: Ferrous	Small electric appliances such as toasters, microwave ovens, power tools, curling irons, and light fixtures that are more than 50% metal to which a magnet would stick.		
	65	Appliances: Non-Ferrous	Small electric appliances such as toasters, microwave ovens, power tools, curling irons, and light fixtures that are more than 50% metal to which a magnet would NOT stick.		
	66	Appliances: Plastic	Small electric appliances such as toasters, microwave ovens, power tools, curling irons, and light fixtures that are less than 50% metal.		
	67	Audio/Visual Equip.: Cell Phones	Cell phones. Count all cell phones.		\checkmark
	68	Audio/Visual Equip.: Other	Telephones, Stereos, radios, tape decks, VCRs, etc.		

[This page intentionally left blank.]

Appendix E Sample Detail Forms

[This page intentionally left blank.]

Toter Wts: \qquad
Sort Date: \qquad
Crew Chief: \qquad
Truck Number: \qquad

Sample Detail Form

Gr	Mat. \#	Material	Data	Moisture Sample
$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{\omega}} \\ & \stackrel{\sim}{\approx} \end{aligned}$	1	Newspaper		
	2	Plain OCC/Kraft Paper		
	3	High Grade Paper		
	4	Mixed Low Grade Paper		
	5	Phone Books/Paperbacks		
	6	Paper Bags		
	7	Polycoated Paper Containers		
	8	Compostable/Soiled Paper/Waxed OCC/Kraft		
	9	Single Use Paper Plates, Cups		
	10	Other Nonrecyclable Paper		
$\begin{aligned} & \frac{0}{\vec{y}} \\ & \frac{\pi}{2} \end{aligned}$	14	\#1 PET Tubs/Trays/Other Containers		
	15	\#2 HDPE Tubs/Trays/Other Containers		
	20	\#3 PVC Tubs		
	21	\#4 LDPE Tubs		
	22	\#5 PP Tubs		
	23	\#7 Other Tubs		
	24	Soda Crates and Bottle Carriers		
	25	Other PVC		
	26	Rigid Polystyrene Containers and Packaging		
	27	Expanded Polystyrene Containers and Packaging		
	28	Other Rigid Containers/Packaging		
	29	Plastic Bags: Shopping Bags		
	29.1	Plastic Bags: Dry Cleaning Bags		
	30	Film: Other		
	30.1	Film: Garbage/Recycling Bags		
	31	Single Use Plastic Plates, Cups, Cutlery, Etc.		
	32	Plastic Materials: Other		
	32.1	Plastic Materials: Personal Hygiene		
	32.2	Plastic Materials: Toys/Housewares		
\%	36	Mixed Cullet		
	38	Other Glass		
	40	Aluminum: Foil/Containers		
	41	Aluminum: Other		
	41.1	Aluminum: Toys/Housewares		
	41.2	Aluminum: Hardware		
	42	Non-Ferrous: Other		
	42.1	Non-Ferrous: Toys/Housewares		
	42.2	Non-Ferrous: Hardware		
	43	Tin Food Cans		
	44	Empty Aerosol Cans		
	45	Ferrous: Other		
	45.1	Ferrous: Toys/Housewares		
	45.2	Ferrous: Hardware		
	46	Mixed Metals: Other		
	46.1	Mixed Metals: Toys/Housewares		
	46.2	Mixed Metals: Hardware		

Toter Wts： \qquad
Sort Date： \qquad
Crew Chief： \qquad
Truck Number： \qquad
\square
Sample Detail Form

Grp	Mat．	Material	Data	Moisture Sample
$\begin{aligned} & \text { N } \\ & \text { En } \\ & \text { 荡 } \end{aligned}$	47	Leaves And Grass		
	48	Prunings		
	49	Stumps／Limbs		
	50	Food		
	51	Wood Furniture／Furniture Pieces		
	52	Non－C\＆D Untreated Wood		
	53	Non－Clothing Textiles		
	54	Clothing Textiles		
	55	Carpet／Upholstery		
	56	Disposable Diapers and Sanitary Products		
	57	Animal By－Products		
	58	Rubber Products		
	59	Shoes		
	60	Other Leather Products		
	61	Fines		
	62	Upholstered or Other Organic－Type Furniture		
	63	Miscellaneous Organics		
	64	Appliances：Ferrous		
	65	Appliances：Non－Ferrous		
	66	Appliances：Plastic		
	67	Audio／Visual Equipment：Cell Phones		
	68	Audio／Visual Equipment：Other	count	
	69	Computer Monitors		
	70	Televisions		
	71	Other Computer Equipment		
0000000	73	Untreated Dimension Lumber，Pallets，Crates		
	74	Treated／Contaminated Wood		
	75	Gypsum Scrap		碞
	76	Rock／Concrete／Bricks		
	77	Other Construction Debris		
$\dot{\dot{y}}$	78	Miscellaneous Inorganics		
	79	Ceramics		
灵	80	Oil Filters		
	81	Antifreeze		
	82	Wet－Cell Batteries		
	83	Gasoline／Kerosene／Motor Oil／Diesel Fuel		
	84	Latex Paints／Water－Based Adhesives／Glues		
	85	Oil－Based Paints／Solvent－Based Adhesives／Glues		
	86	Pesticides／Herbicides／Rodenticides		
	87	Dry－Cell Batteries		
	88	Fluorescent Tubes		
	89	Mercury－Laden Wastes		
	90	Compressed Gas Cylinders，Fire Extinguishers		
	91	Home Medical Products		
	92	Other Potentially Harmful Wastes		

Toter Wts \qquad
Sort Date: \qquad
Crew Chief: \qquad
Truck Number: \qquad

Street Basket Sample Additional Data Form

For each bag not labeled with a BID and determined to contain residential or commercial material:
Step 1: Describe the contents of each bag.

Residential		Commercial	
ID	Contents:	ID	Contents:
R-1		C-1	
R-2		C-2	
R-3		C-3	
R-4		C-4	
R-5		C-5	
R-6		C-6	
R-7		C-7	
R-8		C-8	
R-9		C-9	
R-10		C-10	
R-11		C-11	
R-12		C-12	
R-13		C-13	
R-14		C-14	
R-15		C-15	

Step 2: Place the sample id card in a visible place and photograph each bag separately.

Step 3: Weigh the bags in two groups: residential and commercial.
Weight of illicit residential bags:
Weight of illicit commercial bags:
\square
\square

Step 4: Identify and describe residential or commercial waste not found in a bag.
Description of loose illicit material:

Step 5: Place the sample id card in a visible place and photograph
illicit material not found in a bag.
Step 6: Return any weighed bags to the table and sort all material following the same procedure used for refuse.

NYC WCS Vol 4 App C Operations Plans App C-293
[This page intentionally left blank.]

Appendix F Health and Safety Plan

[This page intentionally left blank.]

R.W. BECK, Inc. Health and Safety Plan for Waste Composition Field Sorting

Date: April 29, 2004

Introduction

Corporate Safety Policy

R.W. Beck, Inc. believes that the health and safety of its employees is of paramount importance. The issue of health and safety is particularly important in conducting solid waste composition field sorting. The terms "waste sort," "waste composition study," "waste characterization study," and the like may be used interchangeably, and all relate to any project that requires the manual handling of municipal solid waste ("MSW") and subsequent sorting and weighing MSW to determine the percentage of different components in the MSW stream.

To address this issue, the following Health and Safety Plan ("HASP") has been developed to provide guidelines to Project Managers, Field Supervisors, Crew Chiefs, and other field workers ("Field Personnel") involved in R.W. Beck's waste characterization studies. This Plan has also been prepared for distribution to third parties, such as R. W. Beck's clients who are commissioning the waste composition study, solid waste management facility managers who may be hosting a waste composition study, and subconsultants retained by the firm to assist with the performance of any of the on-site activities of a waste composition study.

Objectives of the Plan

R.W. Beck's HASP for Waste Characterization Field Sorting has the following four objectives:

- To align R. W. Beck's health and safety efforts with policies and procedures that are already in place at the solid waste management facilities that host waste composition studies,
- To describe the roles and responsibilities of professional staff regarding health and safety,
- To describe the personal and site safety equipment that must be provided at all waste sorting sites,
- To provide field personnel with a description of the safety procedures to be followed in waste sorting,
- To describe the training and monitoring that R. W. Beck field personnel, subconsultants, and temporary workers must undergo before engaging in waste sorting activities.

Host Facility Health and Safety Coordination

Facilities at which R.W. Beck will sort waste may be owned and operated by third parties that have their own health and safety plans and procedures. It is important that, as guests at the facility, R.W. Beck's workers understand and adhere to the facility's health and safety plan. Adherence to the facility plan may include:

- Confining our waste sorting activities to the areas designated by the facility's owner/operator
- Wearing safety equipment required by the facility's owner/operator, and
- Understanding emergency plans and procedures.

It is important that the Field Supervisor or Project Manager work closely with the facility's owner/operator to integrate operations, including training staff regarding health and safety planning. Specific hold harmless of indemnification requirements by the Host Facility should be reviewed in accordance with the firm's Authorization Policy.

Staff Roles and Responsibilities

Every waste characterization study is unique in some way. Differences in the scope of work, size of the project, and sorting sites, for example, will require different configurations of staffing. However, for the purposes of this Health and Safety Plan, the responsibilities of four types of professionals are described here: (1) Safety Manager, (2) Project Manager, (3) Field Supervisor, and (4) Crew Chief. Some of these roles may overlap in practice. Their roles and responsibilities in the safety effort are described below.

Safety Manager

The Safety Manager is an R. W. Beck employee who is responsible for overseeing the health and safety policies and practices for all waste characterization projects across the firm. This responsibility includes seeing that the HASP is up-to-date, that an appropriate level of safety training for professional staff and temporary workers is maintained, that the most appropriate safety equipment is available to sorting crews, and that issues relating to the health and safety on waste characterization projects have been addressed. The Safety Manager is also responsible for communicating significant HASP changes or updates, newly acquired waste composition-related projects, and any health or safetyrelated events that occur while performing a waste composition study to R. W. Beck's Risk Management Department so that the firm can comprehensively and accurately monitor the success of the Plan.

Project Manager

The Project Manager of a waste characterization study has overall responsibility for the safety and health of all members of his Project Team. Although he/she will delegate some
of these responsibilities to the Field Supervisor and Crew Chief(s), the Project Manager remains the primary responsible party. The Project Manager must be an R. W. Beck employee.

The Project Manager is responsible for developing a project budget, schedule, and scope of work that provides the time and funds for conducting a safe waste sort. Proper safety equipment (see the Safety Equipment Section) must be obtained and issued to workers, and the training of the professional staff and temporary workers must take place before any actual sorting begins. This training is discussed in more detail below. The Project Manager must instill in his/her Project Team an attitude of prudence and care in carrying out the sort.

The Project Manager is also responsible for coordinating with host facility management regarding risk management issues such as waivers, indemnification, and/or adding the host facility as an additional insured to Beck's insurance policy(s), if required.

The Project Manager is not required to participate in any phases of the on-site waste sorting. However, when less experienced Field Supervisors or Crew Chiefs may be involved, the Project Manager should use professional judgment in deciding whether to observe and/or participate on the initial day of field sorting to assure that health and safety practices are being followed, and to communicate to the client, host facility manager, or other parties in the event of any problems. The Project Manager is also responsible for performing periodic observations, as appropriate, to assure that HASP standards are met.

Field Supervisor

The Field Supervisor is generally the most experienced and knowledgeable member of the field sorting team. The Field Supervisor will be the primary contact with the sorting site owner/operator, coordinating sorting activities with other site activities, and supporting any incidents that may occur.

The Field Supervisor has overall responsibility for the sorting site, including the designation of the area where the sorting will take place. In addition to securing the sorting site (i.e. identifying and marking the boundaries of the sorting site), the Field Supervisor should ensure that the sort workers are protected from other equipment and activities on the site. Typically, the Field Supervisor will oversee the selection, delivery, and queuing of samples. The Field Supervisor has the authority to reject any samples and/or immediately terminate any staff who have not following appropriate health and safety practices.

Crew Chief

The Crew Chief is the individual most directly responsible for the health and safety of the individuals sorting waste. The Crew Chief does not have to be an R. W. Beck employee.
$\mathrm{He} /$ She should take a leading role in pre-sort training, be sure that sorting workers have proper personal protective equipment, and that safe sorting procedures are followed throughout the project. As the supervisor working most closely with sorters, the Crew Chief must be alert to unsafe practices (e.g. shoving a hand into the middle of a pile of waste) and warn workers about these practices when they occur. The Crew Chief may be the first person to see an accident and must take appropriate action immediately. The Crew Chief has the authority to immediately terminate sort employees not following appropriate health and safety practices.

Sorter

Sort laborers for waste composition studies may be acquired from multiple organizations, including temporary staffing companies, subconsultants, college or high school internship programs, prison labor programs, professional solid waste trade association membership, and volunteers from numerous other sources (including the client organization and from within R. W. Beck during waste sort training). Regardless of the labor source, sorters are responsible for observing the training provided at the outset of a sort, adhering to the proper health and safety practices throughout the sort, wearing the appropriate personal protective equipment while engaged in sorting, and following the directions provided by the Crew Chief and Field Supervisor at all times. Any sorter not following directions may be terminated immediately without cause.

All MSW site employees, regardless of their level of authority, have the responsibility to report unsafe conditions immediately to their supervisor or to the clients on-site representative.

Safety Equipment

Personal Protection Equipment ("PPE")
The selection of Personal Protective Equipment is based upon a thorough analysis of anticipated and actual hazards on the MSW site.

PPE is broken down into two classes: (1) PPE that must be worn at all times during any sorting of MSW, and (2) PPE that may be required in addition to the required PPE, depending on local host facility requirements and/or work conditions.

The following safety equipment may be provided for each member of the sorting crew (both professional staff and temporary workers), depending on the host facility requirements and comfort.

- Protective coveralls
- Protective eyewear
- Ear plugs
- Dust mask
- Hard hat
- Reflective vest
- Puncture-resistant gloves, and
- Back-support belts
- Would traffic vests be appropriate in some cases?

We require all workers to wear a sturdy work boot, although we do not supply these. A more detailed description of the personal safety equipment is presented in Appendix A. At a minimum, the following equipment must be worn at all times by all members of the sorting crew.

- Protective coveralls
- Protective eyewear
- Puncture-resistant gloves
- Boots

Other PPE may be required depending on the policy of the facility operator or the judgment of the Crew Chief and/or Field Supervisor.

Site Safety Equipment

In addition to the personal safety equipment provided to each worker, each sorting site will have the following equipment,

- A Industrial First Aid Kit
- An Eye-Wash kit or five eye wash bottles per crew person
- Moist towelettes
- Traffic cones
- Yellow caution tape
- A fire extinguisher
- A cell phone or facility-maintained two-way radio
- Insect Repellent
- Ice chest with drinks
- Tent, if appropriate
- Heaters, if necessary
- Emergency notification information

A more detailed description of the site safety equipment is provided in Appendix B.

Field Sorting Safety Procedures

Site Layout

Waste sorting may take place at a variety of venues - landfills, transfer stations, or other facilities. Before any sorting takes place, an R.W. Beck supervisor must inspect the site for the following::

1. Sorting activities will be well away from other activities, such as equipment and vehicle operations, that might endanger or impede waste sorting work.
2. There is adequate room to carry out the sorting activities, including the receiving and queuing samples and the disposal and recycling of sorted waste. This includes safety precautions in the refuse trucks being used.
3. If the site is outside and extreme weather may be encountered, provisions should be made for a tent or other temporary shelter to be erected.
4. Arrangements for toilet facilities and a "break" area have been made, and;
5. Access to the site by a vehicle moving the sorting equipment and crew on and off the site is available. Or: Transportation of equipment and sort personnel to and from the site is available.

Once a suitable site has been located, the Project Manager or the Field Supervisor will schedule the sort at a time agreed to by the Client and the site owner/operator. When the schedule has been determined, arrangements will be made to deliver sorting and safety equipment to the site.

If the Sorting Site is close to operational activities at the facility, it should be marked with traffic cones or high visibility warning tape so that it is clear to all Field Personnel, subconsultants, temporary workers, and facility workers exactly what area is designated for the sorting activities. It must be made clear that all areas which are not designated for sorting activities are strictly off-limits. See Appendix C for a typical sorting site layout.

MSW Facility Safety Procedures

If the sorting site is located at a facility that disposes, transfers, or otherwise processes MSW, R.W. Beck's Project Manager or Field Supervisor should meet with the Site Owner/Operator to coordinate the safety procedures at the site with R.W. Beck's safety procedures. For example, the site may require the wearing of reflective vests and this must become a requirement for the sorting crew on this project. This meeting must take place before any sorting commences.

The Site Manager should outline the facility's health and safety plan and explain the facility's emergency procedures. The location of the nearest hospital, emergency services, and poison control offices should be obtained from the Site Owner/Operator.
R.W. Beck's Supervisor should provide the Site Owner/Operator with a copy of our Health and Safety Plan, explain our safety procedures, and provide documentation of safety training for the Field Personnel, subconsultants, and temporary workers on the waste sort. During this exchange of information, any potential conflicts in approach or procedures should be resolved and both parties should be clear regarding safety and health issues.

The Project Manager should be prepared to sign an indemnification form, and possibly to add the host landfill as an additional insured on R. W. Beck's general liability policy.

Communications

It is important that supervisory staff be able to communicate with each other at all times. If one of the professional staff must leave the site for some reason, he/she should make it clear where they are going, when they will return, and what steps should be taken in case of an emergency. If, for example, the Crew Chief must leave the site, the Field Supervisor should take over the Crew Chief's duties at the sorting table. Either the Field Supervisor or Crew Chief, or both, should have a working cell phone or a facilitymanaged two-way radio (a standard item in the Site Safety Equipment) in case of an emergency.

Site Control

The integrity of the sorting site must be maintained at all times. Where appropriate, the area boundaries should be marked. Workers should understand that they must remain within the sort site and that other are on the site are prohibited. Both the Field Supervisor and the Crew Chief are responsible to see that sorting activities and workers stay within the sorting area.

There should be no smoking, eating, or drinking during sorting activities. Food and nonalcoholic liquids must be consumed away from the sorting area. Drinks should be taken in single-use disposable cups or from the original single serve containers. Personal hygiene practices such a hand washing and removal of contaminated coveralls should be conducted prior to eating, drinking or smoking.

Ergonomics

Waste sorts often involve moving and lifting containers of waste that may weigh 100 lbs or more. To prevent back strain and pulled muscles, staff must be trained in proper lifting techniques as part of the pre-sort training. When heavy containers must be moved or
lifted, the Crew Chief should assign an appropriate number of workers and material handling equipment to the job.

Environmental Conditions

Extreme Heat

The risk of heat stress can be significant in summer sorts where the temperature and humidity are high. In these conditions, Crew Chiefs should monitor workers for signs of fatigue and listlessness. Breaks in the work schedule, plenty of fluids, and clothing which allows sweat to evaporate can all help to alleviate the dangers of heat stress.

Extreme Cold

Winter sorts may take place at sites with very low temperatures and high winds. Protection from the cold should include proper clothing, walls on the tent to lessen the effects of wind, and electric or gas heaters (properly ventilated). Crew Chiefs should be alert for indications of cold-effects, such as shivering and fatigue.

Fatigue

Most projects have tight schedules and the uncertainties associated with the delivery of solid waste to a landfill or transfer station can interrupt this schedule. As a result, there is usually pressure to work as long and as quickly as possible. This, in turn, can lead to carelessness and worker fatigue. Regular breaks in sorting should be built into the schedule to provide for rest and recuperation. Typically these breaks include 15 minute breaks in the morning and afternoon and a 30-60 lunch break. If sorting goes beyond 8 hours, additional breaks should be scheduled. The judgment of the Crew Chief is critical. Workers showing signs of fatigue should be given an opportunity to rest, especially if they are becoming careless or tired.

Injury Prevention

Three of the most common sources of potential injury in waste sorting are:

- Careless handling of waste
- Lifting heavy objects, including containers of materials
- Walking into areas where heavy equipment is operating

Risks associated with handling mixed solid waste can include contact with hazardous materials, sharps, and other potentially dangerous objects. Controls against injury associated with those risks are:
(1) Wear proper safety equipment at all times and
(2) Know what you are picking up. Never reach into the middle of a pile of waste to pull out material. Always select only material or objects you can see. Hand rakes can be used
to spread out a pile of waste; hands or arms should never be used. Using the punctureresistant gloves provided to the crew, sorters can more safely remove needles, broken glass, and sharpened metal from a pile of waste, if the sorter sees what he/she is removing and handles it with care.

Unidentifiable Liquids, Powders, or Medical Waste

Unidentifiable liquids or powders should be treated as hazardous. If there is any question about any material or object, the sorter should immediately stop sorting and notify the Crew Chief. If, at any time, the Crew Chief believes that the sample being sorted includes institutional medical waste or a significant amount of hazardous materials, the crew should stop sorting. The Crew Chief and Field Supervisor should confer and determine if that sample should be discarded without further sorting. The sorting of institutional medical waste and commercial hazardous waste is not performed by R. W. Beck, and the responsibility for handling this material shall be solely with the host facility in the event such material is encountered. It is the responsibility of the Field Supervisor to alert the host facility management.

Lifting Controls

The Crew Chief direct lifting activities at all times. Specifically, the Crew Chief should be sure workers asked to move or lift heavy containers of waste have help available from other members of the crew. Items that cannot be lifted safely by multiple sort laborers shall not be manually weighed and shall be removed by other means. If back injuries or muscle pulls do occur, the Crew Chief should have the worker rest and decide if the injury is severe enough to warrant medical attention.

Both the Field Supervisor and the Crew Chief must see that the sorting area is clearly marked and that the sorting crew understands where the boundaries are. Moving through the area outside the sorting area should be done only with the permission and guidance of the Crew Chief.

Bloodborne Pathogens

Injuries involving cuts and puncture wounds can potentially offer an entry-point for bloodborne pathogens, such as those carrying Hepatitis and HIV. Every cut and puncture wound should be treated and the following steps should be taken by the Crew Chief or Field Supervisor:

- Using sterile gloves, immediately clean the wound with antiseptic and wrap in gauze;
- Place the needle or object causing the wound in a plastic bag;
- If, in the judgment of the Crew Chief and Field Supervisor, the wound caused by a hypodermic needle or a metal object, poses a health or safety risk to the worker, the worker will be taken to the nearest hospital or clinic for evaluation and treatment;
- Notify the Site owner/operator, the Employment Agency (if the patient is a temporary worker), and the Project Manager, who in turn should alert the Safety Manager; and the R.W. Beck Risk Manager.
- Document the incident on an accident report form and submit the completed form to the Safety Manager.

Similar steps should be taken if the worker has been exposed to potentially hazardous material and shows abnormal or unusual symptoms.

Accident Reporting \& Investigation

As a part of the Site Training of the crew, the Field Supervisor should educate workers so they are familiar with the Emergency Contact Information Sheet (see Appendix D) and that it is clearly posted in the sorting area.

All accidents must be reported in writing by the Crew Chief or Field Supervisor, using the Accident Report Form shown in Appendix E. A copy of the completed form should provided to the Site Owner/Operator, the Employment Agency (if the patient is a temporary worker), the Project Manager, who in turn notifies the Safety Manager.

It is the responsibility of the Safety Manager to maintain a file of completed accident report forms and to see that the "lessons learned" for accidents are incorporated into the HASP. Root cause analysis should be the goal of all accident/incident investigations.

Health and Safety Training

All members of a crew responsible for sorting waste must undergo, at a minimum, the training outlined below.

Professional Staff Training

R.W. Beck's professional staff should, at a minimum, have 8 hours of pre-sort training and serve a 2-day apprenticeship before taking on the role of Crew Chief. The pre-sort training must include review and understanding of the HASP and viewing R.W. Beck's safety videos. Training related to other aspects of the sort, such as material identification can also be done during this 8 -hour period. Professional staff should have a current tetanus booster.

A Crew Chief should work for at least one full week before being considered for the position of Field Supervisor.

Sorter Training

Before any waste sorting takes place, the Crew Chief and/or Field Supervisor must review relevant sections of the R.W. Beck HASP with temporary workers, be sure that all
safety procedures are clear, and that all questions from the sorters have been answered. A Sorter Training Acknowledgment Form is presented in Appendix E.

Next, a "test sort" should be run at a very slow pace to be certain that all safety equipment is being worn properly and that sorters understand the safe and proper way to sort samples of waste.

At the beginning of each day of the sort, the Crew Chief should take a few minutes to check that all safety equipment is being worn and is in good shape. The Crew Chief should also remind the crew about safe sorting and go over the lessons learned from any accidents, or near accidents that have occurred.

Appendix A: Personal Protection Equipment

Personal Protection Equipment ("PPE") will be supplied to all workers sorting waste to protect them from the various hazards that might be encountered in carrying out their work. Some of the PPE is mandatory and must be worn at all times by all workers. Other PPE may be worn depending on the weather, site conditions, policy of the sorting site, and judgment of the Crew Chief and Field Supervisor.

The mandatory PPE include:

- Protective coveralls - Tyvek or cotton coveralls must be worn at all times to protect worker's clothing from accidental spills, offer an added layer of warmth in cold weather conditions, and provide added visibility to worker's on the site.
- Puncture-resistant gloves - Rubber, plastic, or leather gloves must be worn while sorting waste. They are designed to protect sorters from accidental cuts or punctures from needles, broken glass, and sharpened metal. A latex or cotton inner glove will also be provided.
- Our preferred gloves are MAPA Stanzoil Heavy-Duty Neoprene Gloves
- Also, recommended are Wells Lamont Puncture- and cut-resistant gloves and Wells Lamont Drivers gloves.
- Protective Eyewear - to provide splash/spatter protection for the sorters
- Our preferred eyewear protection is the Uvex Astro 3001 for "over the glasses" style for sorters who need to wear their own glasses and Crews Klondike for others.
- Sturdy work boots in good repair

PPE which may be worn, at the discretion of the Crew Chief or Field Supervisor include:

- Back-support belts
- Dust Masks - a dust mask should provide protection from dust and MSW particulates.
- Our preferred dust mask is the 3M 3-panel disposable Respirator
- Also recommended are the AOSafety "Pleats Plus" and the Wils0n Saf-T-FIT N95 Respirators.
- Ear plugs
- Hard hat
- Reflective vest
- Steel-toed boots

All pieces of equipment listed above will be available to all crew members at any time.

Appendix B: Site Safety Equipment

Site Safety Equipment ("SSE") will be available at all times on the sorting site to protect workers from hazards and provide emergency first aid. The standard SSE includes:

- A Industrial First Aid Kit - an OSHA-rated 25-person first aid kit or better
- An Eye-Wash kit or five eye wash bottles per crew.
- Moist towelettes
- Traffic cones - four cones to help demarcate the sorting area
- Yellow caution tape - to mark the sorting area.
- A fire extinguisher - a multi-purpose extinguisher that can be used on ordinary combustibles, flammable liquids, and electrically energized fires.
- A cell phone or facility-managed two-way radio
- Insect Repellent
- Ice chest with drinks

If site conditions and weather warrant, a tent will be provided to protect against sun, rain, and wind. Side flaps may also be installed if the weather is cold and/or windy. For very cold conditions, a gas or electric heater may be used. If a gas heater is used, adequate ventilation must be arranged.

Appendix C: Accident Report Forms

Sort Dates:

Sort Site Information

Location:
Office Telephone:
General Manager:
Site Manager:

Field Supervisor:

Crew Chief(s):

Description of Accident:

- Date
- Name of Injured Person

Actions Taken:

Reported by:
Date: \qquad

Appendix D: Emergency Contact Form

Sort Dates:

Sort Site Information

Location:
Office Telephone:
General Manager:
Site Manager:
Field Supervisor:
Crew Chief(s):
Local Hospital
Name:
Address:
Telephone:
Directions from Sort Site:

Emergency Medical Services

Name:
Address:
Telephone:
Directions from Sort Site:

Police

Name:
Address:
Telephone:
Directions from Sort Site
Fire
Name:
Address:
Telephone:
Directions from Sort Site
Poison Control Center
Telephone:

R.W. Beck Office

R.W. Beck, Inc

Suite 300
800 N. Magnolia Ave.
PO Box 538814
Orlando, FL 32803
(407) 422-4911

Contact: Debbie McDonough, John Culbertson
Safety Manager:

Appendix E: Sorter Training Acknowledgment Form

A critical element of training personnel to sort refuse is health and safety training. Before any work can begin, all sorting personnel are trained in safe procedures for handling and sorting waste. This training includes the following topics.

- Purpose of the waste sort
- Site layout - Landfill hazards
- Introduction to professional staff roles and responsibilities
- Sorters responsibilities
- Punctuality
- Rest
- No drugs or alcohol
- No smoking
- Prescribed medications
- Sort Safety Procedures
- Waste handling
- Use of Personal Protective Equipment
- Site Safety Equipment
- Designated work and break areas
- Ergonomics
- Safe lifting to avoid back stress
- Environmental Conditions
- Heat Stress
- Cold
- Fatigue
- Injury Prevention
- Hazardous Wastes
- Bloodborne Pathogens
- Emergency Procedures
- Accident Reporting
- Training Sort

Acknowledgement

I acknowledge that the professional staff from R.W. Beck has discussed and explained the topics listed above, addressed any question I have about these topics, and conducted a training sort to demonstrate the safe handling and sorting of waste.

Signed \qquad Date \qquad
[This page intentionally left blank.]

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix D: Health and Safety Plan

R.W. BECK, Inc.
 Health and Safety Plan for Waste Composition Field Sorting

Date: April 29, 2004

Introduction

Corporate Safety Policy

R.W. Beck, Inc. believes that the health and safety of its employees is of paramount importance. The issue of health and safety is particularly important in conducting solid waste composition field sorting. The terms "waste sort," "waste composition study," "waste characterization study," and the like may be used interchangeably, and all relate to any project that requires the manual handling of municipal solid waste ("MSW") and subsequent sorting and weighing MSW to determine the percentage of different components in the MSW stream.

To address this issue, the following Health and Safety Plan ("HASP") has been developed to provide guidelines to Project Managers, Field Supervisors, Crew Chiefs, and other field workers ("Field Personnel") involved in R.W. Beck's waste characterization studies. This Plan has also been prepared for distribution to third parties, such as R. W. Beck's clients who are commissioning the waste composition study, solid waste management facility managers who may be hosting a waste composition study, and subconsultants retained by the firm to assist with the performance of any of the on-site activities of a waste composition study.

Objectives of the Plan

R.W. Beck's HASP for Waste Characterization Field Sorting has the following four objectives:

- To align R. W. Beck's health and safety efforts with policies and procedures that are already in place at the solid waste management facilities that host waste composition studies,
- To describe the roles and responsibilities of professional staff regarding health and safety,
- To describe the personal and site safety equipment that must be provided at all waste sorting sites,
- To provide field personnel with a description of the safety procedures to be followed in waste sorting,
- To describe the training and monitoring that R. W. Beck field personnel, subconsultants, and temporary workers must undergo before engaging in waste sorting activities.

Host Facility Health and Safety Coordination

Facilities at which R.W. Beck will sort waste may be owned and operated by third parties that have their own health and safety plans and procedures. It is important that, as guests at the facility, R.W. Beck's workers understand and adhere to the facility's health and safety plan. Adherence to the facility plan may include:

- Confining our waste sorting activities to the areas designated by the facility's owner/operator
- Wearing safety equipment required by the facility's owner/operator, and
- Understanding emergency plans and procedures.

It is important that the Field Supervisor or Project Manager work closely with the facility's owner/operator to integrate operations, including training staff regarding health and safety planning. Specific hold harmless of indemnification requirements by the Host Facility should be reviewed in accordance with the firm's Authorization Policy.

Staff Roles and Responsibilities

Every waste characterization study is unique in some way. Differences in the scope of work, size of the project, and sorting sites, for example, will require different configurations of staffing. However, for the purposes of this Health and Safety Plan, the responsibilities of four types of professionals are described here: (1) Safety Manager, (2) Project Manager, (3) Field Supervisor, and (4) Crew Chief. Some of these roles may overlap in practice. Their roles and responsibilities in the safety effort are described below.

Safety Manager

The Safety Manager is an R. W. Beck employee who is responsible for overseeing the health and safety policies and practices for all waste characterization projects across the firm. This responsibility includes seeing that the HASP is up-to-date, that an appropriate level of safety training for professional staff and temporary workers is maintained, that the most appropriate safety equipment is available to sorting crews, and that issues relating to the health and safety on waste characterization projects have been addressed. The Safety Manager is also responsible for communicating significant HASP changes or updates, newly acquired waste composition-related projects, and any health or safetyrelated events that occur while performing a waste composition study to R. W. Beck's Risk Management Department so that the firm can comprehensively and accurately monitor the success of the Plan.

Project Manager

The Project Manager of a waste characterization study has overall responsibility for the safety and health of all members of his Project Team. Although he/she will delegate some
of these responsibilities to the Field Supervisor and Crew Chief(s), the Project Manager remains the primary responsible party. The Project Manager must be an R. W. Beck employee.

The Project Manager is responsible for developing a project budget, schedule, and scope of work that provides the time and funds for conducting a safe waste sort. Proper safety equipment (see the Safety Equipment Section) must be obtained and issued to workers, and the training of the professional staff and temporary workers must take place before any actual sorting begins. This training is discussed in more detail below. The Project Manager must instill in his/her Project Team an attitude of prudence and care in carrying out the sort.

The Project Manager is also responsible for coordinating with host facility management regarding risk management issues such as waivers, indemnification, and/or adding the host facility as an additional insured to Beck's insurance policy(s), if required.

The Project Manager is not required to participate in any phases of the on-site waste sorting. However, when less experienced Field Supervisors or Crew Chiefs may be involved, the Project Manager should use professional judgment in deciding whether to observe and/or participate on the initial day of field sorting to assure that health and safety practices are being followed, and to communicate to the client, host facility manager, or other parties in the event of any problems. The Project Manager is also responsible for performing periodic observations, as appropriate, to assure that HASP standards are met.

Field Supervisor

The Field Supervisor is generally the most experienced and knowledgeable member of the field sorting team. The Field Supervisor will be the primary contact with the sorting site owner/operator, coordinating sorting activities with other site activities, and supporting any incidents that may occur.

The Field Supervisor has overall responsibility for the sorting site, including the designation of the area where the sorting will take place. In addition to securing the sorting site (i.e. identifying and marking the boundaries of the sorting site), the Field Supervisor should ensure that the sort workers are protected from other equipment and activities on the site. Typically, the Field Supervisor will oversee the selection, delivery, and queuing of samples. The Field Supervisor has the authority to reject any samples and/or immediately terminate any staff who have not following appropriate health and safety practices.

Crew Chief

The Crew Chief is the individual most directly responsible for the health and safety of the individuals sorting waste. The Crew Chief does not have to be an R. W. Beck employee.
$\mathrm{He} /$ She should take a leading role in pre-sort training, be sure that sorting workers have proper personal protective equipment, and that safe sorting procedures are followed throughout the project. As the supervisor working most closely with sorters, the Crew Chief must be alert to unsafe practices (e.g. shoving a hand into the middle of a pile of waste) and warn workers about these practices when they occur. The Crew Chief may be the first person to see an accident and must take appropriate action immediately. The Crew Chief has the authority to immediately terminate sort employees not following appropriate health and safety practices.

Sorter

Sort laborers for waste composition studies may be acquired from multiple organizations, including temporary staffing companies, subconsultants, college or high school internship programs, prison labor programs, professional solid waste trade association membership, and volunteers from numerous other sources (including the client organization and from within R. W. Beck during waste sort training). Regardless of the labor source, sorters are responsible for observing the training provided at the outset of a sort, adhering to the proper health and safety practices throughout the sort, wearing the appropriate personal protective equipment while engaged in sorting, and following the directions provided by the Crew Chief and Field Supervisor at all times. Any sorter not following directions may be terminated immediately without cause.

All MSW site employees, regardless of their level of authority, have the responsibility to report unsafe conditions immediately to their supervisor or to the clients on-site representative.

Safety Equipment

Personal Protection Equipment ("PPE")
The selection of Personal Protective Equipment is based upon a thorough analysis of anticipated and actual hazards on the MSW site.

PPE is broken down into two classes: (1) PPE that must be worn at all times during any sorting of MSW, and (2) PPE that may be required in addition to the required PPE, depending on local host facility requirements and/or work conditions.

The following safety equipment may be provided for each member of the sorting crew (both professional staff and temporary workers), depending on the host facility requirements and comfort.

- Protective coveralls
- Protective eyewear
- Ear plugs
- Dust mask
- Hard hat
- Reflective vest
- Puncture-resistant gloves, and
- Back-support belts
- Would traffic vests be appropriate in some cases?

We require all workers to wear a sturdy work boot, although we do not supply these.
A more detailed description of the personal safety equipment is presented in Appendix A. At a minimum, the following equipment must be worn at all times by all members of the sorting crew.

- Protective coveralls
- Protective eyewear
- Puncture-resistant gloves
- Boots

Other PPE may be required depending on the policy of the facility operator or the judgment of the Crew Chief and/or Field Supervisor.

Site Safety Equipment

In addition to the personal safety equipment provided to each worker, each sorting site will have the following equipment,

- A Industrial First Aid Kit
- An Eye-Wash kit or five eye wash bottles per crew person
- Moist towelettes
- Traffic cones
- Yellow caution tape
- A fire extinguisher
- A cell phone or facility-maintained two-way radio
- Insect Repellent
- Ice chest with drinks
- Tent, if appropriate
- Heaters, if necessary
- Emergency notification information

A more detailed description of the site safety equipment is provided in Appendix B.

Field Sorting Safety Procedures

Site Layout

Waste sorting may take place at a variety of venues - landfills, transfer stations, or other facilities. Before any sorting takes place, an R.W. Beck supervisor must inspect the site for the following::

1. Sorting activities will be well away from other activities, such as equipment and vehicle operations, that might endanger or impede waste sorting work.
2. There is adequate room to carry out the sorting activities, including the receiving and queuing samples and the disposal and recycling of sorted waste. This includes safety precautions in the refuse trucks being used.
3. If the site is outside and extreme weather may be encountered, provisions should be made for a tent or other temporary shelter to be erected.
4. Arrangements for toilet facilities and a "break" area have been made, and;
5. Access to the site by a vehicle moving the sorting equipment and crew on and off the site is available. Or: Transportation of equipment and sort personnel to and from the site is available.

Once a suitable site has been located, the Project Manager or the Field Supervisor will schedule the sort at a time agreed to by the Client and the site owner/operator. When the schedule has been determined, arrangements will be made to deliver sorting and safety equipment to the site.

If the Sorting Site is close to operational activities at the facility, it should be marked with traffic cones or high visibility warning tape so that it is clear to all Field Personnel, subconsultants, temporary workers, and facility workers exactly what area is designated for the sorting activities. It must be made clear that all areas which are not designated for sorting activities are strictly off-limits. See Appendix C for a typical sorting site layout.

MSW Facility Safety Procedures

If the sorting site is located at a facility that disposes, transfers, or otherwise processes MSW, R.W. Beck's Project Manager or Field Supervisor should meet with the Site Owner/Operator to coordinate the safety procedures at the site with R.W. Beck's safety procedures. For example, the site may require the wearing of reflective vests and this must become a requirement for the sorting crew on this project. This meeting must take place before any sorting commences.

The Site Manager should outline the facility's health and safety plan and explain the facility's emergency procedures. The location of the nearest hospital, emergency services, and poison control offices should be obtained from the Site Owner/Operator.
R.W. Beck's Supervisor should provide the Site Owner/Operator with a copy of our Health and Safety Plan, explain our safety procedures, and provide documentation of safety training for the Field Personnel, subconsultants, and temporary workers on the waste sort. During this exchange of information, any potential conflicts in approach or procedures should be resolved and both parties should be clear regarding safety and health issues.

The Project Manager should be prepared to sign an indemnification form, and possibly to add the host landfill as an additional insured on R. W. Beck's general liability policy.

Communications

It is important that supervisory staff be able to communicate with each other at all times. If one of the professional staff must leave the site for some reason, he/she should make it clear where they are going, when they will return, and what steps should be taken in case of an emergency. If, for example, the Crew Chief must leave the site, the Field Supervisor should take over the Crew Chief's duties at the sorting table. Either the Field Supervisor or Crew Chief, or both, should have a working cell phone or a facilitymanaged two-way radio (a standard item in the Site Safety Equipment) in case of an emergency.

Site Control

The integrity of the sorting site must be maintained at all times. Where appropriate, the area boundaries should be marked. Workers should understand that they must remain within the sort site and that other are on the site are prohibited. Both the Field Supervisor and the Crew Chief are responsible to see that sorting activities and workers stay within the sorting area.

There should be no smoking, eating, or drinking during sorting activities. Food and nonalcoholic liquids must be consumed away from the sorting area. Drinks should be taken in single-use disposable cups or from the original single serve containers. Personal hygiene practices such a hand washing and removal of contaminated coveralls should be conducted prior to eating, drinking or smoking.

Ergonomics

Waste sorts often involve moving and lifting containers of waste that may weigh 100 lbs or more. To prevent back strain and pulled muscles, staff must be trained in proper lifting techniques as part of the pre-sort training. When heavy containers must be moved or
lifted, the Crew Chief should assign an appropriate number of workers and material handling equipment to the job.

Environmental Conditions

Extreme Heat

The risk of heat stress can be significant in summer sorts where the temperature and humidity are high. In these conditions, Crew Chiefs should monitor workers for signs of fatigue and listlessness. Breaks in the work schedule, plenty of fluids, and clothing which allows sweat to evaporate can all help to alleviate the dangers of heat stress.

Extreme Cold

Winter sorts may take place at sites with very low temperatures and high winds. Protection from the cold should include proper clothing, walls on the tent to lessen the effects of wind, and electric or gas heaters (properly ventilated). Crew Chiefs should be alert for indications of cold-effects, such as shivering and fatigue.

Fatigue

Most projects have tight schedules and the uncertainties associated with the delivery of solid waste to a landfill or transfer station can interrupt this schedule. As a result, there is usually pressure to work as long and as quickly as possible. This, in turn, can lead to carelessness and worker fatigue. Regular breaks in sorting should be built into the schedule to provide for rest and recuperation. Typically these breaks include 15 minute breaks in the morning and afternoon and a 30-60 lunch break. If sorting goes beyond 8 hours, additional breaks should be scheduled. The judgment of the Crew Chief is critical. Workers showing signs of fatigue should be given an opportunity to rest, especially if they are becoming careless or tired.

Injury Prevention

Three of the most common sources of potential injury in waste sorting are:

- Careless handling of waste
- Lifting heavy objects, including containers of materials
- Walking into areas where heavy equipment is operating

Risks associated with handling mixed solid waste can include contact with hazardous materials, sharps, and other potentially dangerous objects. Controls against injury associated with those risks are:
(1) Wear proper safety equipment at all times and
(2) Know what you are picking up. Never reach into the middle of a pile of waste to pull out material. Always select only material or objects you can see. Hand rakes can be used
to spread out a pile of waste; hands or arms should never be used. Using the punctureresistant gloves provided to the crew, sorters can more safely remove needles, broken glass, and sharpened metal from a pile of waste, if the sorter sees what he/she is removing and handles it with care.

Unidentifiable Liquids, Powders, or Medical Waste

Unidentifiable liquids or powders should be treated as hazardous. If there is any question about any material or object, the sorter should immediately stop sorting and notify the Crew Chief. If, at any time, the Crew Chief believes that the sample being sorted includes institutional medical waste or a significant amount of hazardous materials, the crew should stop sorting. The Crew Chief and Field Supervisor should confer and determine if that sample should be discarded without further sorting. The sorting of institutional medical waste and commercial hazardous waste is not performed by R. W. Beck, and the responsibility for handling this material shall be solely with the host facility in the event such material is encountered. It is the responsibility of the Field Supervisor to alert the host facility management.

Lifting Controls

The Crew Chief direct lifting activities at all times. Specifically, the Crew Chief should be sure workers asked to move or lift heavy containers of waste have help available from other members of the crew. Items that cannot be lifted safely by multiple sort laborers shall not be manually weighed and shall be removed by other means. If back injuries or muscle pulls do occur, the Crew Chief should have the worker rest and decide if the injury is severe enough to warrant medical attention.

Both the Field Supervisor and the Crew Chief must see that the sorting area is clearly marked and that the sorting crew understands where the boundaries are. Moving through the area outside the sorting area should be done only with the permission and guidance of the Crew Chief.

Bloodborne Pathogens

Injuries involving cuts and puncture wounds can potentially offer an entry-point for bloodborne pathogens, such as those carrying Hepatitis and HIV. Every cut and puncture wound should be treated and the following steps should be taken by the Crew Chief or Field Supervisor:

- Using sterile gloves, immediately clean the wound with antiseptic and wrap in gauze;
- Place the needle or object causing the wound in a plastic bag;
- If, in the judgment of the Crew Chief and Field Supervisor, the wound caused by a hypodermic needle or a metal object, poses a health or safety risk to the worker, the worker will be taken to the nearest hospital or clinic for evaluation and treatment;
- Notify the Site owner/operator, the Employment Agency (if the patient is a temporary worker), and the Project Manager, who in turn should alert the Safety Manager; and the R.W. Beck Risk Manager.
- Document the incident on an accident report form and submit the completed form to the Safety Manager.

Similar steps should be taken if the worker has been exposed to potentially hazardous material and shows abnormal or unusual symptoms.

Accident Reporting \& Investigation

As a part of the Site Training of the crew, the Field Supervisor should educate workers so they are familiar with the Emergency Contact Information Sheet (see Appendix D) and that it is clearly posted in the sorting area.

All accidents must be reported in writing by the Crew Chief or Field Supervisor, using the Accident Report Form shown in Appendix E. A copy of the completed form should provided to the Site Owner/Operator, the Employment Agency (if the patient is a temporary worker), the Project Manager, who in turn notifies the Safety Manager.

It is the responsibility of the Safety Manager to maintain a file of completed accident report forms and to see that the "lessons learned" for accidents are incorporated into the HASP. Root cause analysis should be the goal of all accident/incident investigations.

Health and Safety Training

All members of a crew responsible for sorting waste must undergo, at a minimum, the training outlined below.

Professional Staff Training

R.W. Beck's professional staff should, at a minimum, have 8 hours of pre-sort training and serve a 2-day apprenticeship before taking on the role of Crew Chief. The pre-sort training must include review and understanding of the HASP and viewing R.W. Beck's safety videos. Training related to other aspects of the sort, such as material identification can also be done during this 8 -hour period. Professional staff should have a current tetanus booster.

A Crew Chief should work for at least one full week before being considered for the position of Field Supervisor.

Sorter Training

Before any waste sorting takes place, the Crew Chief and/or Field Supervisor must review relevant sections of the R.W. Beck HASP with temporary workers, be sure that all
safety procedures are clear, and that all questions from the sorters have been answered. A Sorter Training Acknowledgment Form is presented in Appendix E.

Next, a "test sort" should be run at a very slow pace to be certain that all safety equipment is being worn properly and that sorters understand the safe and proper way to sort samples of waste.

At the beginning of each day of the sort, the Crew Chief should take a few minutes to check that all safety equipment is being worn and is in good shape. The Crew Chief should also remind the crew about safe sorting and go over the lessons learned from any accidents, or near accidents that have occurred.

Appendix A: Personal Protection Equipment

Personal Protection Equipment ("PPE") will be supplied to all workers sorting waste to protect them from the various hazards that might be encountered in carrying out their work. Some of the PPE is mandatory and must be worn at all times by all workers. Other PPE may be worn depending on the weather, site conditions, policy of the sorting site, and judgment of the Crew Chief and Field Supervisor.

The mandatory PPE include:

- Protective coveralls - Tyvek or cotton coveralls must be worn at all times to protect worker's clothing from accidental spills, offer an added layer of warmth in cold weather conditions, and provide added visibility to worker's on the site.
- Puncture-resistant gloves - Rubber, plastic, or leather gloves must be worn while sorting waste. They are designed to protect sorters from accidental cuts or punctures from needles, broken glass, and sharpened metal. A latex or cotton inner glove will also be provided.
- Our preferred gloves are MAPA Stanzoil Heavy-Duty Neoprene Gloves
- Also, recommended are Wells Lamont Puncture- and cut-resistant gloves and Wells Lamont Drivers gloves.
- Protective Eyewear - to provide splash/spatter protection for the sorters
- Our preferred eyewear protection is the Uvex Astro 3001 for "over the glasses" style for sorters who need to wear their own glasses and Crews Klondike for others.
- Sturdy work boots in good repair

PPE which may be worn, at the discretion of the Crew Chief or Field Supervisor include:

- Back-support belts
- Dust Masks - a dust mask should provide protection from dust and MSW particulates.
- Our preferred dust mask is the 3M 3-panel disposable Respirator
- Also recommended are the AOSafety "Pleats Plus" and the Wils0n Saf-T-FIT N95 Respirators.
- Ear plugs
- Hard hat
- Reflective vest
- Steel-toed boots

All pieces of equipment listed above will be available to all crew members at any time.

Appendix B: Site Safety Equipment

Site Safety Equipment ("SSE") will be available at all times on the sorting site to protect workers from hazards and provide emergency first aid. The standard SSE includes:

- A Industrial First Aid Kit - an OSHA-rated 25-person first aid kit or better
- An Eye-Wash kit or five eye wash bottles per crew.
- Moist towelettes
- Traffic cones - four cones to help demarcate the sorting area
- Yellow caution tape - to mark the sorting area.
- A fire extinguisher - a multi-purpose extinguisher that can be used on ordinary combustibles, flammable liquids, and electrically energized fires.
- A cell phone or facility-managed two-way radio
- Insect Repellent
- Ice chest with drinks

If site conditions and weather warrant, a tent will be provided to protect against sun, rain, and wind. Side flaps may also be installed if the weather is cold and/or windy. For very cold conditions, a gas or electric heater may be used. If a gas heater is used, adequate ventilation must be arranged.

Appendix C: Accident Report Forms

Sort Dates:

Sort Site Information
Location:
Office Telephone:
General Manager:
Site Manager:

Field Supervisor:
Crew Chief(s):
Description of Accident:

- Date
- Name of Injured Person

Actions Taken:

Reported by:
Date: \qquad

Appendix D: Emergency Contact Form

Sort Dates:

Sort Site Information

Location:
Office Telephone:
General Manager:
Site Manager:
Field Supervisor:

Crew Chief(s):

Local Hospital
Name:
Address:
Telephone:
Directions from Sort Site:
Emergency Medical Services
Name:
Address:
Telephone:
Directions from Sort Site:
Police
Name:
Address:
Telephone:
Directions from Sort Site
Fire
Name:
Address:
Telephone:
Directions from Sort Site
Poison Control Center
Telephone:
R.W. Beck Office
R.W. Beck, Inc
Suite 300
800 N. Magnolia Ave.
PO Box 538814
Orlando, FL 32803
(407) 422-4911Contact: Debbie McDonough, John CulbertsonSafety Manager:

Appendix E: Sorter Training Acknowledgment Form

A critical element of training personnel to sort refuse is health and safety training. Before any work can begin, all sorting personnel are trained in safe procedures for handling and sorting waste. This training includes the following topics.

- Purpose of the waste sort
- Site layout - Landfill hazards
- Introduction to professional staff roles and responsibilities
- Sorters responsibilities
- Punctuality
- Rest
- No drugs or alcohol
- No smoking
- Prescribed medications
- Sort Safety Procedures
- Waste handling
- Use of Personal Protective Equipment
- Site Safety Equipment
- Designated work and break areas
- Ergonomics
- Safe lifting to avoid back stress
- Environmental Conditions
- Heat Stress
- Cold
- Fatigue
- Injury Prevention
- Hazardous Wastes
- Bloodborne Pathogens
- Emergency Procedures
- Accident Reporting
- Training Sort

Acknowledgement

I acknowledge that the professional staff from R.W. Beck has discussed and explained the topics listed above, addressed any question I have about these topics, and conducted a training sort to demonstrate the safe handling and sorting of waste.

Signed \qquad Date \qquad

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix E: Staffing Lists

[This page intentionally left blank.]

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix E1: Staffing Lists PWCS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 17, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Jonathan Burgiel	Professional	Principal in Charge	Day	Greenpoint MTS
John Culbertson	Professional	Technical Advisor	Day	Greenpoint MTS
Charlie Scott	Professional	Technical Advisor	Day	Greenpoint MTS
Debbie McDonough	Professional	Data Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	10am-6pm	HRY
Sean Perera	Professional	Sample Manager	12am-6am	Varick
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	Varick
John Berry	Temp. Worker	Sampling Helper	10am-6pm	HRY
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
John Berry	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Ricky McCollum	Temp. Worker	Sorter	Day	Greenpoint MTS
Eliel Santiago	Temp. Worker	Sorter	Day	Greenpoint MTS
Herbet Bartholomew	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 18, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	10am-6pm	HRY
Sean Perera	Professional	Sample Manager	12am-6am	Varick
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	Varick
Christopher Clennon	Temp. Worker	Sampling Helper	10am-6pm	HRY
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 19, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	10am-6pm	HRY
Sean Perera	Professional	Sample Manager	12am-6am	Varick
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	Varick
John Berry	Temp. Worker	Sampling Helper	10am-6pm	HRY
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Harold Heyward	Temp. Worker	Sorter	Day	Greenpoint MTS
Shakir Campbell	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Gregory Smoot	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 20, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	10am - 6pm	HRY
Sean Perera	Professional	Sample Manager	12am-6am	Varick
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am - 6am	Varick
John Berry	Temp. Worker	Sampling Helper	10am-6pm	HRY
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa				
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Eli Norris				
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 21, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	10am-6pm	HRY
Sean Perera	Professional	Sample Manager	12am-6am	Varick
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am - 6am	Varick
John Berry	Temp. Worker	Sampling Helper	10am-6pm	HRY
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Eli Norris	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Ricky McCollum	Temp. Worker	Sorter	Day	Greenpoint MTS
Eliel Santiago	Temp. Worker	Sorter	Day	Greenpoint MTS
Herbet Bartholomew	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 22, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	12am-6am	HRY
Sean Perera	Professional	Sample Manager	12am - 6 am	HRY
John Buri	Professional	Sample Manager	12am-6am	Varick
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am - 6 am	Varick
John Berry	Temp. Worker	Sampling Helper	10am-6pm	HRY
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
John Berry	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Eli Norris	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 24, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	12am-6am	HRY
Sean Perera	Professional	Sample Manager	12am-6am	HRY
John Buri	Professional	Sample Manager	12am-6am	Varick
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	Varick
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Herbet Bartholomew	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Romel Monpoint	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 25, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	12am - 6am	HRY
Sean Perera	Professional	Sample Manager	12am-6am	HRY
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	HRY
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Raymond Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Herbet Bartholomew	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Romel Monpoint	Temp. Worker	Sorter	Day	Greenpoint MTS
Eli Norris	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 26, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager	12am-6am	HRY
Sean Perera	Professional	Sample Manager	12am-6am	Varick
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	Varick
Kevin Reese	Temp. Worker	Sampling Helper	12am-6am	HRY
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Herbet Bartholomew	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Eli Norris	Temp. Worker	Sorter	Day	Greenpoint MTS
Eliel Santiago	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List

Date: May 27, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Greenpoint MTS
Sean Perera	Professional	Sample Manager	12am-6am	HRY
Susan Jorash	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Rory Tipton	Professional	Crew Chief	Day	Greenpoint MTS
John Buri	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-6am	Varick
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Jose Marias	Temp. Worker	Sorter	Day	Greenpoint MTS
Winston Peteross	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darryll Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jefferson Coral	Temp. Worker	Sorter	Day	Greenpoint MTS
Colin Grant	Temp. Worker	Sorter	Day	Greenpoint MTS
Herbet Bartholomew	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Eli Norris	Temp. Worker	Sorter	Day	Greenpoint MTS
Eliel Santiago	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Romel Monpoint	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Recycling Sort

Date: June 7, 2004

Professional or Temp.				
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Sean Perera	Professional	Site Supervisor	Day	Greenpoint MTS
Craig Shepherd	Professional	Sample Manager	$12 a m-8 a m$	Hugo Neu
John Hermann	Professional	Sample Manager	$12 a m-8 a m$	Metropolitan
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Michael Giampetro	Professional	Crew Chief	Day	Greenpoint MTS
Amity Lumper	Professional	Crew Chief	Day	Greenpoint MTS
Tim Buwalda	Professional	Crew Chief	Day	Greenpoint MTS
John Culbertson	Professional	Technical Advisor	Day	Greenpoint MTS
Whitney Rusert	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Hugo Neu
Kevin Reese	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Metropolitan
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darrell Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Richard Vergara	Temp. Worker	Sorter	Day	Greenpoint MTS
Deshawn Johnson	Temp. Worker	Sorter	Day	Greenpoint MTS
Lawrence Hall	Temp. Worker	Sorter	Day	Greenpoint MTS
Rashard Pitt	Temp. Worker	Sorter	Day	Greenpoint MTS
William Harris	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Recycling Sort

Date: June 8, 2004

Professional or Temp.				
Tome Jones	Professional	Project Manager	Day	Greenpoint MTS
Sean Perera	Professional	Site Supervisor	Day	Greenpoint MTS
Craig Shepherd	Professional	Sample Manager	12am - 8am	Hugo Neu
John Hermann	Professional	Sample Manager	$12 a m-8 a m$	Metropolitan
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Michael Giampetro	Professional	Crew Chief	Day	Greenpoint MTS
Amity Lumper	Professional	Crew Chief	Day	Greenpoint MTS
Tim Buwalda	Professional	Crew Chief	Day	Greenpoint MTS
John Culbertson	Professional	Technical Advisor	Day	Greenpoint MTS
Whitney Rusert	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Hugo Neu
Kevin Reese	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Metropolitan
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darrell Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Richard Vergara	Temp. Worker	Sorter	Day	Greenpoint MTS
Deshawn Johnson	Temp. Worker	Sorter	Day	Greenpoint MTS
Lawrence Hall	Temp. Worker	Sorter	Day	Greenpoint MTS
Rashard Pitt	Temp. Worker	Sorter	Day	Greenpoint MTS
William Harris	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Recycling Sort

Date: June 9, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Sean Perera	Professional	Site Supervisor	Day	Greenpoint MTS
Craig Shepherd	Professional	Sample Manager	12am - 8am	Hugo Neu
John Hermann	Professional	Sample Manager	12am - 8am	Metropolitan
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Michael Giampetro	Professional	Crew Chief	Day	Greenpoint MTS
Amity Lumper	Professional	Crew Chief	Day	Greenpoint MTS
Tim Buwalda	Professional	Crew Chief	Day	Greenpoint MTS
Whitney Rusert	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Kevin Reese	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darrell Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Richard Vergara	Temp. Worker	Sorter	Day	Greenpoint MTS
Deshawn Johnson	Temp. Worker	Sorter	Day	Greenpoint MTS
Lawrence Hall	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Recycling Sort

Date: June 10, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Sean Perera	Professional	Site Supervisor	Day	Greenpoint MTS
Craig Shepherd	Professional	Sample Manager	12am-8am	Hugo Neu
John Hermann	Professional	Sample Manager	12am - 8am	Metropolitan
Randy Bowen	Professional	Crew Chief	Day	Greenpoint MTS
Michael Giampetro	Professional	Crew Chief	Day	Greenpoint MTS
Amity Lumper	Professional	Crew Chief	Day	Greenpoint MTS
Tim Buwalda	Professional	Crew Chief	Day	Greenpoint MTS
Whitney Rusert	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Kevin Reese	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darrell Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Richard Vergara	Temp. Worker	Sorter	Day	Greenpoint MTS
Deshawn Johnson	Temp. Worker	Sorter	Day	Greenpoint MTS
Lawrence Hall	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Recycling Sort

Date: June 11, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Sean Perera	Professional	Site Supervisor	Day	Greenpoint MTS
Craig Shepherd	Professional	Sample Manager	12am-8am	Hugo Neu
Randy Bowen	Professional	Sample Manager	12am - 8am	Metropolitan
Michael Giampetro	Professional	Crew Chief	Day	Greenpoint MTS
Amity Lumper	Professional	Crew Chief	Day	Greenpoint MTS
Tim Buwalda	Professional	Crew Chief	Day	Greenpoint MTS
Whitney Rusert	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Ian Stewart	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Carlos Sostre	Temp. Worker	Sorter	Day	Greenpoint MTS
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Demond Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
George Alomar	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darrell Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Noel Correa	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Richard Vergara	Temp. Worker	Sorter	Day	Greenpoint MTS
Deshawn Johnson	Temp. Worker	Sorter	Day	Greenpoint MTS
Lawrence Hall	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation PRELIMINARY WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Recycling Sort

Date: June 12, 2004

Name	Professional or Temp.	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint MTS
Sean Perera	Professional	Site Supervisor	Day	Greenpoint MTS
Craig Shepherd	Professional	Sample Manager	12am - 8am	Hugo Neu
Randy Bowen	Professional	Sample Manager	12am - 8am	Metropolitan
Michael Giampetro	Professional	Crew Chief	Day	Greenpoint MTS
Amity Lumper	Professional	Crew Chief	Day	Greenpoint MTS
Tim Buwalda	Professional	Crew Chief	Day	Greenpoint MTS
Whitney Rusert	Professional	Crew Chief	Day	Greenpoint MTS
Dennis Brown	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Ian Stewart	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Keith McCurdy	Temp. Worker	Sorter	Day	Greenpoint MTS
Raul Aurena	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Romero	Temp. Worker	Sorter	Day	Greenpoint MTS
David Strickland	Temp. Worker	Sorter	Day	Greenpoint MTS
Darrell Brimmage	Temp. Worker	Sorter	Day	Greenpoint MTS
Abdur-Rahin Rahman	Temp. Worker	Sorter	Day	Greenpoint MTS
Richard Vergara	Temp. Worker	Sorter	Day	Greenpoint MTS
Deshawn Johnson	Temp. Worker	Sorter	Day	Greenpoint MTS
Lawrence Hall	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix E2: Staffing Lists WCS Fall

New York Department of Sanitation WASTE CHARACTERIZATION STUDY

 Professional/Temporary Worker Attendance List

 Professional/Temporary Worker Attendance List Fall Sort

Date: October 18, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
John Culbertson	Professional	Technical Advisor	Day	Greenpoint/Northshore MTS
Charlie Scott	Professional	Technical Advisor	Day	Greenpoint/Northshore MTS
Matt Rugg	Professional	Technical Advisor	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am-8am	Hugo Neu
Randy Bowen	Professional	Sample Manager	12am - 8am	Metropolitan
Ramone Swan	Professional	Traffic Manager	12am-8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am-8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Paul Johnson	Professional	Traffic Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Sylvester Green	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am-8am	Varick
Darrell Brimmage	Temp. Worker	Sampling Helper	12am -8am	HRY
Deshawn Johnson	Temp. Worker	Sampling Helper	12am-8am	HRY
Francisco Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Rodney Graham	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Micheal Eason	Temp. Worker	Sorter	Day	Northshore MTS
Samuel Kehinde	Temp. Worker	Sorter	Day	Northshore MTS
Craig Hall	Temp. Worker	Sorter	Day	Northshore MTS
Marvin Sanchez	Temp. Worker	Sorter	Day	Northshore MTS
Harry Bannerman	Temp. Worker	Sorter	Day	Northshore MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Solari Brandon	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
William Matthis	Temp. Worker	Sorter	Day	Northshore MTS
Jerry Richardson	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 19, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
John Culbertson	Professional	Technical Advisor	Day	Greenpoint/Northshore MTS
Matt Rugg	Professional	Technical Advisor	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am - 8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am - 8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Paul Johnson	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	Varick
Darrell Brimmage	Temp. Worker	Sampling Helper	12am - 8am	HRY
Francisco Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Rodney Graham	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Samuel Kehinde	Temp. Worker	Sorter	Day	Northshore MTS
Craig Hall	Temp. Worker	Sorter	Day	Northshore MTS
Marvin Sanchez	Temp. Worker	Sorter	Day	Northshore MTS
Harry Bannerman	Temp. Worker	Sorter	Day	Northshore MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Solari Brandon	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
William Matthis	Temp. Worker	Sorter	Day	Northshore MTS
Jerry Richardson	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 20, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
John Culbertson	Professional	Technical Advisor	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am-8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am - 8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am-8am	HRY
Paul Johnson	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	Varick
Darrell Brimmage	Temp. Worker	Sampling Helper	12am - 8am	HRY
Francisco Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Rodney Graham	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Samuel Kehinde	Temp. Worker	Sorter	Day	Northshore MTS
Craig Hall	Temp. Worker	Sorter	Day	Northshore MTS
Marvin Sanchez	Temp. Worker	Sorter	Day	Northshore MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Solari Brandon	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
William Matthis	Temp. Worker	Sorter	Day	Northshore MTS
Jerry Richardson	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 21, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am-8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am-8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Paul Johnson	Professional	Traffic Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	Varick
Luis Rodriguez	Temp. Worker	Sampling Helper	12am-8am	HRY
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Francisco Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Rodney Graham	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Samuel Kehinde	Temp. Worker	Sorter	Day	Northshore MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Solari Brandon	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
William Matthis	Temp. Worker	Sorter	Day	Northshore MTS
Jerry Richardson	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: October 22, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am - 8am	Hugo Neu
Paul Johnson	Professional	Sample Manager	12am - 8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Ramone Swan	Professional	Traffic Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	Varick
Luis Rodriguez	Temp. Worker	Sampling Helper	12am - 8am	HRY
Kyle Dawson	Temp. Worker	Sampling Helper	12am - 8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Solari Brandon	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
William Matthis	Temp. Worker	Sorter	Day	Northshore MTS
Jerry Richardson	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: October 23, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am - 8am	Hugo Neu
Paul Johnson	Professional	Traffic Manager	12am-8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am - 8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	HRY
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Solari Brandon	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: October 25, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am-8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Susan Jarosch	Professional	Sample Manager	12am-8am	Varick
Dieter Eckels	Professional	Traffic Manager	12am - 8am	Varick
Paul Johnson	Professional	Sample Manager	12am - 8am	HRY
Karin Olesky	Professional	Traffic Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	HRY
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
William Matthis	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Esmond Johnson	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 26, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am - 8am	Hugo Neu
Paul Johnson	Professional	Sample Manager	12am-8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am-8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am-8am	HRY
Ramone Swan	Professional	Traffic Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Esmond Johnson	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 27, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am - 8am	Hugo Neu
Brian Scott	Professional	Traffic Manager	12am - 8am	Hugo Neu
Paul Johnson	Professional	Sample Manager	12am - 8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am-8am	HRY
Ramone Swan	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am-8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am - 8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Jorge Santos	Temp. Worker	Sorter	Day	Northshore MTS
Rigoberto Guzman	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Esmond Johnson	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 28, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Steve Baumgart	Professional	Sample Manager	12am - 8am	Hugo Neu
Brian Scott	Professional	Traffic Manager	12am - 8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am - 8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am-8am	Varick
Susan Jarosch	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Paul Johnson	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	HRY
Kyle Dawson	Temp. Worker	Sampling Helper	12am - 8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Jorge Santos	Temp. Worker	Sorter	Day	Northshore MTS
Rigoberto Guzman	Temp. Worker	Sorter	Day	Northshore MTS
Carlos Thomas	Temp. Worker	Sorter	Day	Northshore MTS
Joe Keaton	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Anthony Rivers	Temp. Worker	Sorter	Day	Northshore MTS
Esmond Johnson	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: October 29, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	12am - 8am	Hugo Neu
Susan Jarosch	Professional	Traffic Manager	12am-8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Paul Johnson	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Jennifer Goodhope	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	HRY
Kyle Dawson	Temp. Worker	Sampling Helper	12am - 8am	Varick
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
David Strickland	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Jorge Santos	Temp. Worker	Sorter	Day	Northshore MTS
Rigoberto Guzman	Temp. Worker	Sorter	Day	Northshore MTS
Carlos Thomas	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Esmond Johnson	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: October 30, 2004

Name	Type	Shift	Site	
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	$12 a m-8 a m$	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	$12 a m-8 a m$	Hugo Neu
Susan Jarosch	Professional	Traffic Manager	$12 a m-8 a m$	Hugo Neu
Ramone Swan	Professional	Sample Manager	$12 a m-8 a m$	Metropolitan
Karin Olesky	Professional	Sample Manager	$12 a m-8 a m$	Varick
Paul Johnson	Professional	Traffic Manager	$12 a m-8 a m$	Varick
Brent Matson	Professional	Traffic Manager	$12 a m-8 a m$	Varick
Dieter Eckels	Professional	Sample Manager	$12 a m-8 a m$	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karen Vickers	Professional	Crew Chief	Day	Greenpoint MTS
Jennifer Goodhope	Professional	Crew Chief	Day	Greenpoint MTS
Sylvester Green	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	$12 a m-8 a m$	Metropolitan
Kyle Dawson	Temp. Worker	Sampling Helper	$12 a m-8 a m$	HRY
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel Mclntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: November 1, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	12am - 8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Karin Olesky	Professional	Sample Manager	12am - 8am	Varick
Brent Matson	Professional	Traffic Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Seth Cunningham	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Jennifer Goodhope	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am-8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am - 8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Charles Michael	Temp. Worker	Sorter	Day	Northshore MTS
Nigel Grant	Temp. Worker	Sorter	Day	Northshore MTS
Pedro German	Temp. Worker	Sorter	Day	Northshore MTS
Sequoyah Samuel	Temp. Worker	Sorter	Day	Northshore MTS
Heriberto Reyes	Temp. Worker	Sorter	Day	Northshore MTS
Ricardo Perez	Temp. Worker	Sorter	Day	Northshore MTS
Robert Willis	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: November 2, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Jennifer Goodhope	Professional	Crew Chief	Day	Greenpoint MTS
Karin Olesky	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Eion Collins	Temp. Worker	Sorter	Day	Northshore MTS
Charles Michael	Temp. Worker	Sorter	Day	Northshore MTS
Nigel Grant	Temp. Worker	Sorter	Day	Northshore MTS
Pedro German	Temp. Worker	Sorter	Day	Northshore MTS
Sequoyah Samuel	Temp. Worker	Sorter	Day	Northshore MTS
Heriberto Reyes	Temp. Worker	Sorter	Day	Northshore MTS
Ricardo Perez	Temp. Worker	Sorter	Day	Northshore MTS
Robert Willis	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: November 3, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	12am - 8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Brent Matson	Professional	Sample Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am-8am	HRY
Seth Cunningham	Professional	Traffic Manager	12am-8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karin Olesky	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am-8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Sequoyah Samuel	Temp. Worker	Sorter	Day	Northshore MTS
Heriberto Reyes	Temp. Worker	Sorter	Day	Northshore MTS
Ricardo Perez	Temp. Worker	Sorter	Day	Northshore MTS
Robert Willis	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: November 4, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	12am - 8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Brent Matson	Professional	Sample Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Seth Cunningham	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karin Olesky	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am - 8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Sequoyah Samuel	Temp. Worker	Sorter	Day	Northshore MTS
Heriberto Reyes	Temp. Worker	Sorter	Day	Northshore MTS
Ricardo Perez	Temp. Worker	Sorter	Day	Northshore MTS
Robert Willis	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Fall Sort

Date: November 5, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am - 8am	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	12am-8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am-8am	Metropolitan
Brent Matson	Professional	Sample Manager	12am - 8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Seth Cunningham	Professional	Traffic Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karin Olesky	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	12am-8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am - 8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am-8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Charlie Loftin	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Vincent McBee	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Kevin Hughes	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Sequoyah Samuel	Temp. Worker	Sorter	Day	Northshore MTS
Heriberto Reyes	Temp. Worker	Sorter	Day	Northshore MTS
Ricardo Perez	Temp. Worker	Sorter	Day	Northshore MTS
Robert Willis	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: November 6, 2004

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Ron Perkins	Professional	Director of Sampling	12am-8am	Hugo Neu/Metropolitan/Varick/HRY
Brian Scott	Professional	Sample Manager	12am - 8am	Hugo Neu
Seth Cunningham	Professional	Traffic Manager	12am - 8am	Hugo Neu
Ramone Swan	Professional	Sample Manager	12am - 8am	Metropolitan
Brent Matson	Professional	Sample Manager	12am-8am	Varick
Dieter Eckels	Professional	Sample Manager	12am - 8am	HRY
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	Site Supervisor	Day	Northshore MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Karin Olesky	Professional	Crew Chief	Day	Greenpoint MTS
Randy Bowen	Professional	Crew Chief	Day	Northshore MTS
Mike Lennon	Professional	Crew Chief	Day	Northshore MTS
Katie Atkins	Professional	Crew Chief	Day	Northshore MTS
Sylvester Green	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Mustapha Sallah	Temp. Worker	Sampling Helper	12am - 8am	Hugo Neu
Carlton Mills	Temp. Worker	Sampling Helper	12am-8am	Metropolitan
Richard Laracuente	Temp. Worker	Sampling Helper	12am-8am	Varick
Kyle Dawson	Temp. Worker	Sampling Helper	12am-8am	HRY
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Akiel McIntosh	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Tomlin	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	Greenpoint MTS
William Santiago	Temp. Worker	Sorter	Day	Northshore MTS
Jack Lawson	Temp. Worker	Sorter	Day	Northshore MTS
Exie Kelly	Temp. Worker	Sorter	Day	Northshore MTS
Ralph Crump	Temp. Worker	Sorter	Day	Northshore MTS
Edmund Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Pablo Terrezas	Temp. Worker	Sorter	Day	Northshore MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Northshore MTS
Kiron Parker	Temp. Worker	Sorter	Day	Northshore MTS
Lydell President	Temp. Worker	Sorter	Day	Northshore MTS
Ramon Romero	Temp. Worker	Sorter	Day	Northshore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Northshore MTS
Heriberto Reyes	Temp. Worker	Sorter	Day	Northshore MTS
Ricardo Perez	Temp. Worker	Sorter	Day	Northshore MTS
Robert Willis	Temp. Worker	Sorter	Day	Northshore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Fall Sort

Date: November 7, 2004

Name	Type	Role		Shift
Tom Jones	Professional	Project Manager	Day	Greenpoint/Northshore MTS
Sean Perera	Professional	Logistics Manager	Day	Greenpoint/Northshore MTS
Ramone Swan	Professional	Sample Manager	Day	Greenpoint MTS
Rory Tipton	Professional	Site Supervisor	Day	Greenpoint MTS
Mike Rogers	Professional	Crew Chief	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Eugene Escott	Temp. Worker	Sorter	Day	Greenpoint MTS
Jason Chesney	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ackeem McKinley	Temp. Worker	Sorter	Day	Greenpoint MTS

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix E3: Staffing Lists WCS Winter

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 8, 2005

Name	Role	Site		
Tom Jones	Professional	Project Manager	Day	All Sites
John Culbertson	Professional	Technical Advisor	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Maria De Los Angeles TA	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Yajaira Lopez	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Carroll Myles	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Cato	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 9, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
John Culbertson	Professional	Technical Advisor	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Maria De Los Angeles TA	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Yajaira Lopez	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Carroll Myles	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Cato	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
Barry Goins	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 10, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Maria De Los Angeles TA	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Yajaira Lopez	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Carroll Myles	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Cato	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Shandi S. Polonio	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sequoyah del Caridad SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Winter Sort

Date: March 11, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Maria De Los Angeles TA	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
James Cato	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Shandi S. Polonio	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Charles	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Jean A. Pasmore	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sequoyah del Caridad SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 12, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles TA	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
James Cato	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Shandi S. Polonio	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Jean A. Pasmore	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Winter Sort

Date: March 14, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Susan Evans	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sequoyah Del Caridad SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Winter Sort

Date: March 15, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Susan Evans	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sequoyah Del Caridad SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 16, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Susan Evans	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Sasha Evans	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Michael Archille	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sequoyah Del Caridad SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Winter Sort

Date: March 17, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Susan Evans	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Randy Bowen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael Archille	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sequoyah Del Caridad SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Winter Sort

Date:March 18, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Susan Evans	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Katie Kennedy	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Edwards	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael Archille	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List

 Winter SortDate: March 19, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Susan Evans	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Dennis M. Oleary	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael Archille	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 21, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Hillary Smith	Professional	Sample Manager \#4	Night	Harlem River Yards
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Jessica Gokay	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
James Johnson	Temp. Worker	Sampling Helper	Night	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Night	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 22, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Night	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies DuPree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ronald Jones	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 23, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Night	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies DuPree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Larry D. Simmons	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Terence Arnold David SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 24, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Jacqueline Bonilla	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Night	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Glenn L. Cooper	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies DuPree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Larry D. Simmons	Temp. Worker	Sorter	Day	North Shore MTS
Mark I. Washington	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Terence Arnold David SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 25, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Jacqueline Bonilla	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Apollo Dimbo	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
George M. Hernandez	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Night	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
Marcies DuPree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Shaun Perry	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Larry D. Simmons	Temp. Worker	Sorter	Day	North Shore MTS
Michael E. Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Terence Arnold David SA	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert J. Reed	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Winter Sort

Date: March 26, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Tanya Tarnecki	Professional	North Shore Field Supervisor	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
George M. Hernandez	Temp. Worker	Sampling Helper	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Night	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies DuPree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Larry D. Simmons	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Terence Arnold David SA	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 28, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Jacqueline Bonilla	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	North Shore MTS
James Lawson Baxton	Temp. Worker	Sampling Helper	Day	North Shore MTS
Marcies DuPree	Temp. Worker	Sampling Helper	Night	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Carlos Sostre	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Larry D. Simmons	Temp. Worker	Sorter	Day	North Shore MTS
Larry E. Heath	Temp. Worker	Sorter	Day	North Shore MTS
Leon Larmar Zeigler	Temp. Worker	Sorter	Day	North Shore MTS
Michael Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Almaji Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Sammy Gonzalez	Temp. Worker	Sorter	Day	North Shore MTS
Terence Arnold David SA	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Winter Sort

Date: March 29, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Wayne Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Steve Baumgart	Professional	Director of Sampling	Night	All Transfer Stations
Rory Tipton	Professional	Greenpoint Field Supervisor	Day	Greenpoint MTS
Mike Rogers	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Marley Shoaf	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Colleen Thumlert	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Dieter Eckels	Professional	Sample Manager \#1	Night	Harlem River Yards
Ramon Swann	Professional	Sample Manager \#2	Night	Metropolitan Paper - Shepard Rd.
Bernice Siebuhr	Professional	Sample Manager \#3	Night	Varick I
Jeremy Hardesty	Professional	Sample Manager \#5	Night	Varick I
Paul Johnson	Professional	Sample Manager \#6	Night	Hugo Neu
Gwen Vernon	Professional	Sample Manager \#	Night	Harlem River Yards
Jacqueline Bonilla	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Maria De Los Angeles Ta	Temp. Worker	Data Input	Day	Data Center - Marriott Courtyard
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
James Samuel Ravenell	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Archille	Temp. Worker	Sorter	Day	Greenpoint MTS
Saka Akintayo	Temp. Worker	Sorter	Day	Greenpoint MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Claude Roberts	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sorter	Day	North Shore MTS
David Strickland	Temp. Worker	Sorter	Day	North Shore MTS
James Lawson Baxton	Temp. Worker	Sorter	Day	North Shore MTS
Joanest Pierre	Temp. Worker	Sorter	Day	North Shore MTS
John Dixon	Temp. Worker	Sorter	Day	North Shore MTS
Larry D. Simmons	Temp. Worker	Sorter	Day	North Shore MTS
Phillip N. Crawford	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Terence Arnold David SA	Temp. Worker	Sorter	Day	North Shore MTS

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix E4: Staffing Lists WCS Spring

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Spring Sort

Date: May 9, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Kerri Genden	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Peter Sander	Professional	Sample Manager \#8	Morning	Varick I
Peter Lobbon	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewwer	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Angel Rivera	Temp. Worker	Sorter	Day	North Shore MTS
Willie Sexton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Hugo Neu
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Spring Sort

Date: May 10, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Kerri Genden	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Peter Sander	Professional	Sample Manager \#8	Morning	Harlem River Yard
Peter Lobbon	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewwer	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Angel Rivera	Temp. Worker	Sorter	Day	North Shore MTS
Willie Sexton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
James Ravenell	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List

Spring Sort
Date: May 11, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Tim Buwalda	Professional	Technical Advisor	Day	Greenpoint/North Shore
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Kerri Genden	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Peter Sander	Professional	Sample Manager \#8	Morning	Varick I
Peter Lobbon	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewwer	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Angel Rivera	Temp. Worker	Sorter	Day	North Shore MTS
Willie Sexton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	North Shore MTS
Warren Hawkins	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List

 Spring SortDate: May 12, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Tim Buwalda	Professional	Technical Advisor	Day	Greenpoint/North Shore
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Kerri Genden	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Peter Sander	Professional	Sample Manager \#8	Morning	Varick I
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewwer	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Angel Rivera	Temp. Worker	Sorter	Day	North Shore MTS
Willie Sexton	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Luis Rodriguez	Temp. Worker	Sorter	Day	North Shore MTS
Warren Hawkins	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
James Ravenell	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Spring Sort

Date: May 13, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Kerri Genden	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Angel Rivera	Temp. Worker	Sorter	Day	North Shore MTS
Willie Sexton	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Warren Hawkins	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
James Ravenell	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY
Professional/Temporary Worker Attendance List
Spring Sort
Date: May 14, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Kerri Genden	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewwer	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Angel Rivera	Temp. Worker	Sorter	Day	North Shore MTS
Willie Sexton	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
James Ravenell	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

 Professional/Temporary Worker Attendance List Spring Sort
Date: May 16, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Nelson Acevedo	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Johnnie Lane	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Spring Sort

Date: May 17, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Teresa Lewandowski	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Nelson Acevedo	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Johnnie Lane	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List Spring Sort

Date: May 18, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Nelson Acevedo	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Spring Sort

Date: May 19, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Nelson Acevedo	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Johnnie Lane	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Steven Williams	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List

 Spring Sort
Date: May 20, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Nelson Acevedo	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Steven Williams	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
Dy-Quan Nick	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List

Spring Sort
Date: May 21, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Karen Vickers	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Nelson Acevedo	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Steven Williams	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

 Professional/Temporary Worker Attendance List Spring Sort
Date: May 23, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Richard Brown	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Steven Williams	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation
WASTE CHARACTERIZATION STUDY
Professional/Temporary Worker Attendance List Spring Sort

Date: May 24, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Richard Brown	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Steven Williams	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I

New York Department of Sanitation

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List Spring Sort

Date: May 25, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Richard Brown	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Kelvin Murdaugh	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Luis Malave	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Barnes	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
Steven Williams	Temp. Worker	Sampling Helper	Morning	Harlem River Yard
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I

WASTE CHARACTERIZATION STUDY

Professional/Temporary Worker Attendance List Spring Sort

Date: May 26, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Jim Sauvageau	Professional	Sample Manager \#1	Night	Harlem River Yard
Alan Her	Professional	Sample Manager \#2	Night	Harlem River Yard
Ramon Swann	Professional	Sample Manager \#3	Night	Metropolitan Paper - Shepard Rd.
Sasha Evans	Professional	Sample Manager \#4	Night	Varick I
Brian Scott	Professional	Sample Manager \#5	Night	Hugo Neu
Marcie Puskarik	Professional	Sample Manager \#6	Night	Hugo Neu
Bernice Siebuhr	Professional	Sample Manager \#7	Morning	Varick I
Paul Cleri	Professional	Sample Manager \#8	Morning	Harlem River Yard
Sean Mumford	Temp. Worker	Sorter	Day	North Shore MTS
Raul Fernandez	Temp. Worker	Sorter	Day	North Shore MTS
Ricardo Cornwall	Temp. Worker	Sorter	Day	North Shore MTS
Mark Washington	Temp. Worker	Sorter	Day	North Shore MTS
Ramon Romero	Temp. Worker	Sorter	Day	North Shore MTS
Jason Perry	Temp. Worker	Sorter	Day	North Shore MTS
Richard Brown	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson	Temp. Worker	Sorter	Day	North Shore MTS
Wilbert Reed	Temp. Worker	Sorter	Day	North Shore MTS
Charlton Scribner	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
John Hickman	Temp. Worker	Sorter	Day	North Shore MTS
Roberto Reyes	Temp. Worker	Sorter	Day	North Shore MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Cedric Beveney	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Guyton	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Jimenez	Temp. Worker	Sorter	Day	Greenpoint MTS
Reinaldo Perez	Temp. Worker	Sorter	Day	Greenpoint MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper - Shepard Rd.
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Spring Sort

Date: May 27, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Mike Rogers	Professional	North Shore Crew Chief \#1	Day	North Shore MTS
Hillary Smith	Professional	North Shore Crew Chief \#2	Day	North Shore MTS
Lyndsay Hazen	Professional	North Shore Crew Chief \#3	Day	North Shore MTS
Nick Simons	Professional	North Shore Crew Chief \#4	Day	North Shore MTS
Peter Sander	Professional	North Shore Crew Chief \#5	Day	North Shore MTS
Wayne Kilpatrick	Professional	Field Supervisor	Day	Greenpoint MTS
Brian Holt	Professional	Greenpoint Crew Chief \#1	Day	Greenpoint MTS
Eric Harrison	Professional	Greenpoint Crew Chief \#2	Day	Greenpoint MTS
Sandy Childs	Professional	Greenpoint Crew Chief \#3	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Day	Greenpoint MTS
Jim Sauvageau	Professional	Sample Manager \#1	Day	Greenpoint MTS
Alan Her	Professional	Sample Manager \#2	Day	Greenpoint MTS
Ramon Swann	Professional	Sample Manager \#3	Day	Greenpoint MTS
Sasha Evans	Professional	Sample Manager \#4	Day	Greenpoint MTS
Brian Scott	Professional	Sample Manager \#5	Day	Greenpoint MTS
Bernice Siebuhr	Professional	Sample Manager \#7	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	North Shore MTS
Derek Shell	Temp. Worker	Sorter	Day	North Shore MTS
Carl Warner	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Robert Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Nelson Matia	Temp. Worker	Sorter	Day	Greenpoint MTS
Terence David	Temp. Worker	Sorter	Day	Greenpoint MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Corley	Temp. Worker	Sorter	Day	Greenpoint MTS

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix E5: Staffing Lists WCS Summer

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 3, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	Alles
Sean Perera	Professional	Logistics Manager	Day	Alles
Dieter Eckels	Professional	Director of Sampling	Morning	All Transfer Stations
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 4, 2005

Name	Type		Role	Shift
Tom Jones	Professional	Project Manager	Day	All Sites
Sean Perera	Professional	Logistics Manager	Day	All Sites
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Dieter Eckels	Professional	Director of Sampling	Morning	All Transfer Stations
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 5, 2005

Name	Type		Sole	Shift
Tom Jones	Professional	Project Manager	Day	All Sites
Sean Perera	Professional	Logistics Manager	Day	All Sites
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Dieter Eckels	Professional	Director of Sampling	Morning	All Transfer Stations
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 6, 2005

Name	Rype		Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Sean Perera	Professional	Logistics Manager	Day	All Sites
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Dieter Eckels	Professional	Director of Sampling	Morning	All Transfer Stations
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 8, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Momo Savovic	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Benjamin	Temp. Worker	Sorter	Day	North Shore MTS
Luis Laporte	Temp. Worker	Sorter	Day	North Shore MTS
Octavio Echeverry	Temp. Worker	Sorter	Day	North Shore MTS
Saul Melendez	Temp. Worker	Sorter	Day	North Shore MTS
Rey Rodriguez	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 8, 2005

Name	Role		Shift	Site
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 9, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Benjamin	Temp. Worker	Sorter	Day	North Shore MTS
Luis Laporte	Temp. Worker	Sorter	Day	North Shore MTS
Octavio Echeverry	Temp. Worker	Sorter	Day	North Shore MTS
Saul Melendez	Temp. Worker	Sorter	Day	North Shore MTS
Rey Rodriguez	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 9, 2005

Name	Role		Shift	Site
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 10, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Benjamin	Temp. Worker	Sorter	Day	North Shore MTS
Luis Laporte	Temp. Worker	Sorter	Day	North Shore MTS
Octavio Echeverry	Temp. Worker	Sorter	Day	North Shore MTS
Saul Melendez	Temp. Worker	Sorter	Day	North Shore MTS
Rey Rodriguez	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
David Rivera	Temp. Worker	Sorter	Day	North Shore MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 10, 2005

Name	Rype		Shift	Site
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Robert Ravenell	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Summer Sort

Date: August 11, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Kyle Grabowski	Professional	Sample Manager	Morning	Varick I
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Benjamin	Temp. Worker	Sorter	Day	North Shore MTS
Luis Laporte	Temp. Worker	Sorter	Day	North Shore MTS
Octavio Echeverry	Temp. Worker	Sorter	Day	North Shore MTS
Saul Melendez	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson Jr.	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 11, 2005

Name	Role		Shift	Site
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Robert Ravenell	Temp. Worker	Sampling Helper	Night	Varick I
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 12, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Benjamin	Temp. Worker	Sorter	Day	North Shore MTS
Luis Laporte	Temp. Worker	Sorter	Day	North Shore MTS
Octavio Echeverry	Temp. Worker	Sorter	Day	North Shore MTS
Saul Melendez	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Leroy Jackson Jr.	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 12, 2005

Name	Role		Shift	Site
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Robert Ravenell	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 13, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Sean Perera	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Benjamin	Temp. Worker	Sorter	Day	North Shore MTS
Luis Laporte	Temp. Worker	Sorter	Day	North Shore MTS
Octavio Echeverry	Temp. Worker	Sorter	Day	North Shore MTS
Saul Melendez	Temp. Worker	Sorter	Day	North Shore MTS
Cuthbert Nedd	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 13, 2005

Name	Role		Shift	Site
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Robert Ravenell	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 15, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Mary Chamberlain	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 15, 2005

Name	Role		Shift	Site
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Sebro	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Christian Lebron	Temp. Worker	Sorter	Day	Greenpoint MTS
Derek Shell	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 16, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Mary Chamberlain	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Cacho Alon	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 16, 2005

Name	Rype		Shift	Site
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Sebro	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Christian Lebron	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY Professional/Temporary Worker Attendance List Summer Sort

Date: August 17, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Mary Chamberlain	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Elgie Lesley	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 17, 2005

Name	Rype		Sole	Site
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Sebro	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Christian Lebron	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 18, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Navid Nowaktahr	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Mary Chamberlain	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Gregory Frances	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 18, 2005

Name	Role		Shift	Site
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Sebro	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 19, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Mary Chamberlain	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Gregory Frances	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
Carl Warner	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 19, 2005

Name	Role		Shift	Site
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Michael Sebro	Temp. Worker	Sorter	Day	Greenpoint MTS
Larry Anderson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 20, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Adkins	Professional	Crew Chief	Day	North Shore MTS
Marley Shoaf	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Karin Olefsky	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Mary Chamberlain	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Kyle Grabowski	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Kasseem Thomas	Temp. Worker	Sorter	Day	North Shore MTS
Gregory Frances	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 20, 2005

Name	Role		Shift	Site
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 22, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Kyle Hoyle	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Kennedy	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Karin Olefsky	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Kyle Grabowski	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
Alcides Gamez	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 22, 2005

Name	Role		Shift	Site
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Rafael Rivera	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 23, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Kennedy	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Karin Olefsky	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Kyle Grabowski	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
George Alomar	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 23, 2005

Name	Role		Shift	Site
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
David Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Carter	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Randolph Richardson	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 24, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Kennedy	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Karin Olefsky	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Kyle Grabowski	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
George Alomar	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 24, 2005

Name	Role		Shift	Site
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Randolph Richardson	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 25, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Kennedy	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Karin Olefsky	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Kyle Grabowski	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Night	All Transfer Stations
Byron Jones	Professional	Sample Manager	Night	Varick I
Lyndsay Hazen	Professional	Sample Manager	Night	Harlem River Yard
Tom Bradbury	Professional	Sample Manager	Night	Harlem River Yard
Marcie Puskarik	Professional	Sample Manager	Night	Hugo Neu
Cat Koehn	Professional	Sample Manager	Night	Hugo Neu
Ramone Swann	Professional	Sample Manager	Night	Metropolitan Paper
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
George Alomar	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Frank	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Wilbert Reed	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 25, 2005

Name	Role		Shift	Site
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
Anthony Payne	Temp. Worker	Sorter	Day	Greenpoint MTS
Leroy Jackson	Temp. Worker	Sorter	Day	Greenpoint MTS
Muctar Ibrahim	Temp. Worker	Sorter	Day	Greenpoint MTS
Marcies Dupree	Temp. Worker	Sampling Helper	Night	Varick I
Cuthbert Nedd	Temp. Worker	Sampling Helper	Night	Harlem River Yard
Randolph Richardson	Temp. Worker	Sampling Helper	Night	Hugo Neu
George Hernandez	Temp. Worker	Sampling Helper	Night	Metropolitan Paper
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List Summer Sort

Date: August 26, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Debbie McDonough	Professional	Data Manager	Day	Data Center - Marriott Courtyard
Joe Naviera	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
Jonathan Nunes	Professional	Assistant Data Manager	Day	Data Center - Marriott Courtyard
James Jian	Professional	Data Entry	Day	Data Center - Marriott Courtyard
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Katie Kennedy	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Karin Olefsky	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Kyle Grabowski	Professional	Crew Chief	Day	Greenpoint MTS
Byron Jones	Professional	Crew Chief	Day	Greenpoint MTS
Lyndsay Hazen	Professional	Crew Chief	Day	Greenpoint MTS
Tom Bradbury	Professional	Crew Chief	Day	Greenpoint MTS
Marcie Puskarik	Professional	Crew Chief	Day	Greenpoint MTS
Cat Koehn	Professional	Crew Chief	Day	Greenpoint MTS
Ramone Swann	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Morning	All Transfer Stations
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Vicente Miranda	Temp. Worker	Sorter	Day	North Shore MTS
Raymond Johnson	Temp. Worker	Sorter	Day	North Shore MTS
Utly Paul	Temp. Worker	Sorter	Day	North Shore MTS
Miguel Cruz	Temp. Worker	Sorter	Day	North Shore MTS
Juan Velez	Temp. Worker	Sorter	Day	North Shore MTS
Jhonatan Cuer	Temp. Worker	Sorter	Day	North Shore MTS
Jayce Covington	Temp. Worker	Sorter	Day	North Shore MTS
Hugo Pignataro	Temp. Worker	Sorter	Day	North Shore MTS
Fernando Dela	Temp. Worker	Sorter	Day	North Shore MTS
David Abrahams	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
Wilson Ortiz-Victor	Temp. Worker	Sorter	Day	North Shore MTS
Lawrence Wells	Temp. Worker	Sorter	Day	North Shore MTS
George Alomar	Temp. Worker	Sorter	Day	North Shore MTS
Gilbert Bunn	Temp. Worker	Sorter	Day	North Shore MTS
Marvin Frank	Temp. Worker	Sorter	Day	North Shore MTS
Anthony McDonald	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Ernest Robinson	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jonathan Clarke	Temp. Worker	Sorter	Day	Greenpoint MTS

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 26, 2005

Name	Type		Role	Shift
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

New York Department of Sanitation
 WASTE CHARACTERIZATION STUDY
 Professional/Temporary Worker Attendance List
 Summer Sort

Date: August 27, 2005

Name	Type	Role	Shift	Site
Tom Jones	Professional	Project Manager	Day	All Sites
Wade Kilpatrick	Professional	Logistics Manager	Day	All Sites
Walt Davenport	Professional	Director of Sorting	Day	Greenpoint/North Shore
Tanya Tarnecki	Professional	Field Supervisor	Day	North Shore MTS
Peter Sander	Professional	Crew Chief	Day	North Shore MTS
Nick Simons	Professional	Crew Chief	Day	North Shore MTS
Mike Rogers	Professional	Crew Chief	Day	North Shore MTS
Hillary Smith	Professional	Crew Chief	Day	North Shore MTS
Don Birnesser	Professional	Crew Chief	Day	North Shore MTS
Rory Tipton	Professional	Field Supervisor	Day	Greenpoint MTS
Sandy Childs	Professional	Crew Chief	Day	Greenpoint MTS
Tim Wilson	Professional	Crew Chief	Day	Greenpoint MTS
Eric Harrison	Professional	Crew Chief	Day	Greenpoint MTS
Kyle Grabowski	Professional	Crew Chief	Day	Greenpoint MTS
Byron Jones	Professional	Crew Chief	Day	Greenpoint MTS
Lyndsay Hazen	Professional	Crew Chief	Day	Greenpoint MTS
Tom Bradbury	Professional	Crew Chief	Day	Greenpoint MTS
Ramone Swann	Professional	Crew Chief	Day	Greenpoint MTS
Dieter Eckels	Professional	Director of Sampling	Morning	All Transfer Stations
Bernice Siebuhr	Professional	Sample Manager	Morning	Varick I
Ken Marino	Professional	Sample Manager	Morning	Harlem River Yard
Lonnie Flowers	Temp. Worker	Sorter	Day	North Shore MTS
Danny Laborde	Temp. Worker	Sorter	Day	North Shore MTS
Jeffrey Downes	Temp. Worker	Sorter	Day	North Shore MTS
Randolph Trotman	Temp. Worker	Sorter	Day	North Shore MTS
Barry Brewer	Temp. Worker	Sorter	Day	North Shore MTS
George Alomar	Temp. Worker	Sorter	Day	North Shore MTS
Ato Williams	Temp. Worker	Sorter	Day	Greenpoint MTS
Cedric Doran	Temp. Worker	Sorter	Day	Greenpoint MTS
David Rivera	Temp. Worker	Sorter	Day	Greenpoint MTS
Derrick Wilson	Temp. Worker	Sorter	Day	Greenpoint MTS
Ramon Sanchez	Temp. Worker	Sorter	Day	Greenpoint MTS
Jahawarah Samuels	Temp. Worker	Sorter	Day	Greenpoint MTS
David Nelson	Temp. Worker	Sampling Helper	Morning	Varick I
Enol Ortiz	Temp. Worker	Sampling Helper	Morning	Harlem River Yard

[This page intentionally left blank.]

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix F: Photographs

Note to readers:
Appendix F contains photographs of the sampling and sorting activities of each season of the WCS, as well as photographs documenting each instance of suspected illegal use of street baskets.

Due to the extremely large file size, only a few extracted pages of this Appendix are posted here on the web. The full Appendix F - Photographs will be available on CD at the same time as the WCS raw dataset is made available on CD. Both data products (Appendix F and the raw dataset) will be available for noncommercial use only; will require an application for a license, subject to review and approval by DSNY; and will entail a processing fee. Check back at www.nyc.gov/nycwasteless for full details on the posting of these products later this year.

NYC Waste Characterization Study
 Final Report, Volume 4

Appendix F1: WCS Fall Sampling and Sorting Photographs

HARLEM RIVER YARDS

Photo HAR-1 - Samples Collection Form - Fall Sort

Photo HAR-2 - DSNY Refuse Collection Truck at Harlem River Yard - Fall Sort

Photo HAR-3 - DSNY Refuse Collection Truck Tipping Load at Harlem River Yard - Fall Sort

Photo HAR-4 - Tipping Refuse Load at Harlem River Yard - Fall Sort

NYC Waste Characterization Study
 Final Report, Volume 4

Appendix F2: Fall Street Basket Photographs

Introduction

This appendix presents information obtained during the sorting of street basket waste during the fall sorting period of the New York Waste Characterization Study. The protocol for sorting street basket waste called for the Crew Chief of the sorting team to identify bags of suspected illegal residential and commercial waste within each street basket sample and this is the focus of this appendix.

The appendix is organized by borough and route and based on information provided by Crew Chief on the Sample Detail Form for each sample of street basket waste that was sorted.
For each street basket waste sample, the borough, collection route, and date of sorting is noted, as well as the number of bags of illegal residential and commercial waste found in the sample.

Typically, bags containing postmarked mail, food waste, construction debris, household products, or yard waste were classified as illegal residential waste. Bags containing office paper, large numbers of a single product, or office equipment were classified as illegal commercial waste. In all cases, the classification was based on the judgment of the Crew Chief at the time of sorting.

Photographs of many of the bags of illegal waste were taken and are included below. In some cases, the Crew Chief noted the specific material(s) which led to the classification of the bags as illegal commercial or residential waste and these materials are included in the captions of the photographs.

Bronx Street Basket Waste

Route BX-4-1-2

Route BX-4-1-2 collected on October 19, 2004 contained 7 bags of illegal residential waste and no bags of illegal commercial waste. No photos are available for examples of illegal residential and illegal commercial waste from this route.

Route BX-4-2 (multiple sections and routes)

Route BX-4-2 collected on October 22, 2004 contained 5 bags of illegal residential waste and no bags of illegal commercial waste. No photos are available for examples of illegal residential and illegal commercial waste from this route.

Route BX-7-7_1-1

Route BX-7-7_1-1 collected on October 28, 2004 contained 5 bags of illegal residential waste and no bags of illegal commercial waste. The photos below are examples of suspected illegal waste from this route.

Residential

Figure 1 from BX-7-7_1-1 on 10/28/04 classified as illegal residential waste.

Figure 2 from BX-7-7_1-1 on 10/28/04 classified as illegal residential waste.

Figure 3 from BX-7-7_1-1 on 10/28/04 classified as illegal residential waste because of curtains.

Figure 4 from BX-7-7_1-1 on 10/28/04 classified as illegal residential waste.

Figure 5 from BX-7-7_1-1 on 10/28/04 classified as illegal residential waste.

NYC Waste Characterization Study
Final Report, Volume 4
Appendix G: Demographic Data

Table G-1
Number of Census Tracts by Major Housing Density Characteristics

Characteristic	Citywide	Manhattan	Bronx	Brooklyn	Queens	Staten Island
67% or more housing in structures of 2 or fewer units	592	0	46	128	337	81
67\% of housing in structures of 10 or more units	636	263	182	104	82	5
All Others	989	33	127	551	254	24

Table G-2
Number of Census Tracts by Average Median Housing Unit Income Ranges

Income Range	Citywide	Manhattan	Bronx	Brooklyn	Queens	Staten Island
Less than \$10,000	76	10	22	21	20	3
\$10,000 to \$14,999	86	13	41	27	4	1
\$15,000 to \$19,999	144	29	53	54	7	1
\$20,000 to \$24,999	167	33	44	79	11	0
\$25,000 to \$29,999	212	32	41	116	21	2
\$30,000 to \$34,999	281	14	46	135	79	7
\$35,000 to \$39,999	252	8	26	97	111	10
\$40,000 to \$44,999	191	7	19	64	93	8
\$45,000 to \$49,999	206	12	21	62	102	9
\$50,000 to \$59,999	290	30	26	68	138	28
\$60,000 to \$74,999	211	50	14	47	66	34
\$75,000 to \$99,999	74	39	1	12	16	6
\$100,000 to \$124,999	16	10	0	1	4	1
\$125,000 to \$149,999	4	4	0	0	0	0
\$150,000 to \$199,999	7	5	1	0	1	0
\$200,000 or more	0	0	0	0	0	0

NYC Waste Characterization Study
Final Report, Volume 4
Appendix H: Sample Data
[This page intentionally left blank.]

Table H-1
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004

			Refuse		Paper		MGP		Dual Bin	
Borough	District	Section Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	1	1	6	-	4	-	2	-	-	-
Manhattan	1	3	8	-	4	-	1	-	-	-
Manhattan	2	1	16	-	4	-	2	-	-	-
Manhattan	2	2 High Density/ High Income	16	16	5	5	2	1	-	-
Manhattan	2	3 High Density/ High Income	15	12	7	6	3	3	-	-
Manhattan	3	1 High Density/ Low Income	16	11	2	1	1	1	-	-
Manhattan	3	2	15	-	2	-	2	-	-	-
Manhattan	3	3 High Density/ Medium Income	15	4	2	1	2	1	-	-
Manhattan	3	4	17	-	4	-	-	-	-	-
Manhattan	4	1	11	-	3	-	2	-	-	-
Manhattan	4	2	9	-	3	-	1	-	-	-
Manhattan	4	3	19	-	4	-	3	-	-	-
Manhattan	5	1	7	-	3	-	2	-	-	-
Manhattan	5	2	11	-	4	-	2	-	-	-
Manhattan	6	1	20	-	9	-	4	-	-	-
Manhattan	6	2	21	-	7	-	3	-	-	-
Manhattan	6	3 High Density/ High Income	20	20	7	7	2	2	-	-
Manhattan	7	1	19	-	5	-	5	-	-	-
Manhattan	7	2 High Density/ High Income	21	19	6	5	3	3	-	-
Manhattan	7	3 High Density/ High Income	24	16	7	2	4	2	-	-
Manhattan	7	4	20	-	6	-	4	-	-	-
Manhattan	7	5	19	-	6	-	4	-	-	-
Manhattan	8	1 High Density/ High Income	23	23	7	7	3	3	-	-
Manhattan	8	2 High Density/ High Income	25	23	9	9	4	4	-	-
Manhattan	8	3 High Density/ High Income	21	21	9	9	4	4	-	-
Manhattan	8	4 High Density/ High Income	22	22	8	8	4	4	-	-
Manhattan	8	5 High Density/ High Income	22	22	8	8	5	5	-	-
Manhattan	9	1	12	-	5	-	2	-	-	-
Manhattan	9	2	18	-	2	-	2	-	-	-
Manhattan	9	3	22	-	3	-	2	-	-	-
Manhattan	10	1	19	-	2	-	1	-	-	-
Manhattan	10	3	15	-	2	-	1	-	-	-

Table $\mathrm{H}-1$
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse			Paper		MGP	Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	10	4	4	18	-	2	-	2	-	-	-
Manhattan	11	1	1	18	-	3	-	2	-	-	-
Manhattan	11	2	2	19	-	2	-	1	-	-	-
Manhattan	11	3	3	15	-	2	-	-	-	-	-
Manhattan	12	1	1	26	-	3	-	5	-	-	-
Manhattan	12	2	2	27	-	4	-	4	-	-	-
Manhattan	12	3	3	24	-	5	-	4	-	-	-
Manhattan	12	4	4	19	-	4	-	3	-	-	-
Bronx	1	1	1	16	-	2	-	2	-	-	-
Bronx	1	2	2	17	-	2	-	2	-	-	-
Bronx	2	1	1	24	-	2	-	4	-	-	-
Bronx	3	1	1	31	-	3	-	4	-	-	-
Bronx	4	1	1	17	-	2	-	2	-	-	-
Bronx	4		2 High Density/Low Income	24	13	2	-	4	-	-	-
Bronx	4	3	3	24	-	2	-	3	-	-	-
Bronx	5		1 High Density/Low Income	23	16	2	2	3	3	-	-
Bronx	5		2 High Density/Low Income	17	17	2	2	3	3	-	-
Bronx	5		3 High Density/Low Income	20	16	2	2	4	4	-	-
Bronx	6	1	1	19	-	2	-	2	-	-	-
Bronx	6	2	2	21	-	1	-	2	-	-	-
Bronx	7	1	1	19	-	3	-	3	-	-	-
Bronx	7		2 High Density/Medium Income	24	3	3	-	4	-	-	-
Bronx	7	3	3	19	-	4	-	4	-	-	-
Bronx	8		1 High Density/Medium Income	17	1	4	-	2	-	-	-
Bronx	8	2	2	15	-	2	-	3	-	-	-
Bronx	8	3	3	18	-	5	-	4	-	-	-
Bronx	9	1	1	26	-	2	-	3	-	-	-
Bronx	9	2	2	20	-	2	-	4	-	-	-
Bronx	9	3	3	13	-	1	-	2	-	-	-
Bronx	9	4	4	27	-	4	-	5	-	-	-
Bronx	10	1	1	22	-	-	-	-	-	20	-
Bronx	10	2	2	24	-	-	-	-	-	24	-

Table H-1
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse			Paper		MGP	Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Bronx	10	3	3	19	-	-	-	-	-	16	-
Bronx	11		1	28	-	6	-	6	-	-	-
Bronx	11		2	21	-	5	-	4	-	-	-
Bronx	11		3	20	-	4	-	6	-	-	-
Bronx	12		1	18	-	3	-	5	-	-	-
Bronx	12		2	18	-	4	-	4	-	-	-
Bronx	12	3	3	20	-	2	-	4	-	-	-
Bronx	12		4	18	-	5	-	5	-	-	-
Bronx	12		5	20	-	4	-	4	-	-	-
Brooklyn North	1		1	17	-	4	-	3	-	-	-
Brooklyn North	1		2	24	-	3	-	3	-	-	-
Brooklyn North	1		3	19	-	5	-	4	-	-	-
Brooklyn North	1		4	24	-	5	-	2	-	-	-
Brooklyn North	1		5	21	-	2	-	2	-	-	-
Brooklyn North	2		1	19	-	5	-	3	-	-	-
Brooklyn North	2	2	2	13	-	4	-	2	-	-	-
Brooklyn North	2	3	3	13	-	2	-	3	-	-	-
Brooklyn North	2	4	4	16	-	3	-	4	-	-	-
Brooklyn North	3	1	1	23	-	2	-	3	-	-	-
Brooklyn North	3	2	2	24	-	2	-	3	-	-	-
Brooklyn North	3		3 Medium Density/Low Income	27	7	2	2	4	2	-	-
Brooklyn North	3	4	4	20	-	2	-	3	-	-	-
Brooklyn North	3		5	16	-	2	-	3	-	-	-
Brooklyn North	4		1 Medium Density/Low Income	22	22	-	-	-	-	8	8
Brooklyn North	4		2 Medium Density/Low Income	31	31	-	-	-	-	12	12
Brooklyn North	4		3 Medium Density/Low Income	25	25	-	-	-	-	12	10
Brooklyn North	5	1	1	25	-	3	-	3	-	-	-
Brooklyn North	5	2	2	33	-	6	-	6	-	-	-
Brooklyn North	5	3	3	20	-	3	-	3	-	-	-
Brooklyn North	5	4	4	32	-	3	-	4	-	-	-
Brooklyn North	8	1	1	25	-	7	-	2	-	-	-
Brooklyn North	8		2	27	-	4	-	2	-	-	-

Table H-1
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse			Paper		MGP	Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn North	8	3	3	20	-	2	-	2	-	-	-
Brooklyn South	6	1	1	13	-	3	-	2	-	-	-
Brooklyn South	6		2 Medium Density/High Income	13	12	6	4	4	3	-	-
Brooklyn South	6	3	3	16	-	4	-	3	-	-	-
Brooklyn South	6	4	4	15	-	4	-	4	-	-	-
Brooklyn South	6	5	5	15	-	5	-	3	-	-	-
Brooklyn South	7	1	1	17	-	7	-	6	-	-	-
Brooklyn South	7	2	2	19	-	5	-	6	-	-	-
Brooklyn South	7	3	3	18	-	4	-	5	-	-	-
Brooklyn South	7	4	4	22	-	5	-	6	-	-	-
Brooklyn South	9	1	1	22	-	3	-	4	-	-	-
Brooklyn South	9	2	2	20	-	2	-	3	-	-	-
Brooklyn South	9	3	3	19	-	3	-	4	-	-	-
Brooklyn South	10	1	1	15	-	-	-	-	-	16	-
Brooklyn South	10	2	2	17	-	-	-	-	-	20	-
Brooklyn South	10	3	3	18	-	-	-	-	-	18	-
Brooklyn South	10	4	4	28	-	-	-	-	-	28	-
Brooklyn South	11	1	1	18	-	-	-	-	-	16	-
Brooklyn South	11	2	2	20	-	-	-	-	-	16	-
Brooklyn South	11	3	3	17	-	-	-	-	-	14	-
Brooklyn South	11	4	4	16	-	-	-	-	-	12	-
Brooklyn South	11	5	5	20	-	-	-	-	-	18	-
Brooklyn South	11	6	6	24	-	-	-	-	-	18	-
Brooklyn South	12	1	1	33	-	-	-	-	-	24	-
Brooklyn South	12	2	2	34	-	-	-	-	-	22	-
Brooklyn South	12	3	3	29	-	-	-	-	-	24	-
Brooklyn South	12	4	4	25	-	-	-	-	-	18	-
Brooklyn South	13	1	1	15	-	3	-	2	-	-	-
Brooklyn South	13	2	2	30	-	5	-	4	-	-	-
Brooklyn South	14	1	1	32	-	4	-	6	-	-	-
Brooklyn South	14	2	2	18	-	4	-	3	-	-	-
Brooklyn South	14	3	3	27	-	5	-	4	-	-	-

Table H-1
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn South	14		4	22	-	7	-	7	-	-	-
Brooklyn South	15		1	22	-	-	-	-	-	18	-
Brooklyn South	15		2	25	-	-	-	-	-	24	-
Brooklyn South	15		3	26	-	-	-	-	-	24	-
Brooklyn South	15		4	26	-	-	-	-	-	22	-
Brooklyn South	15		5	18	-	-	-	-	-	12	-
Brooklyn South	16		1	25	-	3	-	3	-	-	-
Brooklyn South	16		2	30	-	4	-	4	-	-	-
Brooklyn South	17		1 Medium Density/Low Income	21	21	-	-	-	-	10	10
Brooklyn South	17		2	19	-	-	-	-	-	12	-
Brooklyn South	17		3	25	-	-	-	-	-	20	-
Brooklyn South	17		4	25	-	-	-	-	-	12	-
Brooklyn South	17		5	27	-	-	-	-	-	22	-
Brooklyn South	18		1	18	-	-	-	-	-	14	-
Brooklyn South	18		2	20	-	-	-	-	-	18	-
Brooklyn South	18		3	15	-	-	-	-	-	18	-
Brooklyn South	18		4	24	-	-	-	-	-	20	-
Brooklyn South	18		5	17	-	-	-	-	-	16	-
Brooklyn South	18		6	25	-	-	-	-	-	22	-
Brooklyn South	18		7	23	-	-	-	-	-	24	-
Queens East	7		1 High Density/Medium Income	25	8	-	-	-	-	14	4
Queens East	7		2	16	-	-	-	-	-	16	-
Queens East	7		3 High Density/Medium Income	21	2	-	-	-	-	16	2
Queens East	7		4	17	-	-	-	-	-	16	-
Queens East	7		5	18	-	-	-	-	-	20	-
Queens East	7		6 Low Density/High Income	22	14	-	-	-	-	22	10
Queens East	7		7	26	-	-	-	-	-	24	-
Queens East	7		8	18	-	-	-	-	-	14	-
Queens East	8		1	20	-	-	-	-	-	18	-
Queens East	8		2	33	-	-	-	-	-	24	-
Queens East	8		3	25	-	-	-	-	-	20	-
Queens East	8		4	25	-	-	-	-	-	22	-

Table H-1
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse			Paper		MGP	Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens East	10	1	1	25	-	-	-	-	-	20	-
Queens East	10		2	31	-	-	-	-	-	24	-
Queens East	10		3	33	-	-	-	-	-	24	-
Queens East	10		4 Low Density/High Income	23	20	-	-	-	-	18	18
Queens East	11	1	1	19	-	-	-	-	-	20	-
Queens East	11	2	2	17	-	-	-	-	-	16	-
Queens East	11		3 Low Density/High Income	17	13	-	-	-	-	16	10
Queens East	11	4	4	22	-	-	-	-	-	22	-
Queens East	11		5	18	-	-	-	-	-	18	-
Queens East	11	6	6	17	-	-	-	-	-	12	-
Queens East	12		1	34	-	-	-	-	-	18	-
Queens East	12	2	2	25	-	-	-	-	-	20	-
Queens East	12	3	3	21	-	-	-	-	-	16	-
Queens East	12	4	4	24	-	-	-	-	-	18	-
Queens East	12		5	23	-	-	-	-	-	18	-
Queens East	12	6	6	26	-	-	-	-	-	20	-
Queens East	12	7	7	30	-	-	-	-	-	18	-
Queens East	13		1	21	-	-	-	-	-	18	-
Queens East	13	2	2	24	-	-	-	-	-	18	-
Queens East	13		3 Low Density/High Income	28	13	-	-	-	-	24	12
Queens East	13		4 Low Density/High Income	24	16	-	-	-	-	16	10
Queens East	13		5 Low Density/High Income	21	19	-	-	-	-	16	18
Queens East	13		6 Low Density/High Income	18	17	-	-	-	-	16	14
Queens East	13		7 Low Density/High Income	26	25	-	-	-	-	20	18
Queens East	13		8 Low Density/High Income	21	19	-	-	-	-	16	14
Queens East	14		1	20	-	-	-	-	-	18	-
Queens East	14	2	2	24	-	-	-	-	-	16	-
Queens East	14		3	24	-	-	-	-	-	16	-
Queens West	1	1	1	17	-	-	-	-	-	13	-
Queens West	1	2	2	19	-	-	-	-	-	16	-
Queens West	1	3	3	25	-	-	-	-	-	18	-
Queens West	1		4 Medium Density/Medium Income	20	19	-	-	-	-	14	16

Table $\mathrm{H}-1$
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens West	1		5	23	-	-	-	-	-	14	-
Queens West	1		6	16	-	-	-	-	-	12	-
Queens West	2		1	20	-	6	-	5	-	-	-
Queens West	2		2	17	-	6	-	3	-	-	-
Queens West	2		3	17	-	5	-	4	-	-	-
Queens West	3		1	36	-	8	-	9	-	-	-
Queens West	3		2 High Density/Medium Income	26	10	6	4	6	4	-	-
Queens West	3		3	26	-	6	-	6	-	-	-
Queens West	4		1	23	-	5	-	5	-	-	-
Queens West	4		2	25	-	4	-	5	-	-	-
Queens West	4		3 Medium Density/Medium Income	30	17	4	3	6	4	-	-
Queens West	5		1	21	-	-	-	-	-	22	-
Queens West	5		2 Medium Density/Medium Income	19	15	-	-	-	-	20	18
Queens West	5		3	18	-	-	-	-	-	20	-
Queens West	5		4	27	-	-	-	-	-	26	-
Queens West	5		5	27	-	-	-	-	-	28	-
Queens West	6		1	27	-	-	-	-	-	24	-
Queens West	6		2	40	-	-	-	-	-	32	-
Queens West	9		1 Low Density/Medium Income	22	4	-	-	-	-	20	4
Queens West	9		2 Low Density/Medium Income	20	4	-	-	-	-	16	4
Queens West	9		3	22	-	-	-	-	-	20	-
Queens West	9		4	30	-	-	-	-	-	24	-
Staten Island	1		1	31	-	-	-	-	-	28	-
Staten Island	1		2	28	-	-	-	-	-	26	-
Staten Island	1		3 Low Density/Medium Income	34	1	-	-	-	-	34	2
Staten Island	1		4	37	-	-	-	-	-	31	-
Staten Island	2		1	29	-	-	-	-	-	32	-
Staten Island	2		2 Low Density/High Income	28	22	-	-	-	-	28	22
Staten Island	2		3	27	-	-	-	-	-	28	-
Staten Island	2		4 Low Density/High Income	29	16	-	-	-	-	15	-
Staten Island	3		1 Low Density/Medium Income	22	5	-	-	-	-	24	8
Staten Island	3		2 Low Density/High Income	23	15	-	-	-	-	24	18

Table $\mathrm{H}-1$
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Fall 2004 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	$\begin{gathered} \text { No. of } \\ \text { Pure Routes } \end{gathered}$	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Staten Island	3	3	3	19	-	-	-	-	-	20	-
Staten Island	3		4 Low Density/High Income	19	17	-	-	-	-	24	12
Staten Island	3		5 Low Density/High Income	23	20	-	-	-	-	22	20
Staten Island	3		6 Low Density/High Income	20	15	-	-	-	-	20	20
Staten Island	3	7	7	16	-	-	-	-	-	18	-
Staten Island	3		8 Low Density/High Income	14	8	-	-	-	-	16	16

Table H-2
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter 2005

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	1	1		6	-	4	-	2	-	-	-
Manhattan	1	3		8	-	4	-	1	-	-	-
Manhattan	2	1		16	-	4	-	2	-	-	-
Manhattan	2	2	High Density/High Income	15	15	4	4	2	2	-	-
Manhattan	2	3	High Density/High Income	15	15	7	7	3	3	-	-
Manhattan	3	1	High Density/Low Income	17	17	2	2	1	1	-	-
Manhattan	3	2		14	-	2	-	2	-	-	-
Manhattan	3	3	High Density/Medium Income	14	14	2	2	2	2	-	-
Manhattan	3	4		17	-	4	-	-	-	-	-
Manhattan	4	1		11	-	3	-	2	-	-	-
Manhattan	4	2		9	-	3	-	1	-	-	-
Manhattan	4	3		19	-	4	-	3	-	-	-
Manhattan	5	1		8	-	3	-	2	-	-	-
Manhattan	5	2		10	-	4	-	2	-	-	-
Manhattan	6	1		20	-	9	-	4	-	-	-
Manhattan	6	2		22	-	7	-	3	-	-	-
Manhattan	6	3	High Density/High Income	20	20	7	7	2	2	-	-
Manhattan	7	1		22	-	5	-	5	-	-	-
Manhattan	7	2	High Density/High Income	20	20	6	6	3	3	-	-
Manhattan	7	3	High Density/High Income	21	21	7	7	4	4	-	-
Manhattan	7	4		21	-	6	-	4	-	-	-
Manhattan	7	5		21	-	6	-	4	-	-	-
Manhattan	8	1	High Density/High Income	20	20	7	7	3	3	-	-
Manhattan	8	2	High Density/High Income	24	24	9	9	4	4	-	-
Manhattan	8	3	High Density/High Income	19	19	9	9	4	4	-	-
Manhattan	8	4	High Density/High Income	18	18	8	8	4	4	-	-
Manhattan	8	5	High Density/High Income	19	19	8	8	5	5	-	-
Manhattan	9	1		10	-	5	-	2	-	-	-
Manhattan	9	2		19	-	2	-	2	-	-	-
Manhattan	9	3		23	-	3	-	2	-	-	-
Manhattan	10	1		19	-	2	-	1	-	-	-

Table $\mathrm{H}-2$
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter 2005 (continued)

				Refuse			Paper		MGP		Dual Bin
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	10	3		15	-	2	-	1	-	-	-
Manhattan	10	4		17	-	2	-	2	-	-	-
Manhattan	11	1		20	-	3	-	2	-	-	-
Manhattan	11	2		18	-	2	-	1	-	-	-
Manhattan	11	3		14	-	2	-	-	-	-	-
Manhattan	12	1		26	-	3	-	5	-	-	-
Manhattan	12	2		27	-	4	-	4	-	-	-
Manhattan	12	3		23	-	5	-	4	-	-	-
Manhattan	12	4		19	-	4	-	3	-	-	-
Bronx	1	1		16	-	2	-	2	-	-	-
Bronx	1	2		17	-	2	-	2	-	-	-
Bronx	2	1		24	-	2	-	4	-	-	-
Bronx	3	1		31	-	3	-	4	-	-	-
Bronx	4	1		17	-	2	-	2	-	-	-
Bronx	4	2	High Density/Low Income	24	24	2	-	4	-	-	-
Bronx	4	3		24	-	2	-	3	-	-	-
Bronx	5	1	High Density/Low Income	23	23	2	2	3	3	-	-
Bronx	5	2	High Density/Low Income	17	17	2	2	3	3	-	-
Bronx	5	3	High Density/Low Income	20	20	2	2	4	4	-	-
Bronx	6	1		19	-	2	-	2	-	-	-
Bronx	6	2		21	-	1	-	2	-	-	-
Bronx	7	1		19	-	3	-	3	-	-	-
Bronx	7	2	High Density/Medium Income	24	24	3	-	4	-	-	-
Bronx	7	3		19	-	4	-	4	-	-	-
Bronx	8	1	High Density/Medium Income	17	17	4	-	2	-	-	-
Bronx	8	2		15	-	2	-	3	-	-	-
Bronx	8	3		18	-	5	-	4	-	-	-
Bronx	9	1		24	-	2	-	3	-	-	-
Bronx	9	2		20	-	2	-	4	-	-	-
Bronx	9	3		13	-	1	-	2	-	-	-

Table H-2

Table H-2

Borough	District	Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter 2005 (continued)								Dual Bin	
		Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn North	5	2	Medium Density/High Income	31	-	6	-	6	-	-	-
Brooklyn North	5	3		21	-	3	-	3	-	-	-
Brooklyn North	5	4		29	-	3	-	4	-	-	-
Brooklyn North	8	1		24	-	7	-	2	-	-	-
Brooklyn North	8	2		24	-	4	-	2	-	-	-
Brooklyn North	8	3		20	-	2	-	2	-	-	-
Brooklyn South	6	1		13	-	3	-	2	-	-	-
Brooklyn South	6	2		13	13	6	6	4	4	-	-
Brooklyn South	6	3		15	-	4	-	3	-	-	-
Brooklyn South	6	4		15	-	4	-	4	-	-	-
Brooklyn South	6	5		15	-	5	-	3	-	-	-
Brooklyn South	7	1		17	-	7	-	6	-	-	-
Brooklyn South	7	2		17	-	5	-	6	-	-	-
Brooklyn South	7	3		18	-	4	-	5	-	-	-
Brooklyn South	7	4		21	-	5	-	6	-	-	-
Brooklyn South	9	1		20	-	3	-	4	-	-	-
Brooklyn South	9	2		20	-	2	-	3	-	-	-
Brooklyn South	9	3		19	-	3	-	4	-	-	-
Brooklyn South	10	1		15	-	-	-	-	-	16	-
Brooklyn South	10	2		16	-	-	-	-	-	20	-
Brooklyn South	10	3		18	-	-	-	-	-	18	-
Brooklyn South	10	4		25	-	-	-	-	-	28	-
Brooklyn South	11	1		18	-	-	-	-	-	16	-
Brooklyn South	11	2		20	-	-	-	-	-	16	-
Brooklyn South	11	3		17	-	-	-	-	-	14	-
Brooklyn South	11	4		16	-	-	-	-	-	12	-
Brooklyn South	11	5		20	-	-	-	-	-	18	-
Brooklyn South	11	6		24	-	-	-	-	-	18	-
Brooklyn South	12	1		34	-	-	-	-	-	24	-
Brooklyn South	12	2		37	-	-	-	-	-	22	-

Table H-2

Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter 2005 (continued)											
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn South	12	3		31	-	-		-		24	
Brooklyn South	12	4		26	-	-	-	-	-	18	-
Brooklyn South	13	1		15	-	3	-	2	-	-	-
Brooklyn South	13	2		30	-	5	-	4	-	-	-
Brooklyn South	14	1		32	-	4	-	6	-	-	-
Brooklyn South	14	2		16	-	4	-	3	-	-	-
Brooklyn South	14	3		27	-	5	-	4	-	-	-
Brooklyn South	14	4		22	-	7	-	7	-	-	-
Brooklyn South	15	1		22	-	-	-	-		18	-
Brooklyn South	15	2		25	-		-	-	-	24	-
Brooklyn South	15	3		26	-	-	-	-	-	24	-
Brooklyn South	15	4		26	-	-	-	-	-	22	-
Brooklyn South	15	5		18	-	-	-	-	-	12	-
Brooklyn South	16	1		23	-	3	-	3	-	-	-
Brooklyn South	16	2		27	-	4	-	4	-	-	-
Brooklyn South	17	1	Medium Density/Low Income	21	21	-	-	-	-	10	10
Brooklyn South	17	2		20	-	-	-	-		12	
Brookly South	17	3		23	-	-	-	-	-	20	-
Brooklyn South	17	4		25	-	-	-	-		12	
Brookly South	17	5		25	-	-	-	-		22	-
Brooklyn South	18	1		18	-	-	-	-	-	14	-
Brooklyn South	18	2		20	-	-	-	-	-	18	-
Brooklyn South	18	3		13	-	-	-	-	-	18	-
Brooklyn South	18	4		23	-	-	-	-	-	20	-
Brooklyn South	18	5		16	-	-	-	-	-	16	-
Brooklyn South	18	6		25	-	-	-	-	-	22	-
Brooklyn South	18	7		21	-	-	-	-	-	24	-
Queens East	7	1	High Density/Medium Income	23	23	-	-	-	-	14	14
Queens East	7	2		14	-	-	-	-	-	16	-
Queens East	7	3	High Density/Medium Income	21	21	-	-	-	-	16	16

Table H-2

Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter 2005 (continued)											
					Refuse		Paper		MGP		ual Bin
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens East	7	4		16	-	-	-	-	-	16	-
Queens East	7	5		17	-	-	-	-	-	20	-
Queens East	7	6	Low Density/High Income	20	20	-	-	-	-	22	22
Queens East	7	7		21	-	-	-	-	-	24	-
Queens East	7	8		17	-	-	-	-	-	14	-
Queens East	8	1		19	-	-	-	-	-	18	-
Queens East	8	2		27	-	-	-	-	-	24	-
Queens East	8	3		20	-	-	-	-	-	20	-
Queens East	8	4		24	-	-	-	-	-	22	-
Queens East	10	1		25	-	-	-	-	-	20	-
Queens East	10	2		30	-	-	-	-	-	24	-
Queens East	10	3		31	-	-	-	-	-	24	-
Queens East	10	4	Low Density/High Income	20	20	-	-	-	-	18	18
Queens East	11	1		16	-	-	-	-	-	20	-
Queens East	11	2		15	-	-	-	-	-	16	-
Queens East	11	3	Low Density/High Income	14	14	-	-	-	-	16	16
Queens East	11	4		19	-	-	-	-	-	22	-
Queens East	11	5		18	-	-	-	-	-	18	-
Queens East	11	6		14	-	-	-	-	-	12	-
Queens East	12	1		33	-	-	-	-	-	18	-
Queens East	12	2		23	-	-	-	-	-	20	-
Queens East	12	3		19	-	-	-	-	-	16	-
Queens East	12	4		22	-	-	-	-	-	18	-
Queens East	12	5		22	-	-	-	-	-	18	-
Queens East	12	6		26	-	-	-	-	-	20	-
Queens East	12	7		29	-	-	-	-	-	18	-
Queens East	13	1		18	-	-	-	-	-	18	-
Queens East	13	2		24	-	-	-	-	-	18	-
Queens East	13	3	Low Density/High Income	25	25	-	-	-	-	24	24
Queens East	13	4	Low Density/High Income	20	20	-	-	-	-	16	16

Table H-2

				Refuse			Paper		MGP		Dual Bin
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens East	13	5	Low Density/High Income	18	18	-	-	-	-	16	16
Queens East	13	6	Low Density/High Income	17	17	-	-	-	-	16	16
Queens East	13	7	Low Density/High Income	24	24	-	-	-	-	20	20
Queens East	13	8	Low Density/High Income	20	20	-	-	-	-	16	16
Queens East	14	1		21	-	-	-	-	-	18	-
Queens East	14	2		23	-	-	-	-	-	16	-
Queens East	14	3		22	-	-	-	-	-	16	-
Queens West	1	1		17	-	-	-	-	-	13	-
Queens West	1	2		18	-	-	-	-	-	16	-
Queens West	1	3		24	-	-	-	-	-	18	-
Queens West	1	4	Medium Density/Medium Income	20	20	-	-	-	-	14	14
Queens West	1	5		22	-	-	-	-	-	14	-
Queens West	1	6		18	-	-	-	-	-	12	-
Queens West	2	1		19	-	6	-	5	-	-	-
Queens West	2	2		17	-	6	-	3	-	-	-
Queens West	2	3		17	-	5	-	4	-	-	-
Queens West	3	1		34	-	8	-	9	-	-	-
Queens West	3	2	High Density/Medium Income	26	26	6	6	6	6	-	-
Queens West	3	3		26	-	6	-	6	-	-	-
Queens West	4	1		23	-	5	-	5	-	-	-
Queens West	4	2		25	-	4	-	5	-	-	-
Queens West	4	3	Medium Density/Medium Income	28	28	4	4	6	6	-	-
Queens West	5	1		21	-	-	-	-	-	22	-
Queens West	5	2	Medium Density/Medium Income	18	18	-	-	-	-	20	20
Queens West	5	3		17	-	-	-	-	-	20	-
Queens West	5	4		25	-	-	-	-	-	26	-
Queens West	5	5		27	-	-	-	-	-	28	-
Queens West	6	1		24	-	-	-	-	-	24	-
Queens West	6	2		38	-	-	-	-	-	32	-
Queens West	9	1	Low Density/Medium Income	22	22	-	-	-	-	20	20

Table $\mathrm{H}-2$
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Winter 2005 (continued)

				Refuse			Paper		MGP		Dual Bin
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens West	9	2	Low Density/Medium Income	20	20	-	-	-	-	16	16
Queens West	9	3		23	-	-	-	-	-	20	-
Queens West	9	4		31	-	-	-	-	-	24	-
Staten Island	1	1		32	-	-	-	-	-	28	-
Staten Island	1	2		28	-	-	-	-	-	26	-
Staten Island	1	3	Low Density/Medium Income	32	32	-	-	-	-	34	34
Staten Island	1	4		34	-	-	-	-	-	31	-
Staten Island	2	1		28	-	-	-	-	-	32	-
Staten Island	2	2	Low Density/High Income	28	28	-	-	-	-	28	28
Staten Island	2	3		24	-	-	-	-	-	28	-
Staten Island	2	4	Low Density/High Income	27	27	-	-	-	-	15	-
Staten Island	3	1	Low Density/Medium Income	20	20	-	-	-	-	24	24
Staten Island	3	2	Low Density/High Income	23	23	-	-	-	-	24	24
Staten Island	3	3		18	-	-	-	-	-	20	-
Staten Island	3	4	Low Density/High Income	19	19	-	-	-	-	24	24
Staten Island	3	5	Low Density/High Income	22	22	-	-	-	-	22	22
Staten Island	3	6	Low Density/High Income	19	19	-	-	-	-	20	20
Staten Island	3	7		17	-	-	-	-	-	18	-
Staten Island	3	8	Low Density/High Income	14	14	-	-	-	-	16	16

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	1	1		6	-	4	-	2	-	-	-
Manhattan	1	2		8	-	-	-	-	-	-	-
Manhattan	1	3		-	-	4	-	1	-	-	-
Manhattan	2	1	High Density/High Income	16	-	4	-	2	-	-	-
Manhattan	2	2	High Density/High Income	15	15	4	4	2	2	-	-
Manhattan	2	3	High Density/Low Income	15	15	7	7	3	3	-	-
Manhattan	3	1		17	17	2	2	1	1	-	-
Manhattan	3	2	High Density/Medium Income	14	-	2	-	2	-	-	-
Manhattan	3	3		14	14	2	2	2	2	-	-
Manhattan	3	4		18	-	4	-	-	-	-	-
Manhattan	4	1		11	-	3	-	2	-	-	-
Manhattan	4	2		9	-	3	-	1	-	-	-
Manhattan	4	3		19	-	4	-	3	-	-	-
Manhattan	5	1		8	-	3	-	2	-	-	-
Manhattan	5	2		11	-	4	-	2	-	-	-
Manhattan	6	1		20	-	9	-	4	-	-	-
Manhattan	6	2	High Density/High Income	22	-	7	-	3	-	-	-
Manhattan	6	3		20	20	7	7	2	2	-	-
Manhattan	7	1	High Density/High Income	20	-	5	-	5	-	-	-
Manhattan	7	2	High Density/High Income	20	20	6	6	3	3	-	-
Manhattan	7	3		21	21	7	7	4	4	-	-
Manhattan	7	4		21	-	6	-	4	-	-	-
Manhattan	7	5	High Density/High Income	21	-	6	-	4	-	-	-
Manhattan	8	1	High Density/High Income	22	22	7	7	3	3	-	-
Manhattan	8	2	High Density/High Income	24	24	9	9	4	4	-	-
Manhattan	8	3	High Density/High Income	20	20	9	9	4	4	-	-
Manhattan	8	4	High Density/High Income	20	20	8	8	4	4	-	-
Manhattan	8	5		20	20	8	8	5	5	-	-
Manhattan	9	1		11	-	5	-	2	-	-	-
Manhattan	9	2		19	-	2	-	2	-	-	-

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

				Refuse				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	9	3		23	-	3	-	2	-	-	-
Manhattan	10	1		19	-	2	-	1	-	-	-
Manhattan	10	3		16	-	2	-	1	-	-	-
Manhattan	10	4		17	-	2	-	2	-	-	-
Manhattan	11	1		20	-	3	-	2	-	-	-
Manhattan	11	2		19	-	2	-	1	-	-	-
Manhattan	11	3		15	-	2	-	-	-	-	-
Manhattan	12	1		27	-	3	-	5	-	-	-
Manhattan	12	2		27	-	4	-	4	-	-	-
Manhattan	12	3		23	-	5	-	4	-	-	-
Manhattan	12	4		22	-	4	-	3	-	-	-
Bronx	1	1		16	-	2	-	2	-	-	-
Bronx	1	2		17	-	2	-	2	-	-	-
Bronx	2	1		24	-	2	-	4	-	-	-
Bronx	3	1		31	-	3	-	4	-	-	-
Bronx	4	1	High Density/Low Income	17	-	2	-	2	-	-	-
Bronx	4	2		24	24	2	-	4	-	-	-
Bronx	4	3	High Density/Low Income	24	-	2	-	3	-	-	-
Bronx	5	1	High Density/Low Income	23	23	2	2	3	3	-	-
Bronx	5	2	High Density/Low Income	17	17	2	2	3	3	-	-
Bronx	5	3		20	20	2	2	4	4	-	-
Bronx	6	1		19	-	2	-	2	-	-	-
Bronx	6	2		21	-	1	-	2	-	-	-
Bronx	7	1	High Density/Medium Income	19	-	3	-	3	-	-	-
Bronx	7	2		24	24	3	-	4	-	-	-
Bronx	7	3	High Density/Medium Income	19	-	4	-	4	-	-	-
Bronx	8	1		17	17	4	-	2	-	-	-
Bronx	8	2		15	-	2	-	3	-	-	-
Bronx	8	3		18	-	5	-	4	-	-	-
Bronx	9	1		26	-	2	-	3	-	-	-

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Bronx	9	2		20	-	2	-	4	-	-	-
Bronx	9	3		13	-	1	-	2	-	-	-
Bronx	9	4		27	-	4	-	5	-	-	-
Bronx	10	1		22	-	-	-	-	-	20	-
Bronx	10	2		24	-	-	-	-	-	24	-
Bronx	10	3		19	-	-	-	-	-	16	-
Bronx	11	1		29	-	6	-	6	-	-	-
Bronx	11	2		21	-	5	-	4	-	-	-
Bronx	11	3		20	-	4	-	6	-	-	-
Bronx	12	1		18	-	3	-	5	-	-	-
Bronx	12	2		19	-	4	-	4	-	-	-
Bronx	12	3		21	-	2	-	4	-	-	-
Bronx	12	4		19	-	5	-	5	-	-	-
Bronx	12	5		19	-	4	-	4	-	-	-
Brooklyn North	1	1		19	-	4	-	3	-	-	-
Brooklyn North	1	2		23	-	3	-	3	-	-	-
Brooklyn North	1	3		20	-	5	-	4	-	-	-
Brooklyn North	1	4		25	-	5	-	2	-	-	-
Brooklyn North	1	5		21	-	2	-	2	-	-	-
Brooklyn North	2	1		19	-	5	-	3	-	-	-
Brooklyn North	2	2		13	-	4	-	2	-	-	-
Brooklyn North	2	3		13	-	2	-	3	-	-	-
Brooklyn North	2	4		16	-	3	-	4	-	-	-
Brooklyn North	3	1		24	-	2	-	3	-	-	-
Brooklyn North	3	2	Medium Density/Low Income	25	-	2	-	3	-	-	-
Brooklyn North	3	3		27	27	2	2	4	4	-	-
Brooklyn North	3	4		20	-	2	-	3	-	-	-
Brooklyn North	3	5	Medium Density/Low Income	18	-	2	-	3	-	-	-
Brooklyn North	4	1	Medium Density/Low Income	20	20	-	-	-	-	8	8
Brooklyn North	4	2	Medium Density/Low Income	29	29	-		-	-	12	12

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn South	12	1		33	-	-	-	-	-	24	-
Brooklyn South	12	2		36	-	-	-	-	-	22	-
Brooklyn South	12	3		30	-	-	-	-	-	24	-
Brooklyn South	12	4		26	-	-	-	-	-	18	-
Brooklyn South	13	1		15	-	3	-	2	-	-	-
Brooklyn South	13	2		30	-	5	-	4	-	-	-
Brooklyn South	14	1		32	-	4	-	6	-	-	-
Brooklyn South	14	2		17	-	4	-	3	-	-	-
Brooklyn South	14	3		27	-	5	-	4	-	-	-
Brooklyn South	14	4		24	-	7	-	7	-	-	-
Brooklyn South	15	1		22	-	-	-	-	-	18	-
Brooklyn South	15	2		29	-	-	-	-	-	24	-
Brooklyn South	15	3		28	-	-	-	-	-	24	-
Brooklyn South	15	4		27	-	-	-	-	-	22	-
Brooklyn South	15	5		18	-	-	-	-	-	12	-
Brooklyn South	16	1		27	-	3	-	3	-	-	-
Brooklyn South	16	2	Medium Density/Low Income	28	-	4	-	4	-	-	-
Brooklyn South	17	1		21	21	-	-	-	-	10	10
Brooklyn South	17	2		20	-	-	-	-	-	12	-
Brooklyn South	17	3		24	-	-	-	-	-	20	-
Brooklyn South	17	4		26	-	-	-	-	-	12	-
Brooklyn South	17	5		25	-	-	-	-	-	22	-
Brooklyn South	18	1		21	-	-	-	-	-	14	-
Brooklyn South	18	2		20	-	-	-	-	-	18	-
Brooklyn South	18	3		16	-	-	-	-	-	18	-
Brooklyn South	18	4		25	-	-	-	-	-	20	-
Brooklyn South	18	5		19	-	-	-	-	-	16	-
Brooklyn South	18	6		25	-	-	-	-	-	22	-
Brooklyn South	18	7	High Density/Medium Income	23	-	-	-	-	-	24	-
Queens East	7	1		25	25	-	-	-	-	14	14

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

				Refuse				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens East	7	2	High Density/Medium Income	17	-	-	-	-	-	16	-
Queens East	7	3		22	22	-	-	-	-	16	16
Queens East	7	4		18	-	-	-	-	-	16	-
Queens East	7	5	Low Density/High Income	18	-	-	-	-	-	20	-
Queens East	7	6		23	23	-	-	-	-	22	22
Queens East	7	7		24	-	-	-	-	-	24	-
Queens East	7	8		19	-	-	-	-	-	14	-
Queens East	8	1		20	-	-	-	-	-	18	-
Queens East	8	2		34	-	-	-	-	-	24	-
Queens East	8	3		25	-	-	-	-	-	20	-
Queens East	8	4		25	-	-	-	-	-	22	-
Queens East	10	1		29	-	-	-	-	-	20	-
Queens East	10	2		34	-	-	-	-	-	24	-
Queens East	10	3	Low Density/High Income	36	-	-	-	-	-	24	-
Queens East	10	4		24	24	-	-	-	-	18	18
Queens East	11	1		19	-	-	-	-	-	20	-
Queens East	11	2	Low Density/High Income	17	-	-	-	-	-	16	-
Queens East	11	3		17	17	-	-	-	-	16	16
Queens East	11	4		22	-	-	-	-	-	22	-
Queens East	11	5		18	-	-	-	-	-	18	-
Queens East	11	6		17	-	-	-	-	-	12	-
Queens East	12	1		37	-	-	-	-	-	18	-
Queens East	12	2		28	-	-	-	-	-	20	-
Queens East	12	3		26	-	-	-	-	-	16	-
Queens East	12	4		28	-	-	-	-	-	18	-
Queens East	12	5		28	-	-	-	-	-	18	-
Queens East	12	6		29	-	-	-	-	-	20	-
Queens East	12	7		33	-	-	-	-	-	18	-
Queens East	13	1		25	-	-	-	-	-	18	-
Queens East	13	2	Low Density/High Income	26	-	-	-	-	-	18	-

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

Table H-3
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Spring 2005 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens West	6	2	Low Density/Medium Income	42	-	-	-	-	-	32	-
Queens West	9	1	Low Density/Medium Income	24	24	-	-	-	-	20	20
Queens West	9	2		25	25	-	-	-	-	16	16
Queens West	9	3		22	-	-	-	-	-	20	-
Queens West	9	4		33	-	-	-	-	-	24	-
Staten Island	1	1		35	-	-	-	-	-	28	-
Staten Island	1	2	Low Density/Medium Income	33	-	-	-	-	-	26	-
Staten Island	1	3		39	39	-	-	-	-	34	34
Staten Island	1	4		44	-	-	-	-	-	31	-
Staten Island	2	1	Low Density/High Income	34	-	-	-	-	-	32	-
Staten Island	2	2		33	33	-	-	-	-	28	28
Staten Island	2	3	Low Density/High Income	29	-	-	-	-	-	28	-
Staten Island	2	4	Low Density/Medium Income	33	33	-	-	-	-	15	-
Staten Island	3	1	Low Density/High Income	25	25	-	-	-	-	24	24
Staten Island	3	2		24	24	-	-	-	-	24	24
Staten Island	3	3	Low Density/High Income	23	-	-	-	-	-	20	-
Staten Island	3	4	Low Density/High Income	22	22	-	-	-	-	24	24
Staten Island	3	5	Low Density/High Income	27	27	-	-	-	-	22	22
Staten Island	3	6		24	24	-	-	-	-	20	20
Staten Island	3	7	Low Density/High Income	16	-	-	-	-	-	18	-
Staten Island	3	8	Low Density/ High Income	15	15	-	-	-	-	16	16

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005

				Refuse			Paper		MGP		Dual Bin
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	1	1		6	-	4	-	2	-	-	-
Manhattan	1	3		8	-	4	-	1	-	-	-
Manhattan	2	1		16	-	4	-	2	-	-	-
Manhattan	2	2	High Density/High Income	15	15	4	4	2	2	-	-
Manhattan	2	3	High Density/High Income	15	15	7	7	3	3	-	-
Manhattan	3	1	High Density/Low Income	17	17	2	2	1	1	-	-
Manhattan	3	2		14	-	2	-	2	-	-	-
Manhattan	3	3	High Density/Medium Income	15	15	2	2	2	2	-	-
Manhattan	3	4		17	-	4	-	-	-	-	-
Manhattan	4	1		11	-	3	-	2	-	-	-
Manhattan	4	2		9	-	3	-	1	-	-	-
Manhattan	4	3		19	-	4	-	3	-	-	-
Manhattan	5	1		8	-	3	-	2	-	-	-
Manhattan	5	2		9	-	4	-	2	-	-	-
Manhattan	6	1		19	-	9	-	4	-	-	-
Manhattan	6	2		20	-	7	-	3	-	-	-
Manhattan	6	3	High Density/High Income	18	18	7	7	2	2	-	-
Manhattan	7	1		18	-	5	-	5	-	-	-
Manhattan	7	2	High Density/High Income	20	20	6	6	3	3	-	-
Manhattan	7	3	High Density/High Income	22	22	7	7	4	4	-	-
Manhattan	7	4		19	-	6	-	4	-	-	-
Manhattan	7	5		19	-	6	-	4	-	-	-
Manhattan	8	1	High Density/High Income	20	20	7	7	3	3	-	-
Manhattan	8	2	High Density/High Income	21	21	9	9	4	4	-	-
Manhattan	8	3	High Density/High Income	18	18	9	9	4	4	-	-
Manhattan	8	4	High Density/High Income	18	18	8	8	4	4	-	-
Manhattan	8	5	High Density/High Income	19	19	8	8	5	5	-	-
Manhattan	9	1		11	-	5	-	2	-	-	-
Manhattan	9	2		19	-	2	-	2	-	-	-
Manhattan	9	3		23	-	3	-	2	-	-	-

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse Pa				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Manhattan	10	1		18	-	2	-	1	-	-	-
Manhattan	10	3		16	-	2	-	1	-	-	-
Manhattan	10	4		17	-	2	-	2	-	-	-
Manhattan	11	1		19	-	3	-	2	-	-	-
Manhattan	11	2		18	-	2	-	1	-	-	-
Manhattan	11	3		15	-	2	-	-	-	-	-
Manhattan	12	1		27	-	3	-	5	-	-	-
Manhattan	12	2		26	-	4	-	4	-	-	-
Manhattan	12	3		23	-	5	-	4	-	-	-
Manhattan	12	4		23	-	4	-	3	-	-	-
Bronx	1	1		16	-	2	-	2	-	-	-
Bronx	1	2		17	-	2	-	2	-	-	-
Bronx	2	1		24	-	2	-	4	-	-	-
Bronx	3	1		31	-	3	-	4	-	-	-
Bronx	4	1		17	-	2	-	2	-	-	-
Bronx	4	2	High Density/Low Income	24	24	2	-	4	-	-	-
Bronx	4	3		24	-	2	-	3	-	-	-
Bronx	5	1	High Density/Low Income	23	23	2	2	3	3	-	-
Bronx	5	2	High Density/Low Income	17	17	2	2	3	3	-	-
Bronx	5	3	High Density/Low Income	20	20	2	2	4	4	-	-
Bronx	6	1		19	-	2	-	2	-	-	-
Bronx	6	2		21	-	1	-	2	-	-	-
Bronx	7	1		19	-	3	-	3	-	-	-
Bronx	7	2	High Density/Medium Income	24	24	3	-	4	-	-	-
Bronx	7	3		19	-	4	-	4	-	-	-
Bronx	8	1	High Density/Medium Income	17	17	4	-	2	-	-	-
Bronx	8	2		15	-	2	-	3	-	-	-
Bronx	8	3		18	-	5	-	4	-	-	-
Bronx	9	1		26	-	2	-	3	-	-	-
Bronx	9	2		20	-	2	-	4	-	-	-

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Bronx	9	3		13	-	1	-	2	-	-	-
Bronx	9	4		27	-	4	-	5	-	-	-
Bronx	10	1		22	-	-	-	-	-	20	-
Bronx	10	2		24	-	-	-	-	-	24	-
Bronx	10	3		19	-	-	-	-	-	16	-
Bronx	11	1		28	-	6	-	6	-	-	-
Bronx	11	2		21	-	5	-	4	-	-	-
Bronx	11	3		20	-	4	-	6	-	-	-
Bronx	12	1		18	-	3	-	5	-	-	-
Bronx	12	2		19	-	4	-	4	-	-	-
Bronx	12	3		21	-	2	-	4	-	-	-
Bronx	12	4		19	-	5	-	5	-	-	-
Bronx	12	5		19	-	4	-	4	-	-	-
Brooklyn North	1	1		17	-	4	-	3	-	-	-
Brooklyn North	1	2		24	-	3	-	3	-	-	-
Brooklyn North	1	3		20	-	5	-	4	-	-	-
Brooklyn North	1	4		19	-	5	-	2	-	-	-
Brooklyn North	1	5		21	-	2	-	2	-	-	-
Brooklyn North	2	1		19	-	5	-	3	-	-	-
Brooklyn North	2	2		13	-	4	-	2	-	-	-
Brooklyn North	2	3		13	-	2	-	3	-	-	-
Brooklyn North	2	4		16	-	3	-	4	-	-	-
Brooklyn North	3	1		21	-	2	-	3	-	-	-
Brooklyn North	3	2		25	-	2	-	3	-	-	-
Brooklyn North	3	3	Medium Density/Low Income	28	28	2	2	4	4	-	-
Brooklyn North	3	4		21	-	2	-	3	-	-	-
Brooklyn North	3	5		18	-	2	-	3	-	-	-
Brooklyn North	4	1	Medium Density/Low Income	20	20	-	-	-	-	8	8
Brooklyn North	4	2	Medium Density/Low Income	29	29	-	-	-	-	12	12
Brooklyn North	4	3	Medium Density/Low Income	24	24	-	-	-	-	12	12

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse Pa				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn North	5	1		26	-	3	-	3	-	-	-
Brooklyn North	5	2		31	-	6	-	6	-	-	-
Brooklyn North	5	3		21	-	3	-	3	-	-	-
Brooklyn North	5	4		33	-	3	-	4	-	-	-
Brooklyn North	8	1		26	-	7	-	2	-	-	-
Brooklyn North	8	2		26	-	4	-	2	-	-	-
Brooklyn North	8	3		20	-	2	-	2	-	-	-
Brooklyn South	6	1		14	-	3	-	2	-	-	-
Brooklyn South	6	2	Medium Density/High Income	14	14	6	6	4	4	-	-
Brooklyn South	6	3		14	-	4	-	3	-	-	-
Brooklyn South	6	4		16	-	4	-	4	-	-	-
Brooklyn South	6	5		16	-	5	-	3	-	-	-
Brooklyn South	7	1		17	-	7	-	6	-	-	-
Brooklyn South	7	2		19	-	5	-	6	-	-	-
Brooklyn South	7	3		18	-	4	-	5	-	-	-
Brooklyn South	7	4		22	-	5	-	6	-	-	-
Brooklyn South	9	1		22	-	3	-	4	-	-	-
Brooklyn South	9	2		21	-	2	-	3	-	-	-
Brooklyn South	9	3		19	-	3	-	4	-	-	-
Brooklyn South	10	1		14	-	-	-	-	-	16	-
Brooklyn South	10	2		17	-	-	-	-	-	20	-
Brooklyn South	10	3		18	-	-	-	-	-	18	-
Brooklyn South	10	4		25	-	-	-	-	-	28	-
Brooklyn South	11	1		18	-	-	-	-	-	16	-
Brooklyn South	11	2		20	-	-	-	-	-	16	-
Brooklyn South	11	3		17	-	-	-	-	-	14	-
Brooklyn South	11	4		16	-	-	-	-	-	12	-
Brooklyn South	11	5		20	-	-	-	-	-	18	-
Brooklyn South	11	6		24	-	-	-	-	-	18	-
Brooklyn South	12	1		28	-	-	-	-	-	24	-

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse Pa				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Brooklyn South	12	2		27	-	-	-	-	-	22	-
Brooklyn South	12	3		29	-	-	-	-	-	24	-
Brooklyn South	12	4		22	-	-	-	-	-	18	-
Brooklyn South	13	1		15	-	3	-	2	-	-	-
Brooklyn South	13	2		30	-	5	-	4	-	-	-
Brooklyn South	14	1		32	-	4	-	6	-	-	-
Brooklyn South	14	2		18	-	4	-	3	-	-	-
Brooklyn South	14	3		27	-	5	-	4	-	-	-
Brooklyn South	14	4		22	-	7	-	7	-	-	-
Brooklyn South	15	1		22	-	-	-	-	-	18	-
Brooklyn South	15	2		25	-	-	-	-	-	24	-
Brooklyn South	15	3		25	-	-	-	-	-	24	-
Brooklyn South	15	4		26	-	-	-	-	-	22	-
Brooklyn South	15	5		18	-	-	-	-	-	12	-
Brooklyn South	16	1		25	-	3	-	3	-	-	-
Brooklyn South	16	2		30	-	4	-	4	-	-	-
Brooklyn South	17	1	Medium Density/Low Income	21	21	-	-	-	-	10	10
Brooklyn South	17	2		20	-	-	-	-	-	12	-
Brooklyn South	17	3		24	-	-	-	-	-	20	-
Brooklyn South	17	4		26	-	-	-	-	-	12	-
Brooklyn South	17	5		28	-	-	-	-	-	22	-
Brooklyn South	18	1		18	-	-	-	-	-	14	-
Brooklyn South	18	2		20	-	-	-	-	-	18	-
Brooklyn South	18	3		15	-	-	-	-	-	18	-
Brooklyn South	18	4		22	-	-	-	-	-	20	-
Brooklyn South	18	5		18	-	-	-	-	-	16	-
Brooklyn South	18	6		24	-	-	-	-	-	22	-
Brooklyn South	18	7		22	-	-	-	-	-	24	-
Queens East	7	1	High Density/Medium Income	24	24	-	-	-	-	14	14
Queens East	7	2		15	-	-	-	-	-	16	-

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse Pa				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens East	7	3	High Density/Medium Income	21	21	-	-	-	-	16	16
Queens East	7	4		18	-	-	-	-	-	16	-
Queens East	7	5		16	-	-	-	-	-	20	-
Queens East	7	6	Low Density/High Income	23	23	-	-	-	-	22	22
Queens East	7	7		23	-	-	-	-	-	24	-
Queens East	7	8		19	-	-	-	-	-	14	-
Queens East	8	1		20	-	-	-	-	-	18	-
Queens East	8	2		33	-	-	-	-	-	24	-
Queens East	8	3		25	-	-	-	-	-	20	-
Queens East	8	4		25	-	-	-	-	-	22	-
Queens East	10	1		25	-	-	-	-	-	20	-
Queens East	10	2		33	-	-	-	-	-	24	-
Queens East	10	3		37	-	-	-	-	-	24	-
Queens East	10	4	Low Density/High Income	21	21	-	-	-	-	18	18
Queens East	11	1		19	-	-	-	-	-	20	-
Queens East	11	2		17	-	-	-	-	-	16	-
Queens East	11	3	Low Density/High Income	17	17	-	-	-	-	16	16
Queens East	11	4		22	-	-	-	-	-	22	-
Queens East	11	5		18	-	-	-	-	-	18	-
Queens East	11	6		17	-	-	-	-	-	12	-
Queens East	12	1		35	-	-	-	-	-	18	-
Queens East	12	2		27	-	-	-	-	-	20	-
Queens East	12	3		26	-	-	-	-	-	16	-
Queens East	12	4		28	-	-	-	-	-	18	-
Queens East	12	5		26	-	-	-	-	-	18	-
Queens East	12	6		31	-	-	-	-	-	20	-
Queens East	12	7		31	-	-	-	-	-	18	-
Queens East	13	1		23	-	-	-	-	-	18	-
Queens East	13	2		24	-	-	-	-	-	18	-
Queens East	13	3	Low Density/High Income	31	31	-	-	-	-	24	24

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse				MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens East	13	4	Low Density/High Income	25	25	-	-	-	-	16	16
Queens East	13	5	Low Density/High Income	22	22	-	-	-	-	16	16
Queens East	13	6	Low Density/High Income	19	19	-	-	-	-	16	16
Queens East	13	7	Low Density/High Income	27	27	-	-	-	-	20	20
Queens East	13	8	Low Density/High Income	24	24	-	-	-	-	16	16
Queens East	14	1		24	-	-	-	-	-	18	-
Queens East	14	2		25	-	-	-	-	-	16	-
Queens East	14	3		25	-	-	-	-	-	16	-
Queens West	1	1		17	-	-	-	-	-	13	-
Queens West	1	2		19	-	-	-	-	-	16	-
Queens West	1	3		25	-	-	-	-	-	18	-
Queens West	1	4	Medium Density/Medium Income	20	20	-	-	-	-	14	14
Queens West	1	5		22	-	-	-	-	-	14	-
Queens West	1	6		16	-	-	-	-	-	12	-
Queens West	2	1		19	-	6	-	5	-	-	-
Queens West	2	2		17	-	6	-	3	-	-	-
Queens West	2	3		17	-	5	-	4	-	-	-
Queens West	3	1		37	-	8	-	9	-	-	-
Queens West	3	2	High Density/Medium Income	26	26	6	6	6	6	-	-
Queens West	3	3		26	-	6	-	6	-	-	-
Queens West	4	1		23	-	5	-	5	-	-	-
Queens West	4	2		25	-	4	-	5	-	-	-
Queens West	4	3	Medium Density/Medium Income	30	30	4	4	6	6	-	-
Queens West	5	1		21	-	-	-	-	-	22	-
Queens West	5	2	Medium Density/Medium Income	19	19	-	-	-	-	20	20
Queens West	5	3		18	-	-	-	-	-	20	-
Queens West	5	4		26	-	-	-	-	-	26	-
Queens West	5	5		27	-	-	-	-	-	28	-
Queens West	6	1		26	-	-	-	-	-	24	-
Queens West	6	2		40	-	-		-	-	32	-

Table H-4
Total Number of Routes and Number of "Pure" Routes for WCS by Stream, Summer 2005 (continued)

				Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	Stratum	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes	No. of Routes	No. of Pure Routes
Queens West	9	1	Low Density/Medium Income	22	22	-	-	-	-	20	20
Queens West	9	2	Low Density/Medium Income	20	20	-	-	-	-	16	16
Queens West	9	3		22	-	-	-	-	-	20	-
Queens West	9	4		30	-	-	-	-	-	24	-
Staten Island	1	1		33	-	-	-	-	-	28	-
Staten Island	1	2		30	-	-	-	-	-	26	-
Staten Island	1	3	Low Density/Medium Income	36	36	-	-	-	-	34	34
Staten Island	1	4		39	-	-	-	-	-	31	-
Staten Island	2	1		30	-	-	-	-	-	32	-
Staten Island	2	2	Low Density/High Income	30	30	-	-	-	-	28	28
Staten Island	2	3		26	-	-	-	-	-	28	-
Staten Island	2	4	Low Density/High Income	30	30	-	-	-	-	15	-
Staten Island	3	1	Low Density/Medium Income	24	24	-	-	-	-	24	24
Staten Island	3	2	Low Density/High Income	24	24	-	-	-	-	24	24
Staten Island	3	3		20	-	-	-	-	-	20	-
Staten Island	3	4	Low Density/High Income	20	20	-	-	-	-	24	24
Staten Island	3	5	Low Density/High Income	24	24	-	-	-	-	22	22
Staten Island	3	6	Low Density/High Income	18	18	-	-	-	-	20	20
Staten Island	3	7		15	-	-	-	-	-	18	-
Staten Island	3	8	Low Density/High Income	15	15	-	-	-	-	16	16

Table H-5
Universe of Routes, PWCS

Table H-5 Universe of Routes, PWCS (continued)

			PWCS							
			Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected
Bronx	12	3	21	1	2	0	4	1	0	0
Bronx	12	4	18	0	5	1	5	0	0	0
Bronx	12	5	19	1	4	0	4	0	0	0
Brooklyn North	1	1	18	1	4	1	3	0	0	0
Brooklyn North	1	2	23	1	3	1	3	0	0	0
Brooklyn North	1	3	19	1	5	0	4	0	0	0
Brooklyn North	1	4	25	1	5	0	2	0	0	0
Brooklyn North	1	5	23	1	2	0	2	0	0	0
Brooklyn North	2	1	19	1	5	0	3	0	0	0
Brooklyn North	2	2	13	2	4	0	2	0	0	0
Brooklyn North	2	3	13		2	0	3	2	0	0
Brooklyn North	2	4	16	0	3	0	4	0	0	0
Brooklyn North	3	1	24	2	2	O	3	1	0	0
Brooklyn North	3	2	24	0	2	1	3	0	0	0
Brooklyn North	3	3	28	0	2	0	4	0	0	0
Brooklyn North	3	4	20	1	2	0	3	0	0	0
Brooklyn North	3	5	18	1	2	0	3	0	0	0
Brooklyn North	4	1	20	2	0	0	0	0	4	0
Brooklyn North	4	2	29	2	0	0	0	0	6	0
Brooklyn North	4	3	24	1	0	0	0	0	6	0
Brooklyn North	5	1	28	1	3	0	3	1	0	0
Brooklyn North	5	2	31	2	6	0	6	2	0	0
Brooklyn North	5	3	20	0	3	0	3	0	0	0
Brooklyn North	5	4	32	1	3	0	4	0	0	0
Brooklyn North	8	1	26	1	7	3	2	1	0	0
Brooklyn North	8	2	26	0	4	0	2	0	0	0
Brooklyn North	8	3	20	0	2	1	2	0	0	0
Brooklyn South	6	1	14	1	3	0	2	0	0	0
Brooklyn South	6	2	13	0	6	0	4	0	0	0
Brooklyn South	6	3	15	0	4		3	0	0	0
Brooklyn South	6	4	15	0	5	0	5	0	0	0
Brooklyn South	6	5	15	0	5	1	3	1	0	0
Brooklyn South	7	1	17	0	7	1	6	0	0	0
Brooklyn South	7	2	20	1	5	0	6	0	0	0
Brooklyn South	7	3	19	0	4	0	5	1	0	0
Brooklyn South	7	4	21	0	5	1	6	1	0	0
Brooklyn South	9	1	23	2	3	0	4	1	0	0
Brooklyn South	9	2	19	1	2	1	3	2	0	0
Brooklyn South	9	3	19	0	3	0	4	1	0	0
Brooklyn South	10	1	16	0	0	0	0	0	8	2
Brooklyn South	10	2	17	1	0	0	0	0	10	0
Brooklyn South	10	3	18	0	0	0	0	0	9	0
Brooklyn South	10	4	30	2	0	0	0	0	14	0
Brooklyn South	11	1	18	2	0	0	0	0	8	0
Brooklyn South	11	2	20	0	0	0	0	0	8	0
Brooklyn South	11	3	18	2	0	0	0	0	7	2
Brooklyn South	11	4	16	0	0	0	0	0	6	0
Brooklyn South	11	5	20	1	0	0	0	0	9	0
Brooklyn South	11	6	23	1	0	0	0	0	9	0
Brooklyn South	12	1	33	1	0	0	0	0	12	2
Brooklyn South	12	2	36	1	0	0	0	0	11	2
Brooklyn South	12	3	30	1	0	0	0	0	12	0
Brooklyn South	12	4	26	1	0	0	0	0	9	0
Brooklyn South	13	1	15	0	3	1	2	2	0	0
Brooklyn South	13	2	30	1	5	1	4	1	0	0
Brooklyn South	14	1	32	0	4	0	6	1	0	0
Brooklyn South	14	2	17	1	4	1	3	0	0	0
Brooklyn South	14	3	23	1	5	0	4	0	0	0
Brooklyn South	14	4	23	1	7	0	7	1	0	0
Brooklyn South	15	1	22	1	3	0	3	0	9	0
Brooklyn South	15	2	29	0	4	0	4	0	12	6
Brooklyn South	15	3	28	0	0	0	0	0	12	0
Brooklyn South	15	4	27	0	0	0	0	0	11	0
Brooklyn South	15	5	18	1	0	0	0	0	6	0
Brooklyn South	16	1	27	0	0	1	0	0	0	0
Brooklyn South	16	2	28	1	0	1	0	0	0	0
Brooklyn South	17	1	21	1	0	0	0	0	5	0
Brooklyn South	17	2	20	1	0	0	0	0	6	0
Brooklyn South	17	3	24	1	0	0	0	0	10	2
Brooklyn South	17	4	26	0	0	0	0	0	6	0
Brooklyn South	17	5	25	2	0	0	0	0	11	0

Table H-5 Universe of Routes, PWCS (continued)

			PWCS							
			Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	\# of Routes	$\#$ of Routes Selected	\# of Routes	$\#$ of Routes Selected	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected
Brooklyn South	18	1	21	2	0	0	0	0	7	0
Brooklyn South	18	2	20	0	0	0	0	0	9	0
Brooklyn South	18	3	16	0	0	0	0	0	9	0
Brooklyn South	18	4	25	2	0	0	0	0	10	0
Brooklyn South	18	5	19	1	0	0	0	0	8	2
Brooklyn South	18	6	25	3	0	0	0	0	11	0
Brooklyn South	18	7	23	1	0	0	0	0	12	2
Queens East	7	1	25	0	0	0	0	0	7	2
Queens East	7	2	17	1	0	0	0	0	8	0
Queens East	7	3	22	0	0	0	0	0	8	0
Queens East	7	4	18	1	0	0	0	0	8	0
Queens East	7	5	18	0	0	0	0	0	10	2
Queens East	7	6	23	0	0	0	0	0	11	0
Queens East	7	7	24	0	0	0	0	0	12	0
Queens East	7	8	19	0	0	0	0	0	7	2
Queens East	8	1	20	0	0	0	0	0	9	2
Queens East	8	2	34	3	0	0	0	0	12	2
Queens East	8	3	25	1	0	0	0	0	10	0
Queens East	8	4	25	4	0	0	0	0	11	0
Queens East	10	1	29	1	0	0	0	0	10	2
Queens East	10	2	34	1	0	0	0	0	12	2
Queens East	10	3	36	3	0	0	0	0	12	2
Queens East	10	4	24	1	0	0	0	0	9	0
Queens East	11	1	19	0	0	0	0	0	10	4
Queens East	11	2	17	0	0	0	0	0	8	0
Queens East	11	3	17	1	0	0	0	0	8	0
Queens East	11	4	22	1	0	0	0	0	11	2
Queens East	11	5	18	0	0	0	0	0	9	0
Queens East	11	6	17	1	0	0	0	0	6	0
Queens East	12	1	37	0	0	0	0	0	9	2
Queens East	12	2	28	2	0	0	0	0	10	0
Queens East	12	3	26	0	0	0	0	0	8	2
Queens East	12	4	28	1	0	0	0	0	9	0
Queens East	12	5	28	2	0	0	0	0	9	2
Queens East	12	6	29	1	0	0	0	0	10	0
Queens East	12	7	33	1	0	0	0	0	9	0
Queens East	13	1	25	0	0	0	0	0	9	0
Queens East	13	2	26	3	0	0	0	0	9	0
Queens East	13	3	31	1	0	0	0	0	12	0
Queens East	13	4	28	2	0	0	0	0	8	0
Queens East	13	5	23	0	0	0	0	0	8	0
Queens East	13	6	21	3	0	0	0	0	8	4
Queens East	13	7	28	0	0	0	0	0	10	0
Queens East	13	8	25	1	0	0	0	0	8	0
Queens East	14	1	23	1	0	0	0	0	9	2
Queens East	14	2	26	0	0	0	0	0	8	0
Queens East	14	3	24	2	0	0	0	0	8	0
Queens West	1	1	17	1	0	0	0	0	7	0
Queens West	1	2	20	0	0	0	0	0	8	0
Queens West	1	3	24	2	0	0	0	0	9	4
Queens West	1	4	19	1	0	0	0	0	7	0
Queens West	1	5	23	0	0	0	0	0	9	0
Queens West	1	6	17	0	0	0	0	0	6	0
Queens West	2	1	20	1	6	0	5	1	0	0
Queens West	2	2	17	1	6	2	3	1	0	0
Queens West	2	3	13	0	5	0	4	1	0	0
Queens West	3	1	36	1	8	0	9	1	0	0
Queens West	3	2	27	0	6	0	6	0	0	0
Queens West	3	3	26	0	6	1	6	2	0	0
Queens West	4	1	24	2	5	0	5	1	0	0
Queens West	4	2	25	0	4	2	5	0	0	0
Queens West	4	3	30	0	4	0	6	1	0	0
Queens West	5	1	21	0	0	0	0	0	11	0
Queens West	5	2	21	0	0	0	0	0	11	0
Queens West	5	3	18	0	0	0	0	0	9	2
Queens West	5	4	29	0	0	0	0	0	13	2
Queens West	5	5	29	1	0	0	0	0	14	2
Queens West	6	1	27	0	0	0	0	0	12	2
Queens West	6	2	42	1	0	0	0	0	16	0
Queens West	9	1	24	0	0	0	0	0	10	0
Queens West	9	2	25	1	0	0	0	0	8	0

Table H-5
Universe of Routes, PWCS (continued)

			PWCS							
			Refuse		Paper		MGP		Dual Bin	
Borough	District	Section	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected	\# of Routes	\# of Routes Selected
Queens West	9	3	22	0	0	0	0	0	10	4
Queens West	9	4	33	1	0	0	0	0	12	2
Staten Island	1	1	35	1	0	0	0	0	14	0
Staten Island	1	2	33	2	0	0	0	0	13	0
Staten Island	1	3	39	1	0	0	0	0	16	4
Staten Island	1	4	44	1	0	0	0	0	17	3
Staten Island	2	1	34	0	0	0	0	0	16	0
Staten Island	2	2	33	1	0	0	0	0	14	0
Staten Island	2	3	29	3	0	0	0	0	14	0
Staten Island	2	4	33	1	0	0	0	0	15	3
Staten Island	3	1	25	0	0	0	0	0	11	0
Staten Island	3	2	24	0	0	0	0	0	11	0
Staten Island	3	3	23	2	0	0	0	0	11	0
Staten Island	3	4	22	0	0	0	0	0	12	2
Staten Island	3	5	27	1	0	0	0	0	12	4
Staten Island	3	6	24	1	0	0	0	0	10	0
Staten Island	3	7	16	0	0	0	0	0	9	0
Staten Island	3	8	15	2	0	0	0	0	8	2

Universe of Routes, WCS

				Fall 2004												Winter 2005												Spring 2005												Summer 2005											
				Refuse			Paper				MGP ${ }^{\text {a }}$			Dual Bi		Refuse			Paper			MGP			Dual Bin			Refuse			Paper			MGP			Dual Bin			Refuse			Paper			MGP			Dual Bin		
	$\begin{aligned} & \text { 旁 } \\ & \text { H0 } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { 듷 } \\ \text { ion } \\ \hline \end{array}$										\# of Pure Routes Selected																																							
M	1	1			0	0	4	0	0	2	0		0	0	0	6	0		4	0	0	2	0	0	0	0		6	0	0	4	0		2	0	0	0	0		6	0	0	4	0		2	0	0	0	0	
M	1	2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
M	1	3		8	0	0	4	0	0	1	0	0	0	0	0	8	0	0	4	0	0	1	0	0	0	0	0	0	0	0	4	0	0	1	0	0	0	0	0	8	0	0	4	0	0	1	0	0		0	
M	2	1		16	0	0	4	4	0	2	0	0	0	0	0	16	0	0	4	0	0	2	0	0	0	0	0	16	0	0	4	0	0	2	0	0	0	0		16	0	0	4	0	0	2	0	0		0	
M	2	2	H/H	16	16	6	5	5	1	2	1	1	0	0	0	15	15		4	4	0	2	2	0	0	0	0	15	15	6	4	4	0	2	2	0	0	0	0	15	15	2	4	4	1	2	2	1	0	0	
M	2	3	H/H	15	12	2	7	6	2	3	3	1	0	0	0	15	15	2	7	7	2	3	3	1	0	0	0	15	15	5	7	7	0	3	3	2	0	0	0	15	15	4	7	7	1	3	3	3	0	0	
M	3	1	H/L	16	11	5	2	1	1	1	1	1	0	0	0	17	17	5	2	2	1	1	1	1	0	0	0	17	17	7	2	2	1	1	1	1	0	0	0	17	17	6	2	2	1	1	1	1	0	0	
M	3	2		15	0	0	2	0	0	2	0	0	0	0	0	14	0	0	2	0	0	2	0	0	0	0	0	14	0	0	2	0	0	2	0	0	0	0	0	14	0	0	2	0	0	2	0	0	0	0	
M	3	3	H/M	15	4	3	2	1	1	2	1	1	0	0	0	14	14	4	2	2	1	2	2	1	0	0	0	14	14	5	2	2	1	2	2	1	0	0	0	15	15	5	2	2	1	2	2	2	0	0	
M	3	4		17	0	0	4	0	0	0	0	0	0	0	0	17	0	0	4	0	0	0	0	0	0	0	0	18	0	0	4	0	0	0	0	0	0	0	0	17	0	0	4	0	0	0	0	0	0	0	
M	4	1		11	0	0	3	0	0	2	0	0	0	0	0	11	0	,	3	0	0	2	0	0	0	0	0	11	0	0	3	0	0	2	0	0	0	0	0	11	0	0	3	0	0	2	0	0	0	0	
M	4	2		9	0	0	3	0	0	1	0	0	0	0	0	9	0	0	3	0	0	1	0	0	0	0	0	9	0	0	3	0	0	1	0	0	0	0	0	9	0	0	3	0	0	1	0	0	0	0	
M	4	3		19	0	0	4	0	0	3	0	0	0	0	0	19	0	0	4	0	0	3	0	0	0	0	0	19	0	0	4	0	0	3	0	0	0	0	0	19	0	0	4	0	0	3	0	0	0	0	
M	5	1		7	0	0	3	0	0	2	0	0	0	0	0		0	0	3	-	0	2	0	0	0	0	0		0		3	0	0	2	0	0	0	0	0	8	0	0	3	0	0	2	0	0		0	
M	5	2		11	0	0	4	0	0	2	0	0	0	0	0	10	0	0	4	0	0	2	0	0	0	0	0	11	0	0	4	0	0	2	0	0	0	0	0	9	0	0	4	0	0	2	0	0	0	0	
M	6	1		20	0	0	9	0	0	4	0	0	0	0	0	20	0	0	9	0	0	4	0	0	0	0	0	20	0	0	9	0	0	4	0	0	0	0	0	19	0	0	9	0	0	4	0	0	0	0	
M	6	2		21	0	0	7	0	0	3	0	0	0	0	0	22	0	0	7	0	0	3	0	0	0	0		22	0	0	7	0	0	3	0	0	0	0	0	20	0	0	7	0	0	3	0	0	0	0	
M	6	3	H/H	20	20	3	7	7	2	2	2	1	0	0	-	20	20	7	7	7	,	2	2	,	0	0	0	20	20	6	7	7	0	2	2	0	0	0	0	18	18	2	7	7	0	2	2	1	0	0	
M	7	1		19	0	0	5	5	0	5	0	0	0	0	0	22	0	0	5	0	0	5	0	0	0	0	0	20	0	0	5	0	d	5	0	0	0	0	0	18	0	0	5	0	0	5	0	0	0	0	
M	7	2	H/H	21	19	4	6	5	1	3	3	2	0	0	0	20	20	4	6		1	3	3	2	0	0	0	20	20	6	6	6	0	3	3	0	0	0	0	20	20	3	6	6	2	3	3	1	0	0	
M	7	3	H/H	24	16	7	7	2	0	4	2	1	0	0	0	21	21	2	7	7	0	4	4		0	0		21	21	5	7	7	2	4	4	3	0	0	0	22	22	7	7	7	0	4	4	4	0	0	
M	7	4		20	0	0	6	6	0	4	0	0	0	0	0	21	0	0	6	0	0	4	0	0	0	0	0	21	0	0	6	0	0	4	0	0	0	0	0	19	0	0	6	0	0	4	0	0	0	0	
M	7	5		19	0	0	6	0	0	4	0	0	0	0	0	21	0	0	6	0	0	4	0	0	0	0	0	21	0	,	6	0	0	4	0		0	0	,	19	0	0	6	0	0	4	0	,	0	0	
M	8	1	H/H	23	23	3	7	7	0	3	3	2	0	0	0	20	20	6	7	7	1	3	3	2	0	0	0	22	22	2	7	7	3	3	3	1	0	0	0	20	20	7	7	7	2	3	3	2	0	0	
M	8	2	H/H	25	23	4	9	9	1	4	4	2	0	0	0	24	24	4	9	9	1	4	4	2	0	0	0	24	24	9	9	9	0	4	4	0	0	0	0	21	21	5	9	9	0	4	4	3	0	0	
M	8	3	H/H	21	21	3	9	9		4	4	3	0	0	0	19	19	7	9	9	2	4	4	4	0	0	0	20	20	3	9	9		4	4	4	0	0	-	18	18	2	9	9	1	4	4	2	0	0	
M	8	4	H/H	22	22	4	8	8	0	4	4	4	0	0	0	18	18	6	8	8	,	4	4		0	0	0	20	20	2	8	8	0	4	4	0	0	0	0	18	18	4	8	8		4	4	3	0	0	
M	8	5	H/H	22	22	8	8	8	1	5	5	5	0	0	0	19	19	5	8	8	1	5	5		0	0		20	20		8	8		5	5		0	0	0	19	19	6	8	8	0	5	5	3		0	
M	9	1		12	0	0	5	5	-	2	0	0	0	0	0	10	0	-	5	0	0	2	0	0	0	0		11	0	0	5	0	0	2	0	0	0	0		11	0	0	5	0	0	2	0	0		0	
M	9	2		18	0	0	2	0	0	2	0	0	0	0	0	19	0	-	2	0	0	2	0	0	0	0	0	19	0	-	2	0	0		0	0	0	0	0	19	0	0	2	0	0	2	0			0	
M	9	3		22	0	0	3	0	-	2	0	0	0	0	0	23	0	0	3	0	0	2	0	0	0	0	0	23	0	0	3	0	0		0		0	0	0	23	0	0	3	0	0	2	0			0	
M	10	1		19	0	0	2	0	0	1	0	0	0	0	0	19	0	0	2	0	0	1	0		0	0		19	0		2	0			0	0	0	0	d	18	0	0	2	0	0	1	0	0		0	
M	10	3		15	0	0	2	0	0	1	0	0	0	0	0	15	0	0	2	0	0	1	0	0	0	0	0	16	0	0		0	0	1	0	0	0	0	0	16	0	0	2	0	0	1	0	0	0	0	
M	10	4		18	0	0	2	0	-	2	0	0	0	0	0	17	0	-	2	0	0	2	0	0	0	0	0	17	0	0	2	0		2	0	0	0	0	0	17	0	0	2	0	0	2	0			0	
M	11	1		18	0	0	3	0	0	2	0	0	0	0	0	20	0	0	3	0	0	2	0		0	0		20	0		3	0		2	0	0	0	0	0	19	0	0	3	0	0	2	0	0		0	
M	11	2		19	0	0	2	0	0	1	0	0	0	0	0	18	0	0	2	0	0	1	0	0	0	0	0	19	0	0	2	0	0	1	0	0	0	0	0	18	0	-	2	0	0	1	0	0			
M	11	3		15	0	0	2	0	0	0	0	0	0	0	0	14	0		2	0	0	0	0	0	0	0	0	15	0		2	0	0	0	0	,	0	0	0	15	0	0	2	0	0	0	0	-	0	0	
M	12	1		26	0	0	3	0	0	5	0	0	0	0	0	26	0	0	3	0		5			0	0		27	0		3	0			0		0	0	0	27	0	0	3	0	0		0			0	
M	12	2		27	0	0	4	0	0	4	0	0	0	0		27	0		4	0	0	4	0		0	0		27	0		4	0			0		0	0	0	26	0	0	4	0	0	4	0	0		0	
M	12	3		24	0	0	5	0		4	0	0	0	0		23	0		5	0		4	0		0	0		23	0		5	0		4	0		0	0	0	23	0		5	0	0	4	0	0	0	0	
M	12	4		19	0	0	4	0	0	3	0	0	0	0		19	0		4	0	0	3	0		0	0		22	0		4	0		3	0		0	0		23	0		4	0		3	0			0	

Table H-6
Universe of Routes (continued)

			Fall 2004												Winter 2005												Spring 2005												Summer 2005												
				Refuse			Paper			MGP ${ }^{\text {a }}$ Dual Bin						Refuse			Paper			MGP			Dual Bin			Refuse			Paper			MGP			Dual Bin			Refuse			Paper			MGP			Dual Bin		
	$\begin{aligned} & \text { 䓂 } \\ & \text { D } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 듷 } \\ & \text { © } \\ & \hline \end{aligned}$													\qquad												\# of Pure Routes Selected																					\# of Pure Routes Selected			
QNW	5	2	M/M	19	15	10	0	0	0	0	0	0	20	18	12	18	18	9	0	0	0	0	0	0	20	20	14	21	21	9	0	0	0	0	0	0	20	20	11	19	19	8	0	0	0	0	0	0	20	20	015
QNV	5	3		18	0	0	0	0	0	0	0	0	20	0	0	17	0	0	0	0	0	0	0	0	20	0	0	18	0	0	0	0	0	0	0	0	20	0		18	0	0	0	0	0	0	0	0	20	0	0
QNW	5	4		27	0	0	0	0	0		0	0	26	0	0	25	0	0	0	0	0	0	0	0	26	0	0	29	0	0	0	0	0	0	0	0	26	0		26	0	0	0	0	0	0	0		26	0	00
QNW	5	5		27	0	0	0	0	0	0	0	0	28	0	0	27	0	0	0	0	0	0	0	0	28	0	0	29	0	0	0	0	0	0	0	0	28	0	0	27	0	0	0	0	0	0	0	0	28	0	0
QNW	6	1		27	0	0	0	0	0		0	0	24	0	0	24	0	0	0	0	0	0	0	0	24	0	0	27	0	0	0	0	0	0	0	0	24	0	0	26	0	0	0	0	0	0	0	0	24	0	00
QNW	6	2		40	0	0	0	0	0		00	0	32	0	0	38	0	0	0	0	0	0	0	0	32	0	0	42	0	0	0	0	0	0	0	0	32	0		40	0	0	0	0	0	0	0	0	32	0	0 0
QNW	9	1	L/M	22	4	4	0	0	0	0	00	0	20	4	3	22	22	4	0	0	0	0	0	0	20	20	4	24	24	9	0	0	0	0	0	0	20	20	5	22		13	0	0	0	0	0	0	20	20	0
QNW	9	2	L/M	0	4	5	0	0	0	0	0	0	16	4	2	20	20	4	0	-	0	0	0	0	16	16	4	25	25		0	0	0	0	0	0	16	16	7	20	20		0	0	0	0	0	0	16	16	68
QNW	9	3		22	0	0	0	0	0	0	0	0	20	0	0	23	0	0	0	0	0	0	0	0	20	0		22	0	0	0	0	0	0	0	0	20	0		22	0	0	0	0	0	0	0	0	20	0	0
QNW	9	4		30	0	0	0	0	0	0	00	0	24	0	0	31	0	0	0	0	0	0	0	0	24	0		33	0	0	0	0	0	0	0	0	24	0	0	30	0	0	0	0	0	0	0	0	24	0	00
SI	1	1		31	0	0	0	0	0	0	0	0	28	0	0	32	0	0	0	0	0	0	0	0	28	0	0	35	0	0	0	0	0	0	0	0	28	0	0	33	0	0	0	0	0	0	0	0	28	0	00
SI	1	2		28	0	0	0	0	0		0	0	26	0	0	28	0	0	0	0	0	0	0	0	26	0	0	33	0	0	0	0	0	0	0	0	26	0	0	30	0	0	0	0	0	0	0	0	26	0	0 0
SI	1	3	L/M	34	1	2	0	0	0	0	0	0	34	2	2	32	32	1	0	0	0	0	0	0	34	34	2	39	39	14	0	0	0	0	0	-	34	34	3	36	36	11	0	0	0	0	0	0	34	34	411
SI	1	4		37	0	0	0	0	0	0	0	0	31	0	0	34	0	0	0	0	0	0	0	0	31	0	0	44	0	0	0	0	0	0	0	0	31	0	0	39	0	-	0	0	0	0	0	0	31	0	00
SI	2	1		29	0	0	0	0		-	0	0	32	0	0	28	0	0	0	0	0	0	0	0	32	0	0	34	0	0	0	-	0	0	0	-	32	0	0	30	0	0	0	0	0	0	0	0	32	0	0
SI	2	2	L/H	28	22	5	0	0	0	0	0	0	28	22	8	28	28	6	0	0	0	0	0	0	28	28	14	33	33	2	0	0	0	0	0	-	28	28	7	30	30	5	0	0	0	0	0	0	28	28	8
SI	2	3		27	0	0	0	0	0	0	0	0	28	0	0	24	0	0	0	0	0	0	0	0	28	0	0	29	0	0	0		0	0	0	0	28	0		26		0	0	0	0	0	0	0	28	0	0
SI	2	4	L/H	29	16	5	0	0	0	0	0 0	0	15	0	0	27	27	2	0	0	0	0	0	0	15	0	0	33	33	4	0	0	0	0	0	0	15	0	0	30	30	7	0	0	0	0	0	0	15	0	0
SI	3	1	L/M	22	5	5	0	0		0	0	0	24	8	7	20	20	4	0	0	0	0	0	0	24	24	6	25	25	12	0	0	0	0	0	0	24	24	14	24		13	0	0	0	0	0	0	24	24	412
SI	3	2	L/H	23	15	1	0	0	0	0	0	0	24	18	2	23	23	1	0	0	0	0	0	0	24	24	4	24	24	3	0	0	0	0	0	-	24	24	5	24	24	2	0	0	0	0	0	0	24	24	4
SI	3	3		19	0	0	0	0	0	0	00	0	20	0	0	18	0	0	0	0	0	0	0	0	20	0	0	23	0	0	0	0	0	0	0	0	20	0		20	0	0	0	0	0	0	0	0	20	0	0
SI	3	4	L/H	19	17	5	0	0	0	0	0	0	24	12	3	19	19	3	0	0	0	0	0	0	24	24	2	22	22	4	0	0	0	0	0	0	24	24	0	20	20	3	0	0	0	0	0	0	24	24	4
SI	3	5	L/H	23	20	2	0	0	0	0	0	0	22	20	6	22	22	3	0	0	0	0	0	0	22	22	3	27	27	3	0	0	0	0	0	0	22	22	0	24	24	3	0	0	0	0	0	0	22	22	2
SI	3	6	L/H	20	15	3	0	0	0	0	0 0	0	20	20	2	19	19	5	0	0	0	0	0	0	20	20	2	24		4	0	0	0	0	0	0	20	20	0	18	18	5	0	0	0	0	0	0	20	20	
SI	3	7		16	0	0	0	0			0 0	0	18	0	0	17	0	0	0	0	0	0	0	0	18	0	0	16	0	0	0	0	,	0	0	0	18	0	0	15	0	0	0	0	0		0	0	18	0	0
SI	3	8	L/H	14	8	2	0	0	0	0	0	0	16	16	4	14	14		0	0	0	0	0	0	16	16	2	15	15	0	0	0	0	0		0	16	16	0	15	15	0	0	0	0	0	0	0	16	16	

Table H-7
Collections During Study (tons per week)

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
PWCS	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
Manhattan	10,109	1,759	844	12,712	10,068	1,760	876	12,704	10,329	1,878	886	13,094
Bronx	9,117	667	686	10,471	9,347	676	726	10,749	9,309	674	708	10,691
Brooklyn North	5,803	452	382	6,636	5,844	455	397	6,696	5,815	441	413	6,669
Brooklyn South	12,532	1,618	1,014	15,164	13,013	1,600	1,067	15,680	12,888	1,579	1,068	15,535
Queens West	7,520	985	682	9,187	7,755	985	698	9,437	7,703	994	708	9,405
Queens East	9,738	1,184	778	11,700	10,259	1,185	819	12,263	10,222	1,195	850	12,267
Staten Island	5,199	686	379	6,264	5,549	721	410	6,680	5,479	734	406	6,620
Total	60,019	7,350	4,764	72,133	61,836	7,382	4,993	74,211	61,746	7,495	5,039	74,280
		0/2004 thr	05/16/2			$7 / 2004$ thr	05/23/2			24/2004 th	05/30/2	

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
Winter 2005	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
High Density/High Income	2,730	741	308	3,780	2,699	747	287	3,733	2,675	757	288	3,720
High Density/Medium Income	1,566	190	132	1,887	1,592	200	133	1,925	1,578	194	125	1,896
High Density/Low Income	1,409	68	92	1,570	1,400	67	95	1,562	1,408	65	90	1,562
Medium Density/High Income	106	38	17	161	101	38	18	157	103	35	17	155
Medium Density/Medium Income	734	104	64	903	756	134	70	960	743	94	65	902
Medium Density/Low Income	1,220	71	78	1,370	1,231	78	88	1,397	1,205	71	78	1,354
Low Density/High Income	2,377	470	265	3,112	2,715	552	303	3,570	2,756	509	287	3,552
Low Density/Medium Income	796	139	89	1,024	886	163	99	1,147	912	146	86	1,145
Not Stratified	37,444	5,243	3,299	45,986	39,051	5,613	3,499	48,164	38,759	5,386	3,294	47,439
Total	48,383	7,065	4,344	59,793	10,494	1,817	993	13,304	10,467	1,726	950	13,143
Week Coveri		7/2005 th	03/13/2			4/2005 th	03/20/20			1/2005 th	03/27/2	

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
Spring 2005	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
High Density/High Income	2,803	723	296	3,822	2,845	707	298	3,850	2,852	741	302	3,895
High Density/Medium Income	1,650	182	136	1,968	1,707	185	134	2,025	1,695	195	126	2,016
High Density/Low Income	1,409	64	93	1,566	1,448	62	90	1,599	1,441	69	92	1,602
Medium Density/High Income	119	35	19	173	122	33	17	171	117	34	17	168
Medium Density/Medium Income	798	84	75	957	789	84	71	944	798	87	72	957
Medium Density/Low Income	1,305	67	98	1,470	1,318	69	84	1,470	1,326	71	83	1,480
Low Density/High Income	3,568	486	344	4,398	3,719	489	334	4,543	3,512	503	318	4,333
Low Density/Medium Income	1,124	144	108	1,377	1,169	147	101	1,417	1,108	146	95	1,349
Not Stratified	42,505	5,112	3,623	51,240	43,640	5,130	3,627	52,397	43,102	5,224	3,502	51,829
Total	55,282	6,897	4,793	66,971	56,756	6,905	4,755	68,415	55,953	7,069	4,607	67,629
Week Coveri		9/2005 th	05/15/2			6/2005 th	05/22/2			23/2005 th	05/29/2	

(in tons) ${ }^{(1)}$	Week 1				Week 2				Week 3			
Summer 2005	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total	Refuse	Paper	MGP	Total
High Density/High Income	2,506	593	268	3,367	2,541	615	262	3,418	2,517	602	277	3,397
High Density/Medium Income	1,697	184	133	2,015	1,794	198	136	2,128	1,752	187	137	2,075
High Density/Low Income	1,438	60	100	1,598	1,499	64	104	1,667	1,415	60	104	1,579
Medium Density/High Income	109	31	17	157	100	28	18	145	110	29	17	157
Medium Density/Medium Income	798	94	74	966	864	106	75	1,045	803	100	70	974
Medium Density/Low Income	1,324	64	92	1,480	1,377	66	98	1,541	1,335	63	94	1,493
Low Density/High Income	3,231	452	341	4,024	3,206	465	327	3,998	3,261	460	328	4,050
Low Density/Medium Income	1,010	132	101	1,243	1,030	142	102	1,274	1,026	142	103	1,270
Not Stratified	41,392	4,728	3,724	49,845	42,675	5,009	3,696	51,379	41,396	4,831	3,638	49,866
Total	53,505	6,339	4,851	64,695	55,086	6,693	4,817	66,596	53,616	6,475	4,769	64,860
Week Covering:	08/08/2005 through 08/14/2005				08/15/2005 through 08/21/2005				08/22/2005 through 08/28/2005			

[^28]Table H-8
Sample Mass by Strata

Borough	PWCS					WCS Annual		
	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste
Manhattan	8,872.82	2,763.35	2,367.32	14,003.48	56,205.99	7,073.63	29,165.06	92,444.68
Bronx	7,473.69	994.29	1,687.89	10,155.87	47,376.44	4,035.68	21,025.70	72,437.82
Brooklyn	14,381.79	3,065.96	3,317.66	20,765.40	91,729.16	10,351.55	46,393.55	148,474.26
Queens	12,364.51	3,521.70	4,029.17	19,915.37	122,441.46	14,710.07	61,497.72	198,649.25
Staten Island	3,766.94	1,172.00	881.08	5,820.02	43,292.42	4,989.19	27,867.92	76,149.53
Total	46,859.75	11,517.28	12,283.10	70,660.13	361,045.47	41,160.12	185,949.95	588,155.54

Density/Income Strata		WCS Annual		
	Refuse	Paper	MGP	Waste
High Density/High Income	$44,742.86$	$5,313.81$	$23,304.96$	$73,361.63$
High Density/Medium Income	$44,888.20$	$5,027.72$	$23,091.13$	$73,007.05$
High Density/Low Income	$44,412.00$	$5,091.64$	$23,717.59$	$73,221.23$
Medium Density/High Income	$46,151.71$	$5,068.99$	$22,737.24$	$73,957.94$
Medium Density/Medium Income	$45,085.99$	$5,144.37$	$23,145.35$	$73,375.71$
Medium Density/Low Income	$45,577.45$	$5,282.56$	$23,656.31$	$74,516.32$
Low Density/High Income	$45,237.77$	$5,002.87$	$23,371.30$	$73,611.94$
Low Density/Medium Income	$44,949.49$	$5,228.16$	$22,926.07$	$73,103.72$
Total	$\mathbf{3 6 1 , 0 4 5 . 4 7}$	$\mathbf{4 1 , 1 6 0 . 1 2}$	$\mathbf{1 8 5 , 9 4 9 . 9 5}$	$588,155.54$

Density/Income Strata	Fall 2004						Winter 2005		
	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste	
High Density/High Income	$10,463.89$	$1,179.44$	$4,942.25$	$16,585.58$	$11,665.20$	$1,390.90$	$5,537.66$	$18,593.76$	
High Density/Medium Income	$11,144.09$	$1,088.43$	$4,798.97$	$17,031.49$	$11,121.72$	$1,167.44$	$5,400.66$	$17,689.82$	
High Density/Low Income	$10,457.38$	$1,128.34$	$5,414.88$	$17,000.60$	$11,358.88$	$1,313.08$	$5,910.84$	$18,582.80$	
Medium Density/High Income	$10,844.72$	$1,066.42$	$4,707.34$	$16,618.48$	$11,938.12$	$1,259.88$	$5,382.06$	$18,580.06$	
Medium Density/Medium Income	$10,935.57$	$1,122.75$	$4,815.88$	$16,874.20$	$11,374.67$	$1,360.03$	$5,355.98$	$18,090.68$	
Medium Density/Low Income	$10,988.98$	$1,241.52$	$5,282.13$	$17,512.63$	$11,540.60$	$1,395.39$	$5,540.72$	$18,476.71$	
Low Density/High Income	$10,776.42$	$1,092.25$	$4,802.34$	$16,671.01$	$11,699.96$	$1,250.85$	$5,944.76$	$18,895.57$	
Low Density/Medium Income	$10,445.14$	$1,120.55$	$4,828.74$	$16,394.43$	$11,384.33$	$1,368.55$	$5,568.44$	$18,321.32$	
Total	$\mathbf{8 6 , 0 5 6 . 1 9}$	$9,039.70$	$39,592.53$	$\mathbf{1 3 4 , 6 8 8 . 4 2}$	$\mathbf{9 2 , 0 8 3 . 4 8}$	$\mathbf{1 0 , 5 0 6 . 1 2}$	$44,641.12$	$147,230.72$	

Density/Income Strata	Spring 2005							Summer 2005		
	Refuse	Paper	MGP	Waste	Refuse	Paper	MGP	Waste		
High Density/High Income	$11,613.13$	$1,366.72$	$6,340.15$	$19,320.00$	$11,000.64$	$1,376.75$	$6,484.90$	$18,862.29$		
High Density/Medium Income	$11,601.78$	$1,401.00$	$6,373.89$	$19,376.67$	$11,020.61$	$1,370.85$	$6,517.61$	$18,909.07$		
High Density/Low Income	$11,615.59$	$1,279.47$	$6,011.19$	$18,906.25$	$10,980.15$	$1,370.75$	$6,380.68$	$18,731.58$		
Medium Density/High Income	$11,179.85$	$1,404.04$	$6,094.92$	$18,678.81$	$12,189.02$	$1,338.65$	$6,552.92$	$20,080.59$		
Medium Density/Medium Income	$11,684.63$	$1,317.69$	$6,099.48$	$19,101.80$	$11,091.12$	$1,343.90$	$6,874.01$	$19,309.03$		
Medium Density/Low Income	$10,958.67$	$1,336.65$	$6,131.65$	$18,426.97$	$12,089.20$	$1,309.00$	$6,701.81$	$20,100.01$		
Low Density/High Income	$11,288.72$	$1,348.40$	$5,984.51$	$18,621.63$	$11,472.67$	$1,311.37$	$6,639.69$	$19,423.73$		
Low Density/Medium Income	$11,487.28$	$1,401.56$	$5,879.62$	$18,768.46$	$11,632.74$	$1,337.50$	$6,649.27$	$19,619.51$		
Total	$91,429.65$	$10,855.53$	$48,915.41$	$151,200.59$	$\mathbf{9 1 , 4 7 6 . 1 5}$	$10,758.77$	$52,800.89$	$155,035.81$		

Table H-9
Samples Acquired by Day and by Strata

Season	Day of Week	Date	Stream	High Density/ High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
PWCS	Saturday	5/15/2004	Refuse	-	-	-	-	-	-	-	-	19
PWCS	Monday	5/17/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Tuesday	5/18/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Tuesday	5/18/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Wednesday	5/19/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Wednesday	5/19/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Thursday	5/20/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Thursday	5/20/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Friday	5/21/2004	Refuse	-	-	-	-	-	-	-	-	20
PWCS	Friday	5/21/2004	Refuse	-	-	-	-	-	-	-	-	20
PWCS	Saturday	5/22/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Saturday	5/22/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Monday	5/24/2004	Refuse	-	-	-	-	-	-	-	-	16
PWCS	Monday	5/24/2004	Refuse	-	-	-	-	-	-	-	-	16
PWCS	Tuesday	5/25/2004	Refuse	-	-	-	-	-	-	-	-	21
PWCS	Wednesday	5/26/2004	Refuse	-	-	-	-	-	-	-	-	18
PWCS	Wednesday	5/26/2004	Refuse	-	-	-	-	-	-	-	-	18
PWCS	Thursday	5/27/2004	Refuse	-	-	-	-	-	-	-	-	1
PWCS	Monday	6/7/2004	MGP	-	-	-	-	-	-	-	-	17
PWCS	Monday	6/7/2004	Paper	-	-	-	-	-	-	-	-	15
PWCS	Tuesday	6/8/2004	MGP	-	-	-	-	-	-	-	-	20
PWCS	Tuesday	6/8/2004	Paper	-	-	-	-	-	-	-	-	17
PWCS	Wednesday	6/9/2004	MGP	-	-	-	-	-	-	-	-	16
PWCS	Wednesday	6/9/2004	Paper	-	-	-	-	-	-	-	-	17
PWCS	Thursday	6/10/2004	Paper	-	-	-	-	-	-	-	-	15
PWCS	Thursday	6/10/2004	MGP	-	-	-	-	-	-	-	-	17
PWCS	Friday	6/11/2004	Paper	-	-	-	-	-	-	-	-	17
PWCS	Friday	6/11/2004	MGP	-	-	-	-	-	-	-	-	17
PWCS	Saturday	6/12/2004	MGP	-	-	-	-	-	-	-	-	17
PWCS	Saturday	6/12/2004	Paper	-	-	-	-	-	-	-	-	17
Fall	Monday	10/18/2004	Paper	3	2	-	-	1	-	1	-	-
Fall	Monday	10/18/2004	Street Basket	-	-	-	-	-	-	-	-	5
Fall	Monday	10/18/2004	Refuse	2	7	2	2	3	1	1	-	-
Fall	Monday	10/18/2004	Refuse	2	7	2	2	3	1	1	-	-
Fall	Monday	10/18/2004	MGP	6	1	-	-	2	5	2	-	-
Fall	Tuesday	10/19/2004	Street Basket	-	-	-	-	-	-	-	-	5
Fall	Tuesday	10/19/2004	Paper	1	-	-	-	-	-	-	-	-
Fall	Tuesday	10/19/2004	Street Basket	-	-	-	-	-	-	-	-	5
Fall	Tuesday	10/19/2004	MGP	-	-	4	-	2	-	1	-	-
Fall	Tuesday	10/19/2004	Refuse	1	3	7	4	4	8	4	7	-
Fall	Tuesday	10/19/2004	Refuse	1	3	7	4	4	8	4	7	-
Fall	Wednesday	10/20/2004	MGP	-	-	3	-	1	2	4	5	-
Fall	Wednesday	10/20/2004	Refuse	2	4	3	4	7	-	6	2	-

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Densityl Medium Density	No Strata ${ }^{(1)}$
Fall	Wednesday	10/20/2004	Refuse	2	4	3	4	7	-	6	2	-
Fall	Wednesday	10/20/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Wednesday	10/20/2004	Paper	1	-	-	-	-	1	-	-	-
Fall	Thursday	10/21/2004	Paper	1	-	-	2	1	3	-	-	-
Fall	Thursday	10/21/2004	Refuse	3	3	2	2	3	4	5	-	-
Fall	Thursday	10/21/2004	Refuse	3	3	2	2	3	4	5	-	-
Fall	Thursday	10/21/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Thursday	10/21/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Thursday	10/21/2004	MGP	3	-	2	4	4	3	2	-	-
Fall	Friday	10/22/2004	Refuse	-	2	-	7	1	3	3	3	-
Fall	Friday	10/22/2004	Paper	-	1	1	2	3	-	-	2	-
Fall	Friday	10/22/2004	MGP	3	1	3	3	2	-	2	7	-
Fall	Friday	10/22/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Friday	10/22/2004	Refuse	-	2	-	7	1	3	3	3	-
Fall	Saturday	10/23/2004	MGP	2	3	4	4	5	2	3	-	-
Fall	Saturday	10/23/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Saturday	10/23/2004	Refuse	5	2	3	2	2	2	2	2	-
Fall	Saturday	10/23/2004	Refuse	5	2	3	2	2	2	2	2	-
Fall	Saturday	10/23/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Saturday	10/23/2004	Paper	-	2	1	1	1	-	1	-	-
Fall	Monday	10/25/2004	Refuse	4	6	2	4	1	4	2	-	-
Fall	Monday	10/25/2004	Refuse	4	6	2	4	1	4	2	-	-
Fall	Monday	10/25/2004	Street Basket	-	-	-	-	-	-	-	-	4
Fall	Monday	10/25/2004	MGP	5	3	2	-	3	3	2	-	-
Fall	Monday	10/25/2004	Paper	1	1	-	-	-	2	-	-	-
Fall	Monday	10/25/2004	Street Basket	-	-	-	-	-	-	-	-	4
Fall	Tuesday	10/26/2004	Street Basket	-	-	-	-	-	-	-	-	4
Fall	Tuesday	10/26/2004	Refuse	3	3	4	1	3	4	-	5	-
Fall	Tuesday	10/26/2004	Street Basket	-	-	-	-	-	-	-	-	4
Fall	Tuesday	10/26/2004	MGP	1	-	5	-	2	2	1	-	-
Fall	Tuesday	10/26/2004	Refuse	3	3	4	1	3	4	-	5	-
Fall	Tuesday	10/26/2004	Paper	-	-	2	-	-	1	-	-	-
Fall	Wednesday	10/27/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Wednesday	10/27/2004	Paper	-	-	-	-	2	-	-	4	-
Fall	Wednesday	10/27/2004	MGP	1	-	2	-	2	2	3	4	-
Fall	Wednesday	10/27/2004	Refuse	7	1	1	2	6	-	3	8	-
Fall	Wednesday	10/27/2004	Refuse	7	1	1	2	6	-	3	8	-
Fall	Thursday	10/28/2004	Refuse	2	-	3	3	1	1	3	-	-
Fall	Thursday	10/28/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Thursday	10/28/2004	Refuse	2	-	3	3	1	1	3	-	-
Fall	Thursday	10/28/2004	Paper	-	-	1	1	-	-	-	-	-
Fall	Thursday	10/28/2004	MGP	3	-	5	7	1	3	2	-	-
Fall	Friday	10/29/2004	Street Basket	-	-	-	-	-	-	-	-	3

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Fall	Friday	10/29/2004	Refuse	2	2	1	2	4	4	1	6	-
Fall	Friday	10/29/2004	Street Basket	-	-	-	-	-	-	-	-	3
Fall	Friday	10/29/2004	Paper	1	-	-	-	-	-	2	2	-
Fall	Friday	10/29/2004	MGP	2	5	2	6	4	1	3	13	-
Fall	Friday	10/29/2004	Refuse	2	2	1	2	4	4	1	6	-
Fall	Saturday	10/30/2004	Paper	-	2	2	1	1	-	2	-	-
Fall	Saturday	10/30/2004	MGP	3	8	-	5	6	3	2	-	-
Fall	Saturday	10/30/2004	Refuse	2	-	3	4	1	8	2	4	-
Fall	Saturday	10/30/2004	Refuse	2	-	3	4	1	8	2	4	-
Fall	Saturday	10/30/2004	Street Basket	-	-	-	-	-	-	-	-	2
Fall	Saturday	10/30/2004	Street Basket	-	-	-	-	-	-	-	-	2
Fall	Monday	11/1/2004	MGP	2	11	-	-	1	4	-	-	-
Fall	Monday	11/1/2004	Paper	1	2	-	-	-	2	-	-	-
Fall	Monday	11/1/2004	Refuse	1	4	5	3	1	1	6	-	-
Fall	Monday	11/1/2004	Street Basket	-	-	-	-	-	-	-	-	6
Fall	Monday	11/1/2004	Refuse	1	4	5	3	1	1	6	-	-
Fall	Monday	11/1/2004	Street Basket	-	-	-	-	-	-	-	-	6
Fall	Wednesday	11/3/2004	Paper	-	-	2	-	-	-	1	-	-
Fall	Wednesday	11/3/2004	MGP	-	-	4	-	-	-	5	-	-
Fall	Wednesday	11/3/2004	Refuse	4	4	2	2	6	2	3	3	-
Fall	Wednesday	11/3/2004	Street Basket	-	-	-	-	-	-	-	-	1
Fall	Wednesday	11/3/2004	Refuse	4	4	2	2	6	2	3	3	-
Fall	Thursday	11/4/2004	MGP	2	-	3	2	-	6	3	-	-
Fall	Thursday	11/4/2004	Refuse	6	6	6	3	1	4	4	-	-
Fall	Thursday	11/4/2004	Paper	-	-	-	-	-	-	2	-	-
Fall	Thursday	11/4/2004	Street Basket	-	-	-	-	-	-	-	-	1
Fall	Thursday	11/4/2004	Refuse	6	6	6	3	1	4	4	-	-
Fall	Friday	11/5/2004	Refuse	3	2	2	3	3	-	2	7	-
Fall	Friday	11/5/2004	MGP	5	1	-	6	2	1	2	11	-
Fall	Friday	11/5/2004	Street Basket	-	-	-	-	-	-	-	-	1
Fall	Friday	11/5/2004	Refuse	3	2	2	3	3	-	2	7	-
Fall	Friday	11/5/2004	Paper	1	-	-	-	1	-	1	2	-
Fall	Saturday	11/6/2004	MGP	2	7	1	3	3	3	3	-	-
Fall	Saturday	11/6/2004	Paper	-	-	1	3	-	1	-	-	-
Fall	Saturday	11/6/2004	Refuse	3	1	4	2	3	4	3	2	-
Fall	Saturday	11/6/2004	Refuse	3	1	4	2	3	4	3	2	-
Winter	Tuesday	3/8/2005	Refuse	5	4	3	5	2	-	5	8	-
Winter	Tuesday	3/8/2005	Street Basket	-	-	-	-	-	-	-	-	4
Winter	Tuesday	3/8/2005	MGP	2	-	3	-	2	2	4	-	-
Winter	Tuesday	3/8/2005	Refuse	5	4	3	5	2	-	5	8	-
Winter	Tuesday	3/8/2005	Paper	-	-	-	-	1	1	1	-	-
Winter	Wednesday	3/9/2005	Refuse	5	1	3	4	6	5	4	4	-
Winter	Wednesday	3/9/2005	Street Basket	-	-	-	-	-	-	-	-	2

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Winter	Wednesday	3/9/2005	Paper	-	-	-	-	1	-	1	-	-
Winter	Wednesday	3/9/2005	Refuse	5	1	3	4	6	5	4	4	-
Winter	Wednesday	3/9/2005	MGP	1	-	-	-	2	-	4	4	-
Winter	Thursday	3/10/2005	Refuse	2	5	7	1	3	5	6	-	-
Winter	Thursday	3/10/2005	Paper	1	-	-	1	-	2	2	-	-
Winter	Thursday	3/10/2005	MGP	4	-	6	5	1	6	5	-	-
Winter	Thursday	3/10/2005	Street Basket	-	-	-	-	-	-	-	-	6
Winter	Thursday	3/10/2005	Refuse	2	5	7	1	3	5	6	-	-
Winter	Friday	3/11/2005	MGP	-	2	1	5	3	-	1	12	-
Winter	Friday	3/11/2005	Refuse	3	2	1	3	3	4	1	7	-
Winter	Friday	3/11/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Friday	3/11/2005	Paper	2	-	2	-	-	1	-	3	-
Winter	Friday	3/11/2005	Refuse	3	2	1	3	3	4	1	7	-
Winter	Friday	3/11/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Saturday	3/12/2005	Refuse	3	-	2	4	2	4	1	1	-
Winter	Saturday	3/12/2005	MGP	3	10	6	5	5	2	-	-	-
Winter	Saturday	3/12/2005	Paper	1	3	2	3	1	-	-	-	-
Winter	Saturday	3/12/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Saturday	3/12/2005	Refuse	3	-	2	4	2	4	1	1	-
Winter	Monday	3/14/2005	Street Basket	-	-	-	-	-	-	-	-	8
Winter	Monday	3/14/2005	Refuse	1	4	2	2	3	2	3	-	-
Winter	Monday	3/14/2005	MGP	6	4	-	-	2	4	2	-	-
Winter	Monday	3/14/2005	Refuse	1	4	2	2	3	2	3	-	-
Winter	Monday	3/14/2005	Paper	-	1	-	-	1	-	-	-	-
Winter	Tuesday	3/15/2005	Street Basket	-	-	-	-	-	-	-	-	4
Winter	Tuesday	3/15/2005	Refuse	1	4	4	1	4	3	5	6	-
Winter	Tuesday	3/15/2005	Paper	1	-	1	-	1	-	1	-	-
Winter	Tuesday	3/15/2005	MGP	-	-	2	-	1	1	5	-	-
Winter	Tuesday	3/15/2005	Refuse	1	4	4	1	4	3	5	6	-
Winter	Tuesday	3/15/2005	MGP	-	-	2	-	1	1	5	-	-
Winter	Wednesday	3/16/2005	MGP	1	-	2	-	1	5	-	3	-
Winter	Wednesday	3/16/2005	Refuse	5	2	3	1	2	4	4	2	-
Winter	Wednesday	3/16/2005	Paper	-	-	-	-	-	-	-	1	-
Winter	Wednesday	3/16/2005	Street Basket	-	-	-	-	-	-	-	-	1
Winter	Wednesday	3/16/2005	Refuse	5	2	3	1	2	4	4	2	-
Winter	Thursday	3/17/2005	Refuse	4	4	3	7	6	-	1	-	-
Winter	Thursday	3/17/2005	Street Basket	-	-	-	-	-	-	-	-	3
Winter	Thursday	3/17/2005	Street Basket	-	-	-	-	-	-	-	-	3
Winter	Thursday	3/17/2005	Refuse	4	4	3	7	6	-	1	-	-
Winter	Thursday	3/17/2005	MGP	3	-	9	5	2	3	6	-	-
Winter	Thursday	3/17/2005	Paper	1	-	-	-	1	-	1	-	-
Winter	Friday	3/18/2005	MGP	4	6	-	7	4	3	2	13	-
Winter	Friday	3/18/2005	Street Basket	-	-	-	-	-	-	-	-	2

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Winter	Friday	3/18/2005	Refuse	1	1	-	4	1	3	3	8	-
Winter	Friday	3/18/2005	Paper	-	2	2	1	-	1	1	3	-
Winter	Friday	3/18/2005	Refuse	1	1	-	4	1	3	3	8	-
Winter	Saturday	3/19/2005	MGP	5	7	2	4	7	2	1	-	-
Winter	Saturday	3/19/2005	Refuse	2	2	3	2	3	3	2	2	-
Winter	Saturday	3/19/2005	Paper	1	2	1	3	1	1	-	-	-
Winter	Saturday	3/19/2005	Refuse	2	2	3	2	3	3	2	2	-
Winter	Saturday	3/19/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Monday	3/21/2005	Paper	1	-	-	-	1	1	-	-	-
Winter	Monday	3/21/2005	MGP	3	3	1	-	1	2	1	-	-
Winter	Monday	3/21/2005	Refuse	6	3	5	3	3	7	5	-	-
Winter	Monday	3/21/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Monday	3/21/2005	Refuse	6	3	5	3	3	7	5	-	-
Winter	Tuesday	3/22/2005	Refuse	3	1	2	-	4	3	3	5	-
Winter	Tuesday	3/22/2005	Paper	-	-	1	-	-	1	1	-	-
Winter	Tuesday	3/22/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Tuesday	3/22/2005	Street Basket	-	-	-	-	-	-	-	-	2
Winter	Tuesday	3/22/2005	MGP	1	-	1	-	-	1	2	-	-
Winter	Tuesday	3/22/2005	Refuse	3	1	2	-	4	3	3	5	-
Winter	Wednesday	3/23/2005	Refuse	3	3	-	3	2	2	3	2	-
Winter	Wednesday	3/23/2005	Paper	1	-	-	-	-	-	-	1	-
Winter	Wednesday	3/23/2005	MGP	1	-	5	-	-	-	2	6	-
Winter	Wednesday	3/23/2005	Refuse	3	3	-	3	2	2	3	2	-
Winter	Wednesday	3/23/2005	Street Basket	-	-	-	-	-	-	-	-	5
Winter	Wednesday	3/23/2005	Street Basket	-	-	-	-	-	-	-	-	5
Winter	Thursday	3/24/2005	Street Basket	-	-	-	-	-	-	-	-	1
Winter	Thursday	3/24/2005	Paper	1	-	2	1	-	2	-	-	-
Winter	Thursday	3/24/2005	Refuse	3	5	3	3	2	2	1	-	-
Winter	Thursday	3/24/2005	Refuse	3	5	3	3	2	2	1	-	-
Winter	Thursday	3/24/2005	MGP	3	-	2	3	1	3	2	-	-
Winter	Friday	3/25/2005	Refuse	3	1	1	3	1	2	2	3	-
Winter	Friday	3/25/2005	Paper	-	1	-	1	1	1	1	3	-
Winter	Friday	3/25/2005	Refuse	3	1	1	3	1	2	2	3	-
Winter	Friday	3/25/2005	Street Basket	-	-	-	-	-	-	-	-	3
Winter	Friday	3/25/2005	MGP	3	4	2	4	2	3	2	5	-
Winter	Saturday	3/26/2005	Street Basket	-	-	-	-	-	-	-	-	1
Winter	Saturday	3/26/2005	Refuse	2	4	7	3	3	-	1	2	-
Winter	Saturday	3/26/2005	MGP	1	2	2	3	6	1	2	-	-
Winter	Saturday	3/26/2005	Paper	1	-	-	-	1	-	-	-	-
Winter	Saturday	3/26/2005	Refuse	2	4	7	3	3	-	1	2	-
Winter	Monday	3/28/2005	Refuse	1	4	2	2	1	2	2	-	-
Winter	Monday	3/28/2005	Paper	-	1	-	-	1	-	1	-	-
Winter	Monday	3/28/2005	MGP	1	3	-	-	2	4	4	-	-

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Winter	Monday	3/28/2005	Refuse	1	4	2	2	1	2	2	-	-
Spring	Monday	5/9/2005	Refuse	3	2	3	3	1	2	2	3	-
Spring	Monday	5/9/2005	MGP	-	7	5	-	2	4	-	4	-
Spring	Monday	5/9/2005	Refuse	3	2	3	3	1	2	2	3	-
Spring	Monday	5/9/2005	Paper	-	3	-	-	1	-	-	2	-
Spring	Tuesday	5/10/2005	Refuse	5	2	6	1	5	3	2	7	-
Spring	Tuesday	5/10/2005	Refuse	5	2	6	1	5	3	2	7	-
Spring	Tuesday	5/10/2005	Paper	2	-	-	-	-	1	1	-	-
Spring	Tuesday	5/10/2005	MGP	5	-	5	-	3	2	4	2	-
Spring	Tuesday	5/10/2005	Street Basket	-	-	-	-	-	-	-	-	1
Spring	Wednesday	5/11/2005	MGP	2	-	3	-	2	-	11	2	-
Spring	Wednesday	5/11/2005	Refuse	1	4	1	5	1	4	4	3	-
Spring	Wednesday	5/11/2005	Street Basket	-	-	-	-	-	-	-	-	6
Spring	Wednesday	5/11/2005	Refuse	1	4	1	5	1	4	4	3	-
Spring	Wednesday	5/11/2005	Paper	1	-	-	-	-	-	2	1	-
Spring	Thursday	5/12/2005	Street Basket	-	-	-	-	-	-	-	-	3
Spring	Thursday	5/12/2005	Refuse	-	3	1	2	6	4	5	4	-
Spring	Thursday	5/12/2005	Refuse	-	3	1	2	6	4	5	4	-
Spring	Thursday	5/12/2005	MGP	4	-	3	5	1	3	-	4	-
Spring	Thursday	5/12/2005	Paper	3	-	1	1	-	1	-	1	-
Spring	Friday	5/13/2005	MGP	-	5	-	6	5	1	-	6	-
Spring	Friday	5/13/2005	Street Basket	-	-	-	-	-	-	-	-	5
Spring	Friday	5/13/2005	Refuse	1	4	3	3	6	2	5	3	-
Spring	Friday	5/13/2005	Refuse	1	4	3	3	6	2	5	3	-
Spring	Friday	5/13/2005	Street Basket	-	-	-	-	-	-	-	-	5
Spring	Friday	5/13/2005	Paper	-	1	-	1	-	-	-	3	-
Spring	Saturday	5/14/2005	Refuse	-	2	4	1	5	2	7	5	-
Spring	Saturday	5/14/2005	MGP	-	-	4	8	7	-	-	-	-
Spring	Saturday	5/14/2005	Paper	-	-	1	3	1	-	-	-	-
Spring	Saturday	5/14/2005	Refuse	-	2	4	1	5	2	7	5	-
Spring	Saturday	5/14/2005	Street Basket	-	-	-	-	-	-	-	-	4
Spring	Monday	5/16/2005	MGP	-	7	2	-	3	6	-	1	-
Spring	Monday	5/16/2005	Paper	-	2	2	-	2	2	-	1	-
Spring	Monday	5/16/2005	Refuse	4	-	2	6	4	6	3	1	-
Spring	Monday	5/16/2005	Street Basket	-	-	-	-	-	-	-	-	6
Spring	Monday	5/16/2005	Refuse	4	-	2	6	4	6	3	1	-
Spring	Tuesday	5/17/2005	MGP	6	-	2	-	1	3	4	2	-
Spring	Tuesday	5/17/2005	Paper	2	-	-	-	1	1	1	-	-
Spring	Tuesday	5/17/2005	MGP	6	-	2	-	1	3	4	2	-
Spring	Tuesday	5/17/2005	Refuse	5	3	5	4	1	3	3	3	-
Spring	Tuesday	5/17/2005	Street Basket	-	-	-	-	-	-	-	-	2
Spring	Tuesday	5/17/2005	Refuse	5	3	5	4	1	3	3	3	-
Spring	Wednesday	5/18/2005	Street Basket	-	-	-	-	-	-	-	-	4

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Spring	Wednesday	5/18/2005	Refuse	3	3	3	5	3	5	-	3	-
Spring	Wednesday	5/18/2005	Refuse	3	3	3	5	3	5	-	3	-
Spring	Wednesday	5/18/2005	Street Basket	-	-	-	-	-	-	-	-	4
Spring	Wednesday	5/18/2005	Paper	-	-	2	-	-	-	2	-	-
Spring	Wednesday	5/18/2005	MGP	5	-	2	-	-	-	11	1	-
Spring	Thursday	5/19/2005	MGP	2	-	2	9	-	4	-	3	-
Spring	Thursday	5/19/2005	Refuse	5	3	5	5	2	1	-	2	-
Spring	Thursday	5/19/2005	Refuse	5	3	5	5	2	1	-	2	-
Spring	Thursday	5/19/2005	Paper	-	-	2	2	-	1	-	1	-
Spring	Friday	5/20/2005	Street Basket	-	-	-	-	-	-	-	-	5
Spring	Friday	5/20/2005	Street Basket	-	-	-	-	-	-	-	-	5
Spring	Friday	5/20/2005	Paper	-	1	-	1	1	-	-	-	-
Spring	Friday	5/20/2005	MGP	-	7	1	4	4	-	-	3	-
Spring	Friday	5/20/2005	Refuse	4	1	1	4	3	6	1	2	-
Spring	Friday	5/20/2005	Refuse	4	1	1	4	3	6	1	2	-
Spring	Saturday	5/21/2005	Refuse	4	2	2	3	3	1	2	1	-
Spring	Saturday	5/21/2005	Paper	-	1	1	1	4	2	-	-	-
Spring	Saturday	5/21/2005	MGP	-	4	-	4	3	2	-	-	-
Spring	Saturday	5/21/2005	Street Basket	-	-	-	-	-	-	-	-	2
Spring	Saturday	5/21/2005	Refuse	4	2	2	3	3	1	2	1	-
Spring	Monday	5/23/2005	MGP	-	10	3	-	4	4	-	-	-
Spring	Monday	5/23/2005	Paper	-	2	1	-	-	1	-	-	-
Spring	Monday	5/23/2005	Refuse	3	5	5	2	3	3	1	5	-
Spring	Monday	5/23/2005	Street Basket	-	-	-	-	-	-	-	-	4
Spring	Monday	5/23/2005	Refuse	3	5	5	2	3	3	1	5	-
Spring	Tuesday	5/24/2005	Street Basket	-	-	-	-	-	-	-	-	2
Spring	Tuesday	5/24/2005	MGP	9	-	2	-	2	3	6	-	-
Spring	Tuesday	5/24/2005	Refuse	3	3	1	4	4	4	7	4	-
Spring	Tuesday	5/24/2005	Paper	-	-	-	-	-	1	2	-	-
Spring	Tuesday	5/24/2005	Refuse	3	3	1	4	4	4	7	4	-
Spring	Wednesday	5/25/2005	Refuse	5	8	5	2	2	2	-	1	-
Spring	Wednesday	5/25/2005	Refuse	5	8	5	2	2	2	-	1	-
Spring	Wednesday	5/25/2005	Street Basket	-	.	-	-	-	-	-	-	4
Spring	Wednesday	5/25/2005	Paper	-	-	-	-	-	-	2	1	-
Spring	Wednesday	5/25/2005	MGP	3	-	4	-	2	2	4	6	-
Spring	Thursday	5/26/2005	Paper	2	-	-	1	-	-	-	-	-
Spring	Thursday	5/26/2005	Refuse	4	5	3	-	2	2	8	3	-
Spring	Thursday	5/26/2005	Refuse	4	5	3	-	2	2	8	3	,
Spring	Thursday	5/26/2005	Street Basket	-	-	-	-	-	-	-	-	2
Spring	Thursday	5/26/2005	MGP	4	-	2	4	1	6	-	6	-
Summer	Monday	8/8/2005	Refuse	4	1	2	3	3	2	2	4	-
Summer	Monday	8/8/2005	Paper	-	2	1	-	1	1	1	3	-
Summer	Monday	8/8/2005	MGP	2	8	6	-	2	3	6	5	-

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Summer	Monday	8/8/2005	Refuse	4	1	2	3	3	2	2	4	-
Summer	Monday	8/8/2005	Street Basket	-	-	-	-	-	-	-	-	8
Summer	Monday	8/8/2005	Street Basket	-	-	-	-	-	-	-	-	8
Summer	Tuesday	8/9/2005	Refuse	6	4	3	2	2	5	3	1	-
Summer	Tuesday	8/9/2005	Street Basket	-	-	-	-	-	-	-	-	4
Summer	Tuesday	8/9/2005	Street Basket	-	-	-	-	-	-	-	-	4
Summer	Tuesday	8/9/2005	Paper	-	-	-	-	1	-	-	-	-
Summer	Tuesday	8/9/2005	MGP	-	-	2	-	2	1	3	2	-
Summer	Tuesday	8/9/2005	Refuse	6	4	3	2	2	5	3	1	-
Summer	Wednesday	8/10/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Wednesday	8/10/2005	Refuse	1	1	2	2	5	4	4	6	-
Summer	Wednesday	8/10/2005	Refuse	1	1	2	2	5	4	4	6	-
Summer	Wednesday	8/10/2005	MGP	1	-	2	-	2	1	1	5	-
Summer	Wednesday	8/10/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Wednesday	8/10/2005	Paper	-	-	-	-	1	-	-	1	-
Summer	Thursday	8/11/2005	Refuse	-	8	2	-	3	-	5	3	-
Summer	Thursday	8/11/2005	MGP	3	-	4	4	-	5	3	3	-
Summer	Thursday	8/11/2005	Paper	-	-	-	1	-	2	-	1	-
Summer	Thursday	8/11/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Thursday	8/11/2005	Refuse	-	8	2	-	3	-	5	3	-
Summer	Friday	8/12/2005	MGP	5	5	4	6	3	1	3	3	-
Summer	Friday	8/12/2005	Refuse	2	2	2	5	2	1	3	4	-
Summer	Friday	8/12/2005	Paper	1	2	1	1	1	-	1	1	-
Summer	Friday	8/12/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Friday	8/12/2005	Refuse	2	2	2	5	2	1	3	4	-
Summer	Saturday	8/13/2005	MGP	-	7	2	9	6	1	2	4	-
Summer	Saturday	8/13/2005	Street Basket	-	-	-	-	-	-	-	-	5
Summer	Saturday	8/13/2005	Refuse	3	2	3	4	3	2	-	3	-
Summer	Saturday	8/13/2005	Paper	1	1	3	1	1	-	1	-	-
Summer	Saturday	8/13/2005	Street Basket	-	-	-	-	-	-	-	-	5
Summer	Saturday	8/13/2005	Refuse	3	2	3	4	3	2	-	3	-
Summer	Monday	8/15/2005	Refuse	4	2	3	5	2	-	3	1	-
Summer	Monday	8/15/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Monday	8/15/2005	MGP	5	5	-	-	3	3	-	2	-
Summer	Monday	8/15/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Monday	8/15/2005	Refuse	4	2	3	5	2	-	3	1	-
Summer	Monday	8/15/2005	Paper	2	2	-	-	1	2	-	-	-
Summer	Tuesday	8/16/2005	Paper	2	-	1	-	-	2	2	-	-
Summer	Tuesday	8/16/2005	Refuse	5	3	3	1	2	2	2	3	-
Summer	Tuesday	8/16/2005	Street Basket	-	-	-	-	-	-	-	-	4
Summer	Tuesday	8/16/2005	MGP	2	-	-	-	2	4	3	2	-
Summer	Tuesday	8/16/2005	Refuse	5	3	3	1	2	2	2	3	-
Summer	Wednesday	8/17/2005	Street Basket	-	-	-	-	-	-	-	-	1

Table H-9
Samples Acquired by Day and by Strata (continued)

Season	Day of Week	Date	Stream	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Summer	Wednesday	8/17/2005	Refuse	3	3	6	4	3	4	2	6	-
Summer	Wednesday	8/17/2005	MGP	1	-	1	-	-	2	2	-	-
Summer	Wednesday	8/17/2005	Paper	-	-	-	-	-	1	1	-	-
Summer	Wednesday	8/17/2005	Refuse	3	3	6	4	3	4	2	6	-
Summer	Thursday	8/18/2005	MGP	3	-	2	4	-	2	3	2	-
Summer	Thursday	8/18/2005	Refuse	5	5	3	5	3	4	2	5	-
Summer	Thursday	8/18/2005	Refuse	5	5	3	5	3	4	2	5	-
Summer	Thursday	8/18/2005	Paper	2	-	-	4	-	1	1	-	-
Summer	Thursday	8/18/2005	Street Basket	-	-	-	-	-	-	-	-	6
Summer	Friday	8/19/2005	Paper	1	2	-	-	1	-	1	3	-
Summer	Friday	8/19/2005	Refuse	2	1	3	2	2	4	5	3	-
Summer	Friday	8/19/2005	Street Basket	-	-	-	-	-	-	-	-	3
Summer	Friday	8/19/2005	Refuse	2	1	3	2	2	4	5	3	-
Summer	Friday	8/19/2005	Street Basket	-	-	-	-	-	-	-	-	3
Summer	Friday	8/19/2005	MGP	5	3	2	7	3	-	4	4	-
Summer	Saturday	8/20/2005	Refuse	1	5	6	6	6	3	3	-	-
Summer	Saturday	8/20/2005	Refuse	1	5	6	6	6	3	3	-	-
Summer	Saturday	8/20/2005	Paper	1	-	2	1	1	-	-	-	-
Summer	Saturday	8/20/2005	MGP	3	5	2	6	6	3	2	2	-
Summer	Saturday	8/20/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Monday	8/22/2005	Street Basket	-	-	-	-	-	-	-	-	6
Summer	Monday	8/22/2005	Refuse	4	4	3	2	3	5	5	3	-
Summer	Monday	8/22/2005	Street Basket	-	-	-	-	-	-	-	-	6
Summer	Monday	8/22/2005	Refuse	4	4	3	2	3	5	5	3	-
Summer	Monday	8/22/2005	MGP	6	7	2	-	5	4	3	3	-
Summer	Monday	8/22/2005	Paper	-	1	2	-	1	1	2	1	-
Summer	Tuesday	8/23/2005	Paper	-	-	-	-	1	-	-	-	-
Summer	Tuesday	8/23/2005	Refuse	6	3	2	4	6	6	4	6	-
Summer	Tuesday	8/23/2005	MGP	2	-	5	-	4	6	2	2	-
Summer	Tuesday	8/23/2005	Refuse	6	3	2	4	6	6	4	6	-
Summer	Wednesday	8/24/2005	Street Basket	-	-	-	-	-	-	-	-	2
Summer	Wednesday	8/24/2005	Refuse	3	4	1	2	4	5	3	1	-
Summer	Wednesday	8/24/2005	MGP	-	-	4	-	2	1	1	1	-
Summer	Wednesday	8/24/2005	Refuse	3	4	1	2	4	5	3	1	-
Summer	Thursday	8/25/2005	Refuse	1	2	6	3	1	3	4	1	-
Summer	Thursday	8/25/2005	Street Basket	-	-	-	-	-	-	-	-	1
Summer	Thursday	8/25/2005	Refuse	1	2	6	3	1	3	4	1	-
Summer	Thursday	8/25/2005	Paper	-	-	-	2	-	-	-	-	-
Summer	Thursday	8/25/2005	MGP	2	-	2	4	-	3	2	-	-

(1) Street Basket samples were not stratafied

Table H-10
Samples by Facility, by Day and by Strata

Delivery Location	Day of Week	Date	Stream	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Harlem River Yard	Saturday	5/15/2004	Refuse	-	-	-	-	-	-	-	-	19
Harlem River Yard	Tuesday	5/18/2004	Refuse	-	-	-	-	-	-	-	-	13
Harlem River Yard	Wednesday	5/19/2004	Refuse	-	-	-	-	-	-	-	-	16
Harlem River Yard	Thursday	5/20/2004	Refuse	-	-	-	-	-	-	-	-	8
Harlem River Yard	Friday	5/21/2004	Refuse	-	-	-	-	-	-	-	-	10
Harlem River Yard	Saturday	5/22/2004	Refuse	-	-	-	-	-	-	-	-	14
Harlem River Yard	Monday	5/24/2004	Refuse	-	-	-	-	-	-	-	-	9
Harlem River Yard	Tuesday	5/25/2004	Refuse	-	-	-	-	-	-	-	-	21
Harlem River Yard	Wednesday	5/26/2004	Refuse	-	-	-	-	-	-	-	-	9
Harlem River Yard	Thursday	5/27/12004	Refuse	-	-	-	-	-	-	-	-	1
Harlem River Yard	Monday	10/18/2004	Refuse	2	7	2	-	3	-	-	-	-
Harlem River Yard	Monday	10/18/2004	Street Basket	-	-	-	-	-	-	-	-	5
Harlem River Yard	Tuesday	10/19/2004	Refuse	1	3	7	-	4	-	3	6	-
Harlem River Yard	Tuesday	10/19/2004	Street Basket	-	-	-	-	-	-	-	-	4
Harlem River Yard	Wednesday	10/20/2004	Refuse	2	4	3	-	7	-	3	-	-
Harlem River Yard	Wednesday	10/20/2004	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Thursday	10/21/2004	Refuse	3	3	2	-	3	-	2	-	-
Harlem River Yard	Thursday	10/21/2004	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Friday	10/22/2004	Refuse	-	2	-	-	1	-	2	3	-
Harlem River Yard	Friday	10/22/2004	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Saturday	10/23/2004	Refuse	5	2	3	-	2	-	-	-	-
Harlem River Yard	Saturday	10/23/2004	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Monday	10/25/2004	Refuse	4	6	2	-	1	-	1	-	-
Harlem River Yard	Monday	10/25/2004	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Tuesday	10/26/2004	Refuse	3	3	4	-	3	-	-	4	-
Harlem River Yard	Tuesday	10/26/2004	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Wednesday	10/27/2004	Refuse	7	1	1	-	6	-	2	-	-
Harlem River Yard	Wednesday	10/27/2004	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Thursday	10/28/2004	Refuse	2	-	3	-	1	-	1	-	-
Harlem River Yard	Thursday	10/28/2004	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Friday	10/29/2004	Refuse	2	2	1	-	4	-	-	6	-
Harlem River Yard	Friday	10/29/2004	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Saturday	10/30/2004	Refuse	2	-	3	-	1	-	1	-	-
Harlem River Yard	Saturday	10/30/2004	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Monday	11/1/2004	Refuse	1	4	5	-	1	-	3	-	-
Harlem River Yard	Monday	11/1/2004	Street Basket	-	-	-	-	-	-	-	-	4
Harlem River Yard	Wednesday	11/3/2004	Refuse	4	4	2	-	6	-	1	2	-
Harlem River Yard	Wednesday	11/3/2004	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Thursday	11/4/2004	Refuse	6	6	6	-	1	-	3	-	-
Harlem River Yard	Thursday	11/4/2004	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Friday	11/5/2004	Refuse	3	2	2	-	3	-	2	7	-
Harlem River Yard	Friday	11/5/2004	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Saturday	11/6/2004	Refuse	3	1	4	-	3	-	2	-	-
Harlem River Yard	Tuesday	3/8/2005	Refuse	5	4	3	-	2	-	1	7	-
Harlem River Yard	Tuesday	3/8/2005	Street Basket	-	-	-	-	-	-	-	-	4
Harlem River Yard	Wednesday	3/9/2005	Refuse	5	1	3	-	6	-	2	-	-
Harlem River Yard	Wednesday	3/9/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Thursday	3/10/2005	Refuse	2	5	7	-	3	-	3	-	-

Table H-10
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Density/ High Income	High Densityl Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Density	No Strata ${ }^{\text {(1) }}$
Harlem River Yard	Thursday	3/10/2005	Street Basket	-	-	-	-		-			6
Harlem River Yard	Friday	3/11/2005	Refuse	3	2	1	-	3	-	-	7	-
Harlem River Yard	Friday	3/1112005	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Saturday	3/1212005	Refuse	3	-	2	-	2	-	1	-	-
Harlem River Yard	Saturday	3/12/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Monday	3/14/2005	Refuse	1	4	2	-	3	-	2	-	-
Harlem River Yard	Monday	3/14/2005	Street Basket	-	-	-	-	-	-	-	-	8
Harlem River Yard	Tuesday	3/15/2005	Refuse	1	4	4	-	4	-	5	5	-
Harlem River Yard	Tuessay	3/15/2005	MGP	-	-	2	-	1	1	4	-	-
Harlem River Yard	Tuesday	3/15/2005	Street Basket	-	-	-	-	-	-	-	-	4
Harlem River Yard	Wednesday	3/16/2005	Refuse	5	2	3	-	2	-	-	-	-
Harlem River Yard	Wednesday	3/16/2005	Street Basket	-	.	-	-	-	-	-	-	1
Harlem River Yard	Thursday	3/17/12005	Refuse	4	4	3	-	6	-	1	-	-
Harlem River Yard	Thursday	3/17/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Friday	3/18/2005	Refuse	1	1	-	-	1	-	2	8	-
Harlem River Yard	Friday	3/18/2005	Street Basket	-	-	\cdot	-	-	-	-	-	2
Harlem River Yard	Saturday	3/19/2005	Refuse	2	2	3	-	3	-	2	-	-
Harlem River Yard	Saturday	3/19/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Monday	3/21/2005	Refuse	6	3	5	-	3	-	4	-	-
Harlem River Yard	Monday	3/21/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Tuesday	3/22/2005	Refuse	3	1	2	-	4	-	2	3	-
Harlem River Yard	Tuesday	3/22/2005	Street Basket	-	-	-	-	-	-		-	1
Harlem River Yard	Wednesday	3/23/2005	Refuse	3	3	-	-	2	-	3	-	-
Harlem River Yard	Wednesday	3/23/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Thursday	3/24/2005	Refuse	3	5	3	-	2	-	-	-	-
Harlem River Yard	Thursday	3/24/2005	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Friday	3/25/2005	Refuse	3	1	1	-	1	-	1	3	-
Harlem River Yard	Friday	3/25/2005	Street Basket	-	-	-	-	.	-	-	-	3
Harlem River Yard	Saturday	3/26/2005	Refuse	2	4	7	-	3	-	-	-	-
Harlem River Yard	Monday	3/28/2005	Refuse	1	4	2	-	1	-	1	-	-
Harlem River Yard	Monday	59912005	Refuse	3	2	3	-	1	-	1	2	-
Harlem River Yard	Tuesday	5/10/2005	Refuse	5	2	6	-	5	-	1	3	-
Harlem River Yard	Tuesday	5/10/2005	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Wednesday	5/11/2005	Refuse	1	4	1	-	1	-	3	-	-
Harlem River Yard	Wednesday	5/11/2005	Street Basket	-	-	-	-	-	-	-	-	6
Harlem River Yard	Thursday	5/12/2005	Refuse	-	3	1	-	6	-	3	1	-
Harlem River Yard	Thursday	5/12/2005	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Friday	5/13/2005	Refuse	1	4	3	-	6	-	3	1	-
Harlem River Yard	Friday	5/13/2005	Street Basket	-	-		-	-	-	-	-	4
Harlem River Yard	Saturday	5/14/2005	Refuse	-	2	4	-	5	-	6	3	-
Harlem River Yard	Saturday	5/14/2005	Street Basket	-	.	,	-	-	-	-	.	4
Harlem River Yard	Monday	5/16/2005	Refuse	4		2	-	4	-	2	-	-
Harlem River Yard	Monday	5/16/2005	Street Basket	-	-	-	-	-	-	-	-	6
Harlem River Yard	Tuesday	5/17/12005	Refuse	5	3	5	-	1	-	1	-	-
Harlem River Yard	Tuesday	5/17/12005	MGP	1	-	-	-	-	-	-	-	-
Harlem River Yard	Tuessay	5/17/12005	Street Basket	-	.	-	-	-	-	-	-	2
Harlem River Yard	Wednesday	5/18/2005	Refuse	3	3	3	-	3	-	-	-	-
Harlem River Yard	Wednesday	5/18/2005	Street Basket	.	-	.	-	-	-	-	-	3

Table $\mathrm{H}-10$
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Density/ Medium Density	No Strata ${ }^{\text {(1) }}$
Harlem River Yard	Thursday	5/1912005	Refuse	5	3	5	-	2	-	-	1	
Harlem River Yard	Friday	5/20/2005	Refuse	4	1	1	-	3	-	1	1	-
Harlem River Yard	Friday	5/20/2005	Street Basket	-	.	-	-	-	-	-	-	4
Harlem River Yard	Saturday	5/21/2005	Refuse	4	2	2	-	3	-	2	1	-
Harlem River Yard	Saturday	5/21/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Monday	5/23/2005	Refuse	3	5	5	-	3	-	-	3	-
Harlem River Yard	Monday	5/23/2005	Street Basket	-	-	-	-	-	-	-	-	4
Harlem River Yard	Tuessay	5/24/2005	Refuse	3	3	1	-	4	-	2	2	
Harlem River Yard	Tuesday	5/24/2005	Street Basket	-	-	-	.	-	\cdot	-	-	2
Harlem River Yard	Wednesday	5/25/2005	Refuse	5	8	5	-	2	-	-	1	-
Harlem River Yard	Wednesday	5/25/2005	Street Basket	-	-	-	-	-	-	-	-	4
Harlem River Yard	Thursday	5/26/2005	Refuse	4	5	3	-	2	-	3	1	-
Harlem River Yard	Thursday	5/26/2005	Street Basket	-			-	-	-	-	-	2
Harlem River Yard	Monday	88/2005	Refuse	4	1	2	-	3	-	1	3	,
Harlem River Yard	Monday	88/2005	Street Basket	-	-	-	-	-	-	-	-	7
Harlem River Yard	Tuesday	899/2005	Refuse	6	4	3	-	2	-	2	1	-
Harlem River Yard	Tuessay	899/2005	Street Basket	-	-		-	-	-	-	-	3
Harlem River Yard	Wednesday	81/0/2005	Refuse	1	1	2	-	5	-	1	1	-
Harlem River Yard	Wednesday	81/0/2005	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Thursday	8/11/2005	Refuse	-	8	2	.	3	-	4	2	-
Harlem River Yard	Thursday	8/11/2005	Street Basket	-	-	-	.	-	-	-	-	2
Harlem River Yard	Friday	81/12/2005	Refuse	2	2	2		2	-	1	1	
Harlem River Yard	Friday	81/212005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Saturday	81/13/2005	Refuse	3	2	3	.	3	-	-	-	-
Harlem River Yard	Saturday	81/13/2005	Street Basket	-	-	-	-	-	-	-	-	3
Harlem River Yard	Monday	8/15/2005	Refuse	4	2	3	-	2	-	1	-	-
Harlem River Yard	Monday	8/15/2005	Street Basket	-		-	-	-	-	-	-	1
Harlem River Yard	Tuesday	81/6/2005	Refuse	5	3	3	-	2	-	1	1	-
Harlem River Yard	Tuesday	81/6/2005	Street Basket	-			-	-	-	-	.	4
Harlem River Yard	Wednesday	8117/2005	Refuse	3	3	6	-	3	-	1	3	+
Harlem River Yard	Wednesday	8117/2005	Street Basket	-	-	-	-	-	-	-	-	1
Harlem River Yard	Thursday	81/8/2005	Refuse	5	5	3	-	3	-	1	2	-
Harlem River Yard	Thursday	81/8/2005	Street Basket	-		-	-	-	-	-	-	6
Harlem River Yard	Friday	8/19/2005	Refuse	2	1	3	-	2	-	3	2	-
Harlem River Yard	Friday	8/19/2005	Street Basket	-	-		-	-	-	-	-	2
Harlem River Yard	Saturday	8120/2005	Refuse	1	5	6	-	6	-	3	-	-
Harlem River Yard	Saturday	8120/2005	Street Basket	-	-	-	-	-	-	-	-	2
Harlem River Yard	Monday	8122/2005	Refuse	4	4	3	-	3	-	-	2	-
Harlem River Yard	Monday	8122/2005	Street Basket	-	-	-	-	-	-	-	-	5
Harlem River Yard	Tuesday	8/23/2005	Refuse	6	3	2	-	6	-	2	3	-
Harlem River Yard	Wednesday	8/24/2005	Refuse	3	4	1	-	4	-	1	1	-
Harlem River Yard	Wednesday	8/24/2005	Street Basket	-	-	-	-	-	-	-		2
Harlem River Yard	Thursday	8/25/2005	Refuse	1	2	6	-	1	-	3	-	-
Harlem River Yard	Thursday	8/25/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Monday	5/17/2004	Refuse	-	-	-	-	-	-	-	-	21
Varick Street	Tuesday	5/18/2004	Refuse	-	-	-	-	-	-	-	-	8
Varick Street	Wednesday	5/1912004	Refuse	-	-	-	-	-	-	-	-	5
Varick Street	Thursday	5/20/2004	Refuse	-	-	-	-	-	-	-	-	13

Table H-10
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Varick Street	Friday	5/21/2004	Refuse	-	-	-	-	-	-	-	-	10
Varick Street	Saturday	5/22/2004	Refuse	-	-	-	-	-	-	-	-	7
Varick Street	Monday	5/24/2004	Refuse	-	-	-	-	-	-	-	-	7
Varick Street	Wednesday	5/26/2004	Refuse	-	-	-	-	-	-	-	-	9
Varick Street	Monday	10/18/2004	Refuse	-	-	-	2	-	1	1	-	-
Varick Street	Tuesday	10/19/2004	Refuse	-	-	-	4	-	8	1	1	-
Varick Street	Tuesday	10/19/2004	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Wednesday	10/20/2004	Refuse	-	-	-	4	-	-	3	2	-
Varick Street	Thursday	10/21/2004	Refuse	-	-	-	2	-	4	3	-	-
Varick Street	Thursday	10/21/2004	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Friday	10/22/2004	Refuse	-	-	-	7	-	3	1	-	-
Varick Street	Saturday	10/23/2004	Refuse	-	-	-	2	-	2	2	2	-
Varick Street	Saturday	10/23/2004	Street Basket	-	-	-	-	-	-	-	-	2
Varick Street	Monday	10/25/2004	Refuse	-	-	-	4	-	4	1	-	-
Varick Street	Monday	10/25/2004	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Tuesday	10/26/2004	Refuse	-	-	-	1	-	4	-	1	-
Varick Street	Tuesday	10/26/2004	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Wednesday	10/27/2004	Refuse	-	-	-	2	-	-	1	8	-
Varick Street	Thursday	10/28/2004	Refuse	-	-	-	3	-	1	2	-	-
Varick Street	Friday	10/29/2004	Refuse	-	-	-	2	-	4	1	-	-
Varick Street	Friday	10/29/2004	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Saturday	10/30/2004	Refuse	-	-	-	4	-	8	1	4	-
Varick Street	Saturday	10/30/2004	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Monday	11/1/12004	Refuse	-	-	-	3	-	1	3	-	-
Varick Street	Monday	11/1/2004	Street Basket	-	-	-	-	-	-	-	-	2
Varick Street	Wednesday	11/3/2004	Refuse	-	-	-	2	-	2	2	1	-
Varick Street	Thursday	11/4/2004	Refuse	-	-	-	3	-	4	1	-	-
Varick Street	Friday	11/5/2004	Refuse	-	-	-	3	-	-	-	-	-
Varick Street	Saturday	11/6/2004	Refuse	-	-	-	2	-	4	1	2	-
Varick Street	Tuesday	3/8/2005	Refuse	-	-	-	5	-	-	4	1	-
Varick Street	Wednesday	3/9/2005	Refuse	-	-	-	4	-	5	2	4	-
Varick Street	Thursday	3/10/2005	Refuse	-	-	-	1	-	5	3	-	-
Varick Street	Friday	3/11/2005	Refuse	-	-	-	3	-	4	1	-	-
Varick Street	Friday	3/11/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Saturday	3/12/2005	Refuse	-	-	-	4	-	4	-	1	-
Varick Street	Monday	3/14/2005	Refuse	-	-	-	2	-	2	1	-	-
Varick Street	Tuesday	3/15/2005	Refuse	-	-	-	1	-	3	-	1	-
Varick Street	Wednesday	3/16/2005	Refuse	-	-	-	1	-	4	4	2	-
Varick Street	Thursday	3/17/2005	Refuse	-	-	-	7	-	-	-	-	-
Varick Street	Thursday	3/17/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Friday	3/18/2005	Refuse	-	-	-	4	-	3	1	-	-
Varick Street	Saturday	3/19/2005	Refuse	-	-	-	2	-	3	-	2	-
Varick Street	Monday	3/21/2005	Refuse	-	-	-	3	-	7	1	-	-
Varick Street	Tuesday	3/22/2005	Refuse	-	-	-	-	-	3	1	2	-
Varick Street	Tuesday	3/22/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Wednesday	3/23/2005	Refuse	-	-	-	3	-	2	-	2	-
Varick Street	Wednesday	3/23/2005	Street Basket	-	-	-	-	-	-	-	-	3
Varick Street	Thursday	3/24/2005	Refuse	-	-	-	3	-	2	1	-	-

Table $\mathrm{H}-10$
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Density	No Strata ${ }^{(1)}$
Varick Street	Friday	3/25/2005	Refuse	-	-	-	3	-	2	1	-	-
Varick Street	Saturday	3/26/2005	Refuse	-	-	-	3	-	-	1	2	-
Varick Street	Saturday	3/26/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Monday	3/28/2005	Refuse	-	-	-	2	-	2	1	-	-
Varick Street	Monday	5/9/2005	Refuse	-	-	-	3	-	2	1	1	-
Varick Street	Tuesday	5/10/2005	Refuse	-	-	-	1	-	3	1	4	-
Varick Street	Wednesday	5/11/2005	Refuse	-	-	-	5	-	4	1	3	-
Varick Street	Thursday	5/12/2005	Refuse	-	-	-	2	-	4	2	3	-
Varick Street	Friday	5/13/2005	Refuse	-	-	-	3	-	2	2	2	-
Varick Street	Friday	5/13/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Saturday	5/14/2005	Refuse	-	-	-	1	-	2	1	2	-
Varick Street	Monday	5/16/2005	Refuse	-	-	-	6	-	6	1	1	-
Varick Street	Tuesday	5/17/2005	Refuse	-	-	-	4	-	3	2	3	-
Varick Street	Wednesday	5/18/2005	Refuse	-	-	-	5	-	5	.	3	-
Varick Street	Wednesday	5/18/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Thursday	5/19/2005	Refuse	-	-	-	5	-	1	-	1	-
Varick Street	Friday	5/20/2005	Refuse	-	-	-	4	-	6	-	1	-
Varick Street	Friday	5/20/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Saturday	5/21/2005	Refuse	-	-	-	3	-	1	-	-	-
Varick Street	Monday	5/23/2005	Refuse	-	-	-	2	-	3	1	2	-
Varick Street	Tuesday	5/24/2005	Refuse	-	-	-	4	-	4	5	2	-
Varick Street	Wednesday	5/25/2005	Refuse	-	-	-	2	-	2	-	-	-
Varick Street	Thursday	5/26/2005	Refuse	-	-	-	-	-	2	5	2	-
Varick Street	Monday	88/82005	Refuse	-	-	-	3	-	2	1	1	-
Varick Street	Monday	88/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Tuesday	8/9/2005	Refuse	-	-	-	2	-	5	1	-	-
Varick Street	Tuesday	899/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Wednesday	8/10/2005	Refuse	-	-	-	2	-	4	3	5	-
Varick Street	Wednesday	8/10/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Thursday	8/11/2005	Refuse	-	-	-	-	-	-	1	1	-
Varick Street	Friday	8/12/2005	Refuse	-	-	-	5	-	1	2	3	-
Varick Street	Saturday	8/13/2005	Refuse	-	-	-	4	-	2	-	3	-
Varick Street	Saturday	8/13/2005	Street Basket	-	-	-	-	-	-	-	-	2
Varick Street	Monday	8/15/2005	Refuse	-	-	-	5	-	-	2	1	-
Varick Street	Monday	8/15/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Tuesday	8/16/2005	Refuse	-	-	-	1	-	2	1	2	-
Varick Street	Wednesday	8/17/2005	Refuse	-	-	-	4	-	4	1	3	-
Varick Street	Thursday	8/18/2005	Refuse	-	-	-	5	-	4	1	3	-
Varick Street	Friday	8/19/2005	Refuse	-	-	-	2	-	4	2	1	-
Varick Street	Friday	8/19/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Saturday	8/20/2005	Refuse	-	-	-	6	-	3	-	-	-
Varick Street	Monday	8/22/2005	Refuse	-	-	-	2	-	5	5	1	-
Varick Street	Monday	8/22/2005	Street Basket	-	-	-	-	-	-	-	-	1
Varick Street	Tuesday	8/23/2005	Refuse	-	-	-	4	-	6	2	3	-
Varick Street	Wednesday	8/24/2005	Refuse	-	-	-	2	-	5	2	-	-
Varick Street	Thursday	8/25/2005	Refuse	-	-	-	3	-	3	1	1	-
Shepherd Avenue (Metropolitan Paper)	Monday	6/7/2004	Paper	-	-	-	-	-	-	-	-	16
Shepherd Avenue (Metropolitan Paper)	Tuesday	6/8/2004	Paper	-	-	-	-	-	-	-	-	17

Table H-10
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Density	No Strata ${ }^{\text {(1) }}$
Shepherd Avenue (Metropolitan Paper)	Wednesday	61912004	Paper	-	-	-	-					17
Shepherd Avenue (Metropolitan Paper)	Thursday	6/10/2004	Paper	-	-	-	-	-	-	-	-	15
Shepherd Avenue (Metropolitan Paper)	Friday	6/1112004	Paper	-	-	-	-	-	-	-	-	17
Shepherd Avenue (Metropolitan Paper)	Saturday	6/12/2004	Paper	-	-	-	-	-	-	-	-	17
Shepherd Avenue (Metropolitan Paper)	Monday	10188/2004	Paper		2	-	-	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	10/19/2004	Paper	1	-	-	-	-	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Wednessay	10120/2004	Paper	,	-	-	-	-	1	-	-	-
Shepherd Avenue (Metropolitan Paper)	Thursday	10/21/2004	Paper	1	-	-	2	1	3	-	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	10122/2004	Paper	-		1	2	3	-	-	2	-
Shepherd Avenue (Metropolitan Paper)	Saturday	10123/2004	Paper	-	2	1	1	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	10/25/2004	Paper	1	1	-	-	-	2	-	-	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	10/26/2004	Paper	-	-	2	-	-	1	-	-	-
Shepherd Avenue (Metropolitan Paper)	Wednessay	10/27/2004	Paper	-	-	-	-	2	-	-	4	-
Shepherd Avenue (Metropolitan Paper)	Thursday	10128/2004	Paper	-	-	1	1	-	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	10/292/2004	Paper	1	-	-	-	-	-	2	2	-
Shepherd Avenue (Metropolitan Paper)	Saturday	10130/2004	Paper	-	2	2	1	1	-	2	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	111/12004	Paper	1	2	-	-	-	2	-	-	-
Shepherd Avenue (Metropolitan Paper)	Wednessay	11/3/2004	Paper	-	.	2	-	-	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Thursday	11/4/2004	Paper	\cdot	-	-	-	-	-	2	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	11/5/2004	Paper	1	-	-	-	1	-	1	2	-
Shepherd Avenue (Metropolitan Paper)	Saturday	11/6/2004	Paper		-	1	3	-	1	-	-	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	3182005	Paper	-	-	.	-	1	1	1	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	3992005	Paper	-	-	-	-	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Thursday	3/10/2005	Paper	1	-	-	1	-	2	2	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	3/11/2005	Paper		-	2	-	-	1	-	3	-
Shepherd Avenue (Metropolitan Paper)	Saturday	3/12/2005	Paper	1	3	2	3	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	3/14/2005	Paper	-	1	.	-	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	3/15/2005	Paper	1	-	1	-	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	3/16/2005	Paper	-	-	-	-	-	-	-	1	-
Shepherd Avenue (Metropolitan Paper)	Thursday	3/17/2005	Paper	1	-	-	-	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	3/18/2005	Paper	-	2	2	1	-	1	1	3	-
Shepherd Avenue (Metropolitan Paper)	Saturday	3/19/2005	Paper	1	2	1	3	1	1	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	3/21/2005	Paper	1	-	-	-	1	1	-	-	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	3/22/2005	Paper	-	-	1	-	-	1	1	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	3/23/2005	Paper	1	.	-	-	-	-	-	1	-
Shepherd Avenue (Metropolitan Paper)	Thursday	3/24/2005	Paper	1	-	2	1	-	2	-	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	3/25/2005	Paper	-	1	-	1	1	1	1		-
Shepherd Avenue (Metropolitan Paper)	Saturday	3/26/2005	Paper	1	-	-	-	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	3/28/2005	Paper	.	1	-	-	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	519/2005	Paper	-	3	-	-	1	-	-	2	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	5/10/2005	Paper	2	-	-	-	-	1	1	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	5/11/2005	Paper	1	-	-	-	-	-	2	1	-
Shepherd Avenue (Metropolitan Paper)	Thursday	5/12/2005	Paper	3	-	1	1	-	1	-	1	-
Shepherd Avenue (Metropolitan Paper)	Friday	5/13/2005	Paper	-	1	-	1	-	-	-		-
Shepherd Avenue (Metropolitan Paper)	Saturday	5/14/2005	Paper	-	-	1	3	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	5/16/2005	Paper		,	2	-	2	2	-	1	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	5/17/2005	Paper	2		-	-	1	1		-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	5/18/2005	Paper	-	-	2	-	-	-	2	-	-

Table H-10
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Density/ High Income	High Densityl Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Densityl Medium Density	No Strata ${ }^{(1)}$
Shepherd Avenue (Metropolitan Paper)	Thursday	5/19/2005	Paper	-	-	2	2	-	1	-	1	
Shepherd Avenue (Metropolitan Paper)	Friday	5/20/2005	Paper	-	1	-	1		-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Saturday	5/21/2005	Paper	-	1	1	1	4	2	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	5/23/2005	Paper	-	2	1	-	-	1	-	-	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	5/24/2005	Paper	-	-	-	-	-	1	2	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	5/25/2005	Paper	-	-	-	-	-	-	2	1	-
Shepherd Avenue (Metropolitan Paper)	Thursday	5/26/2005	Paper	2	-	-	1	-	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	8/8/2005	Paper	-	2	1	-	1	1	1	3	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	8/9/2005	Paper	-	-	-	-	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	8/10/2005	Paper	-	-	-	-	1	-	-	1	-
Shepherd Avenue (Metropolitan Paper)	Thursday	8/11/2005	Paper	-	-	-	1	-	2	-	1	-
Shepherd Avenue (Metropolitan Paper)	Friday	8/12/2005	Paper	1	2	1	1	1	-	1	1	-
Shepherd Avenue (Metropolitan Paper)	Saturday	8/13/2005	Paper	1	1	3	1	1	-	1	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	8/15/2005	Paper	2	2	-	-	1	2	-	-	.
Shepherd Avenue (Metropolitan Paper)	Tuesday	8/16/2005	Paper	2	-	1	-	-	2	2	-	-
Shepherd Avenue (Metropolitan Paper)	Wednesday	8/17/2005	Paper	-	-	-	-	-	1	1	-	-
Shepherd Avenue (Metropolitan Paper)	Thursday	8/18/2005	Paper	2	-	-	4	-	1	1	-	-
Shepherd Avenue (Metropolitan Paper)	Friday	8/19/2005	Paper	1	2	-	-	1	-	1	3	-
Shepherd Avenue (Metropolitan Paper)	Saturday	8/20/2005	Paper	1	-	2	1	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Monday	8/22/2005	Paper	-	1	2	-	1	1	2	1	-
Shepherd Avenue (Metropolitan Paper)	Tuesday	8/23/2005	Paper	-	-	-	-	1	-	-	-	-
Shepherd Avenue (Metropolitan Paper)	Thursday	8/25/2005	Paper	-	-	-	2	-	-	-	-	-
Hugo Neu	Monday	6/7/2004	MGP	-	-	-	-	-	-	-	-	17
Hugo Neu	Tuesday	6/8/2004	MGP	-	-	-	-	-	-	-	-	20
Hugo Neu	Wednesday	6/9/2004	MGP	-	-	-	-	-	-	-	-	16
Hugo Neu	Thursday	6/10/2004	MGP	-	-	-	-	-	-	-	-	17
Hugo Neu	Friday	6/11/2004	MGP	-	-	-	-	-	-	-	-	17
Hugo Neu	Saturday	6/12/2004	MGP	-	-	-	-	-	-	-	-	17
Hugo Neu	Monday	10/18/2004	MGP	6	1	-	-	2	5	2	-	-
Hugo Neu	Tuesday	10/19/2004	MGP	-	-	4	-	2	-	1	-	-
Hugo Neu	Wednesday	10/20/2004	MGP	-	-	3	-	1	2	4	5	-
Hugo Neu	Thursday	10/21/2004	MGP	3	-	2	4	4	3	2	-	-
Hugo Neu	Friday	10/22/2004	MGP	3	1	3	3	2	-	2	7	-
Hugo Neu	Saturday	10/23/2004	MGP	2	3	4	4	5	2	3	-	-
Hugo Neu	Monday	10/25/2004	MGP	5	3	2	-	3	3	2	-	-
Hugo Neu	Tuesday	10/26/2004	MGP	1	-	5	-	2	2	1	-	-
Hugo Neu	Wednesday	10/27/2004	MGP	1	-	2	-	2	2	3	4	-
Hugo Neu	Thursday	10/28/2004	MGP	3	-	5	7	1	3	2	-	-
Hugo Neu	Friday	10/29/2004	MGP	2	5	2	6	4	1	3	13	-
Hugo Neu	Saturday	10/30/2004	MGP	3	8	-	5	6	3	2	-	-
Hugo Neu	Monday	11/1/2004	MGP	2	11	-	-	1	4	-	-	-
Hugo Neu	Wednesday	11/3/2004	MGP	-	-	4	-	-	-	5	-	-
Hugo Neu	Thursday	11/4/2004	MGP	2	-	3	2	-	6	3	-	-
Hugo Neu	Friday	11/5/2004	MGP	5	1	-	6	2	1	2	11	-
Hugo Neu	Saturday	11/6/2004	MGP	2	7	1	3	3	3	3	-	-
Hugo Neu	Tuesday	3/8/2005	MGP	2	-	3	-	2	2	4	-	-
Hugo Neu	Wednesday	3/9/2005	MGP	1		-		2	-	4	4	-
Hugo Neu	Thursday	3/10/2005	MGP	4	-	6	5	1	6	5	-	-

Table H-10
Samples by Facility, by Day and by Strata (continued)

Delivery Location	Day of Week	Date	Stream	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Densityl Medium Density	No Strata ${ }^{(1)}$
Hugo Neu	Friday	3/11/2005	MGP	-	2	1	5	3	-	1	12	-
Hugo Neu	Saturday	3/12/2005	MGP	3	10	6	5	5	2	-	-	-
Hugo Neu	Monday	3/14/2005	MGP	6	4	-	-	2	4	2	-	-
Hugo Neu	Tuesday	3/15/2005	MGP	-	-	-	-	-	-	1	-	-
Hugo Neu	Wednesday	3/16/2005	MGP	1	-	2	-	1	5	-	3	-
Hugo Neu	Thursday	3/17/2005	MGP	3	-	9	5	2	3	6	-	-
Hugo Neu	Friday	3/18/2005	MGP	4	6	-	7	4	3	2	13	-
Hugo Neu	Saturday	3/19/2005	MGP	5	7	2	4	7	2	1	-	-
Hugo Neu	Monday	3/21/2005	MGP	3	3	1		1	2	1	-	.
Hugo Neu	Tuesday	3/22/2005	MGP	1	-	1	-	-	1	2	-	-
Hugo Neu	Wednesday	3/23/2005	MGP	1	-	5	-	-	-	2	6	-
Hugo Neu	Thursday	3/24/2005	MGP	3	-	2	3	1	3	2	-	-
Hugo Neu	Friday	3/25/2005	MGP	3	4	2	4	2	3	2	5	-
Hugo Neu	Saturday	3/26/2005	MGP	1	2	2	3	6	1	2	-	-
Hugo Neu	Monday	3/28/2005	MGP	1	3	-	-	2	4	4	-	-
Hugo Neu	Monday	5/9/2005	MGP	-	7	5	-	2	4	-	4	-
Hugo Neu	Tuesday	5/10/2005	MGP	5	-	5	-	3	2	4	2	-
Hugo Neu	Wednesday	5/11/2005	MGP	2	-	3	-	2	.	11	2	-
Hugo Neu	Thursday	5/12/2005	MGP	4	-	3	5	1	3	-	4	-
Hugo Neu	Friday	5/13/2005	MGP	-	5	-	6	5	1	-	6	-
Hugo Neu	Saturday	5/14/2005	MGP	-	-	4	8	7		-	-	-
Hugo Neu	Monday	5/16/2005	MGP	-	7	2	-	3	6	-	1	-
Hugo Neu	Tuesday	5/17/2005	MGP	5	\%	2	-	1	3	4	2	-
Hugo Neu	Wednesday	5/18/2005	MGP	5	-	2	-	-	-	11	1	-
Hugo Neu	Thursday	5/19/2005	MGP	2	-	2	9	-	4	-	3	-
Hugo Neu	Friday	5/20/2005	MGP	-	7	1	4	4	-	-	3	-
Hugo Neu	Saturday	5/21/2005	MGP	-	4	-	4	3	2	-	-	-
Hugo Neu	Monday	5/23/2005	MGP	-	10	3	-	4	4	-	-	-
Hugo Neu	Tuesday	5/24/2005	MGP	9	-	2	-	2	3	6	-	-
Hugo Neu	Wednesday	5/25/2005	MGP	3	-	4	-	2	2	4	6	-
Hugo Neu	Thursday	5/26/2005	MGP	4	-	2	4	1	6	-	6	-
Hugo Neu	Monday	8/8/2005	MGP	2	8	6	-	2	3	6	5	-
Hugo Neu	Tuesday	8/9/2005	MGP	-	-	2	-	2	1	3	2	-
Hugo Neu	Wednesday	8/10/2005	MGP	1	-	2		2	1	1	5	-
Hugo Neu	Thursday	8/11/2005	MGP	3	-	4	4	-	5	3	3	-
Hugo Neu	Friday	8/12/2005	MGP	5	5	4	6	3	1	3	3	-
Hugo Neu	Saturday	8/13/2005	MGP	-	7	2	9	6	1	2	4	-
Hugo Neu	Monday	8/15/2005	MGP	5	5	-	-	3	3	-	2	-
Hugo Neu	Tuesday	8/16/2005	MGP	2	-	-	-	2	4	3	2	-
Hugo Neu	Wednesday	8/17/2005	MGP	1	-	1		-	2	2	.	-
Hugo Neu	Thursday	8/18/2005	MGP	3	-	2	4	-	2	3	2	-
Hugo Neu	Friday	8/19/2005	MGP	5	3	2	7	3	,	4	4	-
Hugo Neu	Saturday	8/20/2005	MGP	3	5	2	6	6	3	2	2	-
Hugo Neu	Monday	8/22/2005	MGP	6	7	2	-	5	4	3	3	-
Hugo Neu	Tuesday	8/23/2005	MGP	2	-	5	-	4	6	2	2	-
Hugo Neu	Wednesday	8/24/2005	MGP	-		4	*	2	1	1	1	-
Hugo Neu	Thursday	8/25/2005	MGP	2	-	2	4	-	3	2	-	-

1) Street Basket samples were not stratafied

Table H -11
Sample Weights by Day and by Strata

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	Refuse	Manhattan	8	5	20040515-M85-1-25CN-823	5/15/2004	202.28	NA
PWCS	Refuse	Manhattan	7	2	20040515-M72-3-25CW-175	5/15/2004	287.6	NA
PWCS	Refuse	Manhattan	7	2	20040515-M72-1-25CU-128	5/15/2004	322.35	NA
PWCS	Refuse	Manhattan	6	2	20040515-M62-1-25CN-566	5/15/2004	237.26	NA
PWCS	Refuse	Manhattan	5	1	20040515-M51-1-25CF-161	5/15/2004	226	NA
PWCS	Refuse	Manhattan	8	3	20040515-M83-1-25CF-038	5/15/2004	270.5	NA
PWCS	Refuse	Manhattan	2	2	20040515-M22-2-25CF-258	5/15/2004	244.1	NA
PWCS	Refuse	Manhattan	10	1	20040515-M101-2-25CU-130	5/15/2004	270.95	NA
PWCS	Refuse	Manhattan	8	2	20040515-M82-4-25CW-162	5/15/2004	274.71	NA
PWCS	Refuse	Manhattan	8	3	20040515-M83-3-25CU-097	5/15/2004	302.05	NA
PWCS	Refuse	Manhattan	2	2	20040515-M22-1-25CW-143	5/15/2004	240.21	NA
PWCS	Refuse	Manhattan	9	3	20040515-M93-2-25CF-092	5/15/2004	291.23	NA
PWCS	Refuse	Manhattan	11	1	20040515-M111-4-25CN-052	5/15/2004	235.52	NA
PWCS	Refuse	Manhattan	12	2	20040515-M122-1-25CW-041	5/15/2004	276.15	NA
PWCS	Refuse	Manhattan	12	3	20040515-M123-1-25CU-166	5/15/2004	202.01	NA
PWCS	Refuse	Manhattan	12	4	20040515-M124-4-25CW-312	5/15/2004	258.92	NA
PWCS	Refuse	Manhattan	1	3	20040515-M13-1-25CW-542	5/15/2004	245.9	NA
PWCS	Refuse	Manhattan	8	5	20040515-M85-2-25CN-085	5/15/2004	318.35	NA
PWCS	Refuse	Manhattan	4	3	20040515-M43-1-25CW-169	5/15/2004	264.4	NA
PWCS	Refuse	Manhattan	7	3	20040519-M73-2-25CW-179	5/19/2004	219.07	NA
PWCS	Refuse	Manhattan	12	2	20040519-M122-2-25CU-080	5/19/2004	244.47	NA
PWCS	Refuse	Manhattan	8	2	20040519-M82-3-25CN-415	5/19/2004	220.84	NA
PWCS	Refuse	Manhattan	4	1	20040519-M41-1-25CN-485	5/19/2004	255.59	NA
PWCS	Refuse	Manhattan	7	3	20040519-M73-3-25CF-135	5/19/2004	204.02	NA
PWCS	Refuse	Manhattan	2	1	20040519-M21-2-25CU-317	5/19/2004	222.79	NA
PWCS	Refuse	Manhattan	8	1	20040519-M81-1-25CN-814	5/19/2004	285.51	NA
PWCS	Refuse	Manhattan	3	3	20040519-M33-1-25CW-167	5/19/2004	245.76	NA
PWCS	Refuse	Manhattan	9	1	20040519-M91-1-25CU-164	5/19/2004	208.15	NA
PWCS	Refuse	Manhattan	10	1	20040519-M101-1-25CW-098	5/19/2004	253.37	NA
PWCS	Refuse	Manhattan	11	3	20040519-M113-2-25CF-079	5/19/2004	224.26	NA
PWCS	Refuse	Manhattan	12	1	20040519-M121-4-25CU-211	5/19/2004	238.36	NA
PWCS	Refuse	Manhattan	3	4	20040519-M34-1-25CW-160	5/19/2004	215.89	NA
PWCS	Refuse	Manhattan	12	4	20040519-M124-1-25CF-281	5/19/2004	214.84	NA
PWCS	Refuse	Manhattan	7	4	20040519-M74-1-25CN-080	5/19/2004	224.01	NA
PWCS	Refuse	Manhattan	8	4	20040519-M84-2-25CN-519	5/19/2004	212.65	NA
PWCS	Refuse	Manhattan	2	2	20040527-M22-1-25CW-124	5/27/2004	212.75	NA
PWCS	Refuse	Bronx	9	4	20040518-BX94-3-25CU-025	5/18/2004	242.75	NA
PWCS	Refuse	Bronx	9	2	20040518-BX92-2-25CU-186	5/18/2004	249.66	NA
PWCS	Refuse	Bronx	9	2	20040518-BX92-1-25CU-298	5/18/2004	227.05	NA
PWCS	Refuse	Bronx	2	1	20040518-BX21-1-25CN-636	5/18/2004	291.33	NA
PWCS	Refuse	Bronx	4	3	20040518-BX43-2-25CW-05	5/18/2004	238.26	NA
PWCS	Refuse	Bronx	4	3	20040518-BX43-3-25CW-021	5/18/2004	188.16	NA
PWCS	Refuse	Bronx	6	1	20040518-BX61-3-25CU-193	5/18/2004	275.24	NA
PWCS	Refuse	Bronx	12	3	20040518-BX123-2-25CN-746	5/18/2004	207.47	NA
PWCS	Refuse	Bronx	5	3	20040518-BX53-2-25CW-012	5/18/2004	231.13	NA
PWCS	Refuse	Bronx	10	3	20040518-BX103-1-25CN-435	5/18/2004	265	NA
PWCS	Refuse	Bronx	11	2	20040518-BX112-3-25CU-291	5/18/2004	278.19	NA
PWCS	Refuse	Bronx	11	3	20040518-BX113-3-25CW-322	5/18/2004	243.47	NA
PWCS	Refuse	Bronx	11	3	20040518-BX113-2-25CU-314	5/18/2004	241.75	NA
PWCS	Refuse	Bronx	6	1	20040520-BX61-6-25CW-006	5/20/2004	287.67	NA
PWCS	Refuse	Bronx	12	5	20040520-BX125-2-25CW-139	5/20/2004	206.95	NA
PWCS	Refuse	Bronx	5	1	20040520-BX51-1-25CW-023	5/20/2004	210.22	NA
PWCS	Refuse	Bronx	1	2	20040520-BX12-2-25CN-725	5/20/2004	201.52	NA
PWCS	Refuse	Bronx	8	3	20040520-BX83-3-25CN-742	5/20/2004	236.08	NA
PWCS	Refuse	Bronx	7	2	20040520-BX72-2-25CW-325	5/20/2004	210.76	NA
PWCS	Refuse	Bronx	1	2	20040520-BX12-1-25CW-025	5/20/2004	245.5	NA
PWCS	Refuse	Bronx	6	1	20040520-BX61-3-25CU-193	5/20/2004	237.91	NA
PWCS	Refuse	Bronx	3	1	20040521-BX31-4-25CN-766	5/21/2004	235.07	NA
PWCS	Refuse	Bronx	10	2	20040521-BX102-2-25CW-056	5/21/2004	204.86	NA
PWCS	Refuse	Bronx	6	2	20040521-BX62-2-25CU-294	5/21/2004	266.37	NA

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	Refuse	Bronx	1	1	20040521-BX11-3-25CN-725	5/21/2004	215.98	NA
PWCS	Refuse	Bronx	5	2	20040521-BX52-1-25CW-030	5/21/2004	238.81	NA
PWCS	Refuse	Bronx	6	2	20040521-BX62-3-25CU-198	5/21/2004	225.91	NA
PWCS	Refuse	Bronx	8	2	20040521-BX82-1-25CN-771	5/21/2004	295.31	NA
PWCS	Refuse	Bronx	10	1	20040521-BX101-1-25CW-054	5/21/2004	221.91	NA
PWCS	Refuse	Bronx	8	3	20040521-BX83-3-25CN-742	5/21/2004	245.65	NA
PWCS	Refuse	Bronx	1	1	20040521-BX11-2-25CN-703	5/21/2004	307.75	NA
PWCS	Refuse	Brooklyn	17	2	20040517-BK172-1-25CN-523	5/17/2004	206.65	NA
PWCS	Refuse	Brooklyn	18	4	20040517-BK184-3-25CW-108	5/17/2004	235.07	NA
PWCS	Refuse	Brooklyn	3	4	20040517-BK34-1-25CN-649	5/17/2004	212.82	NA
PWCS	Refuse	Brooklyn	3	5	20040517-BK35-2-25CF-201	5/17/2004	273.25	NA
PWCS	Refuse	Brooklyn	4	1	20040517-BK41-2-25CN-509	5/17/2004	232.85	NA
PWCS	Refuse	Brooklyn	13	2	20040517-BK132-2-25CN-193	5/17/2004	219.65	NA
PWCS	Refuse	Brooklyn	5	1	20040517-BK51-1-25CN-309	5/17/2004	268.25	NA
PWCS	Refuse	Brooklyn	17	1	20040517-BK171-2-25CN-107	5/17/2004	208.61	NA
PWCS	Refuse	Brooklyn	12	2	20040517-BK122-4-25CN-466	5/17/2004	221.71	NA
PWCS	Refuse	Brooklyn	12	1	20040517-BK121-2-25CN-403	5/17/2004	213.83	NA
PWCS	Refuse	Brooklyn	11	3	20040517-BK113-3-25CU-011	5/17/2004	219.79	NA
PWCS	Refuse	Brooklyn	11	1	20040517-BK111-1-25CN-748	5/17/2004	245.25	NA
PWCS	Refuse	Brooklyn	9	1	20040517-BK91-1-25CW-074	5/17/2004	210.46	NA
PWCS	Refuse	Brooklyn	3	1	20040517-BK31-3-25CF-174	5/17/2004	209.97	NA
PWCS	Refuse	Brooklyn	2	2	20040517-BK22-1-25CN-712	5/17/2004	206.63	NA
PWCS	Refuse	Brooklyn	18	6	20040517-BK186-4-25CW-065	5/17/2004	225.6	NA
PWCS	Refuse	Brooklyn	1	2	20040517-BK12-3-25CW-193	5/17/2004	232.7	NA
PWCS	Refuse	Brooklyn	1	1	20040517-BK11-2-25CF-104	5/17/2004	269.05	NA
PWCS	Refuse	Brooklyn	5	4	20040517-BK54-5-25CF-270	5/17/2004	215.95	NA
PWCS	Refuse	Brooklyn	7	2	20040517-BK72-2-25CN-686	5/17/2004	255.23	NA
PWCS	Refuse	Brooklyn	3	1	20040517-BK31-4-25CW-017	5/17/2004	210.46	NA
PWCS	Refuse	Brooklyn	2	2	20040518-BK22-3-25CW-128	5/18/2004	204.91	NA
PWCS	Refuse	Brooklyn	4	1	20040518-BK41-1-25CN-439	5/18/2004	202.94	NA
PWCS	Refuse	Brooklyn	5	2	20040518-BK52-5-25CN-773	5/18/2004	228.26	NA
PWCS	Refuse	Brooklyn	8	1	20040518-BK81-5-25CN-714	5/18/2004	201.74	NA
PWCS	Refuse	Brooklyn	10	4	20040518-BK104-1-25CU-053	5/18/2004	216.52	NA
PWCS	Refuse	Brooklyn	10	4	20040518-BK104-2-25CU-048	5/18/2004	222.85	NA
PWCS	Refuse	Brooklyn	11	5	20040518-BK115-1-25CW-215	5/18/2004	218.29	NA
PWCS	Refuse	Brooklyn	2	1	20040518-BK21-2-25CW-087	5/18/2004	210.53	NA
PWCS	Refuse	Brooklyn	1	3	20040519-BK13-5-25CF-116	5/19/2004	232.12	NA
PWCS	Refuse	Brooklyn	6	1	20040519-BK61-1-25CF-114	5/19/2004	230.66	NA
PWCS	Refuse	Brooklyn	18	7	20040519-BK187-3-25CU-022	5/19/2004	207.81	NA
PWCS	Refuse	Brooklyn	10	2	20040519-BK102-1-25CU-010	5/19/2004	239.81	NA
PWCS	Refuse	Brooklyn	17	5	20040519-BK175-2-25CU-127	5/19/2004	217.9	NA
PWCS	Refuse	Brooklyn	14	3	20040520-BK143-3-25CF-248	5/20/2004	255.96	NA
PWCS	Refuse	Brooklyn	15	5	20040520-BK155-1-25CU-005	5/20/2004	199.67	NA
PWCS	Refuse	Brooklyn	17	5	20040520-BK175-1-25CU-121	5/20/2004	212.35	NA
PWCS	Refuse	Brooklyn	14	2	20040520-BK142-3-25CU-094	5/20/2004	235.16	NA
PWCS	Refuse	Brooklyn	14	4	20040520-BK144-1-25CN-590	5/20/2004	206.11	NA
PWCS	Refuse	Brooklyn	15	1	20040520-BK151-2-25CU-013	5/20/2004	243.73	NA
PWCS	Refuse	Brooklyn	18	1	20040520-BK181-2-25CW-050	5/20/2004	224.43	NA
PWCS	Refuse	Brooklyn	18	1	20040520-BK181-3-25CN-740	5/20/2004	257.17	NA
PWCS	Refuse	Brooklyn	18	4	20040520-BK184-1-25CW-048	5/20/2004	212.64	NA
PWCS	Refuse	Brooklyn	18	5	20040520-BK185-1-25CW-096	5/20/2004	237.5	NA
PWCS	Refuse	Brooklyn	18	6	20040520-BK186-4-25CW-035	5/20/2004	219.85	NA
PWCS	Refuse	Brooklyn	18	6	20040520-BK186-3-25CW-093	5/20/2004	220.4	NA
PWCS	Refuse	Brooklyn	17	3	20040520-BK173-1-25CN-589	5/20/2004	257.71	NA
PWCS	Refuse	Brooklyn	12	3	20040521-BK123-3-25CU-260	5/21/2004	214.4	NA
PWCS	Refuse	Brooklyn	9	1	20040521-BK91-2-25CU-055	5/21/2004	209.15	NA
PWCS	Refuse	Brooklyn	11	1	20040521-BK111-2-25CU-264	5/21/2004	234.25	NA
PWCS	Refuse	Brooklyn	16	2	20040521-BK162-4-25CW-053	5/21/2004	223.9	NA
PWCS	Refuse	Brooklyn	4	2	20040521-BK42-1-25CN-592	5/21/2004	250.61	NA
PWCS	Refuse	Brooklyn	9	2	20040521-BK92-3-25CW-057	5/21/2004	201.21	NA

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	Refuse	Brooklyn	2	3	20040521-BK23-2-25CW-069	5/21/2004	218.06	NA
PWCS	Refuse	Brooklyn	11	6	20040521-BK116-2-25CN-759	5/21/2004	270.36	NA
PWCS	Refuse	Brooklyn	12	4	20040521-BK124-3-25CW-001	5/21/2004	206.95	NA
PWCS	Refuse	Brooklyn	11	3	20040521-BK113-1-25CN-763	5/21/2004	208.1	NA
PWCS	Refuse	Brooklyn	1	2	20040524-BK12-3-25CW-193	5/24/2004	233.92	NA
PWCS	Refuse	Brooklyn	4	3	20040524-BK43-3-25CW-218	5/24/2004	217.72	NA
PWCS	Refuse	Brooklyn	1	4	20040524-BK14-2-25CW-144	5/24/2004	223.15	NA
PWCS	Refuse	Brooklyn	4	2	20040524-BK42-4-25NG-409	5/24/2004	207.29	NA
PWCS	Refuse	Brooklyn	5	2	20040524-BK52-4-25CW-156	5/24/2004	234.06	NA
PWCS	Refuse	Brooklyn	1	5	20040524-BK15-4-25CN-367	5/24/2004	195.4	NA
PWCS	Refuse	Brooklyn	5	1	20040524-BK51-1-25CF-156	5/24/2004	222.46	NA
PWCS	Refuse	Queens	13	8	20040522-Q138-3-25CW-508	5/22/2004	375.62	NA
PWCS	Refuse	Queens	13	2	20040522-Q132-4-25CN-233	5/22/2004	202.58	NA
PWCS	Refuse	Queens	2	2	20040522-Q22-2-25CU-208	5/22/2004	224.85	NA
PWCS	Refuse	Queens	7	2	20040522-Q72-1-25CW-527	5/22/2004	260.46	NA
PWCS	Refuse	Queens	8	4	20040522-Q84-2-25CU-133	5/22/2004	267.45	NA
PWCS	Refuse	Queens	10	2	20040522-Q102-1-25CW-526	5/22/2004	215.68	NA
PWCS	Refuse	Queens	13	6	20040522-Q136-2-25CW-517	5/22/2004	224.37	NA
PWCS	Refuse	Queens	14	1	20040522-Q141-4-25CN-124	5/22/2004	205.45	NA
PWCS	Refuse	Queens	14	3	20040522-Q143-2-25CU-304	5/22/2004	266.34	NA
PWCS	Refuse	Queens	14	3	20040522-Q143-3-25CU-303	5/22/2004	207.1	NA
PWCS	Refuse	Queens	12	2	20040522-Q122-3-25CN-121	5/22/2004	256.69	NA
PWCS	Refuse	Queens	8	2	20040522-Q82-5-25CN-117	5/22/2004	242.91	NA
PWCS	Refuse	Queens	13	2	20040522-Q132-2-25CU-209	5/22/2004	246.74	NA
PWCS	Refuse	Queens	6	2	20040522-Q62-3-25CF-055	5/22/2004	208.51	NA
PWCS	Refuse	Queens	13	6	20040524-Q136-3-25CW-508	5/24/2004	199.2	NA
PWCS	Refuse	Queens	13	2	20040524-Q132-1-25CN-371	5/24/2004	247.1	NA
PWCS	Refuse	Queens	11	6	20040524-Q116-2-25CN-194	5/24/2004	284.95	NA
PWCS	Refuse	Queens	10	3	20040524-Q103-5-25CW-563	5/24/2004	190.1	NA
PWCS	Refuse	Queens	10	3	20040524-Q103-1-25CU-272	5/24/2004	239.5	NA
PWCS	Refuse	Queens	5	5	20040524-Q55-1-25CF-027	5/24/2004	232.38	NA
PWCS	Refuse	Queens	1	4	20040524-Q14-1-25CF-010	5/24/2004	222.46	NA
PWCS	Refuse	Queens	12	6	20040524-Q126-1-25CN-137	5/24/2004	240.06	NA
PWCS	Refuse	Queens	12	4	20040524-Q124-3-25CW-554	5/24/2004	206.8	NA
PWCS	Refuse	Queens	4	1	20040525-Q41-3-25CN-326	5/25/2004	215.93	NA
PWCS	Refuse	Queens	4	1	20040525-Q41-2-25CF-024	5/25/2004	235.44	NA
PWCS	Refuse	Queens	3	1	20040525-Q31-7-25CN-318	5/25/2004	269.31	NA
PWCS	Refuse	Queens	2	1	20040525-Q21-3-25CU-231	5/25/2004	219.97	NA
PWCS	Refuse	Queens	1	3	20040525-Q13-4-25CN-243	5/25/2004	225.31	NA
PWCS	Refuse	Queens	1	3	20040525-Q13-25CW-552	5/25/2004	201.45	NA
PWCS	Refuse	Queens	1	3	20040525-Q13-25CW-547	5/25/2004	226.86	NA
PWCS	Refuse	Queens	7	4	20040525-Q74-2-25CF-177	5/25/2004	214.21	NA
PWCS	Refuse	Queens	8	3	20040525-Q83-2-25CU-212	5/25/2004	230.61	NA
PWCS	Refuse	Queens	11	3	20040525-Q113-1-25CU-221	5/25/2004	210.35	NA
PWCS	Refuse	Queens	1	1	20040525-Q11-1-25CN-585	5/25/2004	235.43	NA
PWCS	Refuse	Queens	8	2	20040525-Q82-6-25CN-113	5/25/2004	268.28	NA
PWCS	Refuse	Queens	8	4	20040525-Q84-4-25CN-104	5/25/2004	213.54	NA
PWCS	Refuse	Queens	9	4	20040525-Q94-2-25CN-364	5/25/2004	220.91	NA
PWCS	Refuse	Queens	11	4	20040525-Q114-2-25CU-230	5/25/2004	213.4	NA
PWCS	Refuse	Queens	12	2	20040525-Q122-3-25CN-216	5/25/2004	208.53	NA
PWCS	Refuse	Queens	12	5	20040525-Q125-3-25CU-246	5/25/2004	255.8	NA
PWCS	Refuse	Queens	12	7	20040525-Q127-3-25CN-146	5/25/2004	232.71	NA
PWCS	Refuse	Queens	13	4	20040525-Q134-2-25CU-292	5/25/2004	236.68	NA
PWCS	Refuse	Queens	13	3	20040525-Q133-5-25CW-508	5/25/2004	214.12	NA
PWCS	Refuse	Queens	9	2	20040525-Q92-1-25CF-059	5/25/2004	200.11	NA
PWCS	Refuse	Queens	10	1	20040526-Q101-1-25CW-526	5/26/2004	206.65	NA
PWCS	Refuse	Queens	12	5	20040526-Q125-2-25CN-174	5/26/2004	228.66	NA
PWCS	Refuse	Queens	8	2	20040526-Q82-3-25CU-113	5/26/2004	220.6	NA
PWCS	Refuse	Queens	10	4	20040526-Q104-4-25CU-189	5/26/2004	243.07	NA
PWCS	Refuse	Queens	8	4	20040526-Q84-3-25CU-168	5/26/2004	213.92	NA

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	Refuse	Queens	8	4	20040526-Q84-1-25CU-204	5/26/2004	235.86	NA
PWCS	Refuse	Queens	13	6	20040526-Q136-4-25CW-547	5/26/2004	233.06	NA
PWCS	Refuse	Queens	10	3	20040526-Q103-4-25CW-563	5/26/2004	260.41	NA
PWCS	Refuse	Queens	13	4	20040526-Q134-1-25CW-508	5/26/2004	306.03	NA
PWCS	Refuse	Staten Island	2	3	20040522-SI23-3-25CU-096	5/22/2004	230.25	NA
PWCS	Refuse	Staten Island	3	8	20040522-SI38-2-25CW-142	5/22/2004	224.66	NA
PWCS	Refuse	Staten Island	1	2	20040522-SI12-3-25CW-131	5/22/2004	202.75	NA
PWCS	Refuse	Staten Island	2	3	20040522-SI23-2-25CN-056	5/22/2004	218.41	NA
PWCS	Refuse	Staten Island	3	8	20040522-SI38-1-25CW-126	5/22/2004	256.51	NA
PWCS	Refuse	Staten Island	3	3	20040522-SI33-2-CF-093	5/22/2004	225.75	NA
PWCS	Refuse	Staten Island	1	4	20040522-SI14-2-25CU-042	5/22/2004	249.37	NA
PWCS	Refuse	Staten Island	1	2	20040526-SI12-5-25CW-131	5/26/2004	239.25	NA
PWCS	Refuse	Staten Island	3	3	20040526-SI33-3-25CU-129	5/26/2004	227.96	NA
PWCS	Refuse	Staten Island	2	4	20040526-SI24-3-25CU-033	5/26/2004	232.22	NA
PWCS	Refuse	Staten Island	3	5	20040526-SI35-1-25CU-027	5/26/2004	258.3	NA
PWCS	Refuse	Staten Island	2	3	20040526-SI23-4-25CU-096	5/26/2004	246.71	NA
PWCS	Refuse	Staten Island	1	3	20040526-SI13-3-25CF-001	5/26/2004	224.77	NA
PWCS	Refuse	Staten Island	1	1	20040526-S111-3-25CN-718	5/26/2004	260.51	NA
PWCS	Refuse	Staten Island	3	6	20040526-SI36-1-25CW-134	5/26/2004	223.17	NA
PWCS	Refuse	Staten Island	2	2	20040526-SI22-6-25CN-038	5/26/2004	246.35	NA
PWCS	Paper	Manhattan	6	3	20040607-M-6-3-4-25CN-687-P	6/7/2004	117.7	NA
PWCS	Paper	Manhattan	10	3	20040607-M-10-3-1-25CU-100-P	6/7/2004	116.8	NA
PWCS	Paper	Manhattan	12	4	20040607-M-12-4-3-25CN-046-P	6/7/2004	106.25	NA
PWCS	Paper	Manhattan	8	4	20040607-M-8-4-3-25CN-053-P	6/7/2004	174.825	NA
PWCS	Paper	Manhattan	8	5	20040607-M-8-5-2-25CF-267-P	6/7/2004	153.135	NA
PWCS	Paper	Manhattan	12	4	20040607-M-12-4-2-25CW-312-P	6/7/2004	110.45	NA
PWCS	Paper	Manhattan	0	0	20040607-M-0-0-0-25CU-167-P	6/7/2004	125.815	NA
PWCS	Paper	Manhattan	1	1	20040607-M-1-1-3-25CU-067-P	6/7/2004	113.49	NA
PWCS	Paper	Manhattan	2	1	20040607-M-2-1-1-25CW-122-P	6/7/2004	121.79	NA
PWCS	Paper	Manhattan	2	2	20040607-M-2-2-1-25CW-582-P	6/7/2004	87.11	NA
PWCS	Paper	Manhattan	2	2	20040607-M-2-2-2-25CU-117-P	6/7/2004	113.405	NA
PWCS	Paper	Manhattan	3	4	20040611-M-3-4-1-25CN-469-P	6/11/2004	120.2	NA
PWCS	Paper	Manhattan	6	1	20040611-M-6-1-4-25CN-808-P	6/11/2004	144.005	NA
PWCS	Paper	Manhattan	6	2	20040611-M-6-2-1-25CU-035-P	6/11/2004	129.84	NA
PWCS	Paper	Manhattan	4	3	20040611-M-4-3-1-25CN-012-P	6/11/2004	109.215	NA
PWCS	Paper	Manhattan	2	3	20040611-M-2-3-4-25CU-117-P	6/11/2004	121.69	NA
PWCS	Paper	Manhattan	10	1	20040611-M-10-1-1-25CU-100-P	6/11/2004	121.885	NA
PWCS	Paper	Manhattan	7	3	20040611-M-7-3-1-25CN-807-P	6/11/2004	102.44	NA
PWCS	Paper	Manhattan	8	1	20040611-M-8-1-3-25CF-041-P	6/11/2004	124.265	NA
PWCS	Paper	Manhattan	8	2	20040611-M-8-2-3-25CF-267-P	6/11/2004	143.15	NA
PWCS	Paper	Manhattan	2	3	20040611-M-2-3-1-25CW-570-P	6/11/2004	101.44	NA
PWCS	Paper	Manhattan	6	2	20040611-M-6-2-4-25CU-145-P	6/11/2004	125.26	NA
PWCS	Paper	Manhattan	6	1	20040611-M-6-1-1-25CN-601-P	6/11/2004	79.185	NA
PWCS	Paper	Bronx	5	3	20040608-BX-5-3-1-25CU-306-P	6/8/2004	76.125	NA
PWCS	Paper	Bronx	11	1	20040608-BX-11-1-2-25CF-235-P	6/8/2004	118.16	NA
PWCS	Paper	Bronx	7	3	20040608-BX-7-3-1-25CN-255-P	6/8/2004	104.825	NA
PWCS	Paper	Bronx	8	1	20040608-BX-8-1-1-25CU-079-P	6/8/2004	114.285	NA
PWCS	Paper	Bronx	8	2	20040611-BX-8-2-1-25CU-079-P	6/11/2004	109.065	NA
PWCS	Paper	Bronx	10	2	20040611-BX-10-2-1-25CM-156-P	6/11/2004	96.57	NA
PWCS	Paper	Bronx	8	3	20040611-BX-8-3-1-25CU-036-P	6/11/2004	119.04	NA
PWCS	Paper	Bronx	11	3	20040611-BX-11-3-1-25CF-235-P	6/11/2004	133.925	NA
PWCS	Paper	Bronx	12	4	20040611-BX-12-4-2-25CN-630-P	6/11/2004	122.29	NA
PWCS	Paper	Brooklyn	12	2	20040609-BK-12-2-1-25CM-055-P	6/9/2004	111.81	NA
PWCS	Paper	Brooklyn	10	1	20040609-BK-10-1-1-25CM-244-P	6/9/2004	125.94	NA
PWCS	Paper	Brooklyn	8	1	20040609-BK-8-1-1-25CN-453-P	6/9/2004	108.735	NA
PWCS	Paper	Brooklyn	15	2	20040609-BK-15-2-1-25CM-250-P	6/9/2004	139.27	NA
PWCS	Paper	Brooklyn	8	1	20040609-BK-8-1-3-25CN-528-P	6/9/2004	152.575	NA
PWCS	Paper	Brooklyn	1	1	20040609-BK-1-1-1-25CN-279-P	6/9/2004	104.915	NA
PWCS	Paper	Brooklyn	3	2	20040609-BK-3-2-1-25CF-247-P	6/9/2004	140.76	NA
PWCS	Paper	Brooklyn	7	1	20040609-BK-7-1-3-25CN-487-P	6/9/2004	144.895	NA

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	Paper	Brooklyn	8	1	20040609-BK-8-1-2-25CN-557-P	6/9/2004	110.87	NA
PWCS	Paper	Brooklyn	15	2	20040609-BK-15-2-2-25CM-269-P	6/9/2004	136	NA
PWCS	Paper	Brooklyn	16	1	20040610-BK-16-1-2-25CW-059-P	6/10/2004	120.415	NA
PWCS	Paper	Brooklyn	18	5	20040610-BK-18-5-2-25CM-012-P	6/10/2004	125.99	NA
PWCS	Paper	Brooklyn	18	7	20040610-BK-18-7-1-25CM-184-P	6/10/2004	110.75	NA
PWCS	Paper	Brooklyn	15	2	20040610-BK-15-2-2-25CM-238-P	6/10/2004	115.565	NA
PWCS	Paper	Brooklyn	1	2	20040610-BK-1-2-1-25CN-394-P	6/10/2004	111.34	NA
PWCS	Paper	Brooklyn	6	5	20040610-BK-6-5-2-25CN-616-P	6/10/2004	107.315	NA
PWCS	Paper	Brooklyn	13	1	20040610-BK-13-1-1-25CU-037-P	6/10/2004	118	NA
PWCS	Paper	Brooklyn	11	3	20040610-BK-11-3-1-25CM-167-P	6/10/2004	104.45	NA
PWCS	Paper	Brooklyn	17	3	20040610-BK-17-3-1-25CM-185-P	6/10/2004	107.24	NA
PWCS	Paper	Brooklyn	13	2	20040612-BK-13-2-2-25CU-054-P	6/12/2004	126.025	NA
PWCS	Paper	Brooklyn	14	2	20040612-BK-14-2-1-25CN-379-P	6/12/2004	104.95	NA
PWCS	Paper	Brooklyn	12	1	20040612-BK-12-1-1-25CM-055-P	6/12/2004	100.085	NA
PWCS	Paper	Brooklyn	9	2	20040612-BK-9-2-1-25CU-258-P	6/12/2004	98.815	NA
PWCS	Paper	Brooklyn	8	3	20040612-BK-8-3-1-25CN-736-P	6/12/2004	102.015	NA
PWCS	Paper	Brooklyn	7	4	20040612-BK-7-4-2-25CN-487-P	6/12/2004	126.465	NA
PWCS	Paper	Brooklyn	16	2	20040612-BK-16-2-1-25CW-059-P	6/12/2004	110.765	NA
PWCS	Paper	Queens	5	3	20040607-Q-5-3-1-25CM-014-P	6/7/2004	118.49	NA
PWCS	Paper	Queens	2	2	20040607-Q-2-2-2-25CU-223-P	6/7/2004	112.64	NA
PWCS	Paper	Queens	12	3	20040607-Q-12-3-1-25CM-147-P	6/7/2004	108.565	NA
PWCS	Paper	Queens	7	1	20040607-Q-7-1-1-25CM-061-P	6/7/2004	109.165	NA
PWCS	Paper	Queens	10	3	20040607-Q-10-3-1-25CM-065-P	6/7/2004	102.915	NA
PWCS	Paper	Queens	7	8	20040608-Q-7-8-1-25CM-073-P	6/8/2004	111.3	NA
PWCS	Paper	Queens	11	1	20040608-Q-11-1-1-25BW-018-P	6/8/2004	102.89	NA
PWCS	Paper	Queens	4	2	20040608-Q-4-2-2-25CW-164-P	6/8/2004	120.785	NA
PWCS	Paper	Queens	5	4	20040608-Q-5-4-1-25CM-008-P	6/8/2004	110.88	NA
PWCS	Paper	Queens	1	3	20040608-Q-1-3-1-25CA-001-P	6/8/2004	114.465	NA
PWCS	Paper	Queens	8	1	20040608-Q-8-1-1-25CM-013-P	6/8/2004	103.425	NA
PWCS	Paper	Queens	7	5	20040608-Q-7-5-1-25CM-061-P	6/8/2004	102.5	NA
PWCS	Paper	Queens	9	3	20040608-Q-9-3-1-25CM-091-P	6/8/2004	107.44	NA
PWCS	Paper	Queens	8	2	20040608-Q-8-2-1-25CM-040-P	6/8/2004	110.85	NA
PWCS	Paper	Queens	13	6	20040608-Q-13-6-1-25CM-113-P	6/8/2004	137.865	NA
PWCS	Paper	Queens	14	1	20040608-Q-14-1-2-25CM-095-P	6/8/2004	127.45	NA
PWCS	Paper	Queens	10	2	20040608-Q-10-2-1-25CM-071-P	6/8/2004	110.875	NA
PWCS	Paper	Queens	9	4	20040608-Q-9-4-1-25CM-059-P	6/8/2004	102.29	NA
PWCS	Paper	Queens	4	2	20040609-Q-4-2-1-25CN-234-P	6/9/2004	144.075	NA
PWCS	Paper	Queens	10	1	20040609-Q-10-1-1-25CM-071-P	6/9/2004	108.61	NA
PWCS	Paper	Queens	13	6	20040609-Q-13-6-2-25CM-132-P	6/9/2004	126.315	NA
PWCS	Paper	Queens	12	5	20040609-Q-12-5-1-25CM-136-P	6/9/2004	103.03	NA
PWCS	Paper	Queens	5	5	20040609-Q-5-5-2-25CM-008-P	6/9/2004	152.22	NA
PWCS	Paper	Queens	12	1	20040609-Q-12-1-1-25CM-157-P	6/9/2004	112.79	NA
PWCS	Paper	Queens	3	3	20040609-Q-3-3-1-25CN-809-P	6/9/2004	103.485	NA
PWCS	Paper	Queens	6	1	20040610-Q-6-1-3-25RY-109-P	6/10/2004	110.565	NA
PWCS	Paper	Queens	11	1	20040610-Q-11-1-1-25CM-025-P	6/10/2004	111.025	NA
PWCS	Paper	Queens	11	4	20040610-Q-11-4-1-25CM-060-P	6/10/2004	111.465	NA
PWCS	Paper	Queens	9	3	20040610-Q-9-3-1-25CM-080-P	6/10/2004	105.75	NA
PWCS	Paper	Queens	2	2	20040610-Q-2-2-1-25CNG-410-P	6/10/2004	105.11	NA
PWCS	Paper	Queens	1	3	20040610-Q-1-3-1-25CA-003-P	6/10/2004	112.465	NA
PWCS	Paper	Staten Island	2	4	20040612-SI-2-4-1-25CM-276-P	6/12/2004	125.125	NA
PWCS	Paper	Staten Island	1	4	20040612-SI-1-4-1-25CM-231-P	6/12/2004	112.8	NA
PWCS	Paper	Staten Island	3	8	20040612-SI-3-8-1-25CM-219-P	6/12/2004	108.25	NA
PWCS	Paper	Staten Island	1	3	20040612-SI-1-3-2-25CM-254-P	6/12/2004	123.9	NA
PWCS	Paper	Staten Island	1	4	20040612-SI-1-4-3-25CM-206-P	6/12/2004	111.125	NA
PWCS	Paper	Staten Island	2	4	20040612-SI-2-4-2-25CM-262-P	6/12/2004	117.65	NA
PWCS	Paper	Staten Island	3	4	20040612-SI-3-4-2-25CM-240-P	6/12/2004	118.04	NA
PWCS	Paper	Staten Island	3	5	20040612-SI-3-5-1-25CM-246-P	6/12/2004	123.925	NA
PWCS	Paper	Staten Island	1	3	20040612-SI-1-3-1-25CM-266-P	6/12/2004	125.025	NA
PWCS	Paper	Staten Island	3	5	20040612-SI-3-5-2-25CM-203-P	6/12/2004	106.16	NA
PWCS	MGP	Manhattan	8	5	20040607-M-8-5-3-25CN-422-M	6/7/2004	170.115	NA

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	MGP	Manhattan	8	4	20040607-M-8-4-1-25CF-041-M	6/7/2004	160.91	NA
PWCS	MGP	Manhattan	8	5	20040607-M-8-5-1-25CN-821-M	6/7/2004	122.045	NA
PWCS	MGP	Manhattan	12	4	20040607-M-12-4-2-25CF-035-M	6/7/2004	87.225	NA
PWCS	MGP	Manhattan	5	1	20040607-M-5-1-1-25CN-527-M	6/7/2004	101.175	NA
PWCS	MGP	Manhattan	2	1	20040607-M-2-1-1-25CN-549-M	6/7/2004	142.76	NA
PWCS	MGP	Manhattan	1	1	20040607-M-1-1-2-25CU-149-M	6/7/2004	153.68	NA
PWCS	MGP	Manhattan	1	1	20040607-M-1-1-1-25CW-170-M	6/7/2004	114.75	NA
PWCS	MGP	Manhattan	12	1	20040611-M-12-1-2-25CU-080-M	6/11/2004	128.795	NA
PWCS	MGP	Manhattan	10	1	20040611-M-10-1-1-25CU-200-M	6/11/2004	101.845	NA
PWCS	MGP	Manhattan	6	2	20040611-M-6-2-1-25CN-802-M	6/11/2004	109.185	NA
PWCS	MGP	Manhattan	6	1	20040611-M-6-1-1-25CU-167-M	6/11/2004	108.735	NA
PWCS	MGP	Manhattan	8	2	20040611-M-8-2-1-25CN-422-M	6/11/2004	97.135	NA
PWCS	MGP	Manhattan	7	4	20040611-M-7-4-1-25CN-508-M	6/11/2004	143.825	NA
PWCS	MGP	Manhattan	7	4	20040611-M-7-4-3-25CN-517-M	6/11/2004	129.115	NA
PWCS	MGP	Manhattan	4	3	20040611-M-4-3-2-25CU-173-M	6/11/2004	101.125	NA
PWCS	MGP	Manhattan	7	3	20040611-M-7-3-1-25CN-488-M	6/11/2004	271.36	NA
PWCS	MGP	Manhattan	8	2	20040611-M-8-2-2-25CN-075-M	6/11/2004	123.535	NA
PWCS	MGP	Bronx	12	3	20040608-BX-12-3-1-25CN-449-M	6/8/2004	95.3	NA
PWCS	MGP	Bronx	8	1	20040608-BX-8-1-1-25CU-017-M	6/8/2004	102.38	NA
PWCS	MGP	Bronx	7	3	20040608-BX-7-3-2-25CF-203-M	6/8/2004	90.085	NA
PWCS	MGP	Bronx	5	3	20040608-BX-5-3-2-25CF-134-M	6/8/2004	127.585	NA
PWCS	MGP	Bronx	4	3	20040608-BX-4-3-1-25CU-018-M	6/8/2004	105.705	NA
PWCS	MGP	Bronx	11	1	20040608-BX-11-1-2-25CN-454-M	6/8/2004	87.245	NA
PWCS	MGP	Bronx	12	1	20040608-BX-12-1-1-25CN-329-M	6/8/2004	101.405	NA
PWCS	MGP	Bronx	12	2	20040608-BX-12-2-1-25CN-435-M	6/8/2004	116.135	NA
PWCS	MGP	Bronx	10	2	20040611-BX-10-2-1-25CM-156-M	6/11/2004	119.475	NA
PWCS	MGP	Bronx	5	2	20040611-BX-5-2-1-25CU-321-M	6/11/2004	134.35	NA
PWCS	MGP	Bronx	7	2	20040611-BX-7-2-2-25CN-424-M	6/11/2004	141.61	NA
PWCS	MGP	Bronx	9	2	20040611-BX-9-2-2-25CU-266-M	6/11/2004	129.885	NA
PWCS	MGP	Bronx	7	2	20040611-BX-7-2-1-25CN-409-M	6/11/2004	118.245	NA
PWCS	MGP	Bronx	9	2	20040611-BX-9-2-1-25CF-077-M	6/11/2004	113.035	NA
PWCS	MGP	Bronx	2	1	20040611-BX-2-1-2-25CN-746-M	6/11/2004	105.45	NA
PWCS	MGP	Brooklyn	5	2	20040609-BK-5-2-2-25CN-535-M	6/9/2004	132.57	NA
PWCS	MGP	Brooklyn	13	1	20040609-BK-13-1-1-25CN-416-M	6/9/2004	118.2	NA
PWCS	MGP	Brooklyn	10	1	20040609-BK-10-1-1-25CM-244-M	6/9/2004	99.26	NA
PWCS	MGP	Brooklyn	13	2	20040609-BK-13-2-1-25CN-434-M	6/9/2004	119.21	NA
PWCS	MGP	Brooklyn	6	5	20040609-BK-6-5-1-25CN-210-M	6/9/2004	121.535	NA
PWCS	MGP	Brooklyn	5	1	20040609-BK-5-1-1-25CW-202-M	6/9/2004	108.025	NA
PWCS	MGP	Brooklyn	15	2	20040609-BK-15-2-1-25CM-250-M	6/9/2004	103.69	NA
PWCS	MGP	Brooklyn	5	2	20040609-BK-5-2-1-25CN-563-M	6/9/2004	107.135	NA
PWCS	MGP	Brooklyn	8	1	20040609-BK-8-1-1-25CN-412-M	6/9/2004	105.29	NA
PWCS	MGP	Brooklyn	12	2	20040609-BK-12-2-1-25CM-055-M	6/9/2004	113.295	NA
PWCS	MGP	Brooklyn	15	2	20040609-BK-15-2-2-25CM-269-M	6/9/2004	97.7	NA
PWCS	MGP	Brooklyn	13	1	20040610-BK-13-1-1-25CU-047-M	6/10/2004	132.395	NA
PWCS	MGP	Brooklyn	3	1	20040610-BK-3-1-1-25CW-113-M	6/10/2004	122.12	NA
PWCS	MGP	Brooklyn	11	3	20040610-BK-11-3-1-25CM-167-M	6/10/2004	98.34	NA
PWCS	MGP	Brooklyn	14	4	20040610-BK-14-4-1-25CU-105-M	6/10/2004	117.94	NA
PWCS	MGP	Brooklyn	15	2	20040610-BK-15-2-2-25CM-238-M	6/10/2004	161.635	NA
PWCS	MGP	Brooklyn	18	5	20040610-BK-18-5-2-25CM-012-M	6/10/2004	102.485	NA
PWCS	MGP	Brooklyn	17	3	20040610-BK-17-3-1-25CM-185-M	6/10/2004	93.3	NA
PWCS	MGP	Brooklyn	9	3	20040610-BK-9-3-2-25CU-268-M	6/10/2004	130.685	NA
PWCS	MGP	Brooklyn	18	7	20040610-BK-18-7-1-25CM-184-M	6/10/2004	107.485	NA
PWCS	MGP	Brooklyn	2	3	20040612-BK-2-3-1-25CN-561-M	6/12/2004	107.845	NA
PWCS	MGP	Brooklyn	7	3	20040612-BK-7-3-1-25CU-144-M	6/12/2004	122.81	NA
PWCS	MGP	Brooklyn	7	4	20040612-BK-7-4-2-25CN-324-M	6/12/2004	126.07	NA
PWCS	MGP	Brooklyn	9	1	20040612-BK-9-1-1-25CU-192-M	6/12/2004	102.3	NA
PWCS	MGP	Brooklyn	9	2	20040612-BK-9-2-1-25CU-282-M	6/12/2004	127.85	NA
PWCS	MGP	Brooklyn	9	2	20040612-BK-9-2-2-25CU-242-M	6/12/2004	109.835	NA
PWCS	MGP	Brooklyn	12	1	20040612-BK-12-1-1-25CM-055-M	6/12/2004	129.65	NA
PWCS	MGP	Brooklyn	14	1	20040612-BK-14-1-2-25CN-308-M	6/12/2004	100.99	NA

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
PWCS	MGP	Brooklyn	2	3	20040612-BK-2-3-2-25CN-494-M	6/12/2004	98.01	NA
PWCS	MGP	Queens	3	1	20040607-Q-3-1-1-25CN-373-M	6/7/2004	149.455	NA
PWCS	MGP	Queens	10	3	20040607-Q-10-3-1-25CM-065-M	6/7/2004	94.515	NA
PWCS	MGP	Queens	12	3	20040607-Q-12-3-1-25CM-147-M	6/7/2004	153.085	NA
PWCS	MGP	Queens	2	2	20040607-Q-2-2-1-25CN-240-M	6/7/2004	83.935	NA
PWCS	MGP	Queens	7	1	20040607-Q-7-1-1-25CM-061-M	6/7/2004	153.37	NA
PWCS	MGP	Queens	2	3	20040607-Q-2-3-1-25CN-278-M	6/7/2004	127.11	NA
PWCS	MGP	Queens	5	3	20040607-Q-5-3-1-25CM-014-M	6/7/2004	99.19	NA
PWCS	MGP	Queens	4	3	20040607-Q-4-3-1-25CU-060-M	6/7/2004	118.58	NA
PWCS	MGP	Queens	4	1	20040607-Q-4-1-1-25CN-615-M	6/7/2004	146.09	NA
PWCS	MGP	Queens	7	5	20040608-Q-7-5-1-25CM-061-M	6/8/2004	99.45	NA
PWCS	MGP	Queens	5	4	20040608-Q-5-4-1-25CM-008-M	6/8/2004	119.38	NA
PWCS	MGP	Queens	7	8	20040608-Q-7-8-1-25CM-073-M	6/8/2004	198.4	NA
PWCS	MGP	Queens	1	3	20040608-Q-1-3-1-25CA-001-M	6/8/2004	100.95	NA
PWCS	MGP	Queens	8	1	20040608-Q-8-1-1-25CM-013-M	6/8/2004	138.505	NA
PWCS	MGP	Queens	9	4	20040608-Q-9-4-1-25CM-059-M	6/8/2004	96.895	NA
PWCS	MGP	Queens	13	6	20040608-Q-13-6-1-25CM-113-M	6/8/2004	119.81	NA
PWCS	MGP	Queens	14	1	20040608-Q-14-1-2-25CM-095-M	6/8/2004	112.56	NA
PWCS	MGP	Queens	8	2	20040608-Q-8-2-1-25CM-040-M	6/8/2004	123.76	NA
PWCS	MGP	Queens	9	3	20040608-Q-9-3-1-25CM-091-M	6/8/2004	140.735	NA
PWCS	MGP	Queens	11	1	20040608-Q-11-1-1-25BW-018-M	6/8/2004	95.605	NA
PWCS	MGP	Queens	10	2	20040608-Q-10-2-1-25CM-071-M	6/8/2004	147.84	NA
PWCS	MGP	Queens	12	5	20040609-Q-12-5-1-25CM-136-M	6/9/2004	94.71	NA
PWCS	MGP	Queens	5	5	20040609-Q-5-5-2-25CM-008-M	6/9/2004	111.525	NA
PWCS	MGP	Queens	10	1	20040609-Q-10-1-1-25CM-071-M	6/9/2004	107.55	NA
PWCS	MGP	Queens	12	1	20040609-Q-12-1-1-25CM-157-M	6/9/2004	123.875	NA
PWCS	MGP	Queens	13	6	20040609-Q-13-6-2-25CM-132-M	6/9/2004	120.76	NA
PWCS	MGP	Queens	3	3	20040610-Q-3-3-2-25CF-015-M	6/10/2004	96.43	NA
PWCS	MGP	Queens	9	3	20040610-Q-9-3-1-25CM-080-M	6/10/2004	105.51	NA
PWCS	MGP	Queens	11	1	20040610-Q-11-1-1-25CM-025-M	6/10/2004	107.55	NA
PWCS	MGP	Queens	6	1	20040610-Q-6-1-3-25CN-602-M	6/10/2004	102.06	NA
PWCS	MGP	Queens	3	3	20040610-Q-3-3-1-25CN-632-M	6/10/2004	101.75	NA
PWCS	MGP	Queens	2	1	20040610-Q-2-1-1-25CW-560-M	6/10/2004	104.205	NA
PWCS	MGP	Queens	1	3	20040610-Q-1-3-1-25CA-003-M	6/10/2004	140.475	NA
PWCS	MGP	Queens	11	4	20040610-Q-11-4-1-25CM-060-M	6/10/2004	93.545	NA
PWCS	MGP	Staten Island	1	3	20040612-SI-1-3-2-25CM-254-M	6/12/2004	106.97	NA
PWCS	MGP	Staten Island	1	4	20040612-SI-1-4-1-25CM-231-M	6/12/2004	112.27	NA
PWCS	MGP	Staten Island	3	4	20040612-SI-3-4-2-25CM-240-M	6/12/2004	107.335	NA
PWCS	MGP	Staten Island	3	5	20040612-SI-3-5-1-25CM-246-M	6/12/2004	102.755	NA
PWCS	MGP	Staten Island	3	8	20040612-SI-3-8-1-25CM-219-M	6/12/2004	113.17	NA
PWCS	MGP	Staten Island	1	3	20040612-SI-1-3-1-25CM-266-M	6/12/2004	119.89	NA
PWCS	MGP	Staten Island	3	5	20040612-SI-3-5-2-25CM-203-M	6/12/2004	97.575	NA
PWCS	MGP	Staten Island	2	4	20040612-SI-2-4-1-25CM-276-M	6/12/2004	121.11	NA
Fall	Refuse	Manhattan	8	5	20041018-M-8-5-2-1-R	10/18/2004	231.97	High Density/High Income
Fall	Refuse	Manhattan	3	3	20041018-M-3-3-1-1-R	10/18/2004	258.88	High Density/Medium Income
Fall	Refuse	Manhattan	8	5	20041018-M-8-5-1-1-R	10/18/2004	221.1	High Density/High Income
Fall	Refuse	Manhattan	7	3	20041019-M-7-3-2-1-R	10/19/2004	206.02	High Density/High Income
Fall	Refuse	Manhattan	3	1	20041019-M-3-1-1-1-R	10/19/2004	208.15	High Density/Low Income
Fall	Refuse	Manhattan	7	3	20041020-M-7-3-4-1-R	10/20/2004	270.79	High Density/High Income
Fall	Refuse	Manhattan	3	1	20041020-M-3-1-1-1-R	10/20/2004	211.14	High Density/Low Income
Fall	Refuse	Manhattan	3	3	20041020-M-3-3-2-1-R	10/20/2004	217.98	High Density/Medium Income
Fall	Refuse	Manhattan	3	3	20041020-M-3-3-2-2-R	10/20/2004	197.34	High Density/Medium Income
Fall	Refuse	Manhattan	3	3	20041020-M-3-3-2-3-R	10/20/2004	250.6	High Density/Medium Income
Fall	Refuse	Manhattan	7	2	20041020-M-7-2-4-1-R	10/20/2004	206.99	High Density/High Income
Fall	Refuse	Manhattan	2	2	20041021-M-2-2-1-1-R	10/21/2004	204.5	High Density/High Income
Fall	Refuse	Manhattan	7	3	20041021-M-7-3-2-1-R	10/21/2004	232.5	High Density/High Income
Fall	Refuse	Manhattan	7	2	20041021-M-7-2-3-1-R	10/21/2004	236.7	High Density/High Income
Fall	Refuse	Manhattan	3	3	20041022-M-3-3-1-1-R	10/22/2004	211.12	High Density/Medium Income
Fall	Refuse	Manhattan	8	3	20041023-M-8-3-3-1-R	10/23/2004	208.08	High Density/High Income
Fall	Refuse	Manhattan	6	3	20041023-M-6-3-1-1-R	10/23/2004	176.58	High Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Manhattan	2	3	20041023-M-2-3-3-1-R	10/23/2004	202.13	High Density/High Income
Fall	Refuse	Manhattan	8	5	20041023-M-8-5-1-1-R	10/23/2004	196.5	High Density/High Income
Fall	Refuse	Manhattan	8	4	20041023-M-8-4-3-1-R	10/23/2004	198.95	High Density/High Income
Fall	Refuse	Manhattan	6	3	20041025-M-6-3-3-1-R	10/25/2004	200.75	High Density/High Income
Fall	Refuse	Manhattan	7	2	20041025-M-7-2-3-1-R	10/25/2004	209.2	High Density/High Income
Fall	Refuse	Manhattan	3	3	20041025-M-3-3-1-2-R	10/25/2004	204.62	High Density/Medium Income
Fall	Refuse	Manhattan	3	3	20041025-M-3-3-1-1-R	10/25/2004	202.01	High Density/Medium Income
Fall	Refuse	Manhattan	2	2	20041025-M-2-2-2-1-R	10/25/2004	197.65	High Density/High Income
Fall	Refuse	Manhattan	8	3	20041025-M-8-3-2-1-R	10/25/2004	210.29	High Density/High Income
Fall	Refuse	Manhattan	8	4	20041026-M-8-4-1-1-R	10/26/2004	198.35	High Density/High Income
Fall	Refuse	Manhattan	8	2	20041026-M-8-2-2-1-R	10/26/2004	208.35	High Density/High Income
Fall	Refuse	Manhattan	8	5	20041026-M-8-5-3-1-R	10/26/2004	199.15	High Density/High Income
Fall	Refuse	Manhattan	3	3	20041027-M-3-3-2-1-R	10/27/2004	196.45	High Density/Medium Income
Fall	Refuse	Manhattan	7	3	20041027-M-7-3-4-1-R	10/27/2004	204.54	High Density/High Income
Fall	Refuse	Manhattan	8	1	20041027-M-8-1-5-2-R	10/27/2004	211.45	High Density/High Income
Fall	Refuse	Manhattan	2	3	20041027-M-2-3-1-1-R	10/27/2004	213.93	High Density/High Income
Fall	Refuse	Manhattan	7	3	20041027-M-7-3-1-1-R	10/27/2004	201.35	High Density/High Income
Fall	Refuse	Manhattan	8	1	20041027-M-8-1-5-1-R	10/27/2004	187.45	High Density/High Income
Fall	Refuse	Manhattan	8	4	20041027-M-8-4-4-1-R	10/27/2004	168.72	High Density/High Income
Fall	Refuse	Manhattan	8	5	20041027-M-8-5-2-1-R	10/27/2004	207.64	High Density/High Income
Fall	Refuse	Manhattan	3	1	20041028-M-3-1-3-1-R	10/28/2004	204.1	High Density/Low Income
Fall	Refuse	Manhattan	8	4	20041028-M-8-4-1-1-R	10/28/2004	204.93	High Density/High Income
Fall	Refuse	Manhattan	8	1	20041028-M-8-1-3-1-R	10/28/2004	207.42	High Density/High Income
Fall	Refuse	Manhattan	3	3	20041029-M-3-3-1-1-R	10/29/2004	213.5	High Density/Medium Income
Fall	Refuse	Manhattan	2	2	20041029-M-2-2-2-1-R	10/29/2004	208.98	High Density/High Income
Fall	Refuse	Manhattan	8	2	20041029-M-8-2-1-1-R	10/29/2004	220.7	High Density/High Income
Fall	Refuse	Manhattan	2	3	20041030-M-2-3-3-1-R	10/30/2004	211.26	High Density/High Income
Fall	Refuse	Manhattan	8	3	20041030-M-8-3-1-1-R	10/30/2004	211.47	High Density/High Income
Fall	Refuse	Manhattan	3	1	20041030-M-3-1-2-1-R	10/30/2004	202.86	High Density/Low Income
Fall	Refuse	Manhattan	7	3	20041101-M-7-3-3-1-R	11/1/2004	201.77	High Density/High Income
Fall	Refuse	Manhattan	7	2	20041103-M-7-2-2-1-R	11/3/2004	211.75	High Density/High Income
Fall	Refuse	Manhattan	8	2	20041103-M-8-2-3-1-R	11/3/2004	204.43	High Density/High Income
Fall	Refuse	Manhattan	2	2	20041103-M-2-2-3-1-R	11/3/2004	228.3	High Density/High Income
Fall	Refuse	Manhattan	7	3	20041103-M-7-3-2-1-R	11/3/2004	216.08	High Density/High Income
Fall	Refuse	Manhattan	3	1	20041104-M-3-1-3-1-R	11/4/2004	204.1	High Density/Low Income
Fall	Refuse	Manhattan	2	2	20041104-M-2-2-2-1-R	11/4/2004	248.1	High Density/High Income
Fall	Refuse	Manhattan	6	3	20041104-M-6-3-3-1-R	11/4/2004	203.6	High Density/High Income
Fall	Refuse	Manhattan	7	2	20041104-M-7-2-3-1-R	11/4/2004	216.6	High Density/High Income
Fall	Refuse	Manhattan	7	2	20041104-M-7-2-3-2-R	11/4/2004	205.88	High Density/High Income
Fall	Refuse	Manhattan	8	2	20041104-M-8-2-2-1-R	11/4/2004	214.55	High Density/High Income
Fall	Refuse	Manhattan	2	2	20041104-M-2-2-3-1-R	11/4/2004	213.6	High Density/High Income
Fall	Refuse	Manhattan	8	5	20041105-M-8-5-1-2-R	11/5/2004	218.11	High Density/High Income
Fall	Refuse	Manhattan	8	5	20041105-M-8-5-2-1-R	11/5/2004	197.56	High Density/High Income
Fall	Refuse	Manhattan	3	3	20041105-M-3-3-1-1-R	11/5/2004	207.26	High Density/Medium Income
Fall	Refuse	Manhattan	8	5	20041105-M-8-5-1-1-R	11/5/2004	199.23	High Density/High Income
Fall	Refuse	Manhattan	8	5	20041106-M-8-5-2-1-R	11/6/2004	202.3	High Density/High Income
Fall	Refuse	Manhattan	8	1	20041106-M-8-1-1-1-R	11/6/2004	203.13	High Density/High Income
Fall	Refuse	Manhattan	3	1	20041106-M-3-1-3-1-R	11/6/2004	209.58	High Density/Low Income
Fall	Refuse	Manhattan	7	3	20041106-M-7-3-2-1-R	11/6/2004	202.51	High Density/High Income
Fall	Refuse	Bronx	5	2	20041018-BX-5-2-2-1-R	10/18/2004	263.95	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041018-BX-5-1-4-1-R	10/18/2004	205.06	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041019-BX-5-1-3-1-R	10/19/2004	240.96	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041019-BX-5-1-2-1-R	10/19/2004	192.9	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041019-BX-5-2-1-1-R	10/19/2004	220.84	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041019-BX-5-2-4-1-R	10/19/2004	230.75	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041019-BX-5-3-1-1-R	10/19/2004	267.65	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041019-BX-5-1-2-2-R	10/19/2004	214.65	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041020-BX-4-2-2-1-R	10/20/2004	190.86	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041020-BX-5-2-3-1-R	10/20/2004	231.15	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041021-BX-5-2-2-1-R	10/21/2004	227.31	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Bronx	5	3	20041021-BX-5-3-3-1-R	10/21/2004	214.6	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041023-BX-5-2-2-1-R	10/23/2004	195.75	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041023-BX-5-2-3-1-R	10/23/2004	200.67	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041023-BX-5-3-1-1-R	10/23/2004	205.46	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041025-BX-5-3-3-1-R	10/25/2004	205.43	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041025-BX-5-2-2-1-R	10/25/2004	207.43	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041026-BX-5-3-4-1-R	10/26/2004	205.35	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041026-BX-5-2-2-1-R	10/26/2004	199.5	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041026-BX-5-1-3-1-R	10/26/2004	198.3	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041026-BX-5-3-1-1-R	10/26/2004	192.2	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041027-BX-5-2-2-1-R	10/27/2004	181.53	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041028-BX-5-3-3-1-R	10/28/2004	206.57	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041028-BX-5-2-1-1-R	10/28/2004	206.32	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041029-BX-5-1-3-1-R	10/29/2004	222.43	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041030-BX-4-2-2-1-R	10/30/2004	216.55	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041030-BX-4-2-2-2-R	10/30/2004	196.2	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041101-BX-4-2-2-2-R	11/1/2004	208.87	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041101-BX-5-3-3-1-R	11/1/2004	218.11	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041101-BX-5-2-2-1-R	11/1/2004	212.17	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041101-BX-4-2-2-1-R	11/1/2004	179.82	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041101-BX-4-2-2-3-R	11/1/2004	201.4	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041103-BX-4-2-2-1-R	11/3/2004	207.64	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041103-BX-4-2-1-1-R	11/3/2004	202.25	High Density/Low Income
Fall	Refuse	Bronx	7	2	20041103-BX-7-2-5-1-R	11/3/2004	206.3	High Density/Medium Income
Fall	Refuse	Bronx	5	2	20041104-BX-5-2-3-1-R	11/4/2004	204.65	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041104-BX-5-2-3-2-R	11/4/2004	200.15	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041104-BX-5-3-1-1-R	11/4/2004	205.32	High Density/Low Income
Fall	Refuse	Bronx	5	3	20041104-BX-5-3-1-2-R	11/4/2004	212.75	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041104-BX-4-2-2-1-R	11/4/2004	198.05	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041105-BX-5-2-2-1-R	11/5/2004	197.64	High Density/Low Income
Fall	Refuse	Bronx	4	2	20041105-BX-4-2-2-1-R	11/5/2004	200.15	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041106-BX-5-2-1-2-R	11/6/2004	202.65	High Density/Low Income
Fall	Refuse	Bronx	5	2	20041106-BX-5-2-1-1-R	11/6/2004	216.76	High Density/Low Income
Fall	Refuse	Bronx	5	1	20041106-BX-5-1-2-1-R	11/6/2004	208.7	High Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041018-BK-6-2-2-1-R	10/18/2004	228.09	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041018-BK-4-2-5-1-R	10/18/2004	249.82	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041018-BK-6-2-1-1-R	10/18/2004	209.4	Medium Density/High Income
Fall	Refuse	Brooklyn	4	3	20041019-BK-4-3-3-1-R	10/19/2004	263.24	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041019-BK-4-1-2-2-R	10/19/2004	239.5	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041019-BK-6-2-1-1-R	10/19/2004	242.75	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041019-BK-4-1-2-1-R	10/19/2004	237.15	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041019-BK-6-2-1-2-R	10/19/2004	222.23	Medium Density/High Income
Fall	Refuse	Brooklyn	4	3	20041019-BK-4-3-2-1-R	10/19/2004	206.05	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	2	20041019-BK-4-2-3-1-R	10/19/2004	210.6	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	2	20041019-BK-4-2-2-1-R	10/19/2004	306.06	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041019-BK-6-2-2-1-R	10/19/2004	221.98	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041019-BK-4-1-3-1-R	10/19/2004	267.36	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041019-BK-4-1-1-1-R	10/19/2004	300.3	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041019-BK-6-2-2-2-R	10/19/2004	207.03	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041020-BK-6-2-2-2-R	10/20/2004	306.26	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041020-BK-6-2-2-1-R	10/20/2004	270.66	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041020-BK-6-2-1-2-R	10/20/2004	242.06	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041020-BK-6-2-1-1-R	10/20/2004	258.58	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041021-BK-6-2-1-1-R	10/21/2004	220.75	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041021-BK-4-2-2-1-R	10/21/2004	219.97	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041021-BK-6-2-2-1-R	10/21/2004	229.95	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041021-BK-4-2-3-1-R	10/21/2004	212.2	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041021-BK-4-1-1-2-R	10/21/2004	195.03	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041021-BK-4-1-1-1-R	10/21/2004	217.24	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-1-1-R	10/22/2004	217.7	Medium Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Brooklyn	17	1	20041022-BK-17-1-1-1-R	10/22/2004	217.1	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-1-5-R	10/22/2004	199.3	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-2-2-R	10/22/2004	333.04	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-2-1-R	10/22/2004	126.38	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041022-BK-4-1-1-1-R	10/22/2004	200.05	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	2	20041022-BK-4-2-5-1-R	10/22/2004	196.85	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-1-4-R	10/22/2004	212.63	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-1-3-R	10/22/2004	202.28	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041022-BK-6-2-1-2-R	10/22/2004	246.7	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041023-BK-6-2-2-1-R	10/23/2004	199.26	Medium Density/High Income
Fall	Refuse	Brooklyn	4	3	20041023-BK-4-3-2-1-R	10/23/2004	186.1	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041023-BK-4-1-2-1-R	10/23/2004	196.71	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041023-BK-6-2-1-1-R	10/23/2004	206.85	Medium Density/High Income
Fall	Refuse	Brooklyn	4	3	20041025-BK-4-3-1-1-R	10/25/2004	200.31	Medium Density/Low Income
Fall	Refuse	Brooklyn	17	1	20041025-BK-17-1-2-1-R	10/25/2004	238.4	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041025-BK-6-2-1-2-R	10/25/2004	212.99	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041025-BK-6-2-2-2-R	10/25/2004	169.41	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041025-BK-6-2-1-1-R	10/25/2004	238.62	Medium Density/High Income
Fall	Refuse	Brooklyn	3	3	20041025-BK-3-3-2-2-R	10/25/2004	252.97	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041025-BK-6-2-2-1-R	10/25/2004	214.24	Medium Density/High Income
Fall	Refuse	Brooklyn	3	3	20041025-BK-3-3-2-1-R	10/25/2004	272.27	Medium Density/Low Income
Fall	Refuse	Brooklyn	17	1	20041026-BK-17-1-3-1-R	10/26/2004	202.49	Medium Density/Low Income
Fall	Refuse	Brooklyn	17	1	20041026-BK-17-1-5-1-R	10/26/2004	196.96	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041026-BK-6-2-2-1-R	10/26/2004	188.16	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041026-BK-4-1-1-1-R	10/26/2004	209.79	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	3	20041026-BK-4-3-4-1-R	10/26/2004	189.91	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041027-BK-6-2-1-2-R	10/27/2004	198.4	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041027-BK-6-2-1-1-R	10/27/2004	205.62	Medium Density/High Income
Fall	Refuse	Brooklyn	4	3	20041028-BK-4-3-3-1-R	10/28/2004	207.61	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041028-BK-6-2-1-1-R	10/28/2004	206.05	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041028-BK-6-2-2-2-R	10/28/2004	214.59	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041028-BK-6-2-2-1-R	10/28/2004	211.9	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041029-BK-4-1-1-1-R	10/29/2004	200.46	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041029-BK-4-1-3-1-R	10/29/2004	201.4	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	3	20041029-BK-4-3-2-1-R	10/29/2004	206.9	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041029-BK-6-2-2-2-R	10/29/2004	200.35	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041029-BK-4-2-1-1-R	10/29/2004	215.42	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041029-BK-6-2-2-1-R	10/29/2004	203.32	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041030-BK-4-2-4-1-R	10/30/2004	215.85	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	2	20041030-BK-4-2-1-2-R	10/30/2004	203.35	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041030-BK-6-2-1-1-R	10/30/2004	204.44	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041030-BK-4-2-4-2-R	10/30/2004	211.21	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	3	20041030-BK-4-3-3-1-R	10/30/2004	203.3	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	2	20041030-BK-4-2-1-1-R	10/30/2004	224.49	Medium Density/Low Income
Fall	Refuse	Brooklyn	17	1	20041030-BK-17-1-1-1-R	10/30/2004	198.48	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041030-BK-6-2-2-2-R	10/30/2004	210	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041030-BK-6-2-1-2-R	10/30/2004	203.4	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041030-BK-6-2-2-1-R	10/30/2004	205.14	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041030-BK-4-2-2-1-R	10/30/2004	211.85	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041030-BK-4-1-3-1-R	10/30/2004	206.67	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041101-BK-6-2-2-1-R	11/1/2004	208.5	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041101-BK-6-2-1-1-R	11/1/2004	206.87	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041101-BK-6-2-1-2-R	11/1/2004	208.22	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041101-BK-4-1-2-1-R	11/1/2004	202.92	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041103-BK-6-2-1-2-R	11/3/2004	224.66	Medium Density/High Income
Fall	Refuse	Brooklyn	17	1	20041103-BK-17-1-2-1-R	11/3/2004	215.59	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	3	20041103-BK-4-3-3-1-R	11/3/2004	201.71	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041103-BK-6-2-1-1-R	11/3/2004	202.95	Medium Density/High Income
Fall	Refuse	Brooklyn	4	2	20041104-BK-4-2-1-1-R	11/4/2004	212.86	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041104-BK-6-2-2-1-R	11/4/2004	203.55	Medium Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Brooklyn	3	3	20041104-BK-3-3-3-1-R	11/4/2004	213.4	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041104-BK-6-2-2-3-R	11/4/2004	216.15	Medium Density/High Income
Fall	Refuse	Brooklyn	17	1	20041104-BK-17-1-1-2-R	11/4/2004	211.14	Medium Density/Low Income
Fall	Refuse	Brooklyn	17	1	20041104-BK-17-1-1-1-R	11/4/2004	204.27	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041104-BK-6-2-2-2-R	11/4/2004	195.75	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041105-BK-6-2-2-1-R	11/5/2004	228.82	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041105-BK-6-2-1-2-R	11/5/2004	198.72	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041105-BK-6-2-1-1-R	11/5/2004	208.98	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041106-BK-4-1-1-2-R	11/6/2004	220.08	Medium Density/Low Income
Fall	Refuse	Brooklyn	6	2	20041106-BK-6-2-1-2-R	11/6/2004	247.21	Medium Density/High Income
Fall	Refuse	Brooklyn	6	2	20041106-BK-6-2-1-1-R	11/6/2004	203.83	Medium Density/High Income
Fall	Refuse	Brooklyn	4	1	20041106-BK-4-1-2-1-R	11/6/2004	228	Medium Density/Low Income
Fall	Refuse	Brooklyn	17	1	20041106-BK-17-1-3-1-R	11/6/2004	248.69	Medium Density/Low Income
Fall	Refuse	Brooklyn	4	1	20041106-BK-4-1-1-1-R	11/6/2004	238.9	Medium Density/Low Income
Fall	Refuse	Queens	5	2	20041018-Q-5-2-1-1-R	10/18/2004	209.34	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041018-Q-3-2-3-1-R	10/18/2004	230.19	High Density/Medium Income
Fall	Refuse	Queens	5	2	20041018-Q-5-2-1-2-R	10/18/2004	233.84	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041018-Q-3-2-3-2-R	10/18/2004	232.4	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041018-Q-3-2-2-1-R	10/18/2004	241.8	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041018-Q-3-2-4-1-R	10/18/2004	225.69	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041018-Q-1-4-3-1-R	10/18/2004	221.84	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041018-Q-3-2-1-1-R	10/18/2004	331.49	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041018-Q-3-2-2-2-R	10/18/2004	289.45	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041019-Q-1-4-2-1-R	10/19/2004	236.27	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041019-Q-7-1-1-2-R	10/19/2004	278.25	High Density/Medium Income
Fall	Refuse	Queens	13	4	20041019-Q-13-4-4-1-R	10/19/2004	240.8	Low Density/High Income
Fall	Refuse	Queens	5	2	20041019-Q-5-2-1-1-R	10/19/2004	250.45	Medium Density/Medium Income
Fall	Refuse	Queens	9	2	20041019-Q-9-2-4-1-R	10/19/2004	237.68	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041019-Q-9-1-1-2-R	10/19/2004	260.43	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041019-Q-9-1-3-2-R	10/19/2004	220.64	Low Density/Medium Income
Fall	Refuse	Queens	7	1	20041019-Q-7-1-1-1-R	10/19/2004	269.11	High Density/Medium Income
Fall	Refuse	Queens	9	1	20041019-Q-9-1-3-4-R	10/19/2004	272.1	Low Density/Medium Income
Fall	Refuse	Queens	10	4	20041019-Q-10-4-3-1-R	10/19/2004	175.42	Low Density/High Income
Fall	Refuse	Queens	10	4	20041019-Q-10-4-4-1-R	10/19/2004	182.25	Low Density/High Income
Fall	Refuse	Queens	9	1	20041019-Q-9-1-1-1-R	10/19/2004	275.14	Low Density/Medium Income
Fall	Refuse	Queens	4	3	20041019-Q-4-3-5-1-R	10/19/2004	282.21	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041019-Q-7-1-4-1-R	10/19/2004	288.55	High Density/Medium Income
Fall	Refuse	Queens	4	3	20041019-Q-4-3-5-2-R	10/19/2004	237.2	Medium Density/Medium Income
Fall	Refuse	Queens	9	1	20041019-Q-9-1-3-3-R	10/19/2004	258.5	Low Density/Medium Income
Fall	Refuse	Queens	10	4	20041020-Q-10-4-3-1-R	10/20/2004	232.06	Low Density/High Income
Fall	Refuse	Queens	5	2	20041020-Q-5-2-3-1-R	10/20/2004	232.3	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041020-Q-5-2-1-2-R	10/20/2004	306.37	Medium Density/Medium Income
Fall	Refuse	Queens	4	3	20041020-Q-4-3-4-1-R	10/20/2004	279.2	Medium Density/Medium Income
Fall	Refuse	Queens	4	3	20041020-Q-4-3-3-1-R	10/20/2004	224.29	Medium Density/Medium Income
Fall	Refuse	Queens	13	5	20041020-Q-13-5-3-1-R	10/20/2004	209.26	Low Density/High Income
Fall	Refuse	Queens	1	4	20041020-Q-1-4-2-1-R	10/20/2004	199.84	Medium Density/Medium Income
Fall	Refuse	Queens	13	4	20041020-Q-13-4-2-1-R	10/20/2004	165.82	Low Density/High Income
Fall	Refuse	Queens	5	2	20041020-Q-5-2-2-1-R	10/20/2004	203.41	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041020-Q-7-1-3-1-R	10/20/2004	297.51	High Density/Medium Income
Fall	Refuse	Queens	5	2	20041020-Q-5-2-1-1-R	10/20/2004	234.6	Medium Density/Medium Income
Fall	Refuse	Queens	13	7	20041021-Q-13-7-2-1-R	10/21/2004	226.62	Low Density/High Income
Fall	Refuse	Queens	13	6	20041021-Q-13-6-3-1-R	10/21/2004	213.7	Low Density/High Income
Fall	Refuse	Queens	7	1	20041021-Q-7-1-2-1-R	10/21/2004	228.64	High Density/Medium Income
Fall	Refuse	Queens	5	2	20041021-Q-5-2-3-1-R	10/21/2004	217.35	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041021-Q-3-2-3-1-R	10/21/2004	235.05	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041021-Q-1-4-2-1-R	10/21/2004	250.04	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041021-Q-3-2-1-1-R	10/21/2004	282.32	High Density/Medium Income
Fall	Refuse	Queens	5	2	20041021-Q-5-2-3-2-R	10/21/2004	268.59	Medium Density/Medium Income
Fall	Refuse	Queens	7	6	20041022-Q-7-6-1-1-R	10/22/2004	212.04	Low Density/High Income
Fall	Refuse	Queens	9	2	20041022-Q-9-2-2-1-R	10/22/2004	232.43	Low Density/Medium Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Queens	9	1	20041022-Q-9-1-3-1-R	10/22/2004	203.06	Low Density/Medium Income
Fall	Refuse	Queens	13	5	20041022-Q-13-5-3-1-R	10/22/2004	215.15	Low Density/High Income
Fall	Refuse	Queens	9	2	20041022-Q-9-2-4-1-R	10/22/2004	218.96	Low Density/Medium Income
Fall	Refuse	Queens	4	3	20041022-Q-4-3-3-1-R	10/22/2004	204.62	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041022-Q-7-1-2-1-R	10/22/2004	220.31	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041023-Q-1-4-3-1-R	10/23/2004	201.44	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041023-Q-3-2-3-2-R	10/23/2004	201.95	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041023-Q-1-4-2-1-R	10/23/2004	209.8	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041023-Q-3-2-3-1-R	10/23/2004	198.79	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041025-Q-3-2-1-3-R	10/25/2004	201.6	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041025-Q-3-2-4-1-R	10/25/2004	213.55	High Density/Medium Income
Fall	Refuse	Queens	10	4	20041025-Q-10-4-3-1-R	10/25/2004	213.48	Low Density/High Income
Fall	Refuse	Queens	3	2	20041025-Q-3-2-1-2-R	10/25/2004	193.21	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041025-Q-3-2-1-1-R	10/25/2004	210.24	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041025-Q-1-4-2-1-R	10/25/2004	202.54	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041026-Q-5-2-1-1-R	10/26/2004	207.71	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041026-Q-7-1-1-1-R	10/26/2004	199.4	High Density/Medium Income
Fall	Refuse	Queens	7	1	20041026-Q-7-1-1-2-R	10/26/2004	203.65	High Density/Medium Income
Fall	Refuse	Queens	7	1	20041026-Q-7-1-2-1-R	10/26/2004	206.86	High Density/Medium Income
Fall	Refuse	Queens	9	2	20041026-Q-9-2-2-1-R	10/26/2004	202.6	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041026-Q-1-4-3-1-R	10/26/2004	204.03	Medium Density/Medium Income
Fall	Refuse	Queens	9	1	20041026-Q-9-1-3-3-R	10/26/2004	208.56	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041026-Q-9-1-3-1-R	10/26/2004	205.35	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041026-Q-1-4-4-1-R	10/26/2004	210.36	Medium Density/Medium Income
Fall	Refuse	Queens	9	1	20041026-Q-9-1-3-2-R	10/26/2004	208.6	Low Density/Medium Income
Fall	Refuse	Queens	5	2	20041027-Q-5-2-1-3-R	10/27/2004	195.77	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041027-Q-5-2-1-1-R	10/27/2004	206.84	Medium Density/Medium Income
Fall	Refuse	Queens	13	7	20041027-Q-13-7-3-1-R	10/27/2004	205.05	Low Density/High Income
Fall	Refuse	Queens	13	6	20041027-Q-13-6-2-1-R	10/27/2004	198.52	Low Density/High Income
Fall	Refuse	Queens	4	3	20041027-Q-4-3-1-1-R	10/27/2004	158.86	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041027-Q-5-2-1-2-R	10/27/2004	200.45	Medium Density/Medium Income
Fall	Refuse	Queens	4	3	20041027-Q-4-3-1-2-R	10/27/2004	197.61	Medium Density/Medium Income
Fall	Refuse	Queens	4	3	20041027-Q-4-3-4-1-R	10/27/2004	197.05	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041028-Q-5-2-1-1-R	10/28/2004	205.46	Medium Density/Medium Income
Fall	Refuse	Queens	10	4	20041028-Q-10-4-1-1-R	10/28/2004	204.87	Low Density/High Income
Fall	Refuse	Queens	1	4	20041029-Q-1-4-3-1-R	10/29/2004	202.9	Medium Density/Medium Income
Fall	Refuse	Queens	4	3	20041029-Q-4-3-4-1-R	10/29/2004	243.71	Medium Density/Medium Income
Fall	Refuse	Queens	9	2	20041029-Q-9-2-4-2-R	10/29/2004	208.65	Low Density/Medium Income
Fall	Refuse	Queens	9	2	20041029-Q-9-2-4-1-R	10/29/2004	207.83	Low Density/Medium Income
Fall	Refuse	Queens	9	2	20041029-Q-9-2-2-1-R	10/29/2004	197.5	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041029-Q-1-4-3-2-R	10/29/2004	276.45	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041029-Q-7-1-2-1-R	10/29/2004	206.35	High Density/Medium Income
Fall	Refuse	Queens	9	1	20041029-Q-9-1-3-2-R	10/29/2004	211.72	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041029-Q-9-1-3-1-R	10/29/2004	195.3	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041029-Q-1-4-1-1-R	10/29/2004	205.35	Medium Density/Medium Income
Fall	Refuse	Queens	9	2	20041029-Q-9-2-4-3-R	10/29/2004	203.96	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041030-Q-1-4-2-1-R	10/30/2004	199.02	Medium Density/Medium Income
Fall	Refuse	Queens	13	7	20041030-Q-13-7-1-1-R	10/30/2004	212.03	Low Density/High Income
Fall	Refuse	Queens	13	7	20041101-Q-13-7-4-1-R	11/1/2004	206.48	Low Density/High Income
Fall	Refuse	Queens	7	1	20041101-Q-7-1-2-1-R	11/1/2004	180.77	High Density/Medium Income
Fall	Refuse	Queens	4	3	20041101-Q-4-3-1-1-R	11/1/2004	209.86	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041101-Q-7-1-2-2-R	11/1/2004	210.32	High Density/Medium Income
Fall	Refuse	Queens	13	5	20041101-Q-13-5-3-1-R	11/1/2004	211.18	Low Density/High Income
Fall	Refuse	Queens	3	2	20041101-Q-3-2-1-2-R	11/1/2004	209.7	High Density/Medium Income
Fall	Refuse	Queens	13	8	20041101-Q-13-8-2-1-R	11/1/2004	197.9	Low Density/High Income
Fall	Refuse	Queens	3	2	20041101-Q-3-2-1-1-R	11/1/2004	202.02	High Density/Medium Income
Fall	Refuse	Queens	7	1	20041103-Q-7-1-1-1-R	11/3/2004	208.12	High Density/Medium Income
Fall	Refuse	Queens	7	1	20041103-Q-7-1-2-1-R	11/3/2004	217.4	High Density/Medium Income
Fall	Refuse	Queens	1	4	20041103-Q-1-4-1-3-R	11/3/2004	215.96	Medium Density/Medium Income
Fall	Refuse	Queens	1	4	20041103-Q-1-4-1-2-R	11/3/2004	214.19	Medium Density/Medium Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Queens	4	3	20041103-Q-4-3-4-1-R	11/3/2004	205.93	Medium Density/Medium Income
Fall	Refuse	Queens	7	1	20041103-Q-7-1-4-1-R	11/3/2004	202.5	High Density/Medium Income
Fall	Refuse	Queens	13	6	20041103-Q-13-6-2-1-R	11/3/2004	207.32	Low Density/High Income
Fall	Refuse	Queens	9	2	20041103-Q-9-2-2-2-R	11/3/2004	211.7	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041103-Q-1-4-1-4-R	11/3/2004	207	Medium Density/Medium Income
Fall	Refuse	Queens	1	4	20041103-Q-1-4-1-1-R	11/3/2004	198.4	Medium Density/Medium Income
Fall	Refuse	Queens	9	2	20041103-Q-9-2-2-1-R	11/3/2004	211.45	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041103-Q-1-4-3-1-R	11/3/2004	193.85	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041104-Q-5-2-1-1-R	11/4/2004	206.4	Medium Density/Medium Income
Fall	Refuse	Queens	13	3	20041104-Q-13-3-5-1-R	11/4/2004	207.3	Low Density/High Income
Fall	Refuse	Queens	13	8	20041104-Q-13-8-3-2-R	11/4/2004	221.07	Low Density/High Income
Fall	Refuse	Queens	13	8	20041104-Q-13-8-3-1-R	11/4/2004	176.87	Low Density/High Income
Fall	Refuse	Queens	3	2	20041104-Q-3-2-4-2-R	11/4/2004	197.6	High Density/Medium Income
Fall	Refuse	Queens	7	3	20041104-Q-7-3-5-2-R	11/4/2004	180.9	High Density/Medium Income
Fall	Refuse	Queens	7	1	20041104-Q-7-1-2-1-R	11/4/2004	223.88	High Density/Medium Income
Fall	Refuse	Queens	3	2	20041104-Q-3-2-4-1-R	11/4/2004	240.35	High Density/Medium Income
Fall	Refuse	Queens	7	3	20041104-Q-7-3-5-1-R	11/4/2004	217.55	High Density/Medium Income
Fall	Refuse	Queens	7	3	20041104-Q-7-3-5-3-R	11/4/2004	209.25	High Density/Medium Income
Fall	Refuse	Queens	4	3	20041105-Q-4-3-4-1-R	11/5/2004	203.2	Medium Density/Medium Income
Fall	Refuse	Queens	9	1	20041105-Q-9-1-3-2-R	11/5/2004	201.7	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041105-Q-9-1-1-1-R	11/5/2004	209.2	Low Density/Medium Income
Fall	Refuse	Queens	9	2	20041105-Q-9-2-2-1-R	11/5/2004	216.54	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041105-Q-9-1-1-2-R	11/5/2004	198.47	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041105-Q-9-1-1-3-R	11/5/2004	215.57	Low Density/Medium Income
Fall	Refuse	Queens	9	1	20041105-Q-9-1-3-1-R	11/5/2004	213.7	Low Density/Medium Income
Fall	Refuse	Queens	7	1	20041105-Q-7-1-2-1-R	11/5/2004	177.88	High Density/Medium Income
Fall	Refuse	Queens	4	3	20041105-Q-4-3-4-2-R	11/5/2004	222.28	Medium Density/Medium Income
Fall	Refuse	Queens	7	6	20041105-Q-7-6-1-1-R	11/5/2004	202.66	Low Density/High Income
Fall	Refuse	Queens	13	5	20041105-Q-13-5-3-1-R	11/5/2004	221.55	Low Density/High Income
Fall	Refuse	Queens	5	2	20041105-Q-5-2-2-1-R	11/5/2004	210.3	Medium Density/Medium Income
Fall	Refuse	Queens	9	2	20041105-Q-9-2-4-1-R	11/5/2004	200.25	Low Density/Medium Income
Fall	Refuse	Queens	1	4	20041106-Q-1-4-1-1-R	11/6/2004	201.85	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041106-Q-5-2-2-1-R	11/6/2004	213.51	Medium Density/Medium Income
Fall	Refuse	Queens	5	2	20041106-Q-5-2-3-1-R	11/6/2004	215.73	Medium Density/Medium Income
Fall	Refuse	Queens	3	2	20041106-Q-3-2-3-1-R	11/6/2004	213.43	High Density/Medium Income
Fall	Refuse	Queens	11	3	20041106-Q-11-3-1-1-R	11/6/2004	211.15	Low Density/High Income
Fall	Refuse	Queens	13	8	20041106-Q-13-8-1-1-R	11/6/2004	201.25	Low Density/High Income
Fall	Refuse	Staten Island	2	2	20041018-SI-2-2-2-1-R	10/18/2004	237.57	Low Density/High Income
Fall	Refuse	Staten Island	3	8	20041019-SI-3-8-1-1-R	10/19/2004	210.1	Low Density/High Income
Fall	Refuse	Staten Island	1	3	20041019-SI-1-3-1-1-R	10/19/2004	206.32	Low Density/Medium Income
Fall	Refuse	Staten Island	2	4	20041020-SI-2-4-2-1-R	10/20/2004	303.41	Low Density/High Income
Fall	Refuse	Staten Island	2	2	20041020-SI-2-2-3-1-R	10/20/2004	289.48	Low Density/High Income
Fall	Refuse	Staten Island	3	5	20041020-SI-3-5-3-1-R	10/20/2004	260.81	Low Density/High Income
Fall	Refuse	Staten Island	3	1	20041020-SI-3-1-2-1-R	10/20/2004	237.01	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041020-SI-3-1-3-1-R	10/20/2004	209	Low Density/Medium Income
Fall	Refuse	Staten Island	3	8	20041021-SI-3-8-1-1-R	10/21/2004	216.11	Low Density/High Income
Fall	Refuse	Staten Island	3	4	20041021-SI-3-4-1-1-R	10/21/2004	209.33	Low Density/High Income
Fall	Refuse	Staten Island	3	4	20041021-SI-3-4-2-1-R	10/21/2004	196.31	Low Density/High Income
Fall	Refuse	Staten Island	3	6	20041022-SI-3-6-1-1-R	10/22/2004	200.7	Low Density/High Income
Fall	Refuse	Staten Island	2	2	20041023-SI-2-2-3-1-R	10/23/2004	214.9	Low Density/High Income
Fall	Refuse	Staten Island	2	4	20041023-SI-2-4-1-1-R	10/23/2004	278.68	Low Density/High Income
Fall	Refuse	Staten Island	3	1	20041023-SI-3-1-2-1-R	10/23/2004	208.18	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041023-SI-3-1-2-2-R	10/23/2004	196.97	Low Density/Medium Income
Fall	Refuse	Staten Island	3	4	20041025-SI-3-4-1-1-R	10/25/2004	200.89	Low Density/High Income
Fall	Refuse	Staten Island	1	3	20041026-SI-1-3-1-1-R	10/26/2004	179.4	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-2-2-R	10/27/2004	199.4	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-3-1-R	10/27/2004	202.11	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-3-4-R	10/27/2004	199.42	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-3-3-R	10/27/2004	192.9	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-3-2-R	10/27/2004	206.1	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-1-1-R	10/27/2004	199.55	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-2-1-R	10/27/2004	203.95	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041027-SI-3-1-1-2-R	10/27/2004	206.2	Low Density/Medium Income
Fall	Refuse	Staten Island	3	2	20041027-SI-3-2-5-1-R	10/27/2004	213.79	Low Density/High Income
Fall	Refuse	Staten Island	3	6	20041028-SI-3-6-1-1-R	10/28/2004	212.55	Low Density/High Income
Fall	Refuse	Staten Island	2	4	20041028-SI-2-4-4-1-R	10/28/2004	201.15	Low Density/High Income
Fall	Refuse	Staten Island	3	4	20041029-SI-3-4-3-1-R	10/29/2004	206.9	Low Density/High Income
Fall	Refuse	Staten Island	3	1	$20041030-S I-3-1-2-1-R$	10/30/2004	207.74	Low Density/Medium Income
Fall	Refuse	Staten Island	2	4	$20041030-S I-2-4-2-1-R$	10/30/2004	205.65	Low Density/High Income
Fall	Refuse	Staten Island	3	1	$20041030-\mathrm{SI}-3-1-1-1-\mathrm{R}$	10/30/2004	203.25	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	$20041030-S I-3-1-2-2-R$	10/30/2004	216.55	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	20041030-SI-3-1-1-2-R	10/30/2004	216.56	Low Density/Medium Income
Fall	Refuse	Staten Island	2	2	$20041101-$ SI-2-2-3-1-R	11/1/2004	187.83	Low Density/High Income
Fall	Refuse	Staten Island	3	6	$20041101-$ SI-3-6-1-1-R	11/1/2004	221.3	Low Density/High Income
Fall	Refuse	Staten Island	2	4	$20041101-\mathrm{SI}-2-4-3-1-\mathrm{R}$	11/1/2004	242.19	Low Density/High Income
Fall	Refuse	Staten Island	1	3	20041103-SI-1-3-1-1-R	11/3/2004	213.35	Low Density/Medium Income
Fall	Refuse	Staten Island	2	2	$20041103-\mathrm{SI}-2-2-3-1-\mathrm{R}$	11/3/2004	210.51	Low Density/High Income
Fall	Refuse	Staten Island	3	4	20041103-SI-3-4-2-1-R	11/3/2004	236.1	Low Density/High Income
Fall	Refuse	Staten Island	2	2	20041104-SI-2-2-6-1-R	11/4/2004	222.75	Low Density/High Income
Fall	Refuse	Staten Island	3	5	20041106-SI-3-5-2-1-R	11/6/2004	225.61	Low Density/High Income
Fall	Refuse	Staten Island	3	1	20041106-SI-3-1-1-1-R	11/6/2004	212.01	Low Density/Medium Income
Fall	Refuse	Staten Island	3	1	$20041106-\mathrm{SI}-3-1-1-2-\mathrm{R}$	11/6/2004	221.58	Low Density/Medium Income
Fall	Paper	Manhattan	6	3	20041018-M-6-3-2-1-P	10/18/2004	119.29	High Density/High Income
Fall	Paper	Manhattan	6	3	20041018-M-6-3-3-1-P	10/18/2004	105.15	High Density/High Income
Fall	Paper	Manhattan	7	2	20041018-M-7-2-2-1-P	10/18/2004	113.76	High Density/High Income
Fall	Paper	Manhattan	3	3	20041018-M-3-3-1-2-P	10/18/2004	102.69	High Density/Medium Income
Fall	Paper	Manhattan	3	3	20041018-M-3-3-1-1-P	10/18/2004	106.71	High Density/Medium Income
Fall	Paper	Manhattan	2	3	20041019-M-2-3-3-1-P	10/19/2004	146.16	High Density/High Income
Fall	Paper	Manhattan	8	3	20041020-M-8-3-2-1-P	10/20/2004	154.11	High Density/High Income
Fall	Paper	Manhattan	8	3	20041021-M-8-3-5-1-P	10/21/2004	113.13	High Density/High Income
Fall	Paper	Manhattan	3	1	20041023-M-3-1-1-1-P	10/23/2004	110.15	High Density/Low Income
Fall	Paper	Manhattan	2	2	20041025-M-2-2-2-1-P	10/25/2004	114.62	High Density/High Income
Fall	Paper	Manhattan	2	3	20041029-M-2-3-2-1-P	10/29/2004	109.81	High Density/High Income
Fall	Paper	Manhattan	3	1	20041030-M-3-1-1-2-P	10/30/2004	110.41	High Density/Low Income
Fall	Paper	Manhattan	3	1	20041030-M-3-1-1-1-P	10/30/2004	106.34	High Density/Low Income
Fall	Paper	Manhattan	8	5	20041101-M-8-5-1-1-P	11/1/2004	109.35	High Density/High Income
Fall	Paper	Manhattan	3	3	20041101-M-3-3-1-1-P	11/1/2004	106.22	High Density/Medium Income
Fall	Paper	Manhattan	8	2	20041105-M-8-2-3-1-P	11/5/2004	94.06	High Density/High Income
Fall	Paper	Manhattan	3	1	20041106-M-3-1-1-1-P	11/6/2004	103.25	High Density/Low Income
Fall	Paper	Bronx	5	2	20041022-BX-5-2-1-1-P	10/22/2004	107.14	High Density/Low Income
Fall	Paper	Bronx	5	3	20041026-BX-5-3-1-1-P	10/26/2004	129.22	High Density/Low Income
Fall	Paper	Bronx	5	3	20041026-BX-5-3-1-2-P	10/26/2004	140.19	High Density/Low Income
Fall	Paper	Bronx	5	2	20041028-BX-5-2-1-1-P	10/28/2004	107.35	High Density/Low Income
Fall	Paper	Bronx	5	3	20041103-BX-5-3-1-1-P	11/3/2004	108.23	High Density/Low Income
Fall	Paper	Bronx	5	3	20041103-BX-5-3-1-2-P	11/3/2004	106.06	High Density/Low Income
Fall	Paper	Brooklyn	4	1	20041020-BK-4-1-1-1-P	10/20/2004	184.51	Medium Density/Low Income
Fall	Paper	Brooklyn	4	3	20041021-BK-4-3-3-2-P	10/21/2004	111.75	Medium Density/Low Income
Fall	Paper	Brooklyn	6	2	20041021-BK-6-2-1-2-P	10/21/2004	99.06	Medium Density/High Income
Fall	Paper	Brooklyn	4	3	20041021-BK-4-3-3-1-P	10/21/2004	124.24	Medium Density/Low Income
Fall	Paper	Brooklyn	6	2	20041021-BK-6-2-1-1-P	10/21/2004	104.04	Medium Density/High Income
Fall	Paper	Brooklyn	4	3	20041021-BK-4-3-3-3-P	10/21/2004	119.6	Medium Density/Low Income
Fall	Paper	Brooklyn	6	2	20041022-BK-6-2-1-1-P	10/22/2004	111.82	Medium Density/High Income
Fall	Paper	Brooklyn	6	2	20041022-BK-6-2-1-2-P	10/22/2004	106.65	Medium Density/High Income
Fall	Paper	Brooklyn	6	2	20041023-BK-6-2-1-1-P	10/23/2004	111.78	Medium Density/High Income
Fall	Paper	Brooklyn	4	2	20041025-BK-4-2-2-1-P	10/25/2004	105.04	Medium Density/Low Income
Fall	Paper	Brooklyn	3	3	20041025-BK-3-3-1-1-P	10/25/2004	115.9	Medium Density/Low Income
Fall	Paper	Brooklyn	4	1	20041026-BK-4-1-1-1-P	10/26/2004	145.87	Medium Density/Low Income
Fall	Paper	Brooklyn	6	2	20041028-BK-6-2-1-1-P	10/28/2004	104.82	Medium Density/High Income
Fall	Paper	Brooklyn	6	2	20041030-BK-6-2-2-1-P	10/30/2004	104.22	Medium Density/High Income
Fall	Paper	Brooklyn	4	2	20041101-BK-4-2-1-1-P	11/1/2004	121.88	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	Paper	Brooklyn	17	1	20041101-BK-17-1-2-1-P	11/1/2004	100.13	Medium Density/Low Income
Fall	Paper	Brooklyn	6	2	20041106-BK-6-2-2-1-P	11/6/2004	106.16	Medium Density/High Income
Fall	Paper	Brooklyn	4	2	20041106-BK-4-2-1-1-P	11/6/2004	112.6	Medium Density/Low Income
Fall	Paper	Brooklyn	6	2	20041106-BK-6-2-1-2-P	11/6/2004	108.36	Medium Density/High Income
Fall	Paper	Brooklyn	6	2	20041106-BK-6-2-1-1-P	11/6/2004	109.51	Medium Density/High Income
Fall	Paper	Queens	5	2	20041018-Q-5-2-2-1-P	10/18/2004	108.19	Medium Density/Medium Income
Fall	Paper	Queens	1	4	20041021-Q-1-4-1-1-P	10/21/2004	124.14	Medium Density/Medium Income
Fall	Paper	Queens	3	2	20041022-Q-3-2-1-1-P	10/22/2004	108	High Density/Medium Income
Fall	Paper	Queens	5	2	20041022-Q-5-2-1-1-P	10/22/2004	107.68	Medium Density/Medium Income
Fall	Paper	Queens	4	3	20041022-Q-4-3-1-2-P	10/22/2004	97.02	Medium Density/Medium Income
Fall	Paper	Queens	4	3	20041022-Q-4-3-1-1-P	10/22/2004	129.97	Medium Density/Medium Income
Fall	Paper	Queens	3	2	20041023-Q-3-2-1-1-P	10/23/2004	105.05	High Density/Medium Income
Fall	Paper	Queens	3	2	20041023-Q-3-2-2-1-P	10/23/2004	116.65	High Density/Medium Income
Fall	Paper	Queens	13	4	20041023-Q-13-4-2-1-P	10/23/2004	114.73	Low Density/High Income
Fall	Paper	Queens	5	2	20041023-Q-5-2-4-1-P	10/23/2004	102.14	Medium Density/Medium Income
Fall	Paper	Queens	3	2	20041025-Q-3-2-2-1-P	10/25/2004	101.35	High Density/Medium Income
Fall	Paper	Queens	1	4	20041027-Q-1-4-1-1-P	10/27/2004	104.9	Medium Density/Medium Income
Fall	Paper	Queens	1	4	20041027-Q-1-4-1-2-P	10/27/2004	125.68	Medium Density/Medium Income
Fall	Paper	Queens	9	1	20041029-Q-9-1-1-1-P	10/29/2004	112.15	Low Density/Medium Income
Fall	Paper	Queens	7	6	20041029-Q-7-6-1-1-P	10/29/2004	109.02	Low Density/High Income
Fall	Paper	Queens	3	2	20041030-Q-3-2-2-1-P	10/30/2004	114.26	High Density/Medium Income
Fall	Paper	Queens	3	2	20041030-Q-3-2-2-2-P	10/30/2004	124.38	High Density/Medium Income
Fall	Paper	Queens	4	3	20041030-Q-4-3-1-1-P	10/30/2004	116.2	Medium Density/Medium Income
Fall	Paper	Queens	3	2	20041101-Q-3-2-2-1-P	11/1/2004	103.12	High Density/Medium Income
Fall	Paper	Queens	13	5	20041103-Q-13-5-1-1-P	11/3/2004	103.15	Low Density/High Income
Fall	Paper	Queens	13	6	20041104-Q-13-6-3-1-P	11/4/2004	113.46	Low Density/High Income
Fall	Paper	Queens	5	2	20041105-Q-5-2-1-1-P	11/5/2004	106.83	Medium Density/Medium Income
Fall	Paper	Staten Island	3	5	20041018-SI-3-5-4-1-P	10/18/2004	119.16	Low Density/High Income
Fall	Paper	Staten Island	1	3	20041022-SI-1-3-1-1-P	10/22/2004	107.76	Low Density/Medium Income
Fall	Paper	Staten Island	1	3	20041022-SI-1-3-1-2-P	10/22/2004	117.59	Low Density/Medium Income
Fall	Paper	Staten Island	3	1	20041027-SI-3-1-1-1-P	10/27/2004	106	Low Density/Medium Income
Fall	Paper	Staten Island	3	1	20041027-SI-3-1-3-1-P	10/27/2004	114.35	Low Density/Medium Income
Fall	Paper	Staten Island	3	1	20041027-SI-3-1-4-1-P	10/27/2004	101.55	Low Density/Medium Income
Fall	Paper	Staten Island	3	1	20041027-SI-3-1-3-2-P	10/27/2004	122.72	Low Density/Medium Income
Fall	Paper	Staten Island	3	5	20041029-SI-3-5-2-1-P	10/29/2004	109.08	Low Density/High Income
Fall	Paper	Staten Island	1	3	20041029-SI-1-3-1-1-P	10/29/2004	109.09	Low Density/Medium Income
Fall	Paper	Staten Island	3	8	20041030-SI-3-8-2-1-P	10/30/2004	112.26	Low Density/High Income
Fall	Paper	Staten Island	3	4	20041030-SI-3-4-1-1-P	10/30/2004	103.2	Low Density/High Income
Fall	Paper	Staten Island	2	2	20041104-SI-2-2-1-1-P	11/4/2004	102.99	Low Density/High Income
Fall	Paper	Staten Island	3	5	20041105-SI-3-5-2-1-P	11/5/2004	105.2	Low Density/High Income
Fall	Paper	Staten Island	1	3	20041105-SI-1-3-1-1-P	11/5/2004	111.35	Low Density/Medium Income
Fall	Paper	Staten Island	1	3	20041105-SI-1-3-1-2-P	11/5/2004	117.99	Low Density/Medium Income
Fall	MGP	Manhattan	7	2	20041018-M-7-2-1-1-M	10/18/2004	100.85	High Density/High Income
Fall	MGP	Manhattan	2	2	20041018-M-2-2-1-1-M	10/18/2004	103.75	High Density/High Income
Fall	MGP	Manhattan	8	5	20041018-M-8-5-1-1-M	10/18/2004	164.38	High Density/High Income
Fall	MGP	Manhattan	8	5	20041018-M-8-5-3-3-M	10/18/2004	106.46	High Density/High Income
Fall	MGP	Manhattan	8	5	20041018-M-8-5-3-1-M	10/18/2004	145.29	High Density/High Income
Fall	MGP	Manhattan	3	3	20041018-M-3-3-1-1-M	10/18/2004	123.17	High Density/Medium Income
Fall	MGP	Manhattan	8	5	20041018-M-8-5-3-2-M	10/18/2004	151.57	High Density/High Income
Fall	MGP	Manhattan	8	3	20041021-M-8-3-2-1-M	10/21/2004	118.02	High Density/High Income
Fall	MGP	Manhattan	8	5	20041021-M-8-5-1-1-M	10/21/2004	98.56	High Density/High Income
Fall	MGP	Manhattan	8	5	20041021-M-8-5-2-1-M	10/21/2004	148.96	High Density/High Income
Fall	MGP	Manhattan	7	3	20041022-M-7-3-1-1-M	10/22/2004	135.27	High Density/High Income
Fall	MGP	Manhattan	8	2	20041022-M-8-2-2-2-M	10/22/2004	96.37	High Density/High Income
Fall	MGP	Manhattan	8	2	20041022-M-8-2-2-1-M	10/22/2004	120.1	High Density/High Income
Fall	MGP	Manhattan	8	4	20041023-M-8-4-1-2-M	10/23/2004	110.17	High Density/High Income
Fall	MGP	Manhattan	3	1	20041023-M-3-1-1-1-M	10/23/2004	119.61	High Density/Low Income
Fall	MGP	Manhattan	3	1	20041023-M-3-1-1-2-M	10/23/2004	147.79	High Density/Low Income
Fall	MGP	Manhattan	3	1	20041023-M-3-1-1-3-M	10/23/2004	159.16	High Density/Low Income
Fall	MGP	Manhattan	3	1	20041023-M-3-1-1-4-M	10/23/2004	184.53	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	MGP	Manhattan	8	4	20041023-M-8-4-1-1-M	10/23/2004	108.72	High Density/High Income
Fall	MGP	Manhattan	8	5	20041025-M-8-5-2-2-M	10/25/2004	115.44	High Density/High Income
Fall	MGP	Manhattan	8	5	20041025-M-8-5-2-1-M	10/25/2004	133.08	High Density/High Income
Fall	MGP	Manhattan	8	5	20041025-M-8-5-3-1-M	10/25/2004	111.68	High Density/High Income
Fall	MGP	Manhattan	8	5	20041025-M-8-5-1-1-M	10/25/2004	157.12	High Density/High Income
Fall	MGP	Manhattan	8	4	20041025-M-8-4-1-1-M	10/25/2004	172.36	High Density/High Income
Fall	MGP	Manhattan	2	3	20041026-M-2-3-1-1-M	10/26/2004	113.56	High Density/High Income
Fall	MGP	Manhattan	8	3	20041027-M-8-3-2-1-M	10/27/2004	102.06	High Density/High Income
Fall	MGP	Manhattan	8	3	20041028-M-8-3-2-1-M	10/28/2004	103.44	High Density/High Income
Fall	MGP	Manhattan	8	5	20041028-M-8-5-2-1-M	10/28/2004	142	High Density/High Income
Fall	MGP	Manhattan	8	5	20041028-M-8-5-2-2-M	10/28/2004	112.69	High Density/High Income
Fall	MGP	Manhattan	8	1	20041029-M-8-1-1-1-M	10/29/2004	118.91	High Density/High Income
Fall	MGP	Manhattan	8	2	20041029-M-8-2-2-1-M	10/29/2004	119.93	High Density/High Income
Fall	MGP	Manhattan	8	2	20041030-M-8-2-2-1-M	10/30/2004	135.5	High Density/High Income
Fall	MGP	Manhattan	8	4	20041030-M-8-4-2-1-M	10/30/2004	102.13	High Density/High Income
Fall	MGP	Manhattan	7	2	20041030-M-7-2-2-1-M	10/30/2004	141.16	High Density/High Income
Fall	MGP	Manhattan	3	3	20041101-M-3-3-1-1-M	11/1/2004	148.54	High Density/Medium Income
Fall	MGP	Manhattan	3	3	20041101-M-3-3-1-2-M	11/1/2004	116.26	High Density/Medium Income
Fall	MGP	Manhattan	8	4	20041101-M-8-4-2-1-M	11/1/2004	102.9	High Density/High Income
Fall	MGP	Manhattan	8	5	20041101-M-8-5-3-1-M	11/1/2004	102.7	High Density/High Income
Fall	MGP	Manhattan	3	3	20041101-M-3-3-1-3-M	11/1/2004	144.44	High Density/Medium Income
Fall	MGP	Manhattan	8	3	20041104-M-8-3-1-1-M	11/4/2004	125.95	High Density/High Income
Fall	MGP	Manhattan	8	5	20041104-M-8-5-2-1-M	11/4/2004	142.18	High Density/High Income
Fall	MGP	Manhattan	8	1	20041105-M-8-1-2-1-M	11/5/2004	124.28	High Density/High Income
Fall	MGP	Manhattan	8	1	20041105-M-8-1-1-1-M	11/5/2004	128.7	High Density/High Income
Fall	MGP	Manhattan	8	2	20041105-M-8-2-2-1-M	11/5/2004	118.28	High Density/High Income
Fall	MGP	Manhattan	8	2	20041105-M-8-2-2-3-M	11/5/2004	114.74	High Density/High Income
Fall	MGP	Manhattan	8	2	20041105-M-8-2-2-2-M	11/5/2004	143.84	High Density/High Income
Fall	MGP	Manhattan	6	3	20041106-M-6-3-1-1-M	11/6/2004	119.36	High Density/High Income
Fall	MGP	Manhattan	8	4	20041106-M-8-4-2-1-M	11/6/2004	129.79	High Density/High Income
Fall	MGP	Manhattan	3	1	20041106-M-3-1-1-1-M	11/6/2004	162.31	High Density/Low Income
Fall	MGP	Bronx	5	3	20041019-BX-5-3-2-2-M	10/19/2004	142.48	High Density/Low Income
Fall	MGP	Bronx	5	3	20041019-BX-5-3-2-1-M	10/19/2004	128.04	High Density/Low Income
Fall	MGP	Bronx	5	3	20041019-BX-5-3-1-1-M	10/19/2004	225.46	High Density/Low Income
Fall	MGP	Bronx	5	3	20041019-BX-5-3-2-3-M	10/19/2004	100.49	High Density/Low Income
Fall	MGP	Bronx	5	3	20041020-BX-5-3-2-2-M	10/20/2004	106.12	High Density/Low Income
Fall	MGP	Bronx	5	3	20041020-BX-5-3-2-3-M	10/20/2004	111.2	High Density/Low Income
Fall	MGP	Bronx	5	3	20041020-BX-5-3-2-1-M	10/20/2004	144.27	High Density/Low Income
Fall	MGP	Bronx	5	2	20041021-BX-5-2-1-1-M	10/21/2004	132.13	High Density/Low Income
Fall	MGP	Bronx	5	2	20041021-BX-5-2-2-1-M	10/21/2004	108.76	High Density/Low Income
Fall	MGP	Bronx	5	2	20041022-BX-5-2-1-3-M	10/22/2004	192.1	High Density/Low Income
Fall	MGP	Bronx	5	2	20041022-BX-5-2-1-2-M	10/22/2004	98.47	High Density/Low Income
Fall	MGP	Bronx	5	2	20041022-BX-5-2-1-1-M	10/22/2004	135.71	High Density/Low Income
Fall	MGP	Bronx	5	1	20041025-BX-5-1-2-1-M	10/25/2004	92.77	High Density/Low Income
Fall	MGP	Bronx	5	1	20041025-BX-5-1-2-2-M	10/25/2004	165.76	High Density/Low Income
Fall	MGP	Bronx	5	3	20041026-BX-5-3-2-2-M	10/26/2004	171.37	High Density/Low Income
Fall	MGP	Bronx	5	3	20041026-BX-5-3-2-1-M	10/26/2004	119.55	High Density/Low Income
Fall	MGP	Bronx	5	3	20041026-BX-5-3-2-3-M	10/26/2004	161.6	High Density/Low Income
Fall	MGP	Bronx	5	3	20041026-BX-5-3-2-4-M	10/26/2004	129.64	High Density/Low Income
Fall	MGP	Bronx	5	3	20041026-BX-5-3-1-1-M	10/26/2004	153.45	High Density/Low Income
Fall	MGP	Bronx	5	3	20041027-BX-5-3-2-1-M	10/27/2004	129.48	High Density/Low Income
Fall	MGP	Bronx	5	3	20041027-BX-5-3-2-2-M	10/27/2004	106.02	High Density/Low Income
Fall	MGP	Bronx	5	2	20041028-BX-5-2-2-2-M	10/28/2004	125.02	High Density/Low Income
Fall	MGP	Bronx	5	2	20041028-BX-5-2-1-1-M	10/28/2004	105.13	High Density/Low Income
Fall	MGP	Bronx	5	2	20041028-BX-5-2-2-1-M	10/28/2004	151.7	High Density/Low Income
Fall	MGP	Bronx	5	2	20041028-BX-5-2-1-2-M	10/28/2004	211.2	High Density/Low Income
Fall	MGP	Bronx	5	2	20041028-BX-5-2-2-3-M	10/28/2004	128.36	High Density/Low Income
Fall	MGP	Bronx	5	2	20041029-BX-5-2-1-2-M	10/29/2004	127.62	High Density/Low Income
Fall	MGP	Bronx	5	2	20041029-BX-5-2-1-1-M	10/29/2004	104.74	High Density/Low Income
Fall	MGP	Bronx	5	3	20041103-BX-5-3-1-3-M	11/3/2004	129.16	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	MGP	Bronx	5	3	20041103-BX-5-3-2-1-M	11/3/2004	122.82	High Density/Low Income
Fall	MGP	Bronx	5	3	20041103-BX-5-3-1-1-M	11/3/2004	132.47	High Density/Low Income
Fall	MGP	Bronx	5	3	20041103-BX-5-3-1-2-M	11/3/2004	115.1	High Density/Low Income
Fall	MGP	Bronx	5	2	20041104-BX-5-2-1-1-M	11/4/2004	111.69	High Density/Low Income
Fall	MGP	Bronx	5	2	20041104-BX-5-2-1-2-M	11/4/2004	105.33	High Density/Low Income
Fall	MGP	Bronx	5	2	20041104-BX-5-2-2-1-M	11/4/2004	116.27	High Density/Low Income
Fall	MGP	Brooklyn	3	3	20041018-BK-3-3-2-1-M	10/18/2004	75.85	Medium Density/Low Income
Fall	MGP	Brooklyn	17	1	20041018-BK-17-1-1-2-M	10/18/2004	123.41	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041018-BK-4-2-1-2-M	10/18/2004	114.79	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041018-BK-4-2-1-1-M	10/18/2004	108.87	Medium Density/Low Income
Fall	MGP	Brooklyn	17	1	20041018-BK-17-1-1-1-M	10/18/2004	117.65	Medium Density/Low Income
Fall	MGP	Brooklyn	4	1	20041020-BK-4-1-2-1-M	10/20/2004	96.71	Medium Density/Low Income
Fall	MGP	Brooklyn	4	1	20041020-BK-4-1-1-1-M	10/20/2004	162.12	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041021-BK-6-2-1-1-M	10/21/2004	145.77	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041021-BK-6-2-1-2-M	10/21/2004	106.87	Medium Density/High Income
Fall	MGP	Brooklyn	4	3	20041021-BK-4-3-3-1-M	10/21/2004	165.66	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041021-BK-4-3-2-2-M	10/21/2004	103.18	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041021-BK-6-2-1-3-M	10/21/2004	107.02	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041021-BK-6-2-1-4-M	10/21/2004	105.48	Medium Density/High Income
Fall	MGP	Brooklyn	4	3	20041021-BK-4-3-2-1-M	10/21/2004	157.23	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041022-BK-6-2-1-1-M	10/22/2004	111.83	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041022-BK-6-2-1-2-M	10/22/2004	103.03	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041022-BK-6-2-1-3-M	10/22/2004	101.26	Medium Density/High Income
Fall	MGP	Brooklyn	4	2	20041023-BK-4-2-2-1-M	10/23/2004	160.73	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041023-BK-4-2-1-1-M	10/23/2004	170.45	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041023-BK-6-2-1-1-M	10/23/2004	103.8	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041023-BK-6-2-1-2-M	10/23/2004	99.6	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041023-BK-6-2-1-3-M	10/23/2004	167.14	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041023-BK-6-2-1-4-M	10/23/2004	113.85	Medium Density/High Income
Fall	MGP	Brooklyn	3	3	20041025-BK-3-3-2-1-M	10/25/2004	128.27	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041025-BK-4-2-2-1-M	10/25/2004	154.66	Medium Density/Low Income
Fall	MGP	Brooklyn	17	1	20041025-BK-17-1-2-1-M	10/25/2004	180.69	Medium Density/Low Income
Fall	MGP	Brooklyn	3	3	20041026-BK-3-3-2-1-M	10/26/2004	146.39	Medium Density/Low Income
Fall	MGP	Brooklyn	4	1	20041026-BK-4-1-1-1-M	10/26/2004	103.19	Medium Density/Low Income
Fall	MGP	Brooklyn	4	1	20041027-BK-4-1-1-1-M	10/27/2004	159.44	Medium Density/Low Income
Fall	MGP	Brooklyn	4	1	20041027-BK-4-1-2-1-M	10/27/2004	117.31	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041028-BK-4-3-3-1-M	10/28/2004	153.71	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041028-BK-4-3-2-1-M	10/28/2004	105.37	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-7-M	10/28/2004	106.97	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-6-M	10/28/2004	166.09	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-5-M	10/28/2004	96.37	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-3-M	10/28/2004	114.61	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-2-M	10/28/2004	103.44	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-1-M	10/28/2004	129.24	Medium Density/High Income
Fall	MGP	Brooklyn	17	1	20041028-BK-17-1-2-1-M	10/28/2004	161.64	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041028-BK-6-2-1-4-M	10/28/2004	122.2	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041029-BK-6-2-1-6-M	10/29/2004	105.43	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041029-BK-6-2-1-3-M	10/29/2004	109.41	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041029-BK-6-2-1-2-M	10/29/2004	166.98	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041029-BK-6-2-1-1-M	10/29/2004	101.44	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041029-BK-6-2-1-5-M	10/29/2004	144.32	Medium Density/High Income
Fall	MGP	Brooklyn	4	3	20041029-BK-4-3-3-1-M	10/29/2004	140.75	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041029-BK-6-2-1-4-M	10/29/2004	108.49	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041030-BK-6-2-1-5-M	10/30/2004	100.09	Medium Density/High Income
Fall	MGP	Brooklyn	4	2	20041030-BK-4-2-1-1-M	10/30/2004	149.18	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041030-BK-4-2-2-1-M	10/30/2004	131.24	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041030-BK-4-2-2-2-M	10/30/2004	117.17	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041030-BK-6-2-1-4-M	10/30/2004	143.26	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041030-BK-6-2-1-2-M	10/30/2004	119.69	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041030-BK-6-2-1-1-M	10/30/2004	102.3	Medium Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	MGP	Brooklyn	6	2	20041030-BK-6-2-1-3-M	10/30/2004	100.2	Medium Density/High Income
Fall	MGP	Brooklyn	17	1	20041101-BK-17-1-2-3-M	11/1/2004	122.7	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041101-BK-4-2-1-1-M	11/1/2004	112.54	Medium Density/Low Income
Fall	MGP	Brooklyn	17	1	20041101-BK-17-1-2-2-M	11/1/2004	117.84	Medium Density/Low Income
Fall	MGP	Brooklyn	17	1	20041101-BK-17-1-2-1-M	11/1/2004	103.85	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041104-BK-4-3-3-2-M	11/4/2004	129.77	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041104-BK-6-2-1-1-M	11/4/2004	104.95	Medium Density/High Income
Fall	MGP	Brooklyn	17	1	20041104-BK-17-1-2-1-M	11/4/2004	198.52	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041104-BK-6-2-1-2-M	11/4/2004	105.45	Medium Density/High Income
Fall	MGP	Brooklyn	4	3	20041104-BK-4-3-2-1-M	11/4/2004	146.6	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041104-BK-4-3-2-2-M	11/4/2004	126.63	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041104-BK-4-3-3-1-M	11/4/2004	116.79	Medium Density/Low Income
Fall	MGP	Brooklyn	17	1	20041104-BK-17-1-1-1-M	11/4/2004	105.39	Medium Density/Low Income
Fall	MGP	Brooklyn	4	3	20041105-BK-4-3-3-1-M	11/5/2004	130.04	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041105-BK-6-2-1-6-M	11/5/2004	141.08	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041105-BK-6-2-1-3-M	11/5/2004	158.39	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041105-BK-6-2-1-2-M	11/5/2004	116.8	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041105-BK-6-2-1-4-M	11/5/2004	114.49	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041105-BK-6-2-1-5-M	11/5/2004	122.2	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041105-BK-6-2-1-1-M	11/5/2004	122.23	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041106-BK-6-2-1-1-M	11/6/2004	105.07	Medium Density/High Income
Fall	MGP	Brooklyn	4	2	20041106-BK-4-2-2-1-M	11/6/2004	134.2	Medium Density/Low Income
Fall	MGP	Brooklyn	4	2	20041106-BK-4-2-2-2-M	11/6/2004	100.66	Medium Density/Low Income
Fall	MGP	Brooklyn	6	2	20041106-BK-6-2-1-2-M	11/6/2004	103.18	Medium Density/High Income
Fall	MGP	Brooklyn	6	2	20041106-BK-6-2-1-3-M	11/6/2004	107.32	Medium Density/High Income
Fall	MGP	Brooklyn	4	2	20041106-BK-4-2-1-1-M	11/6/2004	130.94	Medium Density/Low Income
Fall	MGP	Queens	5	2	20041018-Q-5-2-1-1-M	10/18/2004	102.8	Medium Density/Medium Income
Fall	MGP	Queens	5	2	20041018-Q-5-2-2-1-M	10/18/2004	176.99	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041019-Q-1-4-1-1-M	10/19/2004	135.49	Medium Density/Medium Income
Fall	MGP	Queens	13	7	20041019-Q-13-7-3-1-M	10/19/2004	113	Low Density/High Income
Fall	MGP	Queens	1	4	20041019-Q-1-4-3-1-M	10/19/2004	155.42	Medium Density/Medium Income
Fall	MGP	Queens	13	5	20041020-Q-13-5-2-2-M	10/20/2004	108.24	Low Density/High Income
Fall	MGP	Queens	1	4	20041020-Q-1-4-2-1-M	10/20/2004	101.31	Medium Density/Medium Income
Fall	MGP	Queens	13	5	20041020-Q-13-5-1-1-M	10/20/2004	119.75	Low Density/High Income
Fall	MGP	Queens	13	5	20041020-Q-13-5-2-1-M	10/20/2004	79.1	Low Density/High Income
Fall	MGP	Queens	13	7	20041020-Q-13-7-3-1-M	10/20/2004	99.19	Low Density/High Income
Fall	MGP	Queens	1	4	20041021-Q-1-4-2-2-M	10/21/2004	109.78	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041021-Q-1-4-1-1-M	10/21/2004	168.75	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041021-Q-1-4-1-2-M	10/21/2004	106.21	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041021-Q-1-4-2-1-M	10/21/2004	107.98	Medium Density/Medium Income
Fall	MGP	Queens	13	8	20041021-Q-13-8-2-1-M	10/21/2004	118.9	Low Density/High Income
Fall	MGP	Queens	5	2	20041022-Q-5-2-1-1-M	10/22/2004	130.59	Medium Density/Medium Income
Fall	MGP	Queens	4	3	20041022-Q-4-3-1-1-M	10/22/2004	110.09	Medium Density/Medium Income
Fall	MGP	Queens	9	1	20041022-Q-9-1-1-1-M	10/22/2004	146.89	Low Density/Medium Income
Fall	MGP	Queens	3	2	20041022-Q-3-2-1-1-M	10/22/2004	136	High Density/Medium Income
Fall	MGP	Queens	9	2	20041022-Q-9-2-2-1-M	10/22/2004	106.57	Low Density/Medium Income
Fall	MGP	Queens	9	2	20041022-Q-9-2-1-1-M	10/22/2004	98.64	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041022-Q-9-1-1-3-M	10/22/2004	87.1	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041022-Q-9-1-1-2-M	10/22/2004	141.33	Low Density/Medium Income
Fall	MGP	Queens	3	2	20041023-Q-3-2-1-3-M	10/23/2004	165.62	High Density/Medium Income
Fall	MGP	Queens	5	2	20041023-Q-5-2-2-1-M	10/23/2004	157.55	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041023-Q-3-2-1-2-M	10/23/2004	159.64	High Density/Medium Income
Fall	MGP	Queens	3	2	20041023-Q-3-2-1-1-M	10/23/2004	147.64	High Density/Medium Income
Fall	MGP	Queens	4	3	20041023-Q-4-3-2-1-M	10/23/2004	118.7	Medium Density/Medium Income
Fall	MGP	Queens	13	4	20041023-Q-13-4-2-1-M	10/23/2004	134.57	Low Density/High Income
Fall	MGP	Queens	5	2	20041023-Q-5-2-4-1-M	10/23/2004	99.05	Medium Density/Medium Income
Fall	MGP	Queens	5	2	20041023-Q-5-2-3-1-M	10/23/2004	134.28	Medium Density/Medium Income
Fall	MGP	Queens	4	3	20041023-Q-4-3-1-1-M	10/23/2004	101.36	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041025-Q-3-2-2-3-M	10/25/2004	152.79	High Density/Medium Income
Fall	MGP	Queens	5	2	20041025-Q-5-2-3-3-M	10/25/2004	103.78	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	MGP	Queens	5	2	20041025-Q-5-2-3-1-M	10/25/2004	107.51	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041025-Q-3-2-2-2-M	10/25/2004	128.71	High Density/Medium Income
Fall	MGP	Queens	3	2	20041025-Q-3-2-2-1-M	10/25/2004	129.21	High Density/Medium Income
Fall	MGP	Queens	5	2	20041025-Q-5-2-3-2-M	10/25/2004	131.57	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041026-Q-1-4-1-1-M	10/26/2004	109.47	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041026-Q-1-4-2-1-M	10/26/2004	114.57	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041027-Q-1-4-1-1-M	10/27/2004	132.44	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041027-Q-1-4-2-1-M	10/27/2004	117.12	Medium Density/Medium Income
Fall	MGP	Queens	1	4	20041028-Q-1-4-1-1-M	10/28/2004	85.35	Medium Density/Medium Income
Fall	MGP	Queens	13	5	20041028-Q-13-5-1-1-M	10/28/2004	105.31	Low Density/High Income
Fall	MGP	Queens	13	7	20041028-Q-13-7-1-1-M	10/28/2004	124.66	Low Density/High Income
Fall	MGP	Queens	3	2	20041029-Q-3-2-1-1-M	10/29/2004	114.43	High Density/Medium Income
Fall	MGP	Queens	3	2	20041029-Q-3-2-1-2-M	10/29/2004	144.32	High Density/Medium Income
Fall	MGP	Queens	3	2	20041029-Q-3-2-1-3-M	10/29/2004	101.66	High Density/Medium Income
Fall	MGP	Queens	7	6	20041029-Q-7-6-1-1-M	10/29/2004	109.17	Low Density/High Income
Fall	MGP	Queens	7	3	20041029-Q-7-3-2-2-M	10/29/2004	113.02	High Density/Medium Income
Fall	MGP	Queens	5	2	20041029-Q-5-2-1-1-M	10/29/2004	111.85	Medium Density/Medium Income
Fall	MGP	Queens	4	3	20041029-Q-4-3-1-2-M	10/29/2004	105.26	Medium Density/Medium Income
Fall	MGP	Queens	9	1	20041029-Q-9-1-3-4-M	10/29/2004	99.96	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041029-Q-9-1-3-1-M	10/29/2004	125.6	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041029-Q-9-1-1-1-M	10/29/2004	114.79	Low Density/Medium Income
Fall	MGP	Queens	4	3	20041029-Q-4-3-1-3-M	10/29/2004	101.54	Medium Density/Medium Income
Fall	MGP	Queens	9	2	20041029-Q-9-2-2-1-M	10/29/2004	120.57	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041029-Q-9-1-3-5-M	10/29/2004	111.42	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041029-Q-9-1-3-3-M	10/29/2004	104.72	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041029-Q-9-1-3-2-M	10/29/2004	102.36	Low Density/Medium Income
Fall	MGP	Queens	4	3	20041029-Q-4-3-1-1-M	10/29/2004	132.25	Medium Density/Medium Income
Fall	MGP	Queens	7	3	20041029-Q-7-3-2-1-M	10/29/2004	105.11	High Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-4-M	10/30/2004	102.43	High Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-2-1-M	10/30/2004	114.99	High Density/Medium Income
Fall	MGP	Queens	4	3	20041030-Q-4-3-1-1-M	10/30/2004	128.68	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-3-M	10/30/2004	122.83	High Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-6-M	10/30/2004	102.95	High Density/Medium Income
Fall	MGP	Queens	4	3	20041030-Q-4-3-2-1-M	10/30/2004	103.59	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-2-M	10/30/2004	100.12	High Density/Medium Income
Fall	MGP	Queens	4	3	20041030-Q-4-3-2-2-M	10/30/2004	121.49	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-7-M	10/30/2004	99.63	High Density/Medium Income
Fall	MGP	Queens	4	3	20041030-Q-4-3-1-2-M	10/30/2004	119.14	Medium Density/Medium Income
Fall	MGP	Queens	5	2	20041030-Q-5-2-3-2-M	10/30/2004	104.87	Medium Density/Medium Income
Fall	MGP	Queens	5	2	20041030-Q-5-2-3-1-M	10/30/2004	134.4	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-1-M	10/30/2004	110.48	High Density/Medium Income
Fall	MGP	Queens	3	2	20041030-Q-3-2-1-5-M	10/30/2004	113.03	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-6-M	11/1/2004	105.26	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-7-M	11/1/2004	97.48	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-2-M	11/1/2004	130.42	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-5-M	11/1/2004	106.11	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-4-M	11/1/2004	105	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-1-M	11/1/2004	110.47	High Density/Medium Income
Fall	MGP	Queens	5	2	20041101-Q-5-2-1-1-M	11/1/2004	119.43	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-8-M	11/1/2004	104.3	High Density/Medium Income
Fall	MGP	Queens	3	2	20041101-Q-3-2-2-3-M	11/1/2004	102.19	High Density/Medium Income
Fall	MGP	Queens	13	5	20041103-Q-13-5-1-1-M	11/3/2004	153.05	Low Density/High Income
Fall	MGP	Queens	13	5	20041103-Q-13-5-2-1-M	11/3/2004	102.7	Low Density/High Income
Fall	MGP	Queens	13	6	20041104-Q-13-6-3-1-M	11/4/2004	137.06	Low Density/High Income
Fall	MGP	Queens	11	3	20041104-Q-11-3-1-1-M	11/4/2004	105.11	Low Density/High Income
Fall	MGP	Queens	5	2	20041105-Q-5-2-2-1-M	11/5/2004	140.09	Medium Density/Medium Income
Fall	MGP	Queens	5	2	20041105-Q-5-2-1-1-M	11/5/2004	105.87	Medium Density/Medium Income
Fall	MGP	Queens	9	2	20041105-Q-9-2-1-1-M	11/5/2004	109.77	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041105-Q-9-1-1-2-M	11/5/2004	153.8	Low Density/Medium Income
Fall	MGP	Queens	9	1	20041105-Q-9-1-1-1-M	11/5/2004	126.93	Low Density/Medium Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	MGP	Queens	9	2	20041105-Q-9-2-2-2-M	11/5/2004	107.44	Low Density/Medium Income
Fall	MGP	Queens	3	2	20041105-Q-3-2-1-1-M	11/5/2004	131.33	High Density/Medium Income
Fall	MGP	Queens	7	6	20041105-Q-7-6-2-1-M	11/5/2004	145.36	Low Density/High Income
Fall	MGP	Queens	9	2	20041105-Q-9-2-2-1-M	11/5/2004	98.93	Low Density/Medium Income
Fall	MGP	Queens	5	2	20041106-Q-5-2-1-1-M	11/6/2004	147.72	Medium Density/Medium Income
Fall	MGP	Queens	13	4	20041106-Q-13-4-2-1-M	11/6/2004	102.78	Low Density/High Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-2-2-M	11/6/2004	112.22	High Density/Medium Income
Fall	MGP	Queens	4	3	20041106-Q-4-3-1-1-M	11/6/2004	119.7	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-1-3-M	11/6/2004	105.17	High Density/Medium Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-2-3-M	11/6/2004	123.66	High Density/Medium Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-1-2-M	11/6/2004	125	High Density/Medium Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-2-1-M	11/6/2004	109.07	High Density/Medium Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-1-4-M	11/6/2004	129.61	High Density/Medium Income
Fall	MGP	Queens	4	3	20041106-Q-4-3-2-1-M	11/6/2004	101.84	Medium Density/Medium Income
Fall	MGP	Queens	3	2	20041106-Q-3-2-1-1-M	11/6/2004	104.66	High Density/Medium Income
Fall	MGP	Staten Island	3	5	20041018-SI-3-5-4-1-M	10/18/2004	95.24	Low Density/High Income
Fall	MGP	Staten Island	3	5	20041018-SI-3-5-1-1-M	10/18/2004	98.49	Low Density/High Income
Fall	MGP	Staten Island	3	1	20041020-SI-3-1-1-1-M	10/20/2004	116.65	Low Density/Medium Income
Fall	MGP	Staten Island	3	1	20041020-SI-3-1-4-1-M	10/20/2004	124.75	Low Density/Medium Income
Fall	MGP	Staten Island	3	1	20041020-SI-3-1-4-2-M	10/20/2004	157.94	Low Density/Medium Income
Fall	MGP	Staten Island	3	1	20041020-SI-3-1-2-1-M	10/20/2004	114.71	Low Density/Medium Income
Fall	MGP	Staten Island	3	1	20041020-SI-3-1-3-1-M	10/20/2004	96.15	Low Density/Medium Income
Fall	MGP	Staten Island	2	2	20041021-SI-2-2-3-1-M	10/21/2004	105.24	Low Density/High Income
Fall	MGP	Staten Island	1	3	20041022-SI-1-3-1-2-M	10/22/2004	129.06	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041022-SI-1-3-1-1-M	10/22/2004	92.97	Low Density/Medium Income
Fall	MGP	Staten Island	3	4	20041022-SI-3-4-1-1-M	10/22/2004	111.83	Low Density/High Income
Fall	MGP	Staten Island	3	6	20041022-SI-3-6-2-1-M	10/22/2004	172.49	Low Density/High Income
Fall	MGP	Staten Island	3	6	20041023-SI-3-6-2-1-M	10/23/2004	101.04	Low Density/High Income
Fall	MGP	Staten Island	3	4	20041023-SI-3-4-1-1-M	10/23/2004	127.41	Low Density/High Income
Fall	MGP	Staten Island	3	5	20041025-SI-3-5-1-1-M	10/25/2004	120.32	Low Density/High Income
Fall	MGP	Staten Island	3	8	20041025-SI-3-8-1-1-M	10/25/2004	114.02	Low Density/High Income
Fall	MGP	Staten Island	2	2	20041026-SI-2-2-2-1-M	10/26/2004	140.41	Low Density/High Income
Fall	MGP	Staten Island	3	2	20041027-SI-3-2-1-1-M	10/27/2004	128.21	Low Density/High Income
Fall	MGP	Staten Island	2	2	20041027-SI-2-2-3-1-M	10/27/2004	112.54	Low Density/High Income
Fall	MGP	Staten Island	3	1	20041027-SI-3-1-4-1-M	10/27/2004	101.83	Low Density/Medium Income
Fall	MGP	Staten Island	3	1	20041027-SI-3-1-3-2-M	10/27/2004	204.61	Low Density/Medium Income
Fall	MGP	Staten Island	3	1	20041027-SI-3-1-3-1-M	10/27/2004	110.54	Low Density/Medium Income
Fall	MGP	Staten Island	2	2	20041027-SI-2-2-2-1-M	10/27/2004	108.37	Low Density/High Income
Fall	MGP	Staten Island	3	1	20041027-SI-3-1-1-1-M	10/27/2004	100.32	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041029-SI-1-3-1-4-M	10/29/2004	101.66	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041029-SI-1-3-1-2-M	10/29/2004	121.15	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041029-SI-1-3-1-3-M	10/29/2004	148.81	Low Density/Medium Income
Fall	MGP	Staten Island	3	5	20041029-SI-3-5-2-1-M	10/29/2004	115.7	Low Density/High Income
Fall	MGP	Staten Island	1	3	20041029-SI-1-3-1-5-M	10/29/2004	101.9	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041029-SI-1-3-1-6-M	10/29/2004	117.91	Low Density/Medium Income
Fall	MGP	Staten Island	3	5	20041029-SI-3-5-3-1-M	10/29/2004	139.12	Low Density/High Income
Fall	MGP	Staten Island	1	3	20041029-SI-1-3-1-1-M	10/29/2004	101.99	Low Density/Medium Income
Fall	MGP	Staten Island	3	4	20041030-SI-3-4-1-1-M	10/30/2004	138.45	Low Density/High Income
Fall	MGP	Staten Island	3	8	20041030-SI-3-8-2-1-M	10/30/2004	135.48	Low Density/High Income
Fall	MGP	Staten Island	3	2	20041103-SI-3-2-3-1-M	11/3/2004	164.47	Low Density/High Income
Fall	MGP	Staten Island	2	2	20041103-SI-2-2-5-1-M	11/3/2004	138.28	Low Density/High Income
Fall	MGP	Staten Island	2	2	20041103-SI-2-2-1-1-M	11/3/2004	112.56	Low Density/High Income
Fall	MGP	Staten Island	2	2	20041104-SI-2-2-1-1-M	11/4/2004	122.53	Low Density/High Income
Fall	MGP	Staten Island	1	3	20041105-SI-1-3-1-6-M	11/5/2004	127.48	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041105-SI-1-3-1-2-M	11/5/2004	134.5	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041105-SI-1-3-1-1-M	11/5/2004	188	Low Density/Medium Income
Fall	MGP	Staten Island	3	5	20041105-SI-3-5-2-1-M	11/5/2004	136.21	Low Density/High Income
Fall	MGP	Staten Island	1	3	20041105-SI-1-3-1-5-M	11/5/2004	160.98	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041105-SI-1-3-1-3-M	11/5/2004	111.01	Low Density/Medium Income
Fall	MGP	Staten Island	1	3	20041105-SI-1-3-1-4-M	11/5/2004	107	Low Density/Medium Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Fall	MGP	Staten Island	3	8	20041106-SI-3-8-3-1-M	11/6/2004	106.28	Low Density/High Income
Fall	MGP	Staten Island	3	8	20041106-SI-3-8-2-1-M	11/6/2004	99.7	Low Density/High Income
Fall	Street Basket	Manhattan	2	21	20041018-M-2-21-2-1-SB	10/18/2004	167.38	NA
Fall	Street Basket	Manhattan	10	1	20041018-M-10-1-1-1-SB	10/18/2004	232.7	NA
Fall	Street Basket	Manhattan	2	21	20041018-M-2-21-1-1-SB	10/18/2004	214.4	NA
Fall	Street Basket	Manhattan	7	1	20041018-M-7-1-1-1-SB	10/18/2004	237.61	NA
Fall	Street Basket	Manhattan	5	51	20041018-M-5-51-1-1-SB	10/18/2004	204.52	NA
Fall	Street Basket	Manhattan	1	11	20041019-M-1-11-2-1-SB	10/19/2004	210.27	NA
Fall	Street Basket	Manhattan	7	0	20041019-M-7-0-1-1-SB	10/19/2004	222.85	NA
Fall	Street Basket	Manhattan	1	13	20041020-M-1-13-1-1-SB	10/20/2004	267.4	NA
Fall	Street Basket	Manhattan	3	31	20041020-M-3-31-1-1-SB	10/20/2004	227.2	NA
Fall	Street Basket	Manhattan	2	21	20041021-M-2-21-1-1-SB	10/21/2004	197.75	NA
Fall	Street Basket	Manhattan	8	0	20041021-M-8-0-2-1-SB	10/21/2004	221.05	NA
Fall	Street Basket	Manhattan	3	32	20041022-M-3-32-1-1-SB	10/22/2004	250.11	NA
Fall	Street Basket	Manhattan	5	51	20041025-M-5-51-2-1-SB	10/25/2004	197	NA
Fall	Street Basket	Manhattan	4	1	20041025-M-4-1-1-1-SB	10/25/2004	200.5	NA
Fall	Street Basket	Manhattan	7	0	20041025-M-7-0-1-1-SB	10/25/2004	210.48	NA
Fall	Street Basket	Manhattan	2	21	20041026-M-2-21-2-1-SB	10/26/2004	194.08	NA
Fall	Street Basket	Manhattan	12	0	20041026-M-12-0-1-1-SB	10/26/2004	207.87	NA
Fall	Street Basket	Manhattan	7	0	20041026-M-7-0-2-1-SB	10/26/2004	203.49	NA
Fall	Street Basket	Manhattan	12	0	20041027-M-12-0-1-1-SB	10/27/2004	198.14	NA
Fall	Street Basket	Manhattan	9	0	20041027-M-9-0-1-1-SB	10/27/2004	206.2	NA
Fall	Street Basket	Manhattan	4	1	20041027-M-4-1-1-1-SB	10/27/2004	203.57	NA
Fall	Street Basket	Manhattan	8	0	20041028-M-8-0-1-1-SB	10/28/2004	197.46	NA
Fall	Street Basket	Manhattan	3	33	20041028-M-3-33-1-1-SB	10/28/2004	206.56	NA
Fall	Street Basket	Manhattan	6	61	20041029-M-6-61-1-1-SB	10/29/2004	213.66	NA
Fall	Street Basket	Manhattan	3	33	20041030-M-3-33-1-1-SB	10/30/2004	200.99	NA
Fall	Street Basket	Manhattan	5	51	20041101-M-5-51-4-1-SB	11/1/2004	214.4	NA
Fall	Street Basket	Manhattan	6	61	20041101-M-6-61-3-1-SB	11/1/2004	207.28	NA
Fall	Street Basket	Manhattan	11	0	20041101-M-11-0-1-1-SB	11/1/2004	205.26	NA
Fall	Street Basket	Manhattan	6	61	20041103-M-6-61-3-1-SB	11/3/2004	208.52	NA
Fall	Street Basket	Manhattan	5	51	20041104-M-5-51-1-1-SB	11/4/2004	201.13	NA
Fall	Street Basket	Bronx	4	1	20041019-BX-4-1-2-1-SB	10/19/2004	187.56	NA
Fall	Street Basket	Bronx	4	2	20041022-BX-4-2-1-1-SB	10/22/2004	193.68	NA
Fall	Street Basket	Bronx	7	7	20041028-BX-7-7-0-1-SB	10/28/2004	199.54	NA
Fall	Street Basket	Brooklyn	12	1	20041019-BK-12-1-1-1-SB	10/19/2004	217.2	NA
Fall	Street Basket	Brooklyn	8	0	20041021-BK-8-0-1-1-SB	10/21/2004	210.76	NA
Fall	Street Basket	Brooklyn	6	2	20041023-BK-6-2-1-1-SB	10/23/2004	227.04	NA
Fall	Street Basket	Brooklyn	3	0	20041025-BK-3-0-2-1-SB	10/25/2004	209.71	NA
Fall	Street Basket	Brooklyn	1	0	20041026-BK-1-0-1-1-SB	10/26/2004	192.35	NA
Fall	Street Basket	Brooklyn	13	1	20041029-BK-13-1-1-1-SB	10/29/2004	202.07	NA
Fall	Street Basket	Brooklyn	15	0	20041030-BK-15-0-1-1-SB	10/30/2004	212.63	NA
Fall	Street Basket	Brooklyn	2	0	20041101-BK-2-0-2-1-SB	11/1/2004	215.7	NA
Fall	Street Basket	Brooklyn	12	123	20041101-BK-12-123-1-1-SB	11/1/2004	216.31	NA
Fall	Street Basket	Queens	8	1	20041019-Q-8-1-1-1-SB	10/19/2004	204.26	NA
Fall	Street Basket	Queens	5	0	20041020-Q-5-0-1-1-SB	10/20/2004	219.7	NA
Fall	Street Basket	Queens	14	0	20041022-Q-14-0-1-1-SB	10/22/2004	212.38	NA
Fall	Street Basket	Queens	11	1	20041023-Q-11-1-1-1-SB	10/23/2004	192.55	NA
Fall	Street Basket	Queens	12	0	20041029-Q-12-0-1-1-SB	10/29/2004	213.65	NA
Fall	Street Basket	Queens	3	0	20041101-Q-3-0-3-1-SB	11/1/2004	209.61	NA
Fall	Street Basket	Queens	8	1	20041105-Q-8-1-4-1-SB	11/5/2004	200.74	NA
Fall	Street Basket	Staten Island	2	21	20041023-SI-2-21-1-1-SB	10/23/2004	193.44	NA
Winter	Refuse	Manhattan	8	3	20050308-M-8-3-1-1-R	3/8/2005	206.51	High Density/High Income
Winter	Refuse	Manhattan	8	3	20050308-M-8-3-3-1-R	3/8/2005	213.49	High Density/High Income
Winter	Refuse	Manhattan	8	5	20050308-M-8-5-2-1-R	3/8/2005	217.2	High Density/High Income
Winter	Refuse	Manhattan	8	4	20050308-M-8-4-3-1-R	3/8/2005	204.2	High Density/High Income
Winter	Refuse	Manhattan	2	3	20050308-M-2-3-1-1-R	3/8/2005	228.91	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050309-M-8-1-1-1-R	3/9/2005	185	High Density/High Income
Winter	Refuse	Manhattan	8	3	20050309-M-8-3-4-1-R	3/9/2005	222.89	High Density/High Income
Winter	Refuse	Manhattan	3	1	20050309-M-3-1-1-1-R	3/9/2005	232.93	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Manhattan	6	3	20050309-M-6-3-2-1-R	3/9/2005	214.69	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050309-M-8-1-5-1-R	3/9/2005	229.5	High Density/High Income
Winter	Refuse	Manhattan	8	2	20050309-M-8-2-1-1-R	3/9/2005	187.16	High Density/High Income
Winter	Refuse	Manhattan	3	3	20050309-M-3-3-1-1-R	3/9/2005	226.12	High Density/Medium Income
Winter	Refuse	Manhattan	3	1	20050310-M-3-1-3-1-R	3/10/2005	205.69	High Density/Low Income
Winter	Refuse	Manhattan	8	5	20050310-M-8-5-1-1-R	3/10/2005	245.22	High Density/High Income
Winter	Refuse	Manhattan	8	3	20050310-M-8-3-1-1-R	3/10/2005	213.13	High Density/High Income
Winter	Refuse	Manhattan	2	2	20050311-M-2-2-1-1-R	3/11/2005	215.02	High Density/High Income
Winter	Refuse	Manhattan	8	4	20050311-M-8-4-2-1-R	3/11/2005	234.34	High Density/High Income
Winter	Refuse	Manhattan	3	3	20050311-M-3-3-1-1-R	3/11/2005	230.45	High Density/Medium Income
Winter	Refuse	Manhattan	6	3	20050311-M-6-3-1-1-R	3/11/2005	265.5	High Density/High Income
Winter	Refuse	Manhattan	6	3	20050312-M-6-3-2-1-R	3/12/2005	205.65	High Density/High Income
Winter	Refuse	Manhattan	3	1	20050312-M-3-1-3-1-R	3/12/2005	213.55	High Density/Low Income
Winter	Refuse	Manhattan	3	1	20050312-M-3-1-1-1-R	3/12/2005	202.94	High Density/Low Income
Winter	Refuse	Manhattan	8	4	20050312-M-8-4-2-1-R	3/12/2005	208.07	High Density/High Income
Winter	Refuse	Manhattan	8	3	20050312-M-8-3-2-1-R	3/12/2005	214.48	High Density/High Income
Winter	Refuse	Manhattan	7	2	20050314-M-7-2-1-1-R	3/14/2005	207.4	High Density/High Income
Winter	Refuse	Manhattan	3	1	20050315-M-3-1-3-1-R	3/15/2005	217.1	High Density/Low Income
Winter	Refuse	Manhattan	2	2	20050315-M-2-2-2-1-R	3/15/2005	248.69	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050316-M-8-1-5-1-R	3/16/2005	259.71	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050316-M-8-1-3-1-R	3/16/2005	204.15	High Density/High Income
Winter	Refuse	Manhattan	3	3	20050316-M-3-3-2-1-R	3/16/2005	210.71	High Density/Medium Income
Winter	Refuse	Manhattan	8	1	20050316-M-8-1-5-2-R	3/16/2005	160.24	High Density/High Income
Winter	Refuse	Manhattan	8	5	20050316-M-8-5-4-1-R	3/16/2005	215.59	High Density/High Income
Winter	Refuse	Manhattan	6	3	20050316-M-6-3-4-1-R	3/16/2005	216.2	High Density/High Income
Winter	Refuse	Manhattan	8	2	20050317-M-8-2-3-1-R	3/17/2005	222.67	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050317-M-8-1-3-1-R	3/17/2005	217.1	High Density/High Income
Winter	Refuse	Manhattan	8	3	20050317-M-8-3-2-1-R	3/17/2005	250.33	High Density/High Income
Winter	Refuse	Manhattan	6	3	20050317-M-6-3-3-1-R	3/17/2005	213.85	High Density/High Income
Winter	Refuse	Manhattan	8	5	20050318-M-8-5-3-1-R	3/18/2005	229.77	High Density/High Income
Winter	Refuse	Manhattan	7	2	20050319-M-7-2-2-1-R	3/19/2005	209.01	High Density/High Income
Winter	Refuse	Manhattan	8	4	20050319-M-8-4-1-1-R	3/19/2005	219.67	High Density/High Income
Winter	Refuse	Manhattan	8	3	20050321-M-8-3-3-1-R	3/21/2005	225.19	High Density/High Income
Winter	Refuse	Manhattan	7	3	20050321-M-7-3-3-1-R	3/21/2005	216.6	High Density/High Income
Winter	Refuse	Manhattan	3	3	20050321-M-3-3-1-1-R	3/21/2005	217.21	High Density/Medium Income
Winter	Refuse	Manhattan	8	4	20050321-M-8-4-1-1-R	3/21/2005	220.61	High Density/High Income
Winter	Refuse	Manhattan	7	2	20050321-M-7-2-3-1-R	3/21/2005	215.61	High Density/High Income
Winter	Refuse	Manhattan	7	3	20050321-M-7-3-3-2-R	3/21/2005	220	High Density/High Income
Winter	Refuse	Manhattan	2	2	20050321-M-2-2-1-1-R	3/21/2005	231.42	High Density/High Income
Winter	Refuse	Manhattan	6	3	20050322-M-6-3-3-1-R	3/22/2005	227.35	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050322-M-8-1-1-1-R	3/22/2005	231.05	High Density/High Income
Winter	Refuse	Manhattan	2	3	20050322-M-2-3-1-1-R	3/22/2005	230.62	High Density/High Income
Winter	Refuse	Manhattan	8	5	20050323-M-8-5-3-1-R	3/23/2005	235.17	High Density/High Income
Winter	Refuse	Manhattan	3	3	20050323-M-3-3-2-1-R	3/23/2005	250.8	High Density/Medium Income
Winter	Refuse	Manhattan	2	2	20050323-M-2-2-1-1-R	3/23/2005	219.57	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050323-M-8-1-5-1-R	3/23/2005	236.1	High Density/High Income
Winter	Refuse	Manhattan	7	2	20050324-M-7-2-2-1-R	3/24/2005	226.12	High Density/High Income
Winter	Refuse	Manhattan	2	3	20050324-M-2-3-2-1-R	3/24/2005	229.3	High Density/High Income
Winter	Refuse	Manhattan	8	2	20050324-M-8-2-3-1-R	3/24/2005	209.78	High Density/High Income
Winter	Refuse	Manhattan	6	3	20050325-M-6-3-3-1-R	3/25/2005	221.42	High Density/High Income
Winter	Refuse	Manhattan	8	2	20050325-M-8-2-3-1-R	3/25/2005	221.2	High Density/High Income
Winter	Refuse	Manhattan	8	1	20050325-M-8-1-2-1-R	3/25/2005	213.24	High Density/High Income
Winter	Refuse	Manhattan	7	3	20050326-M-7-3-2-1-R	3/26/2005	236.07	High Density/High Income
Winter	Refuse	Manhattan	8	2	20050326-M-8-2-3-1-R	3/26/2005	200.2	High Density/High Income
Winter	Refuse	Manhattan	8	4	20050328-M-8-4-3-1-R	3/28/2005	213.24	High Density/High Income
Winter	Refuse	Bronx	7	2	20050308-BX-7-2-5-1-R	3/8/2005	214.5	High Density/Medium Income
Winter	Refuse	Bronx	4	2	20050308-BX-4-2-3-1-R	3/8/2005	211.74	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050308-BX-4-2-2-1-R	3/8/2005	234.75	High Density/Low Income
Winter	Refuse	Bronx	7	2	20050308-BX-7-2-5-2-R	3/8/2005	211.25	High Density/Medium Income
Winter	Refuse	Bronx	5	3	20050308-BX-5-3-2-1-R	3/8/2005	226.95	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Bronx	4	2	20050309-BX-4-2-3-1-R	3/9/2005	217.17	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050309-BX-5-1-3-1-R	3/9/2005	237.05	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050310-BX-5-2-2-1-R	3/10/2005	282.6	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050310-BX-4-2-2-1-R	3/10/2005	235.5	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050310-BX-5-1-2-1-R	3/10/2005	220.3	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050310-BX-5-2-3-1-R	3/10/2005	205.58	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050310-BX-5-3-2-1-R	3/10/2005	233.3	High Density/Low Income
Winter	Refuse	Bronx	7	2	20050310-BX-7-2-5-1-R	3/10/2005	214.65	High Density/Medium Income
Winter	Refuse	Bronx	5	2	20050310-BX-5-2-2-2-R	3/10/2005	209.75	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050311-BX-5-2-2-1-R	3/11/2005	244.1	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050314-BX-5-1-4-1-R	3/14/2005	210.2	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050314-BX-4-2-3-1-R	3/14/2005	187.25	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050315-BX-5-2-4-1-R	3/15/2005	217.95	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050315-BX-5-1-2-1-R	3/15/2005	217.03	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050315-BX-4-2-3-1-R	3/15/2005	218.95	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050316-BX-5-3-4-1-R	3/16/2005	216.28	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050316-BX-5-2-3-1-R	3/16/2005	211.17	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050316-BX-5-1-3-1-R	3/16/2005	213.19	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050317-BX-5-2-3-1-R	3/17/2005	212.6	High Density/Low Income
Winter	Refuse	Bronx	7	2	20050317-BX-7-2-5-1-R	3/17/2005	212.3	High Density/Medium Income
Winter	Refuse	Bronx	4	2	20050317-BX-4-2-1-1-R	3/17/2005	216.14	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050317-BX-5-3-1-1-R	3/17/2005	228.64	High Density/Low Income
Winter	Refuse	Bronx	7	2	20050319-BX-7-2-4-1-R	3/19/2005	218.7	High Density/Medium Income
Winter	Refuse	Bronx	5	2	20050319-BX-5-2-1-1-R	3/19/2005	219.85	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050319-BX-5-3-2-1-R	3/19/2005	211.85	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050319-BX-5-3-1-1-R	3/19/2005	237.85	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050321-BX-5-3-3-1-R	3/21/2005	214	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050321-BX-5-1-2-1-R	3/21/2005	225.93	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050321-BX-5-1-3-1-R	3/21/2005	222.33	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050321-BX-5-1-3-2-R	3/21/2005	220.97	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050321-BX-4-2-3-1-R	3/21/2005	301.96	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050322-BX-5-3-3-1-R	3/22/2005	220.7	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050322-BX-5-3-4-1-R	3/22/2005	221.9	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050324-BX-5-3-1-1-R	3/24/2005	242.53	High Density/Low Income
Winter	Refuse	Bronx	7	2	20050324-BX-7-2-5-1-R	3/24/2005	225.1	High Density/Medium Income
Winter	Refuse	Bronx	5	1	20050324-BX-5-1-3-1-R	3/24/2005	222.6	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050324-BX-5-3-3-1-R	3/24/2005	213.45	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050325-BX-4-2-2-1-R	3/25/2005	205.97	High Density/Low Income
Winter	Refuse	Bronx	7	2	20050326-BX-7-2-4-1-R	3/26/2005	212.54	High Density/Medium Income
Winter	Refuse	Bronx	7	2	20050326-BX-7-2-4-2-R	3/26/2005	220.53	High Density/Medium Income
Winter	Refuse	Bronx	5	3	20050326-BX-5-3-1-1-R	3/26/2005	224.97	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050326-BX-5-2-3-2-R	3/26/2005	217.25	High Density/Low Income
Winter	Refuse	Bronx	4	2	20050326-BX-4-2-2-1-R	3/26/2005	220.55	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050326-BX-5-1-3-3-R	3/26/2005	211.29	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050326-BX-5-1-3-1-R	3/26/2005	222.95	High Density/Low Income
Winter	Refuse	Bronx	5	2	20050326-BX-5-2-3-1-R	3/26/2005	228.23	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050326-BX-5-1-3-2-R	3/26/2005	223.63	High Density/Low Income
Winter	Refuse	Bronx	5	3	20050328-BX-5-3-3-1-R	3/28/2005	223.7	High Density/Low Income
Winter	Refuse	Bronx	5	1	20050328-BX-5-1-4-1-R	3/28/2005	224.02	High Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050308-BK-6-2-1-3-R	3/8/2005	234.8	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050308-BK-6-2-1-4-R	3/8/2005	204.97	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050308-BK-6-2-1-2-R	3/8/2005	261.45	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050308-BK-6-2-2-1-R	3/8/2005	232.45	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050308-BK-6-2-1-1-R	3/8/2005	262.45	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050309-BK-6-2-2-4-R	3/9/2005	232.25	Medium Density/High Income
Winter	Refuse	Brooklyn	17	1	20050309-BK-17-1-3-1-R	3/9/2005	218.35	Medium Density/Low Income
Winter	Refuse	Brooklyn	3	3	20050309-BK-3-3-5-1-R	3/9/2005	239.5	Medium Density/Low Income
Winter	Refuse	Brooklyn	17	1	20050309-BK-17-1-2-1-R	3/9/2005	206.95	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050309-BK-6-2-2-1-R	3/9/2005	217.25	Medium Density/High Income
Winter	Refuse	Brooklyn	4	1	20050309-BK-4-1-3-1-R	3/9/2005	236.25	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Brooklyn	6	2	20050309-BK-6-2-2-3-R	3/9/2005	209.05	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050309-BK-6-2-2-2-R	3/9/2005	235.85	Medium Density/High Income
Winter	Refuse	Brooklyn	4	1	20050309-BK-4-1-4-1-R	3/9/2005	227.1	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	1	20050310-BK-4-1-1-1-R	3/10/2005	229.94	Medium Density/Low Income
Winter	Refuse	Brooklyn	17	1	20050310-BK-17-1-3-1-R	3/10/2005	238.06	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050310-BK-6-2-1-1-R	3/10/2005	217.51	Medium Density/High Income
Winter	Refuse	Brooklyn	17	1	20050310-BK-17-1-1-1-R	3/10/2005	237.45	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050310-BK-4-2-1-1-R	3/10/2005	177.08	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	3	20050310-BK-4-3-2-1-R	3/10/2005	205.37	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	3	20050311-BK-4-3-3-1-R	3/11/2005	208.99	Medium Density/Low Income
Winter	Refuse	Brooklyn	17	1	20050311-BK-17-1-3-1-R	3/11/2005	190.45	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050311-BK-4-2-5-1-R	3/11/2005	170.19	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050311-BK-4-2-3-1-R	3/11/2005	219.11	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050311-BK-6-2-1-1-R	3/11/2005	232.96	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050311-BK-6-2-2-1-R	3/11/2005	207.81	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050311-BK-6-2-1-2-R	3/11/2005	246.65	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050312-BK-6-2-2-1-R	3/12/2005	223.61	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050312-BK-6-2-2-2-R	3/12/2005	216.34	Medium Density/High Income
Winter	Refuse	Brooklyn	4	3	20050312-BK-4-3-3-2-R	3/12/2005	241.16	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050312-BK-6-2-1-1-R	3/12/2005	232.08	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050312-BK-6-2-2-3-R	3/12/2005	237.92	Medium Density/High Income
Winter	Refuse	Brooklyn	4	3	20050312-BK-4-3-3-1-R	3/12/2005	218.82	Medium Density/Low Income
Winter	Refuse	Brooklyn	17	1	20050312-BK-17-1-3-1-R	3/12/2005	230.72	Medium Density/Low Income
Winter	Refuse	Brooklyn	17	1	20050312-BK-17-1-1-1-R	3/12/2005	233.04	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050314-BK-6-2-2-1-R	3/14/2005	241.8	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050314-BK-6-2-1-1-R	3/14/2005	211.7	Medium Density/High Income
Winter	Refuse	Brooklyn	4	2	20050314-BK-4-2-4-1-R	3/14/2005	232.37	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	3	20050314-BK-4-3-3-1-R	3/14/2005	241.73	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050315-BK-4-2-4-1-R	3/15/2005	232.53	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050315-BK-6-2-2-1-R	3/15/2005	224.21	Medium Density/High Income
Winter	Refuse	Brooklyn	4	2	20050315-BK-4-2-2-1-R	3/15/2005	226.21	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	3	20050315-BK-4-3-4-1-R	3/15/2005	218.93	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	3	20050316-BK-4-3-5-1-R	3/16/2005	216.3	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050316-BK-4-2-6-1-R	3/16/2005	228.35	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	1	20050316-BK-4-1-1-1-R	3/16/2005	196.4	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050316-BK-4-2-3-1-R	3/16/2005	238.85	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050316-BK-6-2-2-1-R	3/16/2005	241.4	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-1-6-R	3/17/2005	240.15	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-1-5-R	3/17/2005	243.35	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-2-1-R	3/17/2005	209.1	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-1-3-R	3/17/2005	251.76	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-1-1-R	3/17/2005	218.4	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-1-2-R	3/17/2005	238.71	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050317-BK-6-2-1-4-R	3/17/2005	216.47	Medium Density/High Income
Winter	Refuse	Brooklyn	17	1	20050318-BK-17-1-3-1-R	3/18/2005	238.27	Medium Density/Low Income
Winter	Refuse	Brooklyn	17	1	20050318-BK-17-1-2-1-R	3/18/2005	243.94	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050318-BK-6-2-2-2-R	3/18/2005	213.29	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050318-BK-6-2-1-1-R	3/18/2005	243.43	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050318-BK-6-2-1-2-R	3/18/2005	243.99	Medium Density/High Income
Winter	Refuse	Brooklyn	4	2	20050318-BK-4-2-3-1-R	3/18/2005	248.5	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050318-BK-6-2-2-1-R	3/18/2005	239.98	Medium Density/High Income
Winter	Refuse	Brooklyn	17	1	20050319-BK-17-1-2-1-R	3/19/2005	238.85	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050319-BK-6-2-1-1-R	3/19/2005	235.4	Medium Density/High Income
Winter	Refuse	Brooklyn	4	3	20050319-BK-4-3-3-1-R	3/19/2005	222.92	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	1	20050319-BK-4-1-2-1-R	3/19/2005	242.05	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050319-BK-6-2-1-2-R	3/19/2005	219.1	Medium Density/High Income
Winter	Refuse	Brooklyn	4	3	20050321-BK-4-3-2-1-R	3/21/2005	218.85	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050321-BK-4-2-4-1-R	3/21/2005	243.2	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050321-BK-4-2-4-3-R	3/21/2005	236.32	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	3	20050321-BK-4-3-1-1-R	3/21/2005	224.76	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Brooklyn	4	2	20050321-BK-4-2-3-1-R	3/21/2005	250.15	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050321-BK-4-2-4-2-R	3/21/2005	241.7	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050321-BK-6-2-1-3-R	3/21/2005	268.2	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050321-BK-6-2-1-2-R	3/21/2005	239.69	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050321-BK-6-2-1-1-R	3/21/2005	217.15	Medium Density/High Income
Winter	Refuse	Brooklyn	3	3	20050321-BK-3-3-2-1-R	3/21/2005	239.05	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050322-BK-4-2-2-1-R	3/22/2005	248.87	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	1	20050322-BK-4-1-2-1-R	3/22/2005	222.2	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	1	20050322-BK-4-1-1-1-R	3/22/2005	249.75	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050323-BK-6-2-2-3-R	3/23/2005	268.85	Medium Density/High Income
Winter	Refuse	Brooklyn	17	1	20050323-BK-17-1-4-1-R	3/23/2005	219.7	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050323-BK-6-2-2-2-R	3/23/2005	218.8	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050323-BK-6-2-2-1-R	3/23/2005	244.25	Medium Density/High Income
Winter	Refuse	Brooklyn	4	1	20050323-BK-4-1-4-1-R	3/23/2005	230.25	Medium Density/Low Income
Winter	Refuse	Brooklyn	4	2	20050324-BK-4-2-1-1-R	3/24/2005	225.2	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050324-BK-6-2-2-2-R	3/24/2005	245.65	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050324-BK-6-2-2-1-R	3/24/2005	264.34	Medium Density/High Income
Winter	Refuse	Brooklyn	17	1	20050324-BK-17-1-2-1-R	3/24/2005	218.62	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050324-BK-6-2-1-1-R	3/24/2005	241.45	Medium Density/High Income
Winter	Refuse	Brooklyn	4	2	20050325-BK-4-2-3-1-R	3/25/2005	210.93	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050325-BK-6-2-2-1-R	3/25/2005	221.6	Medium Density/High Income
Winter	Refuse	Brooklyn	4	3	20050325-BK-4-3-3-1-R	3/25/2005	222.8	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050325-BK-6-2-1-2-R	3/25/2005	249.01	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050325-BK-6-2-1-1-R	3/25/2005	278.75	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050326-BK-6-2-1-1-R	3/26/2005	235.45	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050326-BK-6-2-2-1-R	3/26/2005	232.89	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050326-BK-6-2-2-2-R	3/26/2005	223.55	Medium Density/High Income
Winter	Refuse	Brooklyn	6	2	20050328-BK-6-2-1-2-R	3/28/2005	217.15	Medium Density/High Income
Winter	Refuse	Brooklyn	4	3	20050328-BK-4-3-4-1-R	3/28/2005	227.99	Medium Density/Low Income
Winter	Refuse	Brooklyn	6	2	20050328-BK-6-2-1-1-R	3/28/2005	233.7	Medium Density/High Income
Winter	Refuse	Brooklyn	4	2	20050328-BK-4-2-1-1-R	3/28/2005	215.53	Medium Density/Low Income
Winter	Refuse	Queens	9	1	20050308-Q-9-1-1-3-R	3/8/2005	209.52	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050308-Q-9-2-2-1-R	3/8/2005	232.15	Low Density/Medium Income
Winter	Refuse	Queens	13	3	20050308-Q-13-3-5-1-R	3/8/2005	207.83	Low Density/High Income
Winter	Refuse	Queens	9	2	20050308-Q-9-2-4-1-R	3/8/2005	207.35	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050308-Q-9-2-4-2-R	3/8/2005	210.1	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050308-Q-9-1-3-1-R	3/8/2005	214.15	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050308-Q-9-1-1-1-R	3/8/2005	225.4	Low Density/Medium Income
Winter	Refuse	Queens	5	2	20050308-Q-5-2-1-1-R	3/8/2005	249.17	Medium Density/Medium Income
Winter	Refuse	Queens	7	1	20050308-Q-7-1-4-1-R	3/8/2005	216.75	High Density/Medium Income
Winter	Refuse	Queens	4	3	20050308-Q-4-3-3-1-R	3/8/2005	239.52	Medium Density/Medium Income
Winter	Refuse	Queens	9	1	20050308-Q-9-1-1-2-R	3/8/2005	247.83	Low Density/Medium Income
Winter	Refuse	Queens	7	1	20050308-Q-7-1-2-1-R	3/8/2005	218.5	High Density/Medium Income
Winter	Refuse	Queens	4	3	20050309-Q-4-3-2-1-R	3/9/2005	187.96	Medium Density/Medium Income
Winter	Refuse	Queens	13	7	20050309-Q-13-7-4-1-R	3/9/2005	219	Low Density/High Income
Winter	Refuse	Queens	13	7	20050309-Q-13-7-1-1-R	3/9/2005	201.73	Low Density/High Income
Winter	Refuse	Queens	5	2	20050309-Q-5-2-3-1-R	3/9/2005	226.45	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050309-Q-4-3-2-2-R	3/9/2005	207.08	Medium Density/Medium Income
Winter	Refuse	Queens	5	2	20050309-Q-5-2-2-1-R	3/9/2005	246.97	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050309-Q-1-4-2-1-R	3/9/2005	221.02	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050309-Q-4-3-3-1-R	3/9/2005	221.75	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050310-Q-3-2-1-1-R	3/10/2005	220.45	High Density/Medium Income
Winter	Refuse	Queens	13	3	20050310-Q-13-3-4-1-R	3/10/2005	232.72	Low Density/High Income
Winter	Refuse	Queens	10	4	20050310-Q-10-4-1-1-R	3/10/2005	204.83	Low Density/High Income
Winter	Refuse	Queens	3	2	20050310-Q-3-2-2-1-R	3/10/2005	220.96	High Density/Medium Income
Winter	Refuse	Queens	7	1	20050310-Q-7-1-2-2-R	3/10/2005	213.8	High Density/Medium Income
Winter	Refuse	Queens	5	2	20050310-Q-5-2-2-2-R	3/10/2005	217.23	Medium Density/Medium Income
Winter	Refuse	Queens	7	1	20050310-Q-7-1-2-1-R	3/10/2005	211.77	High Density/Medium Income
Winter	Refuse	Queens	5	2	20050310-Q-5-2-2-1-R	3/10/2005	242.04	Medium Density/Medium Income
Winter	Refuse	Queens	13	5	20050310-Q-13-5-3-1-R	3/10/2005	198.58	Low Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Queens	5	2	20050310-Q-5-2-1-1-R	3/10/2005	239.05	Medium Density/Medium Income
Winter	Refuse	Queens	9	1	20050311-Q-9-1-3-1-R	3/11/2005	255.73	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050311-Q-9-2-4-3-R	3/11/2005	218	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050311-Q-9-2-4-2-R	3/11/2005	245.75	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050311-Q-9-2-4-1-R	3/11/2005	268.11	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050311-Q-9-1-1-2-R	3/11/2005	252.81	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050311-Q-9-1-3-2-R	3/11/2005	233.28	Low Density/Medium Income
Winter	Refuse	Queens	7	1	20050311-Q-7-1-2-1-R	3/11/2005	260.43	High Density/Medium Income
Winter	Refuse	Queens	4	3	20050311-Q-4-3-1-1-R	3/11/2005	225.2	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050311-Q-4-3-2-1-R	3/11/2005	314.9	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050311-Q-4-3-3-1-R	3/11/2005	232.25	Medium Density/Medium Income
Winter	Refuse	Queens	9	1	20050311-Q-9-1-1-1-R	3/11/2005	227.1	Low Density/Medium Income
Winter	Refuse	Queens	1	4	20050312-Q-1-4-3-1-R	3/12/2005	228	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050312-Q-1-4-1-1-R	3/12/2005	209.4	Medium Density/Medium Income
Winter	Refuse	Queens	10	4	20050312-Q-10-4-3-1-R	3/12/2005	207.2	Low Density/High Income
Winter	Refuse	Queens	1	4	20050314-Q-1-4-2-2-R	3/14/2005	226.05	Medium Density/Medium Income
Winter	Refuse	Queens	7	1	20050314-Q-7-1-2-2-R	3/14/2005	221.61	High Density/Medium Income
Winter	Refuse	Queens	10	4	20050314-Q-10-4-3-1-R	3/14/2005	205.6	Low Density/High Income
Winter	Refuse	Queens	1	4	20050314-Q-1-4-2-1-R	3/14/2005	230.75	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050314-Q-3-2-2-1-R	3/14/2005	219.51	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050314-Q-3-2-3-1-R	3/14/2005	260.23	High Density/Medium Income
Winter	Refuse	Queens	5	2	20050314-Q-5-2-1-1-R	3/14/2005	211	Medium Density/Medium Income
Winter	Refuse	Queens	13	4	20050314-Q-13-4-3-1-R	3/14/2005	205.15	Low Density/High Income
Winter	Refuse	Queens	7	1	20050314-Q-7-1-2-1-R	3/14/2005	210.71	High Density/Medium Income
Winter	Refuse	Queens	11	3	20050315-Q-11-3-2-1-R	3/15/2005	232.35	Low Density/High Income
Winter	Refuse	Queens	9	2	20050315-Q-9-2-4-1-R	3/15/2005	219.8	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050315-Q-9-2-2-2-R	3/15/2005	213.4	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050315-Q-9-2-2-1-R	3/15/2005	204.26	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050315-Q-9-2-4-2-R	3/15/2005	211.65	Low Density/Medium Income
Winter	Refuse	Queens	13	7	20050315-Q-13-7-2-1-R	3/15/2005	218.26	Low Density/High Income
Winter	Refuse	Queens	11	3	20050315-Q-11-3-1-1-R	3/15/2005	221.39	Low Density/High Income
Winter	Refuse	Queens	9	2	20050315-Q-9-2-2-3-R	3/15/2005	212.26	Low Density/Medium Income
Winter	Refuse	Queens	4	3	20050315-Q-4-3-2-1-R	3/15/2005	221.46	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050315-Q-1-4-3-1-R	3/15/2005	217.55	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050315-Q-4-3-4-1-R	3/15/2005	215.45	Medium Density/Medium Income
Winter	Refuse	Queens	5	2	20050315-Q-5-2-2-1-R	3/15/2005	245.44	Medium Density/Medium Income
Winter	Refuse	Queens	7	1	20050315-Q-7-1-1-1-R	3/15/2005	219.32	High Density/Medium Income
Winter	Refuse	Queens	7	1	20050315-Q-7-1-2-1-R	3/15/2005	223.57	High Density/Medium Income
Winter	Refuse	Queens	7	1	20050315-Q-7-1-2-2-R	3/15/2005	224.45	High Density/Medium Income
Winter	Refuse	Queens	7	1	20050315-Q-7-1-4-1-R	3/15/2005	216.66	High Density/Medium Income
Winter	Refuse	Queens	10	4	20050315-Q-10-4-4-1-R	3/15/2005	223.35	Low Density/High Income
Winter	Refuse	Queens	13	3	20050315-Q-13-3-5-1-R	3/15/2005	215.97	Low Density/High Income
Winter	Refuse	Queens	4	3	20050316-Q-4-3-1-1-R	3/16/2005	227.66	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050316-Q-1-4-2-1-R	3/16/2005	211.05	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050316-Q-3-2-3-1-R	3/16/2005	218.36	High Density/Medium Income
Winter	Refuse	Queens	1	4	20050317-Q-1-4-1-1-R	3/17/2005	217.64	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050317-Q-3-2-3-1-R	3/17/2005	224.16	High Density/Medium Income
Winter	Refuse	Queens	10	4	20050317-Q-10-4-1-1-R	3/17/2005	211.75	Low Density/High Income
Winter	Refuse	Queens	3	2	20050317-Q-3-2-3-2-R	3/17/2005	218.27	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050317-Q-3-2-4-1-R	3/17/2005	192.8	High Density/Medium Income
Winter	Refuse	Queens	5	2	20050317-Q-5-2-1-2-R	3/17/2005	211.25	Medium Density/Medium Income
Winter	Refuse	Queens	5	2	20050317-Q-5-2-2-1-R	3/17/2005	220.55	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050317-Q-1-4-1-2-R	3/17/2005	218.11	Medium Density/Medium Income
Winter	Refuse	Queens	5	2	20050317-Q-5-2-2-2-R	3/17/2005	219.35	Medium Density/Medium Income
Winter	Refuse	Queens	5	2	20050317-Q-5-2-1-1-R	3/17/2005	212.47	Medium Density/Medium Income
Winter	Refuse	Queens	9	2	20050318-Q-9-2-2-3-R	3/18/2005	213.13	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050318-Q-9-1-3-2-R	3/18/2005	220.04	Low Density/Medium Income
Winter	Refuse	Queens	13	4	20050318-Q-13-4-4-1-R	3/18/2005	198.5	Low Density/High Income
Winter	Refuse	Queens	9	1	20050318-Q-9-1-1-1-R	3/18/2005	230.16	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050318-Q-9-2-2-2-R	3/18/2005	217.41	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Queens	13	5	20050318-Q-13-5-2-1-R	3/18/2005	219.95	Low Density/High Income
Winter	Refuse	Queens	9	2	20050318-Q-9-2-4-3-R	3/18/2005	226.94	Low Density/Medium Income
Winter	Refuse	Queens	7	1	20050318-Q-7-1-1-1-R	3/18/2005	252.05	High Density/Medium Income
Winter	Refuse	Queens	9	1	20050318-Q-9-1-3-3-R	3/18/2005	218.24	Low Density/Medium Income
Winter	Refuse	Queens	1	4	20050318-Q-1-4-2-1-R	3/18/2005	226.19	Medium Density/Medium Income
Winter	Refuse	Queens	9	2	20050318-Q-9-2-2-1-R	3/18/2005	222.04	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050318-Q-9-1-3-1-R	3/18/2005	250.05	Low Density/Medium Income
Winter	Refuse	Queens	3	2	20050319-Q-3-2-3-1-R	3/19/2005	216.14	High Density/Medium Income
Winter	Refuse	Queens	13	8	20050319-Q-13-8-3-1-R	3/19/2005	246.6	Low Density/High Income
Winter	Refuse	Queens	13	8	20050319-Q-13-8-1-1-R	3/19/2005	221.75	Low Density/High Income
Winter	Refuse	Queens	1	4	20050319-Q-1-4-2-1-R	3/19/2005	222.8	Medium Density/Medium Income
Winter	Refuse	Queens	5	2	20050319-Q-5-2-1-1-R	3/19/2005	213.9	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050319-Q-1-4-3-1-R	3/19/2005	216.4	Medium Density/Medium Income
Winter	Refuse	Queens	13	6	20050321-Q-13-6-2-1-R	3/21/2005	219.14	Low Density/High Income
Winter	Refuse	Queens	3	2	20050321-Q-3-2-1-1-R	3/21/2005	226.97	High Density/Medium Income
Winter	Refuse	Queens	13	5	20050321-Q-13-5-2-1-R	3/21/2005	212.88	Low Density/High Income
Winter	Refuse	Queens	13	7	20050321-Q-13-7-2-1-R	3/21/2005	218.4	Low Density/High Income
Winter	Refuse	Queens	13	3	20050321-Q-13-3-1-1-R	3/21/2005	224.27	Low Density/High Income
Winter	Refuse	Queens	1	4	20050321-Q-1-4-2-1-R	3/21/2005	192.05	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050321-Q-3-2-4-1-R	3/21/2005	224.34	High Density/Medium Income
Winter	Refuse	Queens	5	2	20050321-Q-5-2-1-1-R	3/21/2005	211.37	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050321-Q-4-3-2-1-R	3/21/2005	219.81	Medium Density/Medium Income
Winter	Refuse	Queens	13	6	20050322-Q-13-6-2-1-R	3/22/2005	213.2	Low Density/High Income
Winter	Refuse	Queens	9	2	20050322-Q-9-2-4-2-R	3/22/2005	222.85	Low Density/Medium Income
Winter	Refuse	Queens	9	2	20050322-Q-9-2-4-1-R	3/22/2005	221.37	Low Density/Medium Income
Winter	Refuse	Queens	13	5	20050322-Q-13-5-3-1-R	3/22/2005	218.15	Low Density/High Income
Winter	Refuse	Queens	1	4	20050322-Q-1-4-3-1-R	3/22/2005	233.8	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050322-Q-1-4-3-2-R	3/22/2005	217.15	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050322-Q-1-4-4-1-R	3/22/2005	212.02	Medium Density/Medium Income
Winter	Refuse	Queens	7	1	20050322-Q-7-1-1-1-R	3/22/2005	217.44	High Density/Medium Income
Winter	Refuse	Queens	4	3	20050322-Q-4-3-1-1-R	3/22/2005	216.1	Medium Density/Medium Income
Winter	Refuse	Queens	9	2	20050322-Q-9-2-4-3-R	3/22/2005	225.58	Low Density/Medium Income
Winter	Refuse	Queens	13	6	20050323-Q-13-6-3-1-R	3/23/2005	210.32	Low Density/High Income
Winter	Refuse	Queens	4	3	20050323-Q-4-3-5-1-R	3/23/2005	217.6	Medium Density/Medium Income
Winter	Refuse	Queens	4	3	20050323-Q-4-3-3-1-R	3/23/2005	232.11	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050323-Q-3-2-3-2-R	3/23/2005	244.07	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050323-Q-3-2-3-1-R	3/23/2005	216.17	High Density/Medium Income
Winter	Refuse	Queens	13	7	20050323-Q-13-7-1-1-R	3/23/2005	222.45	Low Density/High Income
Winter	Refuse	Queens	10	4	20050323-Q-10-4-1-1-R	3/23/2005	213.97	Low Density/High Income
Winter	Refuse	Queens	3	2	20050324-Q-3-2-2-2-R	3/24/2005	216.56	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050324-Q-3-2-4-2-R	3/24/2005	214.27	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050324-Q-3-2-4-1-R	3/24/2005	225.96	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050324-Q-3-2-2-1-R	3/24/2005	246.66	High Density/Medium Income
Winter	Refuse	Queens	1	4	20050324-Q-1-4-2-1-R	3/24/2005	228.2	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050324-Q-1-4-1-1-R	3/24/2005	221.11	Medium Density/Medium Income
Winter	Refuse	Queens	13	8	20050325-Q-13-8-3-1-R	3/25/2005	216.3	Low Density/High Income
Winter	Refuse	Queens	9	1	20050325-Q-9-1-1-1-R	3/25/2005	214.4	Low Density/Medium Income
Winter	Refuse	Queens	9	1	20050325-Q-9-1-3-1-R	3/25/2005	217	Low Density/Medium Income
Winter	Refuse	Queens	4	3	20050325-Q-4-3-2-1-R	3/25/2005	204.93	Medium Density/Medium Income
Winter	Refuse	Queens	7	1	20050325-Q-7-1-1-1-R	3/25/2005	217.84	High Density/Medium Income
Winter	Refuse	Queens	9	1	20050325-Q-9-1-1-2-R	3/25/2005	233.91	Low Density/Medium Income
Winter	Refuse	Queens	1	4	20050326-Q-1-4-1-1-R	3/26/2005	220.3	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050326-Q-3-2-3-1-R	3/26/2005	232.1	High Density/Medium Income
Winter	Refuse	Queens	5	2	20050326-Q-5-2-3-1-R	3/26/2005	228.35	Medium Density/Medium Income
Winter	Refuse	Queens	1	4	20050326-Q-1-4-3-1-R	3/26/2005	212.61	Medium Density/Medium Income
Winter	Refuse	Queens	3	2	20050326-Q-3-2-3-2-R	3/26/2005	220.2	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050328-Q-3-2-3-2-R	3/28/2005	227.95	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050328-Q-3-2-3-1-R	3/28/2005	215.6	High Density/Medium Income
Winter	Refuse	Queens	3	2	20050328-Q-3-2-4-1-R	3/28/2005	215.7	High Density/Medium Income
Winter	Refuse	Queens	1	4	20050328-Q-1-4-3-1-R	3/28/2005	214.1	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Refuse	Queens	7	6	20050328-Q-7-6-1-1-R	3/28/2005	222.95	Low Density/High Income
Winter	Refuse	Queens	7	1	20050328-Q-7-1-2-1-R	3/28/2005	214.53	High Density/Medium Income
Winter	Refuse	Staten Island	2	2	20050308-SI-2-2-3-1-R	3/8/2005	244.32	Low Density/High Income
Winter	Refuse	Staten Island	3	4	20050308-SI-3-4-1-1-R	3/8/2005	263.11	Low Density/High Income
Winter	Refuse	Staten Island	3	6	20050308-SI-3-6-2-1-R	3/8/2005	217.48	Low Density/High Income
Winter	Refuse	Staten Island	1	3	20050308-SI-1-3-1-1-R	3/8/2005	232.27	Low Density/Medium Income
Winter	Refuse	Staten Island	3	5	20050308-SI-3-5-3-1-R	3/8/2005	244.1	Low Density/High Income
Winter	Refuse	Staten Island	3	6	20050309-SI-3-6-3-1-R	3/9/2005	236.45	Low Density/High Income
Winter	Refuse	Staten Island	3	5	20050309-SI-3-5-2-1-R	3/9/2005	203.66	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050309-SI-3-1-2-2-R	3/9/2005	242.35	Low Density/Medium Income
Winter	Refuse	Staten Island	3	1	20050309-SI-3-1-2-1-R	3/9/2005	216.6	Low Density/Medium Income
Winter	Refuse	Staten Island	3	1	20050309-SI-3-1-3-1-R	3/9/2005	218.65	Low Density/Medium Income
Winter	Refuse	Staten Island	3	1	20050309-SI-3-1-2-3-R	3/9/2005	221.4	Low Density/Medium Income
Winter	Refuse	Staten Island	3	6	20050310-SI-3-6-3-1-R	3/10/2005	221.02	Low Density/High Income
Winter	Refuse	Staten Island	2	2	20050310-SI-2-2-1-1-R	3/10/2005	210.07	Low Density/High Income
Winter	Refuse	Staten Island	2	2	20050310-SI-2-2-6-1-R	3/10/2005	166.91	Low Density/High Income
Winter	Refuse	Staten Island	3	4	20050311-SI-3-4-1-1-R	3/11/2005	461.21	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050312-SI-3-1-1-1-R	3/12/2005	230.58	Low Density/Medium Income
Winter	Refuse	Staten Island	3	6	20050314-SI-3-6-1-1-R	3/14/2005	244.02	Low Density/High Income
Winter	Refuse	Staten Island	1	3	20050315-SI-1-3-1-1-R	3/15/2005	236.12	Low Density/Medium Income
Winter	Refuse	Staten Island	3	8	20050316-SI-3-8-1-1-R	3/16/2005	211.95	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050316-SI-3-1-2-1-R	3/16/2005	236.25	Low Density/Medium Income
Winter	Refuse	Staten Island	3	2	20050316-SI-3-2-4-1-R	3/16/2005	223.88	Low Density/High Income
Winter	Refuse	Staten Island	2	4	20050316-SI-2-4-3-1-R	3/16/2005	229	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050316-SI-3-1-3-1-R	3/16/2005	237.35	Low Density/Medium Income
Winter	Refuse	Staten Island	2	2	20050316-SI-2-2-5-1-R	3/16/2005	225.6	Low Density/High Income
Winter	Refuse	Staten Island	3	6	20050318-SI-3-6-2-1-R	3/18/2005	214.89	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050319-SI-3-1-2-1-R	3/19/2005	266.65	Low Density/Medium Income
Winter	Refuse	Staten Island	3	1	20050319-SI-3-1-1-1-R	3/19/2005	217.6	Low Density/Medium Income
Winter	Refuse	Staten Island	3	5	20050321-SI-3-5-1-1-R	3/21/2005	228.49	Low Density/High Income
Winter	Refuse	Staten Island	1	3	20050322-SI-1-3-1-1-R	3/22/2005	248.49	Low Density/Medium Income
Winter	Refuse	Staten Island	2	2	20050322-SI-2-2-1-1-R	3/22/2005	242.56	Low Density/High Income
Winter	Refuse	Staten Island	1	3	20050322-SI-1-3-1-2-R	3/22/2005	226.6	Low Density/Medium Income
Winter	Refuse	Staten Island	3	1	20050323-SI-3-1-2-1-R	3/23/2005	218.29	Low Density/Medium Income
Winter	Refuse	Staten Island	3	1	20050323-SI-3-1-3-1-R	3/23/2005	226.07	Low Density/Medium Income
Winter	Refuse	Staten Island	2	4	20050324-SI-2-4-3-1-R	3/24/2005	233.22	Low Density/High Income
Winter	Refuse	Staten Island	2	2	20050325-SI-2-2-1-1-R	3/25/2005	211.45	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050326-SI-3-1-2-1-R	3/26/2005	251.22	Low Density/Medium Income
Winter	Refuse	Staten Island	3	4	20050326-SI-3-4-3-1-R	3/26/2005	260.05	Low Density/High Income
Winter	Refuse	Staten Island	3	1	20050326-SI-3-1-1-1-R	3/26/2005	216.07	Low Density/Medium Income
Winter	Refuse	Staten Island	3	6	20050328-SI-3-6-1-1-R	3/28/2005	221.98	Low Density/High Income
Winter	Paper	Manhattan	8	5	20050310-M-8-5-3-1-P	3/10/2005	124.7	High Density/High Income
Winter	Paper	Manhattan	8	1	20050311-M-8-1-2-1-P	3/11/2005	131.8	High Density/High Income
Winter	Paper	Manhattan	2	3	20050311-M-2-3-1-1-P	3/11/2005	113.15	High Density/High Income
Winter	Paper	Manhattan	3	1	20050312-M-3-1-1-1-P	3/12/2005	108.4	High Density/Low Income
Winter	Paper	Manhattan	3	1	20050312-M-3-1-1-2-P	3/12/2005	113.04	High Density/Low Income
Winter	Paper	Manhattan	8	2	20050312-M-8-2-2-1-P	3/12/2005	111.75	High Density/High Income
Winter	Paper	Manhattan	3	3	20050314-M-3-3-1-1-P	3/14/2005	117.45	High Density/Medium Income
Winter	Paper	Manhattan	2	3	20050315-M-2-3-3-1-P	3/15/2005	119.2	High Density/High Income
Winter	Paper	Manhattan	8	5	20050317-M-8-5-3-1-P	3/17/2005	120.8	High Density/High Income
Winter	Paper	Manhattan	3	1	20050319-M-3-1-1-1-P	3/19/2005	126	High Density/Low Income
Winter	Paper	Manhattan	7	2	20050319-M-7-2-2-1-P	3/19/2005	152.95	High Density/High Income
Winter	Paper	Manhattan	6	3	20050321-M-6-3-3-1-P	3/21/2005	122.6	High Density/High Income
Winter	Paper	Manhattan	8	3	20050323-M-8-3-2-1-P	3/23/2005	128.3	High Density/High Income
Winter	Paper	Manhattan	8	3	20050324-M-8-3-1-1-P	3/24/2005	138.45	High Density/High Income
Winter	Paper	Manhattan	8	4	20050326-M-8-4-1-1-P	3/26/2005	127.2	High Density/High Income
Winter	Paper	Bronx	5	2	20050311-BX-5-2-1-1-P	3/11/2005	129.55	High Density/Low Income
Winter	Paper	Bronx	5	2	20050311-BX-5-2-1-2-P	3/11/2005	120.28	High Density/Low Income
Winter	Paper	Bronx	5	3	20050315-BX-5-3-1-1-P	3/15/2005	114.11	High Density/Low Income
Winter	Paper	Bronx	5	2	20050318-BX-5-2-1-2-P	3/18/2005	110.8	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Paper	Bronx	5	2	20050318-BX-5-2-1-1-P	3/18/2005	114.55	High Density/Low Income
Winter	Paper	Bronx	5	3	20050322-BX-5-3-1-1-P	3/22/2005	115.9	High Density/Low Income
Winter	Paper	Bronx	5	2	20050324-BX-5-2-1-1-P	3/24/2005	129.5	High Density/Low Income
Winter	Paper	Bronx	5	2	20050324-BX-5-2-1-2-P	3/24/2005	130.95	High Density/Low Income
Winter	Paper	Brooklyn	3	3	20050308-BK-3-3-1-1-P	3/8/2005	123.66	Medium Density/Low Income
Winter	Paper	Brooklyn	4	3	20050310-BK-4-3-3-1-P	3/10/2005	121.6	Medium Density/Low Income
Winter	Paper	Brooklyn	6	2	20050310-BK-6-2-1-1-P	3/10/2005	126.31	Medium Density/High Income
Winter	Paper	Brooklyn	4	3	20050310-BK-4-3-2-1-P	3/10/2005	124.93	Medium Density/Low Income
Winter	Paper	Brooklyn	4	3	20050311-BK-4-3-2-1-P	3/11/2005	123.55	Medium Density/Low Income
Winter	Paper	Brooklyn	6	2	20050312-BK-6-2-1-1-P	3/12/2005	120.65	Medium Density/High Income
Winter	Paper	Brooklyn	6	2	20050312-BK-6-2-2-1-P	3/12/2005	139.7	Medium Density/High Income
Winter	Paper	Brooklyn	6	2	20050312-BK-6-2-1-2-P	3/12/2005	111.77	Medium Density/High Income
Winter	Paper	Brooklyn	6	2	20050318-BK-6-2-1-1-P	3/18/2005	122.5	Medium Density/High Income
Winter	Paper	Brooklyn	4	3	20050318-BK-4-3-2-1-P	3/18/2005	121.3	Medium Density/Low Income
Winter	Paper	Brooklyn	6	2	20050319-BK-6-2-1-1-P	3/19/2005	127.35	Medium Density/High Income
Winter	Paper	Brooklyn	4	2	20050319-BK-4-2-3-1-p	3/19/2005	114.6	Medium Density/Low Income
Winter	Paper	Brooklyn	6	2	20050319-BK-6-2-2-1-P	3/19/2005	132.15	Medium Density/High Income
Winter	Paper	Brooklyn	6	2	20050319-BK-6-2-2-2-P	3/19/2005	120.45	Medium Density/High Income
Winter	Paper	Brooklyn	4	2	20050321-BK-4-2-2-1-P	3/21/2005	117	Medium Density/Low Income
Winter	Paper	Brooklyn	3	3	20050322-BK-3-3-1-1-P	3/22/2005	146.1	Medium Density/Low Income
Winter	Paper	Brooklyn	6	2	20050324-BK-6-2-1-1-P	3/24/2005	136.85	Medium Density/High Income
Winter	Paper	Brooklyn	17	1	20050324-BK-17-1-3-2-P	3/24/2005	127.05	Medium Density/Low Income
Winter	Paper	Brooklyn	17	1	20050324-BK-17-1-3-1-P	3/24/2005	137.7	Medium Density/Low Income
Winter	Paper	Brooklyn	6	2	20050325-BK-6-2-1-1-P	3/25/2005	122.15	Medium Density/High Income
Winter	Paper	Brooklyn	4	3	20050325-BK-4-3-1-1-P	3/25/2005	137.9	Medium Density/Low Income
Winter	Paper	Queens	1	4	20050308-Q-1-4-1-1-P	3/8/2005	119.26	Medium Density/Medium Income
Winter	Paper	Queens	1	4	20050309-Q-1-4-2-1-P	3/9/2005	123.37	Medium Density/Medium Income
Winter	Paper	Queens	13	7	20050310-Q-13-7-2-1-P	3/10/2005	120.5	Low Density/High Income
Winter	Paper	Queens	9	2	20050311-Q-9-2-2-1-P	3/11/2005	125.25	Low Density/Medium Income
Winter	Paper	Queens	9	1	20050311-Q-9-1-3-1-P	3/11/2005	120.95	Low Density/Medium Income
Winter	Paper	Queens	3	2	20050312-Q-3-2-2-1-P	3/12/2005	116.6	High Density/Medium Income
Winter	Paper	Queens	3	2	20050312-Q-3-2-2-2-P	3/12/2005	107.3	High Density/Medium Income
Winter	Paper	Queens	3	2	20050312-Q-3-2-1-1-P	3/12/2005	135.04	High Density/Medium Income
Winter	Paper	Queens	5	2	20050312-Q-5-2-3-1-P	3/12/2005	126.15	Medium Density/Medium Income
Winter	Paper	Queens	5	2	20050314-Q-5-2-1-1-P	3/14/2005	119.8	Medium Density/Medium Income
Winter	Paper	Queens	1	4	20050315-Q-1-4-2-1-P	3/15/2005	104.65	Medium Density/Medium Income
Winter	Paper	Queens	13	7	20050315-Q-13-7-1-1-P	3/15/2005	117.3	Low Density/High Income
Winter	Paper	Queens	1	4	20050317-Q-1-4-1-1-P	3/17/2005	111.5	Medium Density/Medium Income
Winter	Paper	Queens	3	2	20050318-Q-3-2-1-1-P	3/18/2005	109.4	High Density/Medium Income
Winter	Paper	Queens	3	2	20050318-Q-3-2-1-2-P	3/18/2005	106.4	High Density/Medium Income
Winter	Paper	Queens	13	3	20050318-Q-13-3-1-1-P	3/18/2005	114.6	Low Density/High Income
Winter	Paper	Queens	9	2	20050318-Q-9-2-2-1-P	3/18/2005	112.3	Low Density/Medium Income
Winter	Paper	Queens	9	1	20050318-Q-9-1-3-1-P	3/18/2005	126.75	Low Density/Medium Income
Winter	Paper	Queens	9	1	20050318-Q-9-1-3-2-P	3/18/2005	114.85	Low Density/Medium Income
Winter	Paper	Queens	3	2	20050319-Q-3-2-2-2-P	3/19/2005	117.05	High Density/Medium Income
Winter	Paper	Queens	3	2	20050319-Q-3-2-2-1-P	3/19/2005	131.2	High Density/Medium Income
Winter	Paper	Queens	4	3	20050319-Q-4-3-2-1-P	3/19/2005	124.85	Medium Density/Medium Income
Winter	Paper	Queens	5	2	20050321-Q-5-2-3-1-P	3/21/2005	123.2	Medium Density/Medium Income
Winter	Paper	Queens	9	1	20050325-Q-9-1-1-1-P	3/25/2005	133.95	Low Density/Medium Income
Winter	Paper	Queens	13	3	20050325-Q-13-3-3-1-P	3/25/2005	133.75	Low Density/High Income
Winter	Paper	Queens	9	2	20050325-Q-9-2-1-1-P	3/25/2005	118.35	Low Density/Medium Income
Winter	Paper	Queens	3	2	20050325-Q-3-2-1-1-P	3/25/2005	125.85	High Density/Medium Income
Winter	Paper	Queens	5	2	20050325-Q-5-2-1-1-P	3/25/2005	117.55	Medium Density/Medium Income
Winter	Paper	Queens	5	2	20050326-Q-5-2-2-1-P	3/26/2005	145.2	Medium Density/Medium Income
Winter	Paper	Queens	3	2	20050328-Q-3-2-2-1-P	3/28/2005	101.15	High Density/Medium Income
Winter	Paper	Queens	5	2	20050328-Q-5-2-1-1-P	3/28/2005	144.5	Medium Density/Medium Income
Winter	Paper	Staten Island	2	2	20050308-SI-2-2-4-1-P	3/8/2005	125.82	Low Density/High Income
Winter	Paper	Staten Island	2	2	20050309-SI-2-2-3-1-P	3/9/2005	124.45	Low Density/High Income
Winter	Paper	Staten Island	2	2	20050310-SI-2-2-2-1-P	3/10/2005	123.83	Low Density/High Income
Winter	Paper	Staten Island	1	3	20050311-SI-1-3-1-1-P	3/11/2005	118.1	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Paper	Staten Island	3	1	20050316-SI-3-1-4-1-P	3/16/2005	138.55	Low Density/Medium Income
Winter	Paper	Staten Island	2	2	20050317-SI-2-2-1-1-P	3/17/2005	133.4	Low Density/High Income
Winter	Paper	Staten Island	2	2	20050322-SI-2-2-1-1-P	3/22/2005	134.5	Low Density/High Income
Winter	Paper	Staten Island	3	1	20050323-SI-3-1-1-1-P	3/23/2005	134.7	Low Density/Medium Income
Winter	Paper	Staten Island	1	3	20050325-SI-1-3-1-1-P	3/25/2005	124.8	Low Density/Medium Income
Winter	Paper	Staten Island	3	6	20050328-SI-3-6-1-1-P	3/28/2005	122.7	Low Density/High Income
Winter	MGP	Manhattan	8	1	20050308-M-8-1-1-1-M	3/8/2005	134.3	High Density/High Income
Winter	MGP	Manhattan	2	3	20050308-M-2-3-2-1-M	3/8/2005	121.83	High Density/High Income
Winter	MGP	Manhattan	8	3	20050309-M-8-3-2-1-M	3/9/2005	137.85	High Density/High Income
Winter	MGP	Manhattan	8	3	20050310-M-8-3-2-1-M	3/10/2005	134.5	High Density/High Income
Winter	MGP	Manhattan	8	3	20050310-M-8-3-1-2-M	3/10/2005	110.69	High Density/High Income
Winter	MGP	Manhattan	8	5	20050310-M-8-5-1-1-M	3/10/2005	111.84	High Density/High Income
Winter	MGP	Manhattan	8	3	20050310-M-8-3-1-1-M	3/10/2005	122.34	High Density/High Income
Winter	MGP	Manhattan	3	1	20050312-M-3-1-1-3-M	3/12/2005	136.3	High Density/Low Income
Winter	MGP	Manhattan	3	1	20050312-M-3-1-1-2-M	3/12/2005	103.18	High Density/Low Income
Winter	MGP	Manhattan	3	1	20050312-M-3-1-1-6-M	3/12/2005	113.45	High Density/Low Income
Winter	MGP	Manhattan	6	3	20050312-M-6-3-1-1-M	3/12/2005	107.25	High Density/High Income
Winter	MGP	Manhattan	8	4	20050312-M-8-4-1-1-M	3/12/2005	106.89	High Density/High Income
Winter	MGP	Manhattan	3	1	20050312-M-3-1-1-5-M	3/12/2005	130	High Density/Low Income
Winter	MGP	Manhattan	3	1	20050312-M-3-1-1-4-M	3/12/2005	120.1	High Density/Low Income
Winter	MGP	Manhattan	6	3	20050312-M-6-3-1-2-M	3/12/2005	65.3	High Density/High Income
Winter	MGP	Manhattan	3	1	20050312-M-3-1-1-1-M	3/12/2005	111.39	High Density/Low Income
Winter	MGP	Manhattan	8	5	20050314-M-8-5-2-1-M	3/14/2005	113.02	High Density/High Income
Winter	MGP	Manhattan	8	5	20050314-M-8-5-3-1-M	3/14/2005	144.19	High Density/High Income
Winter	MGP	Manhattan	8	5	20050314-M-8-5-3-2-M	3/14/2005	119.03	High Density/High Income
Winter	MGP	Manhattan	8	5	20050314-M-8-5-2-2-M	3/14/2005	156.9	High Density/High Income
Winter	MGP	Manhattan	3	3	20050314-M-3-3-1-1-M	3/14/2005	106.95	High Density/Medium Income
Winter	MGP	Manhattan	8	4	20050314-M-8-4-1-1-M	3/14/2005	150.25	High Density/High Income
Winter	MGP	Manhattan	8	4	20050314-M-8-4-1-2-M	3/14/2005	146.23	High Density/High Income
Winter	MGP	Manhattan	8	3	20050316-M-8-3-1-1-M	3/16/2005	116.14	High Density/High Income
Winter	MGP	Manhattan	8	3	20050317-M-8-3-1-1-M	3/17/2005	153.49	High Density/High Income
Winter	MGP	Manhattan	8	3	20050317-M-8-3-2-1-M	3/17/2005	115.65	High Density/High Income
Winter	MGP	Manhattan	8	3	20050317-M-8-3-2-2-M	3/17/2005	141.65	High Density/High Income
Winter	MGP	Manhattan	7	3	20050318-M-7-3-1-1-M	3/18/2005	157.35	High Density/High Income
Winter	MGP	Manhattan	8	1	20050318-M-8-1-1-1-M	3/18/2005	140.95	High Density/High Income
Winter	MGP	Manhattan	7	3	20050318-M-7-3-1-2-M	3/18/2005	143.7	High Density/High Income
Winter	MGP	Manhattan	8	2	20050318-M-8-2-2-1-M	3/18/2005	206.9	High Density/High Income
Winter	MGP	Manhattan	8	2	20050319-M-8-2-2-1-M	3/19/2005	123	High Density/High Income
Winter	MGP	Manhattan	3	1	20050319-M-3-1-1-2-M	3/19/2005	131.31	High Density/Low Income
Winter	MGP	Manhattan	3	1	20050319-M-3-1-1-1-M	3/19/2005	183.5	High Density/Low Income
Winter	MGP	Manhattan	7	2	20050319-M-7-2-1-1-M	3/19/2005	116.15	High Density/High Income
Winter	MGP	Manhattan	7	2	20050319-M-7-2-1-2-M	3/19/2005	123.9	High Density/High Income
Winter	MGP	Manhattan	8	4	20050319-M-8-4-2-1-M	3/19/2005	152.88	High Density/High Income
Winter	MGP	Manhattan	7	2	20050319-M-7-2-2-1-M	3/19/2005	130.58	High Density/High Income
Winter	MGP	Manhattan	8	4	20050321-M-8-4-1-1-M	3/21/2005	183.06	High Density/High Income
Winter	MGP	Manhattan	8	4	20050321-M-8-4-2-1-M	3/21/2005	138.15	High Density/High Income
Winter	MGP	Manhattan	8	5	20050321-M-8-5-2-1-M	3/21/2005	137.1	High Density/High Income
Winter	MGP	Manhattan	3	3	20050321-M-3-3-1-1-M	3/21/2005	176.6	High Density/Medium Income
Winter	MGP	Manhattan	2	3	20050322-M-2-3-2-1-M	3/22/2005	117.35	High Density/High Income
Winter	MGP	Manhattan	8	3	20050323-M-8-3-1-1-M	3/23/2005	126.75	High Density/High Income
Winter	MGP	Manhattan	8	3	20050324-M-8-3-1-1-M	3/24/2005	124.15	High Density/High Income
Winter	MGP	Manhattan	8	3	20050324-M-8-3-1-2-M	3/24/2005	124.15	High Density/High Income
Winter	MGP	Manhattan	8	3	20050324-M-8-3-2-1-M	3/24/2005	141.5	High Density/High Income
Winter	MGP	Manhattan	8	2	20050325-M-8-2-2-2-M	3/25/2005	116.3	High Density/High Income
Winter	MGP	Manhattan	8	2	20050325-M-8-2-2-1-M	3/25/2005	119.15	High Density/High Income
Winter	MGP	Manhattan	8	1	20050325-M-8-1-1-1-M	3/25/2005	121.05	High Density/High Income
Winter	MGP	Manhattan	7	2	20050326-M-7-2-2-1-M	3/26/2005	138.9	High Density/High Income
Winter	MGP	Manhattan	3	1	20050326-M-3-1-1-1-M	3/26/2005	133.05	High Density/Low Income
Winter	MGP	Manhattan	3	1	20050326-M-3-1-1-2-M	3/26/2005	156.7	High Density/Low Income
Winter	MGP	Manhattan	3	3	20050328-M-3-3-1-1-M	3/28/2005	149.05	High Density/Medium Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	MGP	Manhattan	8	5	20050328-M-8-5-2-1-M	3/28/2005	145.3	High Density/High Income
Winter	MGP	Manhattan	3	3	20050328-M-3-3-1-2-M	3/28/2005	142.2	High Density/Medium Income
Winter	MGP	Bronx	5	3	20050308-BX-5-3-1-1-M	3/8/2005	105.05	High Density/Low Income
Winter	MGP	Bronx	5	3	20050308-BX-5-3-2-1-M	3/8/2005	146.77	High Density/Low Income
Winter	MGP	Bronx	5	3	20050308-BX-5-3-2-2-M	3/8/2005	114.6	High Density/Low Income
Winter	MGP	Bronx	5	2	20050310-BX-5-2-2-4-M	3/10/2005	148.9	High Density/Low Income
Winter	MGP	Bronx	5	2	20050310-BX-5-2-1-1-M	3/10/2005	117.95	High Density/Low Income
Winter	MGP	Bronx	5	2	20050310-BX-5-2-1-2-M	3/10/2005	104.45	High Density/Low Income
Winter	MGP	Bronx	5	2	20050310-BX-5-2-2-1-M	3/10/2005	128.9	High Density/Low Income
Winter	MGP	Bronx	5	2	20050310-BX-5-2-2-2-M	3/10/2005	105.53	High Density/Low Income
Winter	MGP	Bronx	5	2	20050310-BX-5-2-2-3-M	3/10/2005	126.41	High Density/Low Income
Winter	MGP	Bronx	5	2	20050311-BX-5-2-1-1-M	3/11/2005	133.6	High Density/Low Income
Winter	MGP	Bronx	5	3	20050315-BX-5-3-1-1-M	3/15/2005	127.1	High Density/Low Income
Winter	MGP	Bronx	5	3	20050315-BX-5-3-2-1-M	3/15/2005	148.18	High Density/Low Income
Winter	MGP	Bronx	5	3	20050316-BX-5-3-2-2-M	3/16/2005	116.35	High Density/Low Income
Winter	MGP	Bronx	5	3	20050316-BX-5-3-2-1-M	3/16/2005	221.55	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-1-3-M	3/17/2005	123.95	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-1-2-M	3/17/2005	126.35	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-1-4-M	3/17/2005	143.65	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-1-5-M	3/17/2005	114.49	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-2-2-M	3/17/2005	112.3	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-2-3-M	3/17/2005	107.92	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-2-4-M	3/17/2005	172.18	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-1-1-M	3/17/2005	161	High Density/Low Income
Winter	MGP	Bronx	5	2	20050317-BX-5-2-2-1-M	3/17/2005	112.13	High Density/Low Income
Winter	MGP	Bronx	5	1	20050321-BX-5-1-2-1-M	3/21/2005	129.95	High Density/Low Income
Winter	MGP	Bronx	5	3	20050322-BX-5-3-1-1-M	3/22/2005	183.8	High Density/Low Income
Winter	MGP	Bronx	5	3	20050323-BX-5-3-2-4-M	3/23/2005	119.7	High Density/Low Income
Winter	MGP	Bronx	5	3	20050323-BX-5-3-2-3-M	3/23/2005	141.65	High Density/Low Income
Winter	MGP	Bronx	5	3	20050323-BX-5-3-2-2-M	3/23/2005	138.55	High Density/Low Income
Winter	MGP	Bronx	5	3	20050323-BX-5-3-2-1-M	3/23/2005	130.2	High Density/Low Income
Winter	MGP	Bronx	5	3	20050323-BX-5-3-2-5-M	3/23/2005	123.75	High Density/Low Income
Winter	MGP	Bronx	5	2	20050324-BX-5-2-2-1-M	3/24/2005	129.5	High Density/Low Income
Winter	MGP	Bronx	5	2	20050324-BX-5-2-1-1-M	3/24/2005	160.25	High Density/Low Income
Winter	MGP	Bronx	5	2	20050325-BX-5-2-1-2-M	3/25/2005	187.4	High Density/Low Income
Winter	MGP	Bronx	5	2	20050325-BX-5-2-1-1-M	3/25/2005	127.8	High Density/Low Income
Winter	MGP	Brooklyn	4	1	20050308-BK-4-1-2-1-M	3/8/2005	156.65	Medium Density/Low Income
Winter	MGP	Brooklyn	3	3	20050308-BK-3-3-2-1-M	3/8/2005	114.89	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050310-BK-6-2-1-2-M	3/10/2005	142.75	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050310-BK-6-2-1-1-M	3/10/2005	125.75	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050310-BK-4-3-2-1-M	3/10/2005	151.35	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050310-BK-6-2-1-3-M	3/10/2005	151.65	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050310-BK-6-2-1-4-M	3/10/2005	106.74	Medium Density/High Income
Winter	MGP	Brooklyn	17	1	20050310-BK-17-1-3-2-M	3/10/2005	127.45	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050310-BK-17-1-3-1-M	3/10/2005	139.38	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050310-BK-17-1-2-1-M	3/10/2005	124.25	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050310-BK-17-1-1-1-M	3/10/2005	120.05	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050310-BK-6-2-1-6-M	3/10/2005	120.64	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050310-BK-4-3-3-1-M	3/10/2005	115	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050311-BK-6-2-1-1-M	3/11/2005	130	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050311-BK-6-2-1-5-M	3/11/2005	91.6	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050311-BK-6-2-1-4-M	3/11/2005	155.5	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050311-BK-6-2-1-3-M	3/11/2005	133.5	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050311-BK-6-2-1-2-M	3/11/2005	150.52	Medium Density/High Income
Winter	MGP	Brooklyn	4	2	20050312-BK-4-2-3-3-M	3/12/2005	106.59	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050312-BK-6-2-1-5-M	3/12/2005	123.51	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050312-BK-6-2-1-2-M	3/12/2005	120.63	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050312-BK-6-2-1-3-M	3/12/2005	127.25	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050312-BK-6-2-1-1-M	3/12/2005	147.35	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050312-BK-6-2-1-4-M	3/12/2005	116.8	Medium Density/High Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	MGP	Brooklyn	4	2	20050312-BK-4-2-3-1-M	3/12/2005	174.4	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050314-BK-17-1-1-1-M	3/14/2005	121.84	Medium Density/Low Income
Winter	MGP	Brooklyn	4	2	20050314-BK-4-2-2-1-M	3/14/2005	146.25	Medium Density/Low Income
Winter	MGP	Brooklyn	4	2	20050314-BK-4-2-3-1-M	3/14/2005	127.7	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050314-BK-17-1-2-1-M	3/14/2005	118.97	Medium Density/Low Income
Winter	MGP	Brooklyn	4	1	20050315-BK-4-1-1-1-M	3/15/2005	115.16	Medium Density/Low Income
Winter	MGP	Brooklyn	4	1	20050316-BK-4-1-1-1-M	3/16/2005	134	Medium Density/Low Income
Winter	MGP	Brooklyn	4	1	20050316-BK-4-1-2-1-M	3/16/2005	117.85	Medium Density/Low Income
Winter	MGP	Brooklyn	4	1	20050316-BK-4-1-2-2-M	3/16/2005	111.45	Medium Density/Low Income
Winter	MGP	Brooklyn	4	1	20050316-BK-4-1-1-3-M	3/16/2005	143.9	Medium Density/Low Income
Winter	MGP	Brooklyn	4	1	20050316-BK-4-1-1-2-M	3/16/2005	102.1	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050317-BK-6-2-1-2-M	3/17/2005	171.5	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050317-BK-6-2-1-3-M	3/17/2005	116.5	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050317-BK-4-3-2-1-M	3/17/2005	143.1	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050317-BK-6-2-1-1-M	3/17/2005	115.7	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050317-BK-4-3-2-2-M	3/17/2005	227.29	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050317-BK-6-2-1-5-M	3/17/2005	161.91	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050317-BK-6-2-1-4-M	3/17/2005	128.65	Medium Density/High Income
Winter	MGP	Brooklyn	17	1	20050317-BK-17-1-1-1-M	3/17/2005	160	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-1-M	3/18/2005	119.55	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-5-M	3/18/2005	219.75	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-7-M	3/18/2005	125.6	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-6-M	3/18/2005	124.61	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-4-M	3/18/2005	145.11	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-3-M	3/18/2005	119.7	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050318-BK-4-3-3-1-M	3/18/2005	130.85	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050318-BK-6-2-1-2-M	3/18/2005	126.8	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050318-BK-4-3-3-2-M	3/18/2005	119.35	Medium Density/Low Income
Winter	MGP	Brooklyn	4	3	20050318-BK-4-3-2-1-M	3/18/2005	138.15	Medium Density/Low Income
Winter	MGP	Brooklyn	4	2	20050319-BK-4-2-3-1-M	3/19/2005	134.6	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050319-BK-6-2-1-4-M	3/19/2005	123.57	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050319-BK-6-2-1-2-M	3/19/2005	118.06	Medium Density/High Income
Winter	MGP	Brooklyn	4	2	20050319-BK-4-2-2-1-M	3/19/2005	129.75	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050319-BK-6-2-1-1-M	3/19/2005	144.81	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050319-BK-6-2-1-3-M	3/19/2005	116.8	Medium Density/High Income
Winter	MGP	Brooklyn	17	1	20050321-BK-17-1-2-1-M	3/21/2005	130.2	Medium Density/Low Income
Winter	MGP	Brooklyn	4	2	20050321-BK-4-2-2-1-M	3/21/2005	130	Medium Density/Low Income
Winter	MGP	Brooklyn	3	3	20050322-BK-3-3-2-1-M	3/22/2005	147.75	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050324-BK-6-2-1-3-M	3/24/2005	127.15	Medium Density/High Income
Winter	MGP	Brooklyn	17	1	20050324-BK-17-1-3-1-M	3/24/2005	139.05	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050324-BK-17-1-1-1-M	3/24/2005	121.8	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050324-BK-17-1-1-2-M	3/24/2005	145.45	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050324-BK-6-2-1-2-M	3/24/2005	124	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050324-BK-6-2-1-1-M	3/24/2005	127.35	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050325-BK-6-2-1-1-M	3/25/2005	116.15	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050325-BK-6-2-1-4-M	3/25/2005	137.21	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050325-BK-6-2-1-2-M	3/25/2005	117.85	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050325-BK-4-3-1-1-M	3/25/2005	138.2	Medium Density/Low Income
Winter	MGP	Brooklyn	4	3	20050325-BK-4-3-3-1-M	3/25/2005	115.5	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050325-BK-6-2-1-3-M	3/25/2005	114.55	Medium Density/High Income
Winter	MGP	Brooklyn	4	3	20050325-BK-4-3-3-2-M	3/25/2005	102	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050326-BK-6-2-1-2-M	3/26/2005	153.2	Medium Density/High Income
Winter	MGP	Brooklyn	6	2	20050326-BK-6-2-1-1-M	3/26/2005	118.49	Medium Density/High Income
Winter	MGP	Brooklyn	4	2	20050326-BK-4-2-1-1-M	3/26/2005	132.45	Medium Density/Low Income
Winter	MGP	Brooklyn	6	2	20050326-BK-6-2-1-3-M	3/26/2005	123.3	Medium Density/High Income
Winter	MGP	Brooklyn	3	3	20050328-BK-3-3-2-1-M	3/28/2005	120.2	Medium Density/Low Income
Winter	MGP	Brooklyn	4	2	20050328-BK-4-2-3-1-M	3/28/2005	126.7	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050328-BK-17-1-2-1-M	3/28/2005	117.4	Medium Density/Low Income
Winter	MGP	Brooklyn	17	1	20050328-BK-17-1-1-1-M	3/28/2005	121.7	Medium Density/Low Income
Winter	MGP	Queens	1	4	20050308-Q-1-4-1-1-M	3/8/2005	128.58	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	MGP	Queens	13	7	20050308-Q-13-7-3-1-M	3/8/2005	128.11	Low Density/High Income
Winter	MGP	Queens	1	4	20050308-Q-1-4-3-1-M	3/8/2005	129.33	Medium Density/Medium Income
Winter	MGP	Queens	1	4	20050309-Q-1-4-2-2-M	3/9/2005	132.12	Medium Density/Medium Income
Winter	MGP	Queens	11	3	20050309-Q-11-3-3-1-M	3/9/2005	129.91	Low Density/High Income
Winter	MGP	Queens	11	3	20050309-Q-11-3-2-1-M	3/9/2005	147.25	Low Density/High Income
Winter	MGP	Queens	1	4	20050309-Q-1-4-2-1-M	3/9/2005	153.49	Medium Density/Medium Income
Winter	MGP	Queens	1	4	20050310-Q-1-4-1-1-M	3/10/2005	134.85	Medium Density/Medium Income
Winter	MGP	Queens	13	7	20050310-Q-13-7-2-1-M	3/10/2005	111.1	Low Density/High Income
Winter	MGP	Queens	13	5	20050310-Q-13-5-1-1-M	3/10/2005	108.55	Low Density/High Income
Winter	MGP	Queens	9	1	20050311-Q-9-1-1-2-M	3/11/2005	125.25	Low Density/Medium Income
Winter	MGP	Queens	9	2	20050311-Q-9-2-2-1-M	3/11/2005	107.44	Low Density/Medium Income
Winter	MGP	Queens	5	2	20050311-Q-5-2-2-1-M	3/11/2005	126.75	Medium Density/Medium Income
Winter	MGP	Queens	9	1	20050311-Q-9-1-1-3-M	3/11/2005	102.1	Low Density/Medium Income
Winter	MGP	Queens	9	2	20050311-Q-9-2-1-1-M	3/11/2005	138.89	Low Density/Medium Income
Winter	MGP	Queens	9	1	20050311-Q-9-1-1-1-M	3/11/2005	137.6	Low Density/Medium Income
Winter	MGP	Queens	9	1	20050311-Q-9-1-3-1-M	3/11/2005	104.44	Low Density/Medium Income
Winter	MGP	Queens	7	1	20050311-Q-7-1-2-1-M	3/11/2005	117.17	High Density/Medium Income
Winter	MGP	Queens	7	1	20050311-Q-7-1-2-2-M	3/11/2005	262.6	High Density/Medium Income
Winter	MGP	Queens	4	3	20050311-Q-4-3-1-2-M	3/11/2005	113.97	Medium Density/Medium Income
Winter	MGP	Queens	4	3	20050311-Q-4-3-1-1-M	3/11/2005	123.61	Medium Density/Medium Income
Winter	MGP	Queens	9	2	20050311-Q-9-2-1-2-M	3/11/2005	136.05	Low Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-2-1-M	3/12/2005	116.99	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-2-4-M	3/12/2005	108.45	High Density/Medium Income
Winter	MGP	Queens	5	2	20050312-Q-5-2-2-1-M	3/12/2005	111.45	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050312-Q-5-2-3-1-M	3/12/2005	116.6	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050312-Q-5-2-1-2-M	3/12/2005	105.57	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050312-Q-5-2-1-1-M	3/12/2005	130.05	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-2-6-M	3/12/2005	123.3	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-2-3-M	3/12/2005	125.12	High Density/Medium Income
Winter	MGP	Queens	4	3	20050312-Q-4-3-2-1-M	3/12/2005	120.1	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-1-1-M	3/12/2005	93.35	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-1-2-M	3/12/2005	110	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-1-3-M	3/12/2005	133.3	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-1-4-M	3/12/2005	114.05	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-2-2-M	3/12/2005	111.8	High Density/Medium Income
Winter	MGP	Queens	3	2	20050312-Q-3-2-2-5-M	3/12/2005	112.35	High Density/Medium Income
Winter	MGP	Queens	3	2	20050314-Q-3-2-2-2-M	3/14/2005	143.55	High Density/Medium Income
Winter	MGP	Queens	5	2	20050314-Q-5-2-2-1-M	3/14/2005	120.5	Medium Density/Medium Income
Winter	MGP	Queens	13	3	20050314-Q-13-3-2-1-M	3/14/2005	126.35	Low Density/High Income
Winter	MGP	Queens	3	2	20050314-Q-3-2-2-1-M	3/14/2005	126.5	High Density/Medium Income
Winter	MGP	Queens	5	2	20050314-Q-5-2-1-1-M	3/14/2005	124.75	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050314-Q-3-2-2-3-M	3/14/2005	133.02	High Density/Medium Income
Winter	MGP	Queens	1	4	20050315-Q-1-4-2-1-M	3/15/2005	108.3	Medium Density/Medium Income
Winter	MGP	Queens	13	5	20050315-Q-13-5-2-1-M	3/15/2005	132.05	Low Density/High Income
Winter	MGP	Queens	13	7	20050315-Q-13-7-1-1-M	3/15/2005	109.45	Low Density/High Income
Winter	MGP	Queens	1	4	20050316-Q-1-4-2-1-M	3/16/2005	109.85	Medium Density/Medium Income
Winter	MGP	Queens	1	4	20050317-Q-1-4-2-1-M	3/17/2005	130.53	Medium Density/Medium Income
Winter	MGP	Queens	13	7	20050317-Q-13-7-2-1-M	3/17/2005	137.65	Low Density/High Income
Winter	MGP	Queens	1	4	20050317-Q-1-4-1-1-M	3/17/2005	80.37	Medium Density/Medium Income
Winter	MGP	Queens	13	6	20050317-Q-13-6-3-1-M	3/17/2005	140.91	Low Density/High Income
Winter	MGP	Queens	4	3	20050318-Q-4-3-2-2-M	3/18/2005	136.7	Medium Density/Medium Income
Winter	MGP	Queens	13	3	20050318-Q-13-3-1-1-M	3/18/2005	160.8	Low Density/High Income
Winter	MGP	Queens	13	4	20050318-Q-13-4-1-1-M	3/18/2005	141.55	Low Density/High Income
Winter	MGP	Queens	9	2	20050318-Q-9-2-1-1-M	3/18/2005	104.25	Low Density/Medium Income
Winter	MGP	Queens	9	2	20050318-Q-9-2-2-1-M	3/18/2005	117	Low Density/Medium Income
Winter	MGP	Queens	9	1	20050318-Q-9-1-3-1-M	3/18/2005	131.7	Low Density/Medium Income
Winter	MGP	Queens	9	1	20050318-Q-9-1-3-2-M	3/18/2005	117.8	Low Density/Medium Income
Winter	MGP	Queens	7	1	20050318-Q-7-1-2-1-M	3/18/2005	158	High Density/Medium Income
Winter	MGP	Queens	4	3	20050318-Q-4-3-2-3-M	3/18/2005	133.25	Medium Density/Medium Income
Winter	MGP	Queens	4	3	20050318-Q-4-3-2-1-M	3/18/2005	123.36	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	MGP	Queens	7	1	20050318-Q-7-1-2-2-M	3/18/2005	116.8	High Density/Medium Income
Winter	MGP	Queens	3	2	20050318-Q-3-2-1-1-M	3/18/2005	121.6	High Density/Medium Income
Winter	MGP	Queens	7	1	20050318-Q-7-1-2-3-M	3/18/2005	113.8	High Density/Medium Income
Winter	MGP	Queens	3	2	20050318-Q-3-2-1-2-M	3/18/2005	117.05	High Density/Medium Income
Winter	MGP	Queens	5	2	20050318-Q-5-2-2-1-M	3/18/2005	127.9	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050318-Q-3-2-1-3-M	3/18/2005	145.85	High Density/Medium Income
Winter	MGP	Queens	5	2	20050319-Q-5-2-1-2-M	3/19/2005	118.95	Medium Density/Medium Income
Winter	MGP	Queens	4	3	20050319-Q-4-3-2-3-M	3/19/2005	137.1	Medium Density/Medium Income
Winter	MGP	Queens	4	3	20050319-Q-4-3-1-1-M	3/19/2005	121.4	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050319-Q-5-2-1-1-M	3/99/2005	129.5	Medium Density/Medium Income
Winter	MGP	Queens	4	3	20050319-Q-4-3-2-1-M	3/19/2005	148.4	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-2-2-M	3/19/2005	139.2	High Density/Medium Income
Winter	MGP	Queens	5	2	20050319-Q-5-2-4-1-M	3/19/2005	118.4	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-1-1-M	3/19/2005	162	High Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-1-2-M	3/91/2005	118.96	High Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-2-3-M	3/19/2005	122.35	High Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-2-5-M	3/19/2005	128.4	High Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-2-1-M	3/19/2005	131.4	High Density/Medium Income
Winter	MGP	Queens	4	3	20050319-Q-4-3-2-2-M	3/19/2005	115	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050319-Q-3-2-2-4-M	3/19/2005	128.32	High Density/Medium Income
Winter	MGP	Queens	5	2	20050321-Q-5-2-3-1-M	3/21/2005	118.15	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050321-Q-3-2-2-1-M	3/21/2005	128.3	High Densit//Medium Income
Winter	MGP	Queens	3	2	20050321-Q-3-2-2-2-M	3/21/2005	127.65	High Density/Medium Income
Winter	MGP	Queens	11	3	20050323-Q-11-3-3-1-M	3/23/2005	120.65	Low Density/High Income
Winter	MGP	Queens	1	4	20050324-Q-1-4-2-1-M	3/24/2005	139.8	Medium Density/Medium Income
Winter	MGP	Queens	9	2	20050325-Q-9-2-1-1-M	3/25/2005	114.7	Low Density/Medium Income
Winter	MGP	Queens	13	3	20050325-Q-13-3-3-1-M	3/25/2005	125.95	Low Density/High Income
Winter	MGP	Queens	7	3	20050325-Q-7-3-2-1-M	3/25/2005	132.1	High Density/Medium Income
Winter	MGP	Queens	9	1	20050325-Q-9-1-1-1-M	3/25/2005	121.95	Low Density/Medium Income
Winter	MGP	Queens	7	3	20050325-Q-7-3-2-2-M	3/25/2005	127	High Density/Medium Income
Winter	MGP	Queens	7	1	20050325-Q-7-1-2-1-M	3/25/2005	115	High Density/Medium Income
Winter	MGP	Queens	7	1	20050325-Q-7-1-2-2-M	3/25/2005	138.25	High Density/Medium Income
Winter	MGP	Queens	4	3	20050325-Q-4-3-2-1-M	3/25/2005	143.87	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050325-Q-5-2-1-1-M	3/25/2005	125	Medium Density/Medium Income
Winter	MGP	Queens	9	2	20050325-Q-9-2-2-1-M	3/25/2005	120.2	Low Density/Medium Income
Winter	MGP	Queens	4	3	20050326-Q-4-3-2-2-M	3/26/2005	111.05	Medium Density/Medium Income
Winter	MGP	Queens	13	4	20050326-Q-13-4-2-1-M	3/26/2005	116	Low Density/High Income
Winter	MGP	Queens	5	2	20050326-Q-5-2-4-1-M	3/26/2005	136.7	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050326-Q-5-2-3-1-M	3/26/2005	212.99	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050326-Q-5-2-2-1-M	3/26/2005	134.14	Medium Density/Medium Income
Winter	MGP	Queens	3	2	20050326-Q-3-2-2-2-M	3/26/2005	104.75	High Density/Medium Income
Winter	MGP	Queens	3	2	20050326-Q-3-2-2-1-M	3/26/2005	126.1	High Density/Medium Income
Winter	MGP	Queens	4	3	20050326-Q-4-3-2-1-M	3/26/2005	132.2	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050326-Q-5-2-1-1-M	3/26/2005	120	Medium Density/Medium Income
Winter	MGP	Queens	5	2	20050328-Q-5-2--3-1-M	3/28/2005	118.3	Medium Density/Medium Income
Winter	MGP	Queens	7	6	20050328-Q-7-6-1-1-M	3/28/2005	119.15	Low Density/High Income
Winter	MGP	Queens	5	2	20050328-Q-5-2-2-1-M	3/28/2005	153.05	Medium Density/Medium Income
Winter	MGP	Queens	7	6	20050328-Q-7-6-2-1-M	3/28/2005	172.1	Low Densit//High Income
Winter	MGP	Queens	3	2	20050328-Q-3-2-2-1-M	3/28/2005	191.43	High Densit//Medium Income
Winter	MGP	Staten Island	2	2	20050308-SI-2-2-4-2-M	3/8/2005	147.05	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050308-S-2-2--4-1-M	3/8/2005	128.37	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050308-SI-2-2-1-1-M	3/8/2005	124.37	Low Densit//High Income
Winter	MGP	Staten Island	3	1	20050309-SI-3-1-1--1-M	3/9/2005	127.1	Low Density/Medium Income
Winter	MGP	Staten Island	2	2	20050309-SI-2-2-3-1-M	3/9/2005	115.8	Low Density/High Income
Winter	MGP	Staten Island	3	2	20050309-SI-3-2-1-1-M	3/9/2005	130.92	Low Densit//High Income
Winter	MGP	Staten Island	3	1	20050309-SI-3-1-1-1-M	3/9/2005	110.25	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050309-SI-3-1-4-1-M	3/9/2005	137.86	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050309-SI-3-1-2-2-M	3/9/2005	110.94	Low Density/Medium Income
Winter	MGP	Staten Island	2	2	20050310-SI-2-2-3-1-M	3/10/2005	98.53	Low Densit//igh Income
Winter	MGP	Staten Island	2	2	20050310-SI-2-2-4-1-M	3/1012005	123.95	Low Density/High Income

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	MGP	Staten Island	2	2	20050310-SI-2-2-2-1-M	3/10/2005	105.95	Low Density/High Income
Winter	MGP	Staten Island	3	5	20050311-SI-3-5-3-1-M	3/11/2005	122.37	Low Density/High Income
Winter	MGP	Staten Island	1	3	20050311-SI--3-1-2-M	3/11/2005	131.87	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050311-SI-1-3-1-3-M	3/11/2005	147.55	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050311-SI-1-3-1-5-M	3/11/2005	126.72	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050311-SI-1-3-1-1-M	3/11/2005	99.08	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050311-SI-1-3-1-4-M	3/11/2005	189.8	Low Density/Medium Income
Winter	MGP	Staten Island	3	8	20050314-SI-3-8-1-1-1-M	3/14/2005	126.05	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050315-SI--2--4-1-M	3/15/2005	132.84	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050315-SI-2-2-5-1-M	3/15/2005	133.05	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050315-SI--2-2--1-M	3/15/2005	191.55	Low Density/High Income
Winter	MGP	Staten Island	3	1	20050316-SI-3-1-2-1-M	3/16/2005	140.65	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050316-SI-3-1-1-1-M	3/16/2005	130.11	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050316-SI-3-1-4-1-M	3/16/2005	126.71	Low Density/Medium Income
Winter	MGP	Staten Island	2	2	20050317-SI-2-2-3-1-M	3/17/2005	129.11	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050317-SI-2-2--4-1-M	3/17/2005	112	Low Densit//igh Income
Winter	MGP	Staten Island	2	2	20050317-SI-2-2-2-1-M	3/17/2005	124.87	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050317-SI-2-2-1-1-M	3/17/2005	154.75	Low Density/High Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-6-M	3/18/2005	120.8	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-7-M	3/18/2005	148.1	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318 -SI-1-3-1-1-M	3/18/2005	118.1	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-2-M	3/18/2005	125.95	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-4-M	3/18/2005	109.95	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-8-M	3/18/2005	122.7	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-9-M	3/18/2005	146.4	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-5-M	3/18/2005	149.85	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050318-SI-1-3-1-3-M	3/18/2005	113.05	Low Density/Medium Income
Winter	MGP	Staten Island	3	8	20050319-SI-3-8-3-1-1-M	3/19/2005	140.6	Low Density/High Income
Winter	MGP	Staten Island	3	5	20050321-SI-3-5-5-1-M	3/21/2005	105.1	Low Density/High Income
Winter	MGP	Staten Island	2	2	20050322-SI-2-2-1-1-M	3/22/2005	129.15	Low Densit//igh Income
Winter	MGP	Staten Island	3	2	20050322-SI-3-2-3-1-M	3/22/2005	125.2	Low Density/High Income
Winter	MGP	Staten Island	3	1	20050323-SI-3-1-1-1-M	3/23/2005	135.65	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050323-SI-3-1-2-1-M	3/23/2005	184.2	Low Density/Medium Income
Winter	MGP	Staten Island	3	2	20050323-SI-3-2-1-1-M	3/23/2005	121.3	Low Density/High Income
Winter	MGP	Staten Island	3	1	20050323-SI-3-1-3-2-M	3/23/2005	211.38	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050323-SI-3-1-3-3-M	3/23/2005	130.15	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050323-SI-3-1-4-1-M	3/23/2005	123.35	Low Density/Medium Income
Winter	MGP	Staten Island	3	1	20050323-SI-3-1-3-1-M	3/23/2005	118.2	Low Density/Medium Income
Winter	MGP	Staten Island	3	2	20050324-SI-3-2-2-1-M	3/24/2005	167.6	Low Density/High Income
Winter	MGP	Staten Island	3	2	20050324-SI-3-2-1-1-M	3/24/2005	149.8	Low Density/High Income
Winter	MGP	Staten Island	3	5	20050325-SI-3-5-2-1-M	3/25/2005	166.25	Low Density/High Income
Winter	MGP	Staten Island	1	3	20050325-SI-1-3-1-2-M	3/25/2005	119.75	Low Density/Medium Income
Winter	MGP	Staten Island	1	3	20050325-SI-1-3-1-1-M	3/25/2005	132.85	Low Density/Medium Income
Winter	MGP	Staten Island	3	4	20050326-SI-3-4-2-1-M	3/26/2005	139.55	Low Density/High Income
Winter	MGP	Staten Island	3	4	20050328-SI-3-4-1-1-M	3/28/2005	141.2	Low Density/High Income
Winter	MGP	Staten Island	3	6	20050328-SI-3-6-1-1-M	3/28/2005	129.95	Low Density/High Income
Winter	Street Basket	Manhattan	5	0	20050308-M-5-0-1-1-D-SB	38/2005	221.27	NA
Winter	Street Basket	Manhattan	5	0	20050308-M-5-0-1-1--N-SB	3/8/2005	231.48	NA
Winter	Street Basket	Manhattan	4	0	20050308-M-4---1-1-M-SB	3/8/2005	212.23	NA
Winter	Street Basket	Manhattan	1	0	20050308-M-1-0-1-1-N-SB	3/8/2005	223.94	NA
Winter	Street Basket	Manhattan	2	0	20050309-M-2-0-1-1-D-SB	3/9/2005	233.58	NA
Winter	Street Basket	Manhattan	5	0	20050309-M-5-0-1-1-E-SB	3/9/2005	232.3	NA
Winter	Street Basket	Manhattan	5	0	20050310-M-5-0-2-2-N-SB	3/10/2005	234.24	NA
Winter	Street Basket	Manhattan	5	0	20050310-M-5-0-2--1-N-SB	3/1012005	220.64	NA
Winter	Street Basket	Manhattan	7	0	20050310-M-7-0-1-1-E-SB	3/1012005	225.69	NA
Winter	Street Basket	Manhattan	12	0	20050310-M-12-0-1-1-D-SB	3/10/2005	207.84	NA
Winter	Street Basket	Manhattan	2	0	20050310-M-2-0-1-1-N-SB	3/1012005	217.07	NA
Winter	Street Basket	Manhattan	4	0	20050310-M-4-0-1-1-E-SB	3/1012005	217.12	NA
Winter	Street Basket	Manhattan	3	0	20050311-M-3-0-1-1-M-SB	3/11/2005	210.1	NA
Winter	Street Basket	Manhattan	4	0	20050312-M-4-0-1-1-E-SB	3/12/2005	214.74	NA

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Winter	Street Basket	Manhattan	5	0	20050312-M-5-0-2-1-E-SB	3/12/2005	211.04	NA
Winter	Street Basket	Manhattan	4	0	20050314-M-4-0-1-1-N-SB	3/14/2005	226.58	NA
Winter	Street Basket	Manhattan	4	0	20050314-M-4-0-1-1-M-SB	3/14/2005	194.73	NA
Winter	Street Basket	Manhattan	3	0	20050314-M-3-0-1-1-N-SB	3/14/2005	211.35	NA
Winter	Street Basket	Manhattan	5	0	20050314-M-5-0-1-1-M-SB	3/14/2005	127.84	NA
Winter	Street Basket	Manhattan	2	0	20050314-M-2-0-3-1-M-SB	3/14/2005	228.77	NA
Winter	Street Basket	Manhattan	1	0	20050314-M-1-0-2-1-D-SB	3/14/2005	228.67	NA
Winter	Street Basket	Manhattan	5	0	20050314-M-5-0-1-1-E-SB	3/14/2005	243.83	NA
Winter	Street Basket	Manhattan	1	0	20050314-M-1-0-1-1-E-SB	3/14/2005	232.3	NA
Winter	Street Basket	Manhattan	10	0	20050315-M-10-0-1-1-M-SB	3/15/2005	217.84	NA
Winter	Street Basket	Manhattan	8	0	20050315-M-8-0-2-1-E-SB	3/15/2005	216.17	NA
Winter	Street Basket	Manhattan	1	0	20050315-M-1-0-1-1-N-SB	3/15/2005	210.22	NA
Winter	Street Basket	Manhattan	2	0	20050316-M-2-0-1-1-N-SB	3/16/2005	213.95	NA
Winter	Street Basket	Manhattan	9	0	20050317-M-9-0-1-1-M-SB	3/17/2005	210.54	NA
Winter	Street Basket	Manhattan	10	0	20050318-M-10-0-1-1-M-SB	3/18/2005	214	NA
Winter	Street Basket	Manhattan	11	0	20050318-M-11-0-1-1-M-SB	3/18/2005	212.67	NA
Winter	Street Basket	Manhattan	9	0	20050319-M-9-0-1-1-N-SB	3/19/2005	211.63	NA
Winter	Street Basket	Manhattan	11	0	20050319-M-11-0-1-1-M-SB	3/19/2005	236.86	NA
Winter	Street Basket	Manhattan	10	0	20050321-M-10-0-1-1-D-SB	3/21/2005	230.04	NA
Winter	Street Basket	Manhattan	12	0	20050321-M-12-0-2-1-M-SB	3/21/2005	213.72	NA
Winter	Street Basket	Manhattan	11	0	20050323-M-11-0-1-1-D-SB	3/23/2005	281.47	NA
Winter	Street Basket	Manhattan	3	0	20050323-M-3-0-1-1-M-SB	3/23/2005	229.46	NA
Winter	Street Basket	Manhattan	7	0	20050324-M-7-0-1-1-N-SB	3/24/2005	224.32	NA
Winter	Street Basket	Manhattan	1	0	20050325-M-1-0-2-1-D-SB	3/25/2005	226.23	NA
Winter	Street Basket	Manhattan	5	0	20050325-M-5-0-2-1-E-SB	3/25/2005	225.8	NA
Winter	Street Basket	Manhattan	1	0	20050325-M-1-0-1-1-N-SB	3/25/2005	211.07	NA
Winter	Street Basket	Brooklyn	14	0	20050311-BK-14-0-1-1-M-SB	3/11/2005	260.17	NA
Winter	Street Basket	Brooklyn	2	0	20050317-BK-2-0-2-1-D-SB	3/17/2005	204.97	NA
Winter	Street Basket	Brooklyn	2	0	20050322-BK-2-0-2-1-D-SB	3/22/2005	227.88	NA
Winter	Street Basket	Brooklyn	12	0	20050323-BK-12-0-1-1-D-SB	3/23/2005	213.35	NA
Winter	Street Basket	Brooklyn	17	0	20050323-BK-17-0-1-1-N-SB	3/23/2005	217.17	NA
Winter	Street Basket	Brooklyn	7	0	20050323-BK-7-0-2-1-M-SB	3/23/2005	226.77	NA
Winter	Street Basket	Brooklyn	2	0	20050326-BK-2-0-2-1-D-SB	3/26/2005	257.29	NA
Winter	Street Basket	Queens	2	0	20050315-Q-2-0-1-1-M-SB	3/15/2005	221.97	NA
Winter	Street Basket	Queens	1	0	20050317-Q-1-0-1-1-N-SB	3/17/2005	174.03	NA
Winter	Street Basket	Queens	5	0	20050322-Q-5-0-1-1-E-SB	3/22/2005	232.15	NA
Spring	Refuse	Manhattan	3	1	20050509-M-3-1-2-1-R	5/9/2005	261.71	High Density/Low Income
Spring	Refuse	Manhattan	8	2	20050509-M-8-2-3-1-R	5/9/2005	216.25	High Density/High Income
Spring	Refuse	Manhattan	8	2	20050509-M-8-2-1-1-R	5/9/2005	235.21	High Density/High Income
Spring	Refuse	Manhattan	8	5	20050509-M-8-5-1-1-R	5/9/2005	240.46	High Density/High Income
Spring	Refuse	Manhattan	6	3	20050510-M-6-3-3-1-R	5/10/2005	275.75	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050510-M-3-1-4-1-R	5/10/2005	250.59	High Density/Low Income
Spring	Refuse	Manhattan	7	3	20050510-M-7-3-5-1-R	5/10/2005	235.56	High Density/High Income
Spring	Refuse	Manhattan	3	3	20050510-M-3-3-3-1-R	5/10/2005	251.16	High Density/Medium Income
Spring	Refuse	Manhattan	8	2	20050510-M-8-2-4-1-R	5/10/2005	223.96	High Density/High Income
Spring	Refuse	Manhattan	8	2	20050510-M-8-2-1-1-R	5/10/2005	238.05	High Density/High Income
Spring	Refuse	Manhattan	8	5	20050510-M-8-5-2-1-R	5/10/2005	241.26	High Density/High Income
Spring	Refuse	Manhattan	7	2	20050511-M-7-2-2-1-R	5/11/2005	232.86	High Density/High Income
Spring	Refuse	Manhattan	3	3	20050511-M-3-3-2-1-R	5/11/2005	225.4	High Density/Medium Income
Spring	Refuse	Manhattan	3	3	20050513-M-3-3-2-1-R	5/13/2005	236.07	High Density/Medium Income
Spring	Refuse	Manhattan	8	4	20050513-M-8-4-1-1-R	5/13/2005	225.16	High Density/High Income
Spring	Refuse	Manhattan	8	4	20050516-M-8-4-1-1-R	5/16/2005	206.11	High Density/High Income
Spring	Refuse	Manhattan	2	3	20050516-M-2-3-1-1-R	5/16/2005	214.46	High Density/High Income
Spring	Refuse	Manhattan	6	3	20050516-M-6-3-3-1-R	5/16/2005	217.06	High Density/High Income
Spring	Refuse	Manhattan	7	2	20050516-M-7-2-2-1-R	5/16/2005	220.11	High Density/High Income
Spring	Refuse	Manhattan	2	3	20050517-M-2-3-1-1-R	5/17/2005	228.76	High Density/High Income
Spring	Refuse	Manhattan	8	3	20050517-M-8-3-4-1-R	5/17/2005	212.64	High Density/High Income
Spring	Refuse	Manhattan	2	2	20050517-M-2-2-2-1-R	5/17/2005	219.01	High Density/High Income
Spring	Refuse	Manhattan	2	2	20050517-M-2-2-1-1-R	5/17/2005	218.86	High Density/High Income
Spring	Refuse	Manhattan	3	3	20050517-M-3-3-3-1-R	5/17/2005	213.67	High Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Manhattan	8	2	20050517-M-8-2-2-1-R	5/17/2005	289.43	High Density/High Income
Spring	Refuse	Manhattan	6	3	20050518-M-6-3-3-1-R	5/18/2005	224.48	High Density/High Income
Spring	Refuse	Manhattan	8	5	20050518-M-8-5-2-1-R	5/18/2005	208.85	High Density/High Income
Spring	Refuse	Manhattan	2	3	20050518-M-2-3-2-1-R	5/18/2005	208.66	High Density/High Income
Spring	Refuse	Manhattan	7	2	20050519-M-7-2-1-1-R	5/19/2005	342.96	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050519-M-3-1-2-1-R	5/19/2005	209.11	High Density/Low Income
Spring	Refuse	Manhattan	8	5	20050519-M-8-5-3-1-R	5/19/2005	230.86	High Density/High Income
Spring	Refuse	Manhattan	8	3	20050519-M-8-3-2-1-R	5/19/2005	215.81	High Density/High Income
Spring	Refuse	Manhattan	7	3	20050519-M-7-3-1-1-R	5/19/2005	228.66	High Density/High Income
Spring	Refuse	Manhattan	7	2	20050519-M-7-2-3-1-R	5/19/2005	238.96	High Density/High Income
Spring	Refuse	Manhattan	2	3	20050520-M-2-3-2-1-R	5/20/2005	228.46	High Density/High Income
Spring	Refuse	Manhattan	7	2	20050520-M-7-2-2-1-R	5/20/2005	235.46	High Density/High Income
Spring	Refuse	Manhattan	8	1	20050520-M-8-1-2-1-R	5/20/2005	218.81	High Density/High Income
Spring	Refuse	Manhattan	2	2	20050520-M-2-2-1-1-R	5/20/2005	232.41	High Density/High Income
Spring	Refuse	Manhattan	2	3	20050521-M-2-3-2-1-R	5/21/2005	219.61	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050521-M-3-1-3-1-R	5/21/2005	229.91	High Density/Low Income
Spring	Refuse	Manhattan	8	2	20050521-M-8-2-1-1-R	5/21/2005	240.06	High Density/High Income
Spring	Refuse	Manhattan	7	2	20050521-M-7-2-2-1-R	5/21/2005	234.36	High Density/High Income
Spring	Refuse	Manhattan	7	3	20050521-M-7-3-3-1-R	5/21/2005	308.81	High Density/High Income
Spring	Refuse	Manhattan	8	3	20050523-M-8-3-2-1-R	5/23/2005	248.41	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050523-M-3-1-2-1-R	5/23/2005	214.11	High Density/Low Income
Spring	Refuse	Manhattan	8	2	20050523-M-8-2-4-1-R	5/23/2005	219.56	High Density/High Income
Spring	Refuse	Manhattan	8	2	20050523-M-8-2-2-1-R	5/23/2005	241.66	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050523-M-3-1-1-1-R	5/23/2005	235.5	High Density/Low Income
Spring	Refuse	Manhattan	8	2	20050524-M-8-2-3-1-R	5/24/2005	219.3	High Density/High Income
Spring	Refuse	Manhattan	8	1	20050524-M-8-1-3-1-R	5/24/2005	218.46	High Density/High Income
Spring	Refuse	Manhattan	3	3	20050524-M-3-3-3-1-R	5/24/2005	216.56	High Density/Medium Income
Spring	Refuse	Manhattan	6	3	20050524-M-6-3-3-1-R	5/24/2005	214.91	High Density/High Income
Spring	Refuse	Manhattan	7	3	20050525-M-7-3-1-1-R	5/25/2005	218.76	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050525-M-3-1-3-1-R	5/25/2005	242.56	High Density/Low Income
Spring	Refuse	Manhattan	3	3	20050525-M-3-3-1-1-R	5/25/2005	211.61	High Density/Medium Income
Spring	Refuse	Manhattan	3	3	20050525-M-3-3-3-1-R	5/25/2005	217	High Density/Medium Income
Spring	Refuse	Manhattan	6	3	20050525-M-6-3-4-1-R	5/25/2005	246.5	High Density/High Income
Spring	Refuse	Manhattan	2	2	20050525-M-2-2-2-1-R	5/25/2005	213.81	High Density/High Income
Spring	Refuse	Manhattan	2	2	20050525-M-2-2-1-1-R	5/25/2005	213.16	High Density/High Income
Spring	Refuse	Manhattan	6	3	20050525-M-6-3-2-1-R	5/25/2005	241.56	High Density/High Income
Spring	Refuse	Manhattan	7	3	20050526-M-7-3-3-1-R	5/26/2005	235.2	High Density/High Income
Spring	Refuse	Manhattan	6	3	20050526-M-6-3-1-1-R	5/26/2005	229.91	High Density/High Income
Spring	Refuse	Manhattan	3	1	20050526-M-3-1-1-1-R	5/26/2005	220.81	High Density/Low Income
Spring	Refuse	Manhattan	8	5	20050526-M-8-5-1-1-R	5/26/2005	232.15	High Density/High Income
Spring	Refuse	Manhattan	2	2	20050526-M-2-2-2-1-R	5/26/2005	211.6	High Density/High Income
Spring	Refuse	Bronx	4	2	20050509-BX-4-2-3-1-R	5/9/2005	255.8	High Density/Low Income
Spring	Refuse	Bronx	8	1	20050509-BX-8-1-1-1-R	5/9/2005	227.43	High Density/Medium Income
Spring	Refuse	Bronx	4	2	20050509-BX-4-2-2-1-R	5/9/2005	262.79	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050510-BX-4-2-4-1-R	5/10/2005	245.76	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050510-BX-5-1-3-1-R	5/10/2005	212.5	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050510-BX-5-3-3-1-R	5/10/2005	221.7	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050510-BX-5-3-2-1-R	5/10/2005	280.66	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050510-BX-5-3-4-1-R	5/10/2005	266.85	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050511-BX-4-2-4-1-R	5/11/2005	218.16	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050512-BX-4-2-4-1-R	5/12/2005	259.31	High Density/Low Income
Spring	Refuse	Bronx	7	2	20050512-BX-7-2-3-1-R	5/12/2005	238.91	High Density/Medium Income
Spring	Refuse	Bronx	5	3	20050513-BX-5-3-3-1-R	5/13/2005	211.54	High Density/Low Income
Spring	Refuse	Bronx	7	2	20050513-BX-7-2-1-1-R	5/13/2005	224.96	High Density/Medium Income
Spring	Refuse	Bronx	5	3	20050513-BX-5-3-1-1-R	5/13/2005	212.36	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050513-BX-5-1-3-1-R	5/13/2005	224.38	High Density/Low Income
Spring	Refuse	Bronx	5	2	20050514-BX-5-2-3-1-R	5/14/2005	228.55	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050514-BX-5-3-3-1-R	5/14/2005	247.15	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050514-BX-4-2-1-2-R	5/14/2005	220.41	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050514-BX-4-2-1-1-R	5/14/2005	146.3	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Bronx	7	2	20050514-BX-7-2-4-1-R	5/14/2005	248.91	High Density/Medium Income
Spring	Refuse	Bronx	4	2	20050516-BX-4-2-2-1-R	5/16/2005	226.56	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050516-BX-5-1-4-1-R	5/16/2005	206.02	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050517-BX-4-2-1-1-R	5/17/2005	236.41	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050517-BX-4-2-5-1-R	5/17/2005	266.76	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050517-BX-5-1-4-1-R	5/17/2005	238.94	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050517-BX-4-2-4-1-R	5/17/2005	232.91	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050517-BX-5-3-3-1-R	5/17/2005	238.31	High Density/Low Income
Spring	Refuse	Bronx	7	2	20050518-BX-7-2-1-1-R	5/18/2005	214.75	High Density/Medium Income
Spring	Refuse	Bronx	5	2	20050518-BX-5-2-1-1-R	5/18/2005	233.4	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050518-BX-5-1-2-1-R	5/18/2005	235.13	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050518-BX-5-3-4-1-R	5/18/2005	214.16	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050519-BX-5-1-1-1-R	5/19/2005	209.45	High Density/Low Income
Spring	Refuse	Bronx	4	2	20050519-BX-4-2-2-1-R	5/19/2005	212.9	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050519-BX-5-3-2-1-R	5/19/2005	223.65	High Density/Low Income
Spring	Refuse	Bronx	5	2	20050519-BX-5-2-3-1-R	5/19/2005	240.7	High Density/Low Income
Spring	Refuse	Bronx	7	2	20050519-BX-7-2-3-1-R	5/19/2005	278.01	High Density/Medium Income
Spring	Refuse	Bronx	4	2	20050520-BX-4-2-1-1-R	5/20/2005	220.51	High Density/Low Income
Spring	Refuse	Bronx	8	1	20050520-BX-8-1-3-1-R	5/20/2005	242.91	High Density/Medium Income
Spring	Refuse	Bronx	7	2	20050521-BX-7-2-2-1-R	5/21/2005	216.71	High Density/Medium Income
Spring	Refuse	Bronx	5	2	20050521-BX-5-2-2-1-R	5/21/2005	265.5	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050523-BX-5-3-2-1-R	5/23/2005	219.56	High Density/Low Income
Spring	Refuse	Bronx	7	2	20050523-BX-7-2-1-1-R	5/23/2005	231.11	High Density/Medium Income
Spring	Refuse	Bronx	5	3	20050523-BX-5-3-1-1-R	5/23/2005	223.41	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050523-BX-5-3-3-1-R	5/23/2005	229.71	High Density/Low Income
Spring	Refuse	Bronx	8	1	20050523-BX-8-1-1-1-R	5/23/2005	231.1	High Density/Medium Income
Spring	Refuse	Bronx	8	1	20050524-BX-8-1-3-1-R	5/24/2005	216.8	High Density/Medium Income
Spring	Refuse	Bronx	5	3	20050524-BX-5-3-3-1-R	5/24/2005	226.73	High Density/Low Income
Spring	Refuse	Bronx	7	2	20050524-BX-7-2-4-1-R	5/24/2005	246.76	High Density/Medium Income
Spring	Refuse	Bronx	5	2	20050525-BX-5-2-1-1-R	5/25/2005	260.51	High Density/Low Income
Spring	Refuse	Bronx	5	1	20050525-BX-5-1-3-1-R	5/25/2005	272.66	High Density/Low Income
Spring	Refuse	Bronx	5	2	20050525-BX-5-2-2-1-R	5/25/2005	217.66	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050525-BX-5-3-2-1-R	5/25/2005	218.31	High Density/Low Income
Spring	Refuse	Bronx	5	3	20050526-BX-5-3-1-1-R	5/26/2005	217	High Density/Low Income
Spring	Refuse	Bronx	5	2	20050526-BX-5-2-1-1-R	5/26/2005	250.21	High Density/Low Income
Spring	Refuse	Brooklyn	17	1	20050509-BK-17-1-2-1-R	5/9/2005	210.11	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050509-BK-6-2-2-1-R	5/9/2005	218.1	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050509-BK-6-2-1-1-R	5/9/2005	229.71	Medium Density/High Income
Spring	Refuse	Brooklyn	4	2	20050509-BK-4-2-4-1-R	5/9/2005	215.78	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050509-BK-6-2-1-2-R	5/9/2005	237.23	Medium Density/High Income
Spring	Refuse	Brooklyn	17	1	20050510-BK-17-1-1-1-R	5/10/2005	227.89	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050510-BK-4-2-5-1-R	5/10/2005	271.96	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050510-BK-6-2-2-1-R	5/10/2005	236.64	Medium Density/High Income
Spring	Refuse	Brooklyn	4	1	20050510-BK-4-1-2-1-R	5/10/2005	266.06	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050511-BK-6-2-1-2-R	5/11/2005	231.51	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050511-BK-6-2-1-3-R	5/11/2005	233.76	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050511-BK-6-2-2-1-R	5/11/2005	213.89	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050511-BK-6-2-2-2-R	5/11/2005	218.43	Medium Density/High Income
Spring	Refuse	Brooklyn	17	1	20050511-BK-17-1-4-1-R	5/11/2005	210.56	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050511-BK-4-2-2-1-R	5/11/2005	209.95	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050511-BK-4-2-4-1-R	5/11/2005	214.11	Medium Density/Low Income
Spring	Refuse	Brooklyn	3	3	20050511-BK-3-3-1-1-R	5/11/2005	215.21	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050511-BK-6-2-1-1-R	5/11/2005	220.41	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050512-BK-3-3-2-1-R	5/12/2005	210.96	Medium Density/Low Income
Spring	Refuse	Brooklyn	17	1	20050512-BK-17-1-1-1-R	5/12/2005	212.41	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	3	20050512-BK-4-3-2-1-R	5/12/2005	210.56	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050512-BK-6-2-1-1-R	5/12/2005	210.36	Medium Density/High Income
Spring	Refuse	Brooklyn	4	2	20050512-BK-4-2-3-1-R	5/12/2005	214.76	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050512-BK-6-2-2-1-R	5/12/2005	222.41	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050513-BK-3-3-3-1-R	5/13/2005	195.7	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Brooklyn	6	2	20050513-BK-6-2-1-3-R	5/13/2005	223.11	Medium Density/High Income
Spring	Refuse	Brooklyn	4	1	20050513-BK-4-1-3-1-R	5/13/2005	216.81	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050513-BK-6-2-1-2-R	5/13/2005	220.11	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050513-BK-6-2-1-1-R	5/13/2005	213.31	Medium Density/High Income
Spring	Refuse	Brooklyn	4	2	20050514-BK-4-2-4-1-R	5/14/2005	224.77	Medium Density/Low Income
Spring	Refuse	Brooklyn	3	3	20050514-BK-3-3-2-1-R	5/14/2005	212.69	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050514-BK-6-2-2-1-R	5/14/2005	212.41	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050516-BK-3-3-1-1-R	5/16/2005	216.26	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050516-BK-6-2-2-4-R	5/16/2005	215.06	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050516-BK-6-2-2-1-R	5/16/2005	234.71	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050516-BK-3-3-4-1-R	5/16/2005	211.51	Medium Density/Low Income
Spring	Refuse	Brooklyn	3	3	20050516-BK-3-3-3-1-R	5/16/2005	210.71	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050516-BK-4-2-1-1-R	5/16/2005	208.99	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	1	20050516-BK-4-1-3-1-R	5/16/2005	209.66	Medium Density/Low Income
Spring	Refuse	Brooklyn	3	3	20050516-BK-3-3-2-1-R	5/16/2005	223.01	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050516-BK-6-2-2-2-R	5/16/2005	229.06	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050516-BK-6-2-1-1-R	5/16/2005	204.51	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050516-BK-6-2-2-3-R	5/16/2005	192.76	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050516-BK-6-2-1-2-R	5/16/2005	219.76	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050517-BK-6-2-2-2-R	5/17/2005	210.11	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050517-BK-6-2-1-2-R	5/17/2005	187.71	Medium Density/High Income
Spring	Refuse	Brooklyn	4	2	20050517-BK-4-2-3-1-R	5/17/2005	208.81	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050517-BK-6-2-2-1-R	5/17/2005	228.76	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050517-BK-3-3-2-1-R	5/17/2005	212.81	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050517-BK-4-2-3-2-R	5/17/2005	212.41	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050517-BK-6-2-1-1-R	5/17/2005	218.86	Medium Density/High Income
Spring	Refuse	Brooklyn	4	3	20050518-BK-4-3-5-1-R	5/18/2005	218.41	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050518-BK-6-2-1-1-R	5/18/2005	210.16	Medium Density/High Income
Spring	Refuse	Brooklyn	4	3	20050518-BK-4-3-1-1-R	5/18/2005	209.79	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050518-BK-6-2-3-1-R	5/18/2005	209.56	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050518-BK-6-2-2-3-R	5/18/2005	213.2	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050518-BK-3-3-5-1-R	5/18/2005	222.21	Medium Density/Low Income
Spring	Refuse	Brooklyn	17	1	20050518-BK-17-1-1-1-R	5/18/2005	231.65	Medium Density/Low Income
Spring	Refuse	Brooklyn	17	1	20050518-BK-17-1-4-1-R	5/18/2005	217.45	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050518-BK-6-2-2-2-R	5/18/2005	221.7	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050518-BK-6-2-2-1-R	5/18/2005	213.15	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050519-BK-6-2-2-2-R	5/19/2005	214.71	Medium Density/High Income
Spring	Refuse	Brooklyn	4	2	20050519-BK-4-2-3-1-R	5/19/2005	226.41	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050519-BK-6-2-2-1-R	5/19/2005	242.61	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050519-BK-6-2-1-1-R	5/19/2005	225.86	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050519-BK-6-2-2-3-R	5/19/2005	229.11	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050519-BK-6-2-2-4-R	5/19/2005	241.49	Medium Density/High Income
Spring	Refuse	Brooklyn	4	1	20050520-BK-4-1-3-2-R	5/20/2005	215.4	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	1	20050520-BK-4-1-1-1-R	5/20/2005	222.91	Medium Density/Low Income
Spring	Refuse	Brooklyn	17	1	20050520-BK-17-1-2-1-R	5/20/2005	224.9	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	1	20050520-BK-4-1-3-1-R	5/20/2005	230.16	Medium Density/Low Income
Spring	Refuse	Brooklyn	3	3	20050520-BK-3-3-2-1-R	5/20/2005	226.95	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050520-BK-6-2-1-2-R	5/20/2005	274.11	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050520-BK-6-2-2-1-R	5/20/2005	224.1	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050520-BK-6-2-1-1-R	5/20/2005	227.76	Medium Density/High Income
Spring	Refuse	Brooklyn	4	3	20050520-BK-4-3-2-1-R	5/20/2005	216.09	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050520-BK-6-2-1-3-R	5/20/2005	224.26	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050521-BK-6-2-1-1-R	5/21/2005	229.76	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050521-BK-6-2-1-2-R	5/21/2005	223.61	Medium Density/High Income
Spring	Refuse	Brooklyn	4	1	20050521-BK-4-1-1-1-R	5/21/2005	228.66	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050521-BK-6-2-2-1-R	5/21/2005	213.02	Medium Density/High Income
Spring	Refuse	Brooklyn	17	1	20050523-BK-17-1-3-1-R	5/23/2005	224.76	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050523-BK-4-2-5-1-R	5/23/2005	224.06	Medium Density/Low Income
Spring	Refuse	Brooklyn	3	3	20050523-BK-3-3-2-1-R	5/23/2005	211.76	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050523-BK-6-2-2-1-R	5/23/2005	254.11	Medium Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Brooklyn	6	2	20050523-BK-6-2-1-1-R	5/23/2005	217.01	Medium Density/High Income
Spring	Refuse	Brooklyn	17	1	20050524-BK-17-1-2-1-R	5/24/2005	205.47	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	1	20050524-BK-4-1-2-1-R	5/24/2005	218.99	Medium Density/Low Income
Spring	Refuse	Brooklyn	17	1	20050524-BK-17-1-3-1-R	5/24/2005	218.66	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050524-BK-6-2-2-1-R	5/24/2005	223.81	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050524-BK-6-2-1-2-R	5/24/2005	237.76	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050524-BK-6-2-1-3-R	5/24/2005	228.05	Medium Density/High Income
Spring	Refuse	Brooklyn	4	2	20050524-BK-4-2-1-1-R	5/24/2005	219.3	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050524-BK-6-2-1-1-R	5/24/2005	244.09	Medium Density/High Income
Spring	Refuse	Brooklyn	3	3	20050525-BK-3-3-5-1-R	5/25/2005	227.45	Medium Density/Low Income
Spring	Refuse	Brooklyn	6	2	20050525-BK-6-2-2-1-R	5/25/2005	234.55	Medium Density/High Income
Spring	Refuse	Brooklyn	6	2	20050525-BK-6-2-3-1-R	5/25/2005	219.61	Medium Density/High Income
Spring	Refuse	Brooklyn	4	1	20050525-BK-4-1-1-1-R	5/25/2005	222.01	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050526-BK-4-2-3-1-R	5/26/2005	220.71	Medium Density/Low Income
Spring	Refuse	Brooklyn	4	2	20050526-BK-4-2-4-1-R	5/26/2005	220.05	Medium Density/Low Income
Spring	Refuse	Queens	10	4	20050509-Q-10-4-4-1-R	5/9/2005	213.13	Low Density/High Income
Spring	Refuse	Queens	4	3	20050509-Q-4-3-3-1-R	5/9/2005	223.51	Medium Density/Medium Income
Spring	Refuse	Queens	9	2	20050509-Q-9-2-1-1-R	5/9/2005	221.16	Low Density/Medium Income
Spring	Refuse	Queens	9	1	20050509-Q-9-1-4-1-R	5/9/2005	224.61	Low Density/Medium Income
Spring	Refuse	Queens	7	1	20050509-Q-7-1-2-1-R	5/9/2005	220.56	High Density/Medium Income
Spring	Refuse	Queens	7	1	20050510-Q-7-1-3-1-R	5/10/2005	229.36	High Density/Medium Income
Spring	Refuse	Queens	9	2	20050510-Q-9-2-4-1-R	5/10/2005	253.56	Low Density/Medium Income
Spring	Refuse	Queens	9	2	20050510-Q-9-2-5-1-R	5/10/2005	224.56	Low Density/Medium Income
Spring	Refuse	Queens	4	3	20050510-Q-4-3-1-1-R	5/10/2005	214.71	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050510-Q-1-4-4-1-R	5/10/2005	244.4	Medium Density/Medium Income
Spring	Refuse	Queens	13	6	20050510-Q-13-6-3-1-R	5/10/2005	243.11	Low Density/High Income
Spring	Refuse	Queens	9	2	20050510-Q-9-2-1-1-R	5/10/2005	257.03	Low Density/Medium Income
Spring	Refuse	Queens	5	2	20050510-Q-5-2-3-1-R	5/10/2005	296.31	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050510-Q-4-3-6-1-R	5/10/2005	214.26	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050510-Q-4-3-5-1-R	5/10/2005	250.62	Medium Density/Medium Income
Spring	Refuse	Queens	3	2	20050511-Q-3-2-3-1-R	5/11/2005	271.65	High Density/Medium Income
Spring	Refuse	Queens	13	6	20050511-Q-13-6-3-1-R	5/11/2005	239.76	Low Density/High Income
Spring	Refuse	Queens	13	5	20050511-Q-13-5-4-1-R	5/11/2005	240.11	Low Density/High Income
Spring	Refuse	Queens	7	1	20050511-Q-7-1-5-1-R	5/11/2005	213.41	High Density/Medium Income
Spring	Refuse	Queens	13	3	20050511-Q-13-3-5-1-R	5/11/2005	226	Low Density/High Income
Spring	Refuse	Queens	7	3	20050511-Q-7-3-3-1-R	5/11/2005	234.1	High Density/Medium Income
Spring	Refuse	Queens	4	3	20050511-Q-4-3-1-1-R	5/11/2005	337.86	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050512-Q-4-3-5-1-R	5/12/2005	242.46	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050512-Q-1-4-2-1-R	5/12/2005	228.7	Medium Density/Medium Income
Spring	Refuse	Queens	13	5	20050512-Q-13-5-3-1-R	5/12/2005	215.15	Low Density/High Income
Spring	Refuse	Queens	7	1	20050512-Q-7-1-2-1-R	5/12/2005	236.72	High Density/Medium Income
Spring	Refuse	Queens	9	2	20050512-Q-9-2-4-1-R	5/12/2005	179.8	Low Density/Medium Income
Spring	Refuse	Queens	4	3	20050512-Q-4-3-2-1-R	5/12/2005	222.95	Medium Density/Medium Income
Spring	Refuse	Queens	10	4	20050512-Q-10-4-1-1-R	5/12/2005	227.01	Low Density/High Income
Spring	Refuse	Queens	1	4	20050512-Q-1-4-1-1-R	5/12/2005	219.5	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050512-Q-1-4-3-1-R	5/12/2005	217.56	Medium Density/Medium Income
Spring	Refuse	Queens	13	4	20050512-Q-13-4-4-1-R	5/12/2005	223.71	Low Density/High Income
Spring	Refuse	Queens	3	2	20050512-Q-3-2-1-1-R	5/12/2005	233.36	High Density/Medium Income
Spring	Refuse	Queens	4	3	20050512-Q-4-3-3-1-R	5/12/2005	223.1	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050513-Q-1-4-2-2-R	5/13/2005	241.46	Medium Density/Medium Income
Spring	Refuse	Queens	9	1	20050513-Q-9-1-4-1-R	5/13/2005	208.61	Low Density/Medium Income
Spring	Refuse	Queens	11	3	20050513-Q-11-3-1-1-R	5/13/2005	260.76	Low Density/High Income
Spring	Refuse	Queens	7	1	20050513-Q-7-1-3-1-R	5/13/2005	211.09	High Density/Medium Income
Spring	Refuse	Queens	5	2	20050513-Q-5-2-4-1-R	5/13/2005	229.06	Medium Density/Medium Income
Spring	Refuse	Queens	13	4	20050513-Q-13-4-2-1-R	5/13/2005	219.56	Low Density/High Income
Spring	Refuse	Queens	4	3	20050513-Q-4-3-3-1-R	5/13/2005	209.22	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050513-Q-1-4-2-1-R	5/13/2005	191.61	Medium Density/Medium Income
Spring	Refuse	Queens	13	7	20050513-Q-13-7-3-1-R	5/13/2005	208.7	Low Density/High Income
Spring	Refuse	Queens	5	2	20050513-Q-5-2-3-1-R	5/13/2005	214.41	Medium Density/Medium Income
Spring	Refuse	Queens	5	2	20050513-Q-5-2-1-1-R	5/13/2005	254.51	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Queens	7	3	20050513-Q-7-3-4-1-R	5/13/2005	225.51	High Density/Medium Income
Spring	Refuse	Queens	7	6	20050514-Q-7-6-2-1-R	5/14/2005	214.6	Low Density/High Income
Spring	Refuse	Queens	9	1	20050514-Q-9-1-4-1-R	5/14/2005	213.11	Low Density/Medium Income
Spring	Refuse	Queens	9	2	20050514-Q-9-2-1-1-R	5/14/2005	303.46	Low Density/Medium Income
Spring	Refuse	Queens	1	4	20050514-Q-1-4-1-1-R	5/14/2005	234.71	Medium Density/Medium Income
Spring	Refuse	Queens	13	3	20050514-Q-13-3-3-1-R	5/14/2005	219.6	Low Density/High Income
Spring	Refuse	Queens	1	4	20050514-Q-1-4-3-1-R	5/14/2005	220.86	Medium Density/Medium Income
Spring	Refuse	Queens	5	2	20050514-Q-5-2-1-1-R	5/14/2005	226.61	Medium Density/Medium Income
Spring	Refuse	Queens	7	1	20050514-Q-7-1-2-1-R	5/14/2005	220.36	High Density/Medium Income
Spring	Refuse	Queens	13	5	20050514-Q-13-5-1-1-R	5/14/2005	268.76	Low Density/High Income
Spring	Refuse	Queens	9	1	20050514-Q-9-1-2-1-R	5/14/2005	242.45	Low Density/Medium Income
Spring	Refuse	Queens	4	3	20050514-Q-4-3-3-1-R	5/14/2005	195.75	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050514-Q-4-3-1-1-R	5/14/2005	201.86	Medium Density/Medium Income
Spring	Refuse	Queens	13	8	20050514-Q-13-8-1-1-R	5/14/2005	215.01	Low Density/High Income
Spring	Refuse	Queens	10	4	20050514-Q-10-4-3-1-R	5/14/2005	232.96	Low Density/High Income
Spring	Refuse	Queens	13	7	20050514-Q-13-7-3-1-R	5/14/2005	223.7	Low Density/High Income
Spring	Refuse	Queens	13	4	20050516-Q-13-4-3-1-R	5/16/2005	248.84	Low Density/High Income
Spring	Refuse	Queens	1	4	20050516-Q-1-4-3-1-R	5/16/2005	216.6	Medium Density/Medium Income
Spring	Refuse	Queens	11	3	20050516-Q-11-3-1-1-R	5/16/2005	216.01	Low Density/High Income
Spring	Refuse	Queens	4	3	20050516-Q-4-3-3-1-R	5/16/2005	240.26	Medium Density/Medium Income
Spring	Refuse	Queens	5	2	20050516-Q-5-2-3-1-R	5/16/2005	230.31	Medium Density/Medium Income
Spring	Refuse	Queens	5	2	20050516-Q-5-2-3-2-R	5/16/2005	230.35	Medium Density/Medium Income
Spring	Refuse	Queens	7	3	20050517-Q-7-3-1-1-R	5/17/2005	274.31	High Density/Medium Income
Spring	Refuse	Queens	4	3	20050517-Q-4-3-5-1-R	5/17/2005	212.16	Medium Density/Medium Income
Spring	Refuse	Queens	3	2	20050517-Q-3-2-4-1-R	5/17/2005	298.91	High Density/Medium Income
Spring	Refuse	Queens	13	5	20050517-Q-13-5-1-1-R	5/17/2005	214.96	Low Density/High Income
Spring	Refuse	Queens	4	3	20050518-Q-4-3-4-1-R	5/18/2005	246.21	Medium Density/Medium Income
Spring	Refuse	Queens	5	2	20050518-Q-5-2-3-1-R	5/18/2005	218.46	Medium Density/Medium Income
Spring	Refuse	Queens	7	1	20050518-Q-7-1-1-1-R	5/18/2005	214.71	High Density/Medium Income
Spring	Refuse	Queens	7	3	20050518-Q-7-3-1-1-R	5/18/2005	222.71	High Density/Medium Income
Spring	Refuse	Queens	1	4	20050518-Q-1-4-1-1-R	5/18/2005	214.61	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050519-Q-1-4-2-1-R	5/19/2005	218	Medium Density/Medium Income
Spring	Refuse	Queens	7	3	20050519-Q-7-3-1-1-R	5/19/2005	223.41	High Density/Medium Income
Spring	Refuse	Queens	7	3	20050519-Q-7-3-3-1-R	5/19/2005	217.55	High Density/Medium Income
Spring	Refuse	Queens	4	3	20050519-Q-4-3-1-1-R	5/19/2005	221.81	Medium Density/Medium Income
Spring	Refuse	Queens	9	2	20050519-Q-9-2-4-1-R	5/19/2005	226.16	Low Density/Medium Income
Spring	Refuse	Queens	9	2	20050520-Q-9-2-2-1-R	5/20/2005	251.71	Low Density/Medium Income
Spring	Refuse	Queens	13	7	20050520-Q-13-7-1-1-R	5/20/2005	233	Low Density/High Income
Spring	Refuse	Queens	1	4	20050520-Q-1-4-3-1-R	5/20/2005	220.46	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050520-Q-4-3-2-1-R	5/20/2005	230.66	Medium Density/Medium Income
Spring	Refuse	Queens	5	2	20050520-Q-5-2-1-1-R	5/20/2005	219.81	Medium Density/Medium Income
Spring	Refuse	Queens	10	4	20050521-Q-10-4-1-1-R	5/21/2005	233.65	Low Density/High Income
Spring	Refuse	Queens	5	2	20050521-Q-5-2-1-1-R	5/21/2005	224.96	Medium Density/Medium Income
Spring	Refuse	Queens	7	1	20050521-Q-7-1-3-1-R	5/21/2005	225.99	High Density/Medium Income
Spring	Refuse	Queens	13	5	20050521-Q-13-5-3-1-R	5/21/2005	240.46	Low Density/High Income
Spring	Refuse	Queens	9	1	20050521-Q-9-1-1-1-R	5/21/2005	248.96	Low Density/Medium Income
Spring	Refuse	Queens	5	2	20050521-Q-5-2-1-2-R	5/21/2005	222.01	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050521-Q-1-4-1-1-R	5/21/2005	227.67	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050523-Q-4-3-2-1-R	5/23/2005	225.16	Medium Density/Medium Income
Spring	Refuse	Queens	7	3	20050523-Q-7-3-4-1-R	5/23/2005	274.75	High Density/Medium Income
Spring	Refuse	Queens	9	2	20050523-Q-9-2-2-1-R	5/23/2005	231.41	Low Density/Medium Income
Spring	Refuse	Queens	3	2	20050523-Q-3-2-2-1-R	5/23/2005	208.65	High Density/Medium Income
Spring	Refuse	Queens	7	3	20050523-Q-7-3-1-1-R	5/23/2005	216.76	High Density/Medium Income
Spring	Refuse	Queens	5	2	20050523-Q-5-2-3-1-R	5/23/2005	212.81	Medium Density/Medium Income
Spring	Refuse	Queens	1	4	20050523-Q-1-4-1-1-R	5/23/2005	224.16	Medium Density/Medium Income
Spring	Refuse	Queens	9	1	20050523-Q-9-1-1-1-R	5/23/2005	241.16	Low Density/Medium Income
Spring	Refuse	Queens	9	1	20050523-Q-9-1-3-1-R	5/23/2005	214.51	Low Density/Medium Income
Spring	Refuse	Queens	10	4	20050524-Q-10-4-2-1-R	5/24/2005	219.01	Low Density/High Income
Spring	Refuse	Queens	1	4	20050524-Q-1-4-4-1-R	5/24/2005	230.46	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050524-Q-4-3-7-1-R	5/24/2005	218.4	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Queens	4	3	20050524-Q-4-3-5-1-R	5/24/2005	222.04	Medium Density/Medium Income
Spring	Refuse	Queens	9	2	20050524-Q-9-2-5-1-R	5/24/2005	261.86	Low Density/Medium Income
Spring	Refuse	Queens	13	7	20050524-Q-13-7-3-1-R	5/24/2005	220.35	Low Density/High Income
Spring	Refuse	Queens	1	4	20050524-Q-1-4-1-1-R	5/24/2005	235.51	Medium Density/Medium Income
Spring	Refuse	Queens	9	1	20050524-Q-9-1-1-1-R	5/24/2005	217.3	Low Density/Medium Income
Spring	Refuse	Queens	5	2	20050525-Q-5-2-2-1-R	5/25/2005	216.31	Medium Density/Medium Income
Spring	Refuse	Queens	7	3	20050525-Q-7-3-2-1-R	5/25/2005	232.91	High Density/Medium Income
Spring	Refuse	Queens	7	1	20050525-Q-7-1-3-1-R	5/25/2005	259.36	High Density/Medium Income
Spring	Refuse	Queens	7	1	20050525-Q-7-1-2-1-R	5/25/2005	218.36	High Density/Medium Income
Spring	Refuse	Queens	3	2	20050525-Q-3-2-3-1-R	5/25/2005	241.86	High Density/Medium Income
Spring	Refuse	Queens	9	2	20050525-Q-9-2-4-1-R	5/25/2005	230.91	Low Density/Medium Income
Spring	Refuse	Queens	7	3	20050525-Q-7-3-3-1-R	5/25/2005	234.76	High Density/Medium Income
Spring	Refuse	Queens	7	1	20050525-Q-7-1-4-1-R	5/25/2005	228.4	High Density/Medium Income
Spring	Refuse	Queens	4	3	20050525-Q-4-3-4-1-R	5/25/2005	253.07	Medium Density/Medium Income
Spring	Refuse	Queens	9	1	20050526-Q-9-1-4-1-R	5/26/2005	216.96	Low Density/Medium Income
Spring	Refuse	Queens	7	1	20050526-Q-7-1-3-1-R	5/26/2005	229.96	High Density/Medium Income
Spring	Refuse	Queens	7	3	20050526-Q-7-3-3-1-R	5/26/2005	214.7	High Density/Medium Income
Spring	Refuse	Queens	5	2	20050526-Q-5-2-3-1-R	5/26/2005	225.36	Medium Density/Medium Income
Spring	Refuse	Queens	4	3	20050526-Q-4-3-3-1-R	5/26/2005	271.01	Medium Density/Medium Income
Spring	Refuse	Queens	7	3	20050526-Q-7-3-5-1-R	5/26/2005	214.46	High Density/Medium Income
Spring	Refuse	Queens	13	3	20050526-Q-13-3-1-1-R	5/26/2005	216.51	Low Density/High Income
Spring	Refuse	Queens	13	8	20050526-Q-13-8-1-1-R	5/26/2005	230.65	Low Density/High Income
Spring	Refuse	Queens	3	2	20050526-Q-3-2-3-1-R	5/26/2005	221.56	High Density/Medium Income
Spring	Refuse	Queens	3	2	20050526-Q-3-2-5-1-R	5/26/2005	241.75	High Density/Medium Income
Spring	Refuse	Queens	13	5	20050526-Q-13-5-3-1-R	5/26/2005	222.89	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050509-SI-1-3-1-1-R	5/9/2005	314.16	Low Density/Medium Income
Spring	Refuse	Staten Island	3	6	20050509-SI-3-6-4-1-R	5/9/2005	241.6	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050510-SI-1-3-7-1-R	5/10/2005	209.05	Low Density/Medium Income
Spring	Refuse	Staten Island	3	1	20050510-SI-3-1-3-1-R	5/10/2005	215.8	Low Density/Medium Income
Spring	Refuse	Staten Island	3	1	20050510-SI-3-1-4-1-R	5/10/2005	235.26	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050510-SI-1-3-3-1-R	5/10/2005	296.41	Low Density/Medium Income
Spring	Refuse	Staten Island	3	6	20050510-SI-3-6-5-1-R	5/10/2005	215.01	Low Density/High Income
Spring	Refuse	Staten Island	3	5	20050511-SI-3-5-2-1-R	5/11/2005	214.39	Low Density/High Income
Spring	Refuse	Staten Island	3	1	20050511-SI-3-1-1-1-R	5/11/2005	222.46	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050511-SI-1-3-2-1-R	5/11/2005	208.35	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050511-SI-1-3-1-1-R	5/11/2005	215.15	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050512-SI-1-3-1-1-R	5/12/2005	230.56	Low Density/Medium Income
Spring	Refuse	Staten Island	3	4	20050512-SI-3-4-4-1-R	5/12/2005	214.16	Low Density/High Income
Spring	Refuse	Staten Island	3	1	20050512-SI-3-1-4-1-R	5/12/2005	215.56	Low Density/Medium Income
Spring	Refuse	Staten Island	3	1	20050512-SI-3-1-1-1-R	5/12/2005	224.21	Low Density/Medium Income
Spring	Refuse	Staten Island	3	5	20050512-SI-3-5-5-1-R	5/12/2005	211.11	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050513-SI-1-3-1-1-R	5/13/2005	206.66	Low Density/Medium Income
Spring	Refuse	Staten Island	2	4	20050513-SI-2-4-5-1-R	5/13/2005	212.45	Low Density/High Income
Spring	Refuse	Staten Island	2	4	20050513-SI-2-4-7-1-R	5/13/2005	220.16	Low Density/High Income
Spring	Refuse	Staten Island	3	1	20050513-SI-3-1-3-1-R	5/13/2005	221.41	Low Density/Medium Income
Spring	Refuse	Staten Island	3	1	20050514-SI-3-1-1-1-R	5/14/2005	211.86	Low Density/Medium Income
Spring	Refuse	Staten Island	3	2	20050514-SI-3-2-3-1-R	5/14/2005	213.81	Low Density/High Income
Spring	Refuse	Staten Island	3	1	20050514-SI-3-1-4-1-R	5/14/2005	211.11	Low Density/Medium Income
Spring	Refuse	Staten Island	2	2	20050516-SI-2-2-2-1-R	5/16/2005	232.36	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050516-SI-1-3-4-1-R	5/16/2005	224.14	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050517-SI-1-3-7-1-R	5/17/2005	249.74	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050517-SI-1-3-3-1-R	5/17/2005	223.56	Low Density/Medium Income
Spring	Refuse	Staten Island	3	4	20050517-SI-3-4-1-1-R	5/17/2005	225.04	Low Density/High Income
Spring	Refuse	Staten Island	3	6	20050517-SI-3-6-4-1-R	5/17/2005	221.61	Low Density/High Income
Spring	Refuse	Staten Island	3	1	20050517-SI-3-1-1-1-R	5/17/2005	212.62	Low Density/Medium Income
Spring	Refuse	Staten Island	3	1	20050518-SI-3-1-2-1-R	5/18/2005	210.95	Low Density/Medium Income
Spring	Refuse	Staten Island	3	1	20050518-SI-3-1-3-1-R	5/18/2005	219.21	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050518-SI-1-3-1-1-R	5/18/2005	211.86	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050519-SI-1-3-4-1-R	5/19/2005	219.11	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050520-SI-1-3-3-1-R	5/20/2005	220.92	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Refuse	Staten Island	1	3	20050523-SI-1-3-5-1-R	5/23/2005	243.85	Low Density/Medium Income
Spring	Refuse	Staten Island	1	3	20050523-SI-1-3-2-1-R	5/23/2005	232.7	Low Density/Medium Income
Spring	Refuse	Staten Island	2	4	20050523-SI-2-4-2-1-R	5/23/2005	221.31	Low Density/High Income
Spring	Refuse	Staten Island	3	2	20050524-SI-3-2-1-1-R	5/24/2005	227.04	Low Density/High Income
Spring	Refuse	Staten Island	3	6	20050524-SI-3-6-5-1-R	5/24/2005	220.61	Low Density/High Income
Spring	Refuse	Staten Island	3	6	20050524-SI-3-6-1-1-R	5/24/2005	221.91	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050524-SI-1-3-4-1-R	5/24/2005	239.71	Low Density/Medium Income
Spring	Refuse	Staten Island	3	4	20050524-SI-3-4-3-1-R	5/24/2005	235.01	Low Density/High Income
Spring	Refuse	Staten Island	3	1	20050524-SI-3-1-2-1-R	5/24/2005	206.3	Low Density/Medium Income
Spring	Refuse	Staten Island	2	4	20050524-SI-2-4-6-1-R	5/24/2005	226.76	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050526-SI-1-3-1-1-R	5/26/2005	222.55	Low Density/Medium Income
Spring	Refuse	Staten Island	3	5	20050526-SI-3-5-4-1-R	5/26/2005	232.18	Low Density/High Income
Spring	Refuse	Staten Island	3	4	20050526-SI-3-4-4-1-R	5/26/2005	203.45	Low Density/High Income
Spring	Refuse	Staten Island	3	4	20050526-SI-3-4-1-1-R	5/26/2005	218.24	Low Density/High Income
Spring	Refuse	Staten Island	3	2	20050526-SI-3-2-2-1-R	5/26/2005	227.62	Low Density/High Income
Spring	Refuse	Staten Island	2	2	20050526-SI-2-2-2-1-R	5/26/2005	244.93	Low Density/High Income
Spring	Refuse	Staten Island	1	3	20050526-SI-1-3-6-1-R	5/26/2005	242.76	Low Density/Medium Income
Spring	Paper	Manhattan	3	3	20050509-M-3-3-1-1-P	5/9/2005	131.24	High Density/Medium Income
Spring	Paper	Manhattan	8	1	20050510-M-8-1-1-1-P	5/10/2005	133.62	High Density/High Income
Spring	Paper	Manhattan	8	1	20050510-M-8-1-3-1-P	5/10/2005	147.9	High Density/High Income
Spring	Paper	Manhattan	8	3	20050511-M-8-3-1-1-P	5/11/2005	134.97	High Density/High Income
Spring	Paper	Manhattan	8	3	20050512-M-8-3-2-1-P	5/12/2005	135.17	High Density/High Income
Spring	Paper	Manhattan	7	3	20050512-M-7-3-3-1-P	5/12/2005	142.57	High Density/High Income
Spring	Paper	Manhattan	7	3	20050512-M-7-3-4-1-P	5/12/2005	129.25	High Density/High Income
Spring	Paper	Manhattan	3	1	20050514-M-3-1-1-1-P	5/14/2005	118.82	High Density/Low Income
Spring	Paper	Manhattan	8	1	20050517-M-8-1-1-1-P	5/17/2005	139.9	High Density/High Income
Spring	Paper	Manhattan	8	1	20050517-M-8-1-2-1-P	5/17/2005	130.67	High Density/High Income
Spring	Paper	Manhattan	8	3	20050526-M-8-3-4-1-P	5/26/2005	140.27	High Density/High Income
Spring	Paper	Manhattan	8	5	20050526-M-8-5-4-1-P	5/26/2005	132.4	High Density/High Income
Spring	Paper	Bronx	5	2	20050512-BX-5-2-1-1-P	5/12/2005	131.14	High Density/Low Income
Spring	Paper	Bronx	5	1	20050516-BX-5-1-1-1-P	5/16/2005	123.22	High Density/Low Income
Spring	Paper	Bronx	5	1	20050516-BX-5-1-1-2-P	5/16/2005	132.07	High Density/Low Income
Spring	Paper	Bronx	5	3	20050518-BX-5-3-1-2-P	5/18/2005	136.75	High Density/Low Income
Spring	Paper	Bronx	5	3	20050518-BX-5-3-1-1-P	5/18/2005	131.65	High Density/Low Income
Spring	Paper	Bronx	5	2	20050519-BX-5-2-1-1-P	5/19/2005	126.36	High Density/Low Income
Spring	Paper	Bronx	5	2	20050519-BX-5-2-1-2-P	5/19/2005	118.59	High Density/Low Income
Spring	Paper	Bronx	5	1	20050521-BX-5-1-1-1-P	5/21/2005	131.4	High Density/Low Income
Spring	Paper	Bronx	5	1	20050523-BX-5-1-1-1-P	5/23/2005	129.47	High Density/Low Income
Spring	Paper	Brooklyn	3	3	20050510-BK-3-3-1-1-P	5/10/2005	124.87	Medium Density/Low Income
Spring	Paper	Brooklyn	6	2	20050512-BK-6-2-1-1-P	5/12/2005	133.94	Medium Density/High Income
Spring	Paper	Brooklyn	4	3	20050512-BK-4-3-2-1-P	5/12/2005	142.32	Medium Density/Low Income
Spring	Paper	Brooklyn	6	2	20050513-BK-6-2-2-1-P	5/13/2005	137.17	Medium Density/High Income
Spring	Paper	Brooklyn	6	2	20050514-BK-6-2-1-1-P	5/14/2005	141.39	Medium Density/High Income
Spring	Paper	Brooklyn	6	2	20050514-BK-6-2-2-1-P	5/14/2005	132.62	Medium Density/High Income
Spring	Paper	Brooklyn	6	2	20050514-BK-6-2-1-2-P	5/14/2005	132.32	Medium Density/High Income
Spring	Paper	Brooklyn	4	2	20050516-BK-4-2-2-1-P	5/16/2005	134.17	Medium Density/Low Income
Spring	Paper	Brooklyn	4	2	20050516-BK-4-2-3-1-P	5/16/2005	110.52	Medium Density/Low Income
Spring	Paper	Brooklyn	4	1	20050517-BK-4-1-2-1-P	5/17/2005	130.73	Medium Density/Low Income
Spring	Paper	Brooklyn	6	2	20050519-BK-6-2-1-2-P	5/19/2005	142.19	Medium Density/High Income
Spring	Paper	Brooklyn	17	1	20050519-BK-17-1-1-1-P	5/19/2005	161.88	Medium Density/Low Income
Spring	Paper	Brooklyn	6	2	20050519-BK-6-2-1-1-P	5/19/2005	153.57	Medium Density/High Income
Spring	Paper	Brooklyn	6	2	20050520-BK-6-2-2-1-P	5/20/2005	139.05	Medium Density/High Income
Spring	Paper	Brooklyn	4	2	20050521-BK-4-2-3-1-P	5/21/2005	123.65	Medium Density/Low Income
Spring	Paper	Brooklyn	4	2	20050521-BK-4-2-3-2-P	5/21/2005	129.04	Medium Density/Low Income
Spring	Paper	Brooklyn	6	2	20050521-BK-6-2-1-1-P	5/21/2005	138.54	Medium Density/High Income
Spring	Paper	Brooklyn	3	3	20050523-BK-3-3-1-1-P	5/23/2005	137.72	Medium Density/Low Income
Spring	Paper	Brooklyn	3	3	20050524-BK-3-3-1-1-P	5/24/2005	141.75	Medium Density/Low Income
Spring	Paper	Brooklyn	17	1	20050526-BK-17-1-3-1-P	5/26/2005	153.25	Medium Density/High Income
Spring	Paper	Queens	7	3	20050509-Q-7-3-3-1-P	5/9/2005	144.67	High Density/Medium Income
Spring	Paper	Queens	9	1	20050509-Q-9-1-4-1-P	5/9/2005	141.07	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Paper	Queens	4	3	20050509-Q-4-3-1-1-P	5/9/2005	147.96	Medium Density/Medium Income
Spring	Paper	Queens	7	3	20050509-Q-7-3-1-1-P	5/9/2005	138.24	High Density/Medium Income
Spring	Paper	Queens	13	6	20050510-Q-13-6-2-1-P	5/10/2005	132.42	Low Density/High Income
Spring	Paper	Queens	13	6	20050511-Q-13-6-2-1-P	5/11/2005	131.89	Low Density/High Income
Spring	Paper	Queens	9	2	20050513-Q-9-2-2-1-P	5/13/2005	141.89	Low Density/Medium Income
Spring	Paper	Queens	9	1	20050513-Q-9-1-2-1-P	5/13/2005	132.51	Low Density/Medium Income
Spring	Paper	Queens	9	2	20050513-Q-9-2-3-1-P	5/13/2005	135.12	Low Density/Medium Income
Spring	Paper	Queens	7	3	20050513-Q-7-3-2-1-P	5/13/2005	144.49	High Density/Medium Income
Spring	Paper	Queens	5	2	20050514-Q-5-2-2-1-P	5/14/2005	136.04	Medium Density/Medium Income
Spring	Paper	Queens	4	3	20050516-Q-4-3-1-1-P	5/16/2005	108.69	Medium Density/Medium Income
Spring	Paper	Queens	5	2	20050516-Q-5-2-1-1-P	5/16/2005	133.92	Medium Density/Medium Income
Spring	Paper	Queens	9	2	20050516-Q-9-2-3-1-P	5/16/2005	122.24	Low Density/Medium Income
Spring	Paper	Queens	3	2	20050516-Q-3-2-2-1-P	5/16/2005	144.17	High Density/Medium Income
Spring	Paper	Queens	3	2	20050516-Q-3-2-1-1-P	5/16/2005	140.35	High Density/Medium Income
Spring	Paper	Queens	1	4	20050517-Q-1-4-2-1-P	5/17/2005	131.89	Medium Density/Medium Income
Spring	Paper	Queens	13	8	20050518-Q-13-8-2-1-P	5/18/2005	133.68	Low Density/High Income
Spring	Paper	Queens	13	6	20050518-Q-13-6-1-1-P	5/18/2005	136.84	Low Density/High Income
Spring	Paper	Queens	7	3	20050520-Q-7-3-1-1-P	5/20/2005	155.7	High Density/Medium Income
Spring	Paper	Queens	4	3	20050520-Q-4-3-1-1-P	5/20/2005	129	Medium Density/Medium Income
Spring	Paper	Queens	4	3	20050521-Q-4-3-2-2-P	5/21/2005	127.9	Medium Density/Medium Income
Spring	Paper	Queens	4	3	20050521-Q-4-3-2-1-P	5/21/2005	137.79	Medium Density/Medium Income
Spring	Paper	Queens	4	3	20050521-Q-4-3-1-1-P	5/21/2005	137.25	Medium Density/Medium Income
Spring	Paper	Queens	5	2	20050521-Q-5-2-3-1-P	5/21/2005	127.25	Medium Density/Medium Income
Spring	Paper	Queens	7	3	20050521-Q-7-3-1-1-P	5/21/2005	127.35	High Density/Medium Income
Spring	Paper	Queens	7	1	20050523-Q-7-1-1-1-P	5/23/2005	133.2	High Density/Medium Income
Spring	Paper	Queens	7	1	20050523-Q-7-1-1-2-P	5/23/2005	141.59	High Density/Medium Income
Spring	Paper	Queens	13	7	20050524-Q-13-7-3-1-P	5/24/2005	136.08	Low Density/High Income
Spring	Paper	Queens	11	3	20050525-Q-11-3-3-1-P	5/25/2005	145.94	Low Density/High Income
Spring	Paper	Queens	13	7	20050525-Q-13-7-2-1-P	5/25/2005	135.4	Low Density/High Income
Spring	Paper	Staten Island	1	3	20050509-SI-1-3-2-1-P	5/9/2005	134.77	Low Density/Medium Income
Spring	Paper	Staten Island	3	1	20050511-SI-3-1-2-1-P	5/11/2005	135.59	Low Density/Medium Income
Spring	Paper	Staten Island	2	2	20050511-SI-2-2-3-1-P	5/11/2005	134.39	Low Density/High Income
Spring	Paper	Staten Island	3	1	20050512-SI-3-1-5-1-P	5/12/2005	128.72	Low Density/Medium Income
Spring	Paper	Staten Island	2	2	20050517-SI-2-2-3-1-P	5/17/2005	130.77	Low Density/High Income
Spring	Paper	Staten Island	3	1	20050519-SI-3-1-2-1-P	5/19/2005	176.8	Low Density/Medium Income
Spring	Paper	Staten Island	2	2	20050524-SI-2-2-3-1-P	5/24/2005	130.99	Low Density/High Income
Spring	Paper	Staten Island	3	1	20050525-SI-3-1-4-1-P	5/25/2005	152.85	Low Density/Medium Income
Spring	MGP	Manhattan	3	3	20050509-M-3-3-1-1-M	5/9/2005	131.84	High Density/Medium Income
Spring	MGP	Manhattan	8	1	20050510-M-8-1-1-4-M	5/10/2005	169.59	High Density/High Income
Spring	MGP	Manhattan	8	1	20050510-M-8-1-1-3-M	5/10/2005	129.24	High Density/High Income
Spring	MGP	Manhattan	2	3	20050510-M-2-3-1-1-M	5/10/2005	171.04	High Density/High Income
Spring	MGP	Manhattan	8	1	20050510-M-8-1-1-2-M	5/10/2005	127.92	High Density/High Income
Spring	MGP	Manhattan	8	1	20050510-M-8-1-1-1-M	5/10/2005	130.51	High Density/High Income
Spring	MGP	Manhattan	8	3	20050511-M-8-3-2-1-M	5/11/2005	142.62	High Density/High Income
Spring	MGP	Manhattan	8	3	20050511-M-8-3-2-2-M	5/11/2005	153.39	High Density/High Income
Spring	MGP	Manhattan	8	3	20050512-M-8-3-1-1-M	5/12/2005	156.64	High Density/High Income
Spring	MGP	Manhattan	7	3	20050512-M-7-3-1-1-M	5/12/2005	156.67	High Density/High Income
Spring	MGP	Manhattan	7	3	20050512-M-7-3-3-1-M	5/12/2005	188.37	High Density/High Income
Spring	MGP	Manhattan	8	5	20050512-M-8-5-2-1-M	5/12/2005	132.75	High Density/High Income
Spring	MGP	Manhattan	3	1	20050514-M-3-1-1-2-M	5/14/2005	144.74	High Density/Low Income
Spring	MGP	Manhattan	3	1	20050514-M-3-1-1-1-M	5/14/2005	126.57	High Density/Low Income
Spring	MGP	Manhattan	2	3	20050517-M-2-3-2-1-M	5/17/2005	128.94	High Density/High Income
Spring	MGP	Manhattan	2	3	20050517-M-2-3-1-3-M	5/17/2005	183.99	High Density/High Income
Spring	MGP	Manhattan	2	3	20050517-M-2-3-1-1-M	5/17/2005	181.26	High Density/High Income
Spring	MGP	Manhattan	2	3	20050517-M-2-3-1-2-M	5/17/2005	130.94	High Density/High Income
Spring	MGP	Manhattan	2	3	20050517-M-2-3-2-2-M	5/17/2005	128.97	High Density/High Income
Spring	MGP	Manhattan	2	3	20050517-M-2-3-1-4-M	5/17/2005	156.14	High Density/High Income
Spring	MGP	Manhattan	8	3	20050518-M-8-3-2-2-M	5/18/2005	138.17	High Density/High Income
Spring	MGP	Manhattan	8	3	20050518-M-8-3-2-3-M	5/18/2005	123	High Density/High Income
Spring	MGP	Manhattan	8	3	20050518-M-8-3-1-1-M	5/18/2005	162.4	High Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	MGP	Manhattan	8	3	20050518-M-8-3-1-2-M	5/18/2005	172.27	High Density/High Income
Spring	MGP	Manhattan	8	3	20050518-M-8-3-2-1-M	5/18/2005	188.19	High Density/High Income
Spring	MGP	Manhattan	8	5	20050519-M-8-5-2-1-M	5/19/2005	231.34	High Density/High Income
Spring	MGP	Manhattan	8	3	20050519-M-8-3-2-1-M	5/19/2005	157.34	High Density/High Income
Spring	MGP	Manhattan	3	3	20050523-M-3-3-1-3-M	5/23/2005	123.72	High Density/Medium Income
Spring	MGP	Manhattan	3	3	20050523-M-3-3-1-1-M	5/23/2005	151.51	High Density/Medium Income
Spring	MGP	Manhattan	3	3	20050523-M-3-3-1-2-M	5/23/2005	184.13	High Density/Medium Income
Spring	MGP	Manhattan	2	3	20050524-M-2-3-2-2-M	5/24/2005	156.49	High Density/High Income
Spring	MGP	Manhattan	8	1	20050524-M-8-1-1-3-M	5/24/2005	162.85	High Density/High Income
Spring	MGP	Manhattan	8	1	20050524-M-8-1-1-2-M	5/24/2005	204.58	High Density/High Income
Spring	MGP	Manhattan	8	1	20050524-M-8-1-1-1-M	5/24/2005	136.04	High Density/High Income
Spring	MGP	Manhattan	2	3	20050524-M-2-3-2-1-M	5/24/2005	176.9	High Density/High Income
Spring	MGP	Manhattan	2	3	20050524-M-2-3-1-3-M	5/24/2005	158.8	High Density/High Income
Spring	MGP	Manhattan	2	3	20050524-M-2-3-1-2-M	5/24/2005	173.84	High Density/High Income
Spring	MGP	Manhattan	2	3	20050524-M-2-3-1-1-M	5/24/2005	249.76	High Density/High Income
Spring	MGP	Manhattan	8	1	20050524-M-8-1-1-4-M	5/24/2005	144.32	High Density/High Income
Spring	MGP	Manhattan	8	3	20050525-M-8-3-2-2-M	5/25/2005	160.75	High Density/High Income
Spring	MGP	Manhattan	8	3	20050525-M-8-3-2-1-M	5/25/2005	133.67	High Density/High Income
Spring	MGP	Manhattan	8	3	20050525-M-8-3-1-1-M	5/25/2005	140.82	High Density/High Income
Spring	MGP	Manhattan	8	3	20050526-M-8-3-2-1-M	5/26/2005	137.33	High Density/High Income
Spring	MGP	Manhattan	7	3	20050526-M-7-3-2-1-M	5/26/2005	137.02	High Density/High Income
Spring	MGP	Manhattan	7	3	20050526-M-7-3-2-2-M	5/26/2005	155.96	High Density/High Income
Spring	MGP	Manhattan	7	3	20050526-M-7-3-3-1-M	5/26/2005	169.33	High Density/High Income
Spring	MGP	Bronx	5	1	20050509-BX-5-1-1-2-M	5/9/2005	153.44	High Density/Low Income
Spring	MGP	Bronx	5	1	20050509-BX-5-1-2-2-M	5/9/2005	142.79	High Density/Low Income
Spring	MGP	Bronx	5	1	20050509-BX-5-1-2-3-M	5/9/2005	190.49	High Density/Low Income
Spring	MGP	Bronx	5	1	20050509-BX-5-1-2-1-M	5/9/2005	145.54	High Density/Low Income
Spring	MGP	Bronx	5	1	20050509-BX-5-1-1-1-M	5/9/2005	131.54	High Density/Low Income
Spring	MGP	Bronx	5	3	20050510-BX-5-3-1-2-M	5/10/2005	184.59	High Density/Low Income
Spring	MGP	Bronx	5	3	20050510-BX-5-3-1-1-M	5/10/2005	138.03	High Density/Low Income
Spring	MGP	Bronx	5	3	20050510-BX-5-3-2-1-M	5/10/2005	149.32	High Density/Low Income
Spring	MGP	Bronx	5	3	20050510-BX-5-3-2-2-M	5/10/2005	127.7	High Density/Low Income
Spring	MGP	Bronx	5	3	20050510-BX-5-3-2-3-M	5/10/2005	130.3	High Density/Low Income
Spring	MGP	Bronx	5	3	20050511-BX-5-3-2-1-M	5/11/2005	145.34	High Density/Low Income
Spring	MGP	Bronx	5	3	20050511-BX-5-3-1-1-M	5/11/2005	126.95	High Density/Low Income
Spring	MGP	Bronx	5	3	20050511-BX-5-3-1-2-M	5/11/2005	257.92	High Density/Low Income
Spring	MGP	Bronx	5	2	20050512-BX-5-2-2-1-M	5/12/2005	138.51	High Density/Low Income
Spring	MGP	Bronx	5	2	20050512-BX-5-2-1-1-M	5/12/2005	172.66	High Density/Low Income
Spring	MGP	Bronx	5	2	20050512-BX-5-2-1-2-M	5/12/2005	151.52	High Density/Low Income
Spring	MGP	Bronx	5	1	20050514-BX-5-1-1-2-M	5/14/2005	143.58	High Density/Low Income
Spring	MGP	Bronx	5	1	20050514-BX-5-1-1-1-M	5/14/2005	131.3	High Density/Low Income
Spring	MGP	Bronx	5	1	20050516-BX-5-1-2-1-M	5/16/2005	189.34	High Density/Low Income
Spring	MGP	Bronx	5	1	20050516-BX-5-1-2-2-M	5/16/2005	133.17	High Density/Low Income
Spring	MGP	Bronx	5	3	20050517-BX-5-3-1-1-M	5/17/2005	131.94	High Density/Low Income
Spring	MGP	Bronx	5	3	20050517-BX-5-3-2-1-M	5/17/2005	150.24	High Density/Low Income
Spring	MGP	Bronx	5	3	20050518-BX-5-3-1-2-M	5/18/2005	99.34	High Density/Low Income
Spring	MGP	Bronx	5	3	20050518-BX-5-3-1-1-M	5/18/2005	129.14	High Density/Low Income
Spring	MGP	Bronx	5	2	20050519-BX-5-2-2-2-M	5/19/2005	201.87	High Density/Low Income
Spring	MGP	Bronx	5	2	20050519-BX-5-2-2-1-M	5/19/2005	194.34	High Density/Low Income
Spring	MGP	Bronx	5	2	20050520-BX-5-2-1-1-M	5/20/2005	153.57	High Density/Low Income
Spring	MGP	Bronx	5	1	20050523-BX-5-1-1-1-M	5/23/2005	146.61	High Density/Low Income
Spring	MGP	Bronx	5	1	20050523-BX-5-1-2-1-M	5/23/2005	137.03	High Density/Low Income
Spring	MGP	Bronx	5	1	20050523-BX-5-1-1-2-M	5/23/2005	154.45	High Density/Low Income
Spring	MGP	Bronx	5	3	20050524-BX-5-3-2-1-M	5/24/2005	176.22	High Density/Low Income
Spring	MGP	Bronx	5	3	20050524-BX-5-3-1-1-M	5/24/2005	127.76	High Density/Low Income
Spring	MGP	Bronx	5	3	20050525-BX-5-3-1-1-M	5/25/2005	151.84	High Density/Low Income
Spring	MGP	Bronx	5	3	20050525-BX-5-3-2-1-M	5/25/2005	137.65	High Density/Low Income
Spring	MGP	Bronx	5	3	20050525-BX-5-3-1-3-M	5/25/2005	134.74	High Density/Low Income
Spring	MGP	Bronx	5	3	20050525-BX-5-3-1-2-M	5/25/2005	125.09	High Density/Low Income
Spring	MGP	Bronx	5	2	20050526-BX-5-2-2-1-M	5/26/2005	137.25	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	MGP	Bronx	5	2	20050526-BX-5-2-1-1-M	5/26/2005	166.77	High Density/Low Income
Spring	MGP	Brooklyn	3	3	20050509-BK-3-3-1-2-M	5/9/2005	163.36	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050509-BK-3-3-1-1-M	5/9/2005	152.06	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050509-BK-3-3-2-2-M	5/9/2005	165.77	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050509-BK-3-3-2-1-M	5/9/2005	150.32	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050510-BK-3-3-1-1-M	5/10/2005	163.39	Medium Density/Low Income
Spring	MGP	Brooklyn	4	1	20050510-BK-4-1-2-1-M	5/10/2005	146.57	Medium Density/Low Income
Spring	MGP	Brooklyn	4	3	20050512-BK-4-3-2-3-M	5/12/2005	128.11	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050512-BK-6-2-1-1-M	5/12/2005	167.82	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050512-BK-6-2-1-2-M	5/12/2005	134.62	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050512-BK-6-2-1-3-M	5/12/2005	148.72	Medium Density/High Income
Spring	MGP	Brooklyn	4	3	20050512-BK-4-3-2-1-M	5/12/2005	136.05	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050512-BK-6-2-1-4-M	5/12/2005	156.91	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050512-BK-6-2-1-5-M	5/12/2005	136.69	Medium Density/High Income
Spring	MGP	Brooklyn	4	3	20050512-BK-4-3-2-2-M	5/12/2005	153.06	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050513-BK-6-2-1-4-M	5/13/2005	134.07	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050513-BK-6-2-1-3-M	5/13/2005	131.09	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050513-BK-6-2-1-6-M	5/13/2005	134.04	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050513-BK-6-2-1-2-M	5/13/2005	130.04	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050513-BK-6-2-1-5-M	5/13/2005	131.69	Medium Density/High Income
Spring	MGP	Brooklyn	4	3	20050513-BK-4-3-2-1-M	5/13/2005	127.92	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050513-BK-6-2-1-1-M	5/13/2005	130.2	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-2-6-M	5/14/2005	133.47	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-1-1-M	5/14/2005	207.69	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-2-1-M	5/14/2005	168.34	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-2-2-M	5/14/2005	172.17	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-2-3-M	5/14/2005	133.62	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-2-5-M	5/14/2005	137.49	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-1-2-M	5/14/2005	216.14	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050514-BK-6-2-2-4-M	5/14/2005	170.05	Medium Density/High Income
Spring	MGP	Brooklyn	4	2	20050516-BK-4-2-3-1-M	5/16/2005	172.74	Medium Density/Low Income
Spring	MGP	Brooklyn	4	2	20050516-BK-4-2-2-2-M	5/16/2005	121.09	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050516-BK-3-3-2-1-M	5/16/2005	139.44	Medium Density/Low Income
Spring	MGP	Brooklyn	4	2	20050516-BK-4-2-2-1-M	5/16/2005	144.92	Medium Density/Low Income
Spring	MGP	Brooklyn	17	1	20050516-BK-17-1-2-1-M	5/16/2005	132.25	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050516-BK-3-3-2-2-M	5/16/2005	136.12	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050517-BK-3-3-2-1-M	5/17/2005	149.87	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050517-BK-3-3-2-2-M	5/17/2005	126.85	Medium Density/Low Income
Spring	MGP	Brooklyn	4	1	20050517-BK-4-1-2-1-M	5/17/2005	165.14	Medium Density/Low Income
Spring	MGP	Brooklyn	4	3	20050519-BK-4-3-2-1-M	5/19/2005	131.32	Medium Density/Low Income
Spring	MGP	Brooklyn	17	1	20050519-BK-17-1-1-2-M	5/19/2005	180.19	Medium Density/Low Income
Spring	MGP	Brooklyn	4	3	20050519-BK-4-3-3-1-M	5/19/2005	145.1	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-1-M	5/19/2005	145.72	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-2-M	5/19/2005	170.67	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-3-M	5/19/2005	187.77	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-5-M	5/19/2005	131.07	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-6-M	5/19/2005	164.57	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-4-M	5/19/2005	228.42	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-8-M	5/19/2005	226.62	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-9-M	5/19/2005	149.82	Medium Density/High Income
Spring	MGP	Brooklyn	17	1	20050519-BK-17-1-1-1-M	5/19/2005	179.77	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050519-BK-6-2-1-7-M	5/19/2005	181.62	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050520-BK-6-2-1-3-M	5/20/2005	120.27	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050520-BK-6-2-1-1-M	5/20/2005	182.12	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050520-BK-6-2-1-4-M	5/20/2005	130.67	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050520-BK-6-2-1-2-M	5/20/2005	129.79	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050521-BK-6-2-2-2-M	5/21/2005	128.72	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050521-BK-6-2-2-3-M	5/21/2005	132.29	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050521-BK-6-2-2-1-M	5/21/2005	160.15	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050521-BK-6-2-2-4-M	5/21/2005	137.49	Medium Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	MGP	Brooklyn	4	2	20050521-BK-4-2-1-1-M	5/21/2005	174.44	Medium Density/Low Income
Spring	MGP	Brooklyn	4	2	20050521-BK-4-2-3-1-M	5/21/2005	222.62	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050523-BK-3-3-1-1-M	5/23/2005	119.6	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050523-BK-3-3-1-2-M	5/23/2005	193.32	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050523-BK-3-3-1-3-M	5/23/2005	129.88	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050523-BK-3-3-2-1-M	5/23/2005	198.67	Medium Density/Low Income
Spring	MGP	Brooklyn	4	1	20050524-BK-4-1-2-1-M	5/24/2005	141.89	Medium Density/Low Income
Spring	MGP	Brooklyn	4	1	20050524-BK-4-1-1-1-M	5/24/2005	185.34	Medium Density/Low Income
Spring	MGP	Brooklyn	3	3	20050524-BK-3-3-2-1-M	5/24/2005	171.73	Medium Density/Low Income
Spring	MGP	Brooklyn	4	1	20050525-BK-4-1-1-2-M	5/25/2005	145.44	Medium Density/Low Income
Spring	MGP	Brooklyn	4	1	20050525-BK-4-1-1-1-M	5/25/2005	160.59	Medium Density/Low Income
Spring	MGP	Brooklyn	4	3	20050526-BK-4-3-2-1-M	5/26/2005	124.82	Medium Density/Low Income
Spring	MGP	Brooklyn	6	2	20050526-BK-6-2-1-2-M	5/26/2005	131.65	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050526-BK-6-2-1-3-M	5/26/2005	129.24	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050526-BK-6-2-1-4-M	5/26/2005	122.22	Medium Density/High Income
Spring	MGP	Brooklyn	6	2	20050526-BK-6-2-1-1-M	5/26/2005	129.17	Medium Density/High Income
Spring	MGP	Brooklyn	4	3	20050526-BK-4-3-3-1-M	5/26/2005	129.24	Medium Density/Low Income
Spring	MGP	Brooklyn	17	1	20050526-BK-17-1-1-1-M	5/26/2005	130.99	Medium Density/Low Income
Spring	MGP	Brooklyn	17	1	20050526-BK-17-1-1-2-M	5/26/2005	136.15	Medium Density/Low Income
Spring	MGP	Brooklyn	17	1	20050526-BK-17-1-3-1-M	5/26/2005	208.55	Medium Density/Low Income
Spring	MGP	Brooklyn	17	1	20050526-BK-17-1-3-2-M	5/26/2005	146.97	Medium Density/Low Income
Spring	MGP	Queens	7	3	20050509-Q-7-3-3-1-M	5/9/2005	151.57	High Density/Medium Income
Spring	MGP	Queens	9	1	20050509-Q-9-1-4-1-M	5/9/2005	188.76	Low Density/Medium Income
Spring	MGP	Queens	3	2	20050509-Q-3-2-2-1-M	5/9/2005	128.07	High Density/Medium Income
Spring	MGP	Queens	9	2	20050509-Q-9-2-1-1-M	5/9/2005	132.82	Low Density/Medium Income
Spring	MGP	Queens	7	3	20050509-Q-7-3-1-1-M	5/9/2005	185	High Density/Medium Income
Spring	MGP	Queens	5	2	20050509-Q-5-2-3-1-M	5/9/2005	172.19	Medium Density/Medium Income
Spring	MGP	Queens	7	3	20050509-Q-7-3-2-1-M	5/9/2005	154.56	High Density/Medium Income
Spring	MGP	Queens	9	1	20050509-Q-9-1-4-2-M	5/9/2005	126.71	Low Density/Medium Income
Spring	MGP	Queens	3	2	20050509-Q-3-2-2-2-M	5/9/2005	175.11	High Density/Medium Income
Spring	MGP	Queens	4	3	20050509-Q-4-3-1-1-M	5/9/2005	156.55	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050509-Q-3-2-2-3-M	5/9/2005	170.77	High Density/Medium Income
Spring	MGP	Queens	1	4	20050510-Q-1-4-1-2-M	5/10/2005	154.91	Medium Density/Medium Income
Spring	MGP	Queens	13	6	20050510-Q-13-6-2-1-M	5/10/2005	129.46	Low Density/High Income
Spring	MGP	Queens	1	4	20050510-Q-1-4-2-1-M	5/10/2005	134.96	Medium Density/Medium Income
Spring	MGP	Queens	1	4	20050510-Q-1-4-1-1-M	5/10/2005	132.57	Medium Density/Medium Income
Spring	MGP	Queens	11	3	20050510-Q-11-3-1-1-M	5/10/2005	141.16	Low Density/High Income
Spring	MGP	Queens	1	4	20050511-Q-1-4-1-1-M	5/11/2005	173.59	Medium Density/Medium Income
Spring	MGP	Queens	11	3	20050511-Q-11-3-1-1-M	5/11/2005	154.31	Low Density/High Income
Spring	MGP	Queens	13	5	20050511-Q-13-5-2-1-M	5/11/2005	130.06	Low Density/High Income
Spring	MGP	Queens	13	6	20050511-Q-13-6-1-1-M	5/11/2005	151.22	Low Density/High Income
Spring	MGP	Queens	13	7	20050511-Q-13-7-2-1-M	5/11/2005	134.36	Low Density/High Income
Spring	MGP	Queens	13	6	20050511-Q-13-6-2-2-M	5/11/2005	131.47	Low Density/High Income
Spring	MGP	Queens	1	4	20050511-Q-1-4-2-1-M	5/11/2005	157.42	Medium Density/Medium Income
Spring	MGP	Queens	13	8	20050511-Q-13-8-2-1-M	5/11/2005	146.51	Low Density/High Income
Spring	MGP	Queens	13	6	20050511-Q-13-6-2-1-M	5/11/2005	132.11	Low Density/High Income
Spring	MGP	Queens	1	4	20050512-Q-1-4-2-1-M	5/12/2005	129.11	Medium Density/Medium Income
Spring	MGP	Queens	9	1	20050513-Q-9-1-2-1-M	5/13/2005	135.65	Low Density/Medium Income
Spring	MGP	Queens	4	3	20050513-Q-4-3-1-1-M	5/13/2005	136.87	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050513-Q-5-2-3-1-M	5/13/2005	140.6	Medium Density/Medium Income
Spring	MGP	Queens	7	1	20050513-Q-7-1-2-1-M	5/13/2005	156.62	High Density/Medium Income
Spring	MGP	Queens	3	2	20050513-Q-3-2-2-1-M	5/13/2005	140.22	High Density/Medium Income
Spring	MGP	Queens	7	3	20050513-Q-7-3-2-1-M	5/13/2005	113.71	High Density/Medium Income
Spring	MGP	Queens	7	3	20050513-Q-7-3-1-2-M	5/13/2005	181.11	High Density/Medium Income
Spring	MGP	Queens	9	2	20050513-Q-9-2-3-1-M	5/13/2005	162.74	Low Density/Medium Income
Spring	MGP	Queens	7	3	20050513-Q-7-3-1-1-M	5/13/2005	165.24	High Density/Medium Income
Spring	MGP	Queens	9	2	20050513-Q-9-2-2-1-M	5/13/2005	133.75	Low Density/Medium Income
Spring	MGP	Queens	4	3	20050513-Q-4-3-1-3-M	5/13/2005	146.7	Medium Density/Medium Income
Spring	MGP	Queens	9	1	20050513-Q-9-1-3-1-M	5/13/2005	123.34	Low Density/Medium Income
Spring	MGP	Queens	4	3	20050513-Q-4-3-1-2-M	5/13/2005	186.05	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	MGP	Queens	4	3	20050513-Q-4-3-2-1-M	5/13/2005	147.94	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050514-Q-5-2-2-2-M	5/14/2005	172.79	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050514-Q-5-2-2-1-M	5/14/2005	127.15	Medium Density/Medium Income
Spring	MGP	Queens	4	3	20050514-Q-4-3-2-3-M	5/14/2005	132.22	Medium Density/Medium Income
Spring	MGP	Queens	4	3	20050514-Q-4-3-2-1-M	5/14/2005	164.19	Medium Density/Medium Income
Spring	MGP	Queens	4	3	20050514-Q-4-3-2-2-M	5/14/2005	166.59	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050514-Q-5-2-1-1-M	5/14/2005	210.72	Medium Density/Medium Income
Spring	MGP	Queens	4	3	20050514-Q-4-3-1-1-M	5/14/2005	135.13	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050516-Q-3-2-2-1-M	5/16/2005	150.94	High Density/Medium Income
Spring	MGP	Queens	3	2	20050516-Q-3-2-2-3-M	5/16/2005	130.9	High Density/Medium Income
Spring	MGP	Queens	7	1	20050516-Q-7-1-1-1-M	5/16/2005	157.94	High Density/Medium Income
Spring	MGP	Queens	3	2	20050516-Q-3-2-2-2-M	5/16/2005	146.44	High Density/Medium Income
Spring	MGP	Queens	9	2	20050516-Q-9-2-3-1-M	5/16/2005	131.1	Low Density/Medium Income
Spring	MGP	Queens	5	2	20050516-Q-5-2-1-1-M	5/16/2005	128.65	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050516-Q-3-2-1-1-M	5/16/2005	135.07	High Density/Medium Income
Spring	MGP	Queens	3	2	20050516-Q-3-2-1-2-M	5/16/2005	137.46	High Density/Medium Income
Spring	MGP	Queens	3	2	20050516-Q-3-2-1-3-M	5/16/2005	137.95	High Density/Medium Income
Spring	MGP	Queens	5	2	20050516-Q-5-2-3-1-M	5/16/2005	134.44	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050516-Q-5-2-3-2-M	5/16/2005	134.43	Medium Density/Medium Income
Spring	MGP	Queens	1	4	20050517-Q-1-4-2-1-M	5/17/2005	157.87	Medium Density/Medium Income
Spring	MGP	Queens	13	5	20050517-Q-13-5-1-1-M	5/17/2005	206.16	Low Density/High Income
Spring	MGP	Queens	13	6	20050518-Q-13-6-1-2-M	5/18/2005	130.14	Low Density/High Income
Spring	MGP	Queens	13	8	20050518-Q-13-8-2-2-M	5/18/2005	149.94	Low Density/High Income
Spring	MGP	Queens	13	5	20050518-Q-13-5-3-2-M	5/18/2005	170.57	Low Density/High Income
Spring	MGP	Queens	13	6	20050518-Q-13-6-1-1-M	5/18/2005	124.37	Low Density/High Income
Spring	MGP	Queens	13	5	20050518-Q-13-5-3-1-M	5/18/2005	173.69	Low Density/High Income
Spring	MGP	Queens	13	8	20050518-Q-13-8-2-1-M	5/18/2005	184.22	Low Density/High Income
Spring	MGP	Queens	13	6	20050518-Q-13-6-3-1-M	5/18/2005	132.59	Low Density/High Income
Spring	MGP	Queens	11	3	20050518-Q-11-3-3-1-M	5/18/2005	128.52	Low Density/High Income
Spring	MGP	Queens	11	3	20050518-Q-11-3-2-1-M	5/18/2005	150.87	Low Density/High Income
Spring	MGP	Queens	3	2	20050520-Q-3-2-1-2-M	5/20/2005	180.64	High Density/Medium Income
Spring	MGP	Queens	9	2	20050520-Q-9-2-2-1-M	5/20/2005	138.34	Low Density/Medium Income
Spring	MGP	Queens	3	2	20050520-Q-3-2-1-1-M	5/20/2005	171.5	High Density/Medium Income
Spring	MGP	Queens	3	2	20050520-Q-3-2-2-1-M	5/20/2005	151.8	High Density/Medium Income
Spring	MGP	Queens	9	2	20050520-Q-9-2-3-1-M	5/20/2005	151.45	Low Density/Medium Income
Spring	MGP	Queens	7	3	20050520-Q-7-3-2-1-M	5/20/2005	158.09	High Density/Medium Income
Spring	MGP	Queens	4	3	20050520-Q-4-3-1-2-M	5/20/2005	127.02	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050520-Q-3-2-2-3-M	5/20/2005	154.85	High Density/Medium Income
Spring	MGP	Queens	7	3	20050520-Q-7-3-1-1-M	5/20/2005	188.42	High Density/Medium Income
Spring	MGP	Queens	4	3	20050520-Q-4-3-1-1-M	5/20/2005	178.8	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050520-Q-5-2-2-1-M	5/20/2005	193.49	Medium Density/Medium Income
Spring	MGP	Queens	5	2	20050520-Q-5-2-1-1-M	5/20/2005	129.9	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050520-Q-3-2-2-2-M	5/20/2005	191.17	High Density/Medium Income
Spring	MGP	Queens	5	2	20050521-Q-5-2-3-2-M	5/21/2005	150.72	Medium Density/Medium Income
Spring	MGP	Queens	7	3	20050521-Q-7-3-2-1-M	5/21/2005	177.29	High Density/Medium Income
Spring	MGP	Queens	5	2	20050521-Q-5-2-3-1-M	5/21/2005	155.99	Medium Density/Medium Income
Spring	MGP	Queens	7	1	20050521-Q-7-1-1-1-M	5/21/2005	151.55	High Density/Medium Income
Spring	MGP	Queens	7	3	20050521-Q-7-3-1-1-M	5/21/2005	179.6	High Density/Medium Income
Spring	MGP	Queens	4	3	20050521-Q-4-3-1-1-M	5/21/2005	126.95	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050521-Q-3-2-2-1-M	5/21/2005	143.99	High Density/Medium Income
Spring	MGP	Queens	4	3	20050523-Q-4-3-2-1-M	5/23/2005	168.29	Medium Density/Medium Income
Spring	MGP	Queens	7	1	20050523-Q-7-1-1-1-M	5/23/2005	179.64	High Density/Medium Income
Spring	MGP	Queens	3	2	20050523-Q-3-2-1-1-M	5/23/2005	185.91	High Density/Medium Income
Spring	MGP	Queens	5	2	20050523-Q-5-2-3-1-M	5/23/2005	150.49	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050523-Q-3-2-2-2-M	5/23/2005	131.69	High Density/Medium Income
Spring	MGP	Queens	7	3	20050523-Q-7-3-2-1-M	5/23/2005	191.07	High Density/Medium Income
Spring	MGP	Queens	7	3	20050523-Q-7-3-3-1-M	5/23/2005	176.91	High Density/Medium Income
Spring	MGP	Queens	4	3	20050523-Q-4-3-1-2-M	5/23/2005	157.67	Medium Density/Medium Income
Spring	MGP	Queens	4	3	20050523-Q-4-3-1-1-M	5/23/2005	136.8	Medium Density/Medium Income
Spring	MGP	Queens	3	2	20050523-Q-3-2-1-2-M	5/23/2005	203.97	High Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	MGP	Queens	3	2	20050523-Q-3-2-2-1-M	5/23/2005	145.92	High Density/Medium Income
Spring	MGP	Queens	13	7	20050524-Q-13-7-3-2-M	5/24/2005	126.89	Low Density/High Income
Spring	MGP	Queens	13	7	20050524-Q-13-7-3-1-M	5/24/2005	167.05	Low Density/High Income
Spring	MGP	Queens	1	4	20050524-Q-1-4-2-1-M	5/24/2005	135.95	Medium Density/Medium Income
Spring	MGP	Queens	1	4	20050524-Q-1-4-2-2-M	5/24/2005	188.95	Medium Density/Medium Income
Spring	MGP	Queens	1	4	20050525-Q-1-4-2-1-M	5/25/2005	135.95	Medium Density/Medium Income
Spring	MGP	Queens	13	8	20050525-Q-13-8-3-1-M	5/25/2005	140.5	Low Density/High Income
Spring	MGP	Queens	13	7	20050525-Q-13-7-2-1-M	5/25/2005	185.7	Low Density/High Income
Spring	MGP	Queens	11	3	20050525-Q-11-3-3-1-M	5/25/2005	158.77	Low Density/High Income
Spring	MGP	Queens	1	4	20050525-Q-1-4-1-1-M	5/25/2005	165.5	Medium Density/Medium Income
Spring	MGP	Queens	1	4	20050526-Q-1-4-1-1-1-M	5/26/2005	163.37	Medium Density/Medium Income
Spring	MGP	Staten Island	1	3	20050509-SI-1-3-2-1-M	5/9/2005	140.52	Low Density/Medium Income
Spring	MGP	Staten Island	3	2	20050510-SI-3-2-2-1-M	5/10/2005	130.71	Low Densit//igh Income
Spring	MGP	Staten Island	3	2	20050510-SI-3-2-1-1-M	5/10/2005	138.83	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050510-SI-3-1-3-1-M	5/10/2005	151.54	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050510-SI-3-1-2-1-M	5/10/2005	139.96	Low Density/Medium Income
Spring	MGP	Staten Island	3	2	20050511-SI-3-2-1-1-M	5/11/2005	155.46	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050511-SI-3-1-3-1-M	5/11/2005	142.68	Low Density/Medium Income
Spring	MGP	Staten Island	2	2	20050511-SI-2-2-3-1-1-M	5/11/2005	147.16	Low Density/High Income
Spring	MGP	Staten Island	2	2	20050511-SI-2-2-3-3-M	5/11/2005	159.26	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050511-SI-3-1-2-1-M	5/11/2005	168.27	Low Density/Medium Income
Spring	MGP	Staten Island	3	2	20050511-SI-3-2-5-1-M	5/11/2005	172.95	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050512-SI-3-1-1-1-M	5/12/2005	127.74	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050512-SI-3-1-1-2-M	5/12/2005	129.22	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050512-SI-3-1-3-1-M	5/12/2005	161.24	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050512-SI-3-1-5-1-M	5/12/2005	126.51	Low Density/Medium Income
Spring	MGP	Staten Island	1	3	20050513-SI-1-3-6-6--M	5/13/2005	132.97	Low Density/Medium Income
Spring	MGP	Staten Island	1	3	20050513-SI-1-3-6-1-M	5/13/2005	148.27	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050517-SI-3-1-2-1-M	5/17/2005	168.52	Low Density/Medium Income
Spring	MGP	Staten Island	2	2	20050517-SI-2-2-3-1-M	5/17/2005	173.22	Low Density/High Income
Spring	MGP	Staten Island	2	2	20050517-SI-2-2-2-1-1-M	5/17/2005	172.84	Low Density/High Income
Spring	MGP	Staten Island	3	2	20050517-SI-3-2-1-1-M	5/17/2005	139.89	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050517-SI-3-1-3-1-M	5/17/2005	144.17	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050518-SI-3-1-4-1-M	5/18/2005	20.59	Low Density/Medium Income
Spring	MGP	Staten Island	2	2	20050518-SI-2-2-4-1-1-M	5/18/2005	145.5	Low Density/High Income
Spring	MGP	Staten Island	2	2	20050518-SI-2-2-2-1-M	5/18/2005	133.99	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050519-SI-3-1-4-1-M	5/19/2005	116.24	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050519-SI-3-1-2-2-M	5/19/2005	157.07	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050519-SI-3-1-2-1-M	5/19/2005	178.02	Low Density/Medium Income
Spring	MGP	Staten Island	1	3	20050520-SI-1-3-6-1-M	5/20/2005	131.44	Low Density/Medium Income
Spring	MGP	Staten Island	3	2	20050524-SI-3-2-3-1-M	5/24/2005	130.99	Low Density/High Income
Spring	MGP	Staten Island	2	2	20050524-SI-2-2-3-1-M	5/24/2005	141.98	Low Density/High Income
Spring	MGP	Staten Island	3	2	20050524-SI-3-2-1-1-M	5/24/2005	143.45	Low Density/High Income
Spring	MGP	Staten Island	2	2	20050524-SI-2-2-2-1-M	5/24/2005	149.44	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050525-SI-3-1-2-1-M	5/25/2005	196.05	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050525-SI-3-1-4-1-M	5/25/2005	111.24	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050525-SI-3-1-3-2-M	5/25/2005	138.59	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050525-SI-3-1-3-1-M	5/25/2005	132.34	Low Density/Medium Income
Spring	MGP	Staten Island	2	2	20050525-SI-2--2--1-M	5/25/2005	168.2	Low Density/High Income
Spring	MGP	Staten Island	3	1	20050525-SI-3-1-2-2-M	5/25/2005	179.89	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050525-SI-3-1-3-3-M	5/25/2005	129.89	Low Density/Medium Income
Spring	MGP	Staten Island	3	,	20050526-SI-3-1-1-1-M	5/26/2005	126.1	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050526-SI-3-1-2-1-M	5/26/2005	114.92	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050526-SI-3-1-1-2-M	5/26/2005	177.36	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050526-SI-3-1-4-1-M	5/26/2005	156.92	Low Density/Medium Income
Spring	MGP	Staten Island	3	1	20050526-SI-3-1-3-1-M	5/26/2005	184.42	Low Density/Medium Income
Spring	MGP	Staten Island		,	20050526-SI-3-1-2-2-M	5/26/2005	137.27	Low Density/Medium Income
Spring	Street Basket	Manhattan	5	0	20050510-M-5-0-2-1-E-SB	5/10/2005	212.1	NA
Spring	Street Basket	Manhattan	4	0	20050511-M-4-0-1-2-M-SB	5/11/2005	269.04	NA
Spring	Street Basket	Manhattan	5	0	20050511-M-5-O-1-1-N-SB	5/11/2005	221	NA

Table H -11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Spring	Street Basket	Manhattan	4	0	20050511-M-4-0-1-1-M-SB	5/11/2005	239.72	NA
Spring	Street Basket	Manhattan	8	0	20050511-M-8-0-2-1-E-SB	5/11/2005	239.9	NA
Spring	Street Basket	Manhattan	5	0	20050511-M-5-0-1-2-N-SB	5/11/2005	208.84	NA
Spring	Street Basket	Manhattan	11	0	20050511-M-11-0-1-1-D-SB	5/11/2005	257.39	NA
Spring	Street Basket	Manhattan	7	0	20050512-M-7-0-1-1-N-SB	5/12/2005	219.45	NA
Spring	Street Basket	Manhattan	5	0	20050512-M-5-0-1-1-M-SB	5/12/2005	260.6	NA
Spring	Street Basket	Manhattan	1	0	20050512-M-1-0-2-1-E-SB	5/12/2005	224.25	NA
Spring	Street Basket	Manhattan	7	0	20050513-M-7-0-1-1-E-SB	5/13/2005	202.65	NA
Spring	Street Basket	Manhattan	4	0	20050513-M-4-0-1-1-N-SB	5/13/2005	224.5	NA
Spring	Street Basket	Manhattan	4	0	20050513-M-4-0-1-1-E-SB	5/13/2005	225.9	NA
Spring	Street Basket	Manhattan	3	0	20050513-M-3-0-1-1-N-SB	5/13/2005	279.85	NA
Spring	Street Basket	Manhattan	3	0	20050514-M-3-0-1-1-D-SB	5/14/2005	214.05	NA
Spring	Street Basket	Manhattan	5	0	20050514-M-5-0-1-1-E-SB	5/14/2005	221.75	NA
Spring	Street Basket	Manhattan	1	0	20050514-M-1-0-1-1-E-SB	5/14/2005	274.75	NA
Spring	Street Basket	Manhattan	1	0	20050514-M-1-0-2-1-D-SB	5/14/2005	223.89	NA
Spring	Street Basket	Manhattan	1	0	20050516-M-1-0-1-1-N-SB	5/16/2005	207.35	NA
Spring	Street Basket	Manhattan	6	0	20050516-M-6-0-3-1-M-SB	5/16/2005	218.25	NA
Spring	Street Basket	Manhattan	3	0	20050516-M-3-0-1-1-N-SB	5/16/2005	253.95	NA
Spring	Street Basket	Manhattan	2	0	20050516-M-2-0-1-1-D-SB	5/16/2005	265.7	NA
Spring	Street Basket	Manhattan	5	0	20050516-M-5-0-3-1-E-SB	5/16/2005	223.1	NA
Spring	Street Basket	Manhattan	2	0	20050516-M-2-0-2-1-E-SB	5/16/2005	217.95	NA
Spring	Street Basket	Manhattan	5	0	20050517-M-5-0-1-1-E-SB	5/17/2005	232.95	NA
Spring	Street Basket	Manhattan	12	0	20050518-M-12-0-2-1-M-SB	5/18/2005	218.85	NA
Spring	Street Basket	Manhattan	10	0	20050518-M-10-0-1-1-D-SB	5/18/2005	221.8	NA
Spring	Street Basket	Manhattan	5	0	20050518-M-5-0-1-1-E-SB	5/18/2005	225.35	NA
Spring	Street Basket	Manhattan	12	0	20050520-M-12-0-1-1-M-SB	5/20/2005	233.55	NA
Spring	Street Basket	Manhattan	5	0	20050520-M-5-0-2-1-N-SB	5/20/2005	225.8	NA
Spring	Street Basket	Manhattan	8	0	20050520-M-8-0-1-1-E-SB	5/20/2005	238.65	NA
Spring	Street Basket	Manhattan	3	0	20050520-M-3-0-1-1-M-SB	5/20/2005	267.75	NA
Spring	Street Basket	Manhattan	2	0	20050521-M-2-0-1-1-E-SB	5/21/2005	222.45	NA
Spring	Street Basket	Manhattan	5	0	20050521-M-5-0-2-1-N-SB	5/21/2005	195.5	NA
Spring	Street Basket	Manhattan	4	0	20050523-M-4-0-1-1-E-SB	5/23/2005	201.5	NA
Spring	Street Basket	Manhattan	2	0	20050523-M-2-0-2-1-M-SB	5/23/2005	218	NA
Spring	Street Basket	Manhattan	5	0	20050523-M-5-0-1-1-M-SB	5/23/2005	219.35	NA
Spring	Street Basket	Manhattan	2	0	20050524-M-2-0-1-1-N-SB	5/24/2005	217.6	NA
Spring	Street Basket	Manhattan	8	0	20050524-M-8-0-2-1-E-SB	5/24/2005	228.75	NA
Spring	Street Basket	Manhattan	2	0	20050525-M-2-0-1-1-D-SB	5/25/2005	269.84	NA
Spring	Street Basket	Manhattan	1	0	20050525-M-1-0-2-1-D-SB	5/25/2005	263.2	NA
Spring	Street Basket	Manhattan	10	0	20050525-M-10-0-1-1-D-SB	5/25/2005	239.6	NA
Spring	Street Basket	Manhattan	4	0	20050526-M-4-0-1-1-E-SB	5/26/2005	275.55	NA
Spring	Street Basket	Manhattan	1	0	20050526-M-1-0-1-1-E-SB	5/26/2005	225.3	NA
Spring	Street Basket	Brooklyn	14	0	20050513-BK-14-0-1-1-M-SB	5/13/2005	207.4	NA
Spring	Street Basket	Brooklyn	7	0	20050518-BK-7-0-1-1-N-SB	5/18/2005	214.8	NA
Spring	Street Basket	Brooklyn	2	0	20050520-BK-2-0-1-1-N-SB	5/20/2005	247.15	NA
Spring	Street Basket	Queens	6	0	20050517-Q-6-0-1-1-E-SB	5/17/2005	252.15	NA
Spring	Street Basket	Queens	1	0	20050523-Q-1-0-1-1-E-SB	5/23/2005	245.8	NA
Spring	Street Basket	Queens	6	0	20050525-Q-6-0-1-1-E-SB	5/25/2005	234.3	NA
Summer	Refuse	Manhattan	8	3	20050808-M-8-3-1-1-R	8/8/2005	210.83	High Density/High Income
Summer	Refuse	Manhattan	2	2	20050808-M-2-2-1-1-R	8/8/2005	217.37	High Density/High Income
Summer	Refuse	Manhattan	2	3	20050808-M-2-3-1-1-R	8/8/2005	212.19	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050808-M-7-3-1-1-R	8/8/2005	226.68	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050809-M-7-3-3-1-R	8/9/2005	213.92	High Density/High Income
Summer	Refuse	Manhattan	8	4	20050809-M-8-4-2-1-R	8/9/2005	234.74	High Density/High Income
Summer	Refuse	Manhattan	2	2	20050809-M-2-2-1-1-R	8/9/2005	220.82	High Density/High Income
Summer	Refuse	Manhattan	2	3	20050809-M-2-3-2-1-R	8/9/2005	214.16	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050809-M-7-3-2-1-R	8/9/2005	230.81	High Density/High Income
Summer	Refuse	Manhattan	6	3	20050809-M-6-3-1-1-R	8/9/2005	225.83	High Density/High Income
Summer	Refuse	Manhattan	3	1	20050809-M-3-1-4-1-R	8/9/2005	225.43	High Density/Low Income
Summer	Refuse	Manhattan	3	1	20050810-M-3-1-3-1-R	8/10/2005	224.5	High Density/Low Income
Summer	Refuse	Manhattan	8	4	20050810-M-8-4-3-1-R	8/10/2005	233.18	High Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Manhattan	3	3	20050811-M-3-3-3-1-R	8/11/2005	243.55	High Density/Medium Income
Summer	Refuse	Manhattan	7	2	20050812-M-7-2-2-1-R	8/12/2005	219.42	High Density/High Income
Summer	Refuse	Manhattan	3	1	20050812-M-3-1-2-1-R	8/12/2005	187.13	High Density/Low Income
Summer	Refuse	Manhattan	7	3	20050812-M-7-3-3-1-R	8/12/2005	249.5	High Density/High Income
Summer	Refuse	Manhattan	8	2	20050813-M-8-2-2-1-R	8/13/2005	240.06	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050813-M-7-3-3-1-R	8/13/2005	214.63	High Density/High Income
Summer	Refuse	Manhattan	3	1	20050813-M-3-1-3-1-R	8/13/2005	242.81	High Density/Low Income
Summer	Refuse	Manhattan	8	1	20050813-M-8-1-2-1-R	8/13/2005	227.42	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050815-M-7-3-3-1-R	8/15/2005	201.2	High Density/High Income
Summer	Refuse	Manhattan	8	1	20050815-M-8-1-1-1-R	8/15/2005	234.71	High Density/High Income
Summer	Refuse	Manhattan	8	1	20050815-M-8-1-3-1-R	8/15/2005	212.54	High Density/High Income
Summer	Refuse	Manhattan	6	3	20050815-M-6-3-3-1-R	8/15/2005	232.46	High Density/High Income
Summer	Refuse	Manhattan	8	1	20050816-M-8-1-2-1-R	8/16/2005	242.62	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050816-M-8-5-3-1-R	8/16/2005	211.96	High Density/High Income
Summer	Refuse	Manhattan	8	2	20050816-M-8-2-3-1-R	8/16/2005	221.03	High Density/High Income
Summer	Refuse	Manhattan	2	3	20050816-M-2-3-1-1-R	8/16/2005	202.96	High Density/High Income
Summer	Refuse	Manhattan	3	3	20050816-M-3-3-2-1-R	8/16/2005	213.69	High Density/Medium Income
Summer	Refuse	Manhattan	7	2	20050816-M-7-2-1-1-R	8/16/2005	250.16	High Density/High Income
Summer	Refuse	Manhattan	3	1	20050817-M-3-1-2-1-R	8/17/2005	238.46	High Density/Low Income
Summer	Refuse	Manhattan	8	1	20050817-M-8-1-4-1-R	8/17/2005	220.88	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050817-M-8-5-3-1-R	8/17/2005	204.48	High Density/High Income
Summer	Refuse	Manhattan	8	4	20050817-M-8-4-2-1-R	8/17/2005	228.1	High Density/High Income
Summer	Refuse	Manhattan	8	1	20050818-M-8-1-3-1-R	8/18/2005	222.44	High Density/High Income
Summer	Refuse	Manhattan	8	1	20050818-M-8-1-1-1-R	8/18/2005	218.06	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050818-M-8-5-2-1-R	8/18/2005	200.94	High Density/High Income
Summer	Refuse	Manhattan	3	3	20050818-M-3-3-2-1-R	8/18/2005	207.57	High Density/Medium Income
Summer	Refuse	Manhattan	2	3	20050818-M-2-3-1-1-R	8/18/2005	216.16	High Density/High Income
Summer	Refuse	Manhattan	8	3	20050818-M-8-3-2-1-R	8/18/2005	180.47	High Density/High Income
Summer	Refuse	Manhattan	8	4	20050819-M-8-4-3-1-R	8/19/2005	222.48	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050819-M-8-5-3-1-R	8/19/2005	216.57	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050820-M-8-5-1-1-R	8/20/2005	219.06	High Density/High Income
Summer	Refuse	Manhattan	3	3	20050820-M-3-3-2-1-R	8/20/2005	213.02	High Density/Medium Income
Summer	Refuse	Manhattan	2	2	20050822-M-2-2-1-1-R	8/22/2005	220.73	High Density/High Income
Summer	Refuse	Manhattan	2	3	20050822-M-2-3-1-1-R	8/22/2005	221.33	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050822-M-8-5-3-1-R	8/22/2005	206.03	High Density/High Income
Summer	Refuse	Manhattan	3	3	20050822-M-3-3-2-1-R	8/22/2005	201.9	High Density/Medium Income
Summer	Refuse	Manhattan	8	2	20050822-M-8-2-2-1-R	8/22/2005	220.31	High Density/High Income
Summer	Refuse	Manhattan	2	3	20050823-M-2-3-1-1-R	8/23/2005	247.69	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050823-M-7-3-3-1-R	8/23/2005	244.63	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050823-M-7-3-2-1-R	8/23/2005	211.09	High Density/High Income
Summer	Refuse	Manhattan	8	2	20050823-M-8-2-1-1-R	8/23/2005	220.23	High Density/High Income
Summer	Refuse	Manhattan	8	2	20050823-M-8-2-3-1-R	8/23/2005	219.19	High Density/High Income
Summer	Refuse	Manhattan	8	4	20050823-M-8-4-2-1-R	8/23/2005	215.79	High Density/High Income
Summer	Refuse	Manhattan	8	5	20050824-M-8-5-3-1-R	8/24/2005	220.56	High Density/High Income
Summer	Refuse	Manhattan	8	2	20050824-M-8-2-3-1-R	8/24/2005	220.19	High Density/High Income
Summer	Refuse	Manhattan	7	3	20050824-M-7-3-1-1-R	8/24/2005	218.13	High Density/High Income
Summer	Refuse	Manhattan	3	1	20050825-M-3-1-1-1-R	8/25/2005	222.11	High Density/Low Income
Summer	Refuse	Manhattan	7	2	20050825-M-7-2-3-1-R	8/25/2005	163.9	High Density/High Income
Summer	Refuse	Bronx	5	2	20050808-BX-5-2-1-1-R	8/8/2005	218.29	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050808-BX-5-2-2-1-R	8/8/2005	279.58	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050809-BX-7-2-3-1-R	8/9/2005	212.29	High Density/Medium Income
Summer	Refuse	Bronx	4	2	20050809-BX-4-2-4-1-R	8/9/2005	244.18	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050809-BX-5-3-2-1-R	8/9/2005	219.91	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050810-BX-5-3-4-1-R	8/10/2005	221.6	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050811-BX-4-2-1-1-R	8/11/2005	208.24	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050811-BX-5-1-1-1-R	8/11/2005	208.67	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050811-BX-7-2-2-1-R	8/11/2005	214.59	High Density/Medium Income
Summer	Refuse	Bronx	8	1	20050811-BX-8-1-2-1-R	8/11/2005	213.72	High Density/Medium Income
Summer	Refuse	Bronx	7	2	20050811-BX-7-2-1-1-R	8/11/2005	215.07	High Density/Medium Income
Summer	Refuse	Bronx	5	2	20050812-BX-5-2-2-1-R	8/12/2005	228.95	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Bronx	7	2	20050812-BX-7-2-2-1-R	8/12/2005	227.47	High Density/Medium Income
Summer	Refuse	Bronx	4	2	20050813-BX-4-2-2-1-R	8/13/2005	221.78	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050813-BX-5-3-3-1-R	8/13/2005	217.33	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050813-BX-7-2-4-1-R	8/13/2005	233.36	High Density/Medium Income
Summer	Refuse	Bronx	5	1	20050815-BX-5-1-1-1-R	8/15/2005	211.08	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050815-BX-5-2-1-1-R	8/15/2005	212.86	High Density/Low Income
Summer	Refuse	Bronx	8	1	20050815-BX-8-1-1-1-R	8/15/2005	221.52	High Density/Medium Income
Summer	Refuse	Bronx	5	2	20050815-BX-5-2-2-1-R	8/15/2005	226.7	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050816-BX-5-3-3-1-R	8/16/2005	218.7	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050816-BX-7-2-1-1-R	8/16/2005	212.49	High Density/Medium Income
Summer	Refuse	Bronx	5	3	20050816-BX-5-3-1-1-R	8/16/2005	227.33	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050816-BX-5-2-3-1-R	8/16/2005	218.93	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050817-BX-5-1-1-1-R	8/17/2005	224.06	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050817-BX-4-2-3-1-R	8/17/2005	224.34	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050817-BX-5-1-1-2-R	8/17/2005	229.41	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050817-BX-5-2-1-1-R	8/17/2005	210.19	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050817-BX-7-2-2-1-R	8/17/2005	210.85	High Density/Medium Income
Summer	Refuse	Bronx	5	1	20050817-BX-5-1-2-1-R	8/17/2005	209.7	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050818-BX-5-2-2-1-R	8/18/2005	214.82	High Density/Low Income
Summer	Refuse	Bronx	8	1	20050818-BX-8-1-2-1-R	8/18/2005	215.17	High Density/Medium Income
Summer	Refuse	Bronx	5	1	20050818-BX-5-1-2-1-R	8/18/2005	215.09	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050818-BX-7-2-4-1-R	8/18/2005	210.79	High Density/Medium Income
Summer	Refuse	Bronx	5	3	20050818-BX-5-3-2-1-R	8/18/2005	204.8	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050819-BX-5-1-4-1-R	8/19/2005	219.79	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050819-BX-5-3-1-1-R	8/19/2005	219.97	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050819-BX-4-2-2-1-R	8/19/2005	214.18	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050820-BX-5-1-2-1-R	8/20/2005	219.66	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050820-BX-5-2-2-1-R	8/20/2005	215.47	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050820-BX-7-2-3-1-R	8/20/2005	197.65	High Density/Medium Income
Summer	Refuse	Bronx	5	1	20050820-BX-5-1-3-1-R	8/20/2005	222.28	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050820-BX-5-2-1-1-R	8/20/2005	214.45	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050820-BX-4-2-3-1-R	8/20/2005	213.35	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050820-BX-4-2-1-1-R	8/20/2005	200.74	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050822-BX-5-1-2-1-R	8/22/2005	231.35	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050822-BX-5-3-1-1-R	8/22/2005	216.51	High Density/Low Income
Summer	Refuse	Bronx	5	2	20050822-BX-5-2-1-1-R	8/22/2005	208.22	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050822-BX-7-2-1-1-R	8/22/2005	210.87	High Density/Medium Income
Summer	Refuse	Bronx	7	2	20050823-BX-7-2-4-1-R	8/23/2005	225.73	High Density/Medium Income
Summer	Refuse	Bronx	5	2	20050823-BX-5-2-3-1-R	8/23/2005	201.99	High Density/Low Income
Summer	Refuse	Bronx	8	1	20050823-BX-8-1-3-1-R	8/23/2005	216.8	High Density/Medium Income
Summer	Refuse	Bronx	5	3	20050823-BX-5-3-4-1-R	8/23/2005	208.6	High Density/Low Income
Summer	Refuse	Bronx	7	2	20050824-BX-7-2-3-1-R	8/24/2005	269.2	High Density/Medium Income
Summer	Refuse	Bronx	4	2	20050824-BX-4-2-2-1-R	8/24/2005	231.54	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050825-BX-4-2-1-1-R	8/25/2005	212.65	High Density/Low Income
Summer	Refuse	Bronx	5	1	20050825-BX-5-1-3-1-R	8/25/2005	214.37	High Density/Low Income
Summer	Refuse	Bronx	5	3	20050825-BX-5-3-2-1-R	8/25/2005	206.41	High Density/Low Income
Summer	Refuse	Bronx	4	2	20050825-BX-4-2-1-2-R	8/25/2005	224.55	High Density/Low Income
Summer	Refuse	Bronx	8	1	20050825-BX-8-1-2-1-R	8/25/2005	219.52	High Density/Medium Income
Summer	Refuse	Bronx	5	2	20050825-BX-5-2-3-1-R	8/25/2005	227.09	High Density/Low Income
Summer	Refuse	Brooklyn	4	2	20050808-BK-4-2-2-1-R	8/8/2005	247.55	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050808-BK-6-2-2-1-R	8/8/2005	214.31	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050808-BK-6-2-1-1-R	8/8/2005	154.74	Medium Density/High Income
Summer	Refuse	Brooklyn	4	1	20050808-BK-4-1-1-1-R	8/8/2005	222.19	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050808-BK-6-2-2-2-R	8/8/2005	207.09	Medium Density/High Income
Summer	Refuse	Brooklyn	4	3	20050809-BK-4-3-1-1-R	8/9/2005	211.47	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050809-BK-6-2-2-1-R	8/9/2005	236.09	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050809-BK-4-2-3-1-R	8/9/2005	240.14	Medium Density/Low Income
Summer	Refuse	Brooklyn	17	1	20050809-BK-17-1-2-1-R	8/9/2005	235.69	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	3	20050809-BK-4-3-3-1-R	8/9/2005	210.78	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050809-BK-6-2-2-2-R	8/9/2005	217.48	Medium Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Brooklyn	4	1	20050809-BK-4-1-1-1-R	8/9/2005	211.51	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050810-BK-6-2-1-1-R	8/10/2005	209.07	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050810-BK-6-2-2-1-R	8/10/2005	218.55	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050810-BK-4-2-3-1-R	8/10/2005	248.55	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	1	20050810-BK-4-1-1-1-R	8/10/2005	224.68	Medium Density/Low Income
Summer	Refuse	Brooklyn	17	1	20050810-BK-17-1-4-1-R	8/10/2005	207.88	Medium Density/Low Income
Summer	Refuse	Brooklyn	3	3	20050810-BK-3-3-5-1-R	8/10/2005	231.33	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050812-BK-6-2-2-3-R	8/12/2005	272.96	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050812-BK-6-2-1-2-R	8/12/2005	214.24	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050812-BK-6-2-2-1-R	8/12/2005	340.77	Medium Density/High Income
Summer	Refuse	Brooklyn	17	1	20050812-BK-17-1-2-1-R	8/12/2005	177.76	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050812-BK-6-2-1-1-R	8/12/2005	262.63	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050812-BK-6-2-2-2-R	8/12/2005	279.68	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050813-BK-6-2-2-1-R	8/13/2005	217.24	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050813-BK-6-2-3-1-R	8/13/2005	219.01	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050813-BK-6-2-2-2-R	8/13/2005	252.43	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050813-BK-6-2-1-1-R	8/13/2005	338.25	Medium Density/High Income
Summer	Refuse	Brooklyn	4	3	20050813-BK-4-3-2-1-R	8/13/2005	335.65	Medium Density/Low Income
Summer	Refuse	Brooklyn	17	1	20050813-BK-17-1-3-1-R	8/13/2005	259.11	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050815-BK-6-2-1-1-R	8/15/2005	219.1	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050815-BK-6-2-2-1-R	8/15/2005	282.25	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050815-BK-6-2-1-2-R	8/15/2005	218.11	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050815-BK-6-2-2-2-R	8/15/2005	275.73	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050815-BK-6-2-1-3-R	8/15/2005	222.64	Medium Density/High Income
Summer	Refuse	Brooklyn	17	1	20050816-BK-17-1-5-1-R	8/16/2005	318.37	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050816-BK-6-2-1-1-R	8/16/2005	293.02	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050816-BK-4-2-5-1-R	8/16/2005	323.98	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050817-BK-6-2-2-1-R	8/17/2005	245.64	Medium Density/High Income
Summer	Refuse	Brooklyn	3	3	20050817-BK-3-3-3-1-R	8/17/2005	241.24	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050817-BK-6-2-1-2-R	8/17/2005	312.9	Medium Density/High Income
Summer	Refuse	Brooklyn	4	1	20050817-BK-4-1-2-1-R	8/17/2005	302.98	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050817-BK-6-2-1-3-R	8/17/2005	260.59	Medium Density/High Income
Summer	Refuse	Brooklyn	4	1	20050817-BK-4-1-1-1-R	8/17/2005	269.19	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050817-BK-6-2-1-1-R	8/17/2005	266.39	Medium Density/High Income
Summer	Refuse	Brooklyn	3	3	20050817-BK-3-3-4-1-R	8/17/2005	240.52	Medium Density/Low Income
Summer	Refuse	Brooklyn	3	3	20050818-BK-3-3-4-1-R	8/18/2005	216.46	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050818-BK-6-2-1-2-R	8/18/2005	299.64	Medium Density/High Income
Summer	Refuse	Brooklyn	4	1	20050818-BK-4-1-3-1-R	8/18/2005	224.21	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	3	20050818-BK-4-3-3-1-R	8/18/2005	232.3	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050818-BK-6-2-3-1-R	8/18/2005	232.72	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050818-BK-4-2-2-1-R	8/18/2005	211.19	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050818-BK-6-2-1-3-R	8/18/2005	232.29	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050818-BK-6-2-1-4-R	8/18/2005	237.13	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050818-BK-6-2-1-1-R	8/18/2005	225.62	Medium Density/High Income
Summer	Refuse	Brooklyn	3	3	20050819-BK-3-3-4-1-R	8/19/2005	206.98	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050819-BK-6-2-1-2-R	8/19/2005	266.85	Medium Density/High Income
Summer	Refuse	Brooklyn	3	3	20050819-BK-3-3-2-1-R	8/19/2005	225.73	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050819-BK-6-2-1-1-R	8/19/2005	230.03	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050819-BK-4-2-4-1-R	8/19/2005	251.9	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	1	20050819-BK-4-1-2-1-R	8/19/2005	269.61	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050820-BK-6-2-1-1-R	8/20/2005	212.3	Medium Density/High Income
Summer	Refuse	Brooklyn	4	3	20050820-BK-4-3-1-1-R	8/20/2005	271	Medium Density/Low Income
Summer	Refuse	Brooklyn	17	1	20050820-BK-17-1-3-1-R	8/20/2005	258.5	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050820-BK-6-2-1-3-R	8/20/2005	235.16	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050820-BK-6-2-2-1-R	8/20/2005	214.79	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050820-BK-6-2-3-2-R	8/20/2005	248.03	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050820-BK-6-2-3-1-R	8/20/2005	229.72	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050820-BK-4-2-2-1-R	8/20/2005	259.45	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050820-BK-6-2-1-2-R	8/20/2005	253.02	Medium Density/High Income
Summer	Refuse	Brooklyn	17	1	20050822-BK-17-1-2-1-R	8/22/2005	227.16	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Brooklyn	3	3	20050822-BK-3-3-5-1-R	8/22/2005	224.13	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	3	20050822-BK-4-3-3-1-R	8/22/2005	217.12	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	3	20050822-BK-4-3-1-1-R	8/22/2005	229.93	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050822-BK-6-2-2-1-R	8/22/2005	258.37	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050822-BK-6-2-1-1-R	8/22/2005	244.58	Medium Density/High Income
Summer	Refuse	Brooklyn	3	3	20050822-BK-3-3-2-1-R	8/22/2005	214.97	Medium Density/Low Income
Summer	Refuse	Brooklyn	3	3	20050823-BK-3-3-3-1-R	8/23/2005	220.05	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050823-BK-6-2-2-2-R	8/23/2005	221.95	Medium Density/High Income
Summer	Refuse	Brooklyn	4	3	20050823-BK-4-3-2-1-R	8/23/2005	246.8	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050823-BK-6-2-2-3-R	8/23/2005	218.12	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050823-BK-6-2-2-4-R	8/23/2005	220.02	Medium Density/High Income
Summer	Refuse	Brooklyn	4	2	20050823-BK-4-2-5-1-R	8/23/2005	240.33	Medium Density/Low Income
Summer	Refuse	Brooklyn	3	3	20050823-BK-3-3-6-1-R	8/23/2005	215.43	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	1	20050823-BK-4-1-3-1-R	8/23/2005	214.47	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	1	20050823-BK-4-1-2-1-R	8/23/2005	230.87	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050823-BK-6-2-2-1-R	8/23/2005	235.17	Medium Density/High Income
Summer	Refuse	Brooklyn	3	3	20050824-BK-3-3-2-1-R	8/24/2005	233.84	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	1	20050824-BK-4-1-1-1-R	8/24/2005	261	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	3	20050824-BK-4-3-3-1-R	8/24/2005	271.15	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050824-BK-6-2-1-1-R	8/24/2005	286.61	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050824-BK-6-2-2-1-R	8/24/2005	256.39	Medium Density/High Income
Summer	Refuse	Brooklyn	17	1	20050824-BK-17-1-4-1-R	8/24/2005	266.84	Medium Density/Low Income
Summer	Refuse	Brooklyn	17	1	20050824-BK-17-1-1-1-R	8/24/2005	288.1	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050825-BK-6-2-2-2-R	8/25/2005	224.26	Medium Density/High Income
Summer	Refuse	Brooklyn	6	2	20050825-BK-6-2-3-1-R	8/25/2005	235.19	Medium Density/High Income
Summer	Refuse	Brooklyn	17	1	20050825-BK-17-1-1-1-R	8/25/2005	237.04	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	1	20050825-BK-4-1-1-1-R	8/25/2005	236.16	Medium Density/Low Income
Summer	Refuse	Brooklyn	4	3	20050825-BK-4-3-1-1-R	8/25/2005	225.91	Medium Density/Low Income
Summer	Refuse	Brooklyn	6	2	20050825-BK-6-2-2-1-R	8/25/2005	220.15	Medium Density/High Income
Summer	Refuse	Queens	13	8	20050808-Q-13-8-1-1-R	8/8/2005	211.6	Low Density/High Income
Summer	Refuse	Queens	3	2	20050808-Q-3-2-2-1-R	8/8/2005	234.86	High Density/Medium Income
Summer	Refuse	Queens	9	2	20050808-Q-9-2-1-1-R	8/8/2005	215.64	Low Density/Medium Income
Summer	Refuse	Queens	5	2	20050808-Q-5-2-2-1-R	8/8/2005	223.49	Medium Density/Medium Income
Summer	Refuse	Queens	9	1	20050808-Q-9-1-5-1-R	8/8/2005	214.14	Low Density/Medium Income
Summer	Refuse	Queens	4	3	20050808-Q-4-3-2-1-R	8/8/2005	230.47	Medium Density/Medium Income
Summer	Refuse	Queens	9	1	20050808-Q-9-1-2-1-R	8/8/2005	251	Low Density/Medium Income
Summer	Refuse	Queens	1	4	20050808-Q-1-4-2-1-R	8/8/2005	215.05	Medium Density/Medium Income
Summer	Refuse	Queens	3	2	20050809-Q-3-2-2-1-R	8/9/2005	209.52	High Density/Medium Income
Summer	Refuse	Queens	7	1	20050809-Q-7-1-1-1-R	8/9/2005	212.11	High Density/Medium Income
Summer	Refuse	Queens	10	4	20050809-Q-10-4-1-1-R	8/9/2005	223.17	Low Density/High Income
Summer	Refuse	Queens	4	3	20050809-Q-4-3-1-1-R	8/9/2005	223.49	Medium Density/Medium Income
Summer	Refuse	Queens	7	6	20050809-Q-7-6-2-1-R	8/9/2005	234.51	Low Density/High Income
Summer	Refuse	Queens	9	1	20050809-Q-9-1-1-1-R	8/9/2005	218.06	Low Density/Medium Income
Summer	Refuse	Queens	1	4	20050809-Q-1-4-3-1-R	8/9/2005	219.17	Medium Density/Medium Income
Summer	Refuse	Queens	7	1	20050809-Q-7-1-4-1-R	8/9/2005	229.15	High Density/Medium Income
Summer	Refuse	Queens	9	2	20050810-Q-9-2-1-1-R	8/10/2005	241.14	Low Density/Medium Income
Summer	Refuse	Queens	13	5	20050810-Q-13-5-3-1-R	8/10/2005	214.09	Low Density/High Income
Summer	Refuse	Queens	4	3	20050810-Q-4-3-4-1-R	8/10/2005	216.62	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050810-Q-4-3-2-1-R	8/10/2005	218.95	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050810-Q-1-4-3-1-R	8/10/2005	221.53	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050810-Q-1-4-2-1-R	8/10/2005	207.12	Medium Density/Medium Income
Summer	Refuse	Queens	7	1	20050810-Q-7-1-1-1-R	8/10/2005	196.82	High Density/Medium Income
Summer	Refuse	Queens	5	2	20050810-Q-5-2-1-1-R	8/10/2005	244.53	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050811-Q-4-3-2-1-R	8/11/2005	230.32	Medium Density/Medium Income
Summer	Refuse	Queens	7	1	20050811-Q-7-1-3-1-R	8/11/2005	229.17	High Density/Medium Income
Summer	Refuse	Queens	7	1	20050811-Q-7-1-4-1-R	8/11/2005	238.28	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050811-Q-4-3-1-1-R	8/11/2005	260.29	Medium Density/Medium Income
Summer	Refuse	Queens	3	2	20050811-Q-3-2-4-1-R	8/11/2005	218.84	High Density/Medium Income
Summer	Refuse	Queens	7	1	20050811-Q-7-1-1-1-R	8/11/2005	184.79	High Density/Medium Income
Summer	Refuse	Queens	9	1	20050811-Q-9-1-5-1-R	8/11/2005	214.8	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Queens	13	4	20050811-Q-13-4-2-1-R	8/11/2005	219.7	Low Density/High Income
Summer	Refuse	Queens	13	3	20050811-Q-13-3-3-1-R	8/11/2005	228.11	Low Density/High Income
Summer	Refuse	Queens	13	8	20050811-Q-13-8-2-1-R	8/11/2005	195.05	Low Density/High Income
Summer	Refuse	Queens	13	6	20050811-Q-13-6-4-1-R	8/11/2005	210.71	Low Density/High Income
Summer	Refuse	Queens	5	2	20050811-Q-5-2-3-1-R	8/11/2005	232.96	Medium Density/Medium Income
Summer	Refuse	Queens	9	1	20050811-Q-9-1-1-1-R	8/11/2005	215.12	Low Density/Medium Income
Summer	Refuse	Queens	9	1	20050812-Q-9-1-1-1-R	8/12/2005	232.78	Low Density/Medium Income
Summer	Refuse	Queens	11	3	20050812-Q-11-3-1-1-R	8/12/2005	214.27	Low Density/High Income
Summer	Refuse	Queens	3	2	20050812-Q-3-2-3-1-R	8/12/2005	240.8	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050812-Q-4-3-3-1-R	8/12/2005	224.23	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050812-Q-4-3-2-1-R	8/12/2005	224.17	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050813-Q-1-4-1-1-R	8/13/2005	223.06	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050813-Q-4-3-4-1-R	8/13/2005	226.51	Medium Density/Medium Income
Summer	Refuse	Queens	3	2	20050813-Q-3-2-2-1-R	8/13/2005	212.46	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050813-Q-4-3-1-1-R	8/13/2005	212.54	Medium Density/Medium Income
Summer	Refuse	Queens	13	5	20050815-Q-13-5-1-1-R	8/15/2005	221.21	Low Density/High Income
Summer	Refuse	Queens	3	2	20050815-Q-3-2-2-1-R	8/15/2005	219.48	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050815-Q-4-3-4-1-R	8/15/2005	227.96	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050815-Q-4-3-2-1-R	8/15/2005	225.95	Medium Density/Medium Income
Summer	Refuse	Queens	5	2	20050816-Q-5-2-3-1-R	8/16/2005	199.19	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050816-Q-4-3-2-1-R	8/16/2005	212.17	Medium Density/Medium Income
Summer	Refuse	Queens	9	1	20050816-Q-9-1-3-1-R	8/16/2005	228.59	Low Density/Medium Income
Summer	Refuse	Queens	7	3	20050816-Q-7-3-4-1-R	8/16/2005	235.57	High Density/Medium Income
Summer	Refuse	Queens	13	3	20050816-Q-13-3-2-1-R	8/16/2005	222.33	Low Density/High Income
Summer	Refuse	Queens	5	2	20050817-Q-5-2-4-1-R	8/17/2005	210.11	Medium Density/Medium Income
Summer	Refuse	Queens	7	3	20050817-Q-7-3-3-1-R	8/17/2005	237.52	High Density/Medium Income
Summer	Refuse	Queens	13	5	20050817-Q-13-5-2-1-R	8/17/2005	221.51	Low Density/High Income
Summer	Refuse	Queens	1	4	20050817-Q-1-4-4-1-R	8/17/2005	211.12	Medium Density/Medium Income
Summer	Refuse	Queens	3	2	20050817-Q-3-2-4-1-R	8/17/2005	230.06	High Density/Medium Income
Summer	Refuse	Queens	9	1	20050817-Q-9-1-3-1-R	8/17/2005	213.18	Low Density/Medium Income
Summer	Refuse	Queens	9	1	20050817-Q-9-1-1-1-R	8/17/2005	229.54	Low Density/Medium Income
Summer	Refuse	Queens	5	2	20050817-Q-5-2-4-2-R	8/17/2005	227.55	Medium Density/Medium Income
Summer	Refuse	Queens	9	1	20050817-Q-9-1-2-1-R	8/17/2005	209.48	Low Density/Medium Income
Summer	Refuse	Queens	9	1	20050818-Q-9-1-4-1-R	8/18/2005	215.34	Low Density/Medium Income
Summer	Refuse	Queens	4	3	20050818-Q-4-3-2-1-R	8/18/2005	222.8	Medium Density/Medium Income
Summer	Refuse	Queens	5	2	20050818-Q-5-2-1-1-R	8/18/2005	216.41	Medium Density/Medium Income
Summer	Refuse	Queens	9	1	20050818-Q-9-1-5-1-R	8/18/2005	212.24	Low Density/Medium Income
Summer	Refuse	Queens	7	3	20050818-Q-7-3-1-1-R	8/18/2005	220.09	High Density/Medium Income
Summer	Refuse	Queens	7	1	20050818-Q-7-1-4-1-R	8/18/2005	223.89	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050818-Q-4-3-1-1-R	8/18/2005	230.29	Medium Density/Medium Income
Summer	Refuse	Queens	13	4	20050818-Q-13-4-1-1-R	8/18/2005	227.34	Low Density/High Income
Summer	Refuse	Queens	5	2	20050819-Q-5-2-3-1-R	8/19/2005	187.05	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050819-Q-1-4-1-1-R	8/19/2005	220.97	Medium Density/Medium Income
Summer	Refuse	Queens	10	4	20050819-Q-10-4-2-1-R	8/19/2005	233.14	Low Density/High Income
Summer	Refuse	Queens	7	1	20050819-Q-7-1-3-1-R	8/19/2005	233.3	High Density/Medium Income
Summer	Refuse	Queens	9	1	20050819-Q-9-1-3-1-R	8/19/2005	215.56	Low Density/Medium Income
Summer	Refuse	Queens	9	1	20050819-Q-9-1-1-1-R	8/19/2005	204.1	Low Density/Medium Income
Summer	Refuse	Queens	13	7	20050819-Q-13-7-2-1-R	8/19/2005	226.83	Low Density/High Income
Summer	Refuse	Queens	13	3	20050819-Q-13-3-2-1-R	8/19/2005	216.58	Low Density/High Income
Summer	Refuse	Queens	7	6	20050820-Q-7-6-2-1-R	8/20/2005	211.91	Low Density/High Income
Summer	Refuse	Queens	7	1	20050820-Q-7-1-2-1-R	8/20/2005	233.95	High Density/Medium Income
Summer	Refuse	Queens	7	1	20050820-Q-7-1-4-1-R	8/20/2005	210.04	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050820-Q-4-3-4-1-R	8/20/2005	221.59	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050820-Q-1-4-2-2-R	8/20/2005	218.47	Medium Density/Medium Income
Summer	Refuse	Queens	3	2	20050820-Q-3-2-2-1-R	8/20/2005	238.68	High Density/Medium Income
Summer	Refuse	Queens	1	4	20050820-Q-1-4-2-1-R	8/20/2005	231.68	Medium Density/Medium Income
Summer	Refuse	Queens	13	4	20050820-Q-13-4-3-1-R	8/20/2005	218.81	Low Density/High Income
Summer	Refuse	Queens	13	7	20050820-Q-13-7-3-1-R	8/20/2005	210.24	Low Density/High Income
Summer	Refuse	Queens	4	3	20050820-Q-4-3-3-1-R	8/20/2005	225.32	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050820-Q-4-3-5-1-R	8/20/2005	215.41	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Queens	4	3	20050820-Q-4-3-1-1-R	8/20/2005	212.79	Medium Density/Medium Income
Summer	Refuse	Queens	9	2	20050822-Q-9-2-2-1-R	8/22/2005	217.18	Low Density/Medium Income
Summer	Refuse	Queens	7	3	20050822-Q-7-3-4-1-R	8/22/2005	233.58	High Density/Medium Income
Summer	Refuse	Queens	1	4	20050822-Q-1-4-2-1-R	8/22/2005	230.58	Medium Density/Medium Income
Summer	Refuse	Queens	5	2	20050822-Q-5-2-2-1-R	8/22/2005	216.33	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050822-Q-4-3-4-1-R	8/22/2005	221.62	Medium Density/Medium Income
Summer	Refuse	Queens	7	1	20050822-Q-7-1-3-1-R	8/22/2005	206.7	High Density/Medium Income
Summer	Refuse	Queens	9	1	20050822-Q-9-1-3-1-R	8/22/2005	225.73	Low Density/Medium Income
Summer	Refuse	Queens	9	2	20050823-Q-9-2-3-1-R	8/23/2005	219.9	Low Density/Medium Income
Summer	Refuse	Queens	1	4	20050823-Q-1-4-1-1-R	8/23/2005	220.6	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050823-Q-1-4-4-1-R	8/23/2005	248.63	Medium Density/Medium Income
Summer	Refuse	Queens	7	3	20050823-Q-7-3-4-1-R	8/23/2005	220.97	High Density/Medium Income
Summer	Refuse	Queens	13	7	20050823-Q-13-7-1-1-R	8/23/2005	212.27	Low Density/High Income
Summer	Refuse	Queens	9	2	20050823-Q-9-2-2-1-R	8/23/2005	288.86	Low Density/Medium Income
Summer	Refuse	Queens	1	4	20050823-Q-1-4-2-1-R	8/23/2005	226.09	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050823-Q-4-3-1-1-R	8/23/2005	231.89	Medium Density/Medium Income
Summer	Refuse	Queens	13	5	20050823-Q-13-5-1-1-R	8/23/2005	247.76	Low Density/High Income
Summer	Refuse	Queens	4	3	20050823-Q-4-3-5-1-R	8/23/2005	215.74	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050823-Q-4-3-6-1-R	8/23/2005	215.35	Medium Density/Medium Income
Summer	Refuse	Queens	9	2	20050823-Q-9-2-4-1-R	8/23/2005	226.88	Low Density/Medium Income
Summer	Refuse	Queens	7	1	20050824-Q-7-1-4-1-R	8/24/2005	227.06	High Density/Medium Income
Summer	Refuse	Queens	7	3	20050824-Q-7-3-2-1-R	8/24/2005	213.71	High Density/Medium Income
Summer	Refuse	Queens	5	2	20050824-Q-5-2-2-1-R	8/24/2005	213.6	Medium Density/Medium Income
Summer	Refuse	Queens	9	2	20050824-Q-9-2-1-1-R	8/24/2005	216.4	Low Density/Medium Income
Summer	Refuse	Queens	3	2	20050824-Q-3-2-1-1-R	8/24/2005	205.71	High Density/Medium Income
Summer	Refuse	Queens	4	3	20050824-Q-4-3-5-1-R	8/24/2005	223.24	Medium Density/Medium Income
Summer	Refuse	Queens	4	3	20050824-Q-4-3-1-1-R	8/24/2005	212.59	Medium Density/Medium Income
Summer	Refuse	Queens	1	4	20050824-Q-1-4-2-1-R	8/24/2005	217.67	Medium Density/Medium Income
Summer	Refuse	Queens	10	4	20050824-Q-10-4-2-1-R	8/24/2005	217.4	Low Density/High Income
Summer	Refuse	Queens	13	7	20050825-Q-13-7-4-1-R	8/25/2005	230.7	Low Density/High Income
Summer	Refuse	Queens	13	6	20050825-Q-13-6-4-1-R	8/25/2005	226.53	Low Density/High Income
Summer	Refuse	Queens	7	1	20050825-Q-7-1-4-1-R	8/25/2005	216.68	High Density/Medium Income
Summer	Refuse	Queens	13	8	20050825-Q-13-8-3-1-R	8/25/2005	210.46	Low Density/High Income
Summer	Refuse	Queens	4	3	20050825-Q-4-3-2-1-R	8/25/2005	225.86	Medium Density/Medium Income
Summer	Refuse	Staten Island	3	2	20050808-SI-3-2-3-1-R	8/8/2005	205.77	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050808-SI-3-1-3-1-R	8/8/2005	216.62	Low Density/Medium Income
Summer	Refuse	Staten Island	2	4	20050809-SI-2-4-2-1-R	8/9/2005	259.14	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050810-SI-3-1-4-1-R	8/10/2005	236.24	Low Density/Medium Income
Summer	Refuse	Staten Island	2	4	20050810-SI-2-4-4-1-R	8/10/2005	259.04	Low Density/High Income
Summer	Refuse	Staten Island	3	6	20050810-SI-3-6-2-1-R	8/10/2005	216.11	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050810-SI-3-1-1-1-R	8/10/2005	212.7	Low Density/Medium Income
Summer	Refuse	Staten Island	3	1	20050810-SI-3-1-3-1-R	8/10/2005	235.54	Low Density/Medium Income
Summer	Refuse	Staten Island	1	3	20050810-SI-1-3-4-1-R	8/10/2005	261.3	Low Density/Medium Income
Summer	Refuse	Staten Island	3	1	20050810-SI-3-1-5-1-R	8/10/2005	206.21	Low Density/Medium Income
Summer	Refuse	Staten Island	3	4	20050810-SI-3-4-3-1-R	8/10/2005	229.99	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050811-SI-3-1-3-1-R	8/11/2005	206.99	Low Density/Medium Income
Summer	Refuse	Staten Island	3	6	20050811-SI-3-6-1-1-R	8/11/2005	269.1	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050812-SI-3-1-2-1-R	8/12/2005	213.38	Low Density/Medium Income
Summer	Refuse	Staten Island	3	4	20050812-SI-3-4-1-1-R	8/12/2005	205.45	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050812-SI-1-3-3-1-R	8/12/2005	223.81	Low Density/Medium Income
Summer	Refuse	Staten Island	1	3	20050812-SI-1-3-1-1-R	8/12/2005	254.62	Low Density/Medium Income
Summer	Refuse	Staten Island	2	4	20050812-SI-2-4-5-1-R	8/12/2005	312.42	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050813-SI-3-1-2-1-R	8/13/2005	235.42	Low Density/Medium Income
Summer	Refuse	Staten Island	3	1	20050813-SI-3-1-1-1-R	8/13/2005	262.2	Low Density/Medium Income
Summer	Refuse	Staten Island	1	3	20050813-SI-1-3-4-1-R	8/13/2005	275.73	Low Density/Medium Income
Summer	Refuse	Staten Island	2	2	20050815-SI-2-2-4-1-R	8/15/2005	291.69	Low Density/High Income
Summer	Refuse	Staten Island	3	4	20050815-SI-3-4-2-1-R	8/15/2005	259.96	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050815-SI-1-3-3-1-R	8/15/2005	233.41	Low Density/Medium Income
Summer	Refuse	Staten Island	2	4	20050816-SI-2-4-5-1-R	8/16/2005	213.51	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050816-SI-3-1-2-1-R	8/16/2005	299.71	Low Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Refuse	Staten Island	1	3	20050816-SI-1-3-1-1-R	8/16/2005	353.45	Low Density/Medium Income
Summer	Refuse	Staten Island	2	2	20050817-SI-2-2-5-1-R	8/17/2005	198.33	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050817-SI-1-3-3-1-R	8/17/2005	277.48	Low Density/Medium Income
Summer	Refuse	Staten Island	3	1	20050817-SI-3-1-4-1-R	8/17/2005	209.79	Low Density/Medium Income
Summer	Refuse	Staten Island	3	1	20050817-SI-3-1-2-1-R	8/17/2005	227.07	Low Density/Medium Income
Summer	Refuse	Staten Island	3	1	20050818-SI-3-1-2-1-R	8/18/2005	221.93	Low Density/Medium Income
Summer	Refuse	Staten Island	3	5	20050818-SI-3-5-1-1-R	8/18/2005	228.88	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050818-SI-3-1-3-1-R	8/18/2005	240.91	Low Density/Medium Income
Summer	Refuse	Staten Island	1	3	20050818-SI-1-3-1-1-R	8/18/2005	217.81	Low Density/Medium Income
Summer	Refuse	Staten Island	3	2	20050819-SI-3-2-2-1-R	8/19/2005	221.86	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050819-SI-1-3-1-1-R	8/19/2005	226.69	Low Density/Medium Income
Summer	Refuse	Staten Island	3	6	20050819-SI-3-6-1-1-R	8/19/2005	237.31	Low Density/High Income
Summer	Refuse	Staten Island	2	4	20050822-SI-2-4-4-1-R	8/22/2005	253.49	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050822-SI-1-3-2-1-R	8/22/2005	218.27	Low Density/Medium Income
Summer	Refuse	Staten Island	2	2	20050822-SI-2-2-3-1-R	8/22/2005	211.99	Low Density/High Income
Summer	Refuse	Staten Island	3	5	20050822-SI-3-5-4-1-R	8/22/2005	228.23	Low Density/High Income
Summer	Refuse	Staten Island	3	5	20050822-SI-3-5-1-1-R	8/22/2005	275.07	Low Density/High Income
Summer	Refuse	Staten Island	2	4	20050822-SI-2-4-2-1-R	8/22/2005	227.29	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050823-SI-1-3-7-1-R	8/23/2005	254.76	Low Density/Medium Income
Summer	Refuse	Staten Island	3	6	20050823-SI-3-6-2-1-R	8/23/2005	212.58	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050823-SI-3-1-1-1-R	8/23/2005	263.42	Low Density/Medium Income
Summer	Refuse	Staten Island	2	2	20050823-SI-2-2-2-1-R	8/23/2005	232.88	Low Density/High Income
Summer	Refuse	Staten Island	3	1	20050823-SI-3-1-2-1-R	8/23/2005	203.3	Low Density/Medium Income
Summer	Refuse	Staten Island	2	4	20050824-SI-2-4-1-1-R	8/24/2005	279.85	Low Density/High Income
Summer	Refuse	Staten Island	3	6	20050824-SI-3-6-3-1-R	8/24/2005	224.62	Low Density/High Income
Summer	Refuse	Staten Island	1	3	20050825-SI-1-3-3-1-R	8/25/2005	218.32	Low Density/Medium Income
Summer	Refuse	Staten Island	2	2	20050825-SI-2-2-4-1-R	8/25/2005	211.88	Low Density/High Income
Summer	Paper	Manhattan	8	1	20050812-M-8-1-4-1-P	8/12/2005	142.2	High Density/High Income
Summer	Paper	Manhattan	3	1	20050813-M-3-1-1-1-P	8/13/2005	159.55	High Density/Low Income
Summer	Paper	Manhattan	2	2	20050813-M-2-2-1-1-P	8/13/2005	137.45	High Density/High Income
Summer	Paper	Manhattan	7	2	20050815-M-7-2-3-1-P	8/15/2005	136.45	High Density/High Income
Summer	Paper	Manhattan	7	2	20050815-M-7-2-2-1-P	8/15/2005	136.85	High Density/High Income
Summer	Paper	Manhattan	2	3	20050816-M-2-3-2-1-P	8/16/2005	137.2	High Density/High Income
Summer	Paper	Manhattan	8	1	20050816-M-8-1-1-1-P	8/16/2005	141.95	High Density/High Income
Summer	Paper	Manhattan	8	3	20050818-M-8-3-3-1-P	8/18/2005	135.45	High Density/High Income
Summer	Paper	Manhattan	8	3	20050818-M-8-3-3-2-P	8/18/2005	127.85	High Density/High Income
Summer	Paper	Manhattan	8	1	20050819-M-8-1-4-1-P	8/19/2005	145.25	High Density/High Income
Summer	Paper	Manhattan	8	4	20050820-M-8-4-2-1-P	8/20/2005	136.1	High Density/High Income
Summer	Paper	Manhattan	3	3	20050822-M-3-3-1-1-P	8/22/2005	139.55	High Density/Medium Income
Summer	Paper	Bronx	5	1	20050808-BX-5-1-1-1-P	8/8/2005	127.1	High Density/Low Income
Summer	Paper	Bronx	5	2	20050812-BX-5-2-1-1-P	8/12/2005	135.9	High Density/Low Income
Summer	Paper	Bronx	5	1	20050813-BX-5-1-1-1-P	8/13/2005	134.4	High Density/Low Income
Summer	Paper	Bronx	5	1	20050813-BX-5-1-1-2-P	8/13/2005	131.6	High Density/Low Income
Summer	Paper	Bronx	5	3	20050816-BX-5-3-1-1-P	8/16/2005	130.85	High Density/Low Income
Summer	Paper	Bronx	5	1	20050820-BX-5-1-1-1-P	8/20/2005	140.75	High Density/Low Income
Summer	Paper	Bronx	5	1	20050820-BX-5-1-1-2-P	8/20/2005	129.15	High Density/Low Income
Summer	Paper	Bronx	5	1	20050822-BX-5-1-1-1-P	8/22/2005	129.35	High Density/Low Income
Summer	Paper	Bronx	5	1	20050822-BX-5-1-1-2-P	8/22/2005	152.1	High Density/Low Income
Summer	Paper	Brooklyn	4	2	20050808-BK-4-2-1-1-P	8/8/2005	132.5	Medium Density/Low Income
Summer	Paper	Brooklyn	4	3	20050811-BK-4-3-2-1-P	8/11/2005	127.8	Medium Density/Low Income
Summer	Paper	Brooklyn	4	3	20050811-BK-4-3-3-1-P	8/11/2005	126.25	Medium Density/Low Income
Summer	Paper	Brooklyn	6	2	20050811-BK-6-2-2-1-P	8/11/2005	131.5	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050812-BK-6-2-2-1-P	8/12/2005	133.7	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050813-BK-6-2-2-1-P	8/13/2005	130.5	Medium Density/High Income
Summer	Paper	Brooklyn	17	1	20050815-BK-17-1-2-1-P	8/15/2005	128.45	Medium Density/Low Income
Summer	Paper	Brooklyn	17	1	20050815-BK-17-1-1-1-P	8/15/2005	129.85	Medium Density/Low Income
Summer	Paper	Brooklyn	4	1	20050816-BK-4-1-1-1-P	8/16/2005	131.65	Medium Density/Low Income
Summer	Paper	Brooklyn	3	3	20050816-BK-3-3-1-1-P	8/16/2005	134.7	Medium Density/Low Income
Summer	Paper	Brooklyn	4	1	20050817-BK-4-1-2-1-P	8/17/2005	134.25	Medium Density/Low Income
Summer	Paper	Brooklyn	4	3	20050818-BK-4-3-1-1-P	8/18/2005	131.55	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	Paper	Brooklyn	6	2	20050818-BK-6-2-2-1-P	8/18/2005	135.7	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050818-BK-6-2-1-1-P	8/18/2005	128.65	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050818-BK-6-2-1-2-P	8/18/2005	136.4	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050818-BK-6-2-1-3-P	8/18/2005	131.8	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050820-BK-6-2-1-1-P	8/20/2005	137.4	Medium Density/High Income
Summer	Paper	Brooklyn	17	1	20050822-BK-17-1-1-1-P	8/22/2005	132	Medium Density/Low Income
Summer	Paper	Brooklyn	6	2	20050825-BK-6-2-2-1-P	8/25/2005	131.1	Medium Density/High Income
Summer	Paper	Brooklyn	6	2	20050825-BK-6-2-1-1-P	8/25/2005	141.9	Medium Density/High Income
Summer	Paper	Queens	9	2	20050808-Q-9-2-1-1-P	8/8/2005	134.3	Low Density/Medium Income
Summer	Paper	Queens	5	2	20050808-Q-5-2-1-1-P	8/8/2005	133.15	Medium Density/Medium Income
Summer	Paper	Queens	7	1	20050808-Q-7-1-2-1-P	8/8/2005	134.2	High Density/Medium Income
Summer	Paper	Queens	3	2	20050808-Q-3-2-2-1-P	8/8/2005	130.1	High Density/Medium Income
Summer	Paper	Queens	9	2	20050808-Q-9-2-2-1-P	8/8/2005	137.75	Low Density/Medium Income
Summer	Paper	Queens	1	4	20050809-Q-1-4-2-1-P	8/9/2005	136.9	Medium Density/Medium Income
Summer	Paper	Queens	1	4	20050810-Q-1-4-2-1-P	8/10/2005	131.45	Medium Density/Medium Income
Summer	Paper	Queens	9	1	20050812-Q-9-1-3-1-P	8/12/2005	133.2	Low Density/Medium Income
Summer	Paper	Queens	7	1	20050812-Q-7-1-2-1-P	8/12/2005	132.9	High Density/Medium Income
Summer	Paper	Queens	13	4	20050812-Q-13-4-3-1-P	8/12/2005	131.75	Low Density/High Income
Summer	Paper	Queens	7	3	20050812-Q-7-3-1-1-P	8/12/2005	139.55	High Density/Medium Income
Summer	Paper	Queens	4	3	20050812-Q-4-3-1-1-P	8/12/2005	130.3	Medium Density/Medium Income
Summer	Paper	Queens	3	2	20050813-Q-3-2-1-1-P	8/13/2005	155.35	High Density/Medium Income
Summer	Paper	Queens	5	2	20050813-Q-5-2-3-1-P	8/13/2005	135.05	Medium Density/Medium Income
Summer	Paper	Queens	10	4	20050813-Q-10-4-3-1-P	8/13/2005	112.35	Low Density/High Income
Summer	Paper	Queens	7	3	20050815-Q-7-3-1-1-P	8/15/2005	130.4	High Density/Medium Income
Summer	Paper	Queens	5	2	20050815-Q-5-2-3-1-P	8/15/2005	133.1	Medium Density/Medium Income
Summer	Paper	Queens	3	2	20050815-Q-3-2-1-1-P	8/15/2005	131.65	High Density/Medium Income
Summer	Paper	Queens	13	7	20050816-Q-13-7-3-1-P	8/16/2005	134	Low Density/High Income
Summer	Paper	Queens	11	3	20050816-Q-11-3-2-1-P	8/16/2005	131.95	Low Density/High Income
Summer	Paper	Queens	3	2	20050819-Q-3-2-1-1-P	8/19/2005	139	High Density/Medium Income
Summer	Paper	Queens	9	1	20050819-Q-9-1-1-2-P	8/19/2005	135.85	Low Density/Medium Income
Summer	Paper	Queens	9	1	20050819-Q-9-1-1-1-P	8/19/2005	133.55	Low Density/Medium Income
Summer	Paper	Queens	10	4	20050819-Q-10-4-3-1-P	8/19/2005	133.45	Low Density/High Income
Summer	Paper	Queens	7	3	20050819-Q-7-3-1-1-P	8/19/2005	138.15	High Density/Medium Income
Summer	Paper	Queens	5	2	20050819-Q-5-2-2-1-P	8/19/2005	136.7	Medium Density/Medium Income
Summer	Paper	Queens	5	2	20050820-Q-5-2-1-1-P	8/20/2005	133.6	Medium Density/Medium Income
Summer	Paper	Queens	5	2	20050822-Q-5-2-2-1-P	8/22/2005	131.85	Medium Density/Medium Income
Summer	Paper	Queens	13	3	20050822-Q-13-3-3-1-P	8/22/2005	132.35	Low Density/High Income
Summer	Paper	Queens	9	2	20050822-Q-9-2-1-1-P	8/22/2005	133.8	Low Density/Medium Income
Summer	Paper	Queens	13	4	20050822-Q-13-4-2-1-P	8/22/2005	141.4	Low Density/High Income
Summer	Paper	Queens	1	4	20050823-Q-1-4-2-1-P	8/23/2005	141.8	Medium Density/Medium Income
Summer	Paper	Staten Island	1	3	20050808-SI-1-3-5-1-P	8/8/2005	126.5	Low Density/Medium Income
Summer	Paper	Staten Island	3	4	20050808-SI-3-4-1-1-P	8/8/2005	133	Low Density/High Income
Summer	Paper	Staten Island	3	1	20050810-SI-3-1-1-1-P	8/10/2005	135	Low Density/Medium Income
Summer	Paper	Staten Island	3	1	20050811-SI-3-1-5-1-P	8/11/2005	137.55	Low Density/Medium Income
Summer	Paper	Staten Island	3	2	20050817-SI-3-2-4-1-P	8/17/2005	123.37	Low Density/High Income
Summer	Paper	Staten Island	3	2	20050818-SI-3-2-4-1-P	8/18/2005	137.75	Low Density/High Income
Summer	Paper	Staten Island	1	3	20050819-SI-1-3-6-1-P	8/19/2005	130	Low Density/Medium Income
Summer	MGP	Manhattan	2	2	20050808-M-2-2-1-1-M	8/8/2005	226.61	High Density/High Income
Summer	MGP	Manhattan	8	4	20050808-M-8-4-2-1-M	8/8/2005	161.75	High Density/High Income
Summer	MGP	Manhattan	3	3	20050808-M-3-3-1-1-M	8/8/2005	158.4	High Density/Medium Income
Summer	MGP	Manhattan	8	3	20050810-M-8-3-2-1-M	8/10/2005	154.4	High Density/High Income
Summer	MGP	Manhattan	7	3	20050811-M-7-3-3-2-M	8/11/2005	188.15	High Density/High Income
Summer	MGP	Manhattan	7	3	20050811-M-7-3-1-1-M	8/11/2005	153.75	High Density/High Income
Summer	MGP	Manhattan	7	3	20050811-M-7-3-3-1-M	8/11/2005	173.3	High Density/High Income
Summer	MGP	Manhattan	8	2	20050812-M-8-2-1-1-M	8/12/2005	148.17	High Density/High Income
Summer	MGP	Manhattan	8	1	20050812-M-8-1-1-1-M	8/12/2005	148.6	High Density/High Income
Summer	MGP	Manhattan	8	2	20050812-M-8-2-1-2-M	8/12/2005	171.4	High Density/High Income
Summer	MGP	Manhattan	7	3	20050812-M-7-3-1-1-M	8/12/2005	152.5	High Density/High Income
Summer	MGP	Manhattan	8	2	20050812-M-8-2-2-1-M	8/12/2005	149.35	High Density/High Income
Summer	MGP	Manhattan	3	3	20050813-M-3-3-1-1-M	8/13/2005	171.25	High Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	MGP	Manhattan	3	1	20050813-M-3-1-1-1-M	8/13/2005	185	High Density/Low Income
Summer	MGP	Manhattan	8	5	20050815-M-8-5-2-1-M	8/15/2005	135.32	High Density/High Income
Summer	MGP	Manhattan	3	3	20050815-M-3-3-1-1-M	8/15/2005	153.85	High Density/Medium Income
Summer	MGP	Manhattan	3	3	20050815-M-3-3-1-2-M	8/15/2005	181.6	High Density/Medium Income
Summer	MGP	Manhattan	6	3	20050815-M-6-3-1-1-M	8/15/2005	156.35	High Density/High Income
Summer	MGP	Manhattan	8	4	20050815-M-8-4-1-1-M	8/15/2005	119.09	High Density/High Income
Summer	MGP	Manhattan	8	5	20050815-M-8-5-2-2-M	8/15/2005	181.9	High Density/High Income
Summer	MGP	Manhattan	8	4	20050815-M-8-4-2-1-M	8/15/2005	121.03	High Density/High Income
Summer	MGP	Manhattan	2	3	20050816-M-2-3-2-1-M	8/16/2005	181.5	High Density/High Income
Summer	MGP	Manhattan	2	3	20050816-M-2-3-1-1-M	8/16/2005	136.75	High Density/High Income
Summer	MGP	Manhattan	8	3	20050817-M-8-3-1-1-M	8/17/2005	219.95	High Density/High Income
Summer	MGP	Manhattan	7	3	20050818-M-7-3-2-1-M	8/18/2005	163.05	High Density/High Income
Summer	MGP	Manhattan	8	5	20050818-M-8-5-2-1-M	8/18/2005	122.2	High Density/High Income
Summer	MGP	Manhattan	7	3	20050818-M-7-3-1-1-M	8/18/2005	142.77	High Density/High Income
Summer	MGP	Manhattan	8	1	20050819-M-8-1-1-1-M	8/19/2005	163.3	High Density/High Income
Summer	MGP	Manhattan	8	2	20050819-M-8-2-2-1-M	8/19/2005	176.6	High Density/High Income
Summer	MGP	Manhattan	8	1	20050819-M-8-1-1-2-M	8/19/2005	146.66	High Density/High Income
Summer	MGP	Manhattan	2	3	20050819-M-2-3-1-1-M	8/19/2005	173.2	High Density/High Income
Summer	MGP	Manhattan	7	3	20050819-M-7-3-1-1-M	8/19/2005	191.15	High Density/High Income
Summer	MGP	Manhattan	3	1	20050820-M-3-1-1-1-M	8/20/2005	143.2	High Density/Low Income
Summer	MGP	Manhattan	3	3	20050820-M-3-3-1-2-M	8/20/2005	178.25	High Density/Medium Income
Summer	MGP	Manhattan	8	4	20050820-M-8-4-2-1-M	8/20/2005	198.45	High Density/High Income
Summer	MGP	Manhattan	8	2	20050820-M-8-2-2-1-M	8/20/2005	105.75	High Density/High Income
Summer	MGP	Manhattan	3	3	20050820-M-3-3-1-3-M	8/20/2005	176.7	High Density/Medium Income
Summer	MGP	Manhattan	3	3	20050820-M-3-3-1-1-M	8/20/2005	149.45	High Density/Medium Income
Summer	MGP	Manhattan	7	2	20050820-M-7-2-1-1-M	8/20/2005	185.25	High Density/High Income
Summer	MGP	Manhattan	2	2	20050822-M-2-2-1-1-M	8/22/2005	167.5	High Density/High Income
Summer	MGP	Manhattan	8	5	20050822-M-8-5-1-2-M	8/22/2005	179.2	High Density/High Income
Summer	MGP	Manhattan	6	3	20050822-M-6-3-1-1-M	8/22/2005	80.9	High Density/High Income
Summer	MGP	Manhattan	8	4	20050822-M-8-4-2-1-M	8/22/2005	168.1	High Density/High Income
Summer	MGP	Manhattan	3	3	20050822-M-3-3-1-1-M	8/22/2005	159.5	High Density/Medium Income
Summer	MGP	Manhattan	8	5	20050822-M-8-5-1-1-M	8/22/2005	165.85	High Density/High Income
Summer	MGP	Manhattan	3	3	20050822-M-3-3-1-2-M	8/22/2005	140.8	High Density/Medium Income
Summer	MGP	Manhattan	8	5	20050822-M-8-5-2-1-M	8/22/2005	189	High Density/High Income
Summer	MGP	Manhattan	8	1	20050823-M-8-1-1-1-M	8/23/2005	176.55	High Density/High Income
Summer	MGP	Manhattan	2	3	20050823-M-2-3-2-1-M	8/23/2005	127.15	High Density/High Income
Summer	MGP	Manhattan	7	3	20050825-M-7-3-1-1-M	8/25/2005	166.75	High Density/High Income
Summer	MGP	Manhattan	8	5	20050825-M-8-5-2-1-M	8/25/2005	215.65	High Density/High Income
Summer	MGP	Bronx	5	1	20050808-BX-5-1-2-1-M	8/8/2005	147.1	High Density/Low Income
Summer	MGP	Bronx	5	1	20050808-BX-5-1-1-2-M	8/8/2005	149.1	High Density/Low Income
Summer	MGP	Bronx	5	1	20050808-BX-5-1-1-1-M	8/8/2005	148.11	High Density/Low Income
Summer	MGP	Bronx	5	1	20050808-BX-5-1-2-2-M	8/8/2005	181.47	High Density/Low Income
Summer	MGP	Bronx	5	1	20050808-BX-5-1-2-3-M	8/8/2005	125.35	High Density/Low Income
Summer	MGP	Bronx	5	1	20050808-BX-5-1-2-4-M	8/8/2005	124.75	High Density/Low Income
Summer	MGP	Bronx	5	3	20050809-BX-5-3-2-1-M	8/9/2005	178.15	High Density/Low Income
Summer	MGP	Bronx	5	3	20050809-BX-5-3-2-2-M	8/9/2005	159.95	High Density/Low Income
Summer	MGP	Bronx	5	3	20050810-BX-5-3-2-1-M	8/10/2005	175.9	High Density/Low Income
Summer	MGP	Bronx	5	3	20050810-BX-5-3-1-1-M	8/10/2005	168.15	High Density/Low Income
Summer	MGP	Bronx	5	2	20050811-BX-5-2-1-3-M	8/11/2005	225.47	High Density/Low Income
Summer	MGP	Bronx	5	2	20050811-BX-5-2-1-2-M	8/11/2005	150.75	High Density/Low Income
Summer	MGP	Bronx	5	2	20050811-BX-5-2-1-1-M	8/11/2005	151.45	High Density/Low Income
Summer	MGP	Bronx	5	2	20050811-BX-5-2-2-1-M	8/11/2005	159.4	High Density/Low Income
Summer	MGP	Bronx	5	2	20050812-BX-5-2-1-2-M	8/12/2005	191.3	High Density/Low Income
Summer	MGP	Bronx	5	2	20050812-BX-5-2-1-4-M	8/12/2005	151.2	High Density/Low Income
Summer	MGP	Bronx	5	2	20050812-BX-5-2-1-3-M	8/12/2005	104.98	High Density/Low Income
Summer	MGP	Bronx	5	2	20050812-BX-5-2-1-1-M	8/12/2005	143.85	High Density/Low Income
Summer	MGP	Bronx	5	1	20050813-BX-5-1-1-1-M	8/13/2005	174.15	High Density/Low Income
Summer	MGP	Bronx	5	3	20050817-BX-5-3-1-1-M	8/17/2005	153.8	High Density/Low Income
Summer	MGP	Bronx	5	2	20050818-BX-5-2-1-1-M	8/18/2005	169.3	High Density/Low Income
Summer	MGP	Bronx	5	2	20050818-BX-5-2-1-2-M	8/18/2005	153.35	High Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	MGP	Bronx	5	2	20050819-BX-5-2-1-1-M	8/19/2005	166.55	High Density/Low Income
Summer	MGP	Bronx	5	2	20050819-BX-5-2-1-2-M	8/19/2005	186.8	High Density/Low Income
Summer	MGP	Bronx	5	1	20050820-BX-5-1-1-1-M	8/20/2005	155.2	High Density/Low Income
Summer	MGP	Bronx	5	1	20050822-BX-5-1-1-1-M	8/22/2005	184.2	High Density/Low Income
Summer	MGP	Bronx	5	1	20050822-BX-5-1-2-1-M	8/22/2005	183.7	High Density/Low Income
Summer	MGP	Bronx	5	3	20050823-BX-5-3-2-2-M	8/23/2005	172.7	High Density/Low Income
Summer	MGP	Bronx	5	3	20050823-BX-5-3-2-1-M	8/23/2005	154.5	High Density/Low Income
Summer	MGP	Bronx	5	3	20050823-BX-5-3-2-4-M	8/23/2005	170.2	High Density/Low Income
Summer	MGP	Bronx	5	3	20050823-BX-5-3-2-3-M	8/23/2005	147.6	High Density/Low Income
Summer	MGP	Bronx	5	3	20050823-BX-5-3-1-1-M	8/23/2005	184.75	High Density/Low Income
Summer	MGP	Bronx	5	3	20050824-BX-5-3-1-1-M	8/24/2005	139.75	High Density/Low Income
Summer	MGP	Bronx	5	3	20050824-BX-5-3-1-4-M	8/24/2005	144.15	High Density/Low Income
Summer	MGP	Bronx	5	3	20050824-BX-5-3-1-2-M	8/24/2005	146.4	High Density/Low Income
Summer	MGP	Bronx	5	3	20050824-BX-5-3-1-3-M	8/24/2005	151.35	High Density/Low Income
Summer	MGP	Bronx	5	2	20050825-BX-5-2-1-2-M	8/25/2005	146.75	High Density/Low Income
Summer	MGP	Bronx	5	2	20050825-BX-5-2-1-1-M	8/25/2005	130.85	High Density/Low Income
Summer	MGP	Brooklyn	3	3	20050808-BK-3-3-1-1-M	8/8/2005	143.12	Medium Density/Low Income
Summer	MGP	Brooklyn	4	2	20050808-BK-4-2-1-1-M	8/8/2005	202.2	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050808-BK-17-1-1-1-M	8/8/2005	203.6	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050809-BK-4-1-1-1-M	8/9/2005	123.35	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050810-BK-4-1-2-1-M	8/10/2005	149.1	Medium Density/Low Income
Summer	MGP	Brooklyn	4	3	20050811-BK-4-3-2-1-M	8/11/2005	197.05	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050811-BK-6-2-1-4-M	8/11/2005	148.1	Medium Density/High Income
Summer	MGP	Brooklyn	4	3	20050811-BK-4-3-2-2-M	8/11/2005	149.95	Medium Density/Low Income
Summer	MGP	Brooklyn	4	3	20050811-BK-4-3-3-1-M	8/11/2005	131.16	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050811-BK-17-1-1-1-M	8/11/2005	161.15	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050811-BK-6-2-1-3-M	8/11/2005	174.72	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050811-BK-6-2-1-1-M	8/11/2005	158.94	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050811-BK-6-2-1-2-M	8/11/2005	201.2	Medium Density/High Income
Summer	MGP	Brooklyn	4	3	20050811-BK-4-3-3-2-M	8/11/2005	220.5	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050812-BK-6-2-1-4-M	8/12/2005	157.66	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050812-BK-6-2-1-1-M	8/12/2005	142.56	Medium Density/High Income
Summer	MGP	Brooklyn	4	3	20050812-BK-4-3-1-1-M	8/12/2005	160.55	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050812-BK-6-2-1-5-M	8/12/2005	138.15	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050812-BK-6-2-1-3-M	8/12/2005	152.25	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050812-BK-6-2-1-6-M	8/12/2005	144.6	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050812-BK-6-2-1-2-M	8/12/2005	155.8	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-2-2-M	8/13/2005	170.35	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-1-2-M	8/13/2005	183.35	Medium Density/High Income
Summer	MGP	Brooklyn	4	2	20050813-BK-4-2-3-1-M	8/13/2005	178.15	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-1-5-M	8/13/2005	202.73	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-1-4-M	8/13/2005	129.48	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-1-1-M	8/13/2005	159.55	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-2-1-M	8/13/2005	171.25	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-2-3-M	8/13/2005	151	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-2-4-M	8/13/2005	160.2	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050813-BK-6-2-1-3-M	8/13/2005	171.5	Medium Density/High Income
Summer	MGP	Brooklyn	17	1	20050815-BK-17-1-2-1-M	8/15/2005	108.06	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050815-BK-3-3-1-1-M	8/15/2005	176.6	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050815-BK-17-1-1-1-M	8/15/2005	195.3	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050816-BK-4-1-1-1-M	8/16/2005	163.45	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050816-BK-3-3-1-1-M	8/16/2005	187.45	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050816-BK-3-3-2-2-M	8/16/2005	128.85	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050816-BK-3-3-2-1-M	8/16/2005	198.9	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050817-BK-4-1-1-1-M	8/17/2005	198.9	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050817-BK-4-1-2-1-M	8/17/2005	231	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050818-BK-6-2-1-4-M	8/18/2005	153.9	Medium Density/High Income
Summer	MGP	Brooklyn	17	1	20050818-BK-17-1-2-1-M	8/18/2005	156.18	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050818-BK-6-2-1-1-M	8/18/2005	161	Medium Density/High Income
Summer	MGP	Brooklyn	4	3	20050818-BK-4-3-1-1-M	8/18/2005	148	Medium Density/Low Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	MGP	Brooklyn	6	2	20050818-BK-6-2-1-3-M	8/18/2005	142.4	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050818-BK-6-2-1-2-M	8/18/2005	145.2	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-2-M	8/19/2005	179.1	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-3-M	8/19/2005	162.93	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-4-M	8/19/2005	153.05	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-5-M	8/19/2005	174.1	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-1-M	8/19/2005	149.1	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-6-M	8/19/2005	158.9	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050819-BK-6-2-1-7-M	8/19/2005	150.35	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050820-BK-6-2-2-3-M	8/20/2005	178.15	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050820-BK-6-2-1-3-M	8/20/2005	145.05	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050820-BK-6-2-2-2-M	8/20/2005	178.65	Medium Density/High Income
Summer	MGP	Brooklyn	4	2	20050820-BK-4-2-2-1-M	8/20/2005	148.51	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050820-BK-6-2-2-1-M	8/20/2005	188.25	Medium Density/High Income
Summer	MGP	Brooklyn	4	2	20050820-BK-4-2-1-1-M	8/20/2005	161.15	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050820-BK-6-2-1-1-M	8/20/2005	139.65	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050820-BK-6-2-1-2-M	8/20/2005	206.4	Medium Density/High Income
Summer	MGP	Brooklyn	4	2	20050820-BK-4-2-3-1-M	8/20/2005	170.4	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050822-BK-3-3-2-1-M	8/22/2005	199.5	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050822-BK-17-1-1-2-M	8/22/2005	150.75	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050822-BK-17-1-1-1-M	8/22/2005	154.26	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050822-BK-17-1-2-1-M	8/22/2005	145.4	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050823-BK-3-3-2-5-M	8/23/2005	180.95	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050823-BK-3-3-2-2-M	8/23/2005	166.8	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050823-BK-3-3-2-1-M	8/23/2005	172.9	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050823-BK-3-3-2-4-M	8/23/2005	139.92	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050823-BK-4-1-2-1-M	8/23/2005	186.6	Medium Density/Low Income
Summer	MGP	Brooklyn	3	3	20050823-BK-3-3-2-3-M	8/23/2005	151.5	Medium Density/Low Income
Summer	MGP	Brooklyn	4	1	20050824-BK-4-1-1-1-M	8/24/2005	152.6	Medium Density/Low Income
Summer	MGP	Brooklyn	4	3	20050825-BK-4-3-3-1-M	8/25/2005	152.95	Medium Density/Low Income
Summer	MGP	Brooklyn	17	1	20050825-BK-17-1-3-2-M	8/25/2005	180.3	Medium Density/Low Income
Summer	MGP	Brooklyn	6	2	20050825-BK-6-2-1-1-M	8/25/2005	154.1	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050825-BK-6-2-1-4-M	8/25/2005	151.3	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050825-BK-6-2-1-3-M	8/25/2005	182.25	Medium Density/High Income
Summer	MGP	Brooklyn	6	2	20050825-BK-6-2-1-2-M	8/25/2005	225.7	Medium Density/High Income
Summer	MGP	Brooklyn	17	1	20050825-BK-17-1-3-1-M	8/25/2005	174.75	Medium Density/Low Income
Summer	MGP	Queens	7	3	20050808-Q-7-3-2-1-M	8/8/2005	169.9	High Density/Medium Income
Summer	MGP	Queens	7	3	20050808-Q-7-3-1-1-M	8/8/2005	178.65	High Density/Medium Income
Summer	MGP	Queens	3	2	20050808-Q-3-2-2-1-M	8/8/2005	129.15	High Density/Medium Income
Summer	MGP	Queens	7	1	20050808-Q-7-1-2-1-M	8/8/2005	168.5	High Density/Medium Income
Summer	MGP	Queens	9	2	20050808-Q-9-2-3-1-M	8/8/2005	182.95	Low Density/Medium Income
Summer	MGP	Queens	7	1	20050808-Q-7-1-1-1-M	8/8/2005	160.55	High Density/Medium Income
Summer	MGP	Queens	5	2	20050808-Q-5-2-2-1-M	8/8/2005	164.85	Medium Density/Medium Income
Summer	MGP	Queens	3	2	20050808-Q-3-2-2-2-M	8/8/2005	172.9	High Density/Medium Income
Summer	MGP	Queens	13	3	20050808-Q-13-3-2-1-M	8/8/2005	196.4	Low Density/High Income
Summer	MGP	Queens	5	2	20050808-Q-5-2-1-1-M	8/8/2005	119.68	Medium Density/Medium Income
Summer	MGP	Queens	9	2	20050808-Q-9-2-2-1-M	8/8/2005	157.75	Low Density/Medium Income
Summer	MGP	Queens	13	4	20050808-Q-13-4-1-1-M	8/8/2005	134.17	Low Density/High Income
Summer	MGP	Queens	9	2	20050808-Q-9-2-3-2-M	8/8/2005	186	Low Density/Medium Income
Summer	MGP	Queens	9	2	20050808-Q-9-2-1-1-M	8/8/2005	149.8	Low Density/Medium Income
Summer	MGP	Queens	3	2	20050808-Q-3-2-1-1-M	8/8/2005	168.95	High Density/Medium Income
Summer	MGP	Queens	13	7	20050809-Q-13-7-2-1-M	8/9/2005	190.9	Low Density/High Income
Summer	MGP	Queens	1	4	20050809-Q-1-4-2-1-M	8/9/2005	193.65	Medium Density/Medium Income
Summer	MGP	Queens	1	4	20050809-Q-1-4-3-1-M	8/9/2005	143.3	Medium Density/Medium Income
Summer	MGP	Queens	13	7	20050809-Q-13-7-1-1-M	8/9/2005	140.5	Low Density/High Income
Summer	MGP	Queens	1	4	20050810-Q-1-4-2-2-M	8/10/2005	168.85	Medium Density/Medium Income
Summer	MGP	Queens	13	8	20050810-Q-13-8-1-1-M	8/10/2005	131.33	Low Density/High Income
Summer	MGP	Queens	1	4	20050810-Q-1-4-2-1-M	8/10/2005	168.5	Medium Density/Medium Income
Summer	MGP	Queens	13	5	20050811-Q-13-5-1-1-M	8/11/2005	158.87	Low Density/High Income
Summer	MGP	Queens	7	3	20050812-Q-7-3-1-1-M	8/12/2005	171	High Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	MGP	Queens	9	2	20050812-Q-9-2-2-1-M	8/12/2005	222.95	Low Density/Medium Income
Summer	MGP	Queens	3	2	20050812-Q-3-2-1-1-M	8/12/2005	153.8	High Density/Medium Income
Summer	MGP	Queens	4	3	20050812-Q-4-3-2-2-M	8/12/2005	202.5	Medium Density/Medium Income
Summer	MGP	Queens	7	3	20050812-Q-7-3-2-1-M	8/12/2005	157.9	High Density/Medium Income
Summer	MGP	Queens	7	3	20050812-Q-7-3-3-1-M	8/12/2005	195.59	High Density/Medium Income
Summer	MGP	Queens	7	1	20050812-Q-7-1-2-1-M	8/12/2005	169.45	High Density/Medium Income
Summer	MGP	Queens	5	2	20050812-Q-5-2-1-1-M	8/12/2005	132.6	Medium Density/Medium Income
Summer	MGP	Queens	9	1	20050812-Q-9-1-3-1-M	8/12/2005	131.6	Low Density/Medium Income
Summer	MGP	Queens	4	3	20050812-Q-4-3-2-1-M	8/12/2005	147.55	Medium Density/Medium Income
Summer	MGP	Queens	13	3	20050812-Q-13-3-4-1-M	8/12/2005	159.38	Low Density/High Income
Summer	MGP	Queens	13	4	20050812-Q-13-4-3-1-M	8/12/2005	136.17	Low Density/High Income
Summer	MGP	Queens	10	4	20050813-Q-10-4-3-1-M	8/13/2005	239.9	Low Density/High Income
Summer	MGP	Queens	9	2	20050813-Q-9-2-2-1-M	8/13/2005	200.95	Low Density/Medium Income
Summer	MGP	Queens	3	2	20050813-Q-3-2-2-1-M	8/13/2005	161.54	High Density/Medium Income
Summer	MGP	Queens	7	1	20050813-Q-7-1-2-1-M	8/13/2005	189.35	High Density/Medium Income
Summer	MGP	Queens	7	1	20050813-Q-7-1-2-2-M	8/13/2005	132.2	High Density/Medium Income
Summer	MGP	Queens	4	3	20050813-Q-4-3-1-1-M	8/13/2005	143.8	Medium Density/Medium Income
Summer	MGP	Queens	3	2	20050813-Q-3-2-2-2-M	8/13/2005	161.55	High Density/Medium Income
Summer	MGP	Queens	5	2	20050813-Q-5-2-3-2-M	8/13/2005	183.6	Medium Density/Medium Income
Summer	MGP	Queens	3	2	20050813-Q-3-2-1-1-M	8/13/2005	148.6	High Density/Medium Income
Summer	MGP	Queens	5	2	20050813-Q-5-2-3-1-M	8/13/2005	202.6	Medium Density/Medium Income
Summer	MGP	Queens	4	3	20050813-Q-4-3-2-3-M	8/13/2005	175.6	Medium Density/Medium Income
Summer	MGP	Queens	4	3	20050813-Q-4-3-2-1-M	8/13/2005	155.45	Medium Density/Medium Income
Summer	MGP	Queens	7	1	20050813-Q-7-1-1-1-M	8/13/2005	111.94	High Density/Medium Income
Summer	MGP	Queens	4	3	20050813-Q-4-3-2-2-M	8/13/2005	196.9	Medium Density/Medium Income
Summer	MGP	Queens	7	1	20050815-Q-7-1-1-1-M	8/15/2005	152.7	High Density/Medium Income
Summer	MGP	Queens	5	2	20050815-Q-5-2-1-1-M	8/15/2005	192.3	Medium Density/Medium Income
Summer	MGP	Queens	7	1	20050815-Q-7-1-2-1-M	8/15/2005	166.1	High Density/Medium Income
Summer	MGP	Queens	5	2	20050815-Q-5-2-3-1-M	8/15/2005	239.07	Medium Density/Medium Income
Summer	MGP	Queens	5	2	20050815-Q-5-2-2-1-M	8/15/2005	175.3	Medium Density/Medium Income
Summer	MGP	Queens	7	3	20050815-Q-7-3-1-1-M	8/15/2005	146.45	High Density/Medium Income
Summer	MGP	Queens	13	7	20050816-Q-13-7-3-1-M	8/16/2005	158	Low Density/High Income
Summer	MGP	Queens	13	5	20050816-Q-13-5-2-1-M	8/16/2005	167.65	Low Density/High Income
Summer	MGP	Queens	1	4	20050816-Q-1-4-3-1-M	8/16/2005	172.5	Medium Density/Medium Income
Summer	MGP	Queens	1	4	20050816-Q-1-4-2-1-M	8/16/2005	175.5	Medium Density/Medium Income
Summer	MGP	Queens	11	3	20050816-Q-11-3-2-1-M	8/16/2005	152.45	Low Density/High Income
Summer	MGP	Queens	9	1	20050819-Q-9-1-1-1-M	8/19/2005	152.65	Low Density/Medium Income
Summer	MGP	Queens	7	3	20050819-Q-7-3-1-1-M	8/19/2005	158.45	High Density/Medium Income
Summer	MGP	Queens	7	1	20050819-Q-7-1-2-1-M	8/19/2005	180.25	High Density/Medium Income
Summer	MGP	Queens	5	2	20050819-Q-5-2-3-1-M	8/19/2005	168.8	Medium Density/Medium Income
Summer	MGP	Queens	10	4	20050819-Q-10-4-3-1-M	8/19/2005	162.6	Low Density/High Income
Summer	MGP	Queens	9	1	20050819-Q-9-1-1-2-M	8/19/2005	162.75	Low Density/Medium Income
Summer	MGP	Queens	7	3	20050819-Q-7-3-2-1-M	8/19/2005	153.3	High Density/Medium Income
Summer	MGP	Queens	9	1	20050819-Q-9-1-1-3-M	8/19/2005	155.5	Low Density/Medium Income
Summer	MGP	Queens	13	4	20050819-Q-13-4-3-1-M	8/19/2005	153.45	Low Density/High Income
Summer	MGP	Queens	4	3	20050819-Q-4-3-1-1-M	8/19/2005	168.35	Medium Density/Medium Income
Summer	MGP	Queens	5	2	20050819-Q-5-2-2-1-M	8/19/2005	157.5	Medium Density/Medium Income
Summer	MGP	Queens	5	2	20050820-Q-5-2-2-1-M	8/20/2005	159.05	Medium Density/Medium Income
Summer	MGP	Queens	10	4	20050820-Q-10-4-3-1-M	8/20/2005	139.7	Low Density/High Income
Summer	MGP	Queens	4	3	20050820-Q-4-3-1-4-M	8/20/2005	150.6	Medium Density/Medium Income
Summer	MGP	Queens	4	3	20050820-Q-4-3-1-1-M	8/20/2005	189.91	Medium Density/Medium Income
Summer	MGP	Queens	7	3	20050820-Q-7-3-2-1-M	8/20/2005	208.2	High Density/Medium Income
Summer	MGP	Queens	5	2	20050820-Q-5-2-2-2-M	8/20/2005	171.55	Medium Density/Medium Income
Summer	MGP	Queens	9	2	20050820-Q-9-2-1-1-M	8/20/2005	160.85	Low Density/Medium Income
Summer	MGP	Queens	3	2	20050820-Q-3-2-1-1-M	8/20/2005	189.1	High Density/Medium Income
Summer	MGP	Queens	5	2	20050820-Q-5-2-1-1-M	8/20/2005	154	Medium Density/Medium Income
Summer	MGP	Queens	4	3	20050820-Q-4-3-1-3-M	8/20/2005	161.65	Medium Density/Medium Income
Summer	MGP	Queens	5	2	20050822-Q-5-2-2-2-M	8/22/2005	147.15	Medium Density/Medium Income
Summer	MGP	Queens	3	2	20050822-Q-3-2-1-1-M	8/22/2005	150	High Density/Medium Income
Summer	MGP	Queens	4	3	20050822-Q-4-3-2-1-M	8/22/2005	213.9	Medium Density/Medium Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	MGP	Queens	3	2	20050822-Q-3-2-1-2-M	8/22/2005	141.15	High Density/Medium Income
Summer	MGP	Queens	13	3	20050822-Q-13-3-3-1-M	8/22/2005	169.65	Low Density/High Income
Summer	MGP	Queens	4	3	20050822-Q-4-3-2-2-M	8/22/2005	208.2	Medium Density/Medium Income
Summer	MGP	Queens	5	2	20050822-Q-5-2-2-1-M	8/22/2005	223.75	Medium Density/Medium Income
Summer	MGP	Queens	4	3	20050822-Q-4-3-1-1-M	8/22/2005	157.55	Medium Density/Medium Income
Summer	MGP	Queens	9	2	20050822-Q-9-2-3-1-M	8/22/2005	157	Low Density/Medium Income
Summer	MGP	Queens	9	2	20050822-Q-9-2-1-1-M	8/22/2005	147.45	Low Density/Medium Income
Summer	MGP	Queens	9	1	20050822-Q-9-1-4-1-M	8/22/2005	174	Low Density/Medium Income
Summer	MGP	Queens	7	1	20050822-Q-7-1-2-1-M	8/22/2005	164.44	High Density/Medium Income
Summer	MGP	Queens	7	3	20050822-Q-7-3-1-1-M	8/22/2005	162.65	High Density/Medium Income
Summer	MGP	Queens	13	4	20050822-Q-13-4-2-1-M	8/22/2005	141.5	Low Density/High Income
Summer	MGP	Queens	7	3	20050822-Q-7-3-2-1-M	8/22/2005	173.5	High Density/Medium Income
Summer	MGP	Queens	1	4	20050823-Q-1-4-1-2-M	8/23/2005	163.85	Medium Density/Medium Income
Summer	MGP	Queens	13	8	20050823-Q-13-8-2-1-M	8/23/2005	151.55	Low Density/High Income
Summer	MGP	Queens	1	4	20050823-Q-1-4-1-1-M	8/23/2005	137.95	Medium Density/Medium Income
Summer	MGP	Queens	13	5	20050823-Q-13-5-2-1-M	8/23/2005	158.45	Low Density/High Income
Summer	MGP	Queens	1	4	20050823-Q-1-4-2-1-M	8/23/2005	147.45	Medium Density/Medium Income
Summer	MGP	Queens	1	4	20050823-Q-1-4-2-2-M	8/23/2005	181.4	Medium Density/Medium Income
Summer	MGP	Queens	1	4	20050824-Q-1-4-2-1-M	8/24/2005	165.7	Medium Density/Medium Income
Summer	MGP	Queens	13	8	20050824-Q-13-8-2-1-M	8/24/2005	163.76	Low Density/High Income
Summer	MGP	Queens	1	4	20050824-Q-1-4-1-1-M	8/24/2005	191.6	Medium Density/Medium Income
Summer	MGP	Queens	13	7	20050825-Q-13-7-1-1-M	8/25/2005	153.9	Low Density/High Income
Summer	MGP	Staten Island	3	5	20050808-SI-3-5-4-1-M	8/8/2005	166.4	Low Density/High Income
Summer	MGP	Staten Island	3	4	20050808-SI-3-4-1-1-M	8/8/2005	163.95	Low Density/High Income
Summer	MGP	Staten Island	1	3	20050808-SI-1-3-5-1-M	8/8/2005	147.4	Low Density/Medium Income
Summer	MGP	Staten Island	3	4	20050808-SI-3-4-4-1-M	8/8/2005	166.26	Low Density/High Income
Summer	MGP	Staten Island	3	6	20050808-SI-3-6-3-1-M	8/8/2005	185.45	Low Density/High Income
Summer	MGP	Staten Island	3	1	20050809-SI-3-1-3-1-M	8/9/2005	150.4	Low Density/Medium Income
Summer	MGP	Staten Island	2	2	20050809-SI-2-2-5-1-M	8/9/2005	162.7	Low Density/High Income
Summer	MGP	Staten Island	3	1	20050809-SI-3-1-2-1-M	8/9/2005	171.5	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050810-SI-3-1-2-1-M	8/10/2005	163.5	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050810-SI-3-1-1-2-M	8/10/2005	165.35	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050810-SI-3-1-1-1-M	8/10/2005	109.05	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050810-SI-3-1-4-1-M	8/10/2005	161.05	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050810-SI-3-1-4-2-M	8/10/2005	179.7	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050811-SI-3-1-1-1-M	8/11/2005	180.45	Low Density/Medium Income
Summer	MGP	Staten Island	2	2	20050811-SI-2-2-2-1-M	8/11/2005	170.1	Low Density/High Income
Summer	MGP	Staten Island	3	1	20050811-SI-3-1-2-1-M	8/11/2005	154.85	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050811-SI-3-1-5-1-M	8/11/2005	157.05	Low Density/Medium Income
Summer	MGP	Staten Island	3	2	20050811-SI-3-2-4-1-M	8/11/2005	204.7	Low Density/High Income
Summer	MGP	Staten Island	3	5	20050812-SI-3-5-3-1-M	8/12/2005	187.2	Low Density/High Income
Summer	MGP	Staten Island	1	3	20050812-SI-1-3-3-1-M	8/12/2005	180.15	Low Density/Medium Income
Summer	MGP	Staten Island	1	3	20050813-SI-1-3-2-1-M	8/13/2005	181.95	Low Density/Medium Income
Summer	MGP	Staten Island	1	3	20050813-SI-1-3-4-1-M	8/13/2005	166.46	Low Density/Medium Income
Summer	MGP	Staten Island	1	3	20050813-SI-1-3-6-1-M	8/13/2005	148.25	Low Density/Medium Income
Summer	MGP	Staten Island	3	8	20050813-SI-3-8-3-1-M	8/13/2005	171.85	Low Density/High Income
Summer	MGP	Staten Island	1	3	20050815-SI-1-3-1-1-M	8/15/2005	159.7	Low Density/Medium Income
Summer	MGP	Staten Island	1	3	20050815-SI-1-3-2-1-M	8/15/2005	227.65	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050816-SI-3-1-1-1-M	8/16/2005	169.8	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050816-SI-3-1-2-1-M	8/16/2005	152.25	Low Density/Medium Income
Summer	MGP	Staten Island	2	2	20050817-SI-2-2-3-1-M	8/17/2005	146	Low Density/High Income
Summer	MGP	Staten Island	3	2	20050817-SI-3-2-4-1-M	8/17/2005	218.6	Low Density/High Income
Summer	MGP	Staten Island	3	2	20050818-SI-3-2-4-2-M	8/18/2005	180.85	Low Density/High Income
Summer	MGP	Staten Island	3	1	20050818-SI-3-1-5-2-M	8/18/2005	172.9	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050818-SI-3-1-5-1-M	8/18/2005	178.95	Low Density/Medium Income
Summer	MGP	Staten Island	2	2	20050818-SI-2-2-2-1-M	8/18/2005	140.35	Low Density/High Income
Summer	MGP	Staten Island	3	2	20050818-SI-3-2-4-1-M	8/18/2005	192	Low Density/High Income
Summer	MGP	Staten Island	3	4	20050819-SI-3-4-4-1-M	8/19/2005	151.05	Low Density/High Income
Summer	MGP	Staten Island	1	3	20050819-SI-1-3-6-1-M	8/19/2005	153.55	Low Density/Medium Income
Summer	MGP	Staten Island	3	6	20050819-SI-3-6-3-1-M	8/19/2005	137.1	Low Density/High Income

Table H-11
Sample Weights by Day and by Strata (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$	Stratum
Summer	MGP	Staten Island	3	8	20050820-SI-3-8-3-1-M	8/20/2005	202.9	Low Density/High Income
Summer	MGP	Staten Island	1	3	20050820-SI-1-3-5-1-M	8/20/2005	195.26	Low Density/Medium Income
Summer	MGP	Staten Island	3	4	20050822-SI-3-4-3-1-M	8/22/2005	175.8	Low Density/High Income
Summer	MGP	Staten Island	3	1	20050823-SI-3-1-1-1-M	8/23/2005	155.9	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050823-SI-3-1-3-1-M	8/23/2005	147.95	Low Density/Medium Income
Summer	MGP	Staten Island	3	1	20050824-SI-3-1-3-1-M	8/24/2005	176.05	Low Density/Medium Income
Summer	MGP	Staten Island	2	2	20050825-SI-2-2-1-1-M	8/25/2005	156.15	Low Density/High Income
Summer	Street Basket	Manhattan	12	0	20050808-M-12-0-1-1-D-SB	8/8/2005	215.61	NA
Summer	Street Basket	Manhattan	3	0	20050808-M-3-0-2-1-D-SB	8/8/2005	224.28	NA
Summer	Street Basket	Manhattan	5	0	20050808-M-5-0-1-1-D-SB	8/8/2005	238.48	NA
Summer	Street Basket	Manhattan	2	0	20050808-M-2-0-1-1-N-SB	8/8/2005	244.7	NA
Summer	Street Basket	Manhattan	4	0	20050808-M-4-0-1-1-N-SB	8/8/2005	228.08	NA
Summer	Street Basket	Manhattan	7	0	20050808-M-7-0-1-1-D-SB	8/8/2005	215.89	NA
Summer	Street Basket	Manhattan	8	0	20050808-M-8-0-2-1-D-SB	8/8/2005	231.35	NA
Summer	Street Basket	Manhattan	5	0	20050809-M-5-0-2-1-E-SB	8/9/2005	209.07	NA
Summer	Street Basket	Manhattan	3	0	20050809-M-3-0-1-1-E-SB	8/9/2005	225.57	NA
Summer	Street Basket	Manhattan	6	0	20050810-M-6-0-2-1-N-SB	8/10/2005	205.11	NA
Summer	Street Basket	Manhattan	6	0	20050812-M-6-0-1-1-N-SB	8/12/2005	189.29	NA
Summer	Street Basket	Manhattan	7	0	20050812-M-7-0-1-1-N-SB	8/12/2005	212.1	NA
Summer	Street Basket	Manhattan	8	0	20050813-M-8-0-1-1-N-SB	8/13/2005	253.37	NA
Summer	Street Basket	Manhattan	1	0	20050813-M-1-0-2-1-N-SB	8/13/2005	215.12	NA
Summer	Street Basket	Manhattan	4	0	20050815-M-4-0-1-1-D-SB	8/15/2005	231.51	NA
Summer	Street Basket	Manhattan	9	0	20050816-M-9-0-1-1-E-SB	8/16/2005	224.2	NA
Summer	Street Basket	Manhattan	4	0	20050816-M-4-0-1-1-D-SB	8/16/2005	230.29	NA
Summer	Street Basket	Manhattan	6	0	20050817-M-6-0-1-1-N-SB	8/17/2005	202.73	NA
Summer	Street Basket	Manhattan	12	0	20050818-M-12-0-2-1-D-SB	8/18/2005	229.84	NA
Summer	Street Basket	Manhattan	1	0	20050818-M-1-0-1-1-D-SB	8/18/2005	231.59	NA
Summer	Street Basket	Manhattan	5	0	20050818-M-5-0-4-1-N-SB	8/18/2005	231.72	NA
Summer	Street Basket	Manhattan	5	0	20050818-M-5-0-1-1-M-SB	8/18/2005	214.94	NA
Summer	Street Basket	Manhattan	3	0	20050818-M-3-0-1-1-E-SB	8/18/2005	231.05	NA
Summer	Street Basket	Manhattan	9	0	20050818-M-9-0-1-1-D-SB	8/18/2005	222.3	NA
Summer	Street Basket	Manhattan	2	0	20050819-M-2-0-1-1-D-SB	8/19/2005	165.54	NA
Summer	Street Basket	Manhattan	11	0	20050820-M-11-0-1-1-D-SB	8/20/2005	213.45	NA
Summer	Street Basket	Manhattan	2	0	20050822-M-2-0-1-1-E-SB	8/22/2005	222.71	NA
Summer	Street Basket	Manhattan	5	0	20050822-M-5-0-4-1-N-SB	8/22/2005	220.07	NA
Summer	Street Basket	Manhattan	3	0	20050822-M-3-0-1-1-N-SB	8/22/2005	227.08	NA
Summer	Street Basket	Manhattan	6	0	20050822-M-6-0-1-1-D-SB	8/22/2005	217	NA
Summer	Street Basket	Manhattan	7	0	20050822-M-7-0-2-1-E-SB	8/22/2005	210.87	NA
Summer	Street Basket	Bronx	4	0	20050809-BX-4-0-2-1-N-SB	8/9/2005	216.73	NA
Summer	Street Basket	Bronx	7	0	20050811-BX-7-0-1-1-N-SB	8/11/2005	231.32	NA
Summer	Street Basket	Bronx	6	0	20050816-BX-6-0-2-1-N-SB	8/16/2005	240.06	NA
Summer	Street Basket	Bronx	4	0	20050824-BX-4-0-2-1-N-SB	8/24/2005	212.84	NA
Summer	Street Basket	Bronx	4	0	20050825-BX-4-0-1-1-M-SB	8/25/2005	216.95	NA
Summer	Street Basket	Brooklyn	2	0	20050808-BK-2-0-1-1-N-SB	8/8/2005	216.73	NA
Summer	Street Basket	Brooklyn	1	0	20050809-BK-1-0-2-1-M-SB	8/9/2005	222.44	NA
Summer	Street Basket	Brooklyn	6	0	20050810-BK-6-0-1-1-N-SB	8/10/2005	214.06	NA
Summer	Street Basket	Brooklyn	5	0	20050813-BK-5-0-1-1-N-SB	8/13/2005	273.91	NA
Summer	Street Basket	Brooklyn	3	0	20050813-BK-3-0-1-1-N-SB	8/13/2005	247.5	NA
Summer	Street Basket	Brooklyn	9	0	20050815-BK-9-0-1-1-D-SB	8/15/2005	209.19	NA
Summer	Street Basket	Brooklyn	1	0	20050819-BK-1-0-1-1-N-SB	8/19/2005	258.67	NA
Summer	Street Basket	Brooklyn	2	0	20050822-BK-2-0-2-1-M-SB	8/22/2005	220.78	NA
Summer	Street Basket	Queens	10	0	20050811-Q-10-0-1-1-N-SB	8/11/2005	213.87	NA
Summer	Street Basket	Queens	2	0	20050813-Q-2-0-1-1-N-SB	8/13/2005	209.37	NA
Summer	Street Basket	Queens	8	0	20050816-Q-8-0-1-1-M-SB	8/16/2005	250.85	NA
Summer	Street Basket	Queens	4	0	20050819-Q-4-0-1-1-M-SB	8/19/2005	210.34	NA
Summer	Street Basket	Queens	10	0	20050820-Q-10-0-1-1-N-SB	8/20/2005	227.16	NA
Summer	Street Basket	Queens	2	0	20050824-Q-2-0-1-1-N-SB	8/24/2005	216.71	NA

(1) The target weights for samples were 200 pounds to 300 pounds for refuse and street basket samples and 100 pounds to 150 pounds for paper and MGP samples. Actual sample weights varied with a few samples that were acquired below the minimum and above the maximum target weights.

Table H-12

Truck Deliveries by Day			
Season	Delivery Date	Stream	Number of Deliveries
PWCS	5/15/2004	Refuse	19
PWCS	5/17/2004	Refuse	21
PWCS	5/18/2004	Refuse	21
PWCS	5/19/2004	Refuse	21
PWCS	5/20/2004	Refuse	21
PWCS	5/21/2004	Refuse	20
PWCS	5/22/2004	Refuse	21
PWCS	5/24/2004	Refuse	16
PWCS	5/25/2004	Refuse	21
PWCS	5/26/2004	Refuse	18
PWCS	5/27/2004	Refuse	1
PWCS	6/7/2004	Paper	15
PWCS	6/7/2004	MGP	17
PWCS	6/8/2004	Paper	17
PWCS	6/8/2004	MGP	20
PWCS	6/9/2004	Paper	17
PWCS	6/9/2004	MGP	16
PWCS	6/10/2004	Paper	15
PWCS	6/10/2004	MGP	17
PWCS	6/11/2004	Paper	17
PWCS	6/11/2004	MGP	17
PWCS	6/12/2004	Paper	17
PWCS	6/12/2004	MGP	17
Fall	10/18/2004	Refuse	15
Fall	10/18/2004	Paper	6
Fall	10/18/2004	MGP	12
Fall	10/18/2004	Street Basket	5
Fall	10/19/2004	Refuse	30
Fall	10/19/2004	Paper	1
Fall	10/19/2004	MGP	5
Fall	10/19/2004	Street Basket	5
Fall	10/20/2004	Refuse	23
Fall	10/20/2004	Paper	2
Fall	10/20/2004	MGP	11
Fall	10/20/2004	Street Basket	3
Fall	10/21/2004	Refuse	20
Fall	10/21/2004	Paper	4
Fall	10/21/2004	MGP	12
Fall	10/21/2004	Street Basket	3
Fall	10/22/2004	Refuse	14
Fall	10/22/2004	Paper	6

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Fall	$10 / 22 / 2004$	MGP	14
Fall	$10 / 22 / 2004$	Street Basket	3
Fall	$10 / 23 / 2004$	Refuse	18
Fall	$10 / 23 / 2004$	Paper	6
Fall	$10 / 23 / 2004$	MGP	14
Fall	$10 / 23 / 2004$	Street Basket	3
Fall	$10 / 25 / 2004$	Refuse	17
Fall	$10 / 25 / 2004$	Paper	4
Fall	$10 / 25 / 2004$	MGP	12
Fall	$10 / 25 / 2004$	Street Basket	4
Fall	$10 / 26 / 2004$	Refuse	20
Fall	$10 / 26 / 2004$	Paper	2
Fall	$10 / 26 / 2004$	MGP	8
Fall	$10 / 26 / 2004$	Street Basket	4
Fall	$10 / 27 / 2004$	Refuse	18
Fall	$10 / 27 / 2004$	Paper	4
Fall	$10 / 27 / 2004$	MGP	12
Fall	$10 / 27 / 2004$	Street Basket	3
Fall	$10 / 28 / 2004$	Refuse	12
Fall	$10 / 28 / 2004$	Paper	2
Fall	$10 / 28 / 2004$	MGP	11
Fall	$10 / 28 / 2004$	Street Basket	3
Fall	$10 / 29 / 2004$	Refuse	17
Fall	$10 / 29 / 2004$	Paper	5
Fall	$10 / 29 / 2004$	MGP	16
Fall	$10 / 29 / 2004$	Street Basket	3
Fall	$10 / 30 / 2004$	Refuse	17
Fall	$10 / 30 / 2004$	Paper	7
Fall	$10 / 30 / 2004$	MGP	13
Fall	$10 / 30 / 2004$	Street Basket	2
Fall	$11 / 1 / 2004$	Refuse	16
Fall	$11 / 1 / 2004$	Paper	5
Fall	$11 / 1 / 2004$	MGP	7
Fall	$11 / 1 / 2004$	Street Basket	6
Fall	$11 / 3 / 2004$	Refuse	21
Fall	$11 / 3 / 2004$	Paper	2
Fall	$11 / 3 / 2004$	MGP	7
Fall	$11 / 3 / 2004$	Street Basket	1
Fall	$11 / 4 / 2004$	Refuse	20
Fall	$11 / 4 / 2004$	Paper	2

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Fall	$11 / 4 / 2004$	MGP	12
Fall	$11 / 4 / 2004$	Street Basket	1
Fall	$11 / 5 / 2004$	Refuse	16
Fall	$11 / 5 / 2004$	Paper	4
Fall	$11 / 5 / 2004$	MGP	14
Fall	$11 / 5 / 2004$	Street Basket	1
Fall	$11 / 6 / 2004$	Refuse	18
Fall	$1116 / 2004$	Paper	4
Fall	$11 / 6 / 2004$	MGP	14
Winter	$3 / 8 / 2005$	Refuse	25
Winter	$3 / 8 / 2005$	Paper	3
Winter	$3 / 8 / 2005$	MGP	11
Winter	$3 / 8 / 2005$	Street Basket	4
Winter	$3 / 9 / 2005$	Refuse	26
Winter	$3 / 9 / 2005$	Paper	2
Winter	$3 / 9 / 2005$	MGP	9
Winter	$3 / 9 / 2005$	Street Basket	2
Winter	$3 / 10 / 2005$	Refuse	26
Winter	$3 / 10 / 2005$	Paper	6
Winter	$3 / 10 / 2005$	MGP	17
Winter	$3 / 10 / 2005$	Street Basket	5
Winter	$3 / 11 / 2005$	Refuse	19
Winter	$3 / 11 / 2005$	Paper	7
Winter	$3 / 11 / 2005$	MGP	11
Winter	$3 / 11 / 2005$	Street Basket	2
Winter	$3 / 12 / 2005$	Refuse	14
Winter	$3 / 12 / 2005$	Paper	7
Winter	$3 / 12 / 2005$	MGP	11
Winter	$3 / 12 / 2005$	Street Basket	2
Winter	$3 / 14 / 2005$	Refuse	15
Winter	$3 / 14 / 2005$	Paper	2
Winter	$3 / 14 / 2005$	MGP	13
Winter	$3 / 14 / 2005$	Street Basket	8
Winter	$3 / 15 / 2005$	Refuse	24
Winter	$3 / 15 / 2005$	Paper	4
Winter	$3 / 15 / 2005$	MGP	9
Winter	$3 / 15 / 2005$	Street Basket	4
Winter	$3 / 16 / 2005$	Refuse	22
Winter	$3 / 16 / 2005$	Paper	1
$3 / 16 / 2005$	MGP	8	
Winter			

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Winter	3/16/2005	Street Basket	1
Winter	3/17/2005	Refuse	17
Winter	3/17/2005	Paper	3
Winter	3/17/2005	MGP	15
Winter	3/17/2005	Street Basket	3
Winter	3/18/2005	Refuse	15
Winter	3/18/2005	Paper	7
Winter	3/18/2005	MGP	16
Winter	3/18/2005	Street Basket	2
Winter	3/19/2005	Refuse	18
Winter	3/19/2005	Paper	7
Winter	3/19/2005	MGP	15
Winter	3/19/2005	Street Basket	2
Winter	3/21/2005	Refuse	27
Winter	3/21/2005	Paper	3
Winter	3/21/2005	MGP	10
Winter	3/21/2005	Street Basket	2
Winter	3/22/2005	Refuse	18
Winter	3/22/2005	Paper	3
Winter	3/22/2005	MGP	5
Winter	3/22/2005	Street Basket	2
Winter	3/23/2005	Refuse	15
Winter	3/23/2005	Paper	2
Winter	3/23/2005	MGP	8
Winter	3/23/2005	Street Basket	5
Winter	3/24/2005	Refuse	16
Winter	3/24/2005	Paper	4
Winter	3/24/2005	MGP	10
Winter	3/24/2005	Street Basket	1
Winter	3/25/2005	Refuse	14
Winter	3/25/2005	Paper	8
Winter	3/25/2005	MGP	16
Winter	3/25/2005	Street Basket	3
Winter	3/26/2005	Refuse	17
Winter	3/26/2005	Paper	2
Winter	3/26/2005	MGP	12
Winter	3/26/2005	Street Basket	1
Winter	3/28/2005	Refuse	12
Winter	3/28/2005	Paper	3
Winter	3/28/2005	MGP	13

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Spring	$5 / 9 / 2005$	Refuse	18
Spring	$5 / 9 / 2005$	Paper	6
Spring	$5 / 9 / 2005$	MGP	14
Spring	$5 / 10 / 2005$	Refuse	31
Spring	$5 / 10 / 2005$	Paper	4
Spring	$5 / 10 / 2005$	MGP	14
Spring	$5 / 10 / 2005$	Street Basket	1
Spring	$5 / 11 / 2005$	Refuse	20
Spring	$5 / 11 / 2005$	Paper	4
Spring	$5 / 11 / 2005$	MGP	16
Spring	$5 / 11 / 2005$	Street Basket	4
Spring	$5 / 12 / 2005$	Refuse	25
Spring	$5 / 12 / 2005$	Paper	7
Spring	$5 / 12 / 2005$	MGP	13
Spring	$5 / 12 / 2005$	Street Basket	3
Spring	$5 / 13 / 2005$	Refuse	24
Spring	$5 / 13 / 2005$	Paper	5
Spring	$5 / 13 / 2005$	MGP	14
Spring	$5 / 13 / 2005$	Street Basket	5
Spring	$5 / 14 / 2005$	Refuse	25
Spring	$5 / 14 / 2005$	Paper	4
Spring	$5 / 14 / 2005$	MGP	8
Spring	$5 / 14 / 2005$	Street Basket	4
Spring	$5 / 16 / 2005$	Refuse	21
Spring	$5 / 16 / 2005$	Paper	8
Spring	$5 / 16 / 2005$	MGP	11
Spring	$5 / 16 / 2005$	Street Basket	6
Spring	$5 / 17 / 2005$	Refuse	24
Spring	$5 / 17 / 2005$	Paper	5
Spring	$5 / 17 / 2005$	MGP	13
Spring	$5 / 17 / 2005$	Street Basket	2
Spring	$5 / 18 / 2005$	Refuse	23
Spring	$5 / 18 / 2005$	Paper	3
Spring	$5 / 18 / 2005$	MGP	12
Spring	$5 / 18 / 2005$	Street Basket	4
Spring	$5 / 19 / 2005$	Refuse	20
Spring	$5 / 19 / 2005$	Paper	4
Spring	$5 / 19 / 2005$	MGP	9
Spring	$5 / 20 / 2005$	Refuse	19
Spring	$5 / 20 / 2005$	Paper	3

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Spring	$5 / 20 / 2005$	MGP	12
Spring	$5 / 20 / 2005$	Street Basket	5
Spring	$5 / 21 / 2005$	Refuse	16
Spring	$5 / 21 / 2005$	Paper	8
Spring	$5 / 21 / 2005$	MGP	10
Spring	$5 / 21 / 2005$	Street Basket	2
Spring	$5 / 23 / 2005$	Refuse	27
Spring	$5 / 23 / 2005$	Paper	3
Spring	$5 / 23 / 2005$	MGP	13
Spring	$5 / 23 / 2005$	Street Basket	4
Spring	$5 / 24 / 2005$	Refuse	28
Spring	$5 / 24 / 2005$	Paper	3
Spring	$5 / 24 / 2005$	MGP	14
Spring	$5 / 24 / 2005$	Street Basket	2
Spring	$5 / 25 / 2005$	Refuse	25
Spring	$5 / 25 / 2005$	Paper	3
Spring	$5 / 25 / 2005$	MGP	15
Spring	$5 / 25 / 2005$	Street Basket	4
Spring	$5 / 26 / 2005$	Refuse	27
Spring	$5 / 26 / 2005$	Paper	3
Spring	$5 / 26 / 2005$	MGP	15
Spring	$5 / 26 / 2005$	Street Basket	2
Summer	$8 / 8 / 2005$	Refuse	20
Summer	$8 / 8 / 2005$	Paper	9
Summer	$8 / 8 / 2005$	MGP	26
Summer	$8 / 8 / 2005$	Street Basket	8
Summer	$8 / 9 / 2005$	Refuse	25
Summer	$8 / 9 / 2005$	Paper	1
Summer	$8 / 9 / 2005$	MGP	9
Summer	$8 / 9 / 2005$	Street Basket	4
Summer	$8 / 10 / 2005$	Refuse	25
Summer	$8 / 10 / 2005$	Paper	2
Summer	$8 / 10 / 2005$	MGP	9
Summer	$8 / 10 / 2005$	Street Basket	2
Summer	$8 / 11 / 2005$	Refuse	21
Summer	$8 / 11 / 2005$	Paper	4
Summer	$8 / 11 / 2005$	MGP	14
Summer	$8 / 11 / 2005$	Street Basket	2
Summer	$8 / 12 / 2005$	Refuse	18
Summer	$8 / 12 / 2005$	Paper	8

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Summer	$8 / 12 / 2005$	MGP	20
Summer	$8 / 12 / 2005$	Street Basket	2
Summer	$8 / 13 / 2005$	Refuse	19
Summer	$8 / 13 / 2005$	Paper	7
Summer	$8 / 13 / 2005$	MGP	20
Summer	$8 / 13 / 2005$	Street Basket	5
Summer	$8 / 15 / 2005$	Refuse	17
Summer	$8 / 15 / 2005$	Paper	7
Summer	$8 / 15 / 2005$	MGP	16
Summer	$8 / 15 / 2005$	Street Basket	2
Summer	$8 / 16 / 2005$	Refuse	21
Summer	$8 / 16 / 2005$	Paper	7
Summer	$8 / 16 / 2005$	MGP	12
Summer	$8 / 16 / 2005$	Street Basket	4
Summer	$8 / 17 / 2005$	Refuse	27
Summer	$8 / 17 / 2005$	Paper	2
Summer	$8 / 17 / 2005$	MGP	6
Summer	$8 / 17 / 2005$	Street Basket	1
Summer	$8 / 18 / 2005$	Refuse	29
Summer	$8 / 18 / 2005$	Paper	5
Summer	$8 / 18 / 2005$	MGP	10
Summer	$8 / 18 / 2005$	Street Basket	6
Summer	$8 / 19 / 2005$	Refuse	21
Summer	$8 / 19 / 2005$	Paper	7
Summer	$8 / 19 / 2005$	MGP	18
Summer	$8 / 19 / 2005$	Street Basket	3
Summer	$8 / 20 / 2005$	Refuse	26
Summer	$8 / 20 / 2005$	Paper	4
Summer	$8 / 20 / 2005$	MGP	20
Summer	$8 / 20 / 2005$	Street Basket	2
Summer	$8 / 22 / 2005$	Refuse	29
Summer	$8 / 22 / 2005$	Paper	7
Summer	$8 / 222005$	MGP	24
Summer	$8 / 22 / 2005$	Street Basket	6
Summer	$8 / 23 / 2005$	Refuse	34
Summer	$8 / 23 / 2005$	Paper	1
Summer	$8 / 23 / 2005$	MGP	12
Summer	$8 / 24 / 2005$	Refuse	23
Summer	$8 / 24 / 2005$	MGP	6
Summer	$8 / 24 / 2005$	Street Basket	2

Table H-12
Truck Deliveries by Day (continued)

Season	Delivery Date	Stream	Number of Deliveries
Summer	$8 / 24 / 2005$	Street Basket	2
Summer	$8 / 25 / 2005$	Refuse	19
Summer	$8 / 25 / 2005$	Paper	2
Summer	$8 / 25 / 2005$	MGP	8
Summer	$8 / 25 / 2005$	Street Basket	1

Table H-13
Weight of Street Basket Samples

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$
Fall	Street Basket	Manhattan	2	21	20041018-M-2-21-2-1-SB	10/18/2004	167.38
Fall	Street Basket	Manhattan	10	1	20041018-M-10-1-1-1-SB	10/18/2004	232.7
Fall	Street Basket	Manhattan	2	21	20041018-M-2-21-1-1-SB	10/18/2004	214.4
Fall	Street Basket	Manhattan	7	1	20041018-M-7-1-1-1-SB	10/18/2004	237.61
Fall	Street Basket	Manhattan	5	51	20041018-M-5-51-1-1-SB	10/18/2004	204.52
Fall	Street Basket	Manhattan	1	11	20041019-M-1-11-2-1-SB	10/19/2004	210.27
Fall	Street Basket	Manhattan	7	0	20041019-M-7-0-1-1-SB	10/19/2004	222.85
Fall	Street Basket	Manhattan	1	13	20041020-M-1-13-1-1-SB	10/20/2004	267.4
Fall	Street Basket	Manhattan	3	31	20041020-M-3-31-1-1-SB	10/20/2004	227.2
Fall	Street Basket	Manhattan	2	21	20041021-M-2-21-1-1-SB	10/21/2004	197.75
Fall	Street Basket	Manhattan	8	0	20041021-M-8-0-2-1-SB	10/21/2004	221.05
Fall	Street Basket	Manhattan	3	32	20041022-M-3-32-1-1-SB	10/22/2004	250.11
Fall	Street Basket	Manhattan	5	51	20041025-M-5-51-2-1-SB	10/25/2004	197
Fall	Street Basket	Manhattan	4	1	20041025-M-4-1-1-1-SB	10/25/2004	200.5
Fall	Street Basket	Manhattan	7	0	20041025-M-7-0-1-1-SB	10/25/2004	210.48
Fall	Street Basket	Manhattan	2	21	20041026-M-2-21-2-1-SB	10/26/2004	194.08
Fall	Street Basket	Manhattan	12	0	20041026-M-12-0-1-1-SB	10/26/2004	207.87
Fall	Street Basket	Manhattan	7	0	20041026-M-7-0-2-1-SB	10/26/2004	203.49
Fall	Street Basket	Manhattan	12	0	20041027-M-12-0-1-1-SB	10/27/2004	198.14
Fall	Street Basket	Manhattan	9	0	20041027-M-9-0-1-1-SB	10/27/2004	206.2
Fall	Street Basket	Manhattan	4	1	20041027-M-4-1-1-1-SB	10/27/2004	203.57
Fall	Street Basket	Manhattan	8	0	20041028-M-8-0-1-1-SB	10/28/2004	197.46
Fall	Street Basket	Manhattan	3	33	20041028-M-3-33-1-1-SB	10/28/2004	206.56
Fall	Street Basket	Manhattan	6	61	20041029-M-6-61-1-1-SB	10/29/2004	213.66
Fall	Street Basket	Manhattan	3	33	20041030-M-3-33-1-1-SB	10/30/2004	200.99
Fall	Street Basket	Manhattan	5	51	20041101-M-5-51-4-1-SB	11/1/2004	214.4
Fall	Street Basket	Manhattan	6	61	20041101-M-6-61-3-1-SB	11/1/2004	207.28
Fall	Street Basket	Manhattan	11	0	20041101-M-11-0-1-1-SB	11/1/2004	205.26
Fall	Street Basket	Manhattan	6	61	20041103-M-6-61-3-1-SB	11/3/2004	208.52
Fall	Street Basket	Manhattan	5	51	20041104-M-5-51-1-1-SB	11/4/2004	201.13
Fall	Street Basket	Bronx	4	1	20041019-BX-4-1-2-1-SB	10/19/2004	187.56
Fall	Street Basket	Bronx	4	2	20041022-BX-4-2-1-1-SB	10/22/2004	193.68
Fall	Street Basket	Bronx	7	7	20041028-BX-7-7-0-1-SB	10/28/2004	199.54
Fall	Street Basket	Brooklyn	12	1	20041019-BK-12-1-1-1-SB	10/19/2004	217.2
Fall	Street Basket	Brooklyn	8	0	20041021-BK-8-0-1-1-SB	10/21/2004	210.76
Fall	Street Basket	Brooklyn	6	2	20041023-BK-6-2-1-1-SB	10/23/2004	227.04
Fall	Street Basket	Brooklyn	3	0	20041025-BK-3-0-2-1-SB	10/25/2004	209.71
Fall	Street Basket	Brooklyn	1	0	20041026-BK-1-0-1-1-SB	10/26/2004	192.35
Fall	Street Basket	Brooklyn	13	1	20041029-BK-13-1-1-1-SB	10/29/2004	202.07
Fall	Street Basket	Brooklyn	15	0	20041030-BK-15-0-1-1-SB	10/30/2004	212.63
Fall	Street Basket	Brooklyn	2	0	20041101-BK-2-0-2-1-SB	11/1/2004	215.7
Fall	Street Basket	Brooklyn	12	123	20041101-BK-12-123-1-1-SB	11/1/2004	216.31
Fall	Street Basket	Queens	8	1	20041019-Q-8-1-1-1-SB	10/19/2004	204.26
Fall	Street Basket	Queens	5	0	20041020-Q-5-0-1-1-SB	10/20/2004	219.7
Fall	Street Basket	Queens	14	0	20041022-Q-14-0-1-1-SB	10/22/2004	212.38
Fall	Street Basket	Queens	11	1	20041023-Q-11-1-1-1-SB	10/23/2004	192.55
Fall	Street Basket	Queens	12	0	20041029-Q-12-0-1-1-SB	10/29/2004	213.65
Fall	Street Basket	Queens	3	0	20041101-Q-3-0-3-1-SB	11/1/2004	209.61

Table H -13
Weight of Street Basket Samples (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$
Fall	Street Basket	Queens	8	1	20041105-Q-8-1-4-1-SB	11/5/2004	200.74
Fall	Street Basket	Staten Island	2	21	20041023-SI-2-21-1-1-SB	10/23/2004	193.44
Winter	Street Basket	Manhattan	5	0	20050308-M-5-0-1-1-D-SB	3/8/2005	221.27
Winter	Street Basket	Manhattan	5	0	20050308-M-5-0-1-1-N-SB	3/8/2005	231.48
Winter	Street Basket	Manhattan	4	0	20050308-M-4-0-1-1-M-SB	3/8/2005	212.23
Winter	Street Basket	Manhattan	1	0	20050308-M-1-0-1-1-N-SB	3/8/2005	223.94
Winter	Street Basket	Manhattan	2	0	20050309-M-2-0-1-1-D-SB	3/9/2005	233.58
Winter	Street Basket	Manhattan	5	0	20050309-M-5-0-1-1-E-SB	3/9/2005	232.3
Winter	Street Basket	Manhattan	5	0	20050310-M-5-0-2-2-N-SB	3/10/2005	234.24
Winter	Street Basket	Manhattan	5	0	20050310-M-5-0-2-1-N-SB	3/10/2005	220.64
Winter	Street Basket	Manhattan	7	0	20050310-M-7-0-1-1-E-SB	3/10/2005	225.69
Winter	Street Basket	Manhattan	12	0	20050310-M-12-0-1-1-D-SB	3/10/2005	207.84
Winter	Street Basket	Manhattan	2	0	20050310-M-2-0-1-1-N-SB	3/10/2005	217.07
Winter	Street Basket	Manhattan	4	0	20050310-M-4-0-1-1-E-SB	3/10/2005	217.12
Winter	Street Basket	Manhattan	3	0	20050311-M-3-0-1-1-M-SB	3/11/2005	210.1
Winter	Street Basket	Manhattan	4	0	20050312-M-4-0-1-1-E-SB	3/12/2005	214.74
Winter	Street Basket	Manhattan	5	0	20050312-M-5-0-2-1-E-SB	3/12/2005	211.04
Winter	Street Basket	Manhattan	4	0	20050314-M-4-0-1-1-N-SB	3/14/2005	226.58
Winter	Street Basket	Manhattan	4	0	20050314-M-4-0-1-1-M-SB	3/14/2005	194.73
Winter	Street Basket	Manhattan	3	0	20050314-M-3-0-1-1-N-SB	3/14/2005	211.35
Winter	Street Basket	Manhattan	5	0	20050314-M-5-0-1-1-M-SB	3/14/2005	127.84
Winter	Street Basket	Manhattan	2	0	20050314-M-2-0-3-1-M-SB	3/14/2005	228.77
Winter	Street Basket	Manhattan	1	0	20050314-M-1-0-2-1-D-SB	3/14/2005	228.67
Winter	Street Basket	Manhattan	5	0	20050314-M-5-0-1-1-E-SB	3/14/2005	243.83
Winter	Street Basket	Manhattan	1	0	20050314-M-1-0-1-1-E-SB	3/14/2005	232.3
Winter	Street Basket	Manhattan	10	0	20050315-M-10-0-1-1-M-SB	3/15/2005	217.84
Winter	Street Basket	Manhattan	8	0	20050315-M-8-0-2-1-E-SB	3/15/2005	216.17
Winter	Street Basket	Manhattan	1	0	20050315-M-1-0-1-1-N-SB	3/15/2005	210.22
Winter	Street Basket	Manhattan	2	0	20050316-M-2-0-1-1-N-SB	3/16/2005	213.95
Winter	Street Basket	Manhattan	9	0	20050317-M-9-0-1-1-M-SB	3/17/2005	210.54
Winter	Street Basket	Manhattan	10	0	20050318-M-10-0-1-1-M-SB	3/18/2005	214
Winter	Street Basket	Manhattan	11	0	20050318-M-11-0-1-1-M-SB	3/18/2005	212.67
Winter	Street Basket	Manhattan	9	0	20050319-M-9-0-1-1-N-SB	3/19/2005	211.63
Winter	Street Basket	Manhattan	11	0	20050319-M-11-0-1-1-M-SB	3/19/2005	236.86
Winter	Street Basket	Manhattan	10	0	20050321-M-10-0-1-1-D-SB	3/21/2005	230.04
Winter	Street Basket	Manhattan	12	0	20050321-M-12-0-2-1-M-SB	3/21/2005	213.72
Winter	Street Basket	Manhattan	11	0	20050323-M-11-0-1-1-D-SB	3/23/2005	281.47
Winter	Street Basket	Manhattan	3	0	20050323-M-3-0-1-1-M-SB	3/23/2005	229.46
Winter	Street Basket	Manhattan	7	0	20050324-M-7-0-1-1-N-SB	3/24/2005	224.32
Winter	Street Basket	Manhattan	1	0	20050325-M-1-0-2-1-D-SB	3/25/2005	226.23
Winter	Street Basket	Manhattan	5	0	20050325-M-5-0-2-1-E-SB	3/25/2005	225.8
Winter	Street Basket	Manhattan	1	0	20050325-M-1-0-1-1-N-SB	3/25/2005	211.07
Winter	Street Basket	Brooklyn	14	0	20050311-BK-14-0-1-1-M-SB	3/11/2005	260.17
Winter	Street Basket	Brooklyn	2	0	20050317-BK-2-0-2-1-D-SB	3/17/2005	204.97
Winter	Street Basket	Brooklyn	2	0	20050322-BK-2-0-2-1-D-SB	3/22/2005	227.88
Winter	Street Basket	Brooklyn	12	0	20050323-BK-12-0-1-1-D-SB	3/23/2005	213.35
Winter	Street Basket	Brooklyn	17	0	20050323-BK-17-0-1-1-N-SB	3/23/2005	217.17
Winter	Street Basket	Brooklyn	7	0	20050323-BK-7-0-2-1-M-SB	3/23/2005	226.77

Table H -13
Weight of Street Basket Samples (continued)

Season	Stream	Borough	District	Section	Sampleld	Sample Date	Sample Weight ${ }^{(1)}$
Winter	Street Basket	Brooklyn	2	0	20050326-BK-2-0-2-1-D-SB	3/26/2005	257.29
Winter	Street Basket	Queens	2	0	20050315-Q-2-0-1-1-M-SB	3/15/2005	221.97
Winter	Street Basket	Queens	1	0	20050317-Q-1-0-1-1-N-SB	3/17/2005	174.03
Winter	Street Basket	Queens	5	0	20050322-Q-5-0-1-1-E-SB	3/22/2005	232.15
Spring	Street Basket	Manhattan	5	0	20050510-M-5-0-2-1-E-SB	5/10/2005	212.1
Spring	Street Basket	Manhattan	4	0	20050511-M-4-0-1-2-M-SB	5/11/2005	269.04
Spring	Street Basket	Manhattan	5	0	20050511-M-5-0-1-1-N-SB	5/11/2005	221
Spring	Street Basket	Manhattan	4	0	20050511-M-4-0-1-1-M-SB	5/11/2005	239.72
Spring	Street Basket	Manhattan	8	0	20050511-M-8-0-2-1-E-SB	5/11/2005	239.9
Spring	Street Basket	Manhattan	5	0	20050511-M-5-0-1-2-N-SB	5/11/2005	208.84
Spring	Street Basket	Manhattan	11	0	20050511-M-11-0-1-1-D-SB	5/11/2005	257.39
Spring	Street Basket	Manhattan	7	0	20050512-M-7-0-1-1-N-SB	5/12/2005	219.45
Spring	Street Basket	Manhattan	5	0	20050512-M-5-0-1-1-M-SB	5/12/2005	260.6
Spring	Street Basket	Manhattan	1	0	20050512-M-1-0-2-1-E-SB	5/12/2005	224.25
Spring	Street Basket	Manhattan	7	0	20050513-M-7-0-1-1-E-SB	5/13/2005	202.65
Spring	Street Basket	Manhattan	4	0	20050513-M-4-0-1-1-N-SB	5/13/2005	224.5
Spring	Street Basket	Manhattan	4	0	20050513-M-4-0-1-1-E-SB	5/13/2005	225.9
Spring	Street Basket	Manhattan	3	0	20050513-M-3-0-1-1-N-SB	5/13/2005	279.85
Spring	Street Basket	Manhattan	3	0	20050514-M-3-0-1-1-D-SB	5/14/2005	214.05
Spring	Street Basket	Manhattan	5	0	20050514-M-5-0-1-1-E-SB	5/14/2005	221.75
Spring	Street Basket	Manhattan	1	0	20050514-M-1-0-1-1-E-SB	5/14/2005	274.75
Spring	Street Basket	Manhattan	1	0	20050514-M-1-0-2-1-D-SB	5/14/2005	223.89
Spring	Street Basket	Manhattan	1	0	20050516-M-1-0-1-1-N-SB	5/16/2005	207.35
Spring	Street Basket	Manhattan	6	0	20050516-M-6-0-3-1-M-SB	5/16/2005	218.25
Spring	Street Basket	Manhattan	3	0	20050516-M-3-0-1-1-N-SB	5/16/2005	253.95
Spring	Street Basket	Manhattan	2	0	20050516-M-2-0-1-1-D-SB	5/16/2005	265.7
Spring	Street Basket	Manhattan	5	0	20050516-M-5-0-3-1-E-SB	5/16/2005	223.1
Spring	Street Basket	Manhattan	2	0	20050516-M-2-0-2-1-E-SB	5/16/2005	217.95
Spring	Street Basket	Manhattan	5	0	20050517-M-5-0-1-1-E-SB	5/17/2005	232.95
Spring	Street Basket	Manhattan	12	0	20050518-M-12-0-2-1-M-SB	5/18/2005	218.85
Spring	Street Basket	Manhattan	10	0	20050518-M-10-0-1-1-D-SB	5/18/2005	221.8
Spring	Street Basket	Manhattan	5	0	20050518-M-5-0-1-1-E-SB	5/18/2005	225.35
Spring	Street Basket	Manhattan	12	0	20050520-M-12-0-1-1-M-SB	5/20/2005	233.55
Spring	Street Basket	Manhattan	5	0	20050520-M-5-0-2-1-N-SB	5/20/2005	225.8
Spring	Street Basket	Manhattan	8	0	20050520-M-8-0-1-1-E-SB	5/20/2005	238.65
Spring	Street Basket	Manhattan	3	0	20050520-M-3-0-1-1-M-SB	5/20/2005	267.75
Spring	Street Basket	Manhattan	2	0	20050521-M-2-0-1-1-E-SB	5/21/2005	222.45
Spring	Street Basket	Manhattan	5	0	20050521-M-5-0-2-1-N-SB	5/21/2005	195.5
Spring	Street Basket	Manhattan	4	0	20050523-M-4-0-1-1-E-SB	5/23/2005	201.5
Spring	Street Basket	Manhattan	2	0	20050523-M-2-0-2-1-M-SB	5/23/2005	218
Spring	Street Basket	Manhattan	5	0	20050523-M-5-0-1-1-M-SB	5/23/2005	219.35
Spring	Street Basket	Manhattan	2	0	20050524-M-2-0-1-1-N-SB	5/24/2005	217.6
Spring	Street Basket	Manhattan	8	0	20050524-M-8-0-2-1-E-SB	5/24/2005	228.75
Spring	Street Basket	Manhattan	2	0	20050525-M-2-0-1-1-D-SB	5/25/2005	269.84
Spring	Street Basket	Manhattan	1	0	20050525-M-1-0-2-1-D-SB	5/25/2005	263.2
Spring	Street Basket	Manhattan	10	0	20050525-M-10-0-1-1-D-SB	5/25/2005	239.6
Spring	Street Basket	Manhattan	4	0	20050526-M-4-0-1-1-E-SB	5/26/2005	275.55
Spring	Street Basket	Manhattan	1	0	20050526-M-1-0-1-1-E-SB	5/26/2005	225.3

Table H -13
Weight of Street Basket Samples (continued)

Season	Stream	Borough	District	Section	SamplelD	Sample Date	Sample Weight ${ }^{(1)}$
Spring	Street Basket	Brooklyn	14	0	20050513-BK-14-0-1-1-M-SB	5/13/2005	207.4
Spring	Street Basket	Brooklyn	7	0	20050518-BK-7-0-1-1-N-SB	5/18/2005	214.8
Spring	Street Basket	Brooklyn	2	0	20050520-BK-2-0-1-1-N-SB	5/20/2005	247.15
Spring	Street Basket	Queens	6	0	20050517-Q-6-0-1-1-E-SB	5/17/2005	252.15
Spring	Street Basket	Queens	1	0	20050523-Q-1-0-1-1-E-SB	5/23/2005	245.8
Spring	Street Basket	Queens	6	0	20050525-Q-6-0-1-1-E-SB	5/25/2005	234.3
Summer	Street Basket	Manhattan	12	0	20050808-M-12-0-1-1-D-SB	8/8/2005	215.61
Summer	Street Basket	Manhattan	3	0	20050808-M-3-0-2-1-D-SB	8/8/2005	224.28
Summer	Street Basket	Manhattan	5	0	20050808-M-5-0-1-1-D-SB	8/8/2005	238.48
Summer	Street Basket	Manhattan	2	0	20050808-M-2-0-1-1-N-SB	8/8/2005	244.7
Summer	Street Basket	Manhattan	4	0	20050808-M-4-0-1-1-N-SB	8/8/2005	228.08
Summer	Street Basket	Manhattan	7	0	20050808-M-7-0-1-1-D-SB	8/8/2005	215.89
Summer	Street Basket	Manhattan	8	0	20050808-M-8-0-2-1-D-SB	8/8/2005	231.35
Summer	Street Basket	Manhattan	5	0	20050809-M-5-0-2-1-E-SB	8/9/2005	209.07
Summer	Street Basket	Manhattan	3	0	20050809-M-3-0-1-1-E-SB	8/9/2005	225.57
Summer	Street Basket	Manhattan	6	0	20050810-M-6-0-2-1-N-SB	8/10/2005	205.11
Summer	Street Basket	Manhattan	6	0	20050812-M-6-0-1-1-N-SB	8/12/2005	189.29
Summer	Street Basket	Manhattan	7	0	20050812-M-7-0-1-1-N-SB	8/12/2005	212.1
Summer	Street Basket	Manhattan	8	0	20050813-M-8-0-1-1-N-SB	8/13/2005	253.37
Summer	Street Basket	Manhattan	1	0	20050813-M-1-0-2-1-N-SB	8/13/2005	215.12
Summer	Street Basket	Manhattan	4	0	20050815-M-4-0-1-1-D-SB	8/15/2005	231.51
Summer	Street Basket	Manhattan	9	0	20050816-M-9-0-1-1-E-SB	8/16/2005	224.2
Summer	Street Basket	Manhattan	4	0	20050816-M-4-0-1-1-D-SB	8/16/2005	230.29
Summer	Street Basket	Manhattan	6	0	20050817-M-6-0-1-1-N-SB	8/17/2005	202.73
Summer	Street Basket	Manhattan	12	0	20050818-M-12-0-2-1-D-SB	8/18/2005	229.84
Summer	Street Basket	Manhattan	1	0	20050818-M-1-0-1-1-D-SB	8/18/2005	231.59
Summer	Street Basket	Manhattan	5	0	20050818-M-5-0-4-1-N-SB	8/18/2005	231.72
Summer	Street Basket	Manhattan	5	0	20050818-M-5-0-1-1-M-SB	8/18/2005	214.94
Summer	Street Basket	Manhattan	3	0	20050818-M-3-0-1-1-E-SB	8/18/2005	231.05
Summer	Street Basket	Manhattan	9	0	20050818-M-9-0-1-1-D-SB	8/18/2005	222.3
Summer	Street Basket	Manhattan	2	0	20050819-M-2-0-1-1-D-SB	8/19/2005	165.54
Summer	Street Basket	Manhattan	11	0	20050820-M-11-0-1-1-D-SB	8/20/2005	213.45
Summer	Street Basket	Manhattan	2	0	20050822-M-2-0-1-1-E-SB	8/22/2005	222.71
Summer	Street Basket	Manhattan	5	0	20050822-M-5-0-4-1-N-SB	8/22/2005	220.07
Summer	Street Basket	Manhattan	3	0	20050822-M-3-0-1-1-N-SB	8/22/2005	227.08
Summer	Street Basket	Manhattan	6	0	20050822-M-6-0-1-1-D-SB	8/22/2005	217
Summer	Street Basket	Manhattan	7	0	20050822-M-7-0-2-1-E-SB	8/22/2005	210.87
Summer	Street Basket	Bronx	4	0	20050809-BX-4-0-2-1-N-SB	8/9/2005	216.73
Summer	Street Basket	Bronx	7	0	20050811-BX-7-0-1-1-N-SB	8/11/2005	231.32
Summer	Street Basket	Bronx	6	0	20050816-BX-6-0-2-1-N-SB	8/16/2005	240.06
Summer	Street Basket	Bronx	4	0	20050824-BX-4-0-2-1-N-SB	8/24/2005	212.84
Summer	Street Basket	Bronx	4	0	20050825-BX-4-0-1-1-M-SB	8/25/2005	216.95
Summer	Street Basket	Brooklyn	2	0	20050808-BK-2-0-1-1-N-SB	8/8/2005	216.73
Summer	Street Basket	Brooklyn	1	0	20050809-BK-1-0-2-1-M-SB	8/9/2005	222.44
Summer	Street Basket	Brooklyn	6	0	20050810-BK-6-0-1-1-N-SB	8/10/2005	214.06
Summer	Street Basket	Brooklyn	5	0	20050813-BK-5-0-1-1-N-SB	8/13/2005	273.91
Summer	Street Basket	Brooklyn	3	0	20050813-BK-3-0-1-1-N-SB	8/13/2005	247.5
Summer	Street Basket	Brooklyn	9	0	20050815-BK-9-0-1-1-D-SB	8/15/2005	209.19

Table H-13
Weight of Street Basket Samples (continued)

Season	Stream	Borough	District	Section	SampleID	Sample Date	Sample Weight ${ }^{(1)}$
Summer	Street Basket	Brooklyn	1	0	$20050819-B K-1-0-1-1-N-S B$	$8 / 19 / 2005$	258.67
Summer	Street Basket	Brooklyn	2	0	$20050822-B K-2-0-2-1-M-S B$	$8 / 22 / 2005$	220.78
Summer	Street Basket	Queens	10	0	$20050811-Q-10-0-1-1-N-S B$	$8 / 11 / 2005$	213.87
Summer	Street Basket	Queens	2	0	$20050813-Q-2-0-1-1-N-S B$	$8 / 13 / 2005$	209.37
Summer	Street Basket	Queens	8	0	$20050816-Q-8-0-1-1-M-S B$	$8 / 16 / 2005$	250.85
Summer	Street Basket	Queens	4	0	$20050819-Q-4-0-1-1-M-S B$	$8 / 19 / 2005$	210.34
Summer	Street Basket	Queens	10	0	$20050820-Q-10-0-1-1-N-S B$	$8 / 20 / 2005$	227.16
Summer	Street Basket	Queens	2	0	$20050824-Q-2-0-1-1-N-S B$	$8 / 24 / 2005$	216.71

(1) The target weights for samples were 200 pounds to 300 pounds for street basket samples. Actual sample weights varied with a few samples that were acquired below the minimum and above the maximum target weights.
[This page intentionally left blank.]

NYC Waste Characterization Study
 Final Report, Volume 4
 Appendix I: Additional Composition Data

Table I-1
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	1,943.44	R Paper	314.40	196.55	449.11	76.91	245.12	289.57	260.45	111.32
Paper	OCC	Plain OCC/Kraft Paper	603.91	R Paper	109.72	49.03	93.06	19.76	72.25	97.74	103.30	59.05
Paper	Mixed Paper	High Grade Paper	343.47	R Paper	77.55	29.23	52.50	20.91	55.37	46.28	46.80	14.83
Paper	Mixed Paper	Mixed Low Grade Paper	4,412.11	R Paper	962.01	317.24	751.15	187.68	642.88	485.08	801.35	264.72
Paper	Mixed Paper	Phone Books/Paperbacks	233.26	R Paper	40.62	16.49	36.73	8.94	14.30	54.47	47.24	14.46
Paper	Mixed Paper	Paper Bags	359.57	R Paper	97.04	21.66	58.86	20.51	58.89	38.44	49.76	14.41
Paper	Bev Cartons	Polycoated Paper Containers	217.59	R Bev Cartons	35.42	18.30	45.95	9.61	34.44	34.42	29.47	9.98
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	4,546.44	NR_Paper	697.04	320.65	837.37	175.63	817.57	515.17	876.37	306.65
Paper	Compostable Paper	Single Use Paper Plates, Cups	305.90	NR_Paper	52.47	22.48	29.76	14.23	44.49	22.06	91.69	28.72
Paper	Other Paper	Other Nonrecyclable Paper	347.27	NR_Paper	38.05	30.60	58.96	19.71	65.05	39.88	72.96	22.06
Paper Total			13,312.97		2,424.31	1,022.24	2,413.45	553.88	2,050.37	1,623.12	2,379.39	846.20
Plastic	PET Bottles	PET Bottles	414.33	R Plastics	59.40	31.79	104.96	14.17	62.51	70.50	49.58	21.43
Plastic	HDPE Bottles	HDPE Bottles: Natural	180.07	R Plastics	8.19	9.37	40.55	3.34	17.04	26.90	67.57	7.11
Plastic	HDPE Bottles	HDPE Bottles: Colored	173.67	R Plastics	20.78	12.98	41.87	6.08	27.19	26.93	27.82	10.02
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	3.45	PR_Plastics	0.20	0.30	0.30	0.09	0.57	0.46	1.39	0.13
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	22.52	PR_Plastics	8.67	3.78	0.39	1.19	1.14	5.20	1.12	1.03
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	5.85	PR_Plastics	0.53	0.73	0.87	0.12	0.97	1.43	1.08	0.13
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	2.78	PR_Plastics	0.14	0.16	0.53	0.05	0.59	0.74	0.31	0.26
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	5.85	PR_Plastics	0.70	0.27	1.59	0.14	0.84	0.87	0.84	0.61
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	24.37	PR_Plastics	2.68	2.40	5.17	0.85	6.96	2.01	3.27	1.04
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1.17	PR_Plastics	0.00	0.00	0.46	0.00	0.35	0.11	0.26	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.46	PR_Plastics	0.04	0.00	0.00	0.00	0.00	0.42	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	93.01	PR_Plastics	12.80	6.74	21.10	5.63	14.49	7.66	19.83	4.76
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	17.34	PR_Plastics	2.36	0.97	2.42	1.05	2.15	1.15	4.76	2.49
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	4.95	PR_Plastics	0.31	0.07	0.98	1.09	0.32	1.64	0.36	0.17
Plastic	Other Plastic Products	Other PVC	9.58	NR_Plastics	0.53	0.23	1.83	0.00	2.30	0.00	4.65	0.05
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	151.55	PR_Plastics	34.95	11.85	26.35	7.74	22.25	15.92	25.74	6.75
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	352.25	PR_Plastics	32.73	22.31	76.37	12.29	68.45	64.19	52.53	23.39
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	375.00	PR_Plastics	74.59	40.47	54.88	19.41	64.78	36.62	60.47	23.78
Plastic	Film	Plastic Bags	1,550.86	PR_Plastics	175.11	146.52	350.49	53.98	307.48	208.32	218.90	90.06
Plastic	Film	Other Film	3,037.23	PR_Plastics	399.56	255.08	587.68	119.52	588.98	417.56	489.22	179.63
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	298.11	NR_Plastics	32.42	17.28	46.32	8.44	45.31	45.40	78.81	24.13
Plastic	Other Plastic Products	Other Plastics Materials	1,043.39	NR_Plastics	59.91	57.20	147.68	30.08	192.07	184.18	299.71	72.58
Plastic Total			7,767.80		926.60	620.49	1,512.81	285.25	1,426.73	1,118.20	1,408.18	469.54
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	606.27	R Glass	59.05	29.79	154.38	21.91	86.82	137.31	86.17	30.84
Glass	Container Glass	Green Container Glass	144.81	R Glass	23.37	10.45	32.54	7.69	32.88	23.52	11.78	2.58
Glass	Container Glass	Brown Container Glass	161.30	R Glass	8.35	11.71	60.56	8.39	26.65	29.82	8.39	7.41
Glass	Mixed Cullet	Mixed Cullet	337.57	R Glass	51.64	27.43	75.20	12.60	45.44	68.31	44.63	12.33
Glass	Container Glass	Other Container Glass	9.32	R Glass	0.37	0.55	0.81	0.99	2.54	0.00	4.04	0.02
Glass	Other Glass	Other Glass	63.51	PR_Glass	3.00	3.76	14.64	2.13	9.86	6.82	17.20	6.10
Glass Total			1,322.78		145.77	83.69	338.14	53.72	204.19	265.77	172.21	59.28
Metal	Aluminum	Aluminum Cans	88.68	R Metal	11.88	8.86	22.57	4.62	11.69	15.45	10.13	3.46
Metal	Aluminum	Aluminum Foil/Containers	279.44	R Metal	35.29	15.95	55.34	12.47	51.26	42.32	46.74	20.06
Metal	Aluminum	Other Aluminum	32.86	R Metal	0.74	1.90	1.65	1.97	1.17	14.55	10.59	0.29
Metal	Non-Ferrous	Other Non-Ferrous	50.60	R Metal	5.80	3.71	17.57	1.36	3.92	2.94	8.87	6.43
Metal	Ferrous	Tin Food Cans	451.84	R Metal	32.91	38.51	164.22	12.95	57.70	77.25	46.73	21.57
Metal	Ferrous	Empty Aerosol Cans	66.18	R Metal	7.06	3.92	17.11	1.93	9.54	9.97	11.49	5.16
Metal	Ferrous	Other Ferrous	565.00	R Metal	48.26	51.24	98.21	26.34	66.40	135.87	95.76	42.93
Metal	Other Metal	Mixed Metals	275.75	R Metal	15.92	7.06	38.76	8.21	22.29	98.49	64.27	20.75
Metal Total			1,810.35		157.87	131.16	415.43	69.85	223.97	396.84	294.58	120.65

Table I-1
WCS Refuse Composition, Weekly Tonnages (${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	$\begin{gathered} \text { High Densityl } \\ \text { Low Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Organics	Yard	Leaves and Grass	2,813.60	NR_Other	105.06	117.98	163.87	77.41	511.39	429.45	1,063.43	345.01
Organics	Yard	Prunings	675.30	NR_Other	21.21	27.47	1.81	32.96	113.59	21.19	390.91	66.16
Organics	Wood	Stumps/Limbs	73.72	NR_Other	0.00	6.02	0.00	1.15	13.29	0.00	47.76	5.51
Organics	Food	Food	12,088.34	NR_Other	967.42	904.22	2,764.31	476.64	2,502.29	1,874.03	1,802.70	796.74
Organics	Wood	Wood Furniture/Furniture Pieces	586.42	NR_Other	40.51	15.45	72.46	27.57	81.56	172.74	120.13	56.00
Organics	Wood	Non-C\&D Untreated Wood	32.65	NR_Other	1.07	1.11	6.93	2.03	5.51	1.50	11.85	2.66
Organics	Textiles	Non-Clothing Textiles	839.96	NR_Other	68.03	56.68	162.24	26.91	170.30	107.01	194.97	53.81
Organics	Textiles	Clothing Textiles	1,660.95	NR_Other	106.35	141.98	439.56	30.14	259.28	278.62	277.16	127.86
Organics	Textiles	Carpet/Upholstery	696.41	NR_Other	83.60	23.18	42.45	20.34	62.00	223.64	166.40	74.79
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,173.01	NR_Other	179.40	143.84	484.33	100.36	390.43	352.86	336.44	185.34
Organics	Misc. Organic	Animal By-Products	676.67	NR_Other	78.52	56.11	79.43	82.55	145.16	64.54	104.38	65.98
Organics	Misc. Organic	Rubber Products	164.52	NR_Other	21.01	10.20	20.36	5.59	25.94	24.24	50.47	6.72
Organics	Textiles	Shoes	360.72	NR_Other	20.89	23.17	67.02	13.93	62.31	78.06	57.66	37.69
Organics	Textiles	Other Leather Products	77.39	NR_Other	2.38	8.53	16.50	1.17	30.72	8.01	8.87	1.20
Organics	Misc. Organic	Fines	1,893.87	NR_Other	200.37	135.26	406.33	70.59	317.42	306.61	311.70	145.59
Organics	Textiles	Upholstered or Other Organic-Type Furniture	426.76	NR_Other	5.45	23.61	21.09	17.88	156.61	69.95	126.19	5.99
Organics	Misc. Organic	Miscellaneous Organics	324.16	NR_Other	21.17	20.39	76.76	26.25	41.73	33.65	79.03	25.18
Organics Total			25,564.46		1,922.45	1,715.20	4,825.45	1,013.45	4,889.53	4,046.10	5,150.05	2,002.22
Appliance/Electronic	Ferrous	Appliances: Ferrous	86.60	R Metal	10.04	5.45	16.95	1.90	5.33	33.38	10.42	3.13
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	23.53	R Metal	3.03	0.42	3.23	0.00	1.07	4.34	8.19	3.23
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	101.28	NR_Other	9.12	10.89	18.46	2.36	10.30	18.36	28.23	3.55
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	3.83	NR_Other	0.00	0.00	2.56	0.10	0.40	0.26	0.18	0.32
Appliance/Electronic	Electronic/AV/Computer	Audio/visual Equipment: Other	134.35	NR_Other	7.09	4.80	25.97	2.90	28.83	29.67	23.52	11.57
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	19.87	NR_Other	0.00	0.00	0.00	3.70	4.52	11.65	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	54.18	NR_Other	0.00	0.00	0.00	0.00	29.34	0.00	11.79	13.05
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	107.10	NR_Other	19.81	12.46	9.78	3.43	28.41	17.06	5.76	10.39
Appliance/Electronic Total			530.74		49.09	34.04	76.95	14.38	108.20	114.73	88.09	45.25
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	183.54	NR_Other	3.89	22.25	12.12	8.11	11.33	12.58	95.51	17.74
C \& D Debris	Wood	Treated/Contaminated Wood	920.82	NR_Other	34.33	64.83	115.70	47.46	177.72	173.28	215.72	91.78
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	780.24	NR_Other	37.36	66.62	63.75	9.01	188.19	206.68	103.04	105.60
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	376.44	NR_Other	17.57	23.53	79.97	8.28	72.76	108.46	46.86	19.02
C \& D Debris	Inorganic C\&D	Other Construction Debris	898.19	NR_Other	87.70	52.34	115.97	27.83	172.88	169.85	236.88	34.74
C \& D Debris Total			3,159.23		180.85	229.56	387.52	100.68	622.87	670.85	698.02	268.88
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	85.11	NR_Other	8.37	2.35	9.20	2.51	11.79	21.08	19.46	10.34
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	237.03	NR_Other	3.91	18.19	33.14	15.66	31.04	47.78	71.26	16.06
Miscellaneous Inorganics Total			322.14		12.28	20.54	42.33	18.16	42.84	68.86	90.72	26.40
HHW	HHW	Oil Filters	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	56.64	NR_Other	3.72	0.22	4.06	3.02	9.18	7.02	19.39	10.03
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.01	NR_Other	3.91	0.09	0.29	0.04	1.50	0.00	0.34	0.85
HHW	HHW	Pesticides/Herbicides/Rodenticides	2.23	NR_Other	0.03	0.32	0.00	0.10	0.97	0.44	0.10	0.27
HHW	HHW	Dry-Cell Batteries	45.86	NR_Other	2.47	5.36	10.09	2.30	7.18	9.60	7.37	1.50
HHW	HHW	Fluorescent Tubes	0.29	NR_Other	0.06	0.00	0.00	0.00	0.24	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHw	Compressed Gas Cylinders, Fire Extinguishers	1.50	NR_Other	0.79	0.22	0.49	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	22.23	NR_Other	2.07	1.35	6.63	2.08	4.44	3.02	2.17	0.47
HHW	HHW	Other Potentially Harmful Wastes	17.62	NR_Other	0.57	1.86	3.12	0.53	1.03	4.03	4.84	1.64
$\frac{\text { HHW Total }}{\text { Grand Total }}$			153.38		13.62	9.41	24.67	8.06	24.53	24.12	34.21	14.75
			53,943.84		5,832.85	3,866.34	10,036.73	2,117.45	9,593.24	8,328.59	10,315.46	3,853.18

Table l-1
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |

(1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table l-2
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	$\begin{gathered} \text { High Density/ } \\ \text { Low Income } \\ \text { Weekly Tonnage } \end{gathered}$	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	$\begin{gathered} \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	1,911.41	R Paper	302.12	185.01	407.00	52.51	329.35	277.33	260.92	97.17
Paper	OCC	Plain OCC/Kraft Paper	610.95	R Paper	75.84	39.73	152.48	16.00	77.86	105.42	110.19	33.42
Paper	Mixed Paper	High Grade Paper	397.31	R Paper	97.73	39.80	77.84	14.85	30.50	36.86	80.50	19.22
Paper	Mixed Paper	Mixed Low Grade Paper	4,320.52	R Paper	962.13	358.00	734.73	178.95	568.80	554.21	723.40	240.30
Paper	Mixed Paper	Phone Books/Paperbacks	268.93	R Paper	61.02	46.18	26.64	12.95	18.12	51.72	40.21	12.09
Paper	Mixed Paper	Paper Bags	337.23	R Paper	81.78	21.41	67.49	18.30	53.07	37.87	40.45	16.87
Paper	Bev Cartons	Polycoated Paper Containers	184.24	R Bev Cartons	29.52	13.72	39.98	10.11	24.62	29.09	28.55	8.66
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,182.13	NR_Paper	431.98	223.33	555.91	151.92	581.28	406.98	620.57	210.16
Paper	Compostable Paper	Single Use Paper Plates, Cups	236.83	NR_Paper	42.86	11.37	24.68	12.73	30.36	16.27	79.89	18.68
Paper	Other Paper	Other Nonrecyclable Paper	319.40	NR_Paper	36.74	21.93	70.44	15.45	37.42	43.41	77.06	16.97
Paper Total			11,768.95		2,121.72	960.46	2,157.19	483.76	1,751.39	1,559.15	2,061.74	673.53
Plastic	PET Bottles	PET Bottles	487.05	R Plastics	55.94	35.59	139.76	15.11	74.31	84.26	60.00	22.08
Plastic	HDPE Bottles	HDPE Bottles: Natural	126.48	R Plastics	9.59	10.64	43.83	2.07	21.99	23.19	11.49	3.67
Plastic	HDPE Bottles	HDPE Bottles: Colored	150.85	R Plastics	18.10	13.31	36.36	6.56	24.81	21.40	25.40	4.91
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	2.58	PR_Plastics	0.20	0.00	0.18	0.08	0.11	0.63	1.37	0.01
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	24.25	PR_Plastics	0.95	1.86	7.16	0.98	5.88	2.96	3.83	0.62
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	6.69	PR_Plastics	2.74	0.23	1.08	0.14	0.34	0.93	0.90	0.32
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.04	PR_Plastics	0.33	0.17	0.91	0.05	0.53	0.79	0.17	0.10
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	8.39	PR_Plastics	0.81	0.66	2.29	0.18	1.49	1.02	1.15	0.79
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	30.23	PR_Plastics	3.22	2.82	5.99	0.98	3.68	4.55	5.98	2.99
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.18	PR_Plastics	0.00	0.06	0.09	0.00	0.00	0.03	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1.33	PR_Plastics	0.00	0.77	0.23	0.04	0.15	0.00	0.13	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	81.76	PR_Plastics	12.23	7.72	15.26	5.02	13.92	7.53	15.30	4.78
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	12.88	PR_Plastics	2.99	2.19	0.83	1.53	2.40	0.45	1.72	0.77
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	2.09	PR_Plastics	0.03	0.40	0.00	0.01	0.00	0.76	0.11	0.77
Plastic	Other Plastic Products	Other PVC	3.87	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	3.36	0.51
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	123.86	PR_Plastics	25.92	9.05	21.05	8.78	18.81	14.44	18.74	7.08
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	307.77	PR_Plastics	25.03	25.19	67.41	12.57	56.22	50.82	50.26	20.28
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	345.98	PR_Plastics	76.30	22.75	53.74	18.99	61.15	30.86	65.77	16.41
Plastic	Film	Plastic Bags	1,600.79	PR_Plastics	184.94	152.42	343.55	55.63	295.57	246.79	232.50	89.38
Plastic	Film	Other Film	2,610.05	PR_Plastics	378.49	221.11	572.17	100.83	454.47	406.51	327.47	149.01
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	284.00	NR_Plastics	27.79	23.01	42.72	10.62	35.54	47.09	75.84	21.40
Plastic	Other Plastic Products	Other Plastics Materials	909.88	NR_Plastics	61.84	47.72	222.87	24.20	137.61	162.94	198.21	54.49
Plastic Total			7,123.99		887.43	577.70	1,577.47	264.38	1,209.00	1,107.94	1,099.70	400.36
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	613.61	R Glass	43.68	38.79	177.40	21.94	95.44	126.47	76.77	33.13
Glass	Container Glass	Green Container Glass	167.14	R Glass	44.73	11.61	30.71	12.20	30.17	19.48	12.25	5.99
Glass	Container Glass	Brown Container Glass	138.82	R Glass	8.90	7.66	48.44	5.66	26.67	25.01	10.54	5.94
Glass	Mixed Cullet	Mixed Cullet	269.56	R Glass	39.00	27.92	72.22	9.41	40.91	46.77	21.75	11.59
Glass	Container Glass	Other Container Glass	5.39	R Glass	0.86	0.20	0.49	0.08	0.50	2.69	0.57	0.00
Glass	Other Glass	Other Glass	68.30	PR_Glass	5.88	4.60	11.70	5.54	13.99	13.84	9.68	3.05
Glass Total			1,262.82		143.05	90.80	340.95	54.83	207.68	234.26	131.55	59.70
Metal	Aluminum	Aluminum Cans	106.70	R Metal	18.33	8.88	22.37	2.69	15.57	13.49	20.18	5.19
Metal	Aluminum	Aluminum Foil/Containers	253.56	R Metal	30.40	18.25	54.19	11.62	38.75	39.99	47.50	12.87
Metal	Aluminum	Other Aluminum	13.42	R Metal	0.73	0.10	6.42	0.37	2.02	0.04	1.79	1.97
Metal	Non-Ferrous	Other Non-Ferrous	99.90	R Metal	7.09	9.43	11.80	0.50	25.07	14.95	26.38	4.69
Metal	Ferrous	Tin Food Cans	426.64	R Metal	28.31	36.23	141.34	12.02	69.09	76.17	45.41	18.08
Metal	Ferrous	Empty Aerosol Cans	59.27	R Metal	7.92	1.91	9.38	2.91	14.46	7.69	11.32	3.68
Metal	Ferrous	Other Ferrous	707.00	R Metal	82.81	38.88	144.75	19.49	152.59	85.09	132.14	51.26
Metal	Other Metal	Mixed Metals	295.41	R Metal	89.08	18.20	43.56	8.67	36.30	56.88	32.30	10.43
Metal Total			1,961.91		264.66	131.88	433.80	58.27	353.85	294.30	317.01	108.15

Table l-2
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	544.73	NR_Other	13.56	27.87	28.32	29.78	49.50	59.87	278.24	57.59
Organics	Yard	Prunings	324.86	NR_Other	63.62	8.59	15.77	16.29	21.67	11.27	126.16	61.50
Organics	Wood	Stumps/Limbs	87.89	NR_Other	0.12	1.78	2.67	0.05	0.05	0.00	78.45	4.77
Organics	Food	Food	11,514.75	NR_Other	927.85	854.68	2,589.89	400.91	2,394.71	1,849.78	1,744.40	752.52
Organics	Wood	Wood Furniture/Furniture Pieces	781.99	NR_Other	44.68	36.30	143.07	43.70	84.10	190.92	178.77	60.45
Organics	Wood	Non-C\&D Untreated Wood	148.16	NR_Other	26.86	6.56	56.56	3.37	22.24	4.84	20.69	7.04
Organics	Textiles	Non-Clothing Texiles	789.15	NR_Other	90.37	63.66	141.77	32.11	155.17	121.03	117.88	67.15
Organics	Textiles	Clothing Textiles	1,287.05	NR_Other	73.98	94.58	357.67	25.51	239.25	208.24	196.32	91.49
Organics	Textiles	Carpet/Upholstery	861.49	NR_Other	134.69	62.81	118.53	30.26	150.78	92.79	219.92	51.70
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,967.81	NR_Other	167.31	131.59	417.72	81.82	369.68	309.52	339.39	150.77
Organics	Misc. Organic	Animal By-Products	745.56	NR_Other	120.89	26.24	59.73	67.62	140.62	66.57	192.13	71.76
Organics	Misc. Organic	Rubber Products	121.90	NR_Other	8.35	6.78	21.71	6.53	36.31	22.70	14.86	4.64
Organics	Textiles	Shoes	367.34	NR_Other	19.55	32.97	88.54	9.95	74.80	62.52	62.93	16.06
Organics	Textiles	Other Leather Products	40.15	NR_Other	1.00	2.87	15.85	1.63	1.00	10.62	6.12	1.06
Organics	Misc. Organic	Fines	1,984.52	NR_Other	193.54	151.91	460.60	93.34	322.92	340.44	279.30	142.47
Organics	Textiles	Upholstered or Other Organic-Type Furniture	874.65	NR_Other	73.20	37.97	270.57	45.08	187.35	77.10	133.27	50.12
Organics	Misc. Organic	Miscellaneous Organics	374.16	NR_Other	40.52	26.65	36.39	26.10	67.40	63.30	81.37	32.42
Organics Total			22,816.15		2,000.11	1,573.81	4,825.37	914.07	4,317.56	3,491.51	4,070.20	1,623.52
Appliance/Electronic	Ferrous	Appliances: Ferrous	150.90	R Metal	0.59	7.60	47.42	4.01	4.82	49.67	12.17	24.61
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	8.43	R Metal	0.57	1.83	0.44	0.26	0.50	4.52	0.00	0.31
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	75.99	NR_Other	13.18	2.19	5.36	1.50	27.98	11.97	10.43	3.37
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	1.89	NR_Other	0.34	0.13	0.51	0.00	0.00	0.00	0.85	0.07
Appliance/Electronic	Electronic/AV/Computer	AudioVisual Equipment: Other	83.35	NR_Other	8.90	3.25	25.41	2.34	9.62	6.49	21.20	6.14
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	29.08	NR_Other	0.00	0.00	0.00	0.00	29.08	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	121.12	NR_Other	0.00	0.00	0.00	4.92	57.56	44.23	14.40	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	31.14	NR_Other	7.27	9.65	1.12	3.01	2.92	3.61	0.21	3.35
Appliance/Electronic Total			501.89		30.85	24.64	80.27	16.05	132.49	120.49	59.26	37.85
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	205.69	NR_Other	23.63	11.82	29.59	6.69	24.10	25.08	66.23	18.55
$C \& D$ Debris	Wood	Treated/Contaminated Wood	986.18	NR_Other	68.31	83.80	189.05	29.18	141.93	212.63	134.40	126.87
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	529.14	NR_Other	50.39	23.47	113.36	13.86	92.25	127.61	84.19	24.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	226.20	NR_Other	3.95	6.40	66.64	3.90	100.27	27.67	12.14	5.24
C \& D Debris	Inorganic C\&D	Other Construction Debris	647.56	NR_Other	54.94	54.03	42.15	26.16	110.49	152.63	121.90	85.25
C \& D Debris Total			2,594.77		201.23	179.53	440.79	79.78	469.04	545.63	418.86	259.91
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	119.76	NR_Other	23.35	7.19	13.80	0.97	30.86	12.93	24.86	5.80
Miscellaneous Inorganic	Misc. Inorganic	Ceramics	258.11	NR_Other	12.06	8.36	68.30	4.61	64.47	33.06	50.65	16.60
Miscellaneous Inorganics Total			377.87		35.41	15.55	82.10	5.58	95.33	45.99	75.51	22.40
HHW	HHW	Oil Filters	0.06	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
HHW	HHW	Antifreeze	1.96	NR_Other	0.00	0.17	0.00	0.00	0.00	0.00	1.79	0.00
HHW	HHW	Wet-Cell Batteries	0.02	NR_Other	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	1.03	NR_Other	0.00	0.00	0.00	0.00	0.38	0.18	0.03	0.44
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	17.02	NR_Other	0.69	2.56	3.03	0.71	8.86	0.04	1.13	0.00
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	17.97	NR_Other	2.49	1.60	1.30	0.00	11.74	0.26	0.58	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	7.33	NR_Other	0.27	0.84	2.85	0.02	2.19	0.04	1.05	0.06
HHW	HHW	Dry-Cell Batteries	46.88	NR_Other	3.54	4.62	10.45	2.55	11.29	7.72	3.91	2.80
HHW	HHW	Fluorescent Tubes	0.59	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	2.23	NR_Other	0.00	0.97	0.00	0.00	0.00	0.00	1.26	0.00
HHW	HHW	Home Medical Products	15.22	NR_Other	1.08	2.09	5.35	0.40	1.34	0.95	3.66	0.34
HHW	HHW	Other Potentially Harmful Wastes	14.19	NR_Other	0.00	0.11	6.20	1.39	1.14	0.00	4.61	0.74
HHW Total			124.50$48,532.86$		8.10	12.96	29.18	5.08	36.93	9.18	18.62	4.44
Grand Total					5,692.56	3,567.33	9,967.13	1,881.80	8,573.27	7,408.46	8,252.45	3,189.86

Table I-2
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Recycling Designation	Citywide Refuse Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	7,846.34	1,580.62	690.12	1,466.18	293.56	1,077.71	1,063.41	1,255.67	419.06
Designated Beverage Cartons	184.24	29.52	13.72	39.98	10.11	24.62	29.09	28.55	8.66
Designated Plastic	764.38	83.64	59.55	219.95	23.74	121.11	128.85	96.90	30.66
Designated Metal	2,121.24	265.81	141.31	481.66	62.55	359.17	348.49	329.18	133.07
Designated Glass	1,194.52	137.16	86.19	329.25	49.29	193.69	220.42	121.87	56.65
Designated MGP Subtotal	4,264.38	516.13	300.77	1,070.83	145.68	698.59	726.84	576.50	229.03
Potentially Designated Plastic	5,161.87	714.17	447.42	1,091.93	205.83	914.74	769.06	725.40	293.31
Potentially Designated Glass	68.30	5.88	4.60	11.70	5.54	13.99	13.84	9.68	3.05
Potentially Designated Materials Subtotal	5,230.17	720.06	452.02	1,103.63	211.37	928.73	782.91	735.08	296.36
Nondesignated Paper	3,738.36	511.58	256.62	651.03	180.09	649.06	466.66	777.52	245.81
Nondesignated Plastic	1,197.74	89.62	70.73	265.59	34.82	173.15	210.03	277.40	76.40
Other Nondesignated	26,255.86	2,274.55	1,797.06	5,409.86	1,016.28	5,046.03	4,158.62	4,630.27	1,923.20
Nondesignated Materials Subtotal	31,191.97	2,875.75	2,124.42	6,326.48	1,231.19	5,868.24	4,835.31	5,685.19	2,245.40
Designated for Recycling Total	12,110.72	2,096.75	990.89	2,537.02	439.24	1,776.30	1,790.24	1,832.17	648.10
Potentially or Not Designated for Recycling Total	36,422.14	3,595.81	2,576.44	7,430.11	1,442.56	6,796.97	5,618.21	6,420.27	2,541.76

(1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from January 2005 through March 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table I-3
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	$\begin{gathered} \text { High Density/ } \\ \text { Low Income } \\ \text { Weekly Tonnage } \end{gathered}$	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	2,087.98	R Paper	376.74	211.33	452.11	74.61	281.33	353.44	248.79	89.63
Paper	OCC	Plain OCC/Kraft Paper	592.19	R Paper	121.68	36.98	110.70	19.07	57.02	122.70	92.73	31.31
Paper	Mixed Paper	High Grade Paper	336.49	R Paper	96.71	16.59	58.05	31.27	40.11	38.15	36.16	19.46
Paper	Mixed Paper	Mixed Low Grade Paper	4,129.24	R Paper	784.26	295.59	725.88	182.84	615.21	631.80	650.82	242.84
Paper	Mixed Paper	Phone Books/Paperbacks	292.15	R Paper	65.04	23.80	35.88	2.92	48.12	53.54	44.97	17.87
Paper	Mixed Paper	Paper Bags	343.13	R Paper	83.90	24.44	61.91	18.48	45.38	44.72	46.47	17.84
Paper	Bev Cartons	Polycoated Paper Containers	237.71	R Bev Cartons	34.08	33.82	48.25	11.94	29.49	45.17	25.32	9.65
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,341.41	NR_Paper	451.57	261.94	517.29	165.58	619.81	438.73	630.34	256.16
Paper	Compostable Paper	Single Use Paper Plates, Cups	233.71	NR_Paper	32.95	13.16	23.88	15.47	40.86	17.44	64.00	25.93
Paper	Other Paper	Other Nonrecyclable Paper	284.61	NR_Paper	31.30	20.00	64.68	18.22	51.92	35.69	47.37	15.41
Paper Total			11,878.62		2,078.24	937.65	2,098.64	540.42	1,829.25	1,781.38	1,886.97	726.10
Plastic	PET Bottles	PET Bottles	458.63	R Plastics	57.71	34.52	115.20	15.42	66.44	96.65	47.53	25.16
Plastic	HDPE Bottles	HDPE Bottles: Natural	134.29	R Plastics	11.57	11.57	44.51	2.51	21.07	26.59	10.86	5.62
Plastic	HDPE Bottles	HDPE Bottles: Colored	152.96	R Plastics	14.99	11.17	41.81	4.62	18.79	35.94	19.01	6.64
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.89	PR_Plastics	0.37	0.28	0.52	0.13	0.46	0.00	0.05	0.07
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	34.50	PR_Plastics	3.33	5.80	9.29	0.26	7.10	7.09	1.30	0.33
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	6.87	PR_Plastics	0.51	0.73	1.59	0.23	1.63	0.94	1.13	0.11
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.24	PR_Plastics	0.28	0.21	0.53	0.17	0.44	1.00	0.38	0.23
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	7.55	PR_Plastics	0.54	0.55	1.87	0.23	1.00	1.03	1.99	0.34
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	42.79	PR_Plastics	3.94	3.19	10.20	1.42	7.55	6.99	7.39	2.12
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.64	PR_Plastics	0.00	0.01	0.17	0.38	0.00	0.00	0.00	0.08
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	9.00	PR_Plastics	8.90	0.00	0.00	0.00	0.00	0.00	0.00	0.10
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	82.48	PR_Plastics	13.95	8.10	15.38	5.30	13.29	8.30	11.37	6.80
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	31.30	PR_Plastics	6.29	1.97	7.13	2.98	4.89	3.54	3.69	0.83
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	9.57	PR_Plastics	0.02	0.89	5.51	0.37	0.03	0.16	0.00	2.59
Plastic	Other Plastic Products	Other PVC	7.22	NR_Plastics	0.00	0.00	0.00	0.31	0.00	0.00	6.86	0.05
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	146.16	PR_Plastics	28.95	11.53	37.07	7.23	19.59	14.46	20.51	6.82
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	331.43	PR_Plastics	30.24	25.22	69.78	9.91	61.43	50.44	65.45	18.96
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	426.23	PR_Plastics	79.39	32.82	67.18	28.94	72.02	43.50	77.18	25.20
Plastic	Film	Plastic Bags	2,069.85	PR_Plastics	228.67	177.80	460.68	76.41	419.04	323.52	273.00	110.73
Plastic	Film	Other Film	2,960.64	PR_Plastics	332.67	255.11	644.95	105.38	544.98	477.37	430.09	170.08
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	310.70	NR_Plastics	27.68	22.99	42.80	12.59	54.28	56.22	65.58	28.55
Plastic	Other Plastic Products	Other Plastics Materials	957.58	NR_Plastics	80.18	97.04	163.57	36.06	179.27	144.36	174.57	82.54
Plastic Total			8,185.52		930.17	701.51	1,739.74	310.86	1,493.28	1,298.08	1,217.95	493.93
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	554.53	R Glass	27.64	32.21	131.16	22.53	91.82	158.25	59.50	31.43
Glass	Container Glass	Green Container Glass	134.90	R Glass	26.96	6.93	29.93	11.10	17.66	19.50	16.32	6.50
Glass	Container Glass	Brown Container Glass	119.91	R Glass	10.80	4.45	45.47	5.95	14.56	22.41	8.14	8.12
Glass	Mixed Cullet	Mixed Cullet	289.36	R Glass	40.40	18.92	56.87	11.51	59.87	71.37	21.18	9.24
Glass	Container Glass	Other Container Glass	20.53	R Glass	1.49	1.74	2.88	0.64	3.75	6.11	2.68	1.24
Glass	Other Glass	Other Glass	131.67	PR_Glass	9.17	6.03	18.47	2.67	32.48	28.66	27.93	6.27
Glass Total			1,250.90		116.47	70.28	284.79	54.39	220.13	306.29	135.76	62.80
Metal	Aluminum	Aluminum Cans	88.88	R Metal	11.02	8.24	22.78	2.88	13.92	17.10	8.55	4.38
Metal	Aluminum	Aluminum Foil/Containers	333.43	R Metal	38.54	24.56	60.68	13.53	62.21	52.49	57.78	23.64
Metal	Aluminum	Other Aluminum	16.12	R Metal	0.58	0.02	9.86	0.02	1.37	2.18	1.67	0.42
Metal	Non-Ferrous	Other Non-Ferrous	63.56	R Metal	8.82	6.81	7.94	11.96	5.84	5.84	8.85	7.49
Metal	Ferrous	Tin Food Cans	479.95	R Metal	27.95	40.43	156.68	9.62	68.01	112.26	44.30	20.70
Metal	Ferrous	Empty Aerosol Cans	65.30	R Metal	6.64	5.76	11.01	2.16	12.82	10.64	11.08	5.19
Metal	Ferrous	Other Ferrous	651.26	R Metal	61.77	33.84	156.85	25.25	91.56	75.40	140.99	65.61
Metal	Other Metal	Mixed Metals	252.36	R Metal	41.91	16.95	48.82	5.28	40.58	30.03	47.51	21.26
Metal Total			1,950.84		197.23	136.61	474.62	70.70	296.32	305.94	320.73	148.69

Table l-3
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	3,162.22	NR_Other	160.59	130.86	55.17	78.42	280.74	129.09	1,882.89	444.46
Organics	Yard	Prunings	541.17	NR_Other	38.06	7.38	28.32	8.87	52.64	20.66	339.03	46.21
Organics	Wood	Stumps/Limbs	150.78	NR_Other	2.80	6.20	3.86	15.99	22.48	2.12	56.70	40.63
Organics	Food	Food	11,672.86	NR_Other	895.96	974.76	2,509.70	414.60	2,351.65	1,945.69	1,817.81	762.69
Organics	Wood	Wood Furniture/Furniture Pieces	543.12	NR_Other	42.69	49.32	101.90	11.07	36.95	96.89	156.63	47.68
Organics	Wood	Non-C\&D Untreated Wood	139.50	NR_Other	3.36	9.43	12.52	7.90	64.37	10.38	24.62	6.93
Organics	Textiles	Non-Clothing Textiles	724.56	NR_Other	61.19	66.22	139.34	29.74	153.63	123.79	104.93	45.73
Organics	Textiles	Clothing Textiles	1,800.53	NR_Other	111.41	142.67	400.52	45.83	379.72	345.23	252.03	123.12
Organics	Textiles	CarpetUpholstery	789.02	NR_Other	87.21	14.40	105.79	27.23	137.78	87.72	291.18	37.71
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,023.01	NR_Other	189.64	140.51	436.18	69.96	357.97	319.80	341.83	167.12
Organics	Misc. Organic	Animal By-Products	695.55	NR_Other	80.54	40.66	65.93	84.23	100.50	134.74	145.77	43.19
Organics	Misc. Organic	Rubber Products	224.29	NR_Other	13.75	11.48	91.40	4.21	31.07	13.72	51.09	7.57
Organics	Textiles	Shoes	398.01	NR_Other	24.17	34.86	103.96	12.05	91.15	71.30	42.10	18.42
Organics	Textiles	Other Leather Products	94.61	NR_Other	4.20	2.17	10.34	1.08	22.57	13.03	25.61	15.61
Organics	Misc. Organic	Fines	2,991.73	NR_Other	290.37	211.70	634.69	112.72	498.55	511.53	520.50	211.68
Organics	Textiles	Upholstered or Other Organic-Type Furniture	659.30	NR_Other	56.42	55.11	174.45	10.54	102.55	102.83	102.50	54.89
Organics	Misc. Organic	Miscellaneous Organics	490.48	NR_Other	44.56	17.86	45.24	43.24	43.02	55.39	171.82	69.36
Organics Total			27,100.75		2,106.90	1,915.59	4,919.30	977.67	4,727.35	3,983.90	6,327.04	2,143.00
Appliance/Electronic	Ferrous	Appliances: Ferrous	215.71	R Metal	10.71	4.37	19.80	4.12	28.58	11.43	110.62	26.09
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	26.30	R Metal	0.19	0.82	1.92	1.29	19.66	0.76	1.68	0.00
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	166.03	NR_Other	4.75	12.82	21.44	7.97	13.76	25.93	64.56	14.80
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	1.80	NR_Other	0.26	0.34	0.09	0.04	0.00	0.26	0.47	0.33
Appliance/Electronic	Electronic/AV/Computer	AudioNisual Equipment: Other	136.12	NR_Other	5.11	7.05	8.30	0.56	22.57	27.43	59.92	5.18
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	19.72	NR_Other	0.00	0.00	0.00	1.78	0.00	0.00	14.20	3.75
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	44.84	NR_Other	1.38	10.20	16.41	11.44	3.48	0.00	1.81	0.12
Appliance/Electronic Total			610.53		22.40	35.59	67.95	27.19	88.05	65.82	253.25	50.27
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	675.94	NR_Other	56.25	14.74	51.16	25.90	51.36	56.27	265.87	154.39
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1,144.69	NR_Other	78.04	47.73	151.46	31.22	173.82	126.22	433.05	103.15
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	648.61	NR_Other	34.27	35.12	97.43	10.03	213.98	49.42	172.56	35.80
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	695.53	NR_Other	15.19	9.86	97.42	17.89	67.93	138.89	265.73	82.62
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	1,010.12	NR_Other	64.99	54.89	178.59	62.57	190.62	56.62	363.92	37.92
C \& D Debris Total			4,174.89		248.74	162.33	576.05	147.60	697.71	427.43	1,501.13	413.88
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	206.65	NR_Other	22.75	11.43	7.41	11.82	28.57	17.70	86.47	20.51
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	238.06	NR_Other	29.03	17.44	25.90	11.97	32.89	42.76	63.13	14.94
Miscellaneous Inorganics Total			444.71		51.78	28.87	33.31	23.78	61.46	60.45	149.60	35.44
HHW	HHW	Oil Filters	2.07	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	1.76	0.31
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.04	NR_Other	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	18.19	NR_Other	5.07	0.00	0.00	0.38	11.91	0.00	0.24	0.58
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	8.46	NR_Other	0.00	0.00	0.00	0.00	1.33	6.41	0.00	0.73
HHW	HHW	Pesticides/Herbicides/Rodenticides	1.02	NR_Other	0.00	0.03	0.04	0.00	0.00	0.31	0.63	0.00
HHW	HHW	Dry-Cell Batteries	35.22	NR_Other	1.71	2.01	7.79	1.23	5.77	8.48	6.06	2.15
HHW	HHW	Fluorescent Tubes	0.25	NR_Other	0.00	0.00	0.00	0.00	0.22	0.04	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	2.25	NR_Other	0.00	0.58	0.00	0.00	0.00	0.00	1.68	0.00
HHW	HHW	Home Medical Products	36.81	NR_Other	0.66	0.52	25.77	0.70	1.51	5.22	1.35	1.06
HHW	HHW	Other Potentially Harmful Wastes	23.19	NR_Other	2.51	1.43	2.97	0.27	8.44	1.43	5.89	0.26
HHW Total			127.51		9.96	4.57	36.57	2.59	29.21	21.90	17.61	5.09
Grand Total			55,724.27		5,761.92	3,993.01	10,230.96	2,155.21	9,442.75	8,251.19	11,810.04	4,079.20

Table l-3
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Recycling Designation	Citywide Refuse Weekly Tonnage	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	7,781.20	1,528.33	608.73	1,444.53	329.21	1,087.17	1,244.34	1,119.94	418.95
Designated Beverage Cartons	237.71	34.08	33.82	48.25	11.94	29.49	45.17	25.32	9.65
Designated Plastic	745.88	84.26	57.26	201.52	22.55	106.29	159.18	77.40	37.42
Designated Metal	2,192.86	208.13	141.79	496.33	76.11	344.56	318.14	433.03	174.77
Designated Glass	1,119.23	107.30	64.25	266.32	51.72	187.65	277.63	107.83	56.54
Designated MGP Subtotal	4,295.67	433.76	297.12	1,012.41	162.31	667.98	800.12	643.58	278.38
Potentially Designated Plastic	6,164.13	738.05	524.21	1,331.84	239.35	1,153.44	938.32	893.53	345.38
Potentially Designated Glass	131.67	9.17	6.03	18.47	2.67	32.48	28.66	27.93	6.27
Potentially Designated Materials Subtotal	6,295.81	747.23	530.24	1,350.32	242.02	1,185.92	966.98	921.46	351.64
Nondesignated Paper	3,859.72	515.83	295.10	605.86	199.27	712.59	491.86	741.71	297.50
Nondesignated Plastic	1,275.50	107.86	120.04	206.37	48.96	233.55	200.58	247.02	111.13
Other Nondesignated	32,216.37	2,428.90	2,141.78	5,611.47	1,173.43	5,555.54	4,547.31	8,136.33	2,621.60
Nondesignated Materials Subtotal	37,351.59	3,052.59	2,556.92	6,423.70	1,421.67	6,501.68	5,239.75	9,125.06	3,030.22
Designated for Recycling Total	12,076.87	1,962.09	905.85	2,456.95	491.52	1,755.15	2,044.46	1,763.52	697.33
Potentially or Not Designated for Recycling Total	43,647.40	3,799.82	3,087.16	7,774.01	1,663.69	7,687.60	6,206.73	10,046.52	3,381.87

(1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-4
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	$\begin{aligned} & \hline \text { High Densityl } \\ & \text { Low Income } \\ & \text { Weekly Tonnage } \end{aligned}$	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	$\begin{gathered} \text { Low Densityl } \\ \text { Medium Income } \end{gathered}$ Weekly Tonnage
Paper	ONP	Newspaper	1,799.69	R Paper	260.13	195.24	413.83	63.01	253.21	239.88	261.21	113.18
Paper	OCC	Plain OCC/Kraft Paper	642.42	R Paper	82.62	63.24	139.84	20.68	88.27	107.32	98.12	42.32
Paper	Mixed Paper	High Grade Paper	361.32	R Paper	75.24	48.09	58.74	16.49	29.79	64.80	54.63	13.54
Paper	Mixed Paper	Mixed Low Grade Paper	4,834.20	R Paper	929.96	367.67	883.06	229.87	662.22	616.10	866.41	278.92
Paper	Mixed Paper	Phone Books/Paperbacks	24.10	R Paper	23.10	19.89	72.13	6.31	28.63	40.26	33.85	17.93
Paper	Mixed Paper	Paper Bags	453.65	R Paper	89.52	31.40	81.40	23.49	75.93	59.38	69.51	23.02
Paper	Bev Cartons	Polycoated Paper Containers	210.19	R Bev Cartons	32.32	18.74	38.36	9.19	39.47	36.08	26.46	9.58
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,074.30	NR_Paper	365.29	228.78	450.13	137.65	610.64	359.68	690.24	231.90
Paper	Compostable Paper	Single Use Paper Plates, Cups	323.21	NR_Paper	28.10	18.59	38.38	16.31	37.86	28.91	117.06	37.99
Paper	Other Paper	Other Nonrecyclable Paper	541.37	NR_Paper	69.14	40.37	102.70	23.87	98.03	66.46	100.48	40.33
Paper Total			12,482.46		1,955.41	1,032.02	2,278.56	546.88	1,924.03	1,618.87	2,317.97	808.71
Plastic	PET Bottles	PET Bottles	547.33	R Plastics	60.52	46.94	129.60	16.16	81.10	113.71	70.15	29.15
Plastic	HDPE Bottles	HDPE Bottles: Natural	153.61	R Plastics	20.60	13.14	47.17	2.36	25.29	26.41	13.47	5.18
Plastic	HDPE Bottles	HDPE Bottles: Colored	155.65	R Plastics	20.53	12.97	49.06	5.14	17.89	19.98	22.90	7.18
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.75	PR_Plastics	0.29	0.12	0.10	0.01	0.04	0.10	0.06	0.04
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	15.92	PR_Plastics	2.91	2.33	1.67	0.38	1.12	3.02	2.41	2.08
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	5.80	PR_Plastics	0.33	0.18	1.30	0.27	0.64	1.32	1.34	0.42
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.65	PR_Plastics	0.02	0.19	1.07	0.07	0.37	0.90	0.83	0.21
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	9.18	PR_Plastics	0.69	0.45	3.04	0.43	1.33	1.30	1.32	0.61
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	45.56	PR_Plastics	2.30	2.40	6.63	0.80	3.95	5.47	21.83	2.17
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.14	PR_Plastics	0.05	0.00	0.09	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.02	PR_Plastics	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	107.60	PR_Plastics	19.78	7.50	18.62	6.70	16.16	15.56	14.33	8.95
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	26.37	PR_Plastics	5.03	3.04	4.69	1.41	2.45	3.67	4.36	1.71
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	6.10	PR_Plastics	0.20	0.58	2.06	0.16	0.25	2.68	0.10	0.08
Plastic	Other Plastic Products	Other PVC	16.28	NR_Plastics	0.00	1.21	11.93	0.01	0.00	1.01	0.49	1.63
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	153.33	PR_Plastics	35.62	10.18	21.22	9.15	24.42	17.37	26.27	9.10
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	365.50	PR_Plastics	28.16	30.19	71.36	13.97	71.37	59.91	63.74	26.80
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	537.32	PR_Plastics	83.87	41.09	86.20	27.79	86.81	59.94	108.38	43.24
Plastic	Film	Plastic Bags	1,605.16	PR_Plastics	165.79	138.33	375.91	58.71	328.68	226.33	215.05	96.36
Plastic	Film	Other Film	2,920.69	PR_Plastics	329.46	236.52	614.13	107.32	511.16	412.87	499.83	209.40
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	388.68	NR_Plastics	37.42	31.23	58.90	13.16	49.41	66.17	95.60	36.80
Plastic	Other Plastic Products	Other Plastics Materials	1,151.83	NR_Plastics	124.10	126.58	222.80	41.59	155.51	116.71	252.62	111.91
Plastic Total			8,216.48		937.70	705.17	1,727.52	305.60	1,377.96	1,154.43	1,415.10	592.99
Glass	Container Glass	Clear Container Glass	760.28	R Glass	61.90	48.80	216.36	26.27	122.34	145.87	96.02	42.71
Glass	Container Glass	Green Container Glass	193.65	R Glass	36.35	12.78	46.73	8.11	31.27	29.52	21.17	7.72
Glass	Container Glass	Brown Container Glass	187.64	R Glass	13.79	8.96	51.17	6.36	43.66	37.59	16.34	9.77
Glass	Mixed Cullet	Mixed Cullet	365.65	R Glass	58.51	32.20	103.46	10.22	53.74	63.20	26.19	18.12
Glass	Container Glass	Other Container Glass	7.24	R Glass	0.97	0.14	1.24	0.08	1.48	3.03	0.00	0.31
Glass	Other Glass	Other Glass	151.88	PR_Glass	13.44	16.46	27.11	4.83	25.20	25.05	22.02	17.78
Glass Total			1,666.34		184.97	119.34	446.07	55.87	277.68	304.26	181.75	96.41
Metal	Aluminum	Aluminum Cans	138.74	R Metal	14.31	9.75	42.44	3.03	20.45	20.57	21.74	6.45
Metal	Aluminum	Aluminum Foil/Containers	337.46	R Metal	38.32	22.43	60.18	13.80	60.20	53.16	67.04	22.35
Metal	Aluminum	Other Aluminum	18.01	R Metal	1.52	0.92	1.04	0.75	2.79	0.66	0.54	9.79
Metal	Non-Ferrous	Other Non-Ferrous	65.67	R Metal	5.69	6.66	12.10	4.71	6.18	7.22	17.23	5.89
Metal	Ferrous	Tin Food Cans	396.54	R Metal	31.67	32.84	130.54	9.12	67.55	62.90	43.29	18.62
Metal	Ferrous	Empty Aerosol Cans	88.27	R Metal	8.84	3.39	22.05	3.15	15.06	11.08	19.77	4.94
Metal	Ferrous	Other Ferrous	721.39	R Metal	61.95	41.27	43.65	31.78	105.35	86.87	181.61	168.91
Metal	Other Metal	Mixed Metals	241.42	R Metal	7.08	11.94	52.15	15.73	45.93	44.41	35.67	28.51
Metal Total			2,007.51		169.38	129.20	364.14	82.07	323.51	286.86	386.88	265.46

Table l-4
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weakly Tonnage
Organics	Yard	Leaves and Grass	1,985.91	NR_Other	31.46	113.53	85.14	48.91	228.69	152.30	1,048.29	277.60
Organics	Yard	Prunings	448.39	NR_Other	19.95	9.49	7.25	32.14	36.70	82.19	216.32	44.35
Organics	Wood	Stumps/Limbs	90.78	NR_Other	0.00	9.84	4.06	0.19	19.96	20.21	2.22	34.29
Organics	Food	Food	10,089.56	NR_Other	677.09	769.13	2,357.42	355.78	1,999.39	1,416.23	1,843.48	671.04
Organics	Wood	Wood Furniture/Furniture Pieces	1,108.38	NR_Other	136.86	64.44	111.28	15.15	232.36	197.84	242.37	108.08
Organics	Wood	Non-C\&D Untreated Wood	143.63	NR_Other	3.38	5.57	11.93	18.58	11.30	75.80	15.23	1.85
Organics	Textiles	Non-Clothing Textiles	1,117.76	NR_Other	96.78	76.70	271.20	31.82	221.38	138.88	186.92	94.10
Organics	Textiles	Clothing Textiles	1,681.42	NR_Other	114.13	142.41	482.75	36.76	257.56	253.72	283.51	110.58
Organics	Textiles	Carpet/Upholstery	819.64	NR_Other	97.49	50.24	157.57	18.58	139.24	72.75	211.87	71.91
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,081.85	NR_Other	203.32	132.51	421.04	83.68	423.07	286.12	381.43	150.68
Organics	Misc. Organic	Animal By-Products	720.98	NR_Other	79.71	47.78	73.85	78.27	212.44	43.97	119.58	65.37
Organics	Misc. Organic	Rubber Products	187.33	NR_Other	12.02	14.05	23.08	5.90	27.59	47.75	36.49	20.45
Organics	Textiles	Shoes	400.24	NR_Other	40.79	24.71	99.28	11.33	62.12	70.33	55.49	36.18
Organics	Textiles	Other Leather Products	39.73	NR_Other	1.79	5.86	5.43	0.61	14.29	6.21	2.33	3.21
Organics	Misc. Organic	Fines	2,330.49	NR_Other	208.51	155.44	426.97	87.19	411.66	448.13	407.23	185.37
Organics	Textiles	Upholstered or Other Organic-Type Furniture	352.00	NR_Other	3.77	42.74	87.51	0.00	8.88	98.07	87.65	23.38
Organics	Misc. Organic	Miscellaneous Organics	656.86	NR_Other	93.09	27.41	57.42	23.71	81.66	169.86	144.86	58.86
Organics Total			24,254.95		1,820.14	1,691.85	4,683.18	848.58	4,388.27	3,580.35	5,285.26	1,957.31
Appliance/Electronic	Ferrous	Appliances: Ferrous	367.99	R Metal	53.13	7.77	8.12	6.80	46.39	135.39	94.08	16.31
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5.56	R Metal	0.00	2.64	0.00	2.31	0.04	0.00	0.00	0.57
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	174.40	NR_Other	39.74	19.18	32.15	3.92	27.43	19.05	27.57	5.36
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	4.06	NR_Other	0.36	0.48	1.73	0.04	0.51	0.29	0.31	0.34
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	226.72	NR_Other	14.84	12.88	29.46	9.92	34.97	84.58	26.42	13.65
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	91.87	NR_Other	0.00	2.52	0.00	11.89	28.99	39.83	0.00	8.65
Appliance/Electronic	Electronic/AV/Computer	Televisions	125.38	NR_Other	0.00	5.49	24.88	6.06	11.19	18.94	44.43	14.39
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	241.95	NR_Other	4.58	14.20	61.27	7.84	75.93	37.37	35.01	5.76
Appliance/Electronic Total			1,237.92		112.64	65.16	157.62	48.77	225.46	335.44	227.81	65.02
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	532.27	NR_Other	8.88	35.96	125.26	12.55	92.03	60.39	176.76	20.43
C \& D Debris	Wood	Treated/Contaminated Wood	1,098.18	NR_Other	91.55	84.90	114.87	41.29	229.19	151.07	258.45	126.85
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	360.19	NR_Other	5.65	33.05	29.27	8.06	71.83	45.05	98.76	68.50
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	393.53	NR_Other	9.88	4.46	119.23	21.70	123.63	55.43	33.09	26.11
C \& D Debris	Inorganic C\&D	Other Construction Debris	1,004.72	NR_Other	50.97	77.25	109.45	34.62	124.11	148.36	327.94	132.02
C \& D Debris Total			3,388.88		166.94	235.63	498.08	118.21	640.79	460.30	895.00	373.92
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	114.26	NR_Other	8.77	10.86	9.29	5.08	15.21	9.17	47.74	8.15
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	249.72	NR_Other	11.80	13.58	29.38	22.57	33.94	17.18	94.50	26.77
Miscellaneous Inorganics Total			363.97		20.57	24.44	38.67	27.64	49.15	26.36	142.23	34.91
HHW	HHW	Oil Filters	7.97	NR_Other	0.46	0.00	7.28	0.00	0.00	0.00	0.00	0.24
HHW	HHW	Antifreeze	0.21	NR_Other	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	1.95	NR_Other	0.29	0.32	0.00	0.00	0.04	0.00	1.30	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	14.29	NR_Other	0.11	0.13	1.14	0.24	6.65	0.00	0.46	5.57
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	17.23	NR_Other	0.22	0.29	3.37	2.81	0.64	0.00	6.14	3.76
HHW	HHW	Pesticides/Herbicides/Rodenticides	2.96	NR_Other	0.71	0.17	0.52	0.02	0.78	0.10	0.62	0.04
HHW	HHW	Dry-Cell Batteries	43.03	NR_Other	4.27	4.39	6.97	1.76	6.60	9.44	7.66	1.93
HHW	HHW	Fluorescent Tubes	12.99	NR_Other	0.00	12.70	0.23	0.04	0.00	0.00	0.00	0.02
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	8.60	NR_Other	0.00	0.00	8.60	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	47.93	NR_Other	12.37	2.45	9.58	0.68	12.77	5.92	2.60	1.56
HHW	HHW	Other Potentially Harmful Wastes	8.32	NR_Other	0.78	0.02	1.55	0.24	0.99	1.80	1.09	1.84
HHW Total			165.49		19.20	20.48	39.24	6.01	28.48	17.25	19.86	14.96
Grand Total			53,784.01		5,386.95	4,023.30	10,233.08	2,039.65	9,235.34	7,784.10	10,871.87	4,209.71

Table l-4
WCS Refuse Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |

(1) Tonnage values calculated using DSNY average weekly curbside refuse tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table l-5
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Density Medium Income Weekly Tonnage	$\begin{gathered} \text { High Densityl } \\ \text { Low Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	3,015.14	R Paper	718.09	167.50	228.45	257.78	447.46	156.52	913.96	125.38
Paper	OCC	Plain OCC/Kraft Paper	1,422.92	R Paper	234.51	89.22	120.77	59.47	398.93	178.85	299.84	41.33
Paper	Mixed Paper	High Grade Paper	238.06	R Paper	23.05	17.09	10.36	29.70	92.59	22.12	33.12	10.03
Paper	Mixed Paper	Mixed Low Grade Paper	2,205.65	R Paper	522.24	155.88	67.90	292.66	448.93	139.36	497.18	81.51
Paper	Mixed Paper	Phone Books/Paperbacks	291.99	R Paper	123.44	32.88	33.02	16.21	41.02	19.19	14.37	11.86
Paper	Mixed Paper	Paper Bags	24.33	R Paper	5.07	2.46	0.37	2.22	9.58	0.25	4.00	0.38
Paper	Bev Cartons	Polycoated Paper Containers	14.86	R Bev Cartons	4.99	0.58	1.80	1.28	3.99	0.84	0.94	0.43
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	49.03	NR_Paper	3.52	0.31	4.23	1.58	22.59	0.98	11.69	4.13
Paper	Compostable Paper	Single Use Paper Plates, Cups	1.69	NR_Paper	0.00	0.05	0.05	0.20	1.05	0.00	0.20	0.14
Paper	Other Paper	Other Nonrecyclable Paper	36.25	NR_Paper	5.69	2.03	4.99	6.28	5.55	3.27	7.95	0.50
Paper Total			7,299.94		1,640.59	468.01	471.95	667.38	1,471.69	521.38	1,783.25	275.69
Plastic	PET Bottles	PET Bottles	2.47	R Plastics	0.50	0.08	0.07	0.00	0.21	0.38	0.81	0.43
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.52	R Plastics	0.00	0.00	0.00	0.00	0.14	0.11	0.16	0.11
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.39	R Plastics	0.00	0.00	0.00	0.00	0.06	0.18	0.00	0.15
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.02	PR_Plastics	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.15	PR_Plastics	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.09
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.25	PR_Plastics	0.00	0.00	0.00	0.03	0.00	0.04	0.18	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.17	PR_Plastics	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.06	PR_Plastics	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
Plastic	Other Plastic Products	Other PVC	0.29	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.28	PR_Plastics	0.00	0.04	0.04	0.00	0.06	0.00	0.00	0.13
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	4.52	PR_Plastics	1.59	0.14	0.04	0.64	0.44	0.34	1.28	0.06
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	4.82	PR_Plastics	0.65	0.36	0.28	0.64	2.20	0.24	0.25	0.19
Plastic	Film	Plastic Bags	12.68	PR_Plastics	8.02	0.56	0.65	0.16	1.96	0.46	0.33	0.53
Plastic	Film	Other Film	58.59	PR_Plastics	23.33	3.65	4.65	2.71	11.39	3.30	8.20	1.35
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	0.76	NR_Plastics	0.07	0.00	0.06	0.26	0.33	0.00	0.00	0.04
Plastic	Other Plastic Products	Other Plastics Materials	17.65	NR_Plastics	4.77	0.37	0.22	1.33	4.21	0.42	6.17	0.15
Plastic Total			103.63		38.94	5.20	6.04	5.95	21.13	5.75	17.37	3.25
Glass	Container Glass	Clear Container Glass	2.17	R Glass	0.00	0.19	0.33	0.09	0.00	0.90	0.00	0.66
Glass	Container Glass	Green Container Glass	0.57	R Glass	0.00	0.36	0.00	0.00	0.00	0.00	0.00	0.20
Glass	Container Glass	Brown Container Glass	0.80	R Glass	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.60
Glass	Mixed Cullet	Mixed Cullet	2.24	R Glass	1.79	0.00	0.16	0.16	0.00	0.00	0.00	0.13
Glass	Container Glass	Other Container Glass	0.00	R Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glass	Other Glass	Other Glass	3.18	PR_Glass	0.00	0.00	2.62	0.00	0.00	0.00	0.00	0.56
Glass Total			8.96		1.79	0.56	3.31	0.25	0.00	0.90	0.00	2.15
Metal	Aluminum	Aluminum Cans	0.56	R Metal	0.00	0.00	0.07	0.00	0.39	0.00	0.09	0.01
Metal	Aluminum	Aluminum Foil/Containers	1.91	R Metal	0.00	0.12	0.04	0.15	0.53	0.08	0.75	0.23
Metal	Aluminum	Other Aluminum	0.29	R Metal	0.00	0.00	0.00	0.29	0.00	0.00	0.00	0.00
Metal	Non-Ferrous	Other Non-Ferrous	2.75	R Metal	0.00	0.00	0.00	0.00	2.62	0.14	0.00	0.00
Metal	Ferrous	Tin Food Cans	1.33	R Metal	0.00	0.16	0.09	0.03	0.00	0.09	0.66	0.30
Metal	Ferrous	Empty Aerosol Cans	1.04	R Metal	0.18	0.08	0.09	0.09	0.30	0.09	0.00	0.21
Metal	Ferrous	Other Ferrous	1.88	R Metal	0.38	0.10	0.00	0.19	0.50	0.16	0.54	0.01
Metal	Other Metal	Mixed Metals	2.52	R Metal	0.00	0.00	0.00	0.03	2.13	0.00	0.18	0.18
Metal Total			12.28		0.56	0.45	0.29	0.79	6.48	0.55	2.21	0.95

Table l-5
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	0.11	NR_Other	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.00
Organics	Yard	Prunings	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Wood	Stumps/Limbs	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	13.63	NR_Other	1.08	0.09	0.22	1.01	8.80	0.87	1.14	0.41
Organics	Wood	Wood Furniture/Furniture Pieces	2.40	NR_Other	2.18	0.13	0.00	0.10	0.00	0.00	0.00	0.00
Organics	Wood	Non-C\&D Untreated Wood	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Organics	Textiles	Non-Clothing Textiles	4.47	NR_Other	0.09	0.04	0.10	0.10	0.67	0.02	3.40	0.05
Organics	Textiles	Clothing Textiles	9.95	NR_Other	0.24	0.13	0.16	1.92	0.30	4.42	2.24	0.54
Organics	Textiles	Carpet/Upholstery	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	5.05	NR_Other	0.00	0.52	0.00	0.00	1.33	1.67	1.20	0.34
Organics	Misc. Organic	Animal By-Products	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Rubber Products	0.32	NR_Other	0.00	0.00	0.00	0.00	0.22	0.07	0.00	0.03
Organics	Textiles	Shoes	0.65	NR_Other	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.35
Organics	Textiles	Other Leather Products	0.04	NR_Other	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.02
Organics	Misc. Organic	Fines	20.85	NR_Other	4.81	0.89	0.91	1.44	8.23	1.91	1.91	0.75
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Miscellaneous Organics	1.26	NR_Other	0.00	0.02	0.11	0.21	0.82	0.08	0.00	0.01
Organics Total			58.76		8.40	1.84	1.50	4.77	20.36	9.39	9.98	2.51
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	2.05	NR_Other	0.00	0.00	0.00	0.00	0.00	0.07	0.00	1.98
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.16	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.12	NR_Other	0.00	0.00	0.00	0.06	0.06	0.00	0.00	0.00
Appliance/Electronic Total			2.33		0.00	0.00	0.00	0.06	0.06	0.07	0.00	2.14
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	2.01	NR_Other	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Wood	Treated/Contaminated Wood	9.63	NR_Other	0.00	0.00	0.00	0.33	4.51	4.77	0.00	0.01
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	1.12	NR_Other	0.00	0.00	0.27	0.00	0.00	0.85	0.00	0.00
C \& D Debris	Inorganic C\&D	Other Construction Debris	7.85	NR_Other	5.18	0.00	0.59	1.37	0.00	0.71	0.00	0.00
C \& D Debris Total			20.61		7.19	0.00	0.86	1.70	4.51	6.34	0.00	0.01
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.37	NR_Other	0.24	0.00	0.00	0.00	0.00	0.13	0.00	0.00
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	3.08	NR_Other	0.00	0.00	0.00	0.06	2.55	0.46	0.00	0.00
Miscellaneous Inorganics Total			3.45		0.24	0.00	0.00	0.06	2.55	0.59	0.00	0.00
HHW	HHW	Oil Filters	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	3.70	NR_Other	0.00	0.04	0.00	0.00	0.00	0.00	3.66	0.00
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.06	NR_Other	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
HHW	HHW	Dry-Cell Batteries	0.36	NR_Other	0.00	0.00	0.00	0.00	0.14	0.17	0.00	0.05
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Other Potentially Harmful Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\frac{\text { HHW Total }}{\text { Grand Total }}$			4.12		0.00	0.04	0.00	0.00	0.20	0.17	3.66	0.05
			7,514.09		1,697.71	476.10	483.95	680.96	1,526.99	545.14	1,816.47	286.75

Table I-5
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Recycling Designation		High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	7,198.10	1,626.39	465.03	460.88	658.04	1,438.51	516.30	1,762.48	270.49
Designated Beverage Cartons	14.86	4.99	0.58	1.80	1.28	3.99	0.84	0.94	0.43
Designated Plastic	3.39	0.50	0.08	0.07	0.00	0.42	0.66	0.97	0.70
Designated Metal	12.28	0.56	0.45	0.29	0.79	6.48	0.55	2.21	0.95
Designated Glass	5.78	1.79	0.56	0.69	0.25	0.00	0.90	0.00	1.59
Designated MGP Subtotal	36.31	7.84	1.67	2.85	2.33	10.89	2.95	4.12	3.67
Potentially Designated Plastic	81.55	33.60	4.75	5.70	4.36	16.17	4.38	10.23	2.37
Potentially Designated Glass	3.18	0.00	0.00	2.62	0.00	0.00	0.00	0.00	0.56
Potentially Designated Materials Subtotal	84.72	33.60	4.75	8.32	4.36	16.17	4.38	10.23	2.92
Nondesignated Paper	86.98	9.21	2.40	9.27	8.06	29.19	4.25	19.83	4.77
Nondesignated Plastic	18.70	4.84	0.37	0.28	1.59	4.55	0.71	6.17	0.18
Other Nondesignated	89.27	15.83	1.88	2.37	6.60	27.69	16.56	13.64	4.71
Nondesignated Materials Subtotal	194.95	29.88	4.65	11.91	16.25	61.43	21.52	39.64	9.66

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table l-6
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	2,698.23	R Paper	602.28	187.76	126.61	228.36	542.27	136.89	767.61	106.44
Paper	OCC	Plain OCC/Kraft Paper	992.91	R Paper	84.11	74.58	106.95	51.37	232.26	142.25	247.06	54.34
Paper	Mixed Paper	High Grade Paper	195.62	R Paper	65.79	7.00	52.95	20.45	23.50	14.68	8.00	3.25
Paper	Mixed Paper	Mixed Low Grade Paper	2,282.36	R Paper	619.31	133.97	93.24	201.76	505.31	135.45	513.37	79.95
Paper	Mixed Paper	Phone Books/Paperbacks	361.32	R Paper	77.12	34.39	18.63	94.40	59.51	47.17	26.31	3.77
Paper	Mixed Paper	Paper Bags	26.27	R Paper	10.05	1.01	0.70	1.97	7.29	0.94	3.67	0.64
Paper	Bev Cartons	Polycoated Paper Containers	30.77	R Bev Cartons	1.87	1.46	3.40	1.18	4.54	0.88	16.93	0.50
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	17.84	NR_Paper	0.86	0.73	1.16	2.17	1.91	0.70	9.03	1.28
Paper	Compostable Paper	Single Use Paper Plates, Cups	1.87	NR_Paper	0.34	0.04	0.05	0.02	1.24	0.06	0.07	0.05
Paper	Other Paper	Other Nonrecyclable Paper	20.08	NR_Paper	1.39	0.16	0.43	1.59	1.60	0.24	10.45	4.21
Paper Total			6,627.28		1,463.14	44.10	404.13	603.29	1,379.44	479.24	1,602.51	254.44
Plastic	PET Bottles	PET Bottles	11.88	R Plastics	0.41	0.04	0.16	0.07	0.35	0.17	10.68	0.00
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.65	R Plastics	0.18	0.14	0.07	0.00	0.00	0.05	0.19	0.02
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.30	R Plastics	0.06	0.04	0.04	0.05	0.00	0.00	0.07	0.04
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.53	PR_Plastics	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.01
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.39	PR_Plastics	0.10	0.00	0.00	0.00	0.00	0.00	0.30	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.08	PR_Plastics	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.03
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.15	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.03	PR_Plastics	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.86	PR_Plastics	0.48	0.00	0.00	0.00	0.00	0.00	0.38	0.00
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Other Plastic Products	Other PVC	0.00	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.95	PR_Plastics	0.11	0.00	0.13	0.00	0.00	0.09	0.55	0.06
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	4.20	PR_Plastics	0.26	0.58	0.38	0.49	0.11	0.61	1.64	0.13
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	2.07	PR_Plastics	0.13	0.30	0.25	0.41	0.47	0.04	0.33	0.15
Plastic	Film	Plastic Bags	20.53	PR_Plastics	2.13	1.29	1.23	0.71	2.71	2.61	9.20	0.65
Plastic	Film	Other Film	54.45	PR_Plastics	17.11	3.71	4.89	4.11	12.36	2.38	8.35	1.53
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	1.89	NR_Plastics	0.00	0.04	0.14	0.02	0.72	0.02	0.91	0.03
Plastic	Other Plastic Products	Other Plastics Materials	15.28	NR_Plastics	1.54	1.45	6.74	0.47	2.89	0.83	0.86	0.49
Plastic Total			114.26		22.53	7.59	14.05	6.34	20.19	6.79	33.62	3.15
Glass	Container Glass	Clear Container Glass	5.59	R Glass	1.63	0.65	0.14	0.00	0.00	0.00	3.17	0.00
Glass	Container Glass	Green Container Glass	0.18	R Glass	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.00
Glass	Container Glass	Brown Container Glass	0.79	R Glass	0.44	0.00	0.00	0.00	0.00	0.00	0.35	0.00
Glass	Mixed Cullet	Mixed Cullet	0.00	R Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glass	Container Glass	Other Container Glass	0.00	R Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glass	Other Glass	Other Glass	0.66	PR_Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.66	0.00
Glass Total			7.22		2.07	0.65	0.14	0.18	0.00	0.00	4.17	0.00
Metal	Aluminum	Aluminum Cans	0.41	R Metal	0.00	0.06	0.05	0.03	0.13	0.00	0.14	0.01
Metal	Aluminum	Aluminum Foil/Containers	1.89	R Metal	0.00	0.04	0.10	0.00	0.38	0.13	1.22	0.03
Metal	Aluminum	Other Aluminum	0.17	R Metal	0.00	0.00	0.00	0.00	0.00	0.03	0.14	0.00
Metal	Non-Ferrous	Other Non-Ferrous	0.71	R Metal	0.00	0.00	0.07	0.00	0.00	0.63	0.00	0.00
Metal	Ferrous	Tin Food Cans	4.65	R Metal	0.20	0.00	0.08	0.28	0.00	0.20	3.75	0.15
Metal	Ferrous	Empty Aerosol Cans	0.29	R Metal	0.00	0.00	0.05	0.00	0.18	0.05	0.00	0.00
Metal	Ferrous	Other Ferrous	3.44	R Metal	0.41	0.02	0.03	1.06	0.17	1.15	0.60	0.01
Metal	Other Metal	Mixed Metals	0.33	R Metal	0.12	0.19	0.02	0.00	0.00	0.00	0.00	0.00
Metal Total			11.89		0.73	0.30	0.40	1.36	0.87	2.19	5.85	0.19

Table I-6
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	$\begin{aligned} & \text { High Densityl } \\ & \text { Low Income } \\ & \text { Weekly Tonnage } \\ & \hline \end{aligned}$	Medium Densityl High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Organics	Yard	Leaves and Grass	0.06	NR_Other	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00
Organics	Yard	Prunings	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Wood	Stumps/Limbs	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	33.11	NR_Other	3.04	0.00	0.97	1.04	0.80	0.37	25.63	1.28
Organics	Wood	Wood Furniture/Furniture Pieces	0.76	NR_Other	0.00	0.00	0.00	0.02	0.54	0.20	0.00	0.00
Organics	Wood	Non-C\&D Untreated Wood	3.50	NR_Other	0.69	0.00	0.88	0.44	1.13	0.20	0.00	0.17
Organics	Textiles	Non-Clothing Textiles	1.25	NR_Other	0.31	0.15	0.19	0.00	0.00	0.01	0.15	0.45
Organics	Textiles	Clothing Textiles	3.31	NR_Other	1.51	0.00	0.02	0.27	0.00	0.36	1.08	0.07
Organics	Textiles	Carpet/Upholstery	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	0.48	NR_Other	0.37	0.00	0.05	0.00	0.00	0.00	0.00	0.06
Organics	Misc. Organic	Animal By-Products	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Rubber Products	7.31	NR_Other	0.00	0.10	7.10	0.00	0.05	0.05	0.00	0.00
Organics	Textiles	Shoes	5.18	NR_Other	0.00	0.00	0.00	0.00	3.13	0.00	2.05	0.00
Organics	Textiles	Other Leather Products	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Organics	Misc. Organic	Fines	41.81	NR_Other	4.14	1.60	2.78	2.55	5.49	2.62	21.29	1.34
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Miscellaneous Organics	0.25	NR_Other	0.00	0.00	0.00	0.23	0.00	0.00	0.03	0.00
Organics Total			97.05		10.06	1.85	12.05	4.54	11.14	3.83	50.22	3.36
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.09	NR_Other	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.06	NR_Other	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.40	NR_Other	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.59	NR_Other	0.00	0.00	0.00	0.32	0.00	0.00	0.28	0.00
Appliance/Electronic Total			1.14		0.00	0.00	0.06	0.32	0.40	0.09	0.28	0.00
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.73	NR_Other	0.00	0.19	0.00	0.00	0.54	0.00	0.00	0.00
C \& D Debris	Wood	Treated/Contaminated Wood	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Other Construction Debris	2.42	NR_Other	0.00	0.29	1.08	0.00	0.93	0.11	0.00	0.00
C \& D Debris Total			3.15		0.00	0.48	1.08	0.00	1.47	0.11	0.00	0.00
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	0.53	NR_Other	0.34	0.00	0.15	0.00	0.00	0.00	0.00	0.03
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	0.74	NR_Other	0.00	0.00	0.00	0.29	0.00	0.00	0.38	0.07
Miscellaneous Inorganics Total			1.27		0.34	0.00	0.15	0.29	0.00	0.00	0.38	0.10
HHW	HHW	Oil Filters	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.06	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00
HHW	HHW	Dry-Cell Batteries	0.11	NR_Other	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.09
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	0.17	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.04
HHW	HHW	Other Potentially Harmful Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\frac{\text { HHW Total }}{\text { Grand Total }}$			0.36		0.00	0.00	0.02	0.00	0.00	0.00	0.19	0.15
					1,498.87	451.98	432.07	616.31	1,413.50	492.25	1,697.21	261.40

Table l-6
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Recycling Designation	Citywide Paper Weekly Tonnage	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Designated Paper	6,556.71	1,458.66	438.71	399.09	598.32	1,370.14	477.36	1,566.03	248.40
Designated Beverage Cartons	30.77	1.87	1.46	3.40	1.18	4.54	0.88	16.93	0.50
Designated Plastic	12.83	0.65	0.22	0.26	0.12	0.35	0.22	10.95	0.06
Designated Metal	11.89	0.73	0.30	0.40	1.36	0.87	2.19	5.85	0.19
Designated Glass	6.56	2.07	0.65	0.14	0.18	0.00	0.00	3.51	0.00
Designated MGP Subtotal	62.05	5.33	2.63	4.19	2.85	5.76	3.30	37.24	0.76
Potentially Designated Plastic	84.25	20.33	5.88	6.91	5.73	16.23	5.72	20.89	2.57
Potentially Designated Glass	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.66	0.00
Potentially Designated Materials Subtotal	84.91	20.33	5.88	6.91	5.73	16.23	5.72	21.55	2.57
Nondesignated Paper	39.79	2.60	0.93	1.64	3.79	4.76	0.99	19.55	5.54
Nondesignated Plastic	17.17	1.54	1.49	6.87	0.49	3.62	0.85	1.78	0.52
Other Nondesignated	102.96	10.40	2.34	13.36	5.14	13.01	4.03	51.07	3.62
Nondesignated Materials Subtotal	159.92	14.55	4.76	21.87	9.42	21.38	5.87	72.39	9.68

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table I-7
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	3,006.18	R Paper	815.10	190.72	136.05	258.50	465.02	237.41	768.85	134.53
Paper	OCC	Plain OCC/Kraft Paper	791.77	R Paper	150.27	42.01	152.58	58.23	183.88	85.32	91.30	28.19
Paper	Mixed Paper	High Grade Paper	261.90	R Paper	31.92	8.40	7.68	28.36	115.29	12.05	53.47	4.72
Paper	Mixed Paper	Mixed Low Grade Paper	2,325.63	R Paper	472.06	169.18	109.18	226.64	481.01	129.34	641.24	96.98
Paper	Mixed Paper	Phone Books/Paperbacks	189.16	R Paper	12.71	9.36	12.81	18.08	44.28	21.21	58.27	12.44
Paper	Mixed Paper	Paper Bags	30.82	R Paper	8.94	1.29	0.03	2.51	12.81	0.27	3.88	1.10
Paper	Bev Cartons	Polycoated Paper Containers	14.63	R Bev Cartons	0.44	0.51	5.60	0.67	3.44	0.78	2.87	0.32
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	187.73	NR_Paper	0.21	20.17	4.58	15.82	42.05	2.00	101.75	1.14
Paper	Compostable Paper	Single Use Paper Plates, Cups	1.13	NR_Paper	0.22	0.31	0.16	0.06	0.06	0.06	0.26	0.00
Paper	Other Paper	Other Nonrecyclable Paper	48.77	NR_Paper	2.28	2.78	3.58	4.41	22.33	2.65	9.51	1.23
Paper Total			6,857.74		1,494.17	444.73	432.25	613.29	1,370.16	491.10	1,731.39	280.65
Plastic	PET Bottles	PET Bottles	2.20	R Plastics	0.00	0.47	0.06	0.32	0.11	0.04	1.00	0.21
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.66	R Plastics	0.00	0.00	0.00	0.00	0.33	0.00	0.13	0.19
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.49	R Plastics	0.00	0.00	0.02	0.00	0.00	0.02	0.40	0.05
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.06	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.13	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.27	PR_Plastics	0.05	0.00	0.02	0.00	0.00	0.00	0.20	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.01	PR_Plastics	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.06	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06	PR_Plastics	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Other Plastic Products	Other PVC	0.00	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	0.46	PR_Plastics	0.00	0.00	0.04	0.09	0.17	0.00	0.13	0.04
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	1.56	PR_Plastics	0.33	0.02	0.02	0.44	0.34	0.08	0.26	0.06
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	2.41	PR_Plastics	0.05	0.11	0.26	0.18	1.10	0.07	0.57	0.05
Plastic	Film	Plastic Bags	15.43	PR_Plastics	2.44	0.81	0.21	0.45	3.63	0.84	6.19	0.85
Plastic	Film	Other Film	44.75	PR_Plastics	6.05	3.42	4.52	4.14	11.73	3.72	9.89	1.28
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	1.10	NR_Plastics	0.00	0.00	0.13	0.04	0.77	0.00	0.13	0.02
Plastic	Other Plastic Products	Other Plastics Materials	14.74	NR_Plastics	0.28	0.05	6.23	0.55	0.87	4.25	1.86	0.66
Plastic Total			84.39		9.21	4.90	11.51	6.23	19.10	9.02	21.04	3.39
Glass	Container Glass	Clear Container Glass	2.66	R Glass	0.00	0.00	0.04	0.61	0.00	0.29	1.61	0.11
Glass	Container Glass	Green Container Glass	0.00	R Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glass	Container Glass	Brown Container Glass	0.33	R Glass	0.00	0.00	0.00	0.00	0.33	0.00	0.00	0.00
Glass	Mixed Cullet	Mixed Cullet	1.69	R Glass	0.00	0.00	0.12	0.00	0.66	0.91	0.00	0.00
Glass	Container Glass	Other Container Glass	0.00	R Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Glass	Other Glass	Other Glass	1.50	PR_Glass	0.00	0.24	0.00	0.00	0.00	0.00	1.11	0.15
Glass Total			6.19		0.00	0.24	0.16	0.61	0.99	1.20	2.72	0.26
Metal	Aluminum	Aluminum Cans	0.20	R Metal	0.00	0.00	0.02	0.11	0.00	0.00	0.07	0.00
Metal	Aluminum	Aluminum Foil/Containers	0.85	R Metal	0.00	0.00	0.03	0.09	0.11	0.02	0.60	0.00
Metal	Aluminum	Other Aluminum	0.05	R Metal	0.00	0.00	0.04	0.00	0.00	0.02	0.00	0.00
Metal	Non-Ferrous	Other Non-Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Metal	Ferrous	Tin Food Cans	2.18	R Metal	0.00	0.10	0.10	0.27	0.44	0.06	0.87	0.33
Metal	Ferrous	Empty Aerosol Cans	0.20	R Metal	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.04
Metal	Ferrous	Other Ferrous	2.48	R Metal	0.05	0.62	0.02	0.00	0.33	0.00	1.46	0.00
Metal	Other Metal	Mixed Metals	1.22	R Metal	0.00	0.05	0.00	0.02	0.93	0.02	0.20	0.00
Metal Total			7.17		0.05	0.93	0.21	0.50	1.81	0.11	3.19	0.37

Table I-7
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Yard	Prunings	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Wood	Stumps/Limbs	0.10	NR_Other	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00
Organics	Food	Food	21.08	NR_Other	0.00	2.98	0.35	1.27	14.07	0.92	1.18	0.31
Organics	Wood	Wood Furniture/Furniture Pieces	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Organics	Wood	Non-C\&D Untreated Wood	0.56	NR_Other	0.00	0.00	0.00	0.00	0.00	0.10	0.47	0.00
Organics	Textiles	Non-Clothing Textiles	11.07	NR_Other	7.02	0.31	0.34	0.19	1.90	0.16	0.80	0.36
Organics	Textiles	Clothing Textiles	3.23	NR_Other	0.22	0.02	0.00	0.02	0.22	0.42	2.32	0.01
Organics	Textiles	Carpet/Upholstery	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2.81	NR_Other	0.00	0.32	0.15	0.04	2.18	0.00	0.12	0.00
Organics	Misc. Organic	Animal By-Products	0.11	NR_Other	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Rubber Products	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Organics	Textiles	Shoes	0.39	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.39	0.00
Organics	Textiles	Other Leather Products	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Fines	16.93	NR_Other	2.67	1.18	1.65	1.97	3.21	1.51	4.12	0.62
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Miscellaneous Organics	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics Total			56.33		10.03	4.80	2.48	3.49	21.58	3.24	9.40	1.30
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.55	NR_Other	0.00	0.00	0.00	0.00	0.00	0.55	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	0.33	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.00
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electroni/AV/Computer	Other Computer Equipment	2.79	NR_Other	2.77	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Appliance/Electronic Total			3.66		2.77	0.00	0.00	0.00	0.00	0.55	0.33	0.02
\bar{C} \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Wood	Treated/Contaminated Wood	1.06	NR_Other	0.00	0.00	0.02	0.00	0.72	0.00	0.32	0.00
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.70	NR_Other	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Other Construction Debris	8.71	NR_Other	0.00	0.00	8.71	0.00	0.00	0.00	0.00	0.00
C \& D Debris Total			10.47		0.00	0.00	8.72	0.00	1.42	0.00	0.32	0.00
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	0.25	NR_Other	0.00	0.00	0.00	0.00	0.16	0.00	0.07	0.02
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Miscellaneous Inorganics Total			0.25		0.00	0.00	0.00	0.00	0.16	0.00	0.07	0.02
HHW	HHW	Oil Filters	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.02	NR_Other	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Dry-Cell Batteries	0.39	NR_Other	0.00	0.02	0.05	0.02	0.05	0.06	0.19	0.00
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Other Potentially Harmful Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\frac{\text { HHW Total }}{\text { Grand Total }}$			0.41		0.00	0.02	0.05	0.04	0.05	0.06	0.19	0.00
			7,026.61		1,516.23	455.61	455.39	624.16	1,415.28	505.28	1,768.66	286.01

Table l-7
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Recycling Designation		High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	6,605.47	1,491.01	420.95	418.34	592.32	1,302.28	485.60	1,617.00	277.95
Designated Beverage Cartons	14.63	0.44	0.51	5.60	0.67	3.44	0.78	2.87	0.32
Designated Plastic	3.35	0.00	0.47	0.07	0.32	0.44	0.06	1.54	0.45
Designated Metal	7.17	0.05	0.93	0.21	0.50	1.81	0.11	3.19	0.37
Designated Glass	4.69	0.00	0.00	0.16	0.61	0.99	1.20	1.61	0.11
Designated MGP Subtotal	29.84	0.50	1.91	6.05	2.09	6.68	2.15	9.21	1.24
Potentially Designated Plastic	65.20	8.93	4.38	5.07	5.31	17.02	4.71	17.51	2.27
Potentially Designated Glass	1.50	0.00	0.24	0.00	0.00	0.00	0.00	1.11	0.15
Potentially Designated Materials Subtotal	66.70	8.93	4.62	5.07	5.31	17.02	4.71	18.62	2.42
Nondesignated Paper	237.63	2.72	23.26	8.31	20.30	64.44	4.72	111.52	2.37
Nondesignated Plastic	15.84	0.28	0.05	6.36	0.60	1.64	4.25	1.99	0.68
Other Nondesignated	71.12	12.80	4.82	11.26	3.53	23.22	3.84	10.31	1.34
Nondesignated Materials Subtotal	324.60	15.79	28.13	25.93	24.43	89.29	12.81	123.83	4.39

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table l-8
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	$\begin{gathered} \text { High Densityl } \\ \text { Low Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	2,904.37	R Paper	805.61	230.77	136.99	241.03	508.91	151.28	708.53	121.25
Paper	OCC	Plain OCC/Kraft Paper	608.16	R Paper	67.76	22.45	109.67	46.30	136.48	83.94	111.26	30.29
Paper	Mixed Paper	High Grade Paper	188.54	R Paper	45.58	6.99	2.47	23.65	20.07	20.84	50.83	18.11
Paper	Mixed Paper	Mixed Low Grade Paper	1,937.33	R Paper	331.10	143.51	87.04	229.99	302.09	147.71	622.19	73.69
Paper	Mixed Paper	Phone Books/Paperbacks	527.47	R Paper	38.70	31.54	16.35	25.50	264.12	13.13	113.67	24.46
Paper	Mixed Paper	Paper Bags	19.58	R Paper	4.44	0.90	0.22	3.73	3.28	0.35	5.44	1.21
Paper	Bev Cartons	Polycoated Paper Containers	9.88	R Bev Cartons	0.78	0.19	1.80	0.51	0.91	3.15	1.63	0.91
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	119.75	NR_Paper	6.12	3.01	18.20	7.15	64.83	1.91	17.43	1.10
Paper	Compostable Paper	Single Use Paper Plates, Cups	0.95	NR_Paper	0.10	0.05	0.00	0.18	0.45	0.05	0.06	0.05
Paper	Other Paper	Other Nonrecyclable Paper	104.36	NR_Paper	26.35	0.37	23.68	3.17	27.75	6.37	8.50	8.18
Paper Total			6,420.38		1,326.54	439.79	396.42	581.21	1,328.90	428.73	1,639.54	279.24
Plastic	PET Bottles	PET Bottles	3.65	R Plastics	0.10	0.00	0.10	0.11	0.67	1.31	1.38	0.00
Plastic	HDPE Bottles	HDPE Bottles: Natural	0.37	R Plastics	0.05	0.00	0.00	0.05	0.00	0.27	0.00	0.00
Plastic	HDPE Bottles	HDPE Bottles: Colored	0.40	R Plastics	0.16	0.00	0.00	0.00	0.00	0.24	0.00	0.00
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	0.13	PR_Plastics	0.05	0.00	0.08	0.00	0.00	0.00	0.00	0.00
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	0.09	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.03
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	0.22	PR_Plastics	0.00	0.00	0.00	0.16	0.05	0.02	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	0.06	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.00	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Other Plastic Products	Other PVC	0.00	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	2.35	PR_Plastics	0.00	0.10	0.14	0.02	0.40	0.35	1.25	0.09
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	1.04	PR_Plastics	0.05	0.00	0.23	0.04	0.30	0.31	0.07	0.03
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	1.03	PR_Plastics	0.47	0.00	0.05	0.29	0.05	0.00	0.15	0.03
Plastic	Film	Plastic Bags	15.77	PR_Plastics	2.44	1.39	0.40	0.88	2.93	1.85	5.44	0.44
Plastic	Film	Other Film	41.01	PR_Plastics	11.78	1.44	4.29	3.45	9.22	3.95	5.86	1.01
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	1.28	NR_Plastics	0.16	0.05	0.35	0.02	0.35	0.05	0.25	0.05
Plastic	Other Plastic Products	Other Plastics Materials	9.47	NR_Plastics	2.17	1.45	2.18	0.20	1.32	1.25	0.84	0.06
Plastic Total			76.89		17.43	4.43	7.80	5.21	15.30	9.61	15.36	1.75
Glass	Container Glass	Clear Container Glass	2.34	R Glass	0.00	0.19	0.00	0.46	0.00	1.42	0.25	0.02
Glass	Container Glass	Green Container Glass	1.19	R Glass	0.00	0.00	0.00	1.04	0.00	0.16	0.00	0.00
Glass	Container Glass	Brown Container Glass	0.53	R Glass	0.00	0.00	0.00	0.53	0.00	0.00	0.00	0.00
Glass	Mixed Cullet	Mixed Cullet	0.27	R Glass	0.00	0.02	0.26	0.00	0.00	0.00	0.00	0.00
Glass	Container Glass	Other Container Glass	0.13	R Glass	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00
Glass	Other Glass	Other Glass	0.28	PR_Glass	0.00	0.00	0.02	0.00	0.00	0.00	0.25	0.01
Glass Total			4.74		0.00	0.20	0.27	2.03	0.00	1.57	0.63	0.03
Metal	Aluminum	Aluminum Cans	0.29	R Metal	0.00	0.00	0.00	0.00	0.05	0.16	0.07	0.01
Metal	Aluminum	Aluminum Foil/Containers	0.84	R Metal	0.05	0.02	0.08	0.07	0.15	0.07	0.38	0.03
Metal	Aluminum	Other Aluminum	0.48	R Metal	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.00
Metal	Non-Ferrous	Other Non-Ferrous	0.17	R Metal	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00
Metal	Ferrous	Tin Food Cans	0.56	R Metal	0.00	0.00	0.00	0.00	0.05	0.09	0.34	0.08
Metal	Ferrous	Empty Aerosol Cans	0.12	R Metal	0.10	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Metal	Ferrous	Other Ferrous	4.70	R Metal	3.20	0.02	0.00	0.09	0.05	0.07	1.25	0.02
Metal	Other Metal	Mixed Metals	0.10	R Metal	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00
Metal Total			7.25		3.35	0.21	0.65	0.16	0.30	0.40	2.04	0.15

Table I-8
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Paper Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	2.86	NR_Other	0.00	0.00	0.00	2.80	0.00	0.00	0.06	0.00
Organics	Yard	Prunings	1.06	NR_Other	0.00	0.00	0.74	0.11	0.00	0.09	0.00	0.12
Organics	Wood	Stumps/Limbs	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	16.46	NR_Other	1.79	0.62	0.35	3.44	1.25	5.33	3.68	0.00
Organics	Wood	Wood Furniture/Furniture Pieces	0.35	NR_Other	0.00	0.00	0.00	0.13	0.00	0.22	0.00	0.00
Organics	Wood	Non-C\&D Untreated Wood	2.31	NR_Other	0.00	0.00	0.52	1.57	0.00	0.22	0.00	0.00
Organics	Textiles	Non-Clothing Textiles	2.69	NR_Other	0.50	0.23	0.02	0.11	0.30	0.60	0.88	0.05
Organics	Textiles	Clothing Textiles	1.76	NR_Other	0.00	0.05	0.46	0.13	0.00	1.12	0.00	0.00
Organics	Textiles	Carpet/Upholstery	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2.06	NR_Other	0.55	1.21	0.08	0.22	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Animal By-Products	0.07	NR_Other	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Rubber Products	0.10	NR_Other	0.00	0.07	0.03	0.00	0.00	0.00	0.00	0.00
Organics	Textiles	Shoes	4.57	NR_Other	3.30	0.00	0.03	0.00	0.00	1.24	0.00	0.00
Organics	Textiles	Other Leather Products	0.23	NR_Other	0.00	0.10	0.00	0.13	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Fines	15.24	NR_Other	1.62	0.38	5.77	0.54	0.89	2.35	3.15	0.55
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Miscellaneous Organics	3.64	NR_Other	0.00	0.00	3.58	0.00	0.00	0.00	0.06	0.00
Organics Total			53.41		7.76	2.65	11.59	9.26	2.44	11.17	7.82	0.72
Appliance/Electronic	Ferrous	Appliances: Ferrous	0.00	R Metal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	0.57	R Metal	0.00	0.00	0.00	0.00	0.57	0.00	0.00	0.00
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	0.02	NR_Other	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	2.11	NR_Other	0.00	1.78	0.20	0.00	0.00	0.12	0.00	0.01
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic Total			2.70		0.00	1.78	0.20	0.02	0.57	0.12	0.00	0.01
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$C \& D$ Debris	Wood	Treated/Contaminated Wood	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C \& D Debris Total			0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Miscellaneous Inorganic	Misc. Inorganic	Miscellaneous Inorganics	2.32	NR_Other	0.00	0.00	0.00	0.00	0.00	0.05	2.27	0.00
Miscellaneous Inorganic	Misc. Inorganic	Ceramics	1.41	NR_Other	0.00	0.41	0.00	0.00	1.00	0.00	0.00	0.00
Miscellaneous Inorganics Total			3.73		0.00	0.41	0.00	0.00	1.00	0.05	2.27	0.00
HHW	HHW	Oil Filters	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	0.30	NR_Other	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Dry-Cell Batteries	0.43	NR_Other	0.11	0.19	0.00	0.09	0.05	0.00	0.00	0.00
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	0.08	NR_Other	0.00	0.00	0.02	0.00	0.00	0.00	0.06	0.00
HHW	HHW	Other Potentially Harmful Wastes	0.30	NR_Other	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00
HHW Total			1.11		0.11	0.19	0.61	0.09	0.05	0.00	0.06	0.00
Grand Total			6,570.22		1,355.19	449.67	417.55	597.97	1,348.55	451.65	1,667.72	281.90

Table I-8
WCS Paper Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Recycling Designation	Citywide Paper Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	6,185.44	1,293.19	436.18	352.74	570.21	1,234.95	417.25	1,611.92	269.00
Designated Beverage Cartons	9.88	0.78	0.19	1.80	0.51	0.91	3.15	1.63	0.91
Designated Plastic	4.42	0.30	0.00	0.10	0.16	0.67	1.82	1.38	0.00
Designated Metal	7.83	3.35	0.21	0.65	0.16	0.87	0.40	2.04	0.15
Designated Glass	4.46	0.00	0.20	0.26	2.03	0.00	1.57	0.37	0.02
Designated MGP Subtotal	26.59	4.44	0.59	2.80	2.85	2.46	6.95	5.42	1.08
Potentially Designated Plastic	61.71	14.80	2.93	5.18	4.84	12.96	6.48	12.89	1.63
Potentially Designated Glass	0.28	0.00	0.00	0.02	0.00	0.00	0.00	0.25	0.01
Potentially Designated Materials Subtotal	61.99	14.80	2.93	5.20	4.84	12.96	6.48	13.15	1.64
Nondesignated Paper	225.05	32.57	3.43	41.88	10.49	93.03	8.33	25.99	9.33
Nondesignated Plastic	10.76	2.33	1.50	2.52	0.22	1.68	1.30	1.09	0.12
Other Nondesignated	60.38	7.87	5.04	12.40	9.37	3.48	11.34	10.15	0.73
Nondesignated Materials Subtotal	296.19	42.76	9.97	56.81	20.08	98.19	20.98	37.24	10.18

(1) Tonnage values calculated using DSNY average weekly curbside paper tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table I-9
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	$\begin{gathered} \text { High Densityl } \\ \text { Low Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Medium Density/ High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	$\begin{gathered} \hline \text { Low Density/ } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	23.65	R Paper	1.06	0.89	0.23	1.47	7.55	3.04	7.76	1.66
Paper	OCC	Plain OCC/Kraft Paper	15.46	R Paper	1.68	0.51	1.26	0.26	2.85	1.32	4.39	3.20
Paper	Mixed Paper	High Grade Paper	3.70	R Paper	0.35	0.20	0.07	0.24	0.84	0.66	0.50	0.84
Paper	Mixed Paper	Mixed Low Grade Paper	60.80	R Paper	7.10	4.18	3.06	3.47	15.96	7.67	12.98	6.39
Paper	Mixed Paper	Phone Books/Paperbacks	2.89	R Paper	0.08	0.02	0.00	0.39	1.75	0.65	0.00	0.00
Paper	Mixed Paper	Paper Bags	1.79	R Paper	0.41	0.13	0.05	0.18	0.31	0.13	0.47	0.11
Paper	Bev Cartons	Polycoated Paper Containers	91.78	R Bev Cartons	9.07	6.19	11.29	7.32	28.19	7.71	16.55	5.46
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	11.91	NR_Paper	1.28	0.75	1.71	0.70	2.26	1.42	2.49	1.30
Paper	Compostable Paper	Single Use Paper Plates, Cups	1.88	NR_Paper	0.28	0.14	0.18	0.08	0.42	0.15	0.46	0.17
Paper	Other Paper	Other Nonrecyclable Paper	17.83	NR_Paper	1.14	0.99	2.26	1.04	4.40	2.53	3.52	1.95
Paper Total			231.68		22.43	13.98	20.10	15.14	64.54	25.29	49.12	21.08
Plastic	PET Bottles	PET Bottles	246.34	R Plastics	30.76	11.01	20.88	10.37	57.18	28.29	65.09	22.75
Plastic	HDPE Bottles	HDPE Bottles: Natural	129.47	R Plastics	9.37	9.75	20.55	3.20	38.33	14.56	22.38	11.34
Plastic	HDPE Bottles	HDPE Bottles: Colored	141.95	R Plastics	13.25	9.61	15.91	4.85	35.13	13.76	37.81	11.63
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.76	PR_Plastics	0.06	0.05	0.03	0.04	0.77	0.04	0.72	0.05
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	12.70	PR_Plastics	0.92	1.76	1.61	0.05	3.49	0.88	3.14	0.85
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	2.15	PR_Plastics	0.20	0.17	0.16	0.13	0.38	0.19	0.74	0.19
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.66	PR_Plastics	0.00	0.02	0.06	0.00	0.10	0.07	0.05	0.37
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.87	PR_Plastics	0.37	0.28	0.49	0.14	1.29	0.66	1.15	0.49
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	11.56	PR_Plastics	1.47	2.40	0.57	0.46	2.04	1.63	2.06	0.94
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.42	PR_Plastics	0.02	0.00	0.07	0.01	0.12	0.11	0.05	0.04
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.24	PR_Plastics	0.00	0.16	0.02	0.03	0.04	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	19.10	PR_Plastics	7.12	0.77	1.23	0.62	4.00	0.96	3.24	1.14
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	3.99	PR_Plastics	0.49	0.31	0.26	0.21	0.89	0.43	0.73	0.67
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	0.94	PR_Plastics	0.01	0.37	0.45	0.05	0.02	0.03	0.00	0.01
Plastic	Other Plastic Products	Other PVC	1.75	NR_Plastics	0.00	0.06	0.00	0.03	0.08	1.26	0.27	0.05
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	10.47	PR_Plastics	1.03	0.37	1.12	0.34	2.38	0.23	2.89	2.10
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	4.48	PR_Plastics	0.24	0.33	0.43	0.86	1.33	0.47	0.41	0.41
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	60.78	PR_Plastics	8.65	3.57	6.38	3.01	16.00	6.12	11.51	5.54
Plastic	Film	Plastic Bags	31.14	PR_Plastics	3.50	2.25	2.45	2.39	8.06	2.19	7.63	2.67
Plastic	Film	Other Film	155.34	PR_Plastics	26.42	10.48	20.41	6.72	40.42	16.09	23.83	10.98
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	5.49	NR_Plastics	0.52	0.28	0.32	0.39	1.19	0.62	1.25	0.91
Plastic	Other Plastic Products	Other Plastics Materials	164.03	NR_Plastics	16.64	10.88	24.87	6.23	36.10	20.00	38.97	10.32
Plastic Total			1,009.63		121.04	64.88	118.29	40.12	249.32	108.59	223.92	83.46
Glass	Container Glass	Clear Container Glass	336.76	R Glass	51.62	20.73	21.01	16.93	66.50	35.24	89.81	34.93
Glass	Container Glass	Green Container Glass	180.10	R Glass	71.45	9.49	4.11	25.90	18.70	7.69	33.64	9.12
Glass	Container Glass	Brown Container Glass	86.63	R Glass	13.15	4.62	2.99	9.35	12.59	6.95	28.67	8.31
Glass	Mixed Cullet	Mixed Cullet	678.66	R Glass	142.97	33.04	68.45	53.97	165.34	63.12	116.57	35.21
Glass	Container Glass	Other Container Glass	9.75	R Glass	1.27	0.27	0.48	0.38	3.08	2.32	1.14	0.79
Glass	Other Glass	Other Glass	22.55	PR_Glass	3.17	1.71	0.94	0.90	5.07	2.88	3.87	4.00
Glass Total			1,314.45		283.63	69.87	97.98	107.41	271.28	118.20	273.71	92.36
Metal	Aluminum	Aluminum Cans	24.26	R Metal	2.07	0.74	1.83	0.96	4.62	2.08	9.70	2.25
Metal	Aluminum	Aluminum Foil/Containers	46.63	R Metal	3.20	3.26	3.79	2.60	10.79	7.02	11.66	4.32
Metal	Aluminum	Other Aluminum	6.57	R Metal	1.55	0.84	1.01	0.60	0.46	0.21	1.12	0.77
Metal	Non-Ferrous	Other Non-Ferrous	26.53	R Metal	3.34	3.99	3.45	3.03	5.24	0.76	5.92	0.81
Metal	Ferrous	Tin Food Cans	341.12	R Metal	25.30	16.49	39.92	14.50	87.01	48.06	76.26	33.59
Metal	Ferrous	Empty Aerosol Cans	31.25	R Metal	4.03	1.87	4.33	0.87	8.06	2.90	6.80	2.38
Metal	Ferrous	Other Ferrous	717.43	R Metal	79.06	36.01	140.41	26.84	151.09	101.15	135.50	47.38
Metal	Other Metal	Mixed Metals	131.09	R Metal	11.86	14.80	24.81	6.28	13.88	18.70	34.89	5.88
Metal Total			1,324.88		130.40	78.00	219.56	55.67	281.16	180.88	281.84	97.38

Table l-9
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	1.17	NR_Other	0.09	0.03	0.22	0.02	0.73	0.01	0.07	0.00
Organics	Yard	Prunings	0.45	NR_Other	0.02	0.00	0.00	0.00	0.12	0.00	0.01	0.31
Organics	Wood	Stumps/Limbs	0.01	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Organics	Food	Food	51.89	NR_Other	3.31	1.97	5.05	1.86	11.33	5.57	17.21	5.58
Organics	Wood	Wood Furniture/Furniture Pieces	6.38	NR_Other	0.14	0.77	2.85	0.07	0.19	1.31	1.02	0.03
Organics	Wood	Non-C\&D Untreated Wood	0.87	NR_Other	0.17	0.05	0.08	0.15	0.15	0.24	0.03	0.00
Organics	Textiles	Non-Clothing Texiles	7.62	NR_Other	0.57	1.57	0.99	0.19	1.54	0.95	1.16	0.65
Organics	Textiles	Clothing Textiles	3.91	NR_Other	0.58	0.53	0.30	0.29	1.02	0.80	0.33	0.07
Organics	Textiles	Carpet/Upholstery	0.23	NR_Other	0.00	0.00	0.00	0.00	0.23	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.37	NR_Other	0.00	0.25	0.23	0.65	0.28	0.21	1.60	0.15
Organics	Misc. Organic	Animal By-Products	0.53	NR_Other	0.01	0.26	0.01	0.01	0.17	0.07	0.00	0.00
Organics	Misc. Organic	Rubber Products	3.01	NR_Other	0.39	0.25	0.56	0.11	0.75	0.12	0.38	0.44
Organics	Textiles	Shoes	2.97	NR_Other	0.03	0.45	0.05	0.30	1.10	0.06	0.23	0.74
Organics	Textiles	Other Leather Products	0.27	NR_Other	0.08	0.06	0.00	0.00	0.07	0.00	0.00	0.06
Organics	Misc. Organic	Fines	6.60	NR_Other	1.09	0.17	0.86	0.30	2.03	0.55	1.25	0.35
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3.57	NR_Other	0.00	0.06	3.52	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Miscellaneous Organics	6.03	NR_Other	0.83	0.58	0.30	0.48	1.04	0.95	1.54	0.30
Organics Total			98.89		7.32	6.99	15.01	4.44	20.75	10.83	24.83	8.71
Appliance/Electronic	Ferrous	Appliances: Ferrous	425.66	R Metal	44.02	36.06	93.19	31.95	41.08	65.11	82.21	32.04
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	4.44	R Metal	1.76	0.64	1.04	0.66	0.00	0.04	0.01	0.30
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	61.41	NR_Other	6.35	6.81	13.64	2.49	10.58	9.93	8.61	3.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.40	NR_Other	0.04	0.26	0.00	0.00	0.09	0.01	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	10.32	NR_Other	0.01	0.21	4.08	0.11	1.98	1.59	1.84	0.51
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.38	NR_Other	0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.24	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	20.92	NR_Other	0.09	3.14	1.00	0.33	4.62	3.55	8.14	0.04
Appliance/Electronic Total			523.77		52.26	47.13	113.33	35.53	58.36	80.23	100.81	36.13
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.48	NR_Other	0.00	0.00	0.01	0.02	0.21	0.17	0.00	0.06
$C \& D$ Debris	Wood	Treated/Contaminated Wood	7.01	NR_Other	1.16	0.24	4.06	0.08	0.82	0.06	0.50	0.08
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.46	NR_Other	0.36	0.00	0.00	0.00	0.08	0.01	0.01	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	6.18	NR_Other	0.11	0.01	0.39	0.00	0.98	3.28	1.41	0.00
C \& D Debris	Inorganic C\&D	Other Construction Debris	11.58	NR_Other	0.40	7.33	0.65	0.07	1.34	1.30	0.17	0.32
C \& D Debris Total			25.72		2.03	7.59	5.12	0.18	3.42	4.81	2.10	0.46
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	1.77	NR_Other	0.12	0.07	0.32	0.03	0.20	0.42	0.56	0.05
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	21.33	NR_Other	1.70	1.23	1.50	0.35	5.39	2.52	7.16	1.48
Miscellaneous Inorganics Total			23.10		1.82	1.30	1.82	0.38	5.59	2.95	7.72	1.53
HHW	HHW	Oil Filters	0.57	NR_Other	0.00	0.00	0.00	0.00	0.53	0.00	0.00	0.05
HHW	HHW	Antifreeze	0.11	NR_Other	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.72	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.38
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	5.52	NR_Other	1.03	0.66	0.05	0.00	2.11	0.41	0.87	0.39
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	3.27	NR_Other	0.03	0.34	0.00	0.00	1.94	0.00	0.91	0.04
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.78	NR_Other	0.03	0.00	0.00	0.00	0.00	0.02	0.67	0.06
HHW	HHW	Dry-Cell Batteries	2.04	NR_Other	0.18	0.12	0.19	0.01	0.37	0.42	0.56	0.20
HHW	HHW	Fluorescent Tubes	0.09	NR_Other	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.06	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	0.74	NR_Other	0.11	0.03	0.00	0.04	0.11	0.01	0.18	0.27
HHW	HHW	Other Potentially Harmful Wastes	1.82	NR_Other	0.05	0.05	0.00	0.00	0.26	0.25	1.12	0.09
$\frac{\text { HHW Total }}{\text { Grand Total }}$			15.72		1.51	1.20	0.23	0.05	5.32	1.21	4.66	1.54
			4,567.83		622.44	290.93	591.45	258.91	959.75	532.99	968.71	342.66

Table I-9
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Recycling Designation	$\begin{gathered} \hline \text { Citywide } \\ \text { MGP } \\ \text { Weekly Tonnage } \end{gathered}$	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	108.29	10.66	5.91	4.66	6.00	29.26	13.48	26.10	12.21
Designated Beverage Cartons	91.78	9.07	6.19	11.29	7.32	28.19	7.71	16.55	5.46
Designated Plastic	517.76	53.38	30.37	57.35	18.42	130.64	56.60	125.28	45.72
Designated Metal	1,754.98	176.17	114.70	313.79	88.27	322.24	246.02	364.06	129.72
Designated Glass	1,291.90	280.46	68.15	97.04	106.52	266.21	115.32	269.84	88.36
Designated MGP Subtotal	3,656.42	519.09	219.41	479.47	220.52	747.28	425.66	775.73	269.26
Potentially Designated Plastic	320.61	50.50	23.29	35.75	15.05	81.31	30.11	58.15	26.45
Potentially Designated Glass	22.55	3.17	1.71	0.94	0.90	5.07	2.88	3.87	4.00
Potentially Designated Materials Subtotal	343.16	53.67	25.00	36.69	15.95	86.39	32.99	62.02	30.45
Nondesignated Paper	31.62	2.70	1.88	4.15	1.81	7.09	4.10	6.47	3.42
Nondesignated Plastic	171.26	17.16	11.23	25.20	6.66	37.37	21.88	40.48	11.28
Other Nondesignated	257.09	19.17	27.51	41.28	7.97	52.36	34.88	57.90	16.03
Nondesignated Materials Subtotal	459.97	39.03	40.61	70.62	16.44	96.82	60.86	104.85	30.74

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-10
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Density Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \hline \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	39.83	R Paper	1.68	1.34	1.11	1.93	7.60	7.85	14.77	3.55
Paper	OCC	Plain OCC/Kraft Paper	12.50	R Paper	0.30	0.56	1.02	0.25	3.37	1.64	3.42	1.94
Paper	Mixed Paper	High Grade Paper	1.11	R Paper	0.12	0.13	0.05	0.10	0.30	0.16	0.20	0.05
Paper	Mixed Paper	Mixed Low Grade Paper	52.96	R Paper	7.31	6.11	2.79	3.00	9.64	6.68	11.39	6.04
Paper	Mixed Paper	Phone Books/Paperbacks	4.26	R Paper	0.28	0.16	0.02	0.82	1.50	0.50	0.83	0.15
Paper	Mixed Paper	Paper Bags	2.13	R Paper	0.29	0.15	0.09	0.11	0.50	0.18	0.48	0.33
Paper	Bev Cartons	Polycoated Paper Containers	88.45	R Bev Cartons	11.20	7.85	6.77	7.66	23.01	10.10	16.02	5.84
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	12.63	NR_Paper	1.25	0.57	1.21	0.67	2.68	2.17	3.08	1.01
Paper	Compostable Paper	Single Use Paper Plates, Cups	2.83	NR_Paper	0.42	0.16	0.20	0.17	0.61	0.27	0.45	0.54
Paper	Other Paper	Other Nonrecyclable Paper	16.88	NR_Paper	1.84	1.16	1.32	0.37	5.21	2.52	3.13	1.33
Paper Total			233.57		24.66	18.18	14.59	15.08	54.42	32.09	53.77	20.78
Plastic	PET Bottles	PET Bottles	263.49	R Plastics	38.29	14.11	20.46	12.45	59.39	30.32	65.33	23.13
Plastic	HDPE Bottles	HDPE Bottles: Natural	142.93	R Plastics	12.94	11.69	16.92	4.32	40.88	18.26	26.33	11.58
Plastic	HDPE Bottles	HDPE Bottles: Colored	138.32	R Plastics	16.66	8.20	13.91	6.16	34.61	16.80	31.64	10.34
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.01	PR_Plastics	0.02	0.05	0.43	0.01	0.17	0.09	0.17	0.07
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	8.43	PR_Plastics	0.74	1.43	1.03	0.29	1.67	1.79	0.74	0.74
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	1.71	PR_Plastics	0.24	0.14	0.14	0.16	0.20	0.13	0.58	0.11
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.25	PR_Plastics	0.01	0.03	0.05	0.00	0.07	0.06	0.00	0.02
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.23	PR_Plastics	0.22	0.18	0.27	0.19	0.87	0.61	1.43	0.46
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	10.75	PR_Plastics	2.78	0.56	0.67	0.34	2.77	0.85	2.07	0.70
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.28	PR_Plastics	0.01	0.06	0.05	0.00	0.08	0.05	0.04	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.08	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	17.03	PR_Plastics	2.96	0.84	2.02	0.75	3.83	1.52	4.21	0.90
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	1.84	PR_Plastics	0.13	0.12	0.14	0.02	0.20	0.77	0.33	0.13
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	3.74	PR_Plastics	0.01	0.39	2.34	0.01	0.10	0.42	0.12	0.34
Plastic	Other Plastic Products	Other PVC	0.72	NR_Plastics	0.00	0.00	0.00	0.11	0.53	0.08	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	12.65	PR_Plastics	2.09	0.77	0.61	0.86	2.51	1.50	3.55	0.76
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	4.70	PR_Plastics	0.32	0.30	0.34	0.22	0.96	0.55	1.57	0.43
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	54.14	PR_Plastics	7.74	3.91	5.80	2.61	14.98	4.76	10.47	3.88
Plastic	Film	Plastic Bags	35.64	PR_Plastics	4.10	2.26	1.99	2.52	8.91	4.77	8.76	2.32
Plastic	Film	Other Film	132.61	PR_Plastics	27.50	9.67	16.27	6.26	29.96	15.77	19.25	7.92
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	7.09	NR_Plastics	0.83	0.37	0.47	0.26	2.38	0.68	1.60	0.50
Plastic	Other Plastic Products	Other Plastics Materials	132.85	NR_Plastics	17.35	9.81	23.10	5.72	26.82	12.51	25.86	11.68
Plastic Total			974.48		134.94	64.89	107.03	43.26	231.88	112.38	204.07	76.02
Glass	Container Glass	Clear Container Glass	338.97	R Glass	41.90	22.76	19.60	26.55	58.96	36.82	99.58	32.80
Glass	Container Glass	Green Container Glass	183.68	R Glass	69.31	12.00	6.66	31.36	17.12	7.79	31.98	7.46
Glass	Container Glass	Brown Container Glass	82.98	R Glass	15.15	3.63	3.81	8.86	20.80	7.88	18.16	4.67
Glass	Mixed Cullet	Mixed Cullet	727.39	R Glass	163.19	42.23	77.53	45.83	184.28	63.58	112.41	38.33
Glass	Container Glass	Other Container Glass	5.55	R Glass	0.78	0.25	0.07	0.55	0.84	0.44	1.62	1.00
Glass	Other Glass	Other Glass	20.74	PR_Glass	1.43	1.54	1.00	0.80	5.54	1.91	6.25	2.28
Glass Total			1,359.31		291.76	82.41	108.67	113.96	287.55	118.42	270.00	86.54
Metal	Aluminum	Aluminum Cans	24.07	R Metal	3.04	0.80	1.37	0.95	3.70	2.07	9.53	2.62
Metal	Aluminum	Aluminum Foil/Containers	40.66	R Metal	3.38	1.96	3.47	2.51	10.43	5.08	10.73	3.12
Metal	Aluminum	Other Aluminum	2.77	R Metal	0.00	0.00	0.28	0.71	1.18	0.28	0.31	0.01
Metal	Non-Ferrous	Other Non-Ferrous	39.41	R Metal	1.79	4.10	6.02	0.60	8.28	6.62	10.14	1.86
Metal	Ferrous	Tin Food Cans	328.99	R Metal	27.50	20.34	35.94	17.04	81.13	44.29	72.22	30.53
Metal	Ferrous	Empty Aerosol Cans	26.93	R Metal	4.54	1.80	1.85	1.13	7.16	3.57	4.91	1.96
Metal	Ferrous	Other Ferrous	593.70	R Metal	74.63	29.87	99.75	30.90	101.78	58.26	152.35	46.16
Metal	Other Metal	Mixed Metals	150.14	R Metal	14.40	8.79	56.62	4.14	16.76	13.15	18.66	17.62
Metal Total			1,206.67		129.27	67.66	205.29	57.98	230.42	133.32	278.84	103.89

Table I-10
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	$\begin{gathered} \text { Recycling } \\ \text { Subindicator } \end{gathered}$	$\begin{gathered} \text { High Density/ } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	High Densityl Medium Income Weekly Tonnage	$\begin{aligned} & \text { High Densityl } \\ & \text { Low Income } \\ & \text { Weekly Tonnage } \end{aligned}$	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \hline \text { Low Density/ } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Low Density/ } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Organics	Yard	Leaves and Grass	0.28	NR_Other	0.08	0.00	0.00	0.00	0.10	0.08	0.01	0.01
Organics	Yard	Prunings	0.03	NR_Other	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Organics	Wood	Stumps/Limbs	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	64.65	NR_Other	5.44	4.97	5.55	3.36	17.10	9.07	12.53	6.63
Organics	Wood	Wood Furniture/Furniture Pieces	5.17	NR_Other	0.70	0.43	1.03	0.16	0.84	1.12	0.85	0.05
Organics	Wood	Non-C\&D Untreated Wood	4.06	NR_Other	0.30	0.49	0.80	0.19	1.43	0.55	0.21	0.08
Organics	Textiles	Non-Clothing Textiles	4.52	NR_Other	0.41	0.50	1.21	0.01	0.76	0.26	0.76	0.62
Organics	Textiles	Clothing Textiles	4.72	NR_Other	0.54	1.09	0.51	0.13	1.46	0.29	0.47	0.22
Organics	Textiles	Carpet/Upholstery	0.17	NR_Other	0.00	0.00	0.00	0.00	0.00	0.11	0.07	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2.23	NR_Other	0.01	0.04	0.08	0.25	0.62	0.12	0.86	0.27
Organics	Misc. Organic	Animal By-Products	1.11	NR_Other	0.02	0.02	0.00	0.03	0.97	0.03	0.03	0.02
Organics	Misc. Organic	Rubber Products	1.66	NR_Other	0.13	0.31	0.10	0.02	0.23	0.44	0.22	0.21
Organics	Textiles	Shoes	3.19	NR_Other	0.28	0.28	0.00	0.00	1.14	0.65	0.31	0.54
Organics	Textiles	Other Leather Products	0.12	NR_Other	0.00	0.01	0.02	0.00	0.02	0.01	0.06	0.00
Organics	Misc. Organic	Fines	8.43	NR_Other	0.88	0.96	0.59	0.67	2.51	0.75	1.63	0.44
Organics	Textiles	Upholstered or Other Organic-Type Furniture	2.10	NR_Other	1.01	0.00	0.71	0.00	0.00	0.00	0.38	0.00
Organics	Misc. Organic	Miscellaneous Organics	1.39	NR_Other	0.42	0.00	0.05	0.12	0.27	0.05	0.39	0.10
Organics Total			103.82		10.22	9.08	10.63	4.94	27.45	13.52	18.79	9.19
Appliance/Electronic	Ferrous	Appliances: Ferrous	278.71	R Metal	34.64	24.43	84.17	6.00	39.11	25.62	44.26	20.49
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	1.05	R Metal	0.00	0.18	0.27	0.00	0.48	0.07	0.00	0.05
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	29.27	NR_Other	4.22	1.34	4.49	1.56	4.23	1.95	9.26	2.23
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.07	NR_Other	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	10.88	NR_Other	2.23	1.16	1.12	0.43	1.09	0.67	3.83	0.35
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	7.41	NR_Other	7.38	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.29	NR_Other	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	28.76	NR_Other	3.98	2.50	8.33	0.28	1.80	3.04	7.08	1.75
Appliance/Electronic Total			356.44		52.44	29.64	98.38	8.26	46.72	31.65	64.48	24.88
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.07	NR_Other	0.00	0.00	0.00	0.00	0.03	0.04	0.00	0.00
C \& D Debris	Wood	Treated/Contaminated Wood	1.90	NR_Other	0.51	0.03	0.58	0.06	0.72	0.00	0.00	0.00
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	1.22	NR_Other	0.03	0.59	0.35	0.13	0.06	0.02	0.03	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.95	NR_Other	0.14	0.00	0.13	0.00	0.00	0.13	0.00	0.56
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	8.18	NR_Other	0.00	4.45	0.08	0.15	0.48	3.00	0.00	0.03
C \& D Debris Total			12.32		0.68	5.06	1.14	0.34	1.29	3.18	0.03	0.59
Miscellaneous Inorganic	Misc. Inorganic	Miscellaneous Inorganics	4.52	NR_Other	0.80	0.30	0.11	0.08	0.95	0.40	1.32	0.56
Miscellaneous Inorganic	Misc. Inorganic	Ceramics	19.51	NR_Other	2.21	0.81	1.31	0.52	4.00	1.65	7.55	1.46
Miscellaneous Inorganics Total			24.03		3.02	1.10	1.42	0.60	4.95	2.05	8.87	2.02
HHW	HHW	Oil Filters	0.11	NR_Other	0.05	0.00	0.00	0.00	0.00	0.05	0.01	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHw	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	5.91	NR_Other	3.57	0.10	0.00	0.29	0.04	1.20	0.61	0.10
HHw	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	2.15	NR_Other	0.21	0.07	0.00	0.00	1.77	0.00	0.08	0.01
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.06	NR_Other	0.00	0.00	0.00	0.05	0.00	0.01	0.00	0.00
HHw	HHW	Dry-Cell Batteries	1.75	NR_Other	0.11	0.11	0.07	0.08	0.85	0.18	0.28	0.07
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	1.18	NR_Other	0.12	0.07	0.04	0.00	0.54	0.06	0.26	0.10
HHW	HHW	Other Potentially Harmful Wastes	2.91	NR_Other	0.39	0.01	0.22	0.00	0.33	0.57	1.29	0.09
HHW Total			14.08		4.45	0.37	0.33	0.42	3.53	2.07	2.53	0.37
Grand Total			4,284.72		651.45	278.40	547.48	244.83	888.22	448.70	901.37	324.28

Table l-10
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Recycling Designation	Citywide MGP Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Density/ Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	112.79	9.96	8.44	5.08	6.21	22.91	17.03	31.09	12.07
Designated Beverage Cartons	88.45	11.20	7.85	6.77	7.66	23.01	10.10	16.02	5.84
Designated Plastic	544.74	67.90	34.00	51.30	22.93	134.88	65.37	123.31	45.05
Designated Metal	1,486.43	163.90	92.27	289.73	63.97	270.02	159.00	323.10	124.43
Designated Glass	1,338.57	290.34	80.87	107.68	113.16	282.01	116.51	263.75	84.25
Designated MGP Subtotal	3,458.19	533.34	215.00	455.48	207.72	709.91	350.98	726.18	259.57
Potentially Designated Plastic	289.09	48.87	20.71	32.16	14.24	67.27	33.74	53.31	18.79
Potentially Designated Glass	20.74	1.43	1.54	1.00	0.80	5.54	1.91	6.25	2.28
Potentially Designated Materials Subtotal	309.83	50.30	22.25	33.16	15.04	72.82	35.65	59.56	21.07
Nondesignated Paper	32.33	3.50	1.89	2.74	1.21	8.50	4.97	6.66	2.88
Nondesignated Plastic	140.65	18.17	10.18	23.57	6.09	29.73	13.27	27.45	12.18
Other Nondesignated	230.93	36.18	20.65	27.46	8.55	44.35	26.80	50.43	16.51
Nondesignated Materials Subtotal	403.91	57.85	32.71	53.76	15.85	82.58	45.04	84.54	31.57

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-11
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	23.92	R Paper	2.82	1.63	0.19	2.73	3.56	3.19	5.45	4.37
Paper	OCC	Plain OCC/Kraft Paper	9.80	R Paper	0.38	0.93	0.49	0.34	1.74	1.67	3.61	0.63
Paper	Mixed Paper	High Grade Paper	2.45	R Paper	0.48	0.17	0.09	0.07	0.32	0.40	0.74	0.17
Paper	Mixed Paper	Mixed Low Grade Paper	86.57	R Paper	8.65	4.71	5.04	4.24	15.47	11.96	30.05	6.46
Paper	Mixed Paper	Phone Books/Paperbacks	1.82	R Paper	0.18	0.00	0.29	0.39	0.16	0.33	0.16	0.31
Paper	Mixed Paper	Paper Bags	2.22	R Paper	0.40	0.12	0.13	0.21	0.34	0.18	0.72	0.13
Paper	Bev Cartons	Polycoated Paper Containers	93.81	R Bev Cartons	10.79	5.78	6.56	7.21	23.82	11.66	22.35	5.65
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	13.42	NR_Paper	1.49	0.45	1.12	0.60	2.98	1.37	4.65	0.76
Paper	Compostable Paper	Single Use Paper Plates, Cups	2.78	NR_Paper	0.33	0.14	0.08	0.17	0.68	0.28	0.99	0.12
Paper	Other Paper	Other Nonrecyclable Paper	15.26	NR_Paper	0.82	1.05	1.99	0.53	4.56	1.96	3.36	0.99
Paper Total			252.04		26.32	14.97	15.97	16.48	53.64	32.99	72.08	19.58
Plastic	PET Bottles	PET Bottles	305.92	R Plastics	37.75	14.69	27.17	13.35	64.76	36.35	84.36	27.48
Plastic	HDPE Bottles	HDPE Bottles: Natural	151.39	R Plastics	9.82	12.05	21.06	4.79	44.24	15.73	32.02	11.68
Plastic	HDPE Bottles	HDPE Bottles: Colored	165.17	R Plastics	16.39	10.22	18.67	6.66	33.14	19.21	46.68	14.20
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.45	PR_Plastics	0.03	0.13	0.09	0.02	0.06	0.02	0.04	0.05
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	8.29	PR_Plastics	0.54	1.28	1.25	1.34	0.77	0.40	1.85	0.86
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	1.03	PR_Plastics	0.03	0.46	0.10	0.00	0.09	0.19	0.12	0.04
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.06	PR_Plastics	0.01	0.00	0.01	0.00	0.03	0.00	0.00	0.01
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	3.77	PR_Plastics	0.16	0.16	0.31	0.15	0.57	0.77	1.22	0.43
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	6.01	PR_Plastics	0.49	0.34	0.81	0.82	0.88	0.79	1.40	0.49
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.16	PR_Plastics	0.00	0.09	0.00	0.00	0.00	0.02	0.00	0.05
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.78	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.25	0.52	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	19.01	PR_Plastics	1.68	1.39	1.70	1.14	3.18	2.00	5.46	2.47
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	3.14	PR_Plastics	0.38	0.12	0.03	0.20	0.07	0.13	0.84	1.36
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	4.72	PR_Plastics	0.40	0.53	0.26	0.09	1.01	0.71	1.25	0.46
Plastic	Other Plastic Products	Other PVC	0.14	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	18.13	PR_Plastics	2.02	1.02	0.90	0.88	5.35	1.07	5.64	1.25
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	4.70	PR_Plastics	0.42	0.33	0.47	0.16	1.65	0.41	1.03	0.23
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	68.55	PR_Plastics	9.49	4.22	5.43	3.38	17.56	6.06	16.23	6.17
Plastic	Film	Plastic Bags	42.24	PR_Plastics	3.76	3.46	3.88	2.70	9.03	3.84	11.78	3.79
Plastic	Film	Other Film	147.13	PR_Plastics	25.88	10.39	18.81	7.59	33.13	20.00	23.15	8.18
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	9.95	NR_Plastics	0.96	0.56	0.76	0.46	2.17	0.93	2.49	1.63
Plastic	Other Plastic Products	Other Plastics Materials	189.56	NR_Plastics	17.71	11.99	30.53	8.15	43.24	17.57	45.75	14.61
Plastic Total			1,150.29		127.92	73.41	132.23	51.89	260.94	126.48	281.84	95.58
Glass	Container Glass	Clear Container Glass	434.28	R Glass	45.72	22.40	31.34	18.94	74.94	56.94	144.08	39.94
Glass	Container Glass	Green Container Glass	221.30	R Glass	80.11	14.29	6.15	25.10	29.13	13.34	41.54	11.65
Glass	Container Glass	Brown Container Glass	85.31	R Glass	11.62	3.97	4.90	7.32	14.71	11.35	24.09	7.36
Glass	Mixed Cullet	Mixed Cullet	903.20	R Glass	200.72	56.57	94.54	70.94	220.69	76.43	120.20	63.11
Glass	Container Glass	Other Container Glass	9.82	R Glass	1.46	0.38	1.03	0.43	1.05	0.92	3.59	0.96
Glass	Other Glass	Other Glass	13.16	PR_Glass	0.60	0.80	0.56	0.65	3.91	2.35	3.07	1.22
Glass Total			1,667.07		340.22	98.42	138.52	123.37	344.43	161.32	336.56	124.24
Metal	Aluminum	Aluminum Cans	27.80	R Metal	1.77	1.12	2.17	1.25	5.11	3.29	9.69	3.40
Metal	Aluminum	Aluminum Foil/Containers	46.72	R Metal	3.28	2.99	3.64	2.09	9.64	5.87	14.47	4.74
Metal	Aluminum	Other Aluminum	33.39	R Metal	0.55	2.80	11.17	1.42	3.35	2.07	8.13	3.89
Metal	Non-Ferrous	Other Non-Ferrous	34.86	R Metal	1.19	2.58	4.85	0.90	3.05	5.56	14.81	1.92
Metal	Ferrous	Tin Food Cans	360.19	R Metal	28.30	17.54	44.75	16.33	87.26	48.08	86.67	31.26
Metal	Ferrous	Empty Aerosol Cans	32.76	R Metal	3.96	2.08	3.18	0.92	8.80	3.99	7.76	2.06
Metal	Ferrous	Other Ferrous	597.10	R Metal	52.88	38.23	106.41	28.92	104.12	60.89	154.10	51.55
Metal	Other Metal	Mixed Metals	186.98	R Metal	22.81	9.84	28.63	7.96	51.46	13.26	27.54	25.49
Metal Total			1,319.81		114.75	77.18	204.80	59.79	272.79	143.00	323.16	124.32

Table l-11
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	0.82	NR_Other	0.07	0.00	0.01	0.03	0.01	0.08	0.58	0.04
Organics	Yard	Prunings	0.24	NR_Other	0.00	0.14	0.00	0.03	0.01	0.00	0.04	0.03
Organics	Wood	Stumps/Limbs	0.12	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.01
Organics	Food	Food	86.09	NR_Other	8.74	5.76	8.88	2.97	14.61	10.51	28.66	5.96
Organics	Wood	Wood Furniture/Furniture Pieces	2.94	NR_Other	0.09	0.49	0.30	0.25	0.68	0.23	0.48	0.42
Organics	Wood	Non-C\&D Untreated Wood	2.21	NR_Other	0.01	0.02	0.00	0.33	1.30	0.32	0.16	0.07
Organics	Textiles	Non-Clothing Textiles	2.47	NR_Other	0.23	0.25	0.31	0.17	0.74	0.35	0.22	0.19
Organics	Textiles	Clothing Textiles	3.28	NR_Other	0.13	0.35	0.60	0.03	0.72	0.11	1.28	0.06
Organics	Textiles	Carpet/Upholstery	0.01	NR_Other	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	3.23	NR_Other	0.05	0.04	0.40	0.10	0.51	0.22	1.67	0.25
Organics	Misc. Organic	Animal By-Products	1.42	NR_Other	0.20	0.00	0.10	0.05	0.00	0.00	1.02	0.05
Organics	Misc. Organic	Rubber Products	6.64	NR_Other	0.29	0.85	0.61	0.08	1.57	0.22	1.78	1.25
Organics	Textiles	Shoes	3.64	NR_Other	0.18	0.59	0.68	0.13	1.14	0.41	0.39	0.12
Organics	Textiles	Other Leather Products	0.24	NR_Other	0.00	0.13	0.00	0.00	0.01	0.00	0.09	0.00
Organics	Misc. Organic	Fines	10.06	NR_Other	1.53	0.61	0.81	0.57	2.18	1.55	1.82	0.99
Organics	Textiles	Upholstered or Other Organic-Type Furniture	9.54	NR_Other	2.95	0.00	0.98	0.00	0.00	5.59	0.00	0.01
Organics	Misc. Organic	Miscellaneous Organics	3.43	NR_Other	0.95	0.04	0.55	0.03	0.24	0.35	1.00	0.28
Organics Total			136.38		15.40	9.29	14.22	4.77	23.71	19.96	39.30	9.73
Appliance/Electronic	Ferrous	Appliances: Ferrous	154.81	R Metal	1.23	17.31	41.59	7.96	17.86	17.56	43.69	7.62
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	2.39	R Metal	0.05	0.04	0.00	0.13	0.00	0.86	0.88	0.43
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	33.69	NR_Other	6.46	1.63	4.52	1.87	6.55	6.34	4.42	1.90
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.08	NR_Other	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.04
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	12.43	NR_Other	1.71	1.05	1.36	0.22	1.97	1.00	4.95	0.17
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	4.30	NR_Other	3.34	0.96	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.38	NR_Other	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	23.07	NR_Other	3.09	1.30	3.54	2.60	3.30	2.47	6.64	0.14
Appliance/Electronic Total			231.15		15.88	22.66	51.01	12.81	29.67	28.24	60.57	10.31
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.41	NR_Other	0.51	0.00	0.09	0.15	0.03	0.00	0.00	0.63
C \& D Debris	Wood	Treated/Contaminated Wood	4.45	NR_Other	0.13	0.23	1.70	0.09	0.80	0.16	1.16	0.19
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.95	NR_Other	0.00	0.00	0.32	0.03	0.32	0.14	0.14	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	4.46	NR_Other	1.00	0.66	2.24	0.00	0.17	0.04	0.31	0.04
C \& D Debris	Inorganic C\&D	Other Construction Debris	8.39	NR_Other	0.47	0.05	4.70	0.54	0.23	0.96	0.09	1.36
C \& D Debris Total			19.65		2.11	0.94	9.05	0.81	1.53	1.29	1.71	2.21
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	4.29	NR_Other	0.26	0.12	1.22	0.06	0.39	0.04	1.26	0.95
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	22.48	NR_Other	1.87	1.99	2.50	0.35	2.91	4.11	7.63	1.12
Miscellaneous Inorganics Total			26.78		2.13	2.11	3.72	0.41	3.30	4.15	8.89	2.07
HHW	HHW	Oil Filters	0.15	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00
HHW	HHW	Antifreeze	0.14	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
HHW	HHW	Wet-Cell Batteries	0.10	NR_Other	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.09	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	2.38	NR_Other	1.03	0.02	0.07	0.00	0.01	1.21	0.04	0.00
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	2.95	NR_Other	0.00	0.00	0.00	0.02	0.09	2.84	0.00	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
HHW	HHW	Dry-Cell Batteries	0.88	NR_Other	0.09	0.08	0.06	0.08	0.22	0.11	0.24	0.01
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.73	NR_Other	0.11	0.00	1.47	0.00	0.00	0.00	0.15	0.00
HHW	HHW	Home Medical Products	1.09	NR_Other	0.23	0.08	0.19	0.02	0.25	0.01	0.16	0.14
HHW	HHW	Other Potentially Harmful Wastes	5.73	NR_Other	0.38	0.04	0.18	0.08	2.08	1.64	1.32	0.01
HHW Total			15.26		1.84	0.21	2.05	0.21	2.65	5.81	2.10	0.39
Grand Total			4,818.43		646.58	299.18	571.57	270.55	992.67	523.24	1,126.22	388.42

Table l-11
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Recycling Designation	Citywide MGP Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Density/ Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	126.78	12.90	7.56	6.23	7.98	21.59	17.73	40.73	12.07
Designated Beverage Cartons	93.81	10.79	5.78	6.56	7.21	23.82	11.66	22.35	5.65
Designated Plastic	622.47	63.97	36.96	66.90	24.80	142.13	71.29	163.07	53.35
Designated Metal	1,477.01	116.04	94.52	246.39	67.88	290.65	161.43	367.73	132.37
Designated Glass	1,653.91	339.62	97.62	137.96	122.72	340.52	158.97	333.49	123.02
Designated MGP Subtotal	3,847.21	530.42	234.88	457.80	222.60	797.12	403.35	886.64	314.40
Potentially Designated Plastic	328.16	45.27	23.90	34.04	18.49	73.40	36.69	70.53	25.84
Potentially Designated Glass	13.16	0.60	0.80	0.56	0.65	3.91	2.35	3.07	1.22
Potentially Designated Materials Subtotal	341.32	45.87	24.70	34.61	19.14	77.31	39.04	73.60	27.06
Nondesignated Paper	31.45	2.64	1.63	3.18	1.30	8.23	3.60	9.00	1.87
Nondesignated Plastic	199.66	18.67	12.55	31.29	8.60	45.41	18.50	48.25	16.39
Other Nondesignated	272.02	36.08	17.87	38.46	10.92	43.01	41.02	68.00	16.65
Nondesignated Materials Subtotal	503.13	57.39	32.04	72.94	20.83	96.65	63.13	125.25	34.90

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-12
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide MGP Weekly Tonnage	Recycling Subindicator Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	$\begin{gathered} \text { High Densityl } \\ \text { Low Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Medium Density/ High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	$\begin{gathered} \hline \text { Low Density/ } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	27.37	R Paper	1.80	3.06	1.13	1.59	3.63	4.56	8.23	3.37
Paper	OCC	Plain OCC/Kraft Paper	14.43	R Paper	1.01	1.06	0.26	0.44	2.45	1.99	5.59	1.63
Paper	Mixed Paper	High Grade Paper	4.15	R Paper	0.04	0.19	0.03	0.03	1.25	0.37	1.13	1.10
Paper	Mixed Paper	Mixed Low Grade Paper	50.77	R Paper	7.89	3.14	2.78	3.22	10.81	7.49	10.89	4.55
Paper	Mixed Paper	Phone Books/Paperbacks	6.26	R Paper	0.30	0.04	1.04	0.11	1.45	0.37	2.66	0.28
Paper	Mixed Paper	Paper Bags	3.23	R Paper	0.60	0.11	0.15	0.23	0.81	0.39	0.72	0.23
Paper	Bev Cartons	Polycoated Paper Containers	86.12	R Bev Cartons	10.15	5.30	8.02	6.76	20.82	11.60	18.60	4.87
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	22.61	NR_Paper	3.41	1.25	1.98	0.83	4.30	2.70	6.55	1.57
Paper	Compostable Paper	Single Use Paper Plates, Cups	3.14	NR_Paper	0.27	0.13	0.22	0.09	0.80	0.72	0.55	0.36
Paper	Other Paper	Other Nonrecyclable Paper	25.92	NR_Paper	1.40	1.56	3.60	0.58	6.53	4.28	5.85	2.12
Paper Total			243.99		26.86	15.85	19.21	13.88	52.84	34.48	60.78	20.09
Plastic	PET Bottles	PET Bottles	374.66	R Plastics	39.13	19.45	37.10	16.67	83.59	45.05	103.26	30.42
Plastic	HDPE Botlles	HDPE Bottles: Natural	155.75	R Plastics	10.85	10.44	23.63	3.93	47.93	16.90	30.61	11.46
Plastic	HDPE Bottles	HDPE Bottles: Colored	157.24	R Plastics	15.42	9.41	20.73	5.40	32.85	16.18	43.89	13.36
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.45	PR_Plastics	0.07	0.04	0.00	0.01	0.15	0.08	0.09	0.02
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	9.36	PR_Plastics	2.08	1.06	1.61	0.30	1.37	1.21	1.54	0.17
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#3 PVC	2.72	PR_Plastics	0.95	0.10	0.19	0.09	0.56	0.18	0.54	0.12
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.45	PR_Plastics	0.04	0.00	0.03	0.01	0.11	0.13	0.13	0.01
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.84	PR_Plastics	0.36	0.25	0.53	0.17	1.31	0.77	1.00	0.45
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	9.29	PR_Plastics	1.10	0.41	0.59	0.30	1.57	0.99	3.43	0.90
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.68	PR_Plastics	0.00	0.03	0.01	0.12	0.36	0.04	0.08	0.05
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.12	PR_Plastics	0.00	0.05	0.00	0.06	0.01	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	22.30	PR_Plastics	2.68	1.73	3.18	1.22	5.24	2.83	4.02	1.40
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	2.11	PR_Plastics	0.10	0.05	0.48	0.04	0.51	0.09	0.69	0.15
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	3.81	PR_Plastics	0.48	0.41	1.24	0.00	0.54	0.63	0.50	0.00
Plastic	Other Plastic Products	Other PVC	3.93	NR_Plastics	0.00	0.00	0.32	0.00	0.28	2.18	1.14	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	10.41	PR_Plastics	2.20	0.68	0.36	0.60	2.50	0.68	2.37	1.02
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	4.72	PR_Plastics	0.29	0.33	0.52	0.21	1.30	0.67	1.11	0.27
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	63.27	PR_Plastics	8.08	3.97	8.02	2.69	14.58	6.93	14.00	5.00
Plastic	Film	Plastic Bags	63.78	PR_Plastics	9.98	4.57	4.78	3.06	14.39	6.40	15.19	5.42
Plastic	Film	Other Film	134.04	PR_Plastics	26.18	10.04	18.71	6.15	31.49	15.00	19.10	7.37
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	18.56	NR_Plastics	1.87	0.92	1.19	0.70	4.82	1.52	4.02	3.54
Plastic	Other Plastic Products	Other Plastics Materials	166.25	NR_Plastics	17.57	13.90	33.69	5.77	35.63	19.20	29.62	10.89
Plastic Total			1,208.73		139.43	77.82	156.88	47.49	281.10	137.68	276.32	92.01
Glass	Container Glass	Clear Container Glass	391.79	R Glass	47.38	18.11	22.92	20.67	67.67	49.98	128.95	36.11
Glass	Container Glass	Green Container Glass	176.48	R Glass	56.76	11.43	4.99	20.31	23.29	12.93	35.84	10.93
Glass	Container Glass	Brown Container Glass	109.58	R Glass	18.62	5.10	7.44	8.36	21.06	12.95	28.33	7.71
Glass	Mixed Cullet	Mixed Cullet	1,019.02	R Glass	165.56	54.43	139.68	69.32	226.70	100.26	182.14	80.93
Glass	Container Glass	Other Container Glass	8.50	R Glass	1.07	0.83	0.24	1.05	1.95	0.58	2.37	0.42
Glass	Other Glass	Other Glass	20.99	PR_Glass	5.54	0.69	2.10	0.19	4.15	1.30	4.05	2.98
Glass Total			1,726.36		294.93	90.59	177.37	119.90	344.81	177.99	381.69	139.07
Metal	Aluminum	Aluminum Cans	42.77	R Metal	3.12	2.21	3.87	1.62	8.04	4.54	14.97	4.40
Metal	Aluminum	Aluminum Foil/Containers	43.99	R Metal	3.49	1.60	3.19	1.63	10.36	6.20	13.02	4.49
Metal	Aluminum	Other Aluminum	25.83	R Metal	1.17	2.00	1.48	0.48	7.39	2.42	7.81	3.07
Metal	Non-Ferrous	Other Non-Ferrous	42.62	R Metal	8.28	3.57	6.79	1.00	4.71	3.18	12.40	2.69
Metal	Ferrous	Tin Food Cans	305.94	R Metal	22.84	16.68	45.57	13.31	74.93	36.98	70.88	24.75
Metal	Ferrous	Empty Aerosol Cans	35.95	R Metal	2.92	1.98	4.26	1.07	9.94	4.81	8.55	2.42
Metal	Ferrous	Other Ferrous	453.52	R Metal	47.25	34.36	64.42	18.02	81.52	59.10	113.72	35.14
Metal	Other Metal	Mixed Metals	148.57	R Metal	10.35	9.62	41.73	7.75	23.27	7.53	37.23	11.09
Metal Total			1,099.18		99.42	72.01	171.31	44.88	220.16	124.77	278.58	88.05

Table I-12
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { WGGP } \\ \text { Weekly Tonnage } \end{gathered}$	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	0.38	NR_Other	0.00	0.00	0.00	0.07	0.00	0.04	0.26	0.00
Organics	Yard	Prunings	0.20	NR_Other	0.04	0.00	0.00	0.00	0.00	0.00	0.15	0.00
Organics	Wood	Stumps/Limbs	0.23	NR_Other	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	84.90	NR_Other	11.51	5.23	10.23	2.28	16.87	11.19	20.25	7.32
Organics	Wood	Wood Furniture/Furniture Pieces	7.72	NR_Other	1.57	0.11	0.64	0.13	2.17	1.17	1.90	0.04
Organics	Wood	Non-C\&D Untreated Wood	1.31	NR_Other	0.00	0.36	0.22	0.01	0.19	0.03	0.47	0.02
Organics	Textiles	Non-Clothing Textiles	5.89	NR_Other	0.61	0.33	1.84	0.09	0.70	0.48	1.47	0.36
Organics	Textiles	Clothing Textiles	4.33	NR_Other	0.69	0.37	0.65	0.33	0.66	0.60	0.87	0.15
Organics	Textiles	Carpet/Upholstery	0.68	NR_Other	0.00	0.00	0.00	0.00	0.20	0.01	0.46	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	4.28	NR_Other	0.17	0.04	0.59	0.11	0.56	0.97	1.49	0.35
Organics	Misc. Organic	Animal By-Products	2.97	NR_Other	1.10	0.00	0.17	0.02	0.00	0.00	1.63	0.05
Organics	Misc. Organic	Rubber Products	6.54	NR_Other	0.21	0.92	0.33	0.52	1.85	0.72	0.54	1.46
Organics	Textiles	Shoes	1.71	NR_Other	0.14	0.25	0.30	0.06	0.40	0.24	0.19	0.13
Organics	Textiles	Other Leather Products	1.10	NR_Other	0.08	0.06	0.17	0.02	0.55	0.00	0.19	0.03
Organics	Misc. Organic	Fines	16.81	NR_Other	1.37	2.48	2.20	0.61	2.43	1.63	4.62	1.47
Organics	Textiles	Upholstered or Other Organic-Type Furniture	5.61	NR_Other	0.21	0.35	0.73	0.00	0.00	0.00	0.89	3.42
Organics	Misc. Organic	Miscellaneous Organics	7.63	NR_Other	0.14	0.07	0.11	0.01	0.17	5.28	1.21	0.64
Organics Total			152.27		18.07	10.58	18.18	4.27	26.76	22.37	36.58	15.44
Appliance/Electronic	Ferrous	Appliances: Ferrous	160.89	R Metal	21.28	19.82	11.55	15.05	45.75	10.56	20.93	15.95
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	18.07	R Metal	1.34	1.28	1.70	0.88	1.06	2.20	8.99	0.62
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	36.53	NR_Other	3.05	2.52	9.69	1.53	7.89	3.32	6.79	1.74
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electroni/AV/Computer	Audio/Visual Equipment: Other	19.39	NR_Other	0.81	1.01	4.05	1.18	4.71	1.78	4.04	1.82
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	2.56	NR_Other	2.10	0.00	0.00	0.46	0.00	0.00	0.00	0.00
Appliance/Electronic	Electroni/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	23.16	NR_Other	2.02	1.33	8.61	0.98	3.44	1.71	4.61	0.46
Appliance/Electronic Total			260.60		30.61	25.96	35.61	20.08	62.86	19.56	45.36	20.58
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.41	NR_Other	0.00	0.02	0.00	0.00	0.00	0.03	0.36	0.00
C \& D Debris	Wood	Treated/Contaminated Wood	4.64	NR_Other	0.70	0.40	2.52	0.01	0.38	0.24	0.30	0.08
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.54	NR_Other	0.00	0.00	0.16	0.00	0.20	0.00	0.17	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	2.31	NR_Other	0.00	0.00	0.73	0.00	0.00	0.00	1.49	0.10
C \& D Debris	Inorganic C\&D	Other Construction Debris	10.35	NR_Other	1.22	0.23	3.95	0.17	0.68	1.02	3.01	0.06
C \& D Debris Total			18.24		1.92	0.65	7.36	0.19	1.26	1.28	5.34	0.24
Miscellaneous Inorga	Misc. Inorganic	Miscellaneous Inorganics	7.63	NR_Other	1.18	0.13	0.32	0.21	0.83	4.04	0.47	0.44
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	21.34	NR_Other	1.15	1.46	4.87	0.60	4.40	2.12	4.09	2.64
Miscellaneous Inorganics Total			28.97		2.33	1.60	5.19	0.80	5.23	6.17	4.56	3.08
HHW	HHW	Oil Filters	0.09	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.54	NR_Other	0.00	0.00	0.00	0.02	0.00	0.00	0.53	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	7.07	NR_Other	0.72	1.36	0.09	0.41	1.10	1.13	1.38	0.87
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	1.97	NR_Other	0.41	0.24	0.50	0.05	0.07	0.26	0.25	0.20
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.08	NR_Other	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Dry-Cell Batteries	1.11	NR_Other	0.14	0.04	0.16	0.08	0.31	0.06	0.25	0.06
HHW	HHW	Fluorescent Tubes	0.07	NR_Other	0.00	0.00	0.01	0.00	0.00	0.00	0.06	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.00	NR_Other	0.07	0.04	0.00	0.20	0.48	0.00	0.12	0.09
HHW	HHW	Home Medical Products	0.71	NR_Other	0.10	0.01	0.05	0.01	0.01	0.11	0.33	0.09
HHW	HHW	Other Potentially Harmful Wastes	2.96	NR_Other	0.18	0.11	0.20	0.02	1.92	0.14	0.26	0.13
HHW Total			15.60		1.63	1.81	1.09	0.78	3.89	1.69	3.18	1.54
Grand Total			4,753.94		615.20	296.87	592.21	252.26	998.92	525.99	1,092.37	380.10

Table I-12
WCS MGP Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Recycling Designation	$\begin{gathered} \hline \text { Citywide } \\ \text { MGP } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Designated Paper	126.78	12.90	7.56	6.23	7.98	21.59	17.73	40.73	12.07
Designated Beverage Cartons	93.81	10.79	5.78	6.56	7.21	23.82	11.66	22.35	5.65
Designated Plastic	622.47	63.97	36.96	66.90	24.80	142.13	71.29	163.07	53.35
Designated Metal	1,477.01	116.04	94.52	246.39	67.88	290.65	161.43	367.73	132.37
Designated Glass	1,653.91	339.62	97.62	137.96	122.72	340.52	158.97	333.49	123.02
Designated MGP Subtotal	3,847.21	530.42	234.88	457.80	222.60	797.12	403.35	886.64	314.40
Potentially Designated Plastic	328.16	45.27	23.90	34.04	18.49	73.40	36.69	70.53	25.84
Potentially Designated Glass	13.16	0.60	0.80	0.56	0.65	3.91	2.35	3.07	1.22
Potentially Designated Materials Subtotal	341.32	45.87	24.70	34.61	19.14	77.31	39.04	73.60	27.06
Nondesignated Paper	31.45	2.64	1.63	3.18	1.30	8.23	3.60	9.00	1.87
Nondesignated Plastic	199.66	18.67	12.55	31.29	8.60	45.41	18.50	48.25	16.39
Other Nondesignated	272.02	36.08	17.87	38.46	10.92	43.01	41.02	68.00	16.65
Nondesignated Materials Subtotal	503.13	57.39	32.04	72.94	20.83	96.65	63.13	125.25	34.90

(1) Tonnage values calculated using DSNY average weekly curbside MGP tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2

Table l-13
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \end{gathered}$	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	3,038.79	R Paper	719.14	168.39	228.68	259.25	455.01	159.57	921.72	127.03
Paper	OCC	Plain OCC/Kraft Paper	1,438.39	R Paper	236.18	89.72	122.04	59.72	401.78	180.17	304.24	44.54
Paper	Mixed Paper	High Grade Paper	241.76	R Paper	23.39	17.29	10.43	29.94	93.43	22.78	33.62	10.87
Paper	Mixed Paper	Mixed Low Grade Paper	2,266.45	R Paper	529.33	160.05	70.96	296.13	464.89	147.03	510.16	87.90
Paper	Mixed Paper	Phone Books/Paperbacks	294.89	R Paper	123.52	32.90	33.02	16.61	42.77	19.84	14.37	11.86
Paper	Mixed Paper	Paper Bags	26.12	R Paper	5.48	2.58	0.41	2.39	9.90	0.39	4.47	0.49
Paper	Bev Cartons	Polycoated Paper Containers	106.64	R Bev Cartons	14.06	6.78	13.09	8.60	32.18	8.55	17.49	5.89
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	60.94	NR_Paper	4.81	1.07	5.93	2.28	24.85	2.40	14.18	5.43
Paper	Compostable Paper	Single Use Paper Plates, Cups	3.57	NR_Paper	0.28	0.19	0.23	0.28	1.47	0.15	0.66	0.31
Paper	Other Paper	Other Nonrecyclable Paper	54.08	NR_Paper	6.82	3.02	7.25	7.31	9.96	5.80	11.47	2.45
Paper Total			7,531.62		1,663.03	482.00	492.05	682.51	1,536.23	546.67	1,832.37	296.77
Plastic	PET Bottles	PET Bottles	248.81	R Plastics	31.26	11.09	20.95	10.37	57.40	28.66	65.90	23.19
Plastic	HDPE Bottles	HDPE Bottles: Natural	130.00	R Plastics	9.37	9.75	20.55	3.20	38.47	14.66	22.54	11.45
Plastic	HDPE Bottles	HDPE Bottles: Colored	142.34	R Plastics	13.25	9.61	15.91	4.85	35.19	13.94	37.81	11.78
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.76	PR_Plastics	0.06	0.05	0.03	0.04	0.77	0.04	0.72	0.05
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	12.73	PR_Plastics	0.92	1.76	1.64	0.05	3.49	0.88	3.14	0.85
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	2.15	PR_Plastics	0.20	0.17	0.16	0.13	0.38	0.19	0.74	0.19
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.66	PR_Plastics	0.00	0.02	0.06	0.00	0.10	0.07	0.05	0.37
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.87	PR_Plastics	0.37	0.28	0.49	0.14	1.29	0.66	1.15	0.49
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	11.72	PR_Plastics	1.47	2.40	0.57	0.46	2.10	1.63	2.06	1.04
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.42	PR_Plastics	0.02	0.00	0.07	0.01	0.12	0.11	0.05	0.04
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.24	PR_Plastics	0.00	0.16	0.02	0.03	0.04	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	19.35	PR_Plastics	7.12	0.77	1.23	0.65	4.00	1.01	3.42	1.14
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	4.17	PR_Plastics	0.49	0.31	0.26	0.39	0.89	0.43	0.73	0.67
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	1.00	PR_Plastics	0.01	0.37	0.45	0.05	0.08	0.03	0.00	0.01
Plastic	Other Plastic Products	Other PVC	2.03	NR_Plastics	0.00	0.06	0.00	0.03	0.08	1.54	0.27	0.05
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	10.75	PR_Plastics	1.03	0.42	1.17	0.34	2.44	0.23	2.89	2.23
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	9.00	PR_Plastics	1.83	0.47	0.47	1.50	1.76	0.81	1.68	0.47
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	65.59	PR_Plastics	9.30	3.93	6.66	3.65	18.20	6.36	11.75	5.73
Plastic	Film	Plastic Bags	43.82	PR_Plastics	11.53	2.81	3.10	2.54	10.02	2.65	7.97	3.20
Plastic	Film	Other Film	213.93	PR_Plastics	49.75	14.13	25.07	9.43	51.80	19.39	32.03	12.33
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	6.25	NR_Plastics	0.59	0.28	0.38	0.65	1.52	0.62	1.25	0.95
Plastic	Other Plastic Products	Other Plastics Materials	181.67	NR_Plastics	21.41	11.25	25.09	7.56	40.32	20.43	45.14	10.47
Plastic Total			1,113.26		159.97	70.08	124.33	46.07	270.45	114.34	241.30	86.71
Glass	Container Glass	Clear Container Glass	338.93	R Glass	51.62	20.92	21.34	17.02	66.50	36.14	89.81	35.59
Glass	Container Glass	Green Container Glass	180.66	R Glass	71.45	9.86	4.11	25.90	18.70	7.69	33.64	9.33
Glass	Container Glass	Brown Container Glass	87.43	R Glass	13.15	4.62	3.19	9.35	12.59	6.95	28.67	8.91
Glass	Mixed Cullet	Mixed Cullet	680.90	R Glass	144.76	33.04	68.61	54.13	165.34	63.12	116.57	35.34
Glass	Container Glass	Other Container Glass	9.75	R Glass	1.27	0.27	0.48	0.38	3.08	2.32	1.14	0.79
Glass	Other Glass	Other Glass	25.72	PR_Glass	3.17	1.71	3.56	0.90	5.07	2.88	3.87	4.55
Glass Total			1,323.40		285.43	70.42	101.29	107.67	271.28	119.10	273.71	94.51
Metal	Aluminum	Aluminum Cans	24.82	R Metal	2.07	0.74	1.90	0.96	5.01	2.08	9.79	2.27
Metal	Aluminum	Aluminum Foil/Containers	48.54	R Metal	3.20	3.38	3.83	2.75	11.32	7.09	12.41	4.56
Metal	Aluminum	Other Aluminum	6.86	R Metal	1.55	0.84	1.01	0.90	0.46	0.21	1.12	0.77
Metal	Non-Ferrous	Other Non-Ferrous	29.28	R Metal	3.34	3.99	3.45	3.03	7.86	0.90	5.92	0.81
Metal	Ferrous	Tin Food Cans	342.46	R Metal	25.30	16.64	40.01	14.53	87.01	48.15	76.91	33.89
Metal	Ferrous	Empty Aerosol Cans	32.29	R Metal	4.21	1.95	4.42	0.96	8.37	2.99	6.80	2.59
Metal	Ferrous	Other Ferrous	719.31	R Metal	79.44	36.11	140.41	27.02	151.60	101.31	136.03	47.39
Metal	Other Metal	Mixed Metals	133.61	R Metal	11.86	14.80	24.81	6.31	16.01	18.70	35.06	6.06
Metal Total			1,337.16		130.96	78.45	219.84	56.46	287.64	181.43	284.05	98.33

Table l-13
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	1.28	NR_Other	0.09	0.03	0.22	0.02	0.73	0.04	0.14	0.00
Organics	Yard	Prunings	0.45	NR_Other	0.02	0.00	0.00	0.00	0.12	0.00	0.01	0.31
Organics	Wood	Stumps/Limbs	0.01	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Organics	Food	Food	65.52	NR_Other	4.40	2.06	5.27	2.86	20.13	6.45	18.35	5.99
Organics	Wood	Wood Furniture/Furniture Pieces	8.79	NR_Other	2.32	0.89	2.85	0.17	0.19	1.31	1.02	0.03
Organics	Wood	Non-C\&D Untreated Wood	0.90	NR_Other	0.17	0.05	0.08	0.15	0.15	0.26	0.03	0.00
Organics	Textiles	Non-Clothing Textiles	12.09	NR_Other	0.66	1.61	1.09	0.29	2.21	0.97	4.56	0.70
Organics	Textiles	Clothing Textiles	13.86	NR_Other	0.82	0.65	0.46	2.21	1.32	5.23	2.57	0.61
Organics	Textiles	Carpet/Upholstery	0.23	NR_Other	0.00	0.00	0.00	0.00	0.23	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	8.42	NR_Other	0.00	0.77	0.23	0.65	1.61	1.87	2.80	0.49
Organics	Misc. Organic	Animal By-Products	0.53	NR_Other	0.01	0.26	0.01	0.01	0.17	0.07	0.00	0.00
Organics	Misc. Organic	Rubber Products	3.32	NR_Other	0.39	0.25	0.56	0.11	0.97	0.19	0.38	0.46
Organics	Textiles	Shoes	3.62	NR_Other	0.03	0.45	0.05	0.30	1.10	0.36	0.23	1.09
Organics	Textiles	Other Leather Products	0.32	NR_Other	0.08	0.08	0.00	0.00	0.07	0.00	0.00	0.09
Organics	Misc. Organic	Fines	27.45	NR_Other	5.90	1.06	1.77	1.75	10.26	2.45	3.16	1.10
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3.57	NR_Other	0.00	0.06	3.52	0.00	0.00	0.00	0.00	0.00
Organics	Misc. Organic	Miscellaneous Organics	7.29	NR_Other	0.83	0.61	0.41	0.69	1.86	1.03	1.54	0.32
Organics Total			157.65		15.73	8.83	16.52	9.21	41.12	20.23	34.81	11.21
Appliance/Electronic	Ferrous	Appliances: Ferrous	425.66	R Metal	44.02	36.06	93.19	31.95	41.08	65.11	82.21	32.04
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	4.44	R Metal	1.76	0.64	1.04	0.66	0.00	0.04	0.01	0.30
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	63.45	NR_Other	6.35	6.81	13.64	2.49	10.58	9.99	8.61	4.98
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.40	NR_Other	0.04	0.26	0.00	0.00	0.09	0.01	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	10.48	NR_Other	0.01	0.21	4.08	0.11	1.98	1.59	1.84	0.67
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.38	NR_Other	0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.24	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	21.04	NR_Other	0.09	3.14	1.00	0.39	4.68	3.55	8.14	0.04
Appliance/Electronic Total			526.10		52.26	47.13	113.33	35.59	58.42	80.30	100.81	38.28
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	2.50	NR_Other	2.01	0.00	0.01	0.02	0.21	0.17	0.00	0.06
C \& D Debris	Wood	Treated/Contaminated Wood	16.64	NR_Other	1.16	0.24	4.06	0.41	5.33	4.83	0.50	0.10
C \& D Debris	Inorganic C\&D	Gypsum Scrap	0.46	NR_Other	0.36	0.00	0.00	0.00	0.08	0.01	0.01	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	7.30	NR_Other	0.11	0.01	0.66	0.00	0.98	4.13	1.41	0.00
$C \& D$ Debris	Inorganic C\&D	Other Construction Debris	19.44	NR_Other	5.58	7.33	1.24	1.44	1.34	2.01	0.17	0.32
C \& D Debris Total			46.33		9.22	7.59	5.98	1.88	7.94	11.15	2.10	0.48
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	2.14	NR_Other	0.35	0.07	0.32	0.03	0.20	0.55	0.56	0.05
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	24.41	NR_Other	1.70	1.23	1.50	0.41	7.95	2.99	7.16	1.48
Miscellaneous Inorganics Total			26.54		2.05	1.30	1.82	0.44	8.15	3.54	7.72	1.53
HHW	HHW	Oil Filters	0.57	NR_Other	0.00	0.00	0.00	0.00	0.53	0.00	0.00	0.05
HHW	HHW	Antifreeze	0.11	NR_Other	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.72	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.38
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	9.22	NR_Other	1.03	0.70	0.05	0.00	2.11	0.41	4.53	0.39
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	3.27	NR_Other	0.03	0.34	0.00	0.00	1.94	0.00	0.91	0.04
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.84	NR_Other	0.03	0.00	0.00	0.00	0.06	0.02	0.67	0.06
HHW	HHW	Dry-Cell Batteries	2.40	NR_Other	0.18	0.12	0.19	0.01	0.51	0.59	0.56	0.25
HHW	HHW	Fluorescent Tubes	0.09	NR_Other	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.06	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	0.74	NR_Other	0.11	0.03	0.00	0.04	0.11	0.01	0.18	0.27
HHW	HHW	Other Potentially Harmful Wastes	1.82	NR_Other	0.05	0.05	0.00	0.00	0.26	0.25	1.12	0.09
$\frac{\text { HHW Total }}{\text { Grand Total }}$			19.84		1.51	1.24	0.23	0.05	5.52	1.38	8.31	1.59
			12,081.92		2,320.16	767.03	1,075.40	939.88	2,486.74	1,078.13	2,785.17	629.40

Table l-13
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Recycling Designation	Citywide Recycling Weekly Tonnage	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	7,306.39	1,637.05	470.94	465.54	664.04	1,467.77	529.78	1,788.58	282.69
Designated Beverage Cartons	106.64	14.06	6.78	13.09	8.60	32.18	8.55	17.49	5.89
Designated Plastic	521.15	53.88	30.44	57.42	18.42	131.05	57.26	126.25	46.42
Designated Metal	1,767.26	176.73	115.15	314.08	89.06	328.72	246.57	366.27	130.67
Designated Glass	1,297.68	282.25	68.71	97.73	106.77	266.21	116.22	269.84	89.95
Designated MGP Subtotal	3,692.73	526.93	221.08	482.32	222.85	758.17	428.60	779.85	272.93
Potentially Designated Plastic	402.16	84.10	28.04	41.44	19.40	97.48	34.49	68.39	28.82
Potentially Designated Glass	25.72	3.17	1.71	3.56	0.90	5.07	2.88	3.87	4.55
Potentially Designated Materials Subtotal	427.88	87.27	29.75	45.01	20.30	102.55	37.37	72.26	33.38
Nondesignated Paper	118.59	11.91	4.28	13.42	9.87	36.28	8.34	26.30	8.19
Nondesignated Plastic	189.96	22.00	11.60	25.47	8.25	41.92	22.59	46.66	11.47
Other Nondesignated	346.37	35.00	29.39	43.64	14.57	80.05	51.45	71.53	20.75
Nondesignated Materials Subtotal	654.92	68.91	45.26	82.53	32.69	158.25	82.38	144.49	40.40
Designated for Recycling Total	10,999.12	2,163.98	692.02	947.86	886.89	2,225.93	958.38	2,568.43	555.63
Potentially or Not Designated for Recycling Total	1,082.80	156.17	75.02	127.54	52.99	260.80	119.75	216.75	73.78

[^29]Table I-14
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Density Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{aligned} & \text { Low Densityl } \\ & \text { High Income } \end{aligned}$ Weekly Tonnage	$\begin{gathered} \hline \text { Low Density/ } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Paper	ONP	Newspaper	2,738.06	R Paper	603.96	189.10	127.72	230.30	549.87	144.74	782.38	109.99
Paper	OCC	Plain OCC/Kraft Paper	1,005.41	R Paper	84.41	75.13	107.96	51.61	235.63	143.89	250.49	56.29
Paper	Mixed Paper	High Grade Paper	196.73	R Paper	65.91	7.13	53.00	20.55	23.80	14.84	8.20	3.30
Paper	Mixed Paper	Mixed Low Grade Paper	2,335.33	R Paper	626.62	140.08	96.03	204.76	514.95	142.13	524.76	86.00
Paper	Mixed Paper	Phone Books/Paperbacks	365.58	R Paper	77.40	34.55	18.66	95.22	61.01	47.67	27.14	3.92
Paper	Mixed Paper	Paper Bags	28.40	R Paper	10.34	1.16	0.79	2.09	7.79	1.12	4.15	0.97
Paper	Bev Cartons	Polycoated Paper Containers	119.22	R Bev Cartons	13.07	9.32	10.17	8.84	27.55	10.98	32.95	6.34
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	30.47	NR_Paper	2.11	1.30	2.37	2.84	4.59	2.87	12.11	2.29
Paper	Compostable Paper	Single Use Paper Plates, Cups	4.70	NR_Paper	0.76	0.20	0.25	0.20	1.85	0.33	0.52	0.59
Paper	Other Paper	Other Nonrecyclable Paper	36.95	NR_Paper	3.23	1.32	1.75	1.96	6.81	2.76	13.58	5.54
Paper Total			6,860.85		1,487.80	459.28	418.71	618.36	1,433.86	511.33	1,656.28	275.22
Plastic	PET Bottles	PET Bottles	275.37	R Plastics	38.71	14.15	20.62	12.53	59.73	30.48	76.01	23.13
Plastic	HDPE Bottles	HDPE Bottles: Natural	143.58	R Plastics	13.12	11.83	16.99	4.32	40.88	18.31	26.52	11.60
Plastic	HDPE Bottles	HDPE Bottles: Colored	138.63	R Plastics	16.72	8.24	13.95	6.21	34.61	16.80	31.72	10.38
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.54	PR_Plastics	0.02	0.05	0.43	0.01	0.69	0.09	0.17	0.08
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	8.82	PR_Plastics	0.84	1.43	1.03	0.29	1.67	1.79	1.04	0.74
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	1.71	PR_Plastics	0.24	0.14	0.14	0.16	0.20	0.13	0.58	0.11
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.25	PR_Plastics	0.01	0.03	0.05	0.00	0.07	0.06	0.00	0.02
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.32	PR_Plastics	0.22	0.18	0.27	0.19	0.92	0.61	1.43	0.49
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	10.89	PR_Plastics	2.78	0.56	0.67	0.34	2.77	0.85	2.22	0.70
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.28	PR_Plastics	0.01	0.06	0.05	0.00	0.08	0.05	0.04	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.08	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	17.07	PR_Plastics	2.96	0.84	2.05	0.75	3.83	1.52	4.21	0.90
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	2.70	PR_Plastics	0.61	0.12	0.14	0.02	0.20	0.77	0.71	0.13
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	3.74	PR_Plastics	0.01	0.39	2.34	0.01	0.10	0.42	0.12	0.34
Plastic	Other Plastic Products	Other PVC	0.72	NR_Plastics	0.00	0.00	0.00	0.11	0.53	0.08	0.00	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	13.60	PR_Plastics	2.20	0.77	0.74	0.86	2.51	1.59	4.11	0.82
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	8.90	PR_Plastics	0.59	0.88	0.72	0.71	1.07	1.16	3.21	0.56
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	56.21	PR_Plastics	7.87	4.21	6.04	3.02	15.45	4.79	10.80	4.03
Plastic	Film	Plastic Bags	56.17	PR_Plastics	6.24	3.55	3.22	3.23	11.62	7.38	17.96	2.98
Plastic	Film	Other Film	187.06	PR_Plastics	44.61	13.38	21.17	10.38	42.32	18.15	27.60	9.46
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	8.98	NR_Plastics	0.83	0.41	0.60	0.29	3.10	0.70	2.51	0.53
Plastic	Other Plastic Products	Other Plastics Materials	148.12	NR_Plastics	18.89	11.26	29.84	6.19	29.71	13.34	26.72	12.17
Plastic Total			1,088.73		157.47	72.49	121.08	49.61	252.07	119.17	237.68	79.17
Glass	Container Glass	Clear Container Glass	344.56	R Glass	43.53	23.41	19.74	26.55	58.96	36.82	102.75	32.80
Glass	Container Glass	Green Container Glass	183.86	R Glass	69.31	12.00	6.66	31.54	17.12	7.79	31.98	7.46
Glass	Container Glass	Brown Container Glass	83.77	R Glass	15.60	3.63	3.81	8.86	20.80	7.88	18.51	4.67
Glass	Mixed Cullet	Mixed Cullet	727.39	R Glass	163.19	42.23	77.53	45.83	184.28	63.58	112.41	38.33
Glass	Container Glass	Other Container Glass	5.55	R Glass	0.78	0.25	0.07	0.55	0.84	0.44	1.62	1.00
Glass	Other Glass	Other Glass	21.40	PR_Glass	1.43	1.54	1.00	0.80	5.54	1.91	6.91	2.28
Glass Total			1,366.53		293.84	83.06	108.81	114.14	287.55	118.42	274.17	86.54
Metal	Aluminum	Aluminum Cans	24.48	R Metal	3.04	0.86	1.41	0.98	3.83	2.07	9.67	2.63
Metal	Aluminum	Aluminum Foil/Containers	42.55	R Metal	3.38	1.99	3.56	2.51	10.80	5.21	11.95	3.15
Metal	Aluminum	Other Aluminum	2.94	R Metal	0.00	0.00	0.28	0.71	1.18	0.31	0.45	0.01
Metal	Non-Ferrous	Other Non-Ferrous	40.12	R Metal	1.79	4.10	6.09	0.60	8.28	7.25	10.14	1.86
Metal	Ferrous	Tin Food Cans	333.64	R Metal	27.70	20.34	36.02	17.31	81.13	44.49	75.96	30.68
Metal	Ferrous	Empty Aerosol Cans	27.22	R Metal	4.54	1.80	1.90	1.13	7.34	3.63	4.91	1.96
Metal	Ferrous	Other Ferrous	597.14	R Metal	75.04	29.88	99.78	31.95	101.95	59.41	152.95	46.17
Metal	Other Metal	Mixed Metals	150.47	R Metal	14.52	8.98	56.64	4.14	16.76	13.15	18.66	17.62
Metal Total			1,218.56		130.00	67.96	205.69	59.34	231.29	135.52	284.68	104.08

Table l-14
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	0.34	NR_Other	0.08	0.00	0.06	0.00	0.10	0.08	0.01	0.01
Organics	Yard	Prunings	0.03	NR_Other	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Organics	Wood	Stumps/Limbs	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	97.76	NR_Other	8.48	4.97	6.52	4.40	17.90	9.44	38.16	7.91
Organics	Wood	Wood Furniture/Furniture Pieces	5.93	NR_Other	0.70	0.43	1.03	0.19	1.38	1.31	0.85	0.05
Organics	Wood	Non-C\&D Untreated Wood	7.56	NR_Other	0.99	0.49	1.69	0.63	2.56	0.75	0.21	0.25
Organics	Textiles	Non-Clothing Textiles	5.78	NR_Other	0.72	0.65	1.40	0.01	0.76	0.27	0.90	1.07
Organics	Textiles	Clothing Textiles	8.04	NR_Other	2.05	1.09	0.53	0.40	1.46	0.65	1.56	0.29
Organics	Textiles	Carpet/Upholstery	0.17	NR_Other	0.00	0.00	0.00	0.00	0.00	0.11	0.07	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2.71	NR_Other	0.38	0.04	0.13	0.25	0.62	0.12	0.86	0.33
Organics	Misc. Organic	Animal By-Products	1.11	NR_Other	0.02	0.02	0.00	0.03	0.97	0.03	0.03	0.02
Organics	Misc. Organic	Rubber Products	8.96	NR_Other	0.13	0.41	7.19	0.02	0.29	0.50	0.22	0.21
Organics	Textiles	Shoes	8.37	NR_Other	0.28	0.28	0.00	0.00	4.27	0.65	2.36	0.54
Organics	Textiles	Other Leather Products	0.14	NR_Other	0.00	0.01	0.02	0.00	0.02	0.03	0.06	0.00
Organics	Misc. Organic	Fines	50.24	NR_Other	5.02	2.56	3.37	3.22	8.00	3.36	22.93	1.78
Organics	Textiles	Upholstered or Other Organic-Type Furniture	2.10	NR_Other	1.01	0.00	0.71	0.00	0.00	0.00	0.38	0.00
Organics	Misc. Organic	Miscellaneous Organics	1.65	NR_Other	0.42	0.00	0.05	0.34	0.27	0.05	0.42	0.10
Organics Total			200.87		20.28	10.94	22.68	9.48	38.59	17.35	69.01	12.55
Appliance/Electronic	Ferrous	Appliances: Ferrous	278.71	R Metal	34.64	24.43	84.17	6.00	39.11	25.62	44.26	20.49
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	1.05	R Metal	0.00	0.18	0.27	0.00	0.48	0.07	0.00	0.05
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	29.36	NR_Other	4.22	1.34	4.49	1.56	4.23	2.04	9.26	2.23
Appliance/Electronic	Electronic/Av/Computer	Audio/Visual Equipment: Cell Phones	0.13	NR_Other	0.00	0.00	0.06	0.00	0.00	0.02	0.05	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	11.28	NR_Other	2.23	1.16	1.12	0.43	1.49	0.67	3.83	0.35
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	7.41	NR_Other	7.38	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.29	NR_Other	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	29.35	NR_Other	3.98	2.50	8.33	0.59	1.80	3.04	7.36	1.75
Appliance/Electronic Total			357.58		52.44	29.64	98.44	8.57	47.12	31.74	64.75	24.88
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.80	NR_Other	0.00	0.19	0.00	0.00	0.57	0.04	0.00	0.00
C \& D Debris	Wood	Treated/Contaminated Wood	1.90	NR_Other	0.51	0.03	0.58	0.06	0.72	0.00	0.00	0.00
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.22	NR_Other	0.03	0.59	0.35	0.13	0.06	0.02	0.03	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	0.95	NR_Other	0.14	0.00	0.13	0.00	0.00	0.13	0.00	0.56
C \& D Debris	Inorganic C\&D	Other Construction Debris	10.59	NR_Other	0.00	4.74	1.16	0.15	1.41	3.11	0.00	0.03
C \& D Debris Total			15.47		0.68	5.54	2.22	0.34	2.76	3.29	0.03	0.59
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	5.05	NR_Other	1.15	0.30	0.26	0.08	0.95	0.40	1.32	0.59
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	20.25	NR_Other	2.21	0.81	1.31	0.81	4.00	1.65	7.93	1.53
Miscellaneous Inorganics Total			25.30		3.36	1.10	1.57	0.88	4.95	2.05	9.25	2.13
HHW	HHW	Oil Filters	0.11	NR_Other	0.05	0.00	0.00	0.00	0.00	0.05	0.01	0.00
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	5.93	NR_Other	3.57	0.10	0.00	0.29	0.04	1.20	0.61	0.12
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	2.15	NR_Other	0.21	0.07	0.00	0.00	1.77	0.00	0.08	0.01
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.12	NR_Other	0.00	0.00	0.00	0.05	0.00	0.01	0.06	0.00
HHW	HHW	Dry-Cell Batteries	1.86	NR_Other	0.11	0.11	0.08	0.08	0.85	0.18	0.28	0.17
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	1.35	NR_Other	0.12	0.07	0.04	0.00	0.54	0.06	0.38	0.13
HHW	HHW	Other Potentially Harmful Wastes	2.91	NR_Other	0.39	0.01	0.22	0.00	0.33	0.57	1.29	0.09
HHW Total			14.44		4.45	0.37	0.35	0.42	3.53	2.07	2.72	0.53
Grand Total			11,148.32		2,150.32	730.39	979.54	861.14	2,301.72	940.95	2,598.57	585.68

Table I-14
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Recycling Designation	Citywide Recycling Weekly Tonnage	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Designated Paper	6,669.50	1,468.63	447.16	404.16	604.53	1,393.05	494.39	1,597.12	260.47
Designated Beverage Cartons	119.22	13.07	9.32	10.17	8.84	27.55	10.98	32.95	6.34
Designated Plastic	557.57	68.55	34.22	51.56	23.06	135.22	65.60	134.25	45.11
Designated Metal	1,498.32	164.64	92.57	290.13	65.33	270.88	161.20	328.94	124.62
Designated Glass	1,345.12	292.41	81.52	107.81	113.34	282.01	116.51	267.27	84.25
Designated MGP Subtotal	3,520.24	538.67	217.63	459.68	210.57	715.67	354.28	763.42	260.33
Potentially Designated Plastic	373.34	69.20	26.59	39.07	19.97	83.50	39.46	74.20	21.35
Potentially Designated Glass	21.40	1.43	1.54	1.00	0.80	5.54	1.91	6.91	2.28
Potentially Designated Materials Subtotal	394.74	70.62	28.13	40.07	20.76	89.04	41.37	81.11	23.64
Nondesignated Paper	72.12	6.10	2.81	4.38	4.99	13.26	5.96	26.21	8.41
Nondesignated Plastic	157.82	19.72	11.67	30.44	6.59	33.35	14.12	29.23	12.71
Other Nondesignated	333.89	46.58	22.98	40.81	13.69	57.36	30.83	101.50	20.13
Nondesignated Materials Subtotal	563.83	72.40	37.47	75.63	25.27	103.96	50.91	156.94	41.25
Designated for Recycling Total	10,189.75	2,007.30	664.79	863.84	815.10	2,108.72	848.67	2,360.53	520.80
Potentially or Not Designated for Recycling Total	958.57	143.02	65.60	115.70	46.03	193.01	92.27	238.04	64.89

[^30]Table I-15
WCS Aggregated Recycling Composition, Weekly Tonnages (${ }^{(1), \text { Spring } 2005}$

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Recycling } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Recycling Subindicator Subindicator	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	3,030.11	R Paper	817.92	192.35	136.24	261.23	468.58	240.60	774.29	138.90
Paper	OCC	Plain OCC/Kraft Paper	801.57	R Paper	150.65	42.94	153.07	58.57	185.61	86.99	94.91	28.82
Paper	Mixed Paper	High Grade Paper	264.35	R Paper	32.40	8.57	7.78	28.43	115.61	12.45	54.21	4.89
Paper	Mixed Paper	Mixed Low Grade Paper	2,412.19	R Paper	480.71	173.89	114.21	230.88	496.48	141.30	671.28	103.43
Paper	Mixed Paper	Phone Books/Paperbacks	190.98	R Paper	12.90	9.36	13.10	18.46	44.44	21.54	58.43	12.75
Paper	Mixed Paper	Paper Bags	33.05	R Paper	9.34	1.40	0.16	2.72	13.15	0.45	4.60	1.22
Paper	Bev Cartons	Polycoated Paper Containers	108.44	R Bev Cartons	11.23	6.29	12.16	7.87	27.26	12.44	25.22	5.97
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	201.14	NR_Paper	1.71	20.62	5.70	16.43	45.03	3.37	106.40	1.90
Paper	Compostable Paper	Single Use Paper Plates, Cups	3.91	NR_Paper	0.55	0.45	0.23	0.23	0.74	0.33	1.26	0.12
Paper	Other Paper	Other Nonrecyclable Paper	64.03	NR_Paper	3.10	3.83	5.56	4.94	26.90	4.61	12.87	2.22
Paper Total			7,109.78		1,520.50	459.70	448.22	629.77	1,423.80	524.09	1,803.47	300.23
Plastic	PET Bottles	PET Bottles	308.12	R Plastics	37.75	15.16	27.23	13.67	64.87	36.39	85.36	27.69
Plastic	HDPE Bottles	HDPE Bottles: Natural	152.04	R Plastics	9.82	12.05	21.06	4.79	44.57	15.73	32.15	11.87
Plastic	HDPE Bottles	HDPE Bottles: Colored	165.66	R Plastics	16.39	10.22	18.69	6.66	33.14	19.23	47.08	14.25
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.51	PR_Plastics	0.03	0.13	0.09	0.02	0.06	0.02	0.11	0.05
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	8.42	PR_Plastics	0.54	1.28	1.25	1.34	0.77	0.40	1.99	0.86
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	1.03	PR_Plastics	0.03	0.46	0.10	0.00	0.09	0.19	0.12	0.04
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.06	PR_Plastics	0.01	0.00	0.01	0.00	0.03	0.00	0.00	0.01
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	3.77	PR_Plastics	0.16	0.16	0.31	0.15	0.57	0.77	1.22	0.43
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	6.28	PR_Plastics	0.55	0.34	0.82	0.82	0.88	0.79	1.60	0.49
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.18	PR_Plastics	0.00	0.10	0.00	0.00	0.00	0.02	0.00	0.05
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.78	PR_Plastics	0.00	0.00	0.00	0.00	0.00	0.25	0.52	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	19.07	PR_Plastics	1.68	1.39	1.70	1.14	3.18	2.00	5.52	2.47
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	3.19	PR_Plastics	0.38	0.12	0.03	0.20	0.12	0.13	0.84	1.36
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	4.72	PR_Plastics	0.40	0.53	0.26	0.09	1.01	0.71	1.25	0.46
Plastic	Other Plastic Products	Other PVC	0.14	NR_Plastics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	18.59	PR_Plastics	2.02	1.02	0.94	0.97	5.52	1.07	5.77	1.29
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	6.26	PR_Plastics	0.75	0.35	0.49	0.61	1.99	0.49	1.29	0.29
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	70.96	PR_Plastics	9.54	4.33	5.69	3.56	18.67	6.14	16.81	6.22
Plastic	Film	Plastic Bags	57.67	PR_Plastics	6.20	4.27	4.09	3.15	12.66	4.68	17.96	4.64
Plastic	Film	Other Film	191.88	PR_Plastics	31.92	13.81	23.34	11.73	44.85	23.72	33.05	9.45
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	11.05	NR_Plastics	0.96	0.56	0.89	0.50	2.94	0.93	2.62	1.65
Plastic	Other Plastic Products	Other Plastics Materials	204.30	NR_Plastics	17.99	12.03	36.77	8.70	44.11	21.82	47.61	15.27
Plastic Total			1,234.69		137.12	78.31	143.74	58.12	280.04	135.50	302.88	98.97
Glass	Container Glass	Clear Container Glass	436.94	R Glass	45.72	22.40	31.38	19.55	74.94	57.23	145.69	40.05
Glass	Container Glass	Green Container Glass	221.30	R Glass	80.11	14.29	6.15	25.10	29.13	13.34	41.54	11.65
Glass	Container Glass	Brown Container Glass	85.64	R Glass	11.62	3.97	4.90	7.32	15.05	11.35	24.09	7.36
Glass	Mixed Cullet	Mixed Cullet	904.89	R Glass	200.72	56.57	94.67	70.94	221.34	77.34	120.20	63.11
Glass	Container Glass	Other Container Glass	9.82	R Glass	1.46	0.38	1.03	0.43	1.05	0.92	3.59	0.96
Glass	Other Glass	Other Glass	14.66	PR_Glass	0.60	1.04	0.56	0.65	3.91	2.35	4.18	1.37
Glass Total			1,673.26		340.22	98.66	138.68	123.98	345.42	162.53	339.28	124.50
Metal	Aluminum	Aluminum Cans	28.00	R Metal	1.77	1.12	2.19	1.37	5.11	3.29	9.75	3.40
Metal	Aluminum	Aluminum Foil/Containers	47.57	R Metal	3.28	2.99	3.67	2.17	9.75	5.89	15.07	4.74
Metal	Aluminum	Other Aluminum	33.44	R Metal	0.55	2.80	11.20	1.42	3.35	2.09	8.13	3.89
Metal	Non-Ferrous	Other Non-Ferrous	34.86	R Metal	1.19	2.58	4.85	0.90	3.05	5.56	14.81	1.92
Metal	Ferrous	Tin Food Cans	362.37	R Metal	28.30	17.64	44.86	16.60	87.70	48.14	87.54	31.59
Metal	Ferrous	Empty Aerosol Cans	32.96	R Metal	3.96	2.24	3.18	0.92	8.80	3.99	7.76	2.11
Metal	Ferrous	Other Ferrous	599.58	R Metal	52.94	38.85	106.43	28.92	104.45	60.89	155.56	51.55
Metal	Other Metal	Mixed Metals	188.20	R Metal	22.81	9.88	28.63	7.98	52.39	13.28	27.73	25.49
Metal Total			1,326.97		114.81	78.10	205.01	60.29	274.60	143.12	326.36	124.68

Table I-15
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator Subindicator	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Density Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \hline \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Low Densityl } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Organics	Yard	Leaves and Grass	0.82	NR_Other	0.07	0.00	0.01	0.03	0.01	0.08	0.58	0.04
Organics	Yard	Prunings	0.24	NR_Other	0.00	0.14	0.00	0.03	0.01	0.00	0.04	0.03
Organics	Wood	Stumps/Limbs	0.22	NR_Other	0.00	0.00	0.00	0.00	0.00	0.10	0.11	0.01
Organics	Food	Food	107.17	NR_Other	8.74	8.74	9.23	4.24	28.68	11.44	29.84	6.27
Organics	Wood	Wood Furniture/Furniture Pieces	2.96	NR_Other	0.09	0.49	0.30	0.25	0.68	0.25	0.48	0.42
Organics	Wood	Non-C\&D Untreated Wood	2.77	NR_Other	0.01	0.02	0.00	0.33	1.30	0.42	0.63	0.07
Organics	Textiles	Non-Clothing Textiles	13.54	NR_Other	7.25	0.56	0.65	0.36	2.64	0.52	1.01	0.55
Organics	Textiles	Clothing Textiles	6.51	NR_Other	0.35	0.36	0.60	0.06	0.94	0.53	3.60	0.07
Organics	Textiles	Carpet/Upholstery	0.01	NR_Other	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	6.04	NR_Other	0.05	0.36	0.55	0.15	2.69	0.22	1.79	0.25
Organics	Misc. Organic	Animal By-Products	1.53	NR_Other	0.31	0.00	0.10	0.05	0.00	0.00	1.02	0.05
Organics	Misc. Organic	Rubber Products	6.66	NR_Other	0.29	0.85	0.61	0.08	1.57	0.23	1.78	1.25
Organics	Textiles	Shoes	4.04	NR_Other	0.18	0.59	0.68	0.13	1.14	0.41	0.78	0.12
Organics	Textiles	Other Leather Products	0.24	NR_Other	0.00	0.13	0.00	0.00	0.01	0.00	0.09	0.00
Organics	Misc. Organic	Fines	26.99	NR_Other	4.20	1.78	2.46	2.54	5.39	3.06	5.95	1.61
Organics	Textiles	Upholstered or Other Organic-Type Furniture	9.54	NR_Other	2.95	0.00	0.98	0.00	0.00	5.59	0.00	0.01
Organics	Misc. Organic	Miscellaneous Organics	3.43	NR_Other	0.95	0.04	0.55	0.03	0.24	0.35	1.00	0.28
Organics Total			192.71		25.43	14.09	16.70	8.27	45.29	23.20	48.70	11.03
Appliance/Electronic	Ferrous	Appliances: Ferrous	154.81	R Metal	1.23	17.31	41.59	7.96	17.86	17.56	43.69	7.62
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	2.39	R Metal	0.05	0.04	0.00	0.13	0.00	0.86	0.88	0.43
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	34.23	NR_Other	6.46	1.63	4.52	1.87	6.55	6.89	4.42	1.90
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.08	NR_Other	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.04
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	12.76	NR_Other	1.71	1.05	1.36	0.22	1.97	1.00	5.28	0.17
Appliance/Electronic	Electroni/AV/Computer	Computer Monitors	4.30	NR_Other	3.34	0.96	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.38	NR_Other	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	25.86	NR_Other	5.86	1.30	3.54	2.60	3.30	2.47	6.64	0.16
Appliance/Electronic Total			234.81		18.65	22.66	51.01	12.81	29.67	28.78	60.90	10.33
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	1.41	NR_Other	0.51	0.00	0.09	0.15	0.03	0.00	0.00	0.63
C \& D Debris	Wood	Treated/Contaminated Wood	5.51	NR_Other	0.13	0.23	1.72	0.09	1.52	0.16	1.48	0.19
C \& D Debris	Inorganic C\&D	Gypsum Scrap	1.65	NR_Other	0.00	0.00	0.32	0.03	1.02	0.14	0.14	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	4.46	NR_Other	1.00	0.66	2.24	0.00	0.17	0.04	0.31	0.04
C \& D Debris	Inorganic C\&D	Other Construction Debris	17.09	NR_Other	0.47	0.05	13.40	0.54	0.23	0.96	0.09	1.36
C \& D Debris Total			30.12		2.11	0.94	17.78	0.81	2.96	1.29	2.03	2.21
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	4.54	NR_Other	0.26	0.12	1.22	0.06	0.55	0.04	1.32	0.97
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	22.48	NR_Other	1.87	1.99	2.50	0.35	2.91	4.11	7.63	1.12
Miscellaneous Inorganics Total			27.02		2.13	2.11	3.72	0.41	3.46	4.15	8.96	2.09
HHW	HHW	Oil Filters	0.15	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00
HHW	HHW	Antifreeze	0.14	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
HHW	HHW	Wet-Cell Batteries	0.10	NR_Other	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.09	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	2.38	NR_Other	1.03	0.02	0.07	0.00	0.01	1.21	0.04	0.00
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	2.97	NR_Other	0.00	0.00	0.00	0.04	0.09	2.84	0.00	0.00
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.02	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
HHW	HHW	Dry-Cell Batteries	1.28	NR_Other	0.09	0.09	0.11	0.10	0.27	0.17	0.43	0.01
HHW	HHW	Fluorescent Tubes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.73	NR_Other	0.11	0.00	1.47	0.00	0.00	0.00	0.15	0.00
HHW	HHW	Home Medical Products	1.09	NR_Other	0.23	0.08	0.19	0.02	0.25	0.01	0.16	0.14
HHW	HHW	Other Potentially Harmful Wastes	5.73	NR_Other	0.38	0.04	0.18	0.08	2.08	1.64	1.32	0.01
HHW Total			15.68		1.84	0.23	2.10	0.25	2.70	5.86	2.30	0.39
Grand Total			11,845.05		2,162.81	754.79	1,026.96	894.71	2,407.95	1,028.52	2,894.88	674.43

Table l-15
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Recycling Designation	Citywide Recycling Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Designated Paper	6,732.25	1,503.91	428.51	424.57	600.30	1,323.88	503.33	1,657.73	290.02
Designated Beverage Cartons	108.44	11.23	6.29	12.16	7.87	27.26	12.44	25.22	5.97
Designated Plastic	625.82	63.97	37.44	66.97	25.12	142.58	71.35	164.60	53.80
Designated Metal	1,484.18	116.09	95.45	246.60	68.38	292.46	161.54	370.93	132.74
Designated Glass	1,658.60	339.62	97.62	138.12	123.33	341.51	160.18	335.11	123.13
Designated MGP Subtotal	3,877.05	530.91	236.79	463.85	224.69	803.81	405.50	895.85	315.64
Potentially Designated Plastic	393.37	54.20	28.28	39.11	23.80	90.42	41.40	88.04	28.10
Potentially Designated Glass	14.66	0.60	1.04	0.56	0.65	3.91	2.35	4.18	1.37
Potentially Designated Materials Subtotal	408.03	54.80	29.32	39.68	24.45	94.33	43.75	92.22	29.48
Nondesignated Paper	269.09	5.35	24.90	11.49	21.60	72.66	8.32	120.52	4.24
Nondesignated Plastic	215.50	18.95	12.59	37.65	9.20	47.05	22.75	50.24	17.06
Other Nondesignated	343.14	48.87	22.68	49.72	14.46	66.23	44.87	78.32	17.99
Nondesignated Materials Subtotal	827.72	73.18	60.17	98.86	45.26	185.94	75.94	249.08	39.30
Designated for Recycling Total	10,609.30	2,034.83	665.30	888.42	825.00	2,127.68	908.83	2,553.58	605.66
Potentially or Not Designated for Recycling Total	1,235.75	127.98	89.49	138.54	69.71	280.27	119.69	341.30	68.77

(1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-16
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	2,931.74	R Paper	807.41	233.83	138.11	242.62	512.54	155.84	716.76	124.62
Paper	OCC	Plain OCC/Kraft Paper	622.59	R Paper	68.77	23.52	109.93	46.74	138.93	85.93	116.86	31.92
Paper	Mixed Paper	High Grade Paper	192.69	R Paper	45.62	7.18	2.50	23.68	21.33	21.21	51.96	19.21
Paper	Mixed Paper	Mixed Low Grade Paper	1,988.09	R Paper	338.99	146.65	89.82	233.21	312.89	155.20	633.08	78.25
Paper	Mixed Paper	Phone Books/Paperbacks	533.73	R Paper	38.99	31.59	17.40	25.61	265.57	13.50	116.33	24.74
Paper	Mixed Paper	Paper Bags	22.81	R Paper	5.04	1.01	0.37	3.96	4.09	0.74	6.16	1.44
Paper	Bev Cartons	Polycoated Paper Containers	96.01	R Bev Cartons	10.92	5.49	9.82	7.27	21.73	14.76	20.23	5.79
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	142.35	NR_Paper	9.53	4.26	20.18	7.98	69.13	4.61	23.99	2.67
Paper	Compostable Paper	Single Use Paper Plates, Cups	4.09	NR_Paper	0.37	0.18	0.22	0.27	1.25	0.77	0.61	0.41
Paper	Other Paper	Other Nonrecyclable Paper	130.28	NR_Paper	27.74	1.93	27.28	3.75	34.27	10.65	14.35	10.30
Paper Total			6,664.37		1,353.40	455.64	415.63	595.09	1,381.74	463.21	1,700.32	299.34
Plastic	PET Bottles	PET Bottles	378.31	R Plastics	39.23	19.45	37.19	16.78	84.26	46.35	104.64	30.42
Plastic	HDPE Bottles	HDPE Bottles: Natural	156.12	R Plastics	10.90	10.44	23.63	3.98	47.93	17.17	30.61	11.46
Plastic	HDPE Bottles	HDPE Bottles: Colored	157.63	R Plastics	15.58	9.41	20.73	5.40	32.85	16.42	43.89	13.36
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.45	PR_Plastics	0.07	0.04	0.00	0.01	0.15	0.08	0.09	0.02
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	9.36	PR_Plastics	2.08	1.06	1.61	0.30	1.37	1.21	1.54	0.17
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	2.72	PR_Plastics	0.95	0.10	0.19	0.09	0.56	0.18	0.54	0.12
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.45	PR_Plastics	0.04	0.00	0.03	0.01	0.11	0.13	0.13	0.01
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.97	PR_Plastics	0.41	0.25	0.61	0.17	1.31	0.77	1.00	0.45
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	9.38	PR_Plastics	1.10	0.41	0.59	0.30	1.57	0.99	3.49	0.93
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.68	PR_Plastics	0.00	0.03	0.01	0.12	0.36	0.04	0.08	0.05
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.12	PR_Plastics	0.00	0.05	0.00	0.06	0.01	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	22.52	PR_Plastics	2.68	1.73	3.18	1.38	5.29	2.85	4.02	1.40
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	2.18	PR_Plastics	0.10	0.05	0.48	0.04	0.51	0.09	0.75	0.15
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	3.81	PR_Plastics	0.48	0.41	1.24	0.00	0.54	0.63	0.50	0.00
Plastic	Other Plastic Products	Other PVC	3.93	NR_Plastics	0.00	0.00	0.32	0.00	0.28	2.18	1.14	0.00
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	12.76	PR_Plastics	2.20	0.78	0.50	0.62	2.90	1.03	3.62	1.11
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	5.76	PR_Plastics	0.34	0.33	0.75	0.25	1.61	0.98	1.19	0.30
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	64.30	PR_Plastics	8.55	3.97	8.07	2.97	14.63	6.93	14.14	5.03
Plastic	Film	Plastic Bags	79.55	PR_Plastics	12.42	5.96	5.18	3.93	17.32	8.25	20.63	5.86
Plastic	Film	Other Film	175.05	PR_Plastics	37.97	11.48	22.99	9.60	40.72	18.95	24.95	8.38
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	19.84	NR_Plastics	2.03	0.97	1.53	0.73	5.17	1.57	4.27	3.59
Plastic	Other Plastic Products	Other Plastics Materials	175.73	NR_Plastics	19.74	15.34	35.86	5.96	36.95	20.46	30.46	10.95
Plastic Total			1,285.62		156.86	82.25	164.69	52.70	296.40	147.28	291.68	93.76
Glass	Container Glass	Clear Container Glass	394.12	R Glass	47.38	18.29	22.92	21.14	67.67	51.40	129.20	36.13
Glass	Container Glass	Green Container Glass	177.67	R Glass	56.76	11.43	4.99	21.34	23.29	13.09	35.84	10.93
Glass	Container Glass	Brown Container Glass	110.11	R Glass	18.62	5.10	7.44	8.89	21.06	12.95	28.33	7.71
Glass	Mixed Cullet	Mixed Cullet	1,019.29	R Glass	165.56	54.45	139.93	69.32	226.70	100.26	182.14	80.93
Glass	Container Glass	Other Container Glass	8.63	R Glass	1.07	0.83	0.24	1.05	1.95	0.58	2.50	0.42
Glass	Other Glass	Other Glass	21.27	PR_Glass	5.54	0.69	2.12	0.19	4.15	1.30	4.31	2.99
Glass Total			1,731.10		294.93	90.79	177.65	121.93	344.81	179.57	382.32	139.11
Metal	Aluminum	Aluminum Cans	43.06	R Metal	3.12	2.21	3.87	1.62	8.09	4.70	15.04	4.41
Metal	Aluminum	Aluminum Foil/Containers	44.84	R Metal	3.54	1.61	3.27	1.70	10.52	6.27	13.40	4.52
Metal	Aluminum	Other Aluminum	26.30	R Metal	1.17	2.00	1.96	0.48	7.39	2.42	7.81	3.07
Metal	Non-Ferrous	Other Non-Ferrous	42.79	R Metal	8.28	3.74	6.79	1.00	4.71	3.18	12.40	2.69
Metal	Ferrous	Tin Food Cans	306.49	R Metal	22.84	16.68	45.57	13.31	74.99	37.07	71.21	24.83
Metal	Ferrous	Empty Aerosol Cans	36.06	R Metal	3.02	1.98	4.26	1.07	9.94	4.83	8.55	2.42
Metal	Ferrous	Other Ferrous	458.22	R Metal	50.45	34.37	64.42	18.11	81.57	59.17	114.97	35.16
Metal	Other Metal	Mixed Metals	148.67	R Metal	10.35	9.62	41.83	7.75	23.27	7.53	37.23	11.09
Metal Total			1,106.44		102.78	72.22	171.96	45.03	220.47	125.17	280.61	88.19

Table I-16
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Recycling Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	$\begin{gathered} \hline \text { High Densityl } \\ \text { Low Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	$\begin{gathered} \hline \text { Low Density/ } \\ \text { Medium Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$
Organics	Yard	Leaves and Grass	3.24	NR_Other	0.00	0.00	0.00	2.88	0.00	0.04	0.32	0.00
Organics	Yard	Prunings	1.26	NR_Other	0.04	0.00	0.74	0.11	0.00	0.09	0.15	0.13
Organics	Wood	Stumps/Limbs	0.23	NR_Other	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Organics	Food	Food	101.36	NR_Other	13.30	5.85	10.59	5.73	18.12	16.52	23.93	7.32
Organics	Wood	Wood Furniture/Furniture Pieces	8.08	NR_Other	1.57	0.11	0.64	0.27	2.17	1.39	1.90	0.04
Organics	Wood	Non-C\&D Untreated Wood	3.62	NR_Other	0.00	0.36	0.74	1.58	0.19	0.25	0.47	0.02
Organics	Textiles	Non-Clothing Textiles	8.57	NR_Other	1.11	0.56	1.85	0.20	1.00	1.08	2.35	0.42
Organics	Textiles	Clothing Textiles	6.09	NR_Other	0.69	0.42	1.12	0.46	0.66	1.72	0.87	0.15
Organics	Textiles	Carpet/Upholstery	0.68	NR_Other	0.00	0.00	0.00	0.00	0.20	0.01	0.46	0.00
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	6.34	NR_Other	0.72	1.25	0.67	0.32	0.56	0.97	1.49	0.35
Organics	Misc. Organic	Animal By-Products	3.04	NR_Other	1.10	0.00	0.17	0.09	0.00	0.00	1.63	0.05
Organics	Misc. Organic	Rubber Products	6.64	NR_Other	0.21	0.99	0.36	0.52	1.85	0.72	0.54	1.46
Organics	Textiles	Shoes	6.28	NR_Other	3.44	0.25	0.33	0.06	0.40	1.48	0.19	0.13
Organics	Textiles	Other Leather Products	1.34	NR_Other	0.08	0.17	0.17	0.15	0.55	0.00	0.19	0.03
Organics	Misc. Organic	Fines	32.05	NR_Other	2.99	2.86	7.98	1.15	3.32	3.98	7.77	2.01
Organics	Textiles	Upholstered or Other Organic-Type Furniture	5.61	NR_Other	0.21	0.35	0.73	0.00	0.00	0.00	0.89	3.42
Organics	Misc. Organic	Miscellaneous Organics	11.26	NR_Other	0.14	0.07	3.69	0.01	0.17	5.28	1.27	0.64
Organics Total			205.68		25.84	13.24	29.77	13.52	29.20	33.55	44.41	16.16
Appliance/Electronic	Ferrous	Appliances: Ferrous	160.89	R Metal	21.28	19.82	11.55	15.05	45.75	10.56	20.93	15.95
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	18.64	R Metal	1.34	1.28	1.70	0.88	1.63	2.20	8.99	0.62
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	36.55	NR_Other	3.05	2.52	9.69	1.55	7.89	3.32	6.79	1.74
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	21.50	NR_Other	0.81	2.79	4.25	1.18	4.71	1.90	4.04	1.83
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	2.56	NR_Other	2.10	0.00	0.00	0.46	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	23.16	NR_Other	2.02	1.33	8.61	0.98	3.44	1.71	4.61	0.46
Appliance/Electronic Total			263.30		30.61	27.74	35.81	20.10	63.43	19.68	45.36	20.59
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	0.41	NR_Other	0.00	0.02	0.00	0.00	0.00	0.03	0.36	0.00
C \& Debris	Wood	Treated/Contaminated Wood	4.64	NR_Other	0.70	0.40	2.52	0.01	0.38	0.24	0.30	0.08
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.54	NR_Other	0.00	0.00	0.16	0.00	0.20	0.00	0.17	0.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	2.31	NR_Other	0.00	0.00	0.73	0.00	0.00	0.00	1.49	0.10
C \& D Debris	Inorganic C\&D	Other Construction Debris	10.35	NR_Other	1.22	0.23	3.95	0.17	0.68	1.02	3.01	0.06
C \& D Debris Total			18.24		1.92	0.65	7.36	0.19	1.26	1.28	5.34	0.24
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	9.95	NR_Other	1.18	0.13	0.32	0.21	0.83	4.09	2.74	0.44
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	22.75	NR_Other	1.15	1.88	4.87	0.60	5.40	2.12	4.09	2.64
Miscellaneous Inorganics Total			32.70		2.33	2.01	5.19	0.80	6.23	6.22	6.83	3.08
HHW	HHW	Oil Filters	0.09	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
HHW	HHW	Antifreeze	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.54	NR_Other	0.00	0.00	0.00	0.02	0.00	0.00	0.53	0.00
HHw	HHw	Latex Paints/Water-Based Adhesives/Glues	7.36	NR_Other	0.72	1.36	0.39	0.41	1.10	1.13	1.38	0.87
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	1.97	NR_Other	0.41	0.24	0.50	0.05	0.07	0.26	0.25	0.20
HHw	HHw	Pesticides/Herbicides/Rodenticides	0.08	NR_Other	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Dry-Cell Batteries	1.55	NR_Other	0.25	0.23	0.16	0.17	0.36	0.06	0.25	0.06
HHW	HHW	Fluorescent Tubes	0.07	NR_Other	0.00	0.00	0.01	0.00	0.00	0.00	0.06	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.00	NR_Other	0.07	0.04	0.00	0.20	0.48	0.00	0.12	0.09
HHW	HHW	Home Medical Products	0.79	NR_Other	0.10	0.01	0.07	0.01	0.01	0.11	0.40	0.09
HHW	HHW	Other Potentially Harmful Wastes	3.26	NR_Other	0.18	0.11	0.50	0.02	1.92	0.14	0.26	0.13
HHW Total			16.70		1.73	2.00	1.70	0.87	3.94	1.69	3.24	1.54
Grand Total			11,324.15		1,970.39	746.54	1,009.76	850.24	2,347.47	977.64	2,760.10	662.01

Table l-16
WCS Aggregated Recycling Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Recycling Designation	Citywide Recycling Weekly Tonnage	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	6,291.64	1,304.83	443.78	358.13	575.82	1,255.35	432.42	1,641.14	280.17
Designated Beverage Cartons	96.01	10.92	5.49	9.82	7.27	21.73	14.76	20.23	5.79
Designated Plastic	692.07	65.71	39.30	81.55	26.16	165.04	79.95	179.13	55.24
Designated Metal	1,285.97	125.40	93.32	185.21	60.96	267.85	137.93	310.54	104.76
Designated Glass	1,709.82	289.39	90.10	175.53	121.74	340.67	178.27	378.01	136.12
Designated MGP Subtotal	3,783.87	491.42	228.20	452.10	216.14	795.29	410.90	887.91	301.90
Potentially Designated Plastic	394.05	69.39	26.65	45.42	19.85	88.97	43.13	76.67	23.98
Potentially Designated Glass	21.27	5.54	0.69	2.12	0.19	4.15	1.30	4.31	2.99
Potentially Designated Materials Subtotal	415.33	74.92	27.34	47.54	20.04	93.12	44.43	80.98	26.97
Nondesignated Paper	276.72	37.64	6.38	47.69	12.00	104.65	16.03	38.95	13.38
Nondesignated Plastic	199.50	21.76	16.31	37.72	6.69	42.40	24.21	35.87	14.54
Other Nondesignated	357.10	39.81	24.54	66.59	19.55	56.67	49.66	75.25	25.04
Nondesignated Materials Subtotal	833.32	99.22	47.23	152.00	38.23	203.72	89.90	150.06	52.97
Designated for Recycling Total	10,075.51	1,796.25	671.98	810.23	791.96	2,050.64	843.32	2,529.05	582.07
Potentially or Not Designated for Recycling Total	1,248.65	174.14	74.56	199.53	58.27	296.84	134.32	231.04	79.94

(1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-17
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,982.23	R Paper	1,033.54	364.95	677.79	336.16	700.13	449.14	1,182.16	238.36
Paper	OCC	Plain OCC/Kraft Paper	2,042.30	R Paper	345.91	138.75	215.10	79.48	474.03	277.91	407.53	103.59
Paper	Mixed Paper	High Grade Paper	585.22	R Paper	100.94	46.52	62.93	50.85	148.80	69.06	80.42	25.70
Paper	Mixed Paper	Mixed Low Grade Paper	6,678.56	R Paper	1,491.34	477.29	822.11	483.81	1,107.77	632.11	1,311.51	352.62
Paper	Mixed Paper	Phone Books/Paperbacks	528.14	R Paper	164.14	49.39	69.75	25.54	57.07	74.31	61.61	26.32
Paper	Mixed Paper	Paper Bags	385.69	R Paper	102.52	24.25	59.27	22.90	68.78	38.83	54.24	14.90
Paper	Bev Cartons	Polycoated Paper Containers	324.23	R Bev Cartons	49.48	25.08	59.04	18.21	66.62	42.97	46.96	15.87
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	4,607.38	NR_Paper	701.84	321.72	843.30	177.91	842.42	517.57	890.55	312.08
Paper	Compostable Paper	Single Use Paper Plates, Cups	309.47	NR_Paper	52.75	22.67	29.99	14.51	45.96	22.21	92.35	29.03
Paper	Other Paper	Other Nonrecyclable Paper	401.35	NR_Paper	44.87	33.62	66.21	27.02	75.01	45.68	84.43	24.51
Paper Total			20,844.59		4,087.34	1,504.24	2,905.49	1,236.40	3,586.60	2,169.79	4,211.76	1,142.97
Plastic	PET Bottles	PET Bottles	663.15	R Plastics	90.66	42.88	125.91	24.54	119.91	99.16	115.48	44.61
Plastic	HDPE Bottles	HDPE Bottles: Natural	310.07	R Plastics	17.56	19.12	61.10	6.54	55.51	41.56	90.11	18.56
Plastic	HDPE Bottles	HDPE Bottles: Colored	316.01	R Plastics	34.04	22.59	57.79	10.92	62.38	40.87	65.63	21.80
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	5.21	PR_Plastics	0.26	0.35	0.34	0.13	1.34	0.50	2.11	0.18
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	35.25	PR_Plastics	9.59	5.53	2.03	1.24	4.63	6.08	4.26	1.89
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	8.00	PR_Plastics	0.72	0.90	1.03	0.25	1.34	1.62	1.82	0.32
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.44	PR_Plastics	0.14	0.19	0.59	0.05	0.69	0.81	0.35	0.63
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	10.72	PR_Plastics	1.07	0.55	2.09	0.27	2.13	1.53	1.99	1.10
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	36.09	PR_Plastics	4.14	4.80	5.74	1.30	9.05	3.64	5.33	2.07
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1.59	PR_Plastics	0.02	0.00	0.52	0.01	0.47	0.22	0.30	0.04
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.70	PR_Plastics	0.04	0.16	0.02	0.03	0.04	0.42	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	112.36	PR_Plastics	19.92	7.50	22.33	6.28	18.49	8.67	23.25	5.91
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	21.51	PR_Plastics	2.85	1.28	2.68	1.44	3.04	1.57	5.49	3.16
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	5.95	PR_Plastics	0.32	0.44	1.43	1.14	0.40	1.67	0.36	0.19
Plastic	Other Plastic Products	Other PVC	11.61	NR_Plastics	0.53	0.29	1.83	0.03	2.38	1.54	4.91	0.10
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	162.30	PR_Plastics	35.97	12.27	27.52	8.08	24.69	16.16	28.64	8.99
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	361.26	PR_Plastics	34.56	22.78	76.84	13.79	70.21	65.00	54.21	23.86
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	440.59	PR_Plastics	83.90	44.40	61.54	23.06	82.98	42.99	72.22	29.51
Plastic	Film	Plastic Bags	1,594.67	PR_Plastics	186.64	149.34	353.59	56.53	317.49	210.97	226.86	93.25
Plastic	Film	Other Film	3,251.16	PR_Plastics	449.31	269.20	612.75	128.96	640.79	436.95	521.25	191.96
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	304.36	NR_Plastics	33.02	17.56	46.70	9.09	46.83	46.02	80.05	25.08
Plastic	Other Plastic Products	Other Plastics Materials	1,225.07	NR_Plastics	81.32	68.45	172.77	37.64	232.39	204.60	344.85	83.05
Plastic Total			8,881.06		1,086.57	690.58	1,637.14	331.32	1,697.19	1,232.54	1,649.47	556.25
$\overline{\text { Glass }}$	Container Glass	Clear Container Glass	945.20	R Glass	110.67	50.71	175.72	38.93	153.32	173.45	175.98	66.43
Glass	Container Glass	Green Container Glass	325.48	R Glass	94.82	20.30	36.65	33.59	51.58	31.21	45.43	11.90
Glass	Container Glass	Brown Container Glass	248.73	R Glass	21.50	16.33	63.75	17.74	39.25	36.77	37.06	16.32
Glass	Mixed Cullet	Mixed Cullet	1,018.48	R Glass	196.40	60.47	143.81	66.73	210.78	131.42	161.21	47.66
Glass	Container Glass	Other Container Glass	19.06	R Glass	1.65	0.82	1.29	1.37	5.62	2.32	5.19	0.81
Glass	Other Glass	Other Glass	89.23	PR_Glass	6.17	5.47	18.21	3.03	14.93	9.70	21.07	10.65
Glass Total			2,646.18		431.20	154.11	439.43	161.39	475.48	384.87	445.92	153.79
Metal	Aluminum	Aluminum Cans	113.49	R Metal	13.95	9.61	24.47	5.58	16.71	17.53	19.92	5.73
Metal	Aluminum	Aluminum Foil/Containers	327.98	R Metal	38.49	19.33	59.17	15.22	62.58	49.41	59.15	24.62
Metal	Aluminum	Other Aluminum	39.72	R Metal	2.30	2.74	2.67	2.87	1.63	14.76	11.71	1.06
Metal	Non-Ferrous	Other Non-Ferrous	79.88	R Metal	9.13	7.70	21.02	4.38	11.78	3.84	14.79	7.24
Metal	Ferrous	Tin Food Cans	794.30	R Metal	58.21	55.16	204.23	27.48	144.71	125.40	123.64	55.46
Metal	Ferrous	Empty Aerosol Cans	98.47	R Metal	11.27	5.86	21.53	2.89	17.90	12.97	18.29	7.75
Metal	Ferrous	Other Ferrous	1,284.31	R Metal	127.70	87.34	238.62	53.36	217.99	237.18	231.80	90.32
Metal	Other Metal	Mixed Metals	409.36	R Metal	27.78	21.86	63.57	14.53	38.30	117.19	99.33	26.80
Metal Total			3,147.51		288.83	209.61	635.27	126.31	511.61	578.27	578.64	218.98

Table l-17
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \hline \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	2,814.87	NR_Other	105.15	118.01	164.09	77.43	512.12	429.49	1,063.57	345.01
Organics	Yard	Prunings	675.75	NR_Other	21.23	27.47	1.81	32.96	113.71	21.19	390.92	66.47
Organics	Wood	Stumps/Limbs	73.74	NR_Other	0.00	6.02	0.00	1.15	13.29	0.00	47.76	5.52
Organics	Food	Food	12,153.86	NR_Other	971.81	906.28	2,769.58	479.50	2,522.42	1,880.48	1,821.06	802.73
Organics	Wood	Wood Furniture/Furniture Pieces	595.21	NR_Other	42.83	16.34	75.32	27.74	81.76	174.05	121.14	56.03
Organics	Wood	Non-C\&D Untreated Wood	33.55	NR_Other	1.25	1.17	7.00	2.17	5.66	1.76	11.88	2.66
Organics	Textiles	Non-Clothing Textiles	852.05	NR_Other	68.70	58.29	163.33	27.20	172.51	107.98	199.53	54.51
Organics	Textiles	Clothing Textiles	1,674.81	NR_Other	107.16	142.63	440.01	32.35	260.60	283.85	279.73	128.47
Organics	Textiles	Carpet/Upholstery	696.64	NR_Other	83.60	23.18	42.45	20.34	62.23	223.64	166.40	74.79
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,181.43	NR_Other	179.40	144.61	484.56	101.01	392.04	354.73	339.25	185.83
Organics	Misc. Organic	Animal By-Products	677.20	NR_Other	78.53	56.36	79.44	82.56	145.33	64.61	104.38	65.98
Organics	Misc. Organic	Rubber Products	167.84	NR_Other	21.40	10.44	20.92	5.70	26.91	24.42	50.85	7.18
Organics	Textiles	Shoes	364.34	NR_Other	20.92	23.62	67.07	14.23	63.41	78.42	57.89	38.78
Organics	Textiles	Other Leather Products	77.71	NR_Other	2.47	8.61	16.50	1.17	30.79	8.01	8.87	1.29
Organics	Misc. Organic	Fines	1,921.33	NR_Other	206.27	136.32	408.10	72.34	327.68	309.06	314.86	146.70
Organics	Textiles	Upholstered or Other Organic-Type Furniture	430.33	NR_Other	5.45	23.67	24.61	17.88	156.61	69.95	126.19	5.99
Organics	Misc. Organic	Miscellaneous Organics	331.45	NR_Other	22.01	21.00	77.18	26.94	43.59	34.68	80.56	25.49
Organics Total			25,722.11		1,938.18	1,724.03	4,841.96	1,022.67	4,930.65	4,066.33	5,184.85	2,013.44
Appliance/Electronic	Ferrous	Appliances: Ferrous	512.26	R Metal	54.06	41.52	110.14	33.84	46.42	98.49	92.63	35.17
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	27.97	R Metal	4.79	1.06	4.28	0.66	1.07	4.38	8.20	3.54
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	164.73	NR_Other	15.47	17.71	32.10	4.85	20.87	28.36	36.83	8.54
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	4.23	NR_Other	0.04	0.26	2.56	0.10	0.49	0.28	0.18	0.32
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	144.83	NR_Other	7.10	5.01	30.04	3.00	30.81	31.26	25.37	12.24
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	20.25	NR_Other	0.00	0.00	0.38	3.70	4.52	11.65	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	54.42	NR_Other	0.00	0.00	0.00	0.00	29.34	0.00	11.79	13.29
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	128.15	NR_Other	19.90	15.60	10.78	3.82	33.10	20.62	13.91	10.43
Appliance/Electronic Total			1,056.84		101.35	81.16	190.28	49.97	166.62	195.03	188.90	83.53
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	186.03	NR_Other	5.91	22.25	12.13	8.13	11.54	12.75	95.51	17.80
C \& D Debris	Wood	Treated/Contaminated Wood	937.46	NR_Other	35.49	65.06	119.77	47.87	183.05	178.12	216.23	91.88
C \& D Debris	Inorganic C\&D	Gypsum Scrap	780.70	NR_Other	37.72	66.62	63.75	9.01	188.27	206.69	103.06	105.60
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	383.74	NR_Other	17.68	23.54	80.63	8.28	73.73	112.58	48.27	19.02
C \& D Debris	Inorganic C\&D	Other Construction Debris	917.62	NR_Other	93.28	59.68	117.21	29.27	174.22	171.86	237.05	35.06
C \& D Debris Total			3,205.56		190.08	237.15	393.50	102.56	630.81	682.00	700.12	269.35
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	87.25	NR_Other	8.73	2.43	9.51	2.54	11.99	21.63	20.02	10.39
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	261.44	NR_Other	5.61	19.41	34.64	16.07	38.99	50.77	78.41	17.54
Miscellaneous Inorganics Total			348.69		14.33	21.84	44.15	18.61	50.98	72.40	98.44	27.93
HHW	HHW	Oil Filters	0.57	NR_Other	0.00	0.00	0.00	0.00	0.53	0.00	0.00	0.05
HHW	HHW	Antifreeze	0.11	NR_Other	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.72	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.38
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	65.86	NR_Other	4.74	0.92	4.10	3.02	11.29	7.43	23.92	10.42
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	10.27	NR_Other	3.94	0.43	0.29	0.04	3.44	0.00	1.25	0.89
HHW	HHW	Pesticides/Herbicides/Rodenticides	3.07	NR_Other	0.06	0.32	0.00	0.10	1.03	0.46	0.77	0.34
HHW	HHW	Dry-Cell Batteries	48.26	NR_Other	2.65	5.47	10.28	2.31	7.69	10.19	7.93	1.75
HHW	HHW	Fluorescent Tubes	0.39	NR_Other	0.15	0.00	0.00	0.00	0.24	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.06	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.50	NR_Other	0.79	0.22	0.49	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	22.97	NR_Other	2.18	1.38	6.63	2.11	4.55	3.03	2.35	0.74
HHW	HHW	Other Potentially Harmful Wastes	19.44	NR_Other	0.62	1.92	3.12	0.53	1.29	4.28	5.96	1.72
HHW Total			173.21		15.13	10.66	24.91	8.11	30.05	25.50	42.53	16.34
Grand Total			66,025.76		8,153.01	4,633.37	11,112.13	3,057.33	12,079.98	9,406.72	13,100.64	4,482.58

Table I-17
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Recycling Designation	$\begin{gathered} \hline \text { Citywide } \\ \text { Waste } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	15,202.15	3,238.39	1,101.15	1,906.95	998.75	2,556.59	1,541.36	3,097.47	761.49
Designated Beverage Cartons	324.23	49.48	25.08	59.04	18.21	66.62	42.97	46.96	15.87
Designated Plastic	1,289.22	142.26	84.58	244.80	42.01	237.80	181.58	271.22	84.97
Designated Metal	3,687.74	347.67	252.19	749.69	160.81	559.10	681.14	679.46	257.69
Designated Glass	2,556.95	425.03	148.64	421.22	158.36	460.54	375.17	424.85	143.13
Designated MGP Subtotal	7,858.15	964.44	510.49	1,474.75	379.39	1,324.05	1,280.86	1,422.50	501.66
Potentially Designated Plastic	6,050.80	829.46	519.69	1,171.04	242.55	1,177.79	798.79	948.44	363.06
Potentially Designated Glass	89.23	6.17	5.47	18.21	3.03	14.93	9.70	21.07	10.65
Potentially Designated Materials Subtotal	6,140.03	835.63	525.16	1,189.24	245.58	1,192.73	808.49	969.51	373.71
Nondesignated Paper	5,318.21	799.46	378.01	939.51	219.44	963.40	585.46	1,067.32	365.62
Nondesignated Plastic	1,541.04	114.86	86.30	221.30	46.76	281.60	252.17	429.82	108.22
Other Nondesignated	29,966.18	2,200.22	2,032.26	5,380.38	1,167.42	5,761.62	4,938.38	6,114.01	2,371.88
Nondesignated Materials Subtotal	36,825.43	3,114.55	2,496.58	6,541.19	1,433.62	7,006.62	5,776.01	7,611.15	2,845.72
Designated for Recycling Total	23,060.30	4,202.83	1,611.64	3,381.70	1,378.14	3,880.64	2,822.22	4,519.98	1,263.15
Potentially or Not Designated for Recycling Total	42,965.46	3,950.17	3,021.73	7,730.43	1,679.19	8,199.34	6,584.50	8,580.66	3,219.43

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-18
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,649.46	R Paper	906.08	374.12	534.72	282.81	879.22	422.07	1,043.29	207.16
Paper	OCC	Plain OCC/Kraft Paper	1,616.36	R Paper	160.25	114.86	260.45	67.62	313.50	249.31	360.68	89.71
Paper	Mixed Paper	High Grade Paper	594.03	R Paper	163.64	46.93	130.84	35.40	54.30	51.70	88.70	22.52
Paper	Mixed Paper	Mixed Low Grade Paper	6,655.85	R Paper	1,588.75	498.08	830.76	383.71	1,083.75	696.34	1,248.16	326.30
Paper	Mixed Paper	Phone Books/Paperbacks	634.51	R Paper	138.42	80.73	45.30	108.18	79.13	99.39	67.35	16.01
Paper	Mixed Paper	Paper Bags	365.63	R Paper	92.11	22.56	68.28	20.39	60.86	38.99	44.60	17.84
Paper	Bev Cartons	Polycoated Paper Containers	303.46	R Bev Cartons	42.59	23.04	50.15	18.95	52.17	40.07	61.51	15.00
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,212.60	NR_Paper	434.09	224.62	558.29	154.75	585.87	409.85	632.68	212.45
Paper	Compostable Paper	Single Use Paper Plates, Cups	241.53	NR_Paper	43.62	11.56	24.93	12.92	32.21	16.60	80.41	19.26
Paper	Other Paper	Other Nonrecyclable Paper	356.36	NR_Paper	39.97	23.25	72.19	17.41	44.23	46.17	90.64	22.51
Paper Total			18,629.80		3,609.52	1,419.75	2,575.91	1,102.13	3,185.25	2,070.49	3,718.02	948.75
Plastic	PET Botlles	PET Bottles	762.41	R Plastics	94.65	49.74	160.39	27.64	134.04	114.74	136.02	45.21
Plastic	HDPE Bottles	HDPE Bottles: Natural	270.06	R Plastics	22.72	22.48	60.82	6.39	62.87	41.51	38.01	15.27
Plastic	HDPE Bottles	HDPE Bottles: Colored	289.48	R Plastics	34.82	21.55	50.31	12.77	59.42	38.20	57.12	15.29
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	4.12	PR_Plastics	0.21	0.05	0.61	0.09	0.80	0.72	1.54	0.09
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	33.07	PR_Plastics	1.79	3.29	8.19	1.27	7.56	4.75	4.87	1.35
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	8.39	PR_Plastics	2.98	0.36	1.22	0.30	0.54	1.06	1.48	0.43
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.30	PR_Plastics	0.34	0.21	0.96	0.05	0.61	0.85	0.17	0.12
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	12.71	PR_Plastics	1.03	0.84	2.56	0.37	2.41	1.63	2.58	1.28
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	41.12	PR_Plastics	6.00	3.38	6.67	1.32	6.45	5.41	8.20	3.69
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.47	PR_Plastics	0.01	0.12	0.14	0.00	0.08	0.08	0.04	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1.41	PR_Plastics	0.00	0.77	0.23	0.04	0.15	0.08	0.13	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	98.83	PR_Plastics	15.18	8.56	17.31	5.78	17.75	9.05	19.52	5.68
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	15.59	PR_Plastics	3.60	2.32	0.98	1.55	2.60	1.22	2.43	0.89
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	5.83	PR_Plastics	0.05	0.79	2.34	0.02	0.10	1.18	0.23	1.11
Plastic	Other Plastic Products	Other PVC	4.59	NR_Plastics	0.00	0.00	0.00	0.11	0.53	0.08	3.36	0.51
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	137.46	PR_Plastics	28.12	9.81	21.79	9.64	21.33	16.03	22.85	7.90
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	316.66	PR_Plastics	25.61	26.08	68.13	13.28	57.29	51.98	53.46	20.84
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	402.19	PR_Plastics	84.17	26.96	59.78	22.01	76.60	35.66	76.57	20.44
Plastic	Film	Plastic Bags	1,656.96	PR_Plastics	191.17	155.97	346.77	58.86	307.19	254.17	250.46	92.36
Plastic	Film	Other Film	2,797.11	PR_Plastics	423.10	234.49	593.33	111.21	496.79	424.66	355.07	158.46
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	292.97	NR_Plastics	28.62	23.42	43.32	10.90	38.64	47.79	78.34	21.93
Plastic	Other Plastic Products	Other Plastics Materials	1,058.00	NR_Plastics	80.73	58.98	252.71	30.39	167.32	176.28	224.93	66.66
Plastic Total			8,212.72		1,044.90	650.18	1,698.55	313.99	1,461.07	1,227.11	1,337.38	479.53
Glass	Container Glass	Clear Container Glass	958.17	R Glass	87.21	62.20	197.14	48.49	154.40	163.29	179.52	65.93
Glass	Container Glass	Green Container Glass	351.00	R Glass	114.04	23.61	37.37	43.74	47.29	27.27	44.22	13.45
Glass	Container Glass	Brown Container Glass	222.59	R Glass	24.49	11.30	52.25	14.53	47.47	32.89	29.05	10.61
Glass	Mixed Cullet	Mixed Cullet	996.94	R Glass	202.19	70.15	149.75	55.24	225.20	110.34	134.16	49.92
Glass	Container Glass	Other Container Glass	10.94	R Glass	1.64	0.46	0.56	0.63	1.34	3.13	2.18	1.00
Glass	Other Glass	Other Glass	89.70	PR_Glass	7.31	6.14	12.70	6.34	19.53	15.76	16.59	5.34
Glass Total			2,629.35		436.88	173.86	449.76	168.97	495.24	352.68	405.73	146.24
Metal	Aluminum	Aluminum Cans	131.18	R Metal	21.36	9.73	23.79	3.66	19.41	15.56	29.85	7.81
Metal	Aluminum	Aluminum Foil/Containers	296.11	R Metal	33.77	20.24	57.75	14.13	49.55	45.20	59.44	16.02
Metal	Aluminum	Other Aluminum	16.37	R Metal	0.73	0.10	6.69	1.09	3.20	0.34	2.24	1.98
Metal	Non-Ferrous	Other Non-Ferrous	140.02	R Metal	8.88	13.53	17.89	1.10	33.35	22.21	36.52	6.55
Metal	Ferrous	Tin Food Cans	760.28	R Metal	56.01	56.57	177.36	29.33	150.22	120.66	121.37	48.76
Metal	Ferrous	Empty Aerosol Cans	86.49	R Metal	12.46	3.72	11.28	4.04	21.81	11.32	16.23	5.64
Metal	Ferrous	Other Ferrous	1,304.14	R Metal	157.84	68.77	244.53	51.44	254.54	144.50	285.08	97.43
Metal	Other Metal	Mixed Metals	445.88	R Metal	103.60	27.18	100.20	12.81	53.06	70.03	50.95	28.05
Metal Total			3,180.47		394.66	199.84	639.49	117.61	585.14	429.81	601.69	212.23

Table I-18
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	$\begin{gathered} \text { Recycling } \\ \text { Subindicator } \end{gathered}$	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	$\begin{gathered} \text { Low Densityl } \\ \text { High Income } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	545.07	NR_Other	13.64	27.87	28.38	29.78	49.60	59.95	278.25	57.60
Organics	Yard	Prunings	324.89	NR_Other	63.63	8.59	15.77	16.29	21.67	11.28	126.16	61.50
Organics	Wood	Stumps/Limbs	87.89	NR_Other	0.12	1.78	2.67	0.05	0.05	0.00	78.45	4.77
Organics	Food	Food	11,612.51	NR_Other	936.33	859.65	2,596.41	405.31	2,412.61	1,859.21	1,782.56	760.43
Organics	Wood	Wood Furniture/Furniture Pieces	787.92	NR_Other	45.38	36.73	144.10	43.89	85.48	192.23	179.61	60.50
Organics	Wood	Non-C\&D Untreated Wood	155.71	NR_Other	27.85	7.05	58.25	4.00	24.79	5.59	20.89	7.29
Organics	Textiles	Non-Clothing Texiles	794.93	NR_Other	91.09	64.31	143.17	32.12	155.93	121.30	118.78	68.22
Organics	Textiles	Clothing Textiles	1,295.09	NR_Other	76.04	95.67	358.20	25.91	240.72	208.90	197.87	91.78
Organics	Textiles	Carpet/Upholstery	861.66	NR_Other	134.69	62.81	118.53	30.26	150.78	92.90	219.98	51.70
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,970.52	NR_Other	167.69	131.63	417.84	82.06	370.30	309.64	340.24	151.10
Organics	Misc. Organic	Animal By-Products	746.67	NR_Other	120.91	26.26	59.73	67.65	141.58	66.60	192.16	71.78
Organics	Misc. Organic	Rubber Products	130.86	NR_Other	8.48	7.19	28.90	6.55	36.60	23.20	15.09	4.85
Organics	Textiles	Shoes	375.70	NR_Other	19.83	33.25	88.54	9.95	79.08	63.16	65.29	16.60
Organics	Textiles	Other Leather Products	40.29	NR_Other	1.00	2.88	15.87	1.63	1.02	10.65	6.18	1.06
Organics	Misc. Organic	Fines	2,034.77	NR_Other	198.56	154.47	463.97	96.56	330.92	343.80	302.23	144.25
Organics	Textiles	Upholstered or Other Organic-Type Furniture	876.75	NR_Other	74.21	37.97	271.28	45.08	187.35	77.10	133.65	50.12
Organics	Misc. Organic	Miscellaneous Organics	375.80	NR_Other	40.94	26.65	36.43	26.44	67.67	63.35	81.79	32.53
Organics Total			23,017.03		2,020.39	1,584.75	4,848.05	923.55	4,356.15	3,508.87	4,139.20	1,636.07
Appliance/Electronic	Ferrous	Appliances: Ferrous	429.61	R Metal	35.22	32.03	131.59	10.01	43.93	75.29	56.43	45.10
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	9.48	R Metal	0.57	2.01	0.71	0.26	0.99	4.58	0.00	0.36
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	105.35	NR_Other	17.40	3.52	9.86	3.06	32.21	14.01	19.69	5.60
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	2.02	NR_Other	0.34	0.13	0.57	0.00	0.00	0.02	0.89	0.07
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	94.63	NR_Other	11.14	4.41	26.53	2.76	11.12	7.16	25.03	6.49
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	36.49	NR_Other	7.38	0.04	0.00	0.00	29.08	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	121.40	NR_Other	0.00	0.00	0.00	4.92	57.56	44.52	14.40	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	60.49	NR_Other	11.25	12.15	9.45	3.60	4.72	6.65	7.57	5.11
Appliance/Electronic Total			859.48		83.29	54.28	178.71	24.62	179.61	152.23	124.01	62.73
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	206.50	NR_Other	23.63	12.02	29.59	6.69	24.67	25.12	66.23	18.55
C \& D Debris	Wood	Treated/Contaminated Wood	988.08	NR_Other	68.83	83.83	189.63	29.24	142.66	212.63	134.40	126.87
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	530.36	NR_Other	50.42	24.06	113.71	13.99	92.31	127.63	84.22	24.00
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	227.15	NR_Other	4.09	6.40	66.77	3.90	100.27	27.79	12.14	5.80
C \& D Debris	Inorganic C\&D	Other Construction Debris	658.15	NR_Other	54.94	58.77	43.31	26.31	111.90	155.74	121.90	85.28
C \& D Debris Total			2,610.23		201.91	185.08	443.01	80.12	471.80	548.92	418.89	260.50
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	124.81	NR_Other	24.50	7.49	14.06	1.05	31.81	13.33	26.18	6.40
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	278.36	NR_Other	14.27	9.17	69.61	5.42	68.47	34.72	58.57	18.13
Miscellaneous Inorganics Total			403.17		38.77	16.65	83.68	6.47	100.28	48.04	84.76	24.53
HHW	HHW	Oil Filters	0.17	NR_Other	0.05	0.00	0.00	0.00	0.00	0.05	0.01	0.06
HHW	HHW	Antifreeze	1.96	NR_Other	0.00	0.17	0.00	0.00	0.00	0.00	1.79	0.00
HHW	HHW	Wet-Cell Batteries	0.02	NR_Other	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	1.03	NR_Other	0.00	0.00	0.00	0.00	0.38	0.18	0.03	0.44
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	22.96	NR_Other	4.26	2.65	3.03	1.01	8.90	1.23	1.74	0.12
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	20.13	NR_Other	2.70	1.67	1.30	0.00	13.52	0.26	0.66	0.01
HHW	HHW	Pesticides/Herbicides/Rodenticides	7.45	NR_Other	0.27	0.84	2.85	0.07	2.19	0.05	1.12	0.06
HHW	HHW	Dry-Cell Batteries	48.74	NR_Other	3.65	4.73	10.53	2.63	12.14	7.90	4.19	2.97
HHW	HHW	Fluorescent Tubes	0.59	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	2.23	NR_Other	0.00	0.97	0.00	0.00	0.00	0.00	1.26	0.00
HHW	HHW	Home Medical Products	16.56	NR_Other	1.21	2.17	5.39	0.40	1.87	1.01	4.05	0.47
HHW	HHW	Other Potentially Harmful Wastes	17.10	NR_Other	0.39	0.13	6.43	1.39	1.47	0.57	5.90	0.83
HHW Total			138.94		12.56	13.33	29.53	5.50	40.47	11.26	21.34	4.96
Grand Total			59,681.18		7,842.88	4,297.72	10,946.68	2,742.94	10,875.00	8,349.40	10,851.02	3,775.55

Table l-18
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Recycling Designation	Citywide Waste Weekly Tonnage	High Density/ High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Density/ Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	14,515.85	3,049.25	1,137.28	1,870.35	898.10	2,470.76	1,557.80	2,852.79	679.53
Designated Beverage Cartons	303.46	42.59	23.04	50.15	18.95	52.17	40.07	61.51	15.00
Designated Plastic	1,321.95	152.19	93.77	271.52	46.79	256.33	194.44	231.15	75.77
Designated Metal	3,619.56	430.45	233.88	771.79	127.88	630.06	509.68	658.12	257.70
Designated Glass	2,539.64	429.57	167.72	437.06	162.63	475.70	336.92	389.14	140.90
Designated MGP Subtotal	7,784.62	1,054.80	518.40	1,530.51	356.25	1,414.26	1,081.12	1,339.92	489.36
Potentially Designated Plastic	5,535.21	783.37	474.01	1,131.01	225.79	998.24	808.52	799.60	314.66
Potentially Designated Glass	89.70	7.31	6.14	12.70	6.34	19.53	15.76	16.59	5.34
Potentially Designated Materials Subtotal	5,624.91	790.68	480.15	1,143.71	232.13	1,017.78	824.27	816.19	320.00
Nondesignated Paper	3,810.49	517.67	259.43	655.41	185.08	662.32	472.62	803.72	254.22
Nondesignated Plastic	1,355.56	109.34	82.41	296.03	41.40	206.50	224.15	306.63	89.10
Other Nondesignated	26,589.75	2,321.13	1,820.05	5,450.67	1,029.97	5,103.39	4,189.45	4,731.77	1,943.33
Nondesignated Materials Subtotal	31,755.80	2,948.15	2,161.89	6,402.11	1,256.46	5,972.21	4,886.21	5,842.13	2,286.65
Designated for Recycling Total	22,300.47	4,104.05	1,655.68	3,400.86	1,254.35	3,885.02	2,638.91	4,192.71	1,168.89
Potentially or Not Designated for Recycling Total	37,380.71	3,738.83	2,642.04	7,545.81	1,488.59	6,989.98	5,710.49	6,658.31	2,606.65

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table I-19
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	5,118.09	R Paper	1,194.66	403.68	588.35	335.84	749.91	594.04	1,023.08	228.53
Paper	OCC	Plain OCC/Kraft Paper	1,393.76	R Paper	272.33	79.92	263.77	77.64	242.63	209.69	187.64	60.14
Paper	Mixed Paper	High Grade Paper	600.84	R Paper	129.12	25.15	65.83	59.70	155.72	50.60	90.37	24.35
Paper	Mixed Paper	Mixed Low Grade Paper	6,541.44	R Paper	1,264.97	469.48	840.09	413.72	1,111.70	773.10	1,322.10	346.27
Paper	Mixed Paper	Phone Books/Paperbacks	483.13	R Paper	77.93	33.16	48.98	21.39	92.56	75.09	103.40	30.62
Paper	Mixed Paper	Paper Bags	376.18	R Paper	93.24	25.84	62.07	21.20	58.53	45.17	51.07	19.06
Paper	Bev Cartons	Polycoated Paper Containers	346.15	R Bev Cartons	45.31	40.11	60.41	19.81	56.75	57.61	50.54	15.61
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,542.56	NR_Paper	453.28	282.56	522.99	182.00	664.84	442.10	736.73	258.05
Paper	Compostable Paper	Single Use Paper Plates, Cups	237.62	NR_Paper	33.50	13.61	24.12	15.70	41.60	17.78	65.26	26.05
Paper	Other Paper	Other Nonrecyclable Paper	348.63	NR_Paper	34.40	23.83	70.24	23.17	78.82	40.30	60.24	17.63
Paper Total			18,988.40		3,598.74	1,397.34	2,546.86	1,170.18	3,253.05	2,305.47	3,690.44	1,026.32
Plastic	PET Bottles	PET Bottles	766.74	R Plastics	95.46	49.68	142.43	29.08	131.31	133.04	132.89	52.85
Plastic	HDPE Bottles	HDPE Bottles: Natural	286.33	R Plastics	21.39	23.62	65.57	7.29	65.64	42.32	43.01	17.49
Plastic	HDPE Bottles	HDPE Bottles: Colored	318.63	R Plastics	31.38	21.39	60.49	11.29	51.92	55.16	66.10	20.89
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	2.40	PR_Plastics	0.41	0.41	0.61	0.15	0.53	0.02	0.16	0.12
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	42.93	PR_Plastics	3.86	7.08	10.54	1.60	7.87	7.49	3.29	1.19
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	7.90	PR_Plastics	0.54	1.19	1.68	0.23	1.73	1.13	1.25	0.15
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.29	PR_Plastics	0.28	0.21	0.54	0.17	0.47	1.00	0.38	0.24
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	11.32	PR_Plastics	0.70	0.71	2.18	0.38	1.57	1.79	3.22	0.77
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	49.07	PR_Plastics	4.49	3.53	11.02	2.25	8.43	7.78	8.98	2.61
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.82	PR_Plastics	0.00	0.12	0.17	0.38	0.00	0.02	0.00	0.13
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	9.78	PR_Plastics	8.90	0.00	0.00	0.00	0.00	0.25	0.52	0.10
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	101.55	PR_Plastics	15.62	9.49	17.08	6.45	16.46	10.30	16.88	9.26
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	34.50	PR_Plastics	6.67	2.09	7.16	3.18	5.01	3.68	4.52	2.19
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	14.29	PR_Plastics	0.43	1.42	5.77	0.46	1.04	0.87	1.25	3.05
Plastic	Other Plastic Products	Other PVC	7.37	NR_Plastics	0.00	0.00	0.00	0.31	0.00	0.00	6.86	0.19
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	164.76	PR_Plastics	30.97	12.55	38.00	8.20	25.11	15.53	26.28	8.11
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	337.68	PR_Plastics	31.00	25.56	70.27	10.52	63.42	50.93	66.74	19.25
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	497.18	PR_Plastics	88.93	37.15	72.87	32.50	90.69	49.64	93.99	31.41
Plastic	Film	Plastic Bags	2,127.52	PR_Plastics	234.87	182.08	464.77	79.57	431.70	328.20	290.96	115.37
Plastic	Film	Other Film	3,152.52	PR_Plastics	364.59	268.93	668.29	117.12	589.83	501.09	463.14	179.53
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	321.75	NR_Plastics	28.64	23.55	43.69	13.09	57.22	57.15	68.21	30.20
Plastic	Other Plastic Products	Other Plastics Materials	1,161.89	NR_Plastics	98.17	109.08	200.34	44.76	223.37	166.18	222.18	97.81
Plastic Total			9,420.20		1,067.30	779.82	1,883.48	368.98	1,773.32	1,433.58	1,520.83	592.90
Glass	Container Glass	Clear Container Glass	991.48	R Glass	73.35	54.61	162.54	42.08	166.75	215.47	205.19	71.48
Glass	Container Glass	Green Container Glass	356.20	R Glass	107.07	21.22	36.07	36.20	46.79	32.83	57.86	18.15
Glass	Container Glass	Brown Container Glass	205.56	R Glass	22.42	8.43	50.37	13.26	29.61	33.76	32.23	15.48
Glass	Mixed Cullet	Mixed Cullet	1,194.25	R Glass	241.12	75.49	151.54	82.45	281.21	148.72	141.38	72.35
Glass	Container Glass	Other Container Glass	30.35	R Glass	2.95	2.12	3.91	1.06	4.80	7.02	6.28	2.20
Glass	Other Glass	Other Glass	146.33	PR_Glass	9.77	7.07	19.04	3.32	36.39	31.00	32.11	7.64
Glass Total			2,924.17		456.69	168.93	423.47	178.37	565.55	468.81	475.04	187.31
Metal	Aluminum	Aluminum Cans	116.87	R Metal	12.79	9.36	24.97	4.25	19.04	20.38	18.30	7.77
Metal	Aluminum	Aluminum Foil/Containers	380.99	R Metal	41.82	27.54	64.35	15.70	71.96	58.39	72.85	28.38
Metal	Aluminum	Other Aluminum	49.56	R Metal	1.13	2.82	21.06	1.44	4.73	4.27	9.80	4.30
Metal	Non-Ferrous	Other Non-Ferrous	98.42	R Metal	10.01	9.39	12.79	12.86	8.89	11.40	23.66	9.41
Metal	Ferrous	Tin Food Cans	842.32	R Metal	56.25	58.07	201.54	26.22	155.71	160.40	131.84	52.29
Metal	Ferrous	Empty Aerosol Cans	98.26	R Metal	10.61	8.00	14.18	3.08	21.62	14.62	18.84	7.29
Metal	Ferrous	Other Ferrous	1,250.84	R Metal	114.70	72.68	263.28	54.17	196.01	136.29	296.55	117.16
Metal	Other Metal	Mixed Metals	440.56	R Metal	64.72	26.84	77.45	13.27	92.97	43.31	75.25	46.75
Metal Total			3,277.82		312.04	214.71	679.63	131.00	570.92	449.06	647.09	273.37

Table I-19
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	3,163.04	NR_Other	160.65	130.87	55.18	78.45	280.75	129.17	1,883.47	444.50
Organics	Yard	Prunings	541.41	NR_Other	38.06	7.52	28.32	8.90	52.66	20.66	339.07	46.24
Organics	Wood	Stumps/Limbs	151.00	NR_Other	2.80	6.20	3.86	15.99	22.48	2.22	56.81	40.64
Organics	Food	Food	11,780.03	NR_Other	904.70	983.50	2,518.93	418.85	2,380.33	1,957.13	1,847.65	768.96
Organics	Wood	Wood Furniture/Furniture Pieces	546.07	NR_Other	42.78	49.81	102.19	11.32	37.63	97.14	157.11	48.10
Organics	Wood	Non-C\&D Untreated Wood	142.28	NR_Other	3.37	9.45	12.52	8.23	65.67	10.80	25.25	6.99
Organics	Textiles	Non-Clothing Textiles	738.10	NR_Other	68.44	66.78	139.99	30.10	156.27	124.30	105.95	46.28
Organics	Textiles	Clothing Textiles	1,807.05	NR_Other	111.76	143.04	401.12	45.88	380.66	345.76	255.64	123.19
Organics	Textiles	Carpet/Upholstery	789.03	NR_Other	87.21	14.41	105.79	27.23	137.78	87.72	291.18	37.71
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,029.05	NR_Other	189.68	140.87	436.72	70.11	360.66	320.02	343.62	167.37
Organics	Misc. Organic	Animal By-Products	697.08	NR_Other	80.85	40.66	66.02	84.29	100.50	134.74	146.79	43.24
Organics	Misc. Organic	Rubber Products	230.95	NR_Other	14.04	12.33	92.01	4.29	32.64	13.95	52.87	8.82
Organics	Textiles	Shoes	402.04	NR_Other	24.35	35.44	104.65	12.18	92.28	71.71	42.88	18.54
Organics	Textiles	Other Leather Products	94.84	NR_Other	4.20	2.30	10.34	1.08	22.58	13.03	25.70	15.61
Organics	Misc. Organic	Fines	3,018.72	NR_Other	294.58	213.48	637.15	115.26	503.94	514.59	526.44	213.29
Organics	Textiles	Upholstered or Other Organic-Type Furniture	668.84	NR_Other	59.37	55.11	175.44	10.54	102.55	108.42	102.50	54.90
Organics	Misc. Organic	Miscellaneous Organics	493.91	NR_Other	45.51	17.90	45.78	43.26	43.26	55.75	172.81	69.64
Organics Total			27,293.46		2,132.34	1,929.68	4,936.00	985.94	4,772.64	4,007.10	6,375.74	2,154.03
Appliance/Electronic	Ferrous	Appliances: Ferrous	370.53	R Metal	11.94	21.68	61.38	12.08	46.44	29.00	154.30	33.71
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	28.70	R Metal	0.24	0.85	1.92	1.42	19.66	1.62	2.56	0.43
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	200.26	NR_Other	11.21	14.45	25.96	9.85	20.31	32.82	68.98	16.71
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	1.88	NR_Other	0.26	0.34	0.09	0.07	0.00	0.26	0.47	0.38
Appliance/Electronic	Electronic/Av/Computer	Audio/Visual Equipment: Other	148.88	NR_Other	6.82	8.10	9.66	0.78	24.54	28.44	65.20	5.35
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	24.02	NR_Other	3.34	0.96	0.00	1.78	0.00	0.00	14.20	3.75
Appliance/Electronic	Electronic/Av/Computer	Televisions	0.38	NR_Other	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electroni//AV/Computer	Other Computer Equipment	70.70	NR_Other	7.24	11.50	19.94	14.03	6.78	2.47	8.45	0.28
Appliance/Electronic Total			845.34		41.05	58.26	118.96	40.00	117.72	94.60	314.15	60.60
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	677.35	NR_Other	56.76	14.74	51.25	26.05	51.39	56.27	265.87	155.01
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1,150.20	NR_Other	78.16	47.96	153.18	31.31	175.34	126.38	434.53	103.34
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	650.26	NR_Other	34.27	35.12	97.74	10.06	214.99	49.56	172.71	35.80
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	700.00	NR_Other	16.19	10.52	99.66	17.89	68.09	138.94	266.04	82.66
C \& D Debris	Inorganic C\&D	Other Construction Debris	1,027.21	NR_Other	65.46	54.94	192.00	63.11	190.85	57.58	364.01	39.28
C \& D Debris Total			4,205.01		250.85	163.27	593.83	148.41	700.67	428.73	1,503.16	416.10
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	211.19	NR_Other	23.01	11.54	8.63	11.87	29.13	17.74	87.80	21.48
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	260.54	NR_Other	30.90	19.43	28.41	12.32	35.80	46.86	70.76	16.05
Miscellaneous Inorganics Total			471.73		53.91	30.98	37.04	24.19	64.92	64.60	158.56	37.53
HHW	HHW	Oil Filters	2.22	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	1.91	0.31
HHW	HHw	Antifreeze	0.14	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
HHW	HHW	Wet-Cell Batteries	0.10	NR_Other	0.00	0.00	0.07	0.00	0.00	0.00	0.03	0.00
HHW	HHw	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.13	NR_Other	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.09
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	20.57	NR_Other	6.11	0.02	0.07	0.38	11.93	1.21	0.28	0.58
HHW	HHw	Oil-Based Paints/Solvent-Based Adhesives/Glues	11.43	NR_Other	0.00	0.00	0.00	0.04	1.41	9.25	0.00	0.73
HHW	HHw	Pesticides/Herbicides/Rodenticides	1.03	NR_Other	0.00	0.03	0.04	0.00	0.00	0.31	0.65	0.00
HHW	HHW	Dry-Cell Batteries	36.49	NR_Other	1.80	2.11	7.91	1.34	6.04	8.65	6.49	2.16
HHW	HHW	Fluorescent Tubes	0.25	NR_Other	0.00	0.00	0.00	0.00	0.22	0.04	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	3.99	NR_Other	0.11	0.58	1.47	0.00	0.00	0.00	1.83	0.00
HHW	HHW	Home Medical Products	37.90	NR_Other	0.89	0.60	25.96	0.72	1.76	5.24	1.52	1.20
HHW	HHW	Other Potentially Harmful Wastes	28.93	NR_Other	2.89	1.47	3.15	0.36	10.52	3.07	7.20	0.27
$\frac{\text { HHW Total }}{\text { Grand Total }}$			143.18		11.80	4.80	38.67	2.84	31.92	27.76	19.91	5.48
			67,569.31		7,924.72	4,747.80	11,257.92	3,049.91	11,850.70	9,279.71	14,704.91	4,753.63

Table I-19
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Recycling Designation	Citywide Waste Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	14,513.45	3,032.24	1,037.24	1,869.10	929.51	2,411.04	1,747.68	2,777.67	708.97
Designated Beverage Cartons	346.15	45.31	40.11	60.41	19.81	56.75	57.61	50.54	15.61
Designated Plastic	1,371.70	148.23	94.70	268.49	47.66	248.87	230.52	242.00	91.23
Designated Metal	3,677.04	324.22	237.24	742.93	144.49	637.02	479.68	803.96	307.51
Designated Glass	2,777.83	446.92	161.86	404.43	175.05	529.16	437.81	442.93	179.67
Designated MGP Subtotal	8,172.72	964.68	533.91	1,476.26	387.01	1,471.79	1,205.62	1,539.43	594.02
Potentially Designated Plastic	6,557.50	792.26	552.49	1,370.96	263.15	1,243.86	979.73	981.57	373.48
Potentially Designated Glass	146.33	9.77	7.07	19.04	3.32	36.39	31.00	32.11	7.64
Potentially Designated Materials Subtotal	6,703.83	802.03	559.56	1,389.99	266.47	1,280.25	1,010.73	1,013.68	381.12
Nondesignated Paper	4,128.81	521.18	320.00	617.35	220.87	785.26	500.18	862.23	301.74
Nondesignated Plastic	1,491.00	126.81	132.63	244.03	58.16	280.59	223.33	297.25	128.19
Other Nondesignated	32,559.50	2,477.78	2,164.46	5,661.19	1,187.89	5,621.77	4,592.18	8,214.65	2,639.59
Nondesignated Materials Subtotal	38,179.31	3,125.77	2,617.09	6,522.56	1,466.92	6,687.62	5,315.69	9,374.13	3,069.52
Designated for Recycling Total	22,686.17	3,996.92	1,571.15	3,345.36	1,316.51	3,882.83	2,953.29	4,317.10	1,302.99
Potentially or Not Designated for Recycling Total	44,883.15	3,927.80	3,176.65	7,912.56	1,733.40	7,967.87	6,326.42	10,387.81	3,450.64

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.

Table I-20
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,731.43	R Paper	1,067.54	429.07	551.94	305.63	765.75	395.72	977.97	237.80
Paper	OCC	Plain OCC/Kraft Paper	1,265.01	R Paper	151.38	86.76	249.77	67.42	227.20	193.25	214.97	74.24
Paper	Mixed Paper	High Grade Paper	554.01	R Paper	120.87	55.27	61.23	40.17	51.11	86.01	106.59	32.75
Paper	Mixed Paper	Mixed Low Grade Paper	6,822.29	R Paper	1,268.95	514.32	972.88	463.08	975.11	771.30	1,499.48	357.16
Paper	Mixed Paper	Phone Books/Paperbacks	775.83	R Paper	62.10	51.48	89.53	31.93	294.19	53.76	150.18	42.67
Paper	Mixed Paper	Paper Bags	476.46	R Paper	94.56	32.41	81.77	27.45	80.02	60.12	75.67	24.45
Paper	Bev Cartons	Polycoated Paper Containers	306.20	R Bev Cartons	43.24	24.23	48.17	16.46	61.20	50.84	46.69	15.36
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,216.66	NR_Paper	374.82	233.05	470.31	145.63	679.77	364.29	714.22	234.57
Paper	Compostable Paper	Single Use Paper Plates, Cups	327.30	NR_Paper	28.47	18.77	38.60	16.58	39.11	29.68	117.68	38.41
Paper	Other Paper	Other Nonrecyclable Paper	671.65	NR_Paper	96.88	42.30	129.99	27.62	132.30	77.11	114.83	50.62
Paper Total			19,146.83		3,308.81	1,487.66	2,694.19	1,141.97	3,305.77	2,082.07	4,018.29	1,108.05
Plastic	PET Bottles	PET Bottles	925.65	R Plastics	99.75	66.39	166.79	32.94	165.36	160.06	174.79	59.57
Plastic	HDPE Bottles	HDPE Bottles: Natural	309.73	R Plastics	31.51	23.58	70.79	6.33	73.22	43.58	44.08	16.64
Plastic	HDPE Bottles	HDPE Bottles: Colored	313.29	R Plastics	36.11	22.38	69.78	10.55	50.74	36.40	66.79	20.53
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.20	PR_Plastics	0.36	0.16	0.10	0.01	0.20	0.18	0.14	0.06
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	25.28	PR_Plastics	4.99	3.39	3.28	0.69	2.50	4.24	3.95	2.25
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	8.52	PR_Plastics	1.28	0.28	1.48	0.36	1.20	1.50	1.88	0.53
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	4.11	PR_Plastics	0.06	0.19	1.10	0.08	0.48	1.03	0.96	0.21
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	14.14	PR_Plastics	1.10	0.70	3.65	0.60	2.64	2.07	2.32	1.07
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	54.94	PR_Plastics	3.41	2.81	7.22	1.09	5.51	6.47	25.33	3.10
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.82	PR_Plastics	0.05	0.03	0.11	0.12	0.36	0.04	0.08	0.05
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.14	PR_Plastics	0.02	0.05	0.00	0.06	0.01	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	130.12	PR_Plastics	22.45	9.23	21.80	8.08	21.45	18.41	18.34	10.36
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	28.54	PR_Plastics	5.13	3.10	5.16	1.46	2.97	3.76	5.11	1.86
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	9.91	PR_Plastics	0.68	0.99	3.29	0.16	0.79	3.31	0.60	0.08
Plastic	Other Plastic Products	Other PVC	20.20	NR_Plastics	0.00	1.21	12.25	0.01	0.28	3.20	1.63	1.63
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	166.08	PR_Plastics	37.82	10.96	21.72	9.77	27.33	18.40	29.89	10.21
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	371.26	PR_Plastics	28.50	30.52	72.12	14.22	72.98	60.90	64.92	27.10
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	601.62	PR_Plastics	92.42	45.07	94.26	30.76	101.44	66.87	122.53	48.27
Plastic	Film	Plastic Bags	1,684.71	PR_Plastics	178.21	144.29	381.09	62.64	346.00	234.58	235.68	102.22
Plastic	Film	Other Film	3,095.74	PR_Plastics	367.42	248.00	637.12	116.92	551.88	431.82	524.79	217.79
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	408.53	NR_Plastics	39.44	32.20	60.44	13.89	54.57	67.74	99.86	40.39
Plastic	Other Plastic Products	Other Plastics Materials	1,327.56	NR_Plastics	143.84	141.92	258.66	47.56	192.47	137.17	283.08	122.86
Plastic Total			9,502.11		1,094.56	787.43	1,892.21	358.31	1,674.36	1,301.71	1,706.78	686.76
Glass	Container Glass	Clear Container Glass	1,154.40	R Glass	109.28	67.10	239.28	47.40	190.01	197.27	225.22	78.84
Glass	Container Glass	Green Container Glass	371.32	R Glass	93.12	24.21	51.72	29.45	54.55	42.60	57.01	18.66
Glass	Container Glass	Brown Container Glass	297.76	R Glass	32.42	14.06	58.61	15.26	64.72	50.53	44.67	17.49
Glass	Mixed Cullet	Mixed Cullet	1,384.94	R Glass	224.07	86.65	243.40	79.55	280.43	163.46	208.34	99.05
Glass	Container Glass	Other Container Glass	15.87	R Glass	2.04	0.96	1.49	1.13	3.43	3.60	2.50	0.72
Glass	Other Glass	Other Glass	173.16	PR_Glass	18.98	17.15	29.22	5.02	29.35	26.35	26.32	20.76
Glass Total			3,397.44		479.90	210.13	623.72	177.80	622.49	483.82	564.06	235.52
Metal	Aluminum	Aluminum Cans	181.81	R Metal	17.43	11.96	46.31	4.66	28.55	25.26	36.78	10.86
Metal	Aluminum	Aluminum Foil/Containers	382.30	R Metal	41.86	24.04	63.45	15.50	70.71	59.43	80.43	26.87
Metal	Aluminum	Other Aluminum	44.31	R Metal	2.69	2.93	3.00	1.23	10.18	3.08	8.36	12.86
Metal	Non-Ferrous	Other Non-Ferrous	108.46	R Metal	13.97	10.41	18.89	5.70	10.89	10.40	29.62	8.58
Metal	Ferrous	Tin Food Cans	703.03	R Metal	54.51	49.52	176.11	22.42	142.54	99.97	114.50	43.45
Metal	Ferrous	Empty Aerosol Cans	124.34	R Metal	11.86	5.37	26.31	4.22	24.99	15.91	28.32	7.36
Metal	Ferrous	Other Ferrous	1,179.61	R Metal	112.40	75.64	108.07	49.89	186.92	146.04	296.57	204.07
Metal	Other Metal	Mixed Metals	390.09	R Metal	17.43	21.56	93.97	23.48	69.20	51.94	72.90	39.60
Metal Total			3,113.94		272.16	201.42	536.10	127.10	543.98	412.03	667.49	353.66

Table I-20
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Density/ High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	1,989.15	NR_Other	31.46	113.53	85.14	51.78	228.69	152.35	1,048.61	277.60
Organics	Yard	Prunings	449.64	NR_Other	19.99	9.49	8.00	32.25	36.70	82.27	216.47	44.48
Organics	Wood	Stumps/Limbs	91.01	NR_Other	0.23	9.84	4.06	0.19	19.96	20.21	2.22	34.29
Organics	Food	Food	10,190.92	NR_Other	690.39	774.98	2,368.01	361.51	2,017.51	1,432.75	1,867.41	678.36
Organics	Wood	Wood Furniture/Furniture Pieces	1,116.46	NR_Other	138.42	64.55	111.93	15.42	234.53	199.23	244.27	108.11
Organics	Wood	Non-C\&D Untreated Wood	147.25	NR_Other	3.39	5.94	12.66	20.15	11.49	76.05	15.70	1.88
Organics	Textiles	Non-Clothing Textiles	1,126.33	NR_Other	97.89	77.26	273.05	32.02	222.38	139.96	189.27	94.51
Organics	Textiles	Clothing Textiles	1,687.51	NR_Other	114.82	142.84	483.87	37.22	258.22	255.44	284.38	110.73
Organics	Textiles	Carpet/Upholstery	820.31	NR_Other	97.49	50.24	157.57	18.58	139.44	72.76	212.32	71.91
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,088.18	NR_Other	204.04	133.76	421.71	84.00	423.63	287.09	382.92	151.03
Organics	Misc. Organic	Animal By-Products	724.02	NR_Other	80.81	47.78	74.02	78.37	212.44	43.97	121.21	65.42
Organics	Misc. Organic	Rubber Products	193.97	NR_Other	12.22	15.04	23.44	6.42	29.44	48.47	37.03	21.92
Organics	Textiles	Shoes	406.51	NR_Other	44.23	24.95	99.61	11.39	62.52	71.81	55.69	36.31
Organics	Textiles	Other Leather Products	41.07	NR_Other	1.87	6.03	5.60	0.76	14.84	6.21	2.52	3.24
Organics	Misc. Organic	Fines	2,362.54	NR_Other	211.50	158.29	434.94	88.33	414.98	452.11	414.99	187.38
Organics	Textiles	Upholstered or Other Organic-Type Furniture	357.61	NR_Other	3.98	43.10	88.25	0.00	8.88	98.07	88.54	26.80
Organics	Misc. Organic	Miscellaneous Organics	668.13	NR_Other	93.24	27.48	61.11	23.71	81.82	175.14	146.13	59.49
Organics Total			24,460.63		1,845.97	1,705.09	4,712.95	862.11	4,417.47	3,613.89	5,329.67	1,973.47
Appliance/Electronic	Ferrous	Appliances: Ferrous	528.88	R Metal	74.41	27.59	19.67	21.85	92.14	145.95	115.01	32.26
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	24.20	R Metal	1.34	3.92	1.70	3.18	1.68	2.20	8.99	1.18
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	210.94	NR_Other	42.79	21.70	41.85	5.47	35.32	22.37	34.36	7.09
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	4.06	NR_Other	0.36	0.48	1.73	0.04	0.51	0.29	0.31	0.34
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	248.22	NR_Other	15.65	15.67	33.71	11.09	39.68	86.47	30.46	15.47
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	94.44	NR_Other	2.10	2.52	0.00	12.35	28.99	39.83	0.00	8.65
Appliance/Electronic	Electronic/AV/Computer	Televisions	125.38	NR_Other	0.00	5.49	24.88	6.06	11.19	18.94	44.43	14.39
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	265.11	NR_Other	6.60	15.53	69.89	8.82	79.37	39.07	39.61	6.22
Appliance/Electronic Total			1,501.22		143.24	92.89	193.43	68.87	288.89	355.11	273.17	85.61
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	532.68	NR_Other	8.88	35.98	125.26	12.55	92.03	60.42	177.13	20.43
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1,102.82	NR_Other	92.25	85.31	117.39	41.30	229.57	151.31	258.76	126.94
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	360.72	NR_Other	5.65	33.05	29.44	8.06	72.03	45.05	98.94	68.51
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	395.84	NR_Other	9.88	4.46	119.96	21.70	123.63	55.43	34.58	26.21
C \& D Debris	Inorganic C\&D	Other Construction Debris	1,015.06	NR_Other	52.19	77.49	113.40	34.79	124.79	149.38	330.95	132.08
C \& D Debris Total			3,407.12		168.86	236.28	505.44	118.40	642.05	461.58	900.34	374.16
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	124.20	NR_Other	9.95	10.99	9.61	5.28	16.04	13.27	50.48	8.59
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	272.47	NR_Other	12.96	15.46	34.25	23.16	39.34	19.31	98.58	29.41
Miscellaneous Inorganics Total			396.67		22.91	26.45	43.86	28.45	55.38	32.57	149.06	37.99
HHW	HHW	Oil Filters	8.05	NR_Other	0.46	0.00	7.28	0.00	0.00	0.00	0.00	0.32
HHW	HHW	Antifreeze	0.21	NR_Other	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	2.50	NR_Other	0.29	0.32	0.00	0.02	0.04	0.00	1.82	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	21.66	NR_Other	0.83	1.49	1.53	0.65	7.75	1.13	1.84	6.45
HHw	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	19.20	NR_Other	0.63	0.53	3.87	2.86	0.70	0.26	6.39	3.96
HHW	HHW	Pesticides/Herbicides/Rodenticides	3.04	NR_Other	0.71	0.17	0.59	0.02	0.78	0.10	0.62	0.04
HHw	HHw	Dry-Cell Batteries	44.58	NR_Other	4.51	4.63	7.13	1.94	6.96	9.50	7.91	2.00
HHW	HHW	Fluorescent Tubes	13.06	NR_Other	0.00	12.70	0.24	0.04	0.00	0.00	0.06	0.02
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	9.60	NR_Other	0.07	0.04	8.60	0.20	0.48	0.00	0.12	0.09
HHw	HHw	Home Medical Products	48.72	NR_Other	12.47	2.46	9.64	0.69	12.78	6.02	3.00	1.65
HHW	HHW	Other Potentially Harmful Wastes	11.58	NR_Other	0.97	0.13	2.05	0.26	2.91	1.94	1.34	1.97
HHW Total			182.19		20.94	22.48	40.94	6.88	32.42	18.95	23.10	16.50
Grand Total			65,108.16		7,357.34	4,769.84	11,242.84	2,889.89	11,582.81	8,761.75	13,631.97	4,871.72

Table l-20
WCS Waste Composition, Weekly Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Recycling Designation	Citywide Waste Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Designated Paper	14,625.03	2,765.40	1,169.31	2,007.13	935.68	2,393.38	1,560.16	3,024.87	769.08
Designated Beverage Cartons	306.20	43.24	24.23	48.17	16.46	61.20	50.84	46.69	15.36
Designated Plastic	1,548.66	167.37	112.34	307.37	49.82	289.31	240.04	285.66	96.74
Designated Metal	3,667.02	347.91	232.94	557.47	152.14	637.80	560.18	791.50	387.10
Designated Glass	3,224.28	460.92	192.98	594.49	172.78	593.14	457.47	537.74	214.76
Designated MGP Subtotal	8,746.16	1,019.43	562.49	1,507.51	391.21	1,581.45	1,308.52	1,661.59	713.96
Potentially Designated Plastic	6,197.15	743.91	499.75	1,253.49	247.03	1,137.73	853.57	1,036.53	425.14
Potentially Designated Glass	173.16	18.98	17.15	29.22	5.02	29.35	26.35	26.32	20.76
Potentially Designated Materials Subtotal	6,370.31	762.89	516.90	1,282.72	252.04	1,167.08	879.92	1,062.86	445.90
Nondesignated Paper	4,215.60	500.17	294.12	638.89	189.83	851.18	471.07	946.73	323.61
Nondesignated Plastic	1,756.29	183.28	175.33	331.35	61.45	247.32	208.11	384.58	164.87
Other Nondesignated	29,394.77	2,126.17	2,051.68	5,475.26	1,059.67	5,342.39	4,333.96	6,551.34	2,454.30
Nondesignated Materials Subtotal	35,366.66	2,809.62	2,521.13	6,445.50	1,310.95	6,440.89	5,013.14	7,882.65	2,942.77
Designated for Recycling Total	23,371.19	3,784.83	1,731.80	3,514.63	1,326.90	3,974.84	2,868.68	4,686.46	1,483.05
Potentially or Not Designated for Recycling Total	41,736.97	3,572.51	3,038.04	7,728.21	1,562.99	7,607.97	5,893.06	8,945.51	3,388.67

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .

Table l-21
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison	Recycling Subindicator
Paper	ONP	Newspaper	1,943.44	3,015.14	23.65	4,982.23	4,395.18	R Paper
Paper	OCC	Plain OCC/Kraft Paper	603.91	1,422.92	15.46	2,042.30	1,789.13	R Paper
Paper	Mixed Paper	High Grade Paper	343.47	238.06	3.70	585.22	518.14	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	4,412.11	2,205.65	60.80	6,678.56	5,938.34	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	233.26	291.99	2.89	528.14	465.46	R Paper
Paper	Mixed Paper	Paper Bags	359.57	24.33	1.79	385.69	342.78	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	217.59	14.86	91.78	324.23	295.36	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	4,546.44	49.03	11.91	4,607.38	4,100.33	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	305.90	1.69	1.88	309.47	275.65	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	347.27	36.25	17.83	401.35	360.56	NR_Paper
Paper Total			13,312.97	7,299.94	231.68	20,844.59	18,480.93	
Plastic	PET Bottles	PET Bottles	414.33	2.47	246.34	663.15	614.96	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	180.07	0.52	129.47	310.07	285.95	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	173.67	0.39	141.95	316.01	290.50	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	3.45	0.00	1.76	5.21	5.19	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	22.52	0.02	12.70	35.25	32.75	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	5.85	0.00	2.15	8.00	7.33	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	2.78	0.00	0.66	3.44	3.12	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	5.85	0.00	4.87	10.72	9.87	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	24.37	0.15	11.56	36.09	32.82	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1.17	0.00	0.42	1.59	1.44	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.46	0.00	0.24	0.70	0.76	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	93.01	0.25	19.10	112.36	101.46	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	17.34	0.17	3.99	21.51	19.38	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	4.95	0.06	0.94	5.95	5.79	PR_Plastics
Plastic	Other Plastic Products	Other PVC	9.58	0.29	1.75	11.61	10.18	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	151.55	0.28	10.47	162.30	145.89	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	352.25	4.52	4.48	361.26	322.30	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	375.00	4.82	60.78	440.59	400.11	PR_Plastics
Plastic	Film	Plastic Bags	1,550.86	12.68	31.14	1,594.67	1,427.83	PR_Plastics
Plastic	Film	Other Film	3,037.23	58.59	155.34	3,251.16	2,903.10	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	298.11	0.76	5.49	304.36	273.35	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1,043.39	17.65	164.03	1,225.07	978.44	NR_Plastics
Plastic Total			7,767.80	103.63	1,009.63	8,881.06	7,872.54	
Glass	Container Glass	Clear Container Glass	606.27	2.17	336.76	945.20	861.51	R Glass
Glass	Container Glass	Green Container Glass	144.81	0.57	180.10	325.48	299.85	R Glass
Glass	Container Glass	Brown Container Glass	161.30	0.80	86.63	248.73	228.93	R Glass
Glass	Mixed Cullet	Mixed Cullet	337.57	2.24	678.66	1,018.48	947.05	R Glass
Glass	Container Glass	Other Container Glass	9.32	0.00	9.75	19.06	18.45	R Glass
Glass	Other Glass	Other Glass	63.51	3.18	22.55	89.23	83.66	PR_Glass
Glass Total			1,322.78	8.96	1,314.45	2,646.18	2,439.45	

Table l-21
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	88.68	0.56	24.26	113.49	103.54	R Metal
Metal	Aluminum	Aluminum Foil/Containers	279.44	1.91	46.63	327.98	295.45	R Metal
Metal	Aluminum	Other Aluminum	32.86	0.29	6.57	39.72	35.57	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	50.60	2.75	26.53	79.88	72.25	R Metal
Metal	Ferrous	Tin Food Cans	451.84	1.33	341.12	794.30	734.71	R Metal
Metal	Ferrous	Empty Aerosol Cans	66.18	1.04	31.25	98.47	88.94	R Metal
Metal	Ferrous	Other Ferrous	565.00	1.88	717.43	1,284.31	963.54	R Metal
Metal	Other Metal	Mixed Metals	275.75	2.52	131.09	409.36	369.44	R Metal
Metal Total			1,810.35	12.28	1,324.88	3,147.51	2,663.44	
Organics	Yard	Leaves and Grass	2,813.60	0.11	1.17	2,814.87	2,522.01	NR_Other
Organics	Yard	Prunings	675.30	0.00	0.45	675.75	523.02	NR_Other
Organics	Wood	Stumps/Limbs	73.72	0.00	0.01	73.74	61.86	NR_Other
Organics	Food	Food	12,088.34	13.63	51.89	12,153.86	10,874.92	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	586.42	2.40	6.38	595.21	440.03	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	32.65	0.02	0.87	33.55	21.52	NR_Other
Organics	Textiles	Non-Clothing Textiles	839.96	4.47	7.62	852.05	753.97	NR_Other
Organics	Textiles	Clothing Textiles	1,660.95	9.95	3.91	1,674.81	1,495.52	NR_Other
Organics	Textiles	Carpet/Upholstery	696.41	0.00	0.23	696.64	383.19	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,173.01	5.05	3.37	2,181.43	1,948.50	NR_Other
Organics	Misc. Organic	Animal By-Products	676.67	0.00	0.53	677.20	604.30	NR_Other
Organics	Misc. Organic	Rubber Products	164.52	0.32	3.01	167.84	149.67	NR_Other
Organics	Textiles	Shoes	360.72	0.65	2.97	364.34	327.17	NR_Other
Organics	Textiles	Other Leather Products	77.39	0.04	0.27	77.71	68.55	NR_Other
Organics	Misc. Organic	Fines	1,893.87	20.85	6.60	1,921.33	1,713.79	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	426.76	0.00	3.57	430.33	93.22	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	324.16	1.26	6.03	331.45	296.47	NR_Other
Organics Total			25,564.46	58.76	98.89	25,722.11	22,277.71	
Appliance/Electronic	Ferrous	Appliances: Ferrous	86.60	0.00	425.66	512.26	254.09	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	23.53	0.00	4.44	27.97	25.33	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	101.28	2.05	61.41	164.73	146.76	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	3.83	0.00	0.40	4.23	3.75	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	134.35	0.16	10.32	144.83	120.27	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	19.87	0.00	0.38	20.25	7.68	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	54.18	0.00	0.24	54.42	50.34	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	107.10	0.12	20.92	128.15	114.34	NR_Other
Appliance/Electronic Total			530.74	2.33	523.77	1,056.84	722.56	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	183.54	2.01	0.48	186.03	164.32	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	920.82	9.63	7.01	937.46	829.65	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	780.24	0.00	0.46	780.70	697.53	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	376.44	1.12	6.18	383.74	339.44	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	898.19	7.85	11.58	917.62	845.60	NR_Other
C \& D Debris Total			3,159.23	20.61	25.72	3,205.56	2,876.53	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	85.11	0.37	1.77	87.25	77.48	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	237.03	3.08	21.33	261.44	235.39	NR_Other
Miscellaneous Inorganics Total			322.14	3.45	23.10	348.69	312.87	

Table l-21
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison	Recycling Subindicator
HHW	HHW	Oil Filters	0.00	0.00	0.57	0.57	0.50	NR_Other
HHW	HHW	Antifreeze	0.00	0.00	0.11	0.11	0.09	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00	0.00	0.00	0.00	0.00	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.00	0.00	0.72	0.72	0.66	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	56.64	3.70	5.52	65.86	60.48	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	7.01	0.00	3.27	10.27	9.40	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	2.23	0.06	0.78	3.07	2.75	NR_Other
HHW	HHW	Dry-Cell Batteries	45.86	0.36	2.04	48.26	42.81	NR_Other
HHW	HHW	Fluorescent Tubes	0.29	0.00	0.09	0.39	0.34	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00	0.00	0.06	0.06	0.05	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.50	0.00	0.00	1.50	1.39	NR_Other
HHW	HHW	Home Medical Products	22.23	0.00	0.74	22.97	20.36	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	17.62	0.00	1.82	19.44	17.36	NR_Other
HHW Total			153.38	4.12	15.72	173.21	156.20	
Grand Total			53,943.84	7,514.09	4,567.83	66,025.76	57,802.24	

Recycling Designation	$\begin{gathered} \text { Citywide } \\ \text { Refuse } \\ \text { Weekly Tonnages } \end{gathered}$	Citywide Paper Weekly Tonnages	Citywide MGP Weekly Tonnages	$\begin{gathered} \text { Citywide } \\ \text { Waste } \\ \text { Weekly Tonnages } \end{gathered}$	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison
Designated Paper	7,895.76	7,198.10	108.29	15,202.15	13,449.04
Designated MGP	4,165.42	36.31	3,656.42	7,858.15	6,785.42
Designated Recycling	12,061.18	7,234.41	3,764.71	23,060.30	20,234.45

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2

Table l-22
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Refuse } \\ \text { Weekly Tonnage } \end{gathered}$	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison	Recycling Subindicator
Paper	ONP	Newspaper	1,911.41	2,698.23	39.83	4,649.46	2,103.68	R Paper
Paper	OCC	Plain OCC/Kraft Paper	610.95	992.91	12.50	1,616.36	672.41	R Paper
Paper	Mixed Paper	High Grade Paper	397.31	195.62	1.11	594.03	437.27	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	4,320.52	2,282.36	52.96	6,655.85	4,755.14	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	268.93	361.32	4.26	634.51	295.98	R Paper
Paper	Mixed Paper	Paper Bags	337.23	26.27	2.13	365.63	371.15	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	184.24	30.77	88.45	303.46	202.78	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,182.13	17.84	12.63	3,212.60	3,502.23	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	236.83	1.87	2.83	241.53	260.65	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	319.40	20.08	16.88	356.36	351.53	NR_Paper
Paper Total			11,768.95	6,627.28	233.57	18,629.80	12,952.83	
Plastic	PET Bottles	PET Bottles	487.05	11.88	263.49	762.41	536.04	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	126.48	0.65	142.93	270.06	139.20	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	150.85	0.30	138.32	289.48	166.03	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	2.58	0.53	1.01	4.12	2.84	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	24.25	0.39	8.43	33.07	26.69	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	6.69	0.00	1.71	8.39	7.36	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.04	0.00	0.25	3.30	3.35	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	8.39	0.08	4.23	12.71	9.23	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	30.23	0.15	10.75	41.12	33.27	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.18	0.00	0.28	0.47	0.20	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1.33	0.00	0.08	1.41	1.46	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	81.76	0.03	17.03	98.83	89.99	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	12.88	0.86	1.84	15.59	14.18	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	2.09	0.00	3.74	5.83	2.30	PR_Plastics
Plastic	Other Plastic Products	Other PVC	3.87	0.00	0.72	4.59	4.26	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	123.86	0.95	12.65	137.46	136.32	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	307.77	4.20	4.70	316.66	338.73	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	345.98	2.07	54.14	402.19	380.78	PR_Plastics
Plastic	Film	Plastic Bags	1,600.79	20.53	35.64	1,656.96	1,761.81	PR_Plastics
Plastic	Film	Other Film	2,610.05	54.45	132.61	2,797.11	2,872.61	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	284.00	1.89	7.09	292.97	312.56	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	909.88	15.28	132.85	1,058.00	1,001.41	NR_Plastics
Plastic Total			7,123.99	114.26	974.48	8,212.72	7,840.62	
Glass	Container Glass	Clear Container Glass	613.61	5.59	338.97	958.17	675.34	R Glass
Glass	Container Glass	Green Container Glass	167.14	0.18	183.68	351.00	183.95	R Glass
Glass	Container Glass	Brown Container Glass	138.82	0.79	82.98	222.59	152.79	R Glass
Glass	Mixed Cullet	Mixed Cullet	269.56	0.00	727.39	996.94	296.67	R Glass
Glass	Container Glass	Other Container Glass	5.39	0.00	5.55	10.94	5.93	R Glass
Glass	Other Glass	Other Glass	68.30	0.66	20.74	89.70	75.17	PR_Glass
Glass Total			1,262.82	7.22	1,359.31	2,629.35	1,389.85	

Table I-22
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Refuse } \\ \text { Weekly Tonnage } \end{gathered}$	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	106.70	0.41	24.07	131.18	117.43	R Metal
Metal	Aluminum	Aluminum Foil/Containers	253.56	1.89	40.66	296.11	279.07	R Metal
Metal	Aluminum	Other Aluminum	13.42	0.17	2.77	16.37	14.77	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	99.90	0.71	39.41	140.02	109.95	R Metal
Metal	Ferrous	Tin Food Cans	426.64	4.65	328.99	760.28	469.56	R Metal
Metal	Ferrous	Empty Aerosol Cans	59.27	0.29	26.93	86.49	65.23	R Metal
Metal	Ferrous	Other Ferrous	707.00	3.44	593.70	1,304.14	778.12	R Metal
Metal	Other Metal	Mixed Metals	295.41	0.33	150.14	445.88	325.13	R Metal
Metal Total			1,961.91	11.89	1,206.67	3,180.47	2,159.26	
Organics	Yard	Leaves and Grass	544.73	0.06	0.28	545.07	599.53	NR_Other
Organics	Yard	Prunings	324.86	0.00	0.03	324.89	357.54	NR_Other
Organics	Wood	Stumps/Limbs	87.89	0.00	0.00	87.89	96.73	NR_Other
Organics	Food	Food	11,514.75	33.11	64.65	11,612.51	12,673.06	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	781.99	0.76	5.17	787.92	860.66	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	148.16	3.50	4.06	155.71	163.06	NR_Other
Organics	Textiles	Non-Clothing Textiles	789.15	1.25	4.52	794.93	868.53	NR_Other
Organics	Textiles	Clothing Textiles	1,287.05	3.31	4.72	1,295.09	1,416.52	NR_Other
Organics	Textiles	Carpet/Upholstery	861.49	0.00	0.17	861.66	948.15	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,967.81	0.48	2.23	1,970.52	2,165.75	NR_Other
Organics	Misc. Organic	Animal By-Products	745.56	0.00	1.11	746.67	820.56	NR_Other
Organics	Misc. Organic	Rubber Products	121.90	7.31	1.66	130.86	134.16	NR_Other
Organics	Textiles	Shoes	367.34	5.18	3.19	375.70	404.29	NR_Other
Organics	Textiles	Other Leather Products	40.15	0.02	0.12	40.29	44.19	NR_Other
Organics	Misc. Organic	Fines	1,984.52	41.81	8.43	2,034.77	2,184.16	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	874.65	0.00	2.10	876.75	962.64	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	374.16	0.25	1.39	375.80	411.79	NR_Other
Organics Total			22,816.15	97.05	103.82	23,017.03	25,111.31	
Appliance/Electronic	Ferrous	Appliances: Ferrous	150.90	0.00	278.71	429.61	166.08	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	8.43	0.00	1.05	9.48	9.28	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	75.99	0.09	29.27	105.35	83.63	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	1.89	0.06	0.07	2.02	2.08	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	83.35	0.40	10.88	94.63	91.74	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	29.08	0.00	7.41	36.49	32.00	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	121.12	0.00	0.29	121.40	133.30	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	31.14	0.59	28.76	60.49	34.27	NR_Other
Appliance/Electronic Total			501.89	1.14	356.44	859.48	552.38	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	205.69	0.73	0.07	206.50	226.38	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	986.18	0.00	1.90	988.08	1,085.38	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	529.14	0.00	1.22	530.36	582.37	NR_Other
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	226.20	0.00	0.95	227.15	248.96	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	647.56	2.42	8.18	658.15	712.70	NR_Other
C \& D Debris Total			2,594.77	3.15	12.32	2,610.23	2,855.78	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	119.76	0.53	4.52	124.81	131.81	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	258.11	0.74	19.51	278.36	284.07	NR_Other
Miscellaneous Inorganics Total			377.87	1.27	24.03	403.17	415.88	

Table l-22
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Winter 2005 (continued)

			Citywide Refuse	Citywide Paper Material Group	Material Subgroup

Recycling Designation	Citywide Refuse Weekly Tonnage	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison
Designated Paper	7,846.34	6,556.71	112.79	14,515.85	13,454.40
Designated MGP	4,264.38	62.05	3,458.19	7,784.62	6,771.63
Designated Recycling	12,110.72	6,618.77	3,570.98	22,300.47	20,226.03

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from January 2005 through March 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

Table l-23
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Spring 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison	Recycling Subindicator
Paper	ONP	Newspaper	2,087.98	3,006.18	23.92	5,118.09	2,219.34	R Paper
Paper	OCC	Plain OCC/Kraft Paper	592.19	791.77	9.80	1,393.76	629.45	R Paper
Paper	Mixed Paper	High Grade Paper	336.49	261.90	2.45	600.84	357.66	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	4,129.24	2,325.63	86.57	6,541.44	4,389.01	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	292.15	189.16	1.82	483.13	310.53	R Paper
Paper	Mixed Paper	Paper Bags	343.13	30.82	2.22	376.18	364.72	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	237.71	14.63	93.81	346.15	252.66	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,341.41	187.73	13.42	3,542.56	3,551.62	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	233.71	1.13	2.78	237.62	248.41	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	284.61	48.77	15.26	348.63	302.51	NR_Paper
Paper Total			11,878.62	6,857.74	252.04	18,988.40	12,625.91	
Plastic	PET Bottles	PET Bottles	458.63	2.20	305.92	766.74	487.48	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	134.29	0.66	151.39	286.33	142.74	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	152.96	0.49	165.17	318.63	162.58	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.89	0.06	0.45	2.40	2.00	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	34.50	0.13	8.29	42.93	36.67	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	6.87	0.00	1.03	7.90	7.31	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.24	0.00	0.06	3.29	3.44	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	7.55	0.00	3.77	11.32	8.02	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	42.79	0.27	6.01	49.07	45.48	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.64	0.01	0.16	0.82	0.68	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	9.00	0.00	0.78	9.78	9.57	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	82.48	0.06	19.01	101.55	87.67	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	31.30	0.06	3.14	34.50	33.27	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	9.57	0.00	4.72	14.29	10.17	PR_Plastics
Plastic	Other Plastic Products	Other PVC	7.22	0.00	0.14	7.37	7.68	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	146.16	0.46	18.13	164.76	155.36	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	331.43	1.56	4.70	337.68	352.28	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	426.23	2.41	68.55	497.18	453.04	PR_Plastics
Plastic	Film	Plastic Bags	2,069.85	15.43	42.24	2,127.52	2,200.06	PR_Plastics
Plastic	Film	Other Film	2,960.64	44.75	147.13	3,152.52	3,146.89	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	310.70	1.10	9.95	321.75	330.24	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	957.58	14.74	189.56	1,161.89	1,017.82	NR_Plastics
Plastic Total			8,185.52	84.39	1,150.29	9,420.20	8,700.47	
Glass	Container Glass	Clear Container Glass	554.53	2.66	434.28	991.48	589.42	R Glass
Glass	Container Glass	Green Container Glass	134.90	0.00	221.30	356.20	143.38	R Glass
Glass	Container Glass	Brown Container Glass	119.91	0.33	85.31	205.56	127.46	R Glass
Glass	Mixed Cullet	Mixed Cullet	289.36	1.69	903.20	1,194.25	307.57	R Glass
Glass	Container Glass	Other Container Glass	20.53	0.00	9.82	30.35	21.82	R Glass
Glass	Other Glass	Other Glass	131.67	1.50	13.16	146.33	139.96	PR_Glass
Glass Total			1,250.90	6.19	1,667.07	2,924.17	1,329.60	

Table l-23
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Refuse } \\ \text { Weekly Tonnage } \end{gathered}$	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	88.88	0.20	27.80	116.87	94.47	R Metal
Metal	Aluminum	Aluminum Foil/Containers	333.43	0.85	46.72	380.99	354.40	R Metal
Metal	Aluminum	Other Aluminum	16.12	0.05	33.39	49.56	17.13	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	63.56	0.00	34.86	98.42	67.55	R Metal
Metal	Ferrous	Tin Food Cans	479.95	2.18	360.19	842.32	510.15	R Metal
Metal	Ferrous	Empty Aerosol Cans	65.30	0.20	32.76	98.26	69.40	R Metal
Metal	Ferrous	Other Ferrous	651.26	2.48	597.10	1,250.84	692.23	R Metal
Metal	Other Metal	Mixed Metals	252.36	1.22	186.98	440.56	268.23	R Metal
Metal Total			1,950.84	7.17	1,319.81	3,277.82	2,073.57	
Organics	Yard	Leaves and Grass	3,162.22	0.00	0.82	3,163.04	3,361.15	NR_Other
Organics	Yard	Prunings	541.17	0.00	0.24	541.41	575.22	NR_Other
Organics	Wood	Stumps/Limbs	150.78	0.10	0.12	151.00	160.27	NR_Other
Organics	Food	Food	11,672.86	21.08	86.09	11,780.03	12,407.20	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	543.12	0.02	2.94	546.07	577.29	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	139.50	0.56	2.21	142.28	148.28	NR_Other
Organics	Textiles	Non-Clothing Textiles	724.56	11.07	2.47	738.10	770.15	NR_Other
Organics	Textiles	Clothing Textiles	1,800.53	3.23	3.28	1,807.05	1,913.81	NR_Other
Organics	Textiles	Carpet/Upholstery	789.02	0.00	0.01	789.03	838.66	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,023.01	2.81	3.23	2,029.05	2,150.28	NR_Other
Organics	Misc. Organic	Animal By-Products	695.55	0.11	1.42	697.08	739.31	NR_Other
Organics	Misc. Organic	Rubber Products	224.29	0.02	6.64	230.95	238.40	NR_Other
Organics	Textiles	Shoes	398.01	0.39	3.64	402.04	423.04	NR_Other
Organics	Textiles	Other Leather Products	94.61	0.00	0.24	94.84	100.56	NR_Other
Organics	Misc. Organic	Fines	2,991.73	16.93	10.06	3,018.72	3,179.94	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	659.30	0.00	9.54	668.84	700.78	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	490.48	0.00	3.43	493.91	521.34	NR_Other
Organics Total			27,100.75	56.33	136.38	27,293.46	28,805.66	
Appliance/Electronic	Ferrous	Appliances: Ferrous	215.71	0.00	154.81	370.53	229.28	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	26.30	0.00	2.39	28.70	27.96	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	166.03	0.55	33.69	200.26	176.48	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	1.80	0.00	0.08	1.88	1.91	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	136.12	0.33	12.43	148.88	144.68	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	19.72	0.00	4.30	24.02	20.97	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.00	0.00	0.38	0.38	0.00	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	44.84	2.79	23.07	70.70	47.66	NR_Other
Appliance/Electronic Total			610.53	3.66	231.15	845.34	648.93	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	675.94	0.00	1.41	677.35	718.47	NR_Other
$C \& D$ Debris	Wood	Treated/Contaminated Wood	1,144.69	1.06	4.45	1,150.20	1,216.70	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	648.61	0.70	0.95	650.26	689.41	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	695.53	0.00	4.46	700.00	739.29	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1,010.12	8.71	8.39	1,027.21	1,073.67	NR_Other
C \& D Debris Total			4,174.89	10.47	19.65	4,205.01	4,437.53	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	206.65	0.25	4.29	211.19	219.65	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	238.06	0.00	22.48	260.54	253.03	NR_Other
Miscellaneous Inorganics Total			444.71	0.25	26.78	471.73	472.68	

Table I-23
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Refuse } \\ \text { Weekly Tonnage } \end{gathered}$	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison	Recycling Subindicator
HHW	HHW	Oil Filters	2.07	0.00	0.15	2.22	2.19	NR_Other
HHW	HHW	Antifreeze	0.00	0.00	0.14	0.14	0.00	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00	0.00	0.10	0.10	0.00	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	0.04	0.00	0.09	0.13	0.04	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	18.19	0.00	2.38	20.57	19.34	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	8.46	0.02	2.95	11.43	9.00	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	1.02	0.00	0.02	1.03	1.08	NR_Other
HHW	HHW	Dry-Cell Batteries	35.22	0.39	0.88	36.49	37.43	NR_Other
HHW	HHW	Fluorescent Tubes	0.25	0.00	0.00	0.25	0.27	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00	0.00	0.00	0.00	0.00	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	2.25	0.00	1.73	3.99	2.40	NR_Other
HHW	HHW	Home Medical Products	36.81	0.00	1.09	37.90	39.12	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	23.19	0.00	5.73	28.93	24.65	NR_Other
HHW Total			127.51	0.41	15.26	143.18	135.53	
Grand Total			55,724.27	7,026.61	4,818.43	67,569.31	59,229.88	

Recycling Designation	Citywide Refuse Weekly Tonnage	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1990 Comparison
Designated Paper	7,781.20	6,605.47	126.78	14,513.45	13,015.98
Designated MGP	4,295.67	29.84	3,847.21	8,172.72	7,016.34
Designated Recycling	12,076.87	6,635.31	3,973.98	22,686.17	20,032.32

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from April 2005 through June 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

Table I-24
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	$\begin{gathered} \text { Citywide } \\ \text { Waste } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison	Recycling Subindicator
Paper	ONP	Newspaper	1,799.69	2,904.37	27.37	4,731.43	1,846.75	R Paper
Paper	OCC	Plain OCC/Kraft Paper	642.42	608.16	14.43	1,265.01	659.22	R Paper
Paper	Mixed Paper	High Grade Paper	361.32	188.54	4.15	554.01	370.77	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	4,834.20	1,937.33	50.77	6,822.29	4,960.61	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	242.10	527.47	6.26	775.83	248.43	R Paper
Paper	Mixed Paper	Paper Bags	453.65	19.58	3.23	476.46	465.51	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	210.19	9.88	86.12	306.20	215.69	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,074.30	119.75	22.61	3,216.66	3,154.69	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	323.21	0.95	3.14	327.30	331.66	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	541.37	104.36	25.92	671.65	555.53	NR_Paper
Paper Total			12,482.46	6,420.38	243.99	19,146.83	12,808.86	
Plastic	PET Bottles	PET Bottles	547.33	3.65	374.66	925.65	561.65	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	153.61	0.37	155.75	309.73	157.62	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	155.65	0.40	157.24	313.29	159.72	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	0.75	0.00	0.45	1.20	0.77	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	15.92	0.00	9.36	25.28	16.34	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	5.80	0.00	2.72	8.52	5.95	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.65	0.00	0.45	4.11	3.75	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	9.18	0.13	4.84	14.14	9.42	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	45.56	0.09	9.29	54.94	46.75	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.14	0.00	0.68	0.82	0.14	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.02	0.00	0.12	0.14	0.03	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	107.60	0.22	22.30	130.12	110.41	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	26.37	0.06	2.11	28.54	27.05	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	6.10	0.00	3.81	9.91	6.26	PR_Plastics
Plastic	Other Plastic Products	Other PVC	16.28	0.00	3.93	20.20	16.70	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	153.33	2.35	10.41	166.08	157.34	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	365.50	1.04	4.72	371.26	375.06	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	537.32	1.03	63.27	601.62	551.37	PR_Plastics
Plastic	Film	Plastic Bags	1,605.16	15.77	63.78	1,684.71	1,647.13	PR_Plastics
Plastic	Film	Other Film	2,920.69	41.01	134.04	3,095.74	2,997.07	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	388.68	1.28	18.56	408.53	398.85	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	1,151.83	9.47	166.25	1,327.56	1,181.95	NR_Plastics
Plastic Total			8,216.48	76.89	1,208.73	9,502.11	8,431.33	
Glass	Container Glass	Clear Container Glass	760.28	2.34	391.79	1,154.40	780.16	R Glass
Glass	Container Glass	Green Container Glass	193.65	1.19	176.48	371.32	198.71	R Glass
Glass	Container Glass	Brown Container Glass	187.64	0.53	109.58	297.76	192.55	R Glass
Glass	Mixed Cullet	Mixed Cullet	365.65	0.27	1,019.02	1,384.94	375.21	R Glass
Glass	Container Glass	Other Container Glass	7.24	0.13	8.50	15.87	7.43	R Glass
Glass	Other Glass	Other Glass	151.88	0.28	20.99	173.16	155.85	PR_Glass
Glass Total			1,666.34	4.74	1,726.36	3,397.44	1,709.91	

Table l-24
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Refuse Weekly Tonnage	$\begin{gathered} \text { Citywide } \\ \text { Paper } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	138.74	0.29	42.77	181.81	142.37	R Metal
Metal	Aluminum	Aluminum Foil/Containers	337.46	0.84	43.99	382.30	346.29	R Metal
Metal	Aluminum	Other Aluminum	18.01	0.48	25.83	44.31	18.48	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	65.67	0.17	42.62	108.46	67.39	R Metal
Metal	Ferrous	Tin Food Cans	396.54	0.56	305.94	703.03	406.91	R Metal
Metal	Ferrous	Empty Aerosol Cans	88.27	0.12	35.95	124.34	90.58	R Metal
Metal	Ferrous	Other Ferrous	721.39	4.70	453.52	1,179.61	740.26	R Metal
Metal	Other Metal	Mixed Metals	241.42	0.10	148.57	390.09	247.73	R Metal
Metal Total			2,007.51	7.25	1,099.18	3,113.94	2,060.00	
Organics	Yard	Leaves and Grass	1,985.91	2.86	0.38	1,989.15	2,037.84	NR_Other
Organics	Yard	Prunings	448.39	1.06	0.20	449.64	460.11	NR_Other
Organics	Wood	Stumps/Limbs	90.78	0.00	0.23	91.01	93.15	NR_Other
Organics	Food	Food	10,089.56	16.46	84.90	10,190.92	10,353.39	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	1,108.38	0.35	7.72	1,116.46	1,137.37	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	143.63	2.31	1.31	147.25	147.39	NR_Other
Organics	Textiles	Non-Clothing Textiles	1,117.76	2.69	5.89	1,126.33	1,146.99	NR_Other
Organics	Textiles	Clothing Textiles	1,681.42	1.76	4.33	1,687.51	1,725.39	NR_Other
Organics	Textiles	Carpet/Upholstery	819.64	0.00	0.68	820.31	841.07	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	2,081.85	2.06	4.28	2,088.18	2,136.28	NR_Other
Organics	Misc. Organic	Animal By-Products	720.98	0.07	2.97	724.02	739.83	NR_Other
Organics	Misc. Organic	Rubber Products	187.33	0.10	6.54	193.97	192.23	NR_Other
Organics	Textiles	Shoes	400.24	4.57	1.71	406.51	410.70	NR_Other
Organics	Textiles	Other Leather Products	39.73	0.23	1.10	41.07	40.77	NR_Other
Organics	Misc. Organic	Fines	2,330.49	15.24	16.81	2,362.54	2,391.43	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	352.00	0.00	5.61	357.61	361.21	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	656.86	3.64	7.63	668.13	674.04	NR_Other
Organics Total			24,254.95	53.41	152.27	24,460.63	24,889.18	
Appliance/Electronic	Ferrous	Appliances: Ferrous	367.99	0.00	160.89	528.88	377.62	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	5.56	0.57	18.07	24.20	5.70	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	174.40	0.02	36.53	210.94	178.96	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	4.06	0.00	0.00	4.06	4.16	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	226.72	2.11	19.39	248.22	232.65	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	91.87	0.00	2.56	94.44	94.28	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	125.38	0.00	0.00	125.38	128.66	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	241.95	0.00	23.16	265.11	248.28	NR_Other
Appliance/Electronic Total			1,237.92	2.70	260.60	1,501.22	1,270.29	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	532.27	0.00	0.41	532.68	546.19	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	1,098.18	0.00	4.64	1,102.82	1,126.90	NR_Other
C \& D Debris	Inorganic C\&D	Gypsum Scrap	360.19	0.00	0.54	360.72	369.60	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	393.53	0.00	2.31	395.84	403.82	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	1,004.72	0.00	10.35	1,015.06	1,030.99	NR_Other
C \& D Debris Total			3,388.88	0.00	18.24	3,407.12	3,477.49	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	114.26	2.32	7.63	124.20	117.24	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	249.72	1.41	21.34	272.47	256.25	NR_Other
Miscellaneous Inorganics Total			363.97	3.73	28.97	396.67	373.49	

Table l-24
WCS Citywide Results at a Glance, Composition Tonnages ${ }^{(1)}$, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Refuse } \\ \text { Weekly Tonnage } \end{gathered}$	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison	Recycling Subindicator
HHW	HHW	Oil Filters	7.97	0.00	0.09	8.05	8.18	NR_Other
HHW	HHW	Antifreeze	0.21	0.00	0.00	0.21	0.22	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00	0.00	0.00	0.00	0.00	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oi/Diesel Fuel	1.95	0.00	0.54	2.50	2.01	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	14.29	0.30	7.07	21.66	14.67	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	17.23	0.00	1.97	19.20	17.68	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	2.96	0.00	0.08	3.04	3.04	NR_Other
HHW	HHW	Dry-Cell Batteries	43.03	0.43	1.11	44.58	44.15	NR_Other
HHW	HHW	Fluorescent Tubes	12.99	0.00	0.07	13.06	13.33	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.00	0.00	0.00	0.00	0.00	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	8.60	0.00	1.00	9.60	8.83	NR_Other
HHW	HHW	Home Medical Products	47.93	0.08	0.71	48.72	49.18	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	8.32	0.30	2.96	11.58	8.54	NR_Other
HHW Total			165.49	1.11	15.60	182.19	169.82	
Grand Total			53,784.01	6,570.22	4,753.94	65,108.16	55,190.38	

Recycling Designation	Citywide Refuse Weekly Tonnage	Citywide Paper Weekly Tonnage	Citywide MGP Weekly Tonnage	Citywide Waste Weekly Tonnage	Citywide Waste Weekly Tonnage without Bulk Items, for 1989 Comparison
Designated Paper	8,333.39	6,185.44	106.20	14,625.03	12,960.09
Designated MGP	4,962.30	26.59	3,757.28	8,746.16	7,094.75
Designated Recycling	13,295.68	6,212.03	3,863.48	23,371.19	20,054.84

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from July 2005 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

Table l-25
Citywide Aggregated Recycling Results at a Glance, Composition Tonnages ${ }^{(1)}$ by Season

Material Group	Material Subgroup	Material Category: Subcategory	Fall Weekly Tonnage	Winter Weekly Tonnage	Spring Weekly Tonnage	Summer Weekly Tonnage	Recycling Subindicator
Paper	ONP	Newspaper	3,038.79	2,738.06	3,030.11	2,931.74	R Paper
Paper	OCC	Plain OCC/Kraft Paper	1,438.39	1,005.41	801.57	622.59	R Paper
Paper	Mixed Paper	High Grade Paper	241.76	196.73	264.35	192.69	R Paper
Paper	Mixed Paper	Mixed Low Grade Paper	2,266.45	2,335.33	2,412.19	1,988.09	R Paper
Paper	Mixed Paper	Phone Books/Paperbacks	294.89	365.58	190.98	533.73	R Paper
Paper	Mixed Paper	Paper Bags	26.12	28.40	33.05	22.81	R Paper
Paper	Bev Cartons	Polycoated Paper Containers	106.64	119.22	108.44	96.01	R Bev Cartons
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	60.94	30.47	201.14	142.35	NR_Paper
Paper	Compostable Paper	Single Use Paper Plates, Cups	3.57	4.70	3.91	4.09	NR_Paper
Paper	Other Paper	Other Nonrecyclable Paper	54.08	36.95	64.03	130.28	NR_Paper
Paper Total			7,531.62	6,860.85	7,109.78	6,664.37	
Plastic	PET Bottles	PET Bottles	248.81	275.37	308.12	378.31	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Natural	130.00	143.58	152.04	156.12	R Plastics
Plastic	HDPE Bottles	HDPE Bottles: Colored	142.34	138.63	165.66	157.63	R Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.76	1.54	0.51	0.45	PR_Plastics
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	12.73	8.82	8.42	9.36	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	2.15	1.71	1.03	2.72	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	0.66	0.25	0.06	0.45	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	4.87	4.32	3.77	4.97	PR_Plastics
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	11.72	10.89	6.28	9.38	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.42	0.28	0.18	0.68	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.24	0.08	0.78	0.12	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	19.35	17.07	19.07	22.52	PR_Plastics
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	4.17	2.70	3.19	2.18	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	1.00	3.74	4.72	3.81	PR_Plastics
Plastic	Other Plastic Products	Other PVC	2.03	0.72	0.14	3.93	NR_Plastics
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	10.75	13.60	18.59	12.76	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	9.00	8.90	6.26	5.76	PR_Plastics
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	65.59	56.21	70.96	64.30	PR_Plastics
Plastic	Film	Plastic Bags	43.82	56.17	57.67	79.55	PR_Plastics
Plastic	Film	Other Film	213.93	187.06	191.88	175.05	PR_Plastics
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	6.25	8.98	11.05	19.84	NR_Plastics
Plastic	Other Plastic Products	Other Plastics Materials	181.67	148.12	204.30	175.73	NR_Plastics
Plastic Total			1,113.26	1,088.73	1,234.69	1,285.62	
Glass	Container Glass	Clear Container Glass	338.93	344.56	436.94	394.12	R Glass
Glass	Container Glass	Green Container Glass	180.66	183.86	221.30	177.67	R Glass
Glass	Container Glass	Brown Container Glass	87.43	83.77	85.64	110.11	R Glass
Glass	Mixed Cullet	Mixed Cullet	680.90	727.39	904.89	1,019.29	R Glass
Glass	Container Glass	Other Container Glass	9.75	5.55	9.82	8.63	R Glass
Glass	Other Glass	Other Glass	25.72	21.40	14.66	21.27	PR_Glass
Glass Total			1,323.40	1,366.53	1,673.26	1,731.10	

Table l-25
Citywide Aggregated Recycling Results at a Glance, Composition Tonnages (1) by Season (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Fall Weekly Tonnage	Winter Weekly Tonnage	Spring Weekly Tonnage	Summer Weekly Tonnage	Recycling Subindicator
Metal	Aluminum	Aluminum Cans	24.82	24.48	28.00	43.06	R Metal
Metal	Aluminum	Aluminum Foil/Containers	48.54	42.55	47.57	44.84	R Metal
Metal	Aluminum	Other Aluminum	6.86	2.94	33.44	26.30	R Metal
Metal	Non-Ferrous	Other Non-Ferrous	29.28	40.12	34.86	42.79	R Metal
Metal	Ferrous	Tin Food Cans	342.46	333.64	362.37	306.49	R Metal
Metal	Ferrous	Empty Aerosol Cans	32.29	27.22	32.96	36.06	R Metal
Metal	Ferrous	Other Ferrous	719.31	597.14	599.58	458.22	R Metal
Metal	Other Metal	Mixed Metals	133.61	150.47	188.20	148.67	R Metal
Metal Total			1,337.16	1,218.56	1,326.97	1,106.44	
Organics	Yard	Leaves and Grass	1.28	0.34	0.82	3.24	NR_Other
Organics	Yard	Prunings	0.45	0.03	0.24	1.26	NR_Other
Organics	Wood	Stumps/Limbs	0.01	0.00	0.22	0.23	NR_Other
Organics	Food	Food	65.52	97.76	107.17	101.36	NR_Other
Organics	Wood	Wood Furniture/Furniture Pieces	8.79	5.93	2.96	8.08	NR_Other
Organics	Wood	Non-C\&D Untreated Wood	0.90	7.56	2.77	3.62	NR_Other
Organics	Textiles	Non-Clothing Textiles	12.09	5.78	13.54	8.57	NR_Other
Organics	Textiles	Clothing Textiles	13.86	8.04	6.51	6.09	NR_Other
Organics	Textiles	Carpet/Upholstery	0.23	0.17	0.01	0.68	NR_Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	8.42	2.71	6.04	6.34	NR_Other
Organics	Misc. Organic	Animal By-Products	0.53	1.11	1.53	3.04	NR_Other
Organics	Misc. Organic	Rubber Products	3.32	8.96	6.66	6.64	NR_Other
Organics	Textiles	Shoes	3.62	8.37	4.04	6.28	NR_Other
Organics	Textiles	Other Leather Products	0.32	0.14	0.24	1.34	NR_Other
Organics	Misc. Organic	Fines	27.45	50.24	26.99	32.05	NR_Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	3.57	2.10	9.54	5.61	NR_Other
Organics	Misc. Organic	Miscellaneous Organics	7.29	1.65	3.43	11.26	NR_Other
Organics Total			157.65	200.87	192.71	205.68	
Appliance/Electronic	Ferrous	Appliances: Ferrous	425.66	278.71	154.81	160.89	R Metal
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	4.44	1.05	2.39	18.64	R Metal
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	63.45	29.36	34.23	36.55	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	0.40	0.13	0.08	0.00	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	10.48	11.28	12.76	21.50	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	0.38	7.41	4.30	2.56	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.24	0.29	0.38	0.00	NR_Other
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	21.04	29.35	25.86	23.16	NR_Other
Appliance/Electronic Total			526.10	357.58	234.81	263.30	
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	2.50	0.80	1.41	0.41	NR_Other
C \& D Debris	Wood	Treated/Contaminated Wood	16.64	1.90	5.51	4.64	NR_Other
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	0.46	1.22	1.65	0.54	NR_Other
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	7.30	0.95	4.46	2.31	NR_Other
C \& D Debris	Inorganic C\&D	Other Construction Debris	19.44	10.59	17.09	10.35	NR_Other
C \& D Debris Total			46.33	15.47	30.12	18.24	
Miscellaneous Inorganics	Misc. Inorganic	Miscellaneous Inorganics	2.14	5.05	4.54	9.95	NR_Other
Miscellaneous Inorganics	Misc. Inorganic	Ceramics	24.41	20.25	22.48	22.75	NR_Other
Miscellaneous Inorganics Total			26.54	25.30	27.02	32.70	

Table l-25
Citywide Aggregated Recycling Results at a Glance, Composition Tonnages (1) by Season (continued)

Material Group	Material Subgroup	Material Category: Subcategory		Winter Weekly Tonnage	Spring Weekly Tonnage	Summer Weekly Tonnage	Recycling Subindicator
HHW	HHW	Oil Filters	0.57	0.11	0.15	0.09	NR_Other
HHW	HHW	Antifreeze	0.11	0.00	0.14	0.00	NR_Other
HHW	HHW	Wet-Cell Batteries	0.00	0.00	0.10	0.00	NR_Other
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.72	0.00	0.09	0.54	NR_Other
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	9.22	5.93	2.38	7.36	NR_Other
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	3.27	2.15	2.97	1.97	NR_Other
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.84	0.12	0.02	0.08	NR_Other
HHW	HHW	Dry-Cell Batteries	2.40	1.86	1.28	1.55	NR_Other
HHW	HHW	Fluorescent Tubes	0.09	0.00	0.00	0.07	NR_Other
HHW	HHW	Mercury-Laden Wastes	0.06	0.00	0.00	0.00	NR_Other
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	0.00	0.00	1.73	1.00	NR_Other
HHW	HHW	Home Medical Products	0.74	1.35	1.09	0.79	NR_Other
HHW	HHW	Other Potentially Harmful Wastes	1.82	2.91	5.73	3.26	NR_Other
HHW Total			19.84	14.44	15.68	16.70	
Grand Total			12,081.92	11,148.32	11,845.05	11,324.15	
Subtotals by Recycling Designation							
Recycling Desig			Fall 2004	Winter 2005	Spring 2005	Summer 2005	
Designated P			7,306.39	6,669.50	6,732.25	6,291.64	
Designated M			3,692.73	3,520.24	3,877.05	3,783.87	
Percent Designated Recycling			10,999.12	10,189.75	10,609.30	10,075.51	

(1) Tonnage values calculated using DSNY average weekly curbside tonnages over the period from September 2004 through September 2005. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

Table I-26

Residential Bulk Item Summary, Manhattan, PWCS

	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
Material Category	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Other Ferrous	0.00	129.00	129.00	0.00\%	26.08\%	22.01\%	0.00\%	5.99\%	0.53\%
Non-Clothing Textiles	76.00	0.00	76.00	37.51\%	0.00\%	36.64\%	0.88\%	0.00\%	0.72\%
Appliances: Plastic	0.00	45.00	45.00	0.00\%	58.40\%	56.36\%	0.00\%	0.35\%	0.04\%
Untreated Dimension Lumber, Pallets, Crates	3.50	0.00	3.50	12.48\%	0.00\%	11.71\%	0.04\%	0.00\%	0.03\%
Treated/Contaminated Wood	20.00	0.00	20.00	11.11\%	0.00\%	10.86\%	0.22\%	0.00\%	0.18\%
Other Construction Debris	54.00	0.00	54.00	15.13\%	0.00\%	15.10\%	0.56\%	0.00\%	0.46\%
Total	153.50	174.00	327.50				1.67\%	7.17\%	2.14\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 37.51% of all Non-Clothing Textiles is bulk Non-Clothing Textiles. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table l-27

Residential Bulk Item Summary, Bronx, PWCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Other Plastics Materials	19.80	0.00	19.80	14.57\%	0.00\%	8.74\%	0.27\%	0.00\%	0.17\%
Other Ferrous	0.00	111.30	111.30	0.00\%	30.98\%	27.37\%	0.00\%	6.65\%	0.55\%
Non-Clothing Textiles	80.90	0.00	80.90	41.79\%	0.00\%	41.31\%	0.99\%	0.00\%	0.82\%
Untreated Dimension Lumber, Pallets, Crates	23.60	0.00	23.60	74.21\%	0.00\%	59.07\%	0.33\%	0.00\%	0.24\%
Miscellaneous Inorganics	2.80	0.00	2.80	38.30\%	0.00\%	11.77\%	0.04\%	0.00\%	0.02\%
	127.10	111.30	238.40				1.64\%	6.65\%	1.73\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 14.57% of all Other Plastics Materials is bulk Other Plastics Materials. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table l-28
Residential Bulk Item Summary, Brooklyn, PWCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
HDPE Bottles: Colored	7.40	0.00	7.40	10.63\%	0.00\%	5.25\%	0.05\%	0.00\%	0.03\%
Other Film	10.00	0.00	10.00	1.30\%	0.00\%	1.16\%	0.07\%	0.00\%	0.05\%
Other Plastics Materials	13.00	0.00	13.00	4.49\%	0.00\%	3.09\%	0.09\%	0.00\%	0.06\%
Other Ferrous	17.10	252.00	269.10	11.67\%	48.33\%	40.29\%	0.12\%	10.91\%	0.96\%
Mixed Metals	19.00	8.00	27.00	19.86\%	24.80\%	20.79\%	0.14\%	0.26\%	0.13\%
Prunings	23.00	0.00	23.00	7.24\%	0.00\%	7.23\%	0.16\%	0.00\%	0.13\%
Stumps/Limbs	25.70	0.00	25.70	21.03\%	0.00\%	21.03\%	0.17\%	0.00\%	0.14\%
Non-Clothing Textiles	19.45	0.00	19.45	6.89\%	0.00\%	6.39\%	0.14\%	0.00\%	0.11\%
Rubber Products	0.00	8.00	8.00	0.00\%	97.44\%	16.43\%	0.00\%	0.28\%	0.04\%
Other Leather Products	13.70	0.00	13.70	71.92\%	0.00\%	70.44\%	0.10\%	0.00\%	0.08\%
Appliances: Plastic	13.50	307.00	320.50	43.62\%	74.66\%	72.36\%	0.09\%	3.79\%	0.37\%
Other Computer Equipment	21.10	0.00	21.10	62.43\%	0.00\%	39.92\%	0.14\%	0.00\%	0.09\%
Treated/Contaminated Wood	51.40	0.00	51.40	10.22\%	0.00\%	10.13\%	0.36\%	0.00\%	0.30\%
Other Construction Debris	17.50	0.00	17.50	6.92\%	0.00\%	6.71\%	0.12\%	0.00\%	0.10\%
Total	251.85	575.00	826.85				1.75\%	17.14\%	3.83\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 10.63% of all HDPE Bottles: Colored is bulk HDPE Bottles: Colored. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table I-29
Residential Bulk Item Summary, Queens, PWCS

	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
Material Category	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	15.60	0.00	15.60	10.47\%	0.00\%	1.65\%	0.13\%	0.00\%	0.05\%
HDPE Bottles: Colored	22.60	0.00	22.60	40.29\%	0.00\%	12.47\%	0.19\%	0.00\%	0.08\%
Other Ferrous	15.00	9.00	24.00	11.24\%	1.94\%	4.01\%	0.12\%	0.37\%	0.09\%
Mixed Metals	40.40	24.00	64.40	49.16\%	48.60\%	46.58\%	0.35\%	0.62\%	0.32\%
Prunings	11.40	0.00	11.40	2.41\%	0.00\%	2.40\%	0.10\%	0.00\%	0.08\%
Stumps/Limbs	44.00	0.00	44.00	30.10\%	0.00\%	30.10\%	0.36\%	0.00\%	0.30\%
Non-C\&D Untreated Wood	113.90	0.00	113.90	99.25\%	0.00\%	97.13\%	0.89\%	0.00\%	0.73\%
Non-Clothing Textiles	14.50	0.00	14.50	5.48\%	0.00\%	5.39\%	0.12\%	0.00\%	0.10\%
Carpet/Upholstery	62.90	0.00	62.90	35.62\%	0.00\%	35.36\%	0.54\%	0.00\%	0.45\%
Miscellaneous Organics	4.30	0.00	4.30	1.22\%	0.00\%	1.17\%	0.03\%	0.00\%	0.03\%
Appliances: Plastic	0.00	151.10	151.10	0.00\%	47.82\%	39.60\%	0.00\%	0.46\%	0.19\%
Audio/Visual Equipment: Other	22.15	0.00	22.15	43.85\%	0.00\%	27.17\%	0.19\%	0.00\%	0.11\%
Untreated Dimension Lumber, Pallets, Crates	31.00	0.00	31.00	32.01\%	0.00\%	31.10\%	0.26\%	0.00\%	0.21\%
Treated/Contaminated Wood	9.80	0.00	9.80	2.52\%	0.00\%	2.52\%	0.08\%	0.00\%	0.07\%
Other Construction Debris	23.20	0.00	23.20	13.15\%	0.00\%	12.86\%	0.17\%	0.00\%	0.14\%
Total	430.75	184.10	614.85				3.52\%	4.74\%	3.05\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 10.47% of all Plain OCC/Kraft Paper is bulk Plain OCC/Kraft Paper. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table l-30
Residential Bulk Item Summary, Staten Island, PWCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Other Ferrous	0.00	107.50	107.50	0.00\%	54.35\%	41.84\%	0.00\%	15.37\%	1.35\%
Appliances: Plastic	0.00	43.50	43.50	0.00\%	69.71\%	55.48\%	0.00\%	0.75\%	0.22\%
Total	0.00	151.00	151.00				0.00\%	17.04\%	1.63\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in MGP 54.35% of all Other Ferrous is bulk Other Ferrous. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table I-31

Residential Bulk Item Summary, Manhattan, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	80.00	0.00	80.00	8.15\%	0.00\%	4.53\%	0.12\%	0.00\%	0.12\%
Other Plastics Materials	84.70	22.00	106.70	10.80\%	2.67\%	6.55\%	0.18\%	0.09\%	0.10\%
Other Ferrous	157.42	1,096.58	1,254.00	23.71\%	31.82\%	30.48\%	0.26\%	3.85\%	0.53\%
Non-C\&D Untreated Wood	44.70	0.00	44.70	50.36\%	0.00\%	46.22\%	0.09\%	0.00\%	0.07\%
Non-Clothing Textiles	28.60	0.00	28.60	3.75\%	0.00\%	3.62\%	0.06\%	0.00\%	0.05\%
Carpet/Upholstery	534.80	0.00	534.80	61.82\%	0.00\%	61.82\%	0.88\%	0.00\%	0.69\%
Rubber Products	13.28	0.00	13.28	8.56\%	0.00\%	7.94\%	0.03\%	0.00\%	0.02\%
Appliances: Plastic	56.84	14.00	70.84	35.99\%	6.54\%	19.04\%	0.09\%	0.06\%	0.05\%
Audio/Visual Equipment: Other	5.82	0.00	5.82	7.07\%	0.00\%	4.18\%	0.01\%	0.00\%	0.01\%
Other Computer Equipment	19.00	12.25	31.25	20.91\%	6.60\%	11.20\%	0.04\%	0.04\%	0.02\%
Untreated Dimension Lumber, Pallets, Crates	89.60	0.00	89.60	34.13\%	0.00\%	33.25\%	0.16\%	0.00\%	0.13\%
Treated/Contaminated Wood	111.60	0.00	111.60	17.46\%	0.00\%	16.87\%	0.24\%	0.00\%	0.18\%
Other Construction Debris	0.00	114.80	114.80	0.00\%	81.02\%	15.88\%	0.00\%	0.20\%	0.15\%
Televisions	27.00	0.00	27.00	100.00\%	0.00\%	100.00\%	0.03\%	0.00\%	0.03\%
Other Aluminum	9.70	0.00	9.70	49.87\%	0.00\%	14.80\%	0.01\%	0.00\%	0.01\%
Other Non-Ferrous	15.60	24.32	39.92	21.71\%	14.47\%	16.64\%	0.03\%	0.10\%	0.03\%
Wood Furniture/Furniture Pieces	127.24	0.00	127.24	22.87\%	0.00\%	21.30\%	0.26\%	0.00\%	0.19\%
Appliances: Ferrous	120.00	887.47	1,007.47	64.94\%	70.26\%	69.58\%	0.19\%	4.10\%	0.45\%
Upholstered or Other Organic-Type Furniture	332.00	25.00	357.00	88.58\%	73.42\%	87.32\%	0.83\%	0.13\%	0.66\%
HDPE Bottles: Natural	17.50	0.00	17.50	13.25\%	0.00\%	2.70\%	0.04\%	0.00\%	0.01\%
Total	1,875.40	2,196.42	4,071.82				3.55\%	8.37\%	3.95\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 8.15% of all Plain OCC/Kraft Paper is bulk Plain OCC/Kraft Paper. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table I-32

Residential Bulk Item Summary, Bronx, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	0.00	0.00	207.10	0.00\%	0.00\%	11.50\%	0.00\%	0.00\%	0.25\%
Other Plastics Materials	137.14	9.45	146.59	13.34\%	0.92\%	7.05\%	0.26\%	0.04\%	0.14\%
Other Ferrous	195.35	1,037.91	1,233.26	37.14\%	29.79\%	30.75\%	0.44\%	4.27\%	0.61\%
Prunings	20.10	0.00	20.10	28.26\%	0.00\%	27.38\%	0.16\%	0.00\%	0.13\%
Non-Clothing Textiles	18.90	0.00	18.90	2.08\%	0.00\%	1.99\%	0.04\%	0.00\%	0.03\%
Carpet/Upholstery	200.44	0.00	200.44	37.82\%	0.00\%	37.82\%	0.48\%	0.00\%	0.42\%
Rubber Products	34.30	0.00	34.30	19.14\%	0.00\%	15.90\%	0.07\%	0.00\%	0.05\%
Appliances: Plastic	13.40	14.95	28.35	13.45\%	5.58\%	7.71\%	0.03\%	0.06\%	0.02\%
Audio/Visual Equipment: Other	5.30	0.00	5.30	4.44\%	0.00\%	2.60\%	0.01\%	0.00\%	0.01\%
Other Computer Equipment	81.51	0.00	81.51	89.63\%	0.00\%	31.11\%	0.20\%	0.00\%	0.07\%
Untreated Dimension Lumber, Pallets, Crates	180.96	0.00	180.96	65.41\%	0.00\%	65.10\%	0.43\%	0.00\%	0.37\%
Treated/Contaminated Wood	249.70	0.00	249.70	29.92\%	0.00\%	27.39\%	0.53\%	0.00\%	0.43\%
Other Construction Debris	0.00	52.75	52.75	0.00\%	61.51\%	7.19\%	0.00\%	0.20\%	0.09\%
Other Aluminum	6.60	61.00	67.60	56.51\%	46.19\%	46.53\%	0.02\%	0.21\%	0.03\%
Other Non-Ferrous	0.00	76.57	76.57	0.00\%	40.20\%	31.18\%	0.00\%	0.34\%	0.05\%
Wood Furniture/Furniture Pieces	217.85	2.22	220.07	35.29\%	6.14\%	33.68\%	0.46\%	0.01\%	0.38\%
Appliances: Ferrous	0.00	1,728.25	1,728.25	0.00\%	70.67\%	68.42\%	0.00\%	5.00\%	0.51\%
Other PVC	12.80	0.00	12.80	87.67\%	0.00\%	69.95\%	0.02\%	0.00\%	0.02\%
Upholstered or Other Organic-Type Furniture	666.35	0.00	666.35	84.34\%	0.00\%	78.94\%	1.02\%	0.00\%	0.84\%
Total	2,040.70	2,983.10	5,230.90				4.24\%	10.97\%	5.23\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 13.34% of all Other Plastics Materials is bulk Other Plastics Materials. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table I-33
Residential Bulk Item Summary, Brooklyn, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	0.00	0.00	147.60	0.00\%	0.00\%	5.19\%	0.00\%	0.00\%	0.13\%
Other Plastics Materials	111.30	35.90	147.20	6.91\%	2.66\%	4.94\%	0.13\%	0.10\%	0.09\%
Other Ferrous	297.90	1,106.74	1,404.64	26.04\%	19.83\%	20.87\%	0.32\%	2.56\%	0.40\%
Mixed Metals	0.00	15.50	15.50	0.00\%	1.34\%	0.91\%	0.00\%	0.04\%	0.01\%
Stumps/Limbs	14.00	0.00	14.00	11.77\%	0.00\%	11.74\%	0.02\%	0.00\%	0.01\%
Non-C\&D Untreated Wood	202.60	0.00	202.60	64.00\%	0.00\%	57.97\%	0.17\%	0.00\%	0.13\%
Non-Clothing Textiles	13.40	0.00	13.40	0.97\%	0.00\%	0.94\%	0.02\%	0.00\%	0.01\%
Carpet/Upholstery	675.30	0.00	675.30	53.43\%	0.00\%	53.38\%	0.76\%	0.00\%	0.63\%
Rubber Products	20.60	0.00	20.60	7.21\%	0.00\%	6.37\%	0.02\%	0.00\%	0.02\%
Miscellaneous Organics	3.00	0.00	3.00	0.26\%	0.00\%	0.24\%	0.00\%	0.00\%	0.00\%
Appliances: Plastic	10.30	43.50	53.80	5.27\%	10.60\%	8.85\%	0.01\%	0.10\%	0.02\%
Audio/Visual Equipment: Other	129.30	0.00	129.30	41.75\%	0.00\%	31.20\%	0.14\%	0.00\%	0.09\%
Other Computer Equipment	113.90	0.00	113.90	47.06\%	0.00\%	24.85\%	0.10\%	0.00\%	0.05\%
Untreated Dimension Lumber, Pallets, Crates	208.80	0.00	208.80	40.40\%	0.00\%	39.92\%	0.26\%	0.00\%	0.21\%
Treated/Contaminated Wood	392.92	0.00	392.92	22.04\%	0.00\%	21.80\%	0.44\%	0.00\%	0.37\%
Other Construction Debris	26.90	0.00	26.90	1.69\%	0.00\%	1.59\%	0.03\%	0.00\%	0.02\%
Televisions	105.30	0.00	105.30	62.09\%	0.00\%	61.01\%	0.11\%	0.00\%	0.09\%
Other Aluminum	0.00	20.50	20.50	0.00\%	14.57\%	11.22\%	0.00\%	0.05\%	0.01\%
Other Non-Ferrous	57.50	116.80	174.30	40.84\%	36.37\%	37.57\%	0.05\%	0.27\%	0.06\%
Wood Furniture/Furniture Pieces	663.67	0.00	663.67	43.58\%	0.00\%	41.81\%	0.67\%	0.00\%	0.54\%
Appliances: Ferrous	251.84	1,388.39	1,640.23	57.37\%	51.04\%	51.92\%	0.25\%	2.78\%	0.39\%
Upholstered or Other Organic-Type Furniture	750.27	65.00	815.27	81.61\%	100.00\%	82.82\%	0.94\%	0.12\%	0.80\%
Computer Monitors	77.50	0.00	77.50	45.14\%	0.00\%	42.62\%	0.05\%	0.00\%	0.04\%
Total	4,126.30	2,792.33	7,066.23				4.45\%	6.48\%	4.26\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 6.91% of all Other Plastics Materials is bulk Other Plastics Materials. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table I-34
Residential Bulk Item Summary, Queens, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	16.50	0.00	183.30	1.35\%	0.00\%	5.51\%	0.01\%	0.00\%	0.13\%
Other Plastics Materials	260.42	7.45	267.87	11.38\%	0.33\%	5.89\%	0.23\%	0.01\%	0.11\%
Other Ferrous	682.38	1,169.27	1,851.65	41.68\%	16.18\%	20.88\%	0.57\%	2.02\%	0.43\%
Mixed Metals	13.20	21.80	35.00	2.67\%	1.12\%	1.43\%	0.01\%	0.04\%	0.01\%
Prunings	194.20	0.00	194.20	15.43\%	0.00\%	15.38\%	0.21\%	0.00\%	0.17\%
Stumps/Limbs	62.00	0.00	62.00	22.29\%	0.00\%	22.29\%	0.07\%	0.00\%	0.06\%
Non-C\&D Untreated Wood	65.30	0.00	65.30	25.57\%	0.00\%	22.18\%	0.05\%	0.00\%	0.04\%
Non-Clothing Textiles	123.95	0.00	123.95	5.87\%	0.00\%	5.61\%	0.10\%	0.00\%	0.08\%
Carpet/Upholstery	1,051.94	0.00	1,051.94	54.00\%	0.00\%	53.84\%	0.87\%	0.00\%	0.70\%
Rubber Products	56.60	0.00	56.60	15.02\%	0.00\%	12.12\%	0.05\%	0.00\%	0.03\%
Other Leather Products	41.70	0.00	41.70	22.44\%	0.00\%	21.04\%	0.03\%	0.00\%	0.02\%
Miscellaneous Organics	23.20	0.00	23.20	2.55\%	0.00\%	2.43\%	0.02\%	0.00\%	0.02\%
Appliances: Plastic	82.10	46.28	128.38	28.31\%	8.46\%	15.33\%	0.07\%	0.06\%	0.04\%
Audio/Visual Equipment: Other	21.60	0.00	21.60	6.65\%	0.00\%	4.01\%	0.02\%	0.00\%	0.01\%
Other Computer Equipment	132.76	1.49	134.25	42.39\%	0.56\%	23.25\%	0.08\%	0.00\%	0.05\%
Untreated Dimension Lumber, Pallets, Crates	535.95	0.00	535.95	55.95\%	0.00\%	55.62\%	0.55\%	0.00\%	0.44\%
Treated/Contaminated Wood	607.19	0.00	607.19	22.70\%	0.00\%	22.33\%	0.51\%	0.00\%	0.41\%
Other Construction Debris	145.17	105.00	250.17	6.05\%	68.35\%	9.80\%	0.12\%	0.12\%	0.16\%
Miscellaneous Inorganics	69.62	0.00	69.62	25.34\%	0.00\%	20.94\%	0.08\%	0.00\%	0.05\%
Televisions	164.14	0.00	164.14	70.76\%	0.00\%	68.13\%	0.12\%	0.00\%	0.10\%
Other Non-Ferrous	91.40	91.02	182.42	43.67\%	16.58\%	23.99\%	0.06\%	0.13\%	0.04\%
Wood Furniture/Furniture Pieces	792.28	7.02	799.30	50.43\%	10.05\%	48.69\%	0.74\%	0.01\%	0.59\%
Appliances: Ferrous	217.30	2,737.38	2,954.68	49.34\%	74.08\%	71.44\%	0.19\%	3.73\%	0.50\%
Other PVC	8.70	0.00	8.70	39.21\%	0.00\%	29.16\%	0.01\%	0.00\%	0.01\%
Upholstered or Other Organic-Type Furniture	1,399.63	56.00	1,455.63	90.72\%	84.02\%	90.44\%	0.97\%	0.06\%	0.79\%
Other Rigid Containers/Packaging	15.80	0.00	15.80	1.75\%	0.00\%	0.87\%	0.01\%	0.00\%	0.01\%
Clothing Textiles	10.20	0.00	10.20	0.28\%	0.00\%	0.27\%	0.01\%	0.00\%	0.01\%
Computer Monitors	56.80	0.00	56.80	52.17\%	0.00\%	42.89\%	0.04\%	0.00\%	0.03\%
Gypsum Scrap	39.20	0.00	39.20	2.19\%	0.00\%	2.17\%	0.03\%	0.00\%	0.02\%
Fluorescent Tubes	32.80	0.00	32.80	95.21\%	0.00\%	94.39\%	0.01\%	0.00\%	0.01\%
Total	7,014.03	4,242.71	11,423.54				5.89\%	6.70\%	5.49\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 1.35% of all Plain OCC/Kraft Paper is bulk Plain OCC/Kraft Paper. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

Table I-35
Residential Bulk Item Summary, Staten Island, WCS

Material Category	Total Bulk Weight (lbs)			\% of Material Category that is Bulk ${ }^{(1)(2)}$			\% of Stream that is Bulk ${ }^{(3)}$		
	Refuse	MGP	Waste	Refuse	MGP	Waste	Refuse	MGP	Waste
Plain OCC/Kraft Paper	0.00	0.00	90.50	0.00\%	0.00\%	8.13\%	0.00\%	0.00\%	0.19\%
Other Plastics Materials	309.90	0.00	309.90	27.90\%	0.00\%	14.90\%	0.60\%	0.00\%	0.30\%
Other Ferrous	377.60	638.00	1,015.60	49.65\%	16.72\%	22.19\%	0.69\%	2.22\%	0.47\%
Mixed Metals	16.50	0.00	16.50	8.20\%	0.00\%	1.36\%	0.04\%	0.00\%	0.01\%
Prunings	275.45	0.00	275.45	30.92\%	0.00\%	30.66\%	0.69\%	0.00\%	0.54\%
Stumps/Limbs	285.20	0.00	285.20	88.96\%	0.00\%	88.73\%	0.37\%	0.00\%	0.29\%
Non-C\&D Untreated Wood	9.40	0.00	9.40	14.22\%	0.00\%	13.31\%	0.03\%	0.00\%	0.02\%
Non-Clothing Textiles	0.36	0.00	0.36	0.06\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%
Carpet/Upholstery	185.27	0.00	185.27	27.52\%	0.00\%	27.50\%	0.55\%	0.00\%	0.43\%
Rubber Products	14.00	0.00	14.00	13.02\%	0.00\%	8.62\%	0.05\%	0.00\%	0.02\%
Miscellaneous Organics	26.30	0.00	26.30	4.18\%	0.00\%	4.03\%	0.05\%	0.00\%	0.04\%
Appliances: Plastic	28.80	0.00	28.80	24.48\%	0.00\%	10.71\%	0.07\%	0.00\%	0.03\%
Audio/Visual Equipment: Other	26.30	0.00	26.30	29.11\%	0.00\%	17.04\%	0.09\%	0.00\%	0.05\%
Untreated Dimension Lumber, Pallets, Crates	315.80	0.00	315.80	50.77\%	0.00\%	50.11\%	0.68\%	0.00\%	0.53\%
Treated/Contaminated Wood	314.87	0.00	314.87	25.72\%	0.00\%	25.53\%	0.64\%	0.00\%	0.50\%
Other Construction Debris	67.75	0.00	67.75	8.31\%	0.00\%	8.14\%	0.20\%	0.00\%	0.15\%
Other Non-Ferrous	0.00	32.15	32.15	0.00\%	16.59\%	12.71\%	0.00\%	0.16\%	0.02\%
Wood Furniture/Furniture Pieces	368.65	0.00	368.65	46.49\%	0.00\%	45.81\%	0.77\%	0.00\%	0.61\%
Appliances: Ferrous	105.30	1,351.64	1,456.94	55.20\%	73.87\%	72.11\%	0.29\%	3.55\%	0.56\%
Upholstered or Other Organic-Type Furniture	292.58	0.00	292.58	86.17\%	0.00\%	84.80\%	0.92\%	0.00\%	0.72\%
Total	3,020.03	2,021.79	5,132.32				6.88\%	6.59\%	5.91\%

(1) (Weight of the material category that is considered bulk) / (total weight of the material category)
(2) "\% of Material that is Bulk" refers to how much of a particular material category in the refuse, MGP or waste stream consists of bulk items. For example, in refuse 27.90% of all Other Plastics Materials is bulk Other Plastics Materials. Totals for these percentages are not meaningful as they refer to the subset of material categories in which bulk items were found. They are therefore not shown here.
(3) (Weight of the material category that is considered bulk) / (total weight of all material in the stream)

NYC Waste Characterization Study
Final Report, Volume 4
Appendix J: Generation Rate Data
[This page intentionally left blank.]

Table J-1
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Fall 2004

							Housing Units								
Borough	District	Section	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Densityl Low Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Manhattan	1	1	5,087	2,520	0	0	0	0	0	0	0	169.74	43.24	20.20	233.18
Manhattan	2	1	8,352	2,571	3,589	2,016	0	0	0	0	0	183.51	43.42	18.36	245.29
Manhattan	2	2	21,168	0	0	0	0	0	0	0	0	208.47	41.68	18.12	268.28
Manhattan	2	3	18,189	0	0	0	0	0	0	0	0	198.40	78.41	27.97	304.79
Manhattan	3	1	37	1,710	19,069	0	0	0	0	0	0	213.03	14.96	8.69	236.68
Manhattan	3	2	0	2,981	10,347	0	0	0	0	0	0	167.60	16.98	10.97	195.54
Manhattan	3	3	0	14,396	5,534	0	0	0	0	0	0	151.91	22.57	14.89	189.38
Manhattan	3	4	6,578	5,803	4,909	0	0	0	0	0	0	210.73	39.53	21.17	271.43
Manhattan	4	1	11,461	0	1,843	0	0	0	0	0	0	137.61	42.53	17.09	197.23
Manhattan	4	2	9,949	5,000	0	371	0	22	0	0	0	123.89	46.75	17.19	187.84
Manhattan	4	3	17,905	5,452	1,666	0	0	0	0	0	0	266.30	54.10	28.20	348.61
Manhattan	5	1	12,669	1,668	0	269	0	0	0	0	0	184.19	39.71	15.82	239.73
Manhattan	5	2	14,692	0	1,232	129	0	0	0	0	0	171.99	40.74	13.34	226.07
Manhattan	6	1	25,506	6,881	0	0	0	0	0	0	0	289.25	103.66	36.13	429.04
Manhattan	6	2	32,272	0	0	297	0	0	0	0	0	306.47	70.22	33.61	410.30
Manhattan	6	3	26,296	0	0	0	0	0	0	0	0	286.41	76.05	27.32	389.78
Manhattan	7	1	24,808	4,185	0	0	0	0	0	0	0	304.15	76.33	23.36	403.84
Manhattan	7	2	24,351	0	0	0	0	0	0	0	0	271.12	83.99	32.43	387.54
Manhattan	7	3	21,913	0	0	0	0	0	0	0	0	310.74	90.25	31.10	432.09
Manhattan	7	4	18,332	5,098	0	0	0	0	0	0	0	277.18	63.24	28.81	369.23
Manhattan	7	5	13,637	4,264	5,197	60	0	0	0	0	0	260.43	66.08	27.51	354.03
Manhattan	8	1	25,097	0	0	0	0	0	0	0	0	319.98	73.58	23.98	417.54
Manhattan	8	2	22,704	0	2,980	0	0	0	0	0	0	349.42	86.75	27.69	463.86
Manhattan	8	3	39,777	0	0	0	0	0	0	0	0	307.66	96.91	35.03	439.60
Manhattan	8	4	12,887	0	0	0	0	0	0	0	0	293.00	95.95	29.01	417.96
Manhattan	8	5	32,232	0	0	0	0	0	0	0	0	336.19	91.03	34.04	461.26
Manhattan	9	1	5,781	2,023	1,515	0	0	7	0	0	0	158.38	41.74	15.53	215.66
Manhattan	9	2	0	4,631	12,578	0	0	0	0	0	0	256.11	14.98	12.29	283.37
Manhattan	9	3	0	0	14,039	0	0	2,314	0	0	0	326.76	14.81	16.35	357.92
Manhattan	10	1	0	0	13,149	0	0	4,180	0	0	0	285.93	17.88	15.50	319.31
Manhattan	10	3	0	0	18,604	0	0	0	0	0	0	196.64	11.61	9.37	217.62
Manhattan	11	1	3,045	0	16,973	0	0	1,548	0	0	0	237.56	25.41	19.08	282.04
Manhattan	11	2	0	0	10,680	0	0	2,243	0	0	0	204.21	11.85	9.43	225.49
Manhattan	11	3	0	0	10,141	0	0	3,046	0	0	0	151.46	6.97	4.27	162.70
Manhattan	12	1	0	2,402	14,995	59	0	0	0	0	0	349.06	24.67	24.18	397.91
Manhattan	12	2	4,701	0	13,563	0	0	0	0	0	0	400.44	33.71	29.06	463.21
Manhattan	12	3	1,390	3,026	19,190	0	0	0	0	0	0	394.88	29.79	31.71	456.38
Manhattan	12	4	1,897	5,145	6,860	0	0	0	0	0	0	276.35	25.07	26.11	327.53
Bronx	1	1	0	0	14,770	0	553	2,723	0	0	0	203.68	9.87	9.56	223.11
Bronx	1	2	0	0	8,892	0	0	2,337	0	0	0	215.68	7.87	10.16	233.71
Bronx	2	1	0	0	12,974	0	0	3,347	0	0	0	377.98	13.09	18.66	409.73
Bronx	3	1	0	0	17,573	0	0	6,720	0	0	0	398.36	16.78	17.62	432.76
Bronx	4	1	0	1,101	13,997	0	255	0	0	0	0	257.24	16.00	12.90	286.14
Bronx	4	2	0	0	12,169	0	0	0	0	0	0	386.03	11.63	18.02	415.68
Bronx	4	3	0	0	20,022	0	0	0	0	0	0	408.13	12.18	20.46	440.77
Bronx	5	1	0	751	17,360	0	0	0	31	0	0	328.54	19.63	30.41	378.58
Bronx	5	2	0	0	11,395	0	0	0	0	0	0	252.02	12.16	20.88	285.06
Bronx	5	3	0	0	3,485	0	0	286	0	0	0	284.07	12.76	23.76	320.59

Table J-1
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Fall 2004 (continued)

Borough	District	Section	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Density/ Low Income	$\begin{aligned} & \text { REFUSE } \\ & \text { TONS } \end{aligned}$	$\begin{aligned} & \text { PAPER } \\ & \text { TONS } \end{aligned}$	$\begin{gathered} \hline \text { MGP } \\ \text { TONS } \end{gathered}$	WASTE TONS
Bronx	6	1	0	0	713	0	0	0	0	0	0	247.34	14.53	16.25	278.12
Bronx	6	2	0	468	13,121	0	0	1,815	0	0	0	286.86	12.70	16.03	315.59
Bronx	7	1	849	1,583	11,472	0	0	0	0	0	0	274.52	13.20	22.25	309.97
Bronx	7	3	0	1,523	13,695	0	0	0	0	0	0	256.77	22.16	27.80	306.74
Bronx	8	1	0	4,846	8,361	0	0	0	0	0	0	227.59	21.49	22.15	271.24
Bronx	8	2	7,681	5,185	0	0	0	567	0	0	0	173.89	30.95	19.91	224.75
Bronx	8	3	9,626	0	199	3,310	0	0	146	0	0	197.23	47.60	23.81	268.64
Bronx	9	1	0	2,429	5,639	0	0	4,964	0	1,190	0	292.47	14.11	15.06	321.65
Bronx	9	2	0	1,645	4,843	266	1,324	4,450	0	0	3	243.18	11.74	15.17	270.09
Bronx	9	3	0	12,497	0	0	3,703	0	0	0	0	216.75	6.37	5.97	229.09
Bronx	9	4	0	0	8,920	443	8,799	602	0	1,770	0	311.19	21.81	22.75	355.75
Bronx	10	1	0	15,856	1,392	2,222	8,696	897	0	0	0	248.44	37.97	25.30	311.72
Bronx	10	2	0	0	0	460	625	0	7,032	2,188	0	215.38	40.80	20.47	276.65
Bronx	10	3	0	0	275	2,733	0	2,008	3,239	2,547	0	191.94	32.07	17.29	241.31
Bronx	11	1	0	5,455	1,724	3,044	4,373	3,855	0	0	0	320.80	41.47	32.30	394.57
Bronx	11	2	0	3,417	4,777	1,821	0	1,673	1,347	1,191	0	230.17	28.46	20.62	279.25
Bronx	11	3	0	0	1,735	0	2,268	2,133	3,530	1,343	0	197.20	22.83	16.79	236.82
Bronx	12	1	0	0	2,294	0	2,899	3,574	868	1,693	0	189.42	18.32	19.37	227.11
Bronx	12	2	0	0	0	0	5,052	1,321	701	3,618	0	167.44	19.56	20.24	207.24
Bronx	12	3	0	1,660	5,335	0	5,803	1,331	859	0	0	190.10	19.95	21.92	231.97
Bronx	12	4	0	0	0	950	5,289	0	4,803	0	0	172.16	24.04	21.40	217.60
Bronx	12	5	0	0	0	0	3,275	305	3,265	1,089	0	187.05	22.01	21.74	230.80
Brooklyn	1	1	0	0	0	776	8,488	2,558	0	0	0	181.78	21.95	20.34	224.07
Brookly	1	2	0	0	6,704	490	2,753	3,952	0	0	0	239.83	17.33	15.55	272.71
Brooklyn	1	3	0	0	790	0	9,987	14	0	0	0	182.58	27.16	21.67	231.41
Brooklyn	1	4	0	0	2,950	0	0	6,783	0	0	0	355.26	27.69	12.78	395.73
Brooklyn	1	5	0	0	5,383	0	1,718	5,560	0	0	0	229.61	11.86	9.20	250.67
Brooklyn	2	1	7,447	0	2,341	3,108	178	83	0	0	0	153.60	47.32	16.01	216.94
Brooklyn	2	2	0	0	0	6,819	1,277	950	0	0	0	116.94	33.47	12.61	163.01
Brooklyn	2	3	0	0	0	1,994	7,020	0	0	0	0	119.76	17.84	10.31	147.92
Brooklyn	2	4	0	4,985	3,360	2,268	3,969	372	0	0	0	142.85	22.83	14.57	180.25
Brooklyn	3	1	0	0	3,782	0	803	8,988	0	0	0	190.39	12.72	9.35	212.45
Brooklyn	3	2	0	0	0	0	3,137	9,709	0	0	0	212.33	12.08	11.89	236.30
Brooklyn	3	3	0	0	0	0	2,030	10,780	0	0	0	263.51	14.44	14.28	292.23
Brooklyn	3	4	0	0	0	0	3,369	4,936	0	0	0	208.20	13.07	12.90	234.17
Brooklyn	3	5	0	0	0	0	4,470	6,139	0	0	0	170.22	10.10	8.81	189.14
Brooklyn	4	1	0	0	0	0	0	9,270	0	0	0	225.51	16.67	16.02	258.20
Brooklyn	4	2	0	0	0	0	0	15,811	0	0	0	329.51	17.90	23.26	370.67
Brooklyn	4	3	0	0	0	0	502	8,452	0	0	0	283.01	15.22	21.21	319.44
Brooklyn	5	1	0	0	0	0	2,725	7,528	0	435	0	265.50	18.17	21.07	304.74
Brooklyn	5	2	0	0	0	0	2,635	6,005	0	3,773	0	316.70	24.04	30.25	370.99
Brooklyn	5	3	0	0	2,943	0	974	7,581	0	248	0	200.22	13.34	15.64	229.20
Brooklyn	5	4	0	0	11,888	0	3,929	7,790	0	1,018	0	334.75	18.04	19.90	372.69
Brooklyn	6	1	0	0	2,851	2,679	2,737	518	97	0	0	83.26	22.40	10.23	115.89
Brooklyn	6	2	0	0	0	10,201	0	0	0	0	0	118.06	37.62	17.40	173.09
Brooklyn	6	3	0	0	0	6,310	0	2,101	0	0	0	117.13	30.26	13.73	161.12
Brooklyn	6	4	0	0	0	10,711	877	505	0	0	0	136.13	51.14	18.55	205.82
Brooklyn	6	5	0	0	0	5,267	2,447	0	0	0	0	126.85	39.74	16.74	183.33

Table J-1
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Fall 2004 (continued)

Borough	District	Section	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Density/ Low Income	$\begin{gathered} \text { REFUSE } \\ \text { TONS } \end{gathered}$	$\begin{aligned} & \text { PAPER } \\ & \text { TONS } \end{aligned}$	$\begin{gathered} \hline \text { MGP } \\ \text { TONS } \end{gathered}$	WASTE TONS
Brooklyn	7	1	0	1,977	0	5,033	4,626	0	783	0	0	161.33	40.24	23.03	224.61
Brooklyn	7	2	0	0	0	4	4,296	7,987	0	0	0	220.78	31.68	24.59	277.05
Brooklyn	7	3	0	0	0	0	0	10,038	0	0	0	204.42	22.76	24.97	252.15
Brooklyn	7	4	0	0	0	0	5,014	8,810	0	0	0	228.30	28.72	24.86	281.87
Brooklyn	8	1	0	2,532	0	5,068	1,892	6,384	0	0	0	245.74	33.90	20.71	300.35
Brooklyn	8	2	0	0	2,098	0	4,362	8,978	0	0	0	277.48	18.77	17.39	313.64
Brooklyn	8	3	0	0	2,318	0	999	4,299	0	0	0	209.87	8.65	10.34	228.85
Brooklyn	9	1	0	0	10,360	0	3,705	5,241	0	0	0	323.68	20.70	15.18	359.56
Brooklyn	9	2	0	1,605	3,871	0	2,467	0	0	0	0	270.87	18.82	15.11	304.80
Brooklyn	9	3	0	0	3,564	0	3,371	3,711	0	0	0	243.90	20.67	15.80	280.37
Brooklyn	10	1	0	1,910	0	2,867	7,575	0	0	0	0	170.73	36.95	18.29	225.96
Brooklyn	10	2	0	0	0	528	8,991	0	919	0	0	173.49	40.71	20.24	234.44
Brooklyn	10	3	1,933	3,336	1,155	1,772	6,600	0	249	0	0	189.60	41.94	21.64	253.18
Brooklyn	10	4	0	0	0	1,932	7,035	1,411	3,558	718	0	285.36	55.05	29.99	370.39
Brooklyn	11	1	0	0	0	0	3,643	3,430	0	0	0	186.98	29.69	17.61	234.28
Brooklyn	11	2	0	0	0	0	10,250	1,654	0	0	0	201.20	33.94	20.55	255.70
Brooklyn	11	3	0	0	0	0	3,611	6,329	0	1,561	0	168.38	28.69	16.85	213.92
Brooklyn	11	4	0	0	0	673	4,827	0	1,861	1,050	0	159.03	28.89	15.39	203.31
Brooklyn	11	5	0	0	2,102	0	8,589	872	24	0	0	216.31	34.78	18.78	269.88
Brooklyn	11	6	0	0	0	0	7,579	6,614	0	0	0	258.22	40.24	22.68	321.13
Brooklyn	12	1	0	2,085	3,319	536	5,854	5,152	0	487	0	303.97	40.71	23.94	368.62
Brooklyn	12	2	0	0	0	0	4,362	10,786	0	0	0	326.93	34.34	21.13	382.39
Brooklyn	12	3	0	0	0	0	5,967	3,811	0	1,319	0	291.43	33.83	22.07	347.33
Brooklyn	12	4	0	0	0	555	3,102	8,952	0	0	0	248.75	29.21	16.39	294.35
Brooklyn	13	1	0	0	2,020	0	7,583	0	0	1,710	0	169.11	19.27	13.74	202.12
Brooklyn	13	2	0	0	23,054	0	3,486	8,132	0	0	0	388.09	33.14	30.85	452.08
Brooklyn	14	1	0	5,024	16,911	0	657	769	0	0	0	454.94	22.11	23.89	500.94
Brooklyn	14	2	0	3,033	2,031	1,153	1,481	1,135	0	0	0	219.25	23.12	15.59	257.96
Brooklyn	14	3	0	5,025	0	4,189	2,291	771	800	0	0	350.33	33.68	18.78	402.79
Brooklyn	14	4	0	0	5,229	696	6,387	2,647	186	0	0	304.13	48.67	28.81	381.62
Brooklyn	15	1	0	0	1,777	0	5,486	3,359	0	0	0	238.90	32.39	16.33	287.62
Brooklyn	15	2	0	2,850	1,452	1,728	3,044	952	2,529	992	0	285.59	55.22	27.08	367.89
Brooklyn	15	3	0	1,438	0	499	10,632	1,196	1,293	1,460	0	253.81	50.43	26.61	330.86
Brooklyn	15	4	0	0	2,199	0	7,158	0	4,163	0	0	214.74	43.70	23.22	281.66
Brooklyn	15	5	0	0	0	0	5,289	2,237	0	860	0	138.87	23.41	13.64	175.92
Brooklyn	16	1	0	0	4,764	0	0	9,411	0	0	0	248.97	12.69	11.67	273.33
Brooklyn	16	2	0	0	4,581	0	1,722	10,493	0	0	0	303.72	11.29	11.88	326.90
Brooklyn	17	1	0	0	0	0	1,077	10,206	0	0	0	229.63	16.20	13.88	259.70
Brooklyn	17	2	0	0	0	0	7,066	0	640	867	0	189.02	14.45	13.08	216.56
Brooklyn	17	3	0	0	0	0	5,265	2,710	1,680	2,464	0	250.08	27.44	25.76	303.28
Brooklyn	17	4	0	0	6,601	0	4,426	629	0	0	0	280.94	11.85	11.76	304.55
Brooklyn	17	5	0	0	2,360	0	1,971	3,467	4,989	1,824	0	236.68	27.36	22.32	286.36
Brooklyn	18	1	0	0	1,589	807	1,515	0	4,950	818	0	172.94	20.97	14.70	208.61
Brooklyn	18	2	0	0	0	3	588	0	4,914	3,619	0	211.68	24.26	20.06	256.01
Brooklyn	18	3	0	0	1,616	1,337	0	0	5,392	2,559	0	162.52	19.64	14.95	197.11
Brooklyn	18	4	0	0	0	3,215	0	0	7,177	721	0	232.19	40.01	19.25	291.44
Brooklyn	18	5	0	0	1,249	0	2,028	0	5,830	0	0	168.74	25.25	15.59	209.59
Brooklyn	18	6	0	0	0	1,547	5,305	0	4,808	84	0	260.80	33.57	20.38	314.75

Table J-1
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Fall 2004 (continued)

Borough	District	Section	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Density/ Low Income	REFUSE TONS	$\begin{aligned} & \text { PAPER } \\ & \text { TONS } \end{aligned}$	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Brooklyn	18	7	0	0	0	0	0	0	7,503	463	0	194.58	39.73	18.23	252.55
Queens	1	1	0	0	0	2,808	4,768	1,768	0	0	0	151.43	27.17	15.56	194.17
Queens	1	2	0	0	0	459	11,649	0	0	713	44	189.84	31.37	16.89	238.09
Queens	1	3	1,552	4,491	1,552	0	8,736	302	0	0	0	232.35	40.92	25.60	298.86
Queens	1	4	0	671	0	0	14,547	0	0	0	0	171.26	32.35	19.58	223.18
Queens	1	5	0	1,701	1,661	0	10,625	791	0	627	0	221.63	39.58	25.13	286.35
Queens	1	6	3,252	412	6,102	0	2,781	103	0	191	0	153.24	17.42	10.35	181.01
Queens	2	1	0	2,076	0	0	9,565	0	0	2,866	0	259.82	47.96	29.54	337.32
Queens	2	2	0	9,902	454	698	5,749	0	0	0	0	200.04	34.09	23.78	257.91
Queens	2	3	536	0	0	26	10,962	0	0	468	0	197.66	32.27	19.90	249.83
Queens	3	1	0	1,569	0	0	5,858	0	5,730	6,881	0	501.32	40.35	35.84	577.51
Queens	3	2	2,194	15,976	0	0	2,513	0	0	0	0	328.94	49.26	28.00	406.20
Queens	3	3	0	2,483	0	0	10,105	952	0	0	0	393.55	21.78	30.90	446.24
Queens	4	1	0	9,492	0	0	8,394	0	0	1,501	0	307.53	40.25	24.70	372.48
Queens	4	2	0	4,281	0	0	5,422	3,286	0	0	0	328.38	37.01	23.64	389.04
Queens	4	3	0	4,692	0	0	14,214	0	0	851	0	408.44	27.15	26.49	462.09
Queens	5	1	0	0	0	0	3,904	0	6,844	1,771	0	214.75	44.41	25.08	284.24
Queens	5	2	0	0	0	0	10,415	0	0	0	0	231.46	38.27	24.72	294.46
Queens	5	3	0	0	0	0	4,884	6,305	0	0	0	235.16	30.05	24.37	289.59
Queens	5	4	0	0	0	0	8,102	393	5,885	2,169	0	275.88	56.72	31.72	364.32
Queens	5	5	0	0	0	724	3,507	0	7,986	2,622	0	274.71	58.18	27.50	360.39
Queens	6	1	15,396	7,053	1,621	890	2,838	0	0	0	0	337.30	61.11	31.02	429.43
Queens	6	2	11,560	3,041	0	5,713	1,934	0	4,161	0	0	385.55	82.79	38.17	506.51
Queens	7	1	0	17,487	2,636	0	2,326	0	0	498	0	326.08	47.95	20.61	394.64
Queens	7	2	0	0	0	0	0	0	4,511	2,695	0	142.23	27.81	13.08	183.12
Queens	7	3	0	11,018	0	3,212	1,441	0	0	0	0	262.49	41.62	18.01	322.12
Queens	7	4	0	0	0	0	4,387	0	1,902	1,619	0	158.79	29.27	14.45	202.50
Queens	7	5	0	0	0	0	1,242	0	6,030	1,833	0	176.09	31.83	17.78	225.69
Queens	7	6	0	0	0	0	0	0	6,798	0	0	186.85	35.81	18.10	240.77
Queens	7	7	0	0	0	3,313	740	0	3,338	0	0	202.25	41.01	18.68	261.94
Queens	7	8	0	0	0	10,275	0	94	4,894	0	0	163.26	34.43	17.25	214.94
Queens	8	1	0	0	0	4,044	1,861	0	4,256	0	0	158.40	36.68	14.33	209.41
Queens	8	2	1,339	0	0	5,272	6,584	0	1,969	0	0	306.06	41.40	23.05	370.51
Queens	8	3	0	2,745	0	7,560	5,894	2,788	1,955	0	0	237.79	33.17	17.57	288.53
Queens	8	4	0	0	0	5,011	0	0	5,154	0	0	218.84	40.41	18.19	277.44
Queens	9	1	0	0	0	0	667	0	888	8,605	419	249.12	28.75	21.93	299.80
Queens	9	2	0	0	0	929	1,304	0	808	6,860	0	219.88	29.28	19.23	268.38
Queens	9	3	0	3,571	0	2,868	3,141	0	1,193	2,349	0	236.93	34.42	21.21	292.55
Queens	9	4	2,056	2,218	0	996	3,725	0	0	5,920	0	331.47	42.92	27.60	401.98
Queens	10	1	0	0	0	0	5,615	28	3,212	3,677	0	236.76	35.95	23.24	295.94
Queens	10	2	0	0	0	0	418	0	5,471	7,826	0	281.74	35.61	29.47	346.83
Queens	10	3	0	0	0	239	0	0	4,979	5,268	0	305.90	30.63	29.11	365.65
Queens	10	4	0	0	0	0	0	0	6,088	0	0	162.82	31.12	14.05	207.98
Queens	11	1	0	0	0	3,252	0	0	4,514	0	0	143.15	36.03	17.51	196.69
Queens	11	2	0	0	0	3,139	0	0	2,723	0	0	125.93	24.63	12.04	162.60
Queens	11	3	0	0	0	0	119	0	5,714	0	0	115.15	28.58	12.90	156.63
Queens	11	4	0	0	0	1,647	0	0	5,732	0	0	142.21	33.52	13.62	189.36
Queens	11	5	0	0	0	6,332	2,518	0	3,842	0	0	148.04	38.61	15.58	202.23

Table J-1
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Fall 2004 (continued)

Borough	District	Section	High Density/ High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Densityl Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Density/ Low Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Queens	11	6	0	0	0	2,582	0	0	2,922	980	0	117.24	27.64	12.31	157.20
Queens	12	1	0	4,549	4,511	0	2,055	1,501	450	1,695	0	350.95	23.69	21.28	395.92
Queens	12	2	0	0	0	0	0	1,700	1,907	5,598	0	240.59	22.47	21.28	284.33
Queens	12	3	0	0	0	0	0	2,684	3,115	2,903	0	184.62	15.27	14.63	214.52
Queens	12	4	0	0	0	0	0	835	2,912	6,092	0	231.44	21.91	18.33	271.68
Queens	12	5	0	0	824	495	0	0	3,154	2,186	0	215.12	22.12	18.55	255.79
Queens	12	6	0	0	0	0	681	0	4,835	5,501	0	242.40	23.72	20.89	287.02
Queens	12	7	0	6,246	0	0	0	0	6,134	2,005	0	213.58	20.48	16.67	250.74
Queens	13	1	1,926	0	0	3,550	0	0	7,069	0	0	158.08	34.03	16.32	208.43
Queens	13	2	0	0	0	1,682	0	78	7,652	0	0	182.40	30.85	17.87	231.11
Queens	13	3	0	0	0	0	0	0	7,767	0	0	235.83	27.02	22.87	285.72
Queens	13	4	0	0	0	0	0	0	6,166	386	0	200.92	19.33	17.02	237.26
Queens	13	5	0	0	0	0	0	0	5,849	0	0	155.07	22.13	15.40	192.60
Queens	13	6	0	0	0	0	0	0	6,655	0	0	146.49	18.75	14.09	179.33
Queens	13	7	0	0	0	0	0	0	7,543	0	0	188.67	24.14	20.92	233.73
Queens	13	8	0	0	0	0	0	0	7,654	0	216	206.36	23.08	17.63	247.07
Queens	14	1	0	0	0	0	3,780	0	5,228	0	0	222.97	31.10	17.04	271.12
Queens	14	2	0	4,921	9,759	0	0	3,541	2,014	1,004	0	211.09	20.68	21.39	253.16
Queens	14	3	0	0	0	0	1,884	6,530	0	3,019	0	242.98	19.52	15.16	277.66
Staten Island	1	1	355	0	0	3,444	1,364	6,011	3,697	1,841	0	357.25	49.64	29.73	436.63
Staten Island	1	2	0	2,931	0	1,605	3,925	0	4,937	3,102	0	299.82	50.38	27.99	378.19
Staten Island	1	3	0	0	579	0	842	0	6,106	3,456	337	357.90	54.50	32.78	445.17
Staten Island	1	4	0	0	0	417	1,473	1,032	12,756	760	0	397.51	66.38	36.01	499.91
Staten Island	2	1	0	0	0	0	2,679	1,353	6,659	1,565	0	291.92	54.21	28.51	374.64
Staten Island	2	2	0	0	0	0	0	0	9,965	0	0	266.33	51.53	25.53	343.38
Staten Island	2	3	0	0	104	0	981	0	10,104	0	0	276.13	48.73	21.58	346.44
Staten Island	2	4	0	0	0	2,716	0	0	11,126	0	0	310.15	54.79	27.10	392.04
Staten Island	3	1	0	0	0	0	0	0	7,325	3,672	0	194.50	42.56	19.84	256.90
Staten Island	3	2	0	0	0	0	0	0	6,961	0	0	200.83	47.18	22.37	270.38
Staten Island	3	3	0	0	0	0	0	0	6,156	0	0	183.65	39.53	18.22	241.40
Staten Island	3	4	0	0	0	0	0	0	6,252	0	0	171.14	36.85	18.31	226.30
Staten Island	3	5	0	0	0	0	0	0	8,609	0	0	227.94	45.90	22.04	295.87
Staten Island	3	6	0	0	0	0	0	0	8,394	0	0	201.52	36.11	17.97	255.60
Staten Island	3	7	0	0	0	0	0	0	3,267	15	0	157.02	28.29	14.06	199.38
Staten Island	3	8	0	0	0	0	0	0	4,657	0	0	147.70	26.25	13.28	187.22
			530,415	297,498	604,800	189,114	545,231	389,301	412,740	159,269	1,019	53,943.84	7,514.09	4,567.83	66,025.76

Table J-2
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Winter 2005

							Housing								
Borough	District	Section	High Density / High Income	High Density / Low Income	High Density / Medium Income	Low Density / High Income	Low Density I Low Income	Low Density / Medium Income	Medium Density / High Income	Medium Density / Low Income	Medium Density / Medium Income	REFUSE TONS	PAPER TONS	$\begin{gathered} \hline \text { MGP } \\ \text { TONS } \end{gathered}$	WASTE TONS
Manhattan	1	1	5,087	0	2,520	0	0	0	0	0	0	161.73	37.36	21.40	220.49
Manhattan	2	1	8,352	3,589	2,571	0	0	0	2,016	0	0	188.34	34.52	17.49	240.35
Manhattan	2	2	21,168	0	0	0	0	0	0	0	0	205.95	38.30	18.46	262.72
Manhattan	2	3	18,189	0	0	0	0	0	0	0	0	187.55	71.58	29.78	288.91
Manhattan	3	1	37	19,069	1,710	0	0	0	0	0	0	215.28	13.58	8.19	237.04
Manhattan	3	2	0	10,347	2,981	0	0	0	0	0	0	162.14	15.72	10.44	188.31
Manhattan	3	3	0	5,534	14,396	0	0	0	0	0	0	142.62	19.25	13.96	175.84
Manhattan	3	4	6,578	4,909	5,803	0	0	0	0	0	0	201.37	31.82	21.35	254.54
Manhattan	4	1	11,461	1,843	0	0	0	0	0	0	0	133.70	35.71	20.36	189.76
Manhattan	4	2	9,949	0	5,000	0	0	0	371	22	0	119.75	47.78	18.37	185.90
Manhattan	4	3	17,905	1,666	5,452	0	0	0	0	0	0	255.92	49.01	30.50	335.43
Manhattan	5	1	12,669	0	1,668	0	0	0	269	0	0	185.85	35.34	15.93	237.12
Manhattan	5	2	14,692	1,232	0	0	0	0	129	0	0	167.50	40.54	14.25	222.29
Manhattan	6	1	25,506	0	6,881	0	0	0	0	0	0	273.86	91.59	36.42	401.88
Manhattan	6	2	32,272	0	0	0	0	0	297	0	0	297.17	65.72	36.36	399.25
Manhattan	6	3	26,296	0	0	0	0	0	0	0	0	281.69	68.37	29.54	379.60
Manhattan	7	1	24,808	0	4,185	0	0	0	0	0	0	300.99	71.20	27.60	399.79
Manhattan	7	2	24,351	0	0	0	0	0	0	0	0	258.96	65.94	31.77	356.67
Manhattan	7	3	21,913	0	0	0	0	0	0	0	0	297.73	88.97	32.29	418.99
Manhattan	7	4	18,332	0	5,098	0	0	0	0	0	0	254.74	51.19	31.61	337.54
Manhattan	7	5	13,637	5,197	4,264	0	0	0	60	0	0	263.88	59.39	24.16	347.43
Manhattan	8	1	25,097	0	0	0	0	0	0	0	0	310.61	61.12	24.82	396.55
Manhattan	8	2	22,704	2,980	0	0	0	0	0	0	0	332.95	79.76	31.57	444.28
Manhattan	8	3	39,777	0	0	0	0	0	0	0	0	308.32	85.53	31.77	425.63
Manhattan	8	4	12,887	0	0	0	0	0	0	0	0	278.77	81.47	29.46	389.69
Manhattan	8	5	32,232	0	0	0	0	0	0	0	0	319.79	81.95	38.66	440.39
Manhattan	9	1	5,781	1,515	2,023	0	0	0	0	7	0	147.68	32.25	14.95	194.88
Manhattan	9	2	0	12,578	4,631	0	0	0	0	0	0	239.48	13.95	13.60	267.03
Manhattan	9	3	0	14,039	0	0	0	0	0	2,314	0	323.51	14.40	15.91	353.81
Manhattan	10	1	0	13,149	0	0	0	0	0	4,180	0	291.19	17.69	16.11	324.99
Manhattan	10	3	0	18,604	0	0	0	0	0	0	0	188.29	10.32	8.51	207.12
Manhattan	11	1	3,045	16,973	0	0	0	0	0	1,548	0	234.19	21.15	17.70	273.05
Manhattan	11	2	0	10,680	0	0	0	0	0	2,243	0	202.93	9.79	7.63	220.35
Manhattan	11	3	0	10,141	0	0	0	0	0	3,046	0	145.92	7.35	4.49	157.76
Manhattan	12	1	0	14,995	2,402	0	0	0	59	0	0	347.65	17.07	22.36	387.08
Manhattan	12	2	4,701	13,563	0	0	0	0	0	0	0	385.59	30.74	28.39	444.72
Manhattan	12	3	1,390	19,190	3,026	0	0	0	0	0	0	389.77	27.55	30.29	447.61
Manhattan	12	4	1,897	6,860	5,145	0	0	0	0	0	0	262.01	22.88	22.45	307.33
Bronx	1	1	0	14,770	0	0	0	0	0	2,723	553	191.22	7.26	8.55	207.04
Bronx	1	2	0	8,892	0	0	0	0	0	2,337	0	224.73	8.05	9.65	242.44
Bronx	2	1	0	12,974	0	0	0	0	0	3,347	0	366.11	13.92	17.59	397.62
Bronx	3	1	0	17,573	0	0	0	0	0	6,720	0	399.89	13.98	15.04	428.91
Bronx	4	1	0	13,997	1,101	0	0	0	0	0	255	242.50	11.19	10.66	264.36
Bronx	4	2	0	12,169	0	0	0	0	0	0	0	373.18	12.13	16.50	401.81
Bronx	4	3	0	20,022	0	0	0	0	0	0	0	409.70	12.16	17.45	439.31
Bronx	5	1	0	17,360	751	31	0	0	0	0	0	318.70	17.16	25.56	361.43
Bronx	5	2	0	11,395	0	0	0	0	0	0	0	248.10	11.54	20.13	279.77
Bronx	5	3	0	3,485	0	0	0	0	0	286	0	270.92	11.85	20.33	303.11

Table J-2
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Winter 2005 (continued)

Borough	District	Section	High Density / High Income	High Density / Low Income	High Density / Medium Income	Low Density / High Income	Low Density I Low Income	Low Density / Medium Income	Medium Density / High Income	Medium Density / Low Income	Medium Density / Medium Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	$\begin{aligned} & \text { WASTE } \\ & \text { TONS } \end{aligned}$
Bronx	6	1	0	713	0	0	0	0	0	0	0	243.84	9.15	14.36	267.34
Bronx	6	2	0	13,121	468	0	0	0	0	1,815	0	279.87	10.96	13.85	304.69
Bronx	7	1	849	11,472	1,583	0	0	0	0	0	0	263.49	13.36	19.55	296.40
Bronx	7	3	0	13,695	1,523	0	0	0	0	0	0	245.69	21.88	26.32	293.88
Bronx	8	1	0	8,361	4,846	0	0	0	0	0	0	223.05	19.75	20.83	263.63
Bronx	8	2	7,681	0	5,185	0	0	0	0	567	0	163.41	28.97	18.83	211.21
Bronx	8	3	9,626	199	0	146	0	0	3,310	0	0	181.35	42.86	23.38	247.59
Bronx	9	1	0	5,639	2,429	0	0	1,190	0	4,964	0	276.52	9.69	11.51	297.72
Bronx	9	2	0	4,843	1,645	0	3	0	266	4,450	1,324	228.77	11.05	13.84	253.65
Bronx	9	3	0	0	12,497	0	0	0	0	0	3,703	197.81	6.06	5.36	209.23
Bronx	9	4	0	8,920	0	0	0	1,770	443	602	8,799	284.13	20.85	21.36	326.34
Bronx	10	1	0	1,392	15,856	0	0	0	2,222	897	8,696	217.44	31.97	20.23	269.64
Bronx	10	2	0	0	0	7,032	0	2,188	460	0	625	175.84	37.42	19.97	233.23
Bronx	10	3	0	275	0	3,239	0	2,547	2,733	2,008	0	157.84	30.19	17.26	205.29
Bronx	11	1	0	1,724	5,455	0	0	0	3,044	3,855	4,373	282.41	38.14	29.83	350.38
Bronx	11	2	0	4,777	3,417	1,347	0	1,191	1,821	1,673	0	209.66	25.89	19.34	254.90
Bronx	11	3	0	1,735	0	3,530	0	1,343	0	2,133	2,268	161.70	21.79	16.01	199.50
Bronx	12	1	0	2,294	0	868	0	1,693	0	3,574	2,899	173.11	15.92	18.95	207.97
Bronx	12	2	0	0	0	701	0	3,618	0	1,321	5,052	146.81	17.11	18.96	182.89
Bronx	12	3	0	5,335	1,660	859	0	0	0	1,331	5,803	167.25	18.33	20.43	206.01
Bronx	12	4	0	0	0	4,803	0	0	950	0	5,289	146.88	24.38	20.66	191.92
Bronx	12	5	0	0	0	3,265	0	1,089	0	305	3,275	160.11	21.21	21.05	202.37
Brooklyn	1	1	0	0	0	0	0	0	776	2,558	8,488	164.86	20.34	19.16	204.37
Brooklyn	1	2	0	6,704	0	0	0	0	490	3,952	2,753	221.83	17.16	15.51	254.50
Brooklyn	1	3	0	790	0	0	0	0	0	14	9,987	162.71	26.50	23.08	212.28
Brooklyn	1	4	0	2,950	0	0	0	0	0	6,783	0	344.18	27.99	10.62	382.80
Brooklyn	1	5	0	5,383	0	0	0	0	0	5,560	1,718	215.72	12.01	9.38	237.11
Brooklyn	2	1	7,447	2,341	0	0	0	0	3,108	83	178	149.82	39.16	14.75	203.73
Brooklyn	2	2	0	0	0	0	0	0	6,819	950	1,277	106.10	29.51	12.45	148.06
Brooklyn	2	3	0	0	0	0	0	0	1,994	0	7,020	112.64	16.87	11.67	141.19
Brooklyn	2	4	0	3,360	4,985	0	0	0	2,268	372	3,969	133.66	23.39	15.57	172.61
Brooklyn	3	1	0	3,782	0	0	0	0	0	8,988	803	175.60	8.56	7.28	191.44
Brooklyn	3	2	0	0	0	0	0	0	0	9,709	3,137	194.42	10.78	10.03	215.22
Brooklyn	3	3	0	0	0	0	0	0	0	10,780	2,030	240.85	14.04	13.46	268.35
Brooklyn	3	4	0	0	0	0	0	0	0	4,936	3,369	191.55	12.41	11.07	215.03
Brooklyn	3	5	0	0	0	0	0	0	0	6,139	4,470	153.91	9.56	9.07	172.54
Brooklyn	4	1	0	0	0	0	0	0	0	9,270	0	218.23	10.29	12.96	241.47
Brooklyn	4	2	0	0	0	0	0	0	0	15,811	0	299.95	17.41	20.93	338.29
Brooklyn	4	3	0	0	0	0	0	0	0	8,452	502	264.46	15.00	19.60	299.06
Brooklyn	5	1	0	0	0	0	0	435	0	7,528	2,725	245.20	16.16	18.69	280.05
Brooklyn	5	2	0	0	0	0	0	3,773	0	6,005	2,635	286.20	21.35	27.26	334.81
Brooklyn	5	3	0	2,943	0	0	0	248	0	7,581	974	186.10	12.56	14.41	213.06
Brooklyn	5	4	0	11,888	0	0	0	1,018	0	7,790	3,929	301.78	17.75	19.25	338.78
Brooklyn	6	1	0	2,851	0	97	0	0	2,679	518	2,737	77.41	18.05	10.52	105.97
Brooklyn	6	2	0	0	0	0	0	0	10,201	0	0	106.20	35.70	16.80	158.70
Brooklyn	6	3	0	0	0	0	0	0	6,310	2,101	0	106.59	28.21	14.40	149.21
Brooklyn	6	4	0	0	0	0	0	0	10,711	505	877	129.17	47.65	19.44	196.26
Brooklyn	6	5	0	0	0	0	0	0	5,267	0	2,447	119.26	35.42	15.80	170.48

Table J-2
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Winter 2005 (continued)

Borough	District	Section	High Density / High Income	High Density / Low Income	High Density / Medium Income	Low Density / High Income	Low Density I Low Income	Low Density / Medium Income	Medium Density / High Income	Medium Density / Low Income	Medium Density / Medium Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Brooklyn	7	1	0	0	1,977	783	0	0	5,033	0	4,626	149.94	36.97	21.38	208.29
Brooklyn	7	2	0	0	0	0	0	0	4	7,987	4,296	208.19	29.11	22.63	259.93
Brooklyn	7	3	0	0	0	0	0	0	0	10,038	0	189.47	23.44	24.68	237.59
Brooklyn	7	4	0	0	0	0	0	0	0	8,810	5,014	215.12	28.46	23.36	266.93
Brooklyn	8	1	0	0	2,532	0	0	0	5,068	6,384	1,892	226.67	30.45	19.72	276.84
Brooklyn	8	2	0	2,098	0	0	0	0	0	8,978	4,362	256.97	16.88	15.79	289.64
Brooklyn	8	3	0	2,318	0	0	0	0	0	4,299	999	199.48	9.01	9.68	218.17
Brooklyn	9	1	0	10,360	0	0	0	0	0	5,241	3,705	289.95	20.26	15.35	325.57
Brooklyn	9	2	0	3,871	1,605	0	0	0	0	0	2,467	255.02	18.13	13.88	287.03
Brooklyn	9	3	0	3,564	0	0	0	0	0	3,711	3,371	212.96	17.95	14.23	245.14
Brooklyn	10	1	0	0	1,910	0	0	0	2,867	0	7,575	157.83	31.10	16.94	205.87
Brooklyn	10	2	0	0	0	919	0	0	528	0	8,991	159.25	38.94	19.13	217.32
Brooklyn	10	3	1,933	1,155	3,336	249	0	0	1,772	0	6,600	175.72	41.06	21.82	238.60
Brooklyn	10	4	0	0	0	3,558	0	718	1,932	1,411	7,035	252.88	49.52	26.01	328.40
Brooklyn	11	1	0	0	0	0	0	0	0	3,430	3,643	172.01	28.86	16.18	217.06
Brooklyn	11	2	0	0	0	0	0	0	0	1,654	10,250	179.92	31.16	18.25	229.33
Brooklyn	11	3	0	0	0	0	0	1,561	0	6,329	3,611	152.79	26.47	14.92	194.17
Brooklyn	11	4	0	0	0	1,861	0	1,050	673	0	4,827	146.85	26.47	14.50	187.83
Brooklyn	11	5	0	2,102	0	24	0	0	0	872	8,589	204.64	33.72	18.15	256.52
Brooklyn	11	6	0	0	0	0	0	0	0	6,614	7,579	230.77	40.12	21.77	292.66
Brooklyn	12	1	0	3,319	2,085	0	0	487	536	5,152	5,854	218.33	28.19	14.60	261.12
Brooklyn	12	2	0	0	0	0	0	0	0	10,786	4,362	215.47	26.44	14.41	256.32
Brooklyn	12	3	0	0	0	0	0	1,319	0	3,811	5,967	243.07	23.15	14.25	280.46
Brooklyn	12	4	0	0	0	0	0	0	555	8,952	3,102	194.49	25.63	11.96	232.08
Brooklyn	13	1	0	2,020	0	0	0	1,710	0	0	7,583	151.96	17.20	12.34	181.50
Brooklyn	13	2	0	23,054	0	0	0	0	0	8,132	3,486	357.04	28.93	26.31	412.28
Brooklyn	14	1	0	16,911	5,024	0	0	0	0	769	657	440.44	20.67	20.65	481.76
Brooklyn	14	2	0	2,031	3,033	0	0	0	1,153	1,135	1,481	195.26	21.68	13.83	230.78
Brooklyn	14	3	0	0	5,025	800	0	0	4,189	771	2,291	303.18	33.69	17.75	354.62
Brooklyn	14	4	0	5,229	0	186	0	0	696	2,647	6,387	279.60	45.55	25.13	350.27
Brooklyn	15	1	0	1,777	0	0	0	0	0	3,359	5,486	209.67	30.85	15.41	255.93
Brooklyn	15	2	0	1,452	2,850	2,529	0	992	1,728	952	3,044	243.19	50.48	22.73	316.40
Brooklyn	15	3	0	0	1,438	1,293	0	1,460	499	1,196	10,632	222.02	46.39	24.88	293.29
Brooklyn	15	4	0	2,199	0	4,163	0	0	0	0	7,158	179.54	40.74	20.63	240.91
Brooklyn	15	5	0	0	0	0	0	860	0	2,237	5,289	123.52	23.44	12.62	159.58
Brooklyn	16	1	0	4,764	0	0	0	0	0	9,411	0	238.40	10.97	9.83	259.21
Brooklyn	16	2	0	4,581	0	0	0	0	0	10,493	1,722	292.30	12.35	12.43	317.08
Brooklyn	17	1	0	0	0	0	0	0	0	10,206	1,077	198.42	13.04	12.74	224.20
Brooklyn	17	2	0	0	0	640	0	867	0	0	7,066	156.77	12.46	11.35	180.59
Brooklyn	17	3	0	0	0	1,680	0	2,464	0	2,710	5,265	212.31	23.85	22.05	258.21
Brooklyn	17	4	0	6,601	0	0	0	0	0	629	4,426	250.39	11.82	11.47	273.69
Brooklyn	17	5	0	2,360	0	4,989	0	1,824	0	3,467	1,971	211.85	25.23	20.35	257.43
Brooklyn	18	1	0	1,589	0	4,950	0	818	807	0	1,515	136.25	18.34	13.68	168.27
Brooklyn	18	2	0	0	0	4,914	0	3,619	3	0	588	178.98	23.26	19.62	221.85
Brooklyn	18	3	0	1,616	0	5,392	0	2,559	1,337	0	0	141.75	19.52	14.90	176.17
Brooklyn	18	4	0	0	0	7,177	0	721	3,215	0	0	190.65	38.37	19.01	248.03
Brooklyn	18	5	0	1,249	0	5,830	0	0	0	0	2,028	137.22	22.83	14.69	174.73

Table J-2
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Winter 2005 (continued)

Borough	District	Section	High Density / High Income	High Density / Low Income	High Density / Medium Income	Low Density / High Income	Low Density / Low Income	Low Density / Medium Income	Medium Density / High Income	Medium Density I Low Income	Medium Density / Medium Income	REFUSE TONS	PAPER TONS	$\begin{gathered} \hline \text { MGP } \\ \text { TONS } \end{gathered}$	WASTE TONS
Brooklyn	18	6	0	0	0	4,808	0	84	1,547	0	5,305	224.86	30.63	17.78	273.27
Brooklyn	18	7	0	0	0	7,503	0	463	0	0	0	154.99	36.01	16.84	207.84
Queens	1	1	0	0	0	0	0	0	2,808	1,768	4,768	138.28	24.44	14.98	177.70
Queens	1	2	0	0	0	0	44	713	459	0	11,649	174.33	31.19	17.35	222.87
Queens	1	3	1,552	1,552	4,491	0	0	0	0	302	8,736	219.46	37.84	24.49	281.79
Queens	1	4	0	0	671	0	0	0	0	0	14,547	161.29	30.75	18.46	210.50
Queens	1	5	0	1,661	1,701	0	0	627	0	791	10,625	202.79	38.24	22.00	263.03
Queens	1	6	3,252	6,102	412	0	0	191	0	103	2,781	143.92	16.77	10.33	171.03
Queens	2	1	0	0	2,076	0	0	2,866	0	0	9,565	235.50	35.62	22.13	293.24
Queens	2	2	0	454	9,902	0	0	0	698	0	5,749	190.33	32.93	23.07	246.33
Queens	2	3	536	0	0	0	0	468	26	0	10,962	185.49	31.68	18.00	235.17
Queens	3	1	0	0	1,569	5,730	0	6,881	0	0	5,858	427.24	40.70	35.23	503.18
Queens	3	2	2,194	0	15,976	0	0	0	0	0	2,513	307.38	49.08	29.57	386.02
Queens	3	3	0	0	2,483	0	0	0	0	952	10,105	362.80	20.26	25.67	408.73
Queens	4	1	0	0	9,492	0	0	1,501	0	0	8,394	289.69	41.28	23.99	354.96
Queens	4	2	0	0	4,281	0	0	0	0	3,286	5,422	306.26	33.89	21.91	362.06
Queens	4	3	0	0	4,692	0	0	851	0	0	14,214	374.65	26.39	25.67	426.72
Queens	5	1	0	0	0	6,844	0	1,771	0	0	3,904	180.33	43.04	24.78	248.15
Queens	5	2	0	0	0	0	0	0	0	0	10,415	209.60	38.92	24.90	273.42
Queens	5	3	0	0	0	0	0	0	0	6,305	4,884	210.44	28.00	24.24	262.67
Queens	5	4	0	0	0	5,885	0	2,169	0	393	8,102	232.50	51.83	30.26	314.60
Queens	5	5	0	0	0	7,986	0	2,622	724	0	3,507	234.57	53.58	26.01	314.15
Queens	6	1	15,396	1,621	7,053	0	0	0	890	0	2,838	313.39	54.46	29.51	397.35
Queens	6	2	11,560	0	3,041	4,161	0	0	5,713	0	1,934	341.39	79.88	37.62	458.89
Queens	7	1	0	2,636	17,487	0	0	498	0	0	2,326	308.25	45.35	17.91	371.51
Queens	7	2	0	0	0	4,511	0	2,695	0	0	0	115.28	26.30	11.88	153.46
Queens	7	3	0	0	11,018	0	0	0	3,212	0	1,441	236.96	37.87	16.07	290.89
Queens	7	4	0	0	0	1,902	0	1,619	0	0	4,387	134.39	27.10	12.63	174.11
Queens	7	5	0	0	0	6,030	0	1,833	0	0	1,242	153.06	30.37	16.85	200.28
Queens	7	6	0	0	0	6,798	0	0	0	0	0	145.78	33.70	16.36	195.84
Queens	7	7	0	0	0	3,338	0	0	3,313	0	740	162.00	39.76	17.60	219.36
Queens	7	8	0	0	0	4,894	0	0	10,275	94	0	136.38	30.50	14.81	181.68
Queens	8	1	0	0	0	4,256	0	0	4,044	0	1,861	134.71	31.75	12.78	179.24
Queens	8	2	1,339	0	0	1,969	0	0	5,272	0	6,584	260.66	35.08	19.86	315.60
Queens	8	3	0	0	2,745	1,955	0	0	7,560	2,788	5,894	206.08	33.44	16.52	256.04
Queens	8	4	0	0	0	5,154	0	0	5,011	0	0	183.79	40.08	18.01	241.88
Queens	9	1	0	0	0	888	419	8,605	0	0	667	206.38	27.93	22.43	256.73
Queens	9	2	0	0	0	808	0	6,860	929	0	1,304	185.24	29.58	20.14	234.97
Queens	9	3	0	0	3,571	1,193	0	2,349	2,868	0	3,141	196.65	31.69	19.97	248.31
Queens	9	4	2,056	0	2,218	0	0	5,920	996	0	3,725	287.98	38.31	25.25	351.54
Queens	10	1	0	0	0	3,212	0	3,677	0	28	5,615	194.02	32.73	21.63	248.38
Queens	10	2	0	0	0	5,471	0	7,826	0	0	418	222.23	31.31	26.43	279.97
Queens	10	3	0	0	0	4,979	0	5,268	239	0	0	242.23	29.42	27.39	299.05
Queens	10	4	0	0	0	6,088	0	0	0	0	0	133.07	29.20	13.81	176.08
Queens	11	1	0	0	0	4,514	0	0	3,252	0	0	120.15	32.56	15.09	167.80
Queens	11	2	0	0	0	2,723	0	0	3,139	0	0	94.63	25.28	11.58	131.49
Queens	11	3	0	0	0	5,714	0	0	0	0	119	91.99	25.87	11.78	129.64
Queens	11	4	0	0	0	5,732	0	0	1,647	0	0	113.13	30.36	12.92	156.41
Queens	11	5	0	0	0	3,842	0	0	6,332	0	2,518	120.05	32.43	13.43	165.91

Table J-2
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Winter 2005 (continued)

Borough	District	Section	High Density / High Income	High Density / Low Income	High Density / Medium Income	Low Density / High Income	Low Density / Low Income	Low Density / Medium Income	Medium Density / High Income	Medium Density / Low Income	Medium Density / Medium Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Queens	11	6	0	0	0	2,922	0	980	2,582	0	0	97.35	26.96	11.60	135.91
Queens	12	1	0	4,511	4,549	450	0	1,695	0	1,501	2,055	307.41	22.48	19.06	348.95
Queens	12	2	0	0	0	1,907	0	5,598	0	1,700	0	199.88	20.96	19.49	240.33
Queens	12	3	0	0	0	3,115	0	2,903	0	2,684	0	158.30	15.36	14.85	188.51
Queens	12	4	0	0	0	2,912	0	6,092	0	835	0	188.94	21.70	17.82	228.46
Queens	12	5	0	824	0	3,154	0	2,186	495	0	0	181.71	20.37	17.92	220.00
Queens	12	6	0	0	0	4,835	0	5,501	0	0	681	196.32	22.20	19.39	237.92
Queens	12	7	0	0	6,246	6,134	0	2,005	0	0	0	168.77	19.76	16.52	205.06
Queens	13	1	1,926	0	0	7,069	0	0	3,550	0	0	122.06	31.39	15.30	168.75
Queens	13	2	0	0	0	7,652	0	0	1,682	78	0	140.87	28.70	16.07	185.64
Queens	13	3	0	0	0	7,767	0	0	0	0	0	187.82	25.01	20.82	233.65
Queens	13	4	0	0	0	6,166	0	386	0	0	0	153.56	19.83	16.64	190.03
Queens	13	5	0	0	0	5,849	0	0	0	0	0	119.95	19.54	13.78	153.26
Queens	13	6	0	0	0	6,655	0	0	0	0	0	112.93	16.21	12.26	141.40
Queens	13	7	0	0	0	7,543	0	0	0	0	0	158.70	21.49	18.92	199.10
Queens	13	8	0	0	0	7,654	216	0	0	0	0	157.95	19.08	15.65	192.68
Queens	14	1	0	0	0	5,228	0	0	0	0	3,780	176.40	27.05	12.11	215.56
Queens	14	2	0	9,759	4,921	2,014	0	1,004	0	3,541	0	189.78	20.97	18.00	228.75
Queens	14	3	0	0	0	0	0	3,019	0	6,530	1,884	205.86	18.85	12.93	237.64
Staten Island	1	1	355	0	0	3,697	0	1,841	3,444	6,011	1,364	312.49	43.73	26.40	382.62
Staten Island	1	2	0	0	2,931	4,937	0	3,102	1,605	0	3,925	237.95	43.72	25.00	306.67
Staten Island	1	3	0	579	0	6,106	337	3,456	0	0	842	289.96	50.54	29.79	370.30
Staten Island	1	4	0	0	0	12,756	0	760	417	1,032	1,473	320.65	61.75	33.89	416.29
Staten Island	2	1	0	0	0	6,659	0	1,565	0	1,353	2,679	238.98	46.28	25.94	311.20
Staten Island	2	2	0	0	0	9,965	0	0	0	0	0	222.03	45.47	24.26	291.76
Staten Island	2	3	0	104	0	10,104	0	0	0	0	981	219.23	44.44	19.87	283.54
Staten Island	2	4	0	0	0	11,126	0	0	2,716	0	0	265.95	53.60	26.32	345.87
Staten Island	3	1	0	0	0	7,325	0	3,672	0	0	0	155.23	37.24	17.45	209.92
Staten Island	3	2	0	0	0	6,961	0	0	0	0	0	168.84	41.87	19.61	230.33
Staten Island	3	3	0	0	0	6,156	0	0	0	0	0	145.93	35.49	15.73	197.15
Staten Island	3	4	0	0	0	6,252	0	0	0	0	0	140.82	34.24	16.39	191.45
Staten Island	3	5	0	0	0	8,609	0	0	0	0	0	200.62	43.59	21.45	265.66
Staten Island	3	6	0	0	0	8,394	0	0	0	0	0	176.87	34.76	17.26	228.89
Staten Island	3	7	0	0	0	3,267	0	15	0	0	0	124.48	27.82	13.02	165.33
Staten Island	3	8	0	0	0	4,657	0	0	0	0	0	117.34	24.78	11.94	154.06
			530,415	604,800	297,498	412,740	1,019	159,269	189,114	389,301	545,231	48,532.86	6,863.60	4,284.72	59,681.18

Table J-3
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Spring 2005

Housing Units															
Borough	District	Section	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Density/ Medium Income	Low Densityl Low Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Manhattan	1	1	5,087	2,520	0	0	0	0	0	0	0	169.60	42.23	22.35	234.18
Manhattan	2	1	8,352	2,571	3,589	2,016	0	0	0	0	0	187.85	35.06	17.56	240.47
Manhattan	2	2	21,168	0	0	0	0	0	0	0	0	207.22	37.33	18.76	263.32
Manhattan	2	3	18,189	0	0	0	0	0	0	0	0	194.44	74.09	30.27	298.80
Manhattan	3	1	37	1,710	19,069	0	0	0	0	0	0	215.14	14.48	9.45	239.07
Manhattan	3	2	0	2,981	10,347	0	0	0	0	0	0	165.80	16.63	12.39	194.82
Manhattan	3	3	0	14,396	5,534	0	0	0	0	0	0	155.49	20.00	15.14	190.64
Manhattan	3	4	6,578	5,803	4,909	0	0	0	0	0	0	206.89	32.76	21.92	261.57
Manhattan	4	1	11,461	0	1,843	0	0	0	0	0	0	133.41	36.48	19.95	189.85
Manhattan	4	2	9,949	5,000	0	371	0	22	0	0	0	122.57	49.59	18.37	190.53
Manhattan	4	3	17,905	5,452	1,666	0	0	0	0	0	0	260.98	49.33	31.05	341.37
Manhattan	5	1	12,669	1,668	0	269	0	0	0	0	0	181.36	37.25	17.36	235.97
Manhattan	5	2	14,692	0	1,232	129	0	0	0	0	0	180.39	37.59	14.03	232.02
Manhattan	6	1	25,506	6,881	0	0	0	0	0	0	0	279.04	94.50	37.24	410.77
Manhattan	6	2	32,272	0	0	297	0	0	0	0	0	302.00	66.63	34.80	403.43
Manhattan	6	3	26,296	0	0	0	0	0	0	0	0	282.79	65.68	29.61	378.08
Manhattan	7	1	24,808	4,185	0	0	0	0	0	0	0	315.50	67.36	24.39	407.26
Manhattan	7	2	24,351	0	0	0	0	0	0	0	0	269.34	69.09	30.81	369.23
Manhattan	7	3	21,913	0	0	0	0	0	0	0	0	304.56	90.72	31.80	427.09
Manhattan	7	4	18,332	5,098	0	0	0	0	0	0	0	262.78	54.01	31.57	348.36
Manhattan	7	5	13,637	4,264	5,197	60	0	0	0	0	0	248.95	59.98	26.46	335.39
Manhattan	8	1	25,097	0	0	0	0	0	0	0	0	304.76	63.95	24.78	393.50
Manhattan	8	2	22,704	0	2,980	0	0	0	0	0	0	335.80	85.21	30.92	451.93
Manhattan	8	3	39,777	0	0	0	0	0	0	0	0	321.32	86.58	31.71	439.62
Manhattan	8	4	12,887	0	0	0	0	0	0	0	0	276.40	84.34	30.62	391.36
Manhattan	8	5	32,232	0	0	0	0	0	0	0	0	324.98	78.09	38.23	441.30
Manhattan	9	1	5,781	2,023	1,515	0	0	7	0	0	0	157.59	33.87	14.61	206.06
Manhattan	9	2	0	4,631	12,578	0	0	0	0	0	0	259.66	14.90	14.06	288.62
Manhattan	9	3	0	0	14,039	0	0	2,314	0	0	0	326.75	14.87	16.71	358.33
Manhattan	10	1	0	0	13,149	0	0	4,180	0	0	0	289.09	20.56	16.43	326.08
Manhattan	10	3	0	0	18,604	0	0	0	0	0	0	195.90	10.06	9.03	214.99
Manhattan	11	1	3,045	0	16,973	0	0	1,548	0	0	0	242.16	22.20	17.67	282.02
Manhattan	11	2	0	0	10,680	0	0	2,243	0	0	0	208.62	10.72	8.28	227.62
Manhattan	11	3	0	0	10,141	0	0	3,046	0	0	0	146.00	7.22	4.31	157.53
Manhattan	12	1	0	2,402	14,995	59	0	0	0	0	0	355.25	19.64	22.20	397.09
Manhattan	12	2	4,701	0	13,563	0	0	0	0	0	0	409.59	30.87	29.16	469.62
Manhattan	12	3	1,390	3,026	19,190	0	0	0	0	0	0	397.40	27.19	30.00	454.59
Manhattan	12	4	1,897	5,145	6,860	0	0	0	0	0	0	273.53	22.48	22.00	318.00
Bronx	1	1	0	0	14,770	0	553	2,723	0	0	0	205.71	7.83	9.74	223.29
Bronx	1	2	0	0	8,892	0	0	2,337	0	0	0	235.39	8.73	9.43	253.55
Bronx	2	1	0	0	12,974	0	0	3,347	0	0	0	378.60	13.68	18.33	410.61
Bronx	3	1	0	0	17,573	0	0	6,720	0	0	0	412.35	14.25	16.71	443.31
Bronx	4	1	0	1,101	13,997	0	255	0	0	0	0	255.95	12.31	11.74	280.00
Bronx	4	2	0	0	12,169	0	0	0	0	0	0	381.38	11.34	15.96	408.68
Bronx	4	3	0	0	20,022	0	0	0	0	0	0	417.57	12.58	19.05	449.20
Bronx	5	1	0	751	17,360	0	0	0	31	0	0	327.63	16.47	26.39	370.49
Bronx	5	2	0	0	11,395	0	0	0	0	0	0	248.12	13.39	21.00	282.51
Bronx	5	3	0	0	3,485	0	0	286	0	0	0	279.25	12.35	21.95	313.55

Table J-3
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Spring 2005 (continued)

Borough	District	Section	High Densityl High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Densityl Low Income	REFUSE TONS	$\begin{aligned} & \text { PAPER } \\ & \text { TONS } \end{aligned}$	$\begin{aligned} & \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Bronx	6	1	0	0	713	0	0	0	0	0	0	253.28	9.14	16.33	278.74
Bronx	6	2	0	468	13,121	0	0	1,815	0	0	0	295.21	12.30	15.51	323.02
Bronx	7	1	849	1,583	11,472	0	0	0	0	0	0	274.97	15.70	20.50	311.18
Bronx	7	3	0	1,523	13,695	0	0	0	0	0	0	247.91	22.62	28.57	299.09
Bronx	8	1	0	4,846	8,361	0	0	0	0	0	0	229.24	20.21	21.45	270.90
Bronx	8	2	7,681	5,185	0	0	0	567	0	0	0	175.61	30.15	21.71	227.46
Bronx	8	3	9,626	0	199	3,310	0	0	146	0	0	201.02	44.45	24.39	269.86
Bronx	9	1	0	2,429	5,639	0	0	4,964	0	1,190	0	303.35	10.31	13.18	326.84
Bronx	9	2	0	1,645	4,843	266	1,324	4,450	0	0	3	256.97	11.07	15.52	283.57
Bronx	9	3	0	12,497	0	0	3,703	0	0	0	0	222.47	6.09	5.92	234.47
Bronx	9	4	0	0	8,920	443	8,799	602	0	1,770	0	335.96	22.12	25.50	383.59
Bronx	10	1	0	15,856	1,392	2,222	8,696	897	0	0	0	264.70	33.86	22.07	320.63
Bronx	10	2	0	0	0	460	625	0	7,032	2,188	0	236.12	38.87	22.72	297.71
Bronx	10	3	0	0	275	2,733	0	2,008	3,239	2,547	0	211.23	29.90	19.35	260.48
Bronx	11	1	0	5,455	1,724	3,044	4,373	3,855	0	0	0	330.40	40.27	33.35	404.03
Bronx	11	2	0	3,417	4,777	1,821	0	1,673	1,347	1,191	0	240.97	27.13	20.60	288.71
Bronx	11	3	0	0	1,735	0	2,268	2,133	3,530	1,343	0	217.04	23.20	18.96	259.21
Bronx	12	1	0	0	2,294	0	2,899	3,574	868	1,693	0	194.29	18.69	21.97	234.96
Bronx	12	2	0	0	0	0	5,052	1,321	701	3,618	0	181.58	17.96	21.27	220.81
Bronx	12	3	0	1,660	5,335	0	5,803	1,331	859	0	0	204.39	20.33	23.53	248.24
Bronx	12	4	0	0	0	950	5,289	0	4,803	0	0	182.04	25.53	23.86	231.42
Bronx	12	5	0	0	0	0	3,275	305	3,265	1,089	0	205.79	21.78	24.02	251.58
Brooklyn	1	1	0	0	0	776	8,488	2,558	0	0	0	178.71	21.00	22.44	222.15
Brookly	1	2	0	0	6,704	490	2,753	3,952	0	0	0	235.66	17.24	16.95	269.85
Brookly	1	3	0	0	790	0	9,987	14	0	0	0	174.67	26.67	25.18	226.51
Brookly	1	4	0	0	2,950	0	0	6,783	0	0	0	360.09	24.42	10.25	394.77
Brookly	1	5	0	0	5,383	0	1,718	5,560	0	0	0	235.53	11.56	10.77	257.86
Brookly	2	1	7,447	0	2,341	3,108	178	83	0	0	0	159.15	38.91	15.74	213.80
Brookly	2	2	0	0	0	6,819	1,277	950	0	0	0	117.05	31.31	13.57	161.93
Brooklyn	2	3	0	0	0	1,994	7,020	0	0	0	0	128.60	17.32	10.89	156.81
Brookly	2	4	0	4,985	3,360	2,268	3,969	372	0	0	0	139.27	23.35	16.19	178.81
Brookly	3	1	0	0	3,782	0	803	8,988	0	0	0	186.40	9.25	9.00	204.65
Brookly	3	2	0	0	0	0	3,137	9,709	0	0	0	215.34	11.73	12.33	239.40
Brookly	3	3	0	0	0	0	2,030	10,780	0	0	0	266.39	14.06	15.48	295.94
Brookly	3	4	0	0	0	0	3,369	4,936	0	0	0	215.60	12.69	13.19	241.49
Brookly	3	5	0	0	0	0	4,470	6,139	0	0	0	168.04	9.49	9.74	187.27
Brookly	4	1	0	0	0	0	0	9,270	0	0	0	233.36	11.45	15.11	259.92
Brookly	4	2	0	0	0	0	0	15,811	0	0	0	334.17	17.61	23.97	375.75
Brookly	4	3	0	0	0	0	502	8,452	0	0	0	289.51	15.72	21.88	327.12
Brooklyn	5	1	0	0	0	0	2,725	7,528	0	435	0	281.11	18.15	23.38	322.64
Brookly	5	2	0	0	0	0	2,635	6,005	0	3,773	0	330.29	23.90	31.84	386.04
Brookly	5	3	0	0	2,943	0	974	7,581	0	248	0	205.81	13.75	16.30	235.86
Brookly	5	4	0	0	11,888	0	3,929	7,790	0	1,018	0	337.97	19.16	21.65	378.78
Brookly	6	1	0	0	2,851	2,679	2,737	518	97	0	0	86.88	17.61	11.60	116.08
Brooklyn	6	2	0	0	0	10,201	0	0	0	0	0	123.49	34.95	18.86	177.30
Brooklyn	6	3	0	0	0	6,310	0	2,101	0	0	0	119.23	27.56	13.91	160.70
Brooklyn	6	4	0	0	0	10,711	877	505	0	0	0	138.87	46.85	19.50	205.22
Brooklyn	6	5	0	0	0	5,267	2,447	0	0	0	0	132.74	36.31	18.20	187.25

Table J-3
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Spring 2005 (continued)

Borough	District	Section	High Densityl High Income	High Densityl Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Densityl Medium Income	Low Density/ Low Income	$\begin{gathered} \text { REFUSE } \\ \text { TONS } \end{gathered}$	PAPER TONS	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Brooklyn	7	1	0	1,977	0	5,033	4,626	0	783	0	0	168.51	37.18	23.60	229.29
Brooklyn	7	2	0	0	0	4	4,296	7,987	0	0	0	222.03	28.36	25.85	276.24
Brooklyn	7	3	0	0	0	0	0	10,038	0	0	0	216.25	23.32	26.79	266.36
Brooklyn	7	4	0	0	0	0	5,014	8,810	0	0	0	236.33	27.75	25.48	289.56
Brooklyn	8	1	0	2,532	0	5,068	1,892	6,384	0	0	0	242.43	32.50	21.32	296.24
Brooklyn	8	2	0	0	2,098	0	4,362	8,978	0	0	0	277.28	17.41	17.11	311.80
Brooklyn	8	3	0	0	2,318	0	999	4,299	0	0	0	209.25	8.48	10.06	227.79
Brooklyn	9	1	0	0	10,360	0	3,705	5,241	0	0	0	314.99	20.61	16.03	351.63
Brooklyn	9	2	0	1,605	3,871	0	2,467	0	0	0	0	274.15	18.87	14.82	307.84
Brooklyn	9	3	0	0	3,564	0	3,371	3,711	0	0	0	247.42	19.21	15.90	282.54
Brooklyn	10	1	0	1,910	0	2,867	7,575	0	0	0	0	177.78	32.36	18.77	228.91
Brooklyn	10	2	0	0	0	528	8,991	0	919	0	0	177.12	39.15	21.81	238.07
Brooklyn	10	3	1,933	3,336	1,155	1,772	6,600	0	249	0	0	194.00	40.86	23.33	258.19
Brooklyn	10	4	0	0	0	1,932	7,035	1,411	3,558	718	0	288.00	50.98	30.15	369.12
Brooklyn	11	1	0	0	0	0	3,643	3,430	0	0	0	188.82	28.75	17.77	235.34
Brooklyn	11	2	0	0	0	0	10,250	1,654	0	0	0	200.97	32.57	21.72	255.27
Brooklyn	11	3	0	0	0	0	3,611	6,329	0	1,561	0	174.05	26.54	16.02	216.61
Brooklyn	11	4	0	0	0	673	4,827	0	1,861	1,050	0	164.88	28.27	17.27	210.41
Brooklyn	11	5	0	0	2,102	0	8,589	872	24	0	0	219.28	34.63	20.10	274.01
Brooklyn	11	6	0	0	0	0	7,579	6,614	0	0	0	258.80	39.06	25.07	322.93
Brooklyn	12	1	0	2,085	3,319	536	5,854	5,152	0	487	0	236.76	26.70	16.13	279.60
Brooklyn	12	2	0	0	0	0	4,362	10,786	0	0	0	242.75	27.53	17.33	287.61
Brooklyn	12	3	0	0	0	0	5,967	3,811	0	1,319	0	266.99	23.13	16.28	306.40
Brooklyn	12	4	0	0	0	555	3,102	8,952	0	0	0	227.64	25.71	15.06	268.41
Brooklyn	13	1	0	0	2,020	0	7,583	0	0	1,710	0	168.03	18.83	14.50	201.37
Brooklyn	13	2	0	0	23,054	0	3,486	8,132	0	0	0	394.81	29.53	31.22	455.56
Brooklyn	14	1	0	5,024	16,911	0	657	769	0	0	0	472.08	19.65	21.26	512.99
Brooklyn	14	2	0	3,033	2,031	1,153	1,481	1,135	0	0	0	216.70	22.30	16.84	255.85
Brooklyn	14	3	0	5,025	0	4,189	2,291	771	800	0	0	344.07	34.56	19.80	398.43
Brooklyn	14	4	0	0	5,229	696	6,387	2,647	186	0	0	316.37	45.76	29.10	391.23
Brooklyn	15	1	0	0	1,777	0	5,486	3,359	0	0	0	231.89	30.15	17.74	279.78
Brooklyn	15	2	0	2,850	1,452	1,728	3,044	952	2,529	992	0	277.91	52.71	28.21	358.84
Brooklyn	15	3	0	1,438	0	499	10,632	1,196	1,293	1,460	0	258.89	46.21	27.16	332.26
Brooklyn	15	4	0	0	2,199	0	7,158	0	4,163	0	0	218.21	40.62	24.08	282.91
Brooklyn	15	5	0	0	0	0	5,289	2,237	0	860	0	141.11	22.25	14.29	177.66
Brooklyn	16	1	0	0	4,764	0	0	9,411	0	0	0	256.78	11.92	12.17	280.88
Brooklyn	16	2	0	0	4,581	0	1,722	10,493	0	0	0	292.11	11.88	12.48	316.46
Brooklyn	17	1	0	0	0	0	1,077	10,206	0	0	0	232.52	12.52	14.09	259.13
Brooklyn	17	2	0	0	0	0	7,066	0	640	867	0	185.89	14.30	14.38	214.57
Brooklyn	17	3	0	0	0	0	5,265	2,710	1,680	2,464	0	255.99	26.28	26.84	309.11
Brooklyn	17	4	0	0	6,601	0	4,426	629	0	0	0	280.84	12.55	12.53	305.91
Brooklyn	17	5	0	0	2,360	0	1,971	3,467	4,989	1,824	0	253.48	28.63	25.93	308.05
Brooklyn	18	1	0	0	1,589	807	1,515	0	4,950	818	0	178.24	18.38	16.20	212.82
Brooklyn	18	2	0	0	0	3	588	0	4,914	3,619	0	222.53	23.90	23.74	270.17
Brooklyn	18	3	0	0	1,616	1,337	0	0	5,392	2,559	0	166.24	19.56	17.32	203.12
Brooklyn	18	4	0	0	0	3,215	0	0	7,177	721	0	241.80	39.88	24.11	305.79
Brooklyn	18	5	0	0	1,249	0	2,028	0	5,830	0	0	165.94	24.91	18.43	209.28
Brooklyn	18	6	0	0	0	1,547	5,305	-	4,808	84	0	274.40	32.21	22.72	329.33

Table J-3
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Spring 2005 (continued)

Borough	District	Section	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Density/ Low Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Brooklyn	18	7	0	0	0	0	0	0	7,503	463	0	204.96	37.73	21.81	264.50
Queens	1	1	0	0	0	2,808	4,768	1,768	0	0	0	151.63	24.71	16.15	192.50
Queens	1	2	0	0	0	459	11,649	0	0	713	44	194.74	28.98	18.00	241.72
Queens	1	3	1,552	4,491	1,552	0	8,736	302	0	0	0	232.41	38.92	26.50	297.83
Queens	1	4	0	671	0	0	14,547	0	0	0	0	167.69	29.66	20.79	218.14
Queens	1	5	0	1,701	1,661	0	10,625	791	0	627	0	230.53	36.20	22.94	289.67
Queens	1	6	3,252	412	6,102	0	2,781	103	0	191	0	157.43	16.14	10.34	183.91
Queens	2	1	0	2,076	0	0	9,565	0	0	2,866	0	265.67	38.98	23.95	328.61
Queens	2	2	0	9,902	454	698	5,749	0	0	0	0	202.62	32.90	24.87	260.39
Queens	2	3	536	0	0	26	10,962	0	0	468	0	200.25	32.32	20.72	253.29
Queens	3	1	0	1,569	0	0	5,858	0	5,730	6,881	0	521.87	39.86	38.51	600.23
Queens	3	2	2,194	15,976	0	0	2,513	0	0	0	0	329.17	47.36	30.93	407.45
Queens	3	3	0	2,483	0	0	10,105	952	0	0	0	400.26	21.45	31.23	452.94
Queens	4	1	0	9,492	0	0	8,394	0	0	1,501	0	314.49	40.48	26.23	381.20
Queens	4	2	0	4,281	0	0	5,422	3,286	0	0	0	326.93	34.34	24.84	386.10
Queens	4	3	0	4,692	0	0	14,214	0	0	851	0	418.75	25.77	28.03	472.55
Queens	5	1	0	0	0	0	3,904	0	6,844	1,771	0	213.44	42.44	29.08	284.95
Queens	5	2	0	0	0	0	10,415	0	0	0	0	234.16	36.02	27.43	297.61
Queens	5	3	0	0	0	0	4,884	6,305	0	0	0	225.60	27.53	25.90	279.04
Queens	5	4	0	0	0	0	8,102	393	5,885	2,169	0	279.88	52.32	35.23	367.43
Queens	5	5	0	0	0	724	3,507	0	7,986	2,622	0	293.70	52.57	29.83	376.10
Queens	6	1	15,396	7,053	1,621	890	2,838	0	0	0	0	345.46	55.69	32.46	433.60
Queens	6	2	11,560	3,041	0	5,713	1,934	0	4,161	0	0	399.47	78.05	42.44	519.96
Queens	7	1	0	17,487	2,636	0	2,326	0	0	498	0	332.57	43.31	19.49	395.37
Queens	7	2	0	0	0	0	0	0	4,511	2,695	0	155.72	26.65	13.53	195.90
Queens	7	3	0	11,018	0	3,212	1,441	0	0	0	0	266.00	38.03	17.75	321.78
Queens	7	4	0	0	0	0	4,387	0	1,902	1,619	0	169.87	27.57	14.86	212.30
Queens	7	5	0	0	0	0	1,242	0	6,030	1,833	0	190.85	31.06	19.24	241.15
Queens	7	6	0	0	0	0	0	0	6,798	0	0	205.55	34.10	19.24	258.89
Queens	7	7	0	0	0	3,313	740	0	3,338	0	0	221.13	39.49	20.22	280.84
Queens	7	8	0	0	0	10,275	0	94	4,894	0	0	176.44	31.54	17.51	225.49
Queens	8	1	0	0	0	4,044	1,861	0	4,256	0	0	171.77	33.22	16.50	221.49
Queens	8	2	1,339	0	0	5,272	6,584	0	1,969	0	0	327.40	39.06	25.32	391.78
Queens	8	3	0	2,745	0	7,560	5,894	2,788	1,955	0	0	242.81	32.62	19.83	295.25
Queens	8	4	0	0	0	5,011	0	0	5,154	0	0	234.83	39.97	22.49	297.29
Queens	9	1	0	0	0	0	667	0	888	8,605	419	260.93	27.78	24.78	313.49
Queens	9	2	0	0	0	929	1,304	0	808	6,860	0	232.07	29.39	22.35	283.81
Queens	9	3	0	3,571	0	2,868	3,141	0	1,193	2,349	0	249.75	32.89	23.99	306.62
Queens	9	4	2,056	2,218	0	996	3,725	0	0	5,920	0	343.00	40.03	30.74	413.77
Queens	10	1	0	0	0	0	5,615	28	3,212	3,677	0	242.91	32.87	25.02	300.79
Queens	10	2	0	0	0	0	418	0	5,471	7,826	0	296.68	34.61	33.72	365.01
Queens	10	3	0	0	0	239	0	0	4,979	5,268	0	342.45	32.06	35.65	410.17
Queens	10	4	0	0	0	0	0	0	6,088	0	0	172.71	29.46	16.20	218.36
Queens	11	1	0	0	0	3,252	0	0	4,514	0	0	152.17	31.61	18.43	202.20
Queens	11	2	0	0	0	3,139	0	0	2,723	0	0	137.03	24.80	13.06	174.89
Queens	11	3	0	0	0	0	119	0	5,714	0	0	136.78	26.87	13.72	177.37
Queens	11	4	0	0	0	1,647	0	0	5,732	0	0	158.68	31.66	15.39	205.74
Queens	11	5	0	0	0	6,332	2,518	0	3,842	0	0	161.70	35.85	16.92	214.48

Table J-3
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Spring 2005 (continued)

Borough	District	Section	High Densityl High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Income	Low Densityl Low Income	$\begin{gathered} \hline \text { REFUSE } \\ \text { TONS } \end{gathered}$	$\begin{gathered} \hline \text { PAPER } \\ \text { TONS } \end{gathered}$	$\begin{aligned} & \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Queens	11	6	0	0	0	2,582	0	0	2,922	980	0	129.71	27.48	13.97	171.17
Queens	12	1	0	4,549	4,511	0	2,055	1,501	450	1,695	0	362.23	23.96	23.04	409.23
Queens	12	2	0	0	0	0	0	1,700	1,907	5,598	0	259.21	22.18	24.35	305.74
Queens	12	3	0	0	0	0	0	2,684	3,115	2,903	0	210.37	16.42	18.25	245.03
Queens	12	4	0	0	0	0	0	835	2,912	6,092	0	259.26	22.48	22.42	304.16
Queens	12	5	0	0	824	495	0	0	3,154	2,186	0	248.95	22.51	22.50	293.97
Queens	12	6	0	0	0	0	681	0	4,835	5,501	0	270.95	23.57	25.32	319.84
Queens	12	7	0	6,246	0	0	0	0	6,134	2,005	0	237.31	21.81	21.32	280.44
Queens	13	1	1,926		0	3,550	0	0	7,069	0	0	180.01	33.61	19.82	233.44
Queens	13	2	0	0	0	1,682	0	78	7,652	0	0	206.10	30.38	20.81	257.29
Queens	13	3	0	0	0	0	0	0	7,767	0	0	268.39	27.22	27.56	323.17
Queens	13	4	0	0	0	0	0	0	6,166	386	0	225.16	19.62	22.09	266.87
Queens	13	5	0		0	0	0	0	5,849	0	0	182.50	21.16	18.61	222.27
Queens	13	6	0	0	0	0	0	0	6,655	0	0	168.14	17.92	17.19	203.25
Queens	13	7	0	,	0	0	0	0	7,543	0	0	216.10	23.29	25.05	264.45
Queens	13	8	0	0	0	0	0	0	7,654	0	216	227.61	19.86	20.52	267.99
Queens	14	1	0	0	0	0	3,780	0	5,228	0	0	251.01	29.09	16.40	296.50
Queens	14	2	0	4,921	9,759	0	0	3,541	2,014	1,004	0	244.58	21.23	21.53	287.33
Queens	14	3	0	,	0	0	1,884	6,530	0	3,019	0	244.66	19.61	16.50	280.77
Staten Island	1	1	355	0	0	3,444	1,364	6,011	3,697	1,841	0	392.00	46.29	31.50	469.79
Staten Island	1	2	0	2,931	0	1,605	3,925	0	4,937	3,102	0	333.29	46.56	29.28	409.13
Staten Island	1	3	0	0	579	0	842	0	6,106	3,456	337	415.22	52.72	36.93	504.88
Staten Island	1	4	0	0	0	417	1,473	1,032	12,756	760	0	458.30	63.78	40.00	562.08
Staten Island	2	1	0	0	0	0	2,679	1,353	6,659	1,565	0	346.26	48.85	30.00	425.10
Staten Island	2	2	0	0	0	0	0	0	9,965	0	0	313.51	47.80	27.92	389.22
Staten Island	2	3	0	0	104	0	981	0	10,104	0	0	315.30	46.28	23.74	385.32
Staten Island	2	4	0	0	0	2,716	0	0	11,126	0	0	349.40	54.52	31.45	435.37
Staten Island	3	1	0	0	0	0	0	0	7,325	3,672	0	233.39	40.01	22.48	295.88
Staten Island	3	2	0	0	0	,	0	0	6,961	0	0	234.97	43.96	24.35	303.27
Staten Island	3	3	0	0	0	0	0	0	6,156	0	0	220.71	37.57	19.21	277.48
Staten Island	3	4	0	0	0	0	0	0	6,252	0	0	206.65	35.87	20.35	262.86
Staten Island	3	5	0	0	0	0	0	0	8,609	0	0	270.70	45.15	25.08	340.93
Staten Island	3	6	0	0	0	0	0	0	8,394		0	236.80	34.61	20.39	291.80
Staten Island	3	7	0	0	0	0	0	0	3,267	15	0	188.66	27.50	16.18	232.34
Staten Island	3	8	0	0	0	0	0	0	4,657	0	0	179.39	25.23	14.70	219.32

Table J-4
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Summer 2005

								Housing							
Borough	District	Section	High Density/ High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Income	Low Density/ Low Income	REFUSE TONS	$\begin{aligned} & \hline \text { PAPER } \\ & \text { TONS } \end{aligned}$	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Manhattan	1	1	5,087	2,520	0	0	0	0	0	0	0	176.64	40.20	21.51	238.35
Manhattan	2	1	8,352	2,571	3,589	2,016	0	0	0	0	0	178.18	32.50	17.34	228.02
Manhattan	2	2	21,168	0	0	0	0	0	0	0	0	194.33	33.85	17.82	246.00
Manhattan	2	3	18,189	0	0	0	0	0	0	0	0	177.56	65.28	28.41	271.25
Manhattan	3	1	37	1,710	19,069	0	0	0	0	0	0	213.89	14.54	9.95	238.38
Manhattan	3	2	0	2,981	10,347	0	0	0	0	0	0	166.91	15.27	12.31	194.49
Manhattan	3	3	0	14,396	5,534	0	0	0	0	0	0	158.77	18.33	14.87	191.97
Manhattan	3	4	6,578	5,803	4,909	0	0	0	0	0	0	198.74	31.19	22.30	252.24
Manhattan	4	1	11,461	0	1,843	0	0	0	0	0	0	122.86	35.82	20.92	179.60
Manhattan	4	2	9,949	5,000	0	371	0	22	0	0	0	119.51	44.08	16.08	179.67
Manhattan	4	3	17,905	5,452	1,666	0	0	0	0	0	0	266.11	46.38	32.35	344.84
Manhattan	5	1	12,669	1,668	0	269	0	0	0	0	0	173.70	35.43	16.77	225.90
Manhattan	5	2	14,692	0	1,232	129	0	0	0	0	0	169.93	34.49	14.50	218.92
Manhattan	6	1	25,506	6,881	0	0	0	0	0	0	0	273.79	83.52	35.85	393.17
Manhattan	6	2	32,272	0	0	297	0	0	0	0	0	293.50	61.09	34.96	389.55
Manhattan	6	3	26,296	0	0	0	0	0	0	0	0	269.73	60.29	27.35	357.37
Manhattan	7	1	24,808	4,185	0	0	0	0	0	0	0	288.26	55.67	22.91	366.85
Manhattan	7	2	24,351	0	0	0	0	0	0	0	0	254.68	63.55	29.01	347.24
Manhattan	7	3	21,913	0	0	0	0	0	0	0	0	289.56	78.34	30.24	398.14
Manhattan	7	4	18,332	5,098	0	0	0	0	0	0	0	243.79	51.62	27.73	323.14
Manhattan	7	5	13,637	4,264	5,197	60	0	0	0	0	0	252.98	51.85	26.55	331.38
Manhattan	8	1	25,097	0	0	0	0	0	0	0	0	286.23	58.33	23.92	368.48
Manhattan	8	2	22,704	0	2,980	0	0	0	0	0	0	314.53	73.96	29.60	418.10
Manhattan	8	3	39,777	0	0	0	0	0	0	0	0	286.01	74.79	30.05	390.85
Manhattan	8	4	12,887	0	0	0	0	0	0	0	0	251.48	75.32	27.66	354.46
Manhattan	8	5	32,232	0	0	0	0	0	0	0	0	297.50	69.20	33.40	400.10
Manhattan	9	1	5,781	2,023	1,515	0	0	7	0	0	0	141.89	30.27	14.85	187.01
Manhattan	9	2	0	4,631	12,578	0	0	0	0	0	0	253.07	15.37	15.27	283.70
Manhattan	9	3	0	0	14,039	0	0	2,314	0	0	0	322.39	14.32	16.94	353.64
Manhattan	10	1	0	0	13,149	0	0	4,180	0	0	0	286.20	18.40	17.25	321.85
Manhattan	10	3	0	0	18,604	0	0	0	0	0	0	196.76	10.55	8.93	216.25
Manhattan	11	1	3,045	0	16,973	0	0	1,548	0	0	0	245.30	19.54	18.43	283.27
Manhattan	11	2	0	0	10,680	0	0	2,243	0	0	0	209.76	10.88	8.66	229.30
Manhattan	11	3	0	0	10,141	0	0	3,046	0	0	0	147.74	6.54	4.80	159.07
Manhattan	12	1	0	2,402	14,995	59	0	0	0	0	0	344.89	18.81	24.17	387.87
Manhattan	12	2	4,701	0	13,563	0	0	0	0	0	0	390.53	28.55	28.98	448.07
Manhattan	12	3	1,390	3,026	19,190	0	0	0	0	0	0	392.51	25.31	30.41	448.23
Manhattan	12	4	1,897	5,145	6,860	0	0	0	0	0	0	278.04	21.03	23.17	322.25
Bronx	1	1	0	0	14,770	0	553	2,723	0	0	0	219.11	7.07	9.12	235.30
Bronx	1	2	0	0	8,892	0	0	2,337	0	0	0	229.83	7.93	9.77	247.53
Bronx	2	1	0	0	12,974	0	0	3,347	0	0	0	384.84	12.92	19.05	416.81
Bronx	3	1	0	0	17,573	0	0	6,720	0	0	0	423.84	13.28	17.22	454.34
Bronx	4	1	0	1,101	13,997	0	255	0	0	0	0	256.69	11.39	12.21	280.29
Bronx	4	2	0	0	12,169	0	0	0	0	0	0	387.89	10.22	16.27	414.38
Bronx	4	3	0	0	20,022	0	0	0	0	0	0	407.97	11.38	19.68	439.02
Bronx	5	1	0	751	17,360	0	0	0	31	0	0	321.01	14.23	28.34	363.59
Bronx	5	2	0	0	11,395	0	0	0	0	0	0	246.14	9.92	17.21	273.27
Bronx	5	3	0	0	3,485	0	0	286	0	0	0	281.65	14.69	28.42	324.76

Table J-4
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Summer 2005 (continued)

Housing Units															
Borough	District	Section	High Densityl High Income	High Densityl Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Income	Low Density/ Low Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Bronx	6	1	0	0	713	0	0	0	0	0	0	257.46	8.88	16.04	282.38
Bronx	6	2	0	468	13,121	0	0	1,815	0	0	0	297.29	11.10	15.33	323.72
Bronx	7	1	849	1,583	11,472	0	0	0	0	0	0	266.44	11.80	20.98	299.22
Bronx	7	3	0	1,523	13,695	0	0	0	0	0	0	246.34	21.82	28.82	296.98
Bronx	8	1	0	4,846	8,361	0	0	0	0	0	0	226.86	19.63	21.61	268.09
Bronx	8	2	7,681	5,185	0	0	0	567	0	0	0	169.98	31.23	20.71	221.92
Bronx	8	3	9,626	0	199	3,310	0	0	146	0	0	190.43	42.74	23.68	256.85
Bronx	9	1	0	2,429	5,639	0	0	4,964	0	1,190	0	292.75	9.44	13.26	315.44
Bronx	9	2	0	1,645	4,843	266	1,324	4,450	0	0	3	252.60	10.52	15.72	278.85
Bronx	9	3	0	12,497	0	0	3,703	0	0	0	0	218.73	5.46	6.04	230.24
Bronx	9	4	0	0	8,920	443	8,799	602	0	1,770	0	329.88	19.60	24.97	374.45
Bronx	10	1	0	15,856	1,392	2,222	8,696	897	0	0	0	248.59	31.95	21.58	302.13
Bronx	10	2	0	0	0	460	625	0	7,032	2,188	0	214.65	35.40	21.15	271.19
Bronx	10	3	0	0	275	2,733	0	2,008	3,239	2,547	0	191.88	29.12	19.00	239.99
Bronx	11	1	0	5,455	1,724	3,044	4,373	3,855	0	0	0	319.73	40.04	32.81	392.58
Bronx	11	2	0	3,417	4,777	1,821	0	1,673	1,347	1,191	0	234.26	26.36	20.60	281.23
Bronx	11	3	0	0	1,735	0	2,268	2,133	3,530	1,343	0	200.86	22.34	19.23	242.43
Bronx	12	1	0	0	2,294	0	2,899	3,574	868	1,693	0	198.91	17.23	23.56	239.70
Bronx	12	2	0	0	0	0	5,052	1,321	701	3,618	0	176.37	18.57	22.64	217.58
Bronx	12	3	0	1,660	5,335	0	5,803	1,331	859	0	0	203.95	18.91	24.52	247.38
Bronx	12	4	0	0	0	950	5,289	0	4,803	0	0	178.63	23.53	23.12	225.28
Bronx	12	5	0	0	0	0	3,275	305	3,265	1,089	0	201.58	20.96	24.65	247.18
Brooklyn	1	1	0	0	0	776	8,488	2,558	0	0	0	170.95	19.74	23.27	213.96
Brooklyn	1	2	0	0	6,704	490	2,753	3,952	0	0	0	228.76	16.10	17.15	262.01
Brooklyn	1	3	0	0	790	0	9,987	14	0	0	0	172.57	25.17	25.57	223.30
Brooklyn	1	4	0	0	2,950	0	0	6,783	0	0	0	244.89	20.18	8.35	273.42
Brooklyn	1	5	0	0	5,383	0	1,718	5,560	0	0	0	209.03	11.55	10.11	230.69
Brooklyn	2	1	7,447	0	2,341	3,108	178	83	0	0	0	145.58	34.51	15.08	195.17
Brooklyn	2	2	0	0	0	6,819	1,277	950	0	0	0	110.69	28.39	12.58	151.66
Brooklyn	2	3	0	0	0	1,994	7,020	0	0	0	0	121.25	16.21	10.35	147.81
Brooklyn	2	4	0	4,985	3,360	2,268	3,969	372	0	0	0	136.39	22.23	18.50	177.12
Brooklyn	3	1	0	0	3,782	0	803	8,988	0	0	0	183.41	8.08	8.99	200.49
Brooklyn	3	2	0	0	0	0	3,137	9,709	0	0	0	207.83	10.99	13.21	232.03
Brooklyn	3	3	0	0	0	0	2,030	10,780	0	0	0	271.69	12.85	17.05	301.59
Brooklyn	3	4	0	0	0	0	3,369	4,936	0	0	0	211.50	11.88	14.24	237.63
Brooklyn	3	5	0	0	0	0	4,470	6,139	0	0	0	174.98	8.50	9.68	193.15
Brooklyn	4	1	0	0	0	0	0	9,270	0	0	0	233.73	10.78	14.74	259.25
Brooklyn	4	2	0	0	0	0	0	15,811	0	0	0	326.60	15.75	23.07	365.42
Brooklyn	4	3	0	0	0	0	502	8,452	0	0	0	278.23	14.41	22.37	315.00
Brooklyn	5	1	0	0	0	0	2,725	7,528	0	435	0	277.16	16.53	23.82	317.50
Brooklyn	5	2	0	0	0	0	2,635	6,005	0	3,773	0	320.13	23.14	32.16	375.43
Brooklyn	5	3	0	0	2,943	0	974	7,581	0	248	0	206.00	12.37	17.05	235.42
Brooklyn	5	4	0	0	11,888	0	3,929	7,790	0	1,018	0	338.31	17.63	22.20	378.13
Brooklyn	6	1	0	0	2,851	2,679	2,737	518	97	0	0	83.78	16.72	11.25	111.75
Brooklyn	6	2	0	0	0	10,201	0	0	0	0	0	114.89	32.52	17.81	165.22
Brooklyn	6	3	0	0	0	6,310	0	2,101	0	0	0	116.01	26.05	14.64	156.71
Brooklyn	6	4	0	0	0	10,711	877	505	0	0	0	131.90	44.14	19.09	195.13
Brooklyn	6	5	0	0	0	5,267	2,447	0	0	0	0	123.86	33.91	17.17	174.94

Table J-4
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Summer 2005 (continued)

								Housing	Units						
Borough	District	Section	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Density/ High Income	Low Densityl Medium Income	Low Density/ Low Income	REFUSE TONS	PAPER TONS	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \end{aligned}$	WASTE TONS
Brooklyn	7	1	0	1,977	0	5,033	4,626	0	783	0	0	163.18	36.75	24.23	224.15
Brooklyn	7	2	0	0	0	4	4,296	7,987	0	0	0	219.82	27.92	27.16	274.90
Brooklyn	7	3	0	0	0	0	0	10,038	0	0	0	211.42	22.06	27.53	261.01
Brookly	7	4	0	0	0	0	5,014	8,810	0	0	0	238.73	26.93	26.68	292.34
Brookly	8	1	0	2,532	0	5,068	1,892	6,384	0	0	0	243.28	29.94	22.55	295.77
Brookly	8	2	0	0	2,098	0	4,362	8,978	0	0	0	277.94	15.77	18.33	312.05
Brooklyn	8	3	0	0	2,318	0	999	4,299	0	0	0	214.56	7.66	10.85	233.07
Brookly	9	1	0	0	10,360	0	3,705	5,241	0	0	0	304.24	18.25	16.40	338.90
Brooklyn	9	2	0	1,605	3,871	0	2,467	0	0	0	0	267.48	16.70	14.76	298.95
Brooklyn	9	3	0	0	3,564	0	3,371	3,711	0	0	0	247.84	17.95	16.26	282.06
Brookly	10	1		1,910	0	2,867	7,575	0	0	0	0	170.02	29.63	19.28	218.93
Brooklyn	10	2	0	0	0	528	8,991	0	919	0	0	171.79	35.82	21.42	229.03
Brookly	10	3	1,933	3,336	1,155	1,772	6,600	0	249	0	0	189.87	37.05	23.22	250.15
Brooklyn	10	4	0	0	0	1,932	7,035	1,411	3,558	718	0	283.87	47.37	31.09	362.33
Brooklyn	11	1	0	0	0	0	3,643	3,430	0	0	0	189.10	28.23	19.41	236.74
Brooklyn	11	2	0	0	0	0	10,250	1,654	0	0	0	197.30	30.58	21.64	249.52
Brookly	11	3	0	0	0	0	3,611	6,329	0	1,561	0	167.55	24.60	16.71	208.86
Brooklyn	11	4	0	0	0	673	4,827	0	1,861	1,050	0	163.36	26.27	17.49	207.12
Brookly	11	5	0	0	2,102	0	8,589	872	24	0	0	218.33	32.70	21.14	272.17
Brooklyn	11	6	0	0	0	0	7,579	6,614	0	0	0	254.00	36.98	25.21	316.20
Brooklyn	12	1	0	2,085	3,319	536	5,854	5,152	0	487	0	202.53	24.03	15.72	242.28
Brooklyn	12	2	0	0	0	0	4,362	10,786	0	0	0	196.33	21.91	14.96	233.20
Brooklyn	12	3	0	0	0	0	5,967	3,811	0	1,319	0	223.36	20.47	15.17	259.00
Brooklyn	12	4	0	0	0	555	3,102	8,952	0	0	0	172.15	21.03	10.58	203.76
Brookly	13	1	0	0	2,020	0	7,583	0	0	1,710	0	163.60	17.20	14.63	195.43
Brooklyn	13	2	0	0	23,054	0	3,486	8,132	0	0	0	396.71	28.15	30.69	455.56
Brookly	14	1	0	5,024	16,911	0	657	769	0	0	0	470.72	18.34	22.05	511.10
Brooklyn	14	2	0	3,033	2,031	1,153	1,481	1,135	0	0	0	207.64	21.25	18.06	246.95
Brooklyn	14	3	0	5,025	0	4,189	2,291	771	800	0	0	320.04	28.67	17.91	366.62
Brooklyn	14	4	0	0	5,229	696	6,387	2,647	186	0	0	291.61	41.84	28.51	361.96
Brooklyn	15	1	0	0	1,777	0	5,486	3,359	0	0	0	203.02	26.39	16.62	246.04
Brookly	15	2	0	2,850	1,452	1,728	3,044	952	2,529	992	0	265.26	47.76	27.04	340.07
Brooklyn	15	3	0	1,438	0	499	10,632	1,196	1,293	1,460	0	250.55	44.07	28.45	323.08
Brooklyn	15	4	0	0	2,199	0	7,158	0	4,163	0	0	208.74	37.49	24.23	270.46
Brooklyn	15	5	0	0	0	0	5,289	2,237	0	860	0	132.58	20.74	13.85	167.17
Brooklyn	16	1	0	0	4,764	0	0	9,411	0	0	0	253.42	11.45	12.40	277.26
Brooklyn	16	2	0	0	4,581	0	1,722	10,493	0	0	0	274.64	10.71	12.74	298.09
Brooklyn	17	1	0	0	0	0	1,077	10,206	0	0	0	235.79	11.55	14.84	262.18
Brooklyn	17	2	0	0	0	0	7,066	0	640	867	0	187.39	13.00	14.92	215.31
Brookly	17	3	0	0	0	0	5,265	2,710	1,680	2,464	0	262.49	23.51	27.92	313.92
Brookly	17	4	0	0	6,601	0	4,426	629	0	0	0	287.27	11.56	13.77	312.60
Brooklyn	17	5	0	0	2,360	0	1,971	3,467	4,989	1,824	0	261.39	26.00	25.58	312.97
Brooklyn	18	1	0	0	1,589	807	1,515	0	4,950	818	0	177.16	17.57	15.83	210.57
Brooklyn	18	2	0	0	0	3	588	0	4,914	3,619	0	224.53	22.52	23.71	270.76
Brookly	18	3	0	0	1,616	1,337	0	0	5,392	2,559	0	168.82	17.88	17.09	203.79
Brookly	18	4	0	0	0	3,215	0	0	7,177	721	0	235.23	37.12	21.83	294.18
Brooklyn	18	5	0	0	1,249	0	2,028	0	5,830	0	0	166.81	22.12	18.20	207.13
Brooklyn	18	6	0	0	0	1,547	5,305	0	4,808	84	0	262.05	28.85	21.02	311.91

Table J-4
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Summer 2005 (continued)

Borough	District	Section	High Densityl High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Income	Low Density/ Low Income	$\begin{gathered} \text { REFUSE } \\ \text { TONS } \end{gathered}$	PAPER TONS	$\begin{gathered} \hline \text { MGP } \\ \text { TONS } \end{gathered}$	WASTE TONS
Brooklyn	18	7	0	0	0	0	0	0	7,503	463	0	193.84	34.47	19.88	248.19
Queens	1	1	0	0	0	2,808	4,768	1,768	0	0	0	142.97	24.01	15.95	182.92
Queens	1	2	0	0	0	459	11,649	0	0	713	44	183.44	28.75	17.04	229.23
Queens	1	3	1,552	4,491	1,552	0	8,736	302	0	0	0	230.71	37.60	26.46	294.78
Queens	1	4	0	671	0	0	14,547	0	0	0	0	164.23	30.64	20.03	214.90
Queens	1	5	0	1,701	1,661	0	10,625	791	0	627	0	227.00	34.18	22.51	283.69
Queens	1	6	3,252	412	6,102	0	2,781	103	0	191	0	158.97	15.52	10.58	185.07
Queens	2	1	0	2,076	0	0	9,565	0	0	2,866	0	258.52	36.59	24.14	319.25
Queens	2	2	0	9,902	454	698	5,749	0	0	0	0	202.03	31.94	23.64	257.61
Queens	2	3	536	0	0	26	10,962	0	0	468	0	198.58	29.85	19.76	248.19
Queens	3	1	0	1,569	0	0	5,858	0	5,730	6,881	0	531.95	38.80	38.42	609.18
Queens	3	2	2,194	15,976	0	0	2,513	0	0	0	0	339.76	46.04	31.08	416.89
Queens	3	3	0	2,483	0	0	10,105	952	0	0	0	399.79	21.22	31.64	452.65
Queens	4	1	0	9,492	0	0	8,394	0	0	1,501	0	316.48	41.35	27.00	384.82
Queens	4	2	0	4,281	0	0	5,422	3,286	0	0	0	324.43	36.18	25.81	386.42
Queens	4	3	0	4,692	0	0	14,214	0	0	851	0	418.83	25.79	27.98	472.60
Queens	5	1	0	0	0	0	3,904	0	6,844	1,771	0	204.78	40.53	27.61	272.92
Queens	5	2	0	0	0	0	10,415	0	0	0	0	229.65	34.90	26.74	291.28
Queens	5	3	0	0	0	0	4,884	6,305	0	0	0	230.05	27.27	26.03	283.35
Queens	5	4	0	0	0	0	8,102	393	5,885	2,169	0	270.00	50.45	32.85	353.30
Queens	5	5	0	0	0	724	3,507	0	7,986	2,622	0	277.46	50.69	27.63	355.78
Queens	6	1	15,396	7,053	1,621	890	2,838	0	0	0	0	340.19	53.54	32.23	425.97
Queens	6	2	11,560	3,041	0	5,713	1,934	0	4,161	0	0	386.97	75.45	41.15	503.57
Queens	7	1	0	17,487	2,636	0	2,326	0	0	498	0	333.22	41.36	18.52	393.10
Queens	7	2	0	0	0	0	0	0	4,511	2,695	0	148.36	26.05	13.74	188.15
Queens	7	3	0	11,018	0	3,212	1,441	0	0	0	0	265.75	38.18	16.78	320.71
Queens	7	4	0	0	0	0	4,387	0	1,902	1,619	0	163.60	27.26	15.31	206.17
Queens	7	5	0	0	0	0	1,242	0	6,030	1,833	0	180.62	28.63	18.70	227.94
Queens	7	6	0	0	0	0	0	0	6,798	0	0	186.24	32.14	18.54	236.91
Queens	7	7	0	0	0	3,313	740	0	3,338	0	0	197.84	37.04	19.29	254.17
Queens	7	8	0	0	0	10,275	0	94	4,894	0	0	161.28	30.68	16.58	208.54
Queens	8	1	0	0	0	4,044	1,861	0	4,256	0	0	165.31	32.39	14.22	211.91
Queens	8	2	1,339	0	0	5,272	6,584	0	1,969	0	0	321.98	38.38	24.93	385.29
Queens	8	3	0	2,745	0	7,560	5,894	2,788	1,955	0	0	238.61	31.56	18.21	288.38
Queens	8	4	0	0	0	5,011	0	0	5,154	0	0	229.07	39.09	19.77	287.92
Queens	9	1	0	0	0	0	667	0	888	8,605	419	255.90	26.52	23.82	306.23
Queens	9	2	0	0	0	929	1,304	0	808	6,860	0	225.61	28.09	21.44	275.13
Queens	9	3	0	3,571	0	2,868	3,141	0	1,193	2,349	0	247.07	31.70	21.74	300.51
Queens	9	4	2,056	2,218	0	996	3,725	0	0	5,920	0	340.49	39.96	29.36	409.81
Queens	10	1	0	0	0	0	5,615	28	3,212	3,677	0	230.71	32.23	24.05	286.99
Queens	10	2	0	0	0	0	418	0	5,471	7,826	0	296.30	33.43	32.95	362.68
Queens	10	3	0	0	0	239	0	0	4,979	5,268	0	341.40	30.54	35.34	407.28
Queens	10	4	0	0	0	0	0	0	6,088	0	0	160.53	28.82	15.06	204.42
Queens	11	1	0	0	0	3,252	0	0	4,514	0	0	142.33	30.25	17.40	189.98
Queens	11	2	0	0	0	3,139	0	0	2,723	0	0	124.73	24.00	12.74	161.48
Queens	11	3	0	0	0	0	119	0	5,714	0	0	125.85	26.03	13.31	165.19
Queens	11	4	0	0	0	1,647	0	0	5,732	0	0	145.56	30.24	14.41	190.22
Queens	11	5	0	0	0	6,332	2,518	0	3,842	0	0	156.76	34.45	16.40	207.61

Table J-4
Generation Rates Across Strata and Across Stream, Housing Units and Tons by Section, Summer 2005 (continued)

Housing Units															
Borough	District	Section	High Density/ High Income	High Densityl Medium Income	High Density/ Low Income	Medium Density/ High Income	Medium Densityl Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income	Low Densityl Low Income	$\begin{gathered} \text { REFUSE } \\ \text { TONS } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PAPER } \\ & \text { TONS } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MGP } \\ & \text { TONS } \\ & \hline \end{aligned}$	WASTE TONS
Queens	11	6	0	0	0	2,582	0	0	2,922	980	0	124.31	26.88	13.82	165.01
Queens	12	1	0	4,549	4,511	0	2,055	1,501	450	1,695	0	360.01	22.73	22.30	405.05
Queens	12	2	0	0	0	0	0	1,700	1,907	5,598	0	262.72	21.38	23.63	307.73
Queens	12	3	0	0	0	0	0	2,684	3,115	2,903	0	206.66	15.70	17.85	240.21
Queens	12	4	0	0	0	0	0	835	2,912	6,092	0	256.94	20.85	22.13	299.92
Queens	12	5	0	0	824	495	0	0	3,154	2,186	0	240.58	20.95	21.42	282.94
Queens	12	6	0	0	0	0	681	0	4,835	5,501	0	267.18	22.09	23.87	313.14
Queens	12	7	0	6,246	0	0	0	0	6,134	2,005	0	229.70	20.25	20.46	270.40
Queens	13	1	1,926	0	0	3,550	0	0	7,069	0	0	163.53	32.55	17.64	213.71
Queens	13	2	0	0	0	1,682	0	78	7,652	0	0	192.53	28.83	20.22	241.58
Queens	13	3	0	0	0	0	0	,	7,767	0	0	262.57	25.58	26.39	314.54
Queens	13	4	0	0	0	0	0	0	6,166	386	0	217.70	19.19	20.82	257.71
Queens	13	5	0	0	0	0	0	0	5,849	0	0	177.37	20.19	17.77	215.33
Queens	13	6	0	0	0	0	0	0	6,655	0	0	161.72	17.09	16.27	195.08
Queens	13	7	0	0	0	0	0	0	7,543	0	0	217.01	21.98	23.94	262.93
Queens	13	8	0	0	0	0	0	0	7,654	0	216	224.62	19.05	19.40	263.07
Queens	14	1	0	0	0	0	3,780	0	5,228	0	0	274.66	28.03	15.71	318.40
Queens	14	2	0	4,921	9,759	0	0	3,541	2,014	1,004	0	247.91	20.29	20.89	289.10
Queens	14	3	0	0	0	0	1,884	6,530	0	3,019	0	235.42	18.24	14.52	268.18
Staten Island	1	1	355	0	0	3,444	1,364	6,011	3,697	1,841	0	372.09	43.80	31.63	447.51
Staten Island	1	2	0	2,931	0	1,605	3,925	0	4,937	3,102	0	309.62	43.75	29.17	382.53
Staten Island	1	3	0	0	579	0	842	0	6,106	3,456	337	372.67	49.65	37.11	459.43
Staten Island	1	4	0	0	0	417	1,473	1,032	12,756	760	0	406.34	60.37	39.94	506.64
Staten Island	2	1	0	0	0	0	2,679	1,353	6,659	1,565	0	306.25	46.54	30.29	383.07
Staten Island	2	2	0	0	0	0	0	0	9,965	0	0	274.04	44.70	28.12	346.86
Staten Island	2	3	0	0	104	0	981	0	10,104	0	0	281.94	43.51	23.05	348.49
Staten Island	2	4	0	0	0	2,716	0	0	11,126	0	0	316.77	51.88	30.62	399.26
Staten Island	3	1	0	0	0	0	0	0	7,325	3,672	0	204.72	37.73	21.73	264.18
Staten Island	3	2	0	0	0	0	0	0	6,961	0	0	209.09	41.15	24.59	274.84
Staten Island	3	3	0	0	0	0	0	0	6,156	0	0	193.19	34.79	19.36	247.34
Staten Island	3	4	0	0	0	0	0	0	6,252	0	0	182.59	34.19	20.77	237.54
Staten Island	3	5	0	0	0	0	0	0	8,609	0	0	239.21	41.96	25.58	306.75
Staten Island	3	6	0	0	0	0	0	0	8,394	0	0	217.28	33.39	20.14	270.82
Staten Island	3	7	0	0	0	0	0	0	3,267	15	0	159.93	25.91	16.90	202.75
Staten Island	3	8	0	0	0	0	0	0	4,657	0	0	158.37	23.50	14.40	196.26
			530,415	297,498	604,800	189,114	545,231	389,301	412,740	159,269	1,019	53,784.01	6,570.22	4,753.94	65,108.16

Table J-5
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Fall 2004

REFUSE

Dependent Variable: TONS_REFUSE*52
Method: Least Squares
Date: 01/19/05 Time: 18:03
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.552476	0.031497	17.54034	0.0000
HM	0.653168	0.074981	8.711110	0.0000
HL	0.833065	0.041184	20.22801	0.0000
MH	0.558099	0.114464	4.875766	0.0000
MM	0.877283	0.062879	13.95193	0.0000
ML	1.069410	0.069690	15.34518	0.0000
LH	1.247370	0.073026	17.08109	0.0000
LM	1.210482	0.154108	7.854762	0.0000
LL	7.205173	5.941150	1.212757	0.2265
R-squared	0.302206	Mean dependent var	12357.18	
Adjusted R-squared	0.276599	S.D. dependent var	3817.843	
S.E. of regression	3247.190	Akaike info criterion	19.04781	
Sum squared resid	$2.30 E+09$	Schwarz criterion	19.18360	
Log likelihood	-2152.926	Durbin-Watson stat	1.502846	

Table J-5
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Fall 2004 (continued)

PAPER

Dependent Variable: TONS_PAPER*52
Method: Least Squares
Date: 01/19/05 Time: 18:04
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.158916	0.005087	31.24072	0.0000
HM	0.081633	0.012109	6.741308	0.0000
HL	0.039976	0.006651	6.010308	0.0000
MH	0.177947	0.018486	9.626079	0.0000
MM	0.139703	0.010155	13.75718	0.0000
ML	0.071430	0.011255	6.346551	0.0000
LH	0.222540	0.011794	18.86935	0.0000
LM	0.089002	0.024888	3.576033	0.0004
LL	1.225807	0.959495	1.277554	0.2028
R-squared	0.701243	Mean dependent var	1721.280	
Adjusted R-squared	0.690280	S.D. dependent var	942.3133	
S.E. of regression	524.4210	Akaike info criterion	15.40131	
Sum squared resid	59953786	Schwarz criterion	15.53710	
Log likelihood	-1739.048	Durbin-Watson stat	1.812695	

Table J-5
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Fall 2004 (continued)
MGP
Dependent Variable: TONS_MGP*52
Method: Least Squares
Date: 01/19/05 Time: 18:04
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.058345	0.002744	21.26343	0.0000
HM	0.050450	0.006532	7.723500	0.0000
HL	0.049369	0.003588	13.76038	0.0000
MH	0.066457	0.009972	6.664566	0.0000
MM	0.088958	0.005478	16.23981	0.0000
ML	0.066292	0.006071	10.91912	0.0000
LH	0.118004	0.006362	18.54902	0.0000
LM	0.106487	0.013425	7.931829	0.0000
LL	0.560286	0.517569	1.082532	0.2802
R-squared	0.307385	Mean dependent var	1046.373	
Adjusted R-squared	0.281968	S.D. dependent var	333.8364	
S.E. of regression	282.8822	Akaike info criterion	14.16678	
Sum squared resid	17444870	Schwarz criterion	14.30257	
Log likelihood	-1598.929	Durbin-Watson stat	1.383634	

Table J-5
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Fall 2004 (continued)

WASTE

Dependent Variable: TONS_WASTE*52
Method: Least Squares
Date: 01/19/05 Time: 18:03
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.769741	0.036049	21.35244	0.0000		
HM	0.785262	0.085817	9.150420	0.0000		
HL	0.922409	0.047135	19.56932	0.0000		
MH	0.802506	0.131006	6.125730	0.0000		
MM	1.105950	0.071966	15.36766	0.0000		
ML	1.207129	0.079762	15.13419	0.0000		
LH	1.587915	0.083580	18.99878	0.0000		
LM	1.405972	0.176379	7.971302	0.0000		
LL	8.990636	6.799745	1.322202	0.1875		
R-squared	0.302520	Mean dependent var				15124.87
Adjusted R-squared	0.276925	S.D. dependent var	4370.569			
S.E. of regression	3716.462	Akaike info criterion	19.31777			
Sum squared resid	$3.01 E+09$	Schwarz criterion	19.45356			
Log likelihood	-2183.567	Durbin-Watson stat	1.531789			

Table J-6
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Winter 2005

REFUSE

Dependent Variable: REFUSE*52
Method: Least Squares
Date: 04/29/05 Time: 15:50
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.535949	0.029601	18.10560	0.0000
HM	0.598813	0.070467	8.497750	0.0000
HL	0.822981	0.038704	21.26320	0.0000
MH	0.496914	0.107573	4.619316	0.0000
MM	0.785232	0.059094	13.28792	0.0000
ML	0.950330	0.065495	14.50996	0.0000
LH	0.998477	0.068630	14.54866	0.0000
LM	1.000167	0.144831	6.905761	0.0000
LL	5.509889	5.583497	0.986817	0.3248
R-squared	0.347533	Mean dependent var	11117.65	
Adjusted R-squared	0.323589	S.D. dependent var	3710.547	
S.E. of regression	3051.711	Akaike info criterion	18.92363	
Sum squared resid	$2.03 \mathrm{E}+09$	Schwarz criterion	19.05942	
Log likelihood	-2138.832	Durbin-Watson stat	1.493800	

Table J-6
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Winter 2005 (continued)

PAPER

Dependent Variable: PAPER*52
Method: Least Squares
Date: 04/29/05 Time: 15:52
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.141644	0.004598	30.80836	0.0000		
HM	0.076153	0.010945	6.957965	0.0000		
HL	0.035808	0.006011	5.956706	0.0000		
MH	0.163353	0.016708	9.776960	0.0000		
MM	0.129947	0.009178	14.15811	0.0000		
ML	0.063379	0.010172	6.230470	0.0000		
LH	0.206114	0.010659	19.33631	0.0000		
LM	0.082267	0.022495	3.657172	0.0003		
LL	1.162296	0.867210	1.340270	0.1816		
R-squared	0.699113	Mean dependent var				1572.281
Adjusted R-squared	0.688072	S.D. dependent var	848.6609			
S.E. of regression	473.9817	Akaike info criterion	15.19905			
Sum squared resid	48975596	Schwarz criterion	15.33485			
Log likelihood	-1716.093	Durbin-Watson stat	1.825462			

Table J-6
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Winter 2005 (continued)
MGP
Dependent Variable: MGP*52
Method: Least Squares
Date: 04/29/05 Time: 15:51
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.061268	0.002621	23.37719	0.0000		
HM	0.046683	0.006239	7.482455	0.0000		
HL	0.045157	0.003427	13.17752	0.0000		
MH	0.064581	0.009524	6.780597	0.0000		
MM	0.081267	0.005232	15.53241	0.0000		
ML	0.057496	0.005799	9.915138	0.0000		
LH	0.108942	0.006076	17.92868	0.0000		
LM	0.101569	0.012823	7.920826	0.0000		
LL	0.581250	0.494354	1.175778	0.2410		
R-squared	0.366402	Mean dependent var				981.5309
Adjusted R-squared	0.343151	S.D. dependent var	333.3821			
S.E. of regression	270.1936	Akaike info criterion	14.07499			
Sum squared resid	15914994	Schwarz criterion	14.21079			
Log likelihood	-1588.512	Durbin-Watson stat	1.383666			

Table J-6
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Winter 2005 (continued)

WASTE

Dependent Variable: WASTE*52
Method: Least Squares
Date: 04/29/05 Time: 15:52
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.738861	0.033785	21.86983	0.0000
HM	0.721649	0.080426	8.972890	0.0000
HL	0.903947	0.044174	20.46326	0.0000
MH	0.724848	0.122775	5.903862	0.0000
MM	0.996445	0.067445	14.77425	0.0000
ML	1.071205	0.074751	14.33038	0.0000
LH	1.313533	0.078329	16.76946	0.0000
LM	1.184004	0.165298	7.162839	0.0000
LL	7.253436	6.372546	1.138232	0.2563
R-squared	0.333457	Mean dependent var	13671.46	
Adjusted R-squared	0.308997	S.D. dependent var	4189.962	
S.E. of regression	3482.973	Akaike info criterion	19.18800	
Sum squared resid	$2.64 \mathrm{E}+09$	Schwarz criterion	19.32379	
Log likelihood	-2168.838	Durbin-Watson stat	1.520709	

Table J-7
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Spring 2005

REFUSE

Dependent Variable: REFUSE*52
Method: Least Squares
Date: 12/03/05 Time: 09:18
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.543625	0.032257	16.85289	0.0000		
HM	0.671683	0.076789	8.74708	0.0000		
HL	0.846550	0.042177	20.07134	0.0000		
MH	0.570313	0.117225	4.86510	0.0000		
MM	0.866695	0.064396	13.45893	0.0000		
ML	1.060668	0.071371	14.86133	0.0000		
LH	1.431934	0.074788	19.14666	0.0000		
LM	1.281717	0.157825	8.12113	0.0000		
LL	8.466832	6.084437	1.39156	0.1655		
R-squared	0.287514	Mean dependent var				12765.01
Adjusted R-squared	0.261368	S.D. dependent var	3869.398			
S.E. of regression	3325.5040	Akaike info criterion	19.09547			
Sum squared resid	2410000000	Schwarz criterion	19.23126			

Table J-7
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Spring 2005 (continued)

PAPER

Dependent Variable: PAPER*52
Method: Least Squares
Date: 12/03/05 Time: 09:17
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.1431760	0.0046870	30.544980	0.0000
HM	0.0767060	0.0111590	6.874149	0.0000
HL	0.0377130	0.0061290	6.153331	0.0000
MH	0.1653080	0.0170340	9.704327	0.0000
MM	0.1300120	0.0093580	13.893840	0.0000
ML	0.0650080	0.0103710	6.268102	0.0000
LH	0.2146290	0.0108680	19.749300	0.0000
LM	0.0899430	0.0229340	3.921799	0.0001
LL	1.0633740	0.8841520	1.202706	0.2304
R-squared	0.6917	Mean dependent var	1609.574	
Adjusted R-squared	0.6803	S.D. dependent var	854.707	
S.E. of regression	483.24	Akaike info criterion	15.23775	
Sum squared resid	50907787	Schwarz criterion	15.37354	

Table J-7
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Spring 2005 (continued)
MGP
Dependent Variable: MGP*52
Method: Least Squares
Date: 12/03/05 Time: 09:16
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.060883	0.002855	21.32764	0.0000
HM	0.050228	0.006796	7.39123	0.0000
HL	0.047201	0.003733	12.64580	0.0000
MH	0.071451	0.010374	6.88742	0.0000
MM	0.090932	0.005699	15.95631	0.0000
ML	0.067129	0.006316	10.62816	0.0000
LH	0.136282	0.006619	20.59111	0.0000
LM	0.121805	0.013967	8.72086	0.0000
LL	0.617337	0.538457	1.14649	0.2528
R-squared	0.3433	Mean dependent var	1103.761	
Adjusted R-squared	0.3192	S.D. dependent var	356.6764	
S.E. of regression	294.30	Akaike info criterion	14.24591	
Sum squared resid	18881310	Schwarz criterion	14.3817	

Table J-7
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Spring 2005 (continued)

WASTE

Dependent Variable: WASTE*52
Method: Least Squares
Date: 12/03/05 Time: 09:18
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.747685	0.036574	20.44324	0.0000
HM	0.798617	0.087065	9.17262	0.0000
HL	0.931464	0.047821	19.47809	0.0000
MH	0.807072	0.132912	6.07221	0.0000
MM	1.087639	0.073013	14.89655	0.0000
ML	1.192805	0.080922	14.74021	0.0000
LH	1.782845	0.084796	21.02520	0.0000
LM	1.493465	0.178945	8.34595	0.0000
LL	10.147540	6.898649	1.47095	0.1427
R-squared	0.2874	Mean dependent var		15478.34
Adjusted R-squared	0.2612	S.D. dependent var	4386.773	
S.E. of regression	$3,770.52$	Akaike info criterion	19.34665	
Sum squared resid	$3.10 \mathrm{E}+09$	Schwarz criterion	19.48244	

Table J-8
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Summer 2005

REFUSE

Dependent Variable: REFUSE*52
Method: Least Squares
Date: 10/14/05 Time: 17:06
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.508635	0.031243	16.28008	0.0000
HM	0.677294	0.074375	9.106500	0.0000
HL	0.847370	0.040851	20.74306	0.0000
MH	0.540146	0.113539	4.757351	0.0000
MM	0.848303	0.062371	13.60101	0.0000
ML	1.001387	0.069127	14.48624	0.0000
LH	1.319188	0.072436	18.21178	0.0000
LM	1.323732	0.152862	8.659645	0.0000
LL	6.586105	5.893113	1.117594	0.2650
R-squared	0.313075	Mean dependent var	12320.57	
Adjusted R-squared	0.287866	S.D. dependent var	3816.815	
S.E. of regression	3220.934	Akaike info criterion	19.03157	
Sum squared resid	$2.26 \mathrm{E}+09$	Schwarz criterion	19.16736	
Log likelihood	-2151.083	Durbin-Watson stat	1.505565	

Table J-8
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Summer 2005 (continued)

PAPER

Dependent Variable: PAPER*52
Method: Least Squares
Date: 10/14/05 Time: 17:05
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.127938	0.004316	29.64280	0.0000
HM	0.075687	0.010274	7.366492	0.0000
HL	0.034571	0.005643	6.126079	0.0000
MH	0.158334	0.015685	10.09473	0.0000
MM	0.123852	0.008616	14.37442	0.0000
ML	0.058094	0.009549	6.083526	0.0000
LH	0.202331	0.010007	20.21977	0.0000
LM	0.088631	0.021117	4.197140	0.0000
LL	0.983416	0.814098	1.207982	0.2284
R-squared	0.682419	Mean dependent var	1505.077	
Adjusted R-squared	0.670764	S.D. dependent var	775.4619	
S.E. of regression	444.9527	Akaike info criterion	15.07265	
Sum squared resid	43160278	Schwarz criterion	15.20844	
Log likelihood	-1701.746	Durbin-Watson stat	1.845447	

Table J-8
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Summer 2005 (continued)
MGP
Dependent Variable: MGP*52
Method: Least Squares
Date: 10/14/05 Time: 17:05
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.057819	0.002970	19.46489	0.0000
HM	0.049746	0.007071	7.034966	0.0000
HL	0.048813	0.003884	12.56803	0.0000
MH	0.066496	0.010795	6.159977	0.0000
MM	0.091331	0.005930	15.40159	0.0000
ML	0.067354	0.006572	10.24825	0.0000
LH	0.131936	0.006887	19.15745	0.0000
LM	0.118971	0.014534	8.185960	0.0000
LL	0.613842	0.560293	1.095573	0.2745
R-squared	0.260671	Mean dependent var	1089.006	
Adjusted R-squared	0.233540	S.D. dependent var	349.7901	
S.E. of regression	306.2333	Akaike info criterion	14.32541	
Sum squared resid	20443783	Schwarz criterion	14.46120	
Log likelihood	-1616.934	Durbin-Watson stat	1.427814	

Table J-8
Generation Rates per Housing Unit, by Stream and by Strata, Statistical Results, Summer 2005 (continued) WASTE

Dependent Variable: WASTE*52
Method: Least Squares
Date: 10/14/05 Time: 17:06
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.694393	0.035375	19.62924	0.0000		
HM	0.802727	0.084213	9.532127	0.0000		
HL	0.930755	0.046254	20.12254	0.0000		
MH	0.764976	0.128558	5.950445	0.0000		
MM	1.063485	0.070621	15.05912	0.0000		
ML	1.126836	0.078271	14.39668	0.0000		
LH	1.653455	0.082017	20.15979	0.0000		
LM	1.531333	0.173082	8.847444	0.0000		
LL	8.183363	6.672626	1.226408	0.2214		
R-squared	0.292159	Mean dependent var				14914.65
Adjusted R-squared	0.266183	S.D. dependent var	4257.358			
S.E. of regression	3646.985	Akaike info criterion	19.28003			
Sum squared resid	$2.90 \mathrm{E}+09$	Schwarz criterion	19.41582			
Log likelihood	-2179.283	Durbin-Watson stat	1.541824			

Table J-9
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Fall 2004

REFUSE

Dependent Variable: TONS_REFUSE*52
Method: Least Squares
Date: 01/20/05 Time: 11:24
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.354783	0.016844	21.06318	0.0000
HM	0.265022	0.026935	9.839476	0.0000
HL	0.313163	0.012732	24.59723	0.0000
MH	0.287780	0.043813	6.568310	0.0000
MM	0.339825	0.020227	16.80021	0.0000
ML	0.370204	0.020638	17.93767	0.0000
LH	0.443720	0.021842	20.31521	0.0000
LM	0.363083	0.042418	8.559561	0.0000
LL	2.991028	1.870096	1.599398	0.1112
R-squared	0.492472	Mean dependent var	12357.18	
Adjusted R-squared	0.473848	S.D. dependent var	3817.843	
S.E. of regression	2769.325	Akaike info criterion	18.72944	
Sum squared resid	$1.67 \mathrm{E}+09$	Schwarz criterion	18.86523	
Log likelihood	-2116.791	Durbin-Watson stat	1.655356	

Table J-9
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Fall 2004 (continued)

PAPER

Dependent Variable: TONS_PAPER*52
Method: Least Squares
Date: 01/20/05 Time: 11:25
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.101263	0.003320	30.50255	0.0000
HM	0.031439	0.005309	5.922192	0.0000
HL	0.014451	0.002509	5.758708	0.0000
MH	0.083049	0.008635	9.617214	0.0000
MM	0.051531	0.003987	12.92553	0.0000
ML	0.025689	0.004068	6.315438	0.0000
LH	0.077602	0.004305	18.02646	0.0000
LM	0.023724	0.008360	2.837605	0.0050
LL	0.554612	0.368587	1.504698	0.1338
R-squared	0.676363	Mean dependent var	1721.280	
Adjusted R-squared	0.664487	S.D. dependent var	942.3133	
S.E. of regression	545.8211	Akaike info criterion	15.48130	
Sum squared resid	64946703	Schwarz criterion	15.61709	
Log likelihood	-1748.128	Durbin-Watson stat	1.794559	

Table J-9
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Fall 2004 (continued)
MGP
Dependent Variable: TONS_MGP*52
Method: Least Squares
Date: 01/20/05 Time: 11:24
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.037614	0.001625	23.14926	0.0000
HM	0.019408	0.002598	7.469439	0.0000
HL	0.018562	0.001228	15.11401	0.0000
MH	0.032268	0.004226	7.634668	0.0000
MM	0.033601	0.001951	17.22007	0.0000
ML	0.023302	0.001991	11.70441	0.0000
LH	0.042087	0.002107	19.97504	0.0000
LM	0.031546	0.004092	7.709237	0.0000
LL	0.245086	0.180400	1.358570	0.1757
R-squared	0.382306	Mean dependent var	1046.373	
Adjusted R-squared	0.359638	S.D. dependent var	333.8364	
S.E. of regression	267.1446	Akaike info criterion	14.05230	
Sum squared resid	15557839	Schwarz criterion	14.18809	
Log likelihood	-1585.936	Durbin-Watson stat	1.499804	

Table J-9
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Fall 2004 (continued)

WASTE

Dependent Variable: TONS_WASTE*52
Method: Least Squares
Date: 01/20/05 Time: 11:25
Sample(adjusted): 1227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.493660	0.019627	25.15208	0.0000
HM	0.315868	0.031385	10.06425	0.0000
HL	0.346176	0.014835	23.33446	0.0000
MH	0.403096	0.051053	7.895632	0.0000
MM	0.424957	0.023570	18.02970	0.0000
ML	0.419196	0.024049	17.43117	0.0000
LH	0.563409	0.025451	22.13712	0.0000
LM	0.418352	0.049428	8.463940	0.0000
LL	3.790726	2.179110	1.739576	0.0833
R-squared	0.474164	Mean dependent var	15124.83	
Adjusted R-squared	0.454867	S.D. dependent var	4370.567	
S.E. of regression	3226.926	Akaike info criterion	19.03529	
Sum squared resid	$2.27 \mathrm{E}+09$	Schwarz criterion	19.17108	
Log likelihood	-2151.505	Durbin-Watson stat	1.698858	

Table J-10
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Winter 2005

REFUSE

Dependent Variable: REFUSE*52
Method: Least Squares
Date: 04/29/05 Time: 16:14
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.343559	0.016014	21.45359	0.0000
HM	0.244461	0.025608	9.546365	0.0000
HL	0.308990	0.012104	25.52688	0.0000
MH	0.252653	0.041655	6.065339	0.0000
MM	0.303281	0.019231	15.77036	0.0000
ML	0.328656	0.019622	16.74954	0.0000
LH	0.355666	0.020766	17.12740	0.0000
LM	0.299314	0.040329	7.421817	0.0000
LL	2.317491	1.777980	1.303440	0.1938
R-squared	0.514325	Mean dependent var	11117.65	
Adjusted R-squared	0.496502	S.D. dependent var	3710.547	
S.E. of regression	2632.915	Akaike info criterion	18.62841	
Sum squared resid	$1.51 \mathrm{E}+09$	Schwarz criterion	18.76420	
Log likelihood	-2105.325	Durbin-Watson stat	1.625069	

Table J-10
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Winter 2005 (continued)

PAPER

Dependent Variable: PAPER*52
Method: Least Squares
Date: 04/29/05 Time: 16:14
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.090173	0.003007	29.98304	0.0000		
HM	0.029800	0.004809	6.196500	0.0000		
HL	0.012969	0.002273	5.705291	0.0000		
MH	0.076544	0.007823	9.784650	0.0000		
MM	0.047739	0.003612	13.21829	0.0000		
ML	0.022698	0.003685	6.159553	0.0000		
LH	0.071917	0.003900	18.44083	0.0000		
LM	0.022180	0.007574	2.928458	0.0038		
LL	0.520022	0.333906	1.557389	0.1208		
R-squared	0.672547	Mean dependent var				1572.281
Adjusted R-squared	0.660530	S.D. dependent var	848.6609			
S.E. of regression	494.4639	Akaike info criterion	15.28367			
Sum squared resid	53299813	Schwarz criterion	15.41946			
Log likelihood	-1725.696	Durbin-Watson stat	1.776010			

Table J-10
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Winter 2005 (continued)
MGP
Dependent Variable: MGP*52
Method: Least Squares
Date: 04/29/05 Time: 16:14
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.039365	0.001584	24.85783	0.0000
HM	0.017893	0.002532	7.065933	0.0000
HL	0.016961	0.001197	14.16981	0.0000
MH	0.030990	0.004119	7.523247	0.0000
MM	0.030559	0.001902	16.06896	0.0000
ML	0.020096	0.001940	10.35698	0.0000
LH	0.038955	0.002053	18.97004	0.0000
LM	0.030241	0.003988	7.582935	0.0000
LL	0.246922	0.175821	1.404400	0.1616
R-squared	0.411668	Mean dependent var	981.5309	
Adjusted R-squared	0.390078	S.D. dependent var	333.3821	
S.E. of regression	260.3632	Akaike info criterion	14.00087	
Sum squared resid	14777999	Schwarz criterion	14.13666	
Log likelihood	-1580.099	Durbin-Watson stat	1.481864	

Table J-10
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Winter 2005 (continued)

WASTE

Dependent Variable: WASTE*52
Method: Least Squares
Date: 04/29/05 Time: 16:15
Sample(adjusted): 1-227
Included observations: 227 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.473097	0.018594	25.44340	0.0000
HM	0.292155	0.029733	9.825782	0.0000
HL	0.338921	0.014055	24.11449	0.0000
MH	0.360187	0.048366	7.447070	0.0000
MM	0.381579	0.022329	17.08865	0.0000
ML	0.371450	0.022783	16.30379	0.0000
LH	0.466537	0.024111	19.34918	0.0000
LM	0.351735	0.046826	7.511475	0.0000
LL	3.084435	2.064429	1.494086	0.1366
R-squared	0.486491	Mean dependent var	13671.46	
Adjusted R-squared	0.467647	S.D. dependent var	4189.962	
S.E. of regression	3057.102	Akaike info criterion	18.92716	
Sum squared resid	$2.04 \mathrm{E}+09$	Schwarz criterion	19.06295	
Log likelihood	-2139.233	Durbin-Watson stat	1.664198	

Table J-11
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Spring 2005

REFUSE

Dependent Variable: REFUSE*52
Method: Least Squares
Date: 12/03/05 Time: 09:32
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.349221	0.017513	19.94045	0.0000
HM	0.272570	0.028005	9.73288	0.0000
HL	0.318382	0.013238	24.05133	0.0000
MH	0.294799	0.045555	6.47130	0.0000
MM	0.336155	0.021031	15.98350	0.0000
ML	0.365918	0.021459	17.05229	0.0000
LH	0.508976	0.022710	22.41213	0.0000
LM	0.384069	0.044104	8.70822	0.0000
LL	3.495500	1.944421	1.79771	0.0736
R-squared	0.4659	Mean dependent var	12765.01	
Adjusted R-squared	0.4463	S.D. dependent var	3869.398	
S.E. of regression	$2,879.39$	Akaike info criterion	18.80738	
Sum squared resid	$1.81 \mathrm{E}+09$	Schwarz criterion	18.94317	

Table J-11
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Spring 2005 (continued)

PAPER

Dependent Variable: PAPER*52
Method: Least Squares
Date: 12/03/05 Time: 09:32
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.091223	0.003060	29.80698	0.0000
HM	0.029666	0.004894	6.06184	0.0000
HL	0.013686	0.002313	5.91647	0.0000
MH	0.077727	0.007961	9.76373	0.0000
MM	0.047906	0.003675	13.03485	0.0000
ML	0.023142	0.003750	6.17128	0.0000
LH	0.074942	0.003969	18.88386	0.0000
LM	0.024494	0.007707	3.17798	0.0017
LL	0.485924	0.339789	1.43008	0.1541
R-squared	0.6657	Mean dependent var	1609.574	
Adjusted R-squared	0.6534	S.D. dependent var	854.707	
S.E. of regression	503.18	Akaike info criterion	15.3186	
Sum squared resid	55194469	Schwarz criterion	15.45439	

Table J-11
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Spring 2005 (continued)
MGP
Dependent Variable: MGP*52
Method: Least Squares
Date: 12/03/05 Time: 09:31
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.039231	0.001703	23.04109	0.0000
HM	0.019171	0.002723	7.04130	0.0000
HL	0.017725	0.001287	13.77278	0.0000
MH	0.034841	0.004429	7.86663	0.0000
MM	0.034347	0.002045	16.79822	0.0000
ML	0.023372	0.002086	11.20295	0.0000
LH	0.048732	0.002208	22.07196	0.0000
LM	0.036378	0.004288	8.48380	0.0000
LL	0.264336	0.189040	1.39831	0.1634
R-squared	0.4058	Mean dependent var	1103.761	
Adjusted R-squared	0.3840	S.D. dependent var	356.6764	
S.E. of regression	279.94	Akaike info criterion	14.14586	
Sum squared resid	17083702	Schwarz criterion	14.28165	

Table J-11
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Spring 2005 (continued)
WASTE
Dependent Variable: WASTE*52
Method: Least Squares
Date: 12/03/05 Time: 09:32
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.479675	0.020166	23.78640	0.0000
HM	0.321407	0.032247	9.96705	0.0000
HL	0.349794	0.015243	22.94826	0.0000
MH	0.407366	0.052455	7.76600	0.0000
MM	0.418408	0.024217	17.27747	0.0000
ML	0.412432	0.024709	16.69161	0.0000
LH	0.632650	0.026150	24.19338	0.0000
LM	0.444940	0.050785	8.76130	0.0000
LL	4.245760	2.238943	1.89632	0.0592
R-squared	0.4490	Mean dependent var	15478.34	
Adjusted R-squared	0.4288	S.D. dependent var	4386.773	
S.E. of regression	$3,315.53$	Akaike info criterion	19.08946	
Sum squared resid	$2.40 \mathrm{E}+09$	Schwarz criterion	19.22525	

Table J-12
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Summer 2005

REFUSE

Dependent Variable: REFUSE*52
Method: Least Squares
Date: 10/14/05 Time: 17:08
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.327344	0.017071	19.17538	0.0000		
HM	0.275524	0.027298	10.09320	0.0000		
HL	0.318220	0.012903	24.66160	0.0000		
LH	0.470372	0.022137	21.24864	0.0000		
LM	0.400438	0.042991	9.314495	0.0000		
LL	2.718423	1.895334	1.434271	0.1529		
MH	0.279931	0.044405	6.304071	0.0000		
MM	0.329781	0.020500	16.08654	0.0000		
ML	0.341882	0.020917	16.34480	0.0000		
R-squared	0.478400	Mean dependent var				12320.57
Adjusted R-squared	0.459259	S.D. dependent var	3816.815			
S.E. of regression	2806.699	Akaike info criterion	18.75625			
Sum squared resid	$1.72 E+09$	Schwarz criterion	18.89204			
Log likelihood	-2119.834	Durbin-Watson stat	1.623040			

Table J-12
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Summer 2005 (continued)

PAPER

Dependent Variable: PAPER*52
Method: Least Squares
Date: 10/14/05 Time: 17:08
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
HH	0.081593	0.002820	28.93608	0.0000		
HM	0.029682	0.004509	6.582671	0.0000		
HL	0.012497	0.002131	5.863524	0.0000		
MH	0.074499	0.007335	10.15704	0.0000		
MM	0.045648	0.003386	13.48052	0.0000		
ML	0.020609	0.003455	5.964867	0.0000		
LH	0.070613	0.003656	19.31174	0.0000		
LM	0.024400	0.007101	3.436032	0.0007		
LL	0.450013	0.313069	1.437423	0.1520		
R-squared	0.655232	Mean dependent var				1505.077
Adjusted R-squared	0.642580	S.D. dependent var	775.4619			
S.E. of regression	463.6070	Akaike info criterion	15.15479			
Sum squared resid	46855061	Schwarz criterion	15.29058			
Log likelihood	-1711.069	Durbin-Watson stat	1.808847			

Table J-12
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Summer 2005 (continued)
MGP
Dependent Variable: MGP*52
Method: Least Squares
Date: 10/14/05 Time: 17:08
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.037268	0.001794	20.77867	0.0000
HM	0.019063	0.002868	6.646575	0.0000
HL	0.018348	0.001356	13.53398	0.0000
MH	0.032432	0.004665	6.951716	0.0000
MM	0.034554	0.002154	16.04262	0.0000
ML	0.023275	0.002198	10.59078	0.0000
LH	0.047225	0.002326	20.30510	0.0000
LM	0.035465	0.004517	7.851866	0.0000
LL	0.263891	0.199133	1.325200	0.1865
R-squared	0.314451	Mean dependent var	1089.006	
Adjusted R-squared	0.289293	S.D. dependent var	349.7901	
S.E. of regression	294.8850	Akaike info criterion	14.24989	
Sum squared resid	18956665	Schwarz criterion	14.38568	
Log likelihood	-1608.362	Durbin-Watson stat	1.509776	

Table J-12
Generation Rates per Capita, by Stream and by Strata, Statistical Results, Summer 2005 (continued)

WASTE

Dependent Variable: WASTE*52
Method: Least Squares
Date: 10/14/05 Time: 17:08
Sample (adjusted): 1227
Included observations: 227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HH	0.446206	0.019597	22.76881	0.0000
HM	0.324269	0.031338	10.34761	0.0000
HL	0.349065	0.014813	23.56496	0.0000
LH	0.588210	0.025412	23.14667	0.0000
LM	0.460303	0.049353	9.326835	0.0000
LL	3.432326	2.175803	1.577498	0.1161
MH	0.386863	0.050976	7.589147	0.0000
MM	0.409983	0.023534	17.42084	0.0000
ML	0.385766	0.024012	16.06545	0.0000
R-squared	0.447507	Mean dependent var	14914.65	
Adjusted R-squared	0.427232	S.D. dependent var	4257.358	
S.E. of regression	3222.031	Akaike info criterion	19.03225	
Sum squared resid	$2.26 \mathrm{E}+09$	Schwarz criterion	19.16804	
Log likelihood	-2151.161	Durbin-Watson stat	1.674339	

Table J-13
Per Housing Unit Generation Rate by Stratum, Fall 2004 REFUSE - Generation Rates (tons per housing unit per year)

Housing Density

High

©	Medium
으	Low

High	Medium	Low
0.55	0.56	1.25
0.65	0.88	1.21
0.83	1.07	

PAPER - Generation Rates (tons per housing unit per year)
Housing Density

	High			Medium		Low
	High	0.16	0.18	0.22		
	Medium	0.08	0.14	0.09		
	Low	0.04	0.07			

MGP - Generation Rates (tons per housing unit per year)

WASTE- Generation Rates (tons per housing unit per year)
Housing Density

	High Medium Low	High	Medium	Low
		0.77	0.81	1.59
		0.78	1.11	1.41
		0.92	1.21	

Table J-14
Per Housing Unit Generation Rate by Stratum, Winter 2005
REFUSE - Generation Rates (tons per housing unit per year)
Housing Density

High
$\begin{array}{ll}\text { © } & \text { Medium } \\ \text { O} \\ \text { O्C } & \text { Low }\end{array}$

High	Medium	Low
0.54	0.50	1.00
0.60	0.79	1.00
0.82	0.95	

PAPER - Generation Rates (tons per housing unit per year)
Housing Density

	High		Medium	
Low				
	High	0.14	0.16	0.21
	Medium	0.08	0.13	0.08
	Low	0.04	0.06	

MGP - Generation Rates (tons per housing unit per year)

$\begin{aligned} & \stackrel{0}{\overleftarrow{0}} \\ & \stackrel{\text { O}}{\underline{C}} \end{aligned}$		Housing Density		
		High	Medium	Low
	High	0.06	0.06	0.11
	Medium	0.05	0.08	0.10
	Low	0.05	0.06	

WASTE- Generation Rates (tons per housing unit per year)
Housing Density

	High			Medium		Low
	High	0.74	0.72	1.31		
	Medium	0.72	1.00	1.18		
	Low	0.90	1.07			

Table J-15
Per Housing Unit Generation Rate by Stratum, Spring 2005
REFUSE - Generation Rates (tons per housing unit per year)
Housing Density

High

High	Medium	Low
0.54	0.57	1.43
0.67	0.87	1.28
0.85	1.06	

PAPER - Generation Rates (tons per housing unit per year)
Housing Density

	High Medium Low	High	Medium	Low
		0.14	0.17	0.21
		0.08	0.13	0.09
		0.04	0.07	

MGP - Generation Rates (tons per housing unit per year)

WASTE- Generation Rates (tons per housing unit per year)
Housing Density

	High Medium Low	High	Medium	Low
		0.75	0.81	1.78
		0.80	1.09	1.49
		0.93	1.19	

Table J-16
Per Housing Unit Generation Rate by Stratum, Summer 2005
REFUSE - Generation Rates (tons per housing unit per year)
Housing Density

High

©	Medium
으	Low

High	Medium	Low
0.51	0.54	1.32
0.68	0.85	1.32
0.85	1.00	

PAPER - Generation Rates (tons per housing unit per year)
Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{\text { OU }}{\text { In }} \end{aligned}$	High Medium Low	High	Medium	Low
		0.13	0.16	0.20
		0.08	0.12	0.09
		0.03	0.06	

MGP - Generation Rates (tons per housing unit per year)

		Housing Density		
		High	Medium	Low
	High	0.06	0.07	0.13
	Medium	0.05	0.09	0.12
	Low	0.05	0.07	

WASTE- Generation Rates (tons per housing unit per year)
Housing Density

	High Medium	High	Medium	Low
		0.69	0.76	1.65
		0.80	1.06	1.53
	Low	0.93	1.13	

Table J-17
Per Capita Generation Rate by Stratum, Fall 2004
REFUSE - Generation Rates (tons per capita per year)

PAPER - Generation Rates (tons per capita per year)
Housing Density

	High Medium Low	High	Medium	Low
		0.10	0.08	0.08
		0.03	0.05	0.02
		0.01	0.03	

MGP - Generation Rates (tons per capita per year)

$\begin{aligned} & \stackrel{0}{\overleftarrow{O}} \\ & \stackrel{\text { O}}{\underline{4}} \end{aligned}$	High Medium	Housing Density		
		High	Medium	Low
		0.04	0.03	0.04
		0.02	0.03	0.03
	Low	0.02	0.02	

WASTE- Generation Rates (tons per capita per year)
Housing Density

© 응	High Medium Low	High	Medium	Low
		0.49	0.40	0.56
		0.32	0.42	0.41
		0.34	0.42	

Table J-18
Per Capita Generation Rate by Stratum, Winter 2005
REFUSE - Generation Rates (tons per capita per year)

PAPER - Generation Rates (tons per capita per year)

		Housing Density		
		High	Medium	Low
	High	0.09	0.08	0.07
$\stackrel{0}{\mathrm{E}}$	Medium	0.03	0.05	0.02
ㅇㅡㅡㅡㅔ	Low	0.01	0.02	

MGP - Generation Rates (tons per capita per year)

WASTE- Generation Rates (tons per capita per year)
Housing Density

High

High	Medium	Low
0.47	0.36	0.47
0.29	0.38	0.35
0.34	0.37	

Table J-19
Per Capita Generation Rate by Stratum, Spring 2005
REFUSE - Generation Rates (tons per capita per year)

PAPER - Generation Rates (tons per capita per year)
Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{\text { On }}{0} \end{aligned}$	High Medium Low	High	Medium	Low
		0.09	0.08	0.07
		0.03	0.05	0.02
		0.01	0.02	

MGP - Generation Rates (tons per capita per year)

$\begin{aligned} & \text { © } \\ & \stackrel{\text { O}}{\mathbf{O}} \end{aligned}$		Housing Density		
		High		Low
	High	0.04	0.03	0.05
	Medium	0.02	0.03	0.04
	Low	0.02	0.02	

WASTE- Generation Rates (tons per capita per year)
Housing Density

© 응	High Medium Low	High	Medium	Low
		0.48	0.41	0.63
		0.32	0.42	0.44
		0.35	0.41	

Table J-20
Per Capita Generation Rate by Stratum, Summer 2005
REFUSE - Generation Rates (tons per capita per year)

PAPER - Generation Rates (tons per capita per year)
Housing Density

$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{O}{0} \end{aligned}$	High Medium Low	High	Medium	Low
		0.08	0.07	0.07
		0.03	0.05	0.02
		0.01	0.02	

MGP - Generation Rates (tons per capita per year)

WASTE- Generation Rates (tons per capita per year)
Housing Density

	High Medium Low	High	Medium	Low
		0.45	0.39	0.59
		0.32	0.41	0.46
		0.35	0.39	

Table J-21
Estimated Tonnages per Week Projected on a Housing Unit Basis, Fall 2004 REFUSE - Estimated Tons per Week (Housing Unit Basis)

		Housing Density		
		High	Medium	Low
	High	5,832.85	2,117.45	10,315.46
	Medium	3,866.34	9,593.24	3,853.18
	Low	10,036.73	8,328.59	

PAPER - Estimated Tons per Week (Housing Unit Basis)

Housing Density

$\begin{aligned} & \text { O} \\ & \stackrel{\overleftarrow{O}}{0} \\ & \underline{C} \end{aligned}$	High Medium	High Medium		Low
		1,697.71	680.96	1,816.47
		476.10	1,526.99	286.75
	Low	483.95	545.14	

MGP - Estimated Tons per Week (Housing Unit Basis)

$\begin{aligned} & \text { © } \\ & \stackrel{\text { O}}{\underline{E}} \end{aligned}$	High Medium	Housing Density		
		High	Medium	Low
		622.44	258.91	968.71
		290.93	959.75	342.66
	Low	591.45	532.99	

WASTE - Estimated Tons per Week (Housing Unit Basis)
Housing Density

	High Medium	High Medium		Low
		8,153.01	3,057.33	13,100.64
		4,633.37	12,079.98	4,482.58
	Low	11,112.13	9,406.72	

Table J-22
Estimated Tonnages per Week Projected on a Per Capita Basis, Fall 2004
REFUSE - Estimated Tons per Week (Per Capita Basis)
Housing Density

	High Medium	High Medium		Low
		6,066.79	2,531.31	10,273.67
		3,730.37	9,751.02	3,384.61
	Low	10,165.77	8,040.31	

PAPER - Estimated Tons per Week (Per Capita Basis)

Housing Density

$\begin{aligned} & \text { O} \\ & \stackrel{\text { O}}{\underline{O}} \end{aligned}$	High Medium	High	Medium	Low
		1,780.32	717.20	1,918.53
		425.71	1,472.81	193.13
	Low	336.81	669.57	

MGP - Estimated Tons per Week (Per Capita Basis)

Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & \underline{E} \end{aligned}$	High Medium	High	Medium	Low
		720.06	271.95	969.95
		286.97	893.53	292.92
	Low	681.12	451.35	

WASTE - Estimated Tons per Week (Per Capita Basis)

Housing Density
High Medium Low

	High
©	Medium
으든	Low

$8,567.16$	$3,520.46$	$13,162.14$
$4,443.05$	$12,117.36$	$3,870.65$
$11,183.69$	$9,161.23$	

Table J-23
Estimated Tonnages per Week Projected on a Housing Unit Basis, Winter 2005 REFUSE - Estimated Tons per Week (Housing Unit Basis)

	High Medium	Housing Density		
		High	Medium	Low
		5,692.56	1,881.80	8,252.45
		3,567.33	8,573.27	3,189.86
	Low	9,967.13	7,408.46	

PAPER - Estimated Tons per Week (Housing Unit Basis)

Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & \underline{E} \end{aligned}$	High Medium	High	Medium	Low
		1,498.87	616.31	1,697.21
		451.98	1,413.50	261.40
	Low	432.07	492.25	

MGP - Estimated Tons per Week (Housing Unit Basis)

$\begin{aligned} & \text { © } \\ & \text { OU } \\ & \text { In } \end{aligned}$	High Medium	Housing Density		
		High	Medium	Low
		651.45	244.83	901.37
		278.40	888.22	324.28
	Low	547.48	448.70	

WASTE - Estimated Tons per Week (Housing Unit Basis)
Housing Density

	High Medium	High	Medium	Low
		7,842.88	2,742.94	10,851.02
		4,297.72	10,875.00	3,775.55
	Low	10,946.68	8,349.40	

Table J-24
Estimated Tonnages per Week Projected on a Per Capita Basis, Winter 2005 REFUSE - Estimated Tons per Week (Per Capita Basis)

Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{\text { OU}}{\underline{E}} \end{aligned}$	High Medium	High Medium		Low
		5,943.37	2,200.97	8,288.09
		3,370.83	8,680.79	2,808.50
	Low	10,112.61	7,127.70	

PAPER - Estimated Tons per Week (Per Capita Basis)
Housing Density

$\begin{aligned} & \stackrel{0}{0} \\ & \underline{O} \\ & \hline \underline{C} \end{aligned}$	High Medium	High Medium		Low
		1,573.43	672.56	1,690.37
		414.44	1,378.26	209.91
	Low	428.13	496.51	

MGP - Estimated Tons per Week (Per Capita Basis)
Housing Density

	High Medium	High	Medium	Low
		685.78	271.86	914.13
		248.46	880.80	285.78
	Low	559.02	438.90	

WASTE - Estimated Tons per Week (Per Capita Basis)
Housing Density

	High Medium	High Medium		Low
		8,202.57	3,145.40	10,892.59
		4,033.73	10,939.84	3,304.18
	Low	11,099.76	8,063.11	

Table J-25
Estimated Tonnages per Week Projected on a Housing Unit Basis, Spring 2005
REFUSE - Estimated Tons per Week (Housing Unit Basis)

$\begin{aligned} & \stackrel{0}{\overleftarrow{0}} \\ & \stackrel{O}{\text { O}} \end{aligned}$	High Medium	Housing Density		
		High	Medium	Low
		5,761.92	2,155.21	11,810.04
		3,993.01	9,442.75	4,079.20
	Low	10,230.96	8,251.19	

PAPER - Estimated Tons per Week (Housing Unit Basis)
Housing Density

©을-	High Medium	High Medium		Low
		1,516.23	624.16	1,768.66
		455.61	1,415.28	286.01
	Low	455.39	505.28	

MGP - Estimated Tons per Week (Housing Unit Basis)
Housing Density

High
$\stackrel{\text { E Medium }}{0}$
Low

High	Medium	Low
646.58 270.55	$1,126.22$	
299.18	992.67	388.42
571.57	523.24	

WASTE - Estimated Tons per Week (Housing Unit Basis)

	High
응	Medium
으	Low

Housing Density

High	Medium	Low
$7,924.72$	$3,049.91$	$14,704.91$
$4,747.80$	$11,850.70$	$4,753.63$
$11,257.92$	$9,279.71$	

Table J-26
Estimated Tonnages per Week Projected on a Per Capita Basis, Spring 2005 REFUSE - Estimated Tons per Week (Per Capita Basis)

$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\text { O}}{\underline{C}} \end{aligned}$	High Medium	Housing Density		
		High	Medium	Low
		6,032.05	2,564.17	11,842.51
		3,752.66	9,606.93	3,598.23
	Low	10,404.01	7,923.71	

PAPER - Estimated Tons per Week (Per Capita Basis)

$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & \underline{\text { an }} \end{aligned}$	High Medium	High Medium		Low
		1,592.87	683.44	1,762.71
		412.89	1,384.03	231.98
	Low	452.10	506.59	

MGP - Estimated Tons per Week (Per Capita Basis)

		Housing Density		
		High	Medium	Low
	High	682.19	305.09	$1,141.50$
	Medium	265.72	988.21	343.11
	Low	583.11	509.51	

WASTE - Estimated Tons per Week (Per Capita Basis)
Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & \underline{C} \end{aligned}$	High	High Medium		Low
		8,307.11	3,552.70	14,746.72
	Medium	4,431.27	11,979.16	4,173.32
	Low	11,439.22	8,939.81	

Table J-27
Estimated Tonnages per Week Projected on a Housing Unit Basis, Summer 2005
REFUSE - Estimated Tons per Week (Housing Unit Basis)

$\begin{aligned} & \stackrel{0}{\overleftarrow{E}} \\ & \stackrel{\text { O}}{4} \end{aligned}$		Housing Density		
		High	Medium	Low
	High	5,386.95	2,039.65	10,871.87
	Medium	4,023.30	9,235.34	4,209.71
	Low	10,233.08	7,784.10	

PAPER - Estimated Tons per Week (Housing Unit Basis)
Housing Density

$\begin{aligned} & \stackrel{0}{\overleftarrow{O}} \\ & \stackrel{\text { O}}{\underline{E}} \end{aligned}$	High Medium	High Medium		Low
		1,355.19	597.97	1,667.72
		449.67	1,348.55	281.90
	Low	417.55	451.65	

MGP - Estimated Tons per Week (Housing Unit Basis)
Housing Density

High

Migh Medium
Low
615.20
252.26
296.87
592.21

WASTE - Estimated Tons per Week (Housing Unit Basis)

	High
응	Medium
ㅡㅡ	Low

Housing Density

High	Medium	Low
$7,357.34$	$2,889.89$	$13,631.97$
$4,769.84$	$11,582.81$	$4,871.72$
$11,242.84$	$8,761.75$	

Table J-28
Estimated Tonnages per Week Projected on a Per Capita Basis, Summer 2005
REFUSE - Estimated Tons per Week (Per Capita Basis)

	High Medium	Housing Density		
		High	Medium	Low
		5,651.97	2,433.90	10,940.04
		3,791.86	9,421.10	3,750.13
	Low	10,394.67	7,400.34	

PAPER - Estimated Tons per Week (Per Capita Basis)
Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	High Medium	High Medium		Low
		1,425.28	655.32	1,661.55
		413.27	1,319.31	231.18
	Low	412.99	451.32	

MGP - Estimated Tons per Week (Per Capita Basis)

	High Medium	Housing Density		
		High	Medium	Low
		649.67	284.70	1,108.95
		264.88	996.64	335.33
	Low	605.11	508.66	

WASTE - Estimated Tons per Week (Per Capita Basis)
Housing Density

$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \\ & \underline{C} \end{aligned}$	High Medium	High Medium		Low
		7,726.92	3,373.92	13,710.53
		4,470.01	11,737.05	4,316.64
	Low	11,412.77	8,360.32	

Table J-29
Residential Waste Generation and Capture Rates for Aggregated Recycling, Fall 2004

Parameter	Citywide	High Density/ High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Densityl High Income	Low Densityl Medium Income
Refuse Collected (tons/week)	53,943.84	5,832.85	3,866.34	10,036.73	2,117.45	9,593.24	8,328.59	10,315.46	3,853.18
Paper Collected (tons/week)	7,514.09	1,697.71	476.10	483.95	680.96	1,526.99	545.14	1,816.47	286.75
MGP Collected (tons/week)	4,567.83	622.44	290.93	591.45	258.91	959.75	532.99	968.71	342.66
Total Waste Collected (tons/week)	66,025.76	8,153.01	4,633.37	11,112.13	3,057.33	12,079.98	9,406.72	13,100.64	4,482.58
Paper Designated for Recycling (tons/wk)	15,202.15	3,238.39	1,101.15	1,906.95	998.75	2,556.59	1,541.36	3,097.47	761.49
MGP Designated for Recycling (tons/wk)	7,858.15	964.44	510.49	1,474.75	379.39	1,324.05	1,280.86	1,422.50	501.66
Total Designated for Recycling (tons/wk)	23,060.30	4,202.83	1,611.64	3,381.70	1,378.14	3,880.64	2,822.22	4,519.98	1,263.15
Designated Paper (\% of total waste)	23.02\%	39.72\%	23.77\%	17.16\%	32.67\%	21.16\%	16.39\%	23.64\%	16.99\%
Designated MGP (\% of total waste)	11.90\%	11.83\%	11.02\%	13.27\%	12.41\%	10.96\%	13.62\%	10.86\%	11.19\%
Total Designated (\% of total waste)	34.93\%	51.55\%	34.78\%	30.43\%	45.08\%	32.12\%	30.00\%	34.50\%	28.18\%
Capture Rate for Paper	49.43\%	52.42\%	43.24\%	25.38\%	68.18\%	59.73\%	35.37\%	58.64\%	37.66\%
Capture Rate for MGP	58.13\%	64.54\%	56.99\%	40.10\%	68.24\%	72.49\%	41.61\%	68.10\%	68.30\%
Capture Rate for all Designated Materials	52.39\%	55.20\%	47.59\%	31.80\%	68.20\%	64.08\%	38.20\%	61.62\%	49.83\%
Diversion Rate	18.30\%	28.46\%	16.55\%	9.68\%	30.74\%	20.59\%	11.46\%	21.26\%	14.04\%

Table J-30
Residential Waste Generation and Capture Rates for Aggregated Recycling, Winter 2005

Parameter	Citywide	High Densityl High Income	High Density/ Medium Income	High Density/ Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Densityl Medium Income
Refuse Collected (tons/week)	48,532.86	5,692.56	3,567.33	9,967.13	1,881.80	8,573.27	7,408.46	8,252.45	3,189.86
Paper Collected (tons/week)	6,863.60	1,498.87	451.98	432.07	616.31	1,413.50	492.25	1,697.21	261.40
MGP Collected (tons/week)	4,284.72	651.45	278.40	547.48	244.83	888.22	448.70	901.36	324.28
Total Waste Collected (tons/week)	59,681.18	7,842.88	4,297.72	10,946.68	2,742.94	10,875.00	8,349.40	10,851.02	3,775.55
Paper Designated for Recycling (tons/wk)	14,515.85	3,049.25	1,137.28	1,870.35	898.10	2,470.76	1,557.80	2,852.79	679.53
MGP Designated for Recycling (tons/wk)	7,784.62	1,054.80	518.40	1,530.51	356.25	1,414.26	1,081.12	1,339.92	489.36
Total Designated for Recycling (tons/wk)	22,300.47	4,104.05	1,655.68	3,400.86	1,254.35	3,885.02	2,638.91	4,192.71	1,168.89
Designated Paper (\% of total waste)	24.32\%	38.88\%	26.46\%	17.09\%	32.74\%	22.72\%	18.66\%	26.29\%	18.00\%
Designated MGP (\% of total waste)	13.04\%	13.45\%	12.06\%	13.98\%	12.99\%	13.00\%	12.95\%	12.35\%	12.96\%
Total Designated (\% of total waste)	37.37\%	52.33\%	38.52\%	31.07\%	45.73\%	35.72\%	31.61\%	38.64\%	30.96\%
Capture Rate for Paper	47.28\%	49.16\%	39.74\%	23.10\%	68.62\%	57.21\%	31.60\%	59.49\%	38.47\%
Capture Rate for MGP	55.04\%	61.76\%	53.70\%	35.77\%	68.72\%	62.80\%	41.50\%	67.27\%	66.27\%
Capture Rate for all Designated Materials	49.99\%	52.40\%	44.11\%	28.80\%	68.65\%	59.25\%	35.66\%	61.98\%	50.11\%
Diversion Rate	18.68\%	27.42\%	16.99\%	8.95\%	31.39\%	21.17\%	11.27\%	23.95\%	15.51\%

Table J-31
Residential Waste Generation and Capture Rates for Aggregated Recycling, Spring 2005

Parameter	Citywide	High Density/ High Income	High Density/ Medium Income	High Densityl Low Income	Medium Density/ High Income	Medium Density/ Medium Income	Medium Density/ Low Income	Low Densityl High Income	Low Density/ Medium Income
Refuse Collected (tons/week)	55,724.27	5,761.92	3,993.01	10,230.96	2,155.21	9,442.75	8,251.19	11,810.04	4,079.20
Paper Collected (tons/week)	7,026.61	1,516.23	455.61	455.39	624.16	1,415.28	505.28	1,768.66	286.01
MGP Collected (tons/week)	4,818.43	646.58	299.18	571.57	270.55	992.67	523.24	1,126.22	388.42
Total Waste Collected (tons/week)	67,569.31	7,924.72	4,747.80	11,257.92	3,049.91	11,850.70	9,279.71	14,704.91	4,753.63
Paper Designated for Recycling (tons/wk)	14,513	3,032	1,037	1,869	930	2,411	1,748	2,778	709
MGP Designated for Recycling (tons/wk)	8,173	965	534	1,476	387	1,472	1,206	1,539	594
Total Designated for Recycling (tons/wk)	22,686	3,997	1,571	3,345	1,317	3,883	2,953	4,317	1,303
Designated Paper (\% of total waste)	21.48\%	38.26\%	21.85\%	16.60\%	30.48\%	20.35\%	18.83\%	18.89\%	14.91\%
Designated MGP (\% of total waste)	12.10\%	12.17\%	11.25\%	13.11\%	12.69\%	12.42\%	12.99\%	10.47\%	12.50\%
Total Designated (\% of total waste)	33.57\%	50.44\%	33.09\%	29.72\%	43.17\%	32.76\%	31.83\%	29.36\%	27.41\%
Capture Rate for Paper	48.41\%	50.00\%	43.93\%	24.36\%	67.15\%	58.70\%	28.91\%	63.67\%	40.34\%
Capture Rate for MGP	58.96\%	67.03\%	56.04\%	38.72\%	69.91\%	67.45\%	43.40\%	73.16\%	65.39\%
Capture Rate for all Designated Materials	52.21\%	54.11\%	48.04\%	30.70\%	67.96\%	62.02\%	34.83\%	67.06\%	51.76\%
Diversion Rate	17.53\%	27.29\%	15.90\%	9.12\%	29.34\%	20.32\%	11.08\%	19.69\%	14.19\%

Table J-32
Residential Waste Generation and Capture Rates for Aggregated Recycling, Summer 2005

Parameter	Citywide	High Density/ High Income	High Density/ Medium Income	High Densityl Low Income	Medium Densityl High Income	Medium Densityl Medium Income	Medium Densityl Low Income	Low Density/ High Income	Low Density/ Medium Income
Refuse Collected (tons/week)	53,784.01	5,386.95	4,023.30	10,233.08	2,039.65	9,235.34	7,784.10	10,871.87	4,209.71
Paper Collected (tons/week)	6,570.22	1,355.19	449.67	417.55	597.97	1,348.55	451.65	1,667.72	281.90
MGP Collected (tons/week)	4,753.94	615.20	296.87	592.21	252.26	998.92	525.99	1,092.37	380.10
Total Waste Collected (tons/week)	65,108.16	7,357.34	4,769.84	11,242.84	2,889.89	11,582.81	8,761.75	13,631.97	4,871.72
Paper Designated for Recycling (tons/wk)	14,625.03	2,765.40	1,169.31	2,007.13	935.68	2,393.38	1,560.16	3,024.87	769.08
MGP Designated for Recycling (tons/wk)	8,746.16	1,019.43	562.49	1,507.51	391.21	1,581.45	1,308.52	1,661.59	713.96
Total Designated for Recycling (tons/wk)	23,371.19	3,784.83	1,731.80	3,514.63	1,326.90	3,974.84	2,868.68	4,686.46	1,483.05
Designated Paper (\% of total waste)	22.46\%	37.59\%	24.51\%	17.85\%	32.38\%	20.66\%	17.81\%	22.19\%	15.79\%
Designated MGP (\% of total waste)	13.43\%	13.86\%	11.79\%	13.41\%	13.54\%	13.65\%	14.93\%	12.19\%	14.66\%
Total Designated (\% of total waste)	35.90\%	51.44\%	36.31\%	31.26\%	45.92\%	34.32\%	32.74\%	34.38\%	30.44\%
Capture Rate for Paper	44.92\%	49.01\%	38.46\%	20.80\%	63.91\%	56.35\%	28.95\%	55.13\%	36.65\%
Capture Rate for MGP	54.35\%	60.35\%	52.78\%	39.28\%	64.48\%	63.16\%	40.20\%	65.74\%	53.24\%
Capture Rate for all Designated Materials	48.45\%	52.06\%	43.11\%	28.73\%	64.08\%	59.06\%	34.08\%	58.90\%	44.64\%
Diversion Rate	17.39\%	26.78\%	15.65\%	8.98\%	29.42\%	20.27\%	11.16\%	20.25\%	13.59\%

[This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 4
Appendix K: Capture Rate Data
[This page intentionally left blank.]

Table K-1
Capture Rate, Weekly Tonnages and Percentages, Citywide, Fall $2004{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$53,943.84$
Paper	$7,514.09$
MGP	$4,567.83$
Total Waste	$66,025.76$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	23.02%	of waste	$15,202.15$
Designated MGP	11.90%	of waste	$7,858.15$
Total	34.93%		$23,060.30$

Capture Rates

Paper	49.43%
MGP	58.13%
Total	52.39%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for September, October and November 2004.

Table K-2
Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Fall $2004{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$5,832.85$
Paper	$1,697.71$
MGP	622.44
Total Waste	$8,153.01$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	39.72%	of waste	$3,238.39$
Designated MGP	11.83%	of waste	964.44
Total	51.55%		$4,202.83$

Capture Rates	
Paper	52.42%
MGP	64.54%
Total	55.20%

[^31]Table K-3
Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Fall $2004{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$3,866.34$
Paper	476.10
MGP	290.93
Total Waste	$4,633.37$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	23.77%	of waste	$1,101.15$
Designated MGP	11.02%	of waste	510.49
Total	34.78%		$1,611.64$

Capture Rates

Paper	43.24%
MGP	56.99%
Total	47.59%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

Management Division for September, October and November 2004.

Table K-4
Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Fall $2004{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$10,036.73$
Paper	483.95
MGP	591.45
Total Waste	$11,112.13$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	17.16%	of waste	$1,906.95$
Designated MGP	13.27%	of waste	$1,474.75$
Total	30.43%		$3,381.70$

Capture Rates

Paper	25.38%
MGP	40.10%
Total	31.80%

[^32]Table K-5
Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Fall $2004{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$2,117.45$
Paper	680.96
MGP	258.91
Total Waste	$3,057.33$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	32.67%	of waste	998.75
Designated MGP	12.41%	of waste	379.39
Total	45.08%		$1,378.14$

Capture Rates

Paper	68.18%
MGP	68.24%
Total	68.20%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

Management Division for September, October and November 2004.

Table K-6
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Fall $2004{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$9,593.24$
Paper	$1,526.99$
MGP	959.75
Total Waste	$12,079.98$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	21.16%	of waste	$2,556.59$
Designated MGP	10.96%	of waste	$1,324.05$
Total	32.12%		$3,880.64$

Capture Rates

Paper	59.73%
MGP	72.49%
Total	64.08%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation
Management Division for September, October and November 2004 .

Table K-7
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Fall $2004{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$8,328.59$
Paper	545.14
MGP	532.99
Total Waste	$9,406.72$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	16.39%	of waste	$1,541.36$
Designated MGP	13.62%	of waste	$1,280.86$
Total	30.00%		$2,822.22$

Capture Rates

Paper	35.37%
MGP	41.61%
Total	38.20%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

Management Division for September, October and November 2004.

Table K-8
Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Fall $2004{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$10,315.46$
Paper	$1,816.47$
MGP	968.71
Total Waste	$13,100.64$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	23.64%	of waste	$3,097.47$
Designated MGP	10.86%	of waste	$1,422.50$
Total	34.50%		$4,519.98$

Capture Rates

Paper	58.64%
MGP	68.10%
Total	61.62%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

Management Division for September, October and November 2004.

Table K-9
Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Fall $2004{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$3,853.18$
Paper	286.75
MGP	342.66
Total Waste	$4,482.58$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream Designated Paper 16.99% of waste 761.49 Designated MGP 11.19% of waste 501.66 Total 28.18% $1,263.15$			

Capture Rates	
Paper	37.66%
MGP	68.30%
Total	49.83%

[^33]Table K-10
Capture Rate, Weekly Tonnages and Percentages, Citywide, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$48,532.86$
Paper	$6,863.60$
MGP	$4,284.72$
Total Waste	$59,681.18$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	24.32%	of waste	$14,515.85$
Designated MGP	13.04%	of waste	$7,784.62$
Total	37.37%		$22,300.47$

Capture Rates

Paper	47.28%
MGP	55.04%
Total	49.99%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-11
Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$5,692.56$
Paper	$1,498.87$
MGP	651.45
Total Waste	$7,842.88$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	38.88%	of waste	$3,049.25$
Designated MGP	13.45%	of waste	$1,054.80$
Total	52.33%		$4,104.05$

Capture Rates

Paper	49.16%
MGP	61.76%
Total	52.40%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-12
Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$3,567.33$
Paper	451.98
MGP	278.40
Total Waste	$4,297.72$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	26.46%	of waste	$1,137.28$
Designated MGP	12.06%	of waste	518.40
Total	38.52%		$1,655.68$

Capture Rates

Paper	39.74%
MGP	53.70%
Total	44.11%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-13
Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Winter $2005{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$9,967.13$
Paper	432.07
MGP	547.48
Total Waste	$10,946.68$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	17.09%	of waste	$1,870.35$
Designated MGP	13.98%	of waste	$1,530.51$
Total	31.07%		$3,400.86$

Capture Rates

Paper	23.10%
MGP	35.77%
Total	28.80%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-14
Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$1,881.80$
Paper	616.31
MGP	244.83
Total Waste	$2,742.94$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	32.74%	of waste	898.10
Designated MGP	12.99%	of waste	356.25
Total	45.73%		$1,254.35$

Capture Rates

Paper	68.62%
MGP	68.72%
Total	68.65%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-15
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$8,573.27$
Paper	$1,413.50$
MGP	888.22
Total Waste	$10,875.00$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	22.72%	of waste	$2,470.76$
Designated MGP	13.00%	of waste	$1,414.26$
Total	35.72%		$3,885.02$

Capture Rates	
Paper	57.21%
MGP	62.80%
Total	59.25%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-16
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$7,408.46$
Paper	492.25
MGP	448.70
Total Waste	$8,349.40$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	18.66%	of waste	$1,557.80$
Designated MGP	12.95%	of waste	$1,081.12$
Total	31.61%		$2,638.91$

Capture Rates

Paper	31.60%
MGP	41.50%
Total	35.66%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-17
Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$8,252.45$
Paper	$1,697.21$
MGP	901.37
Total Waste	$10,851.02$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	26.29%	of waste	$2,852.79$
Designated MGP	12.35%	of waste	$1,339.92$
Total	38.64%		$4,192.71$

Capture Rates

Paper	59.49%
MGP	67.27%
Total	61.98%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-18
Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Winter $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$3,189.86$
Paper	261.40
MGP	324.28
Total Waste	$3,775.55$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	18.00%	of waste	679.53
Designated MGP	12.96%	of waste	489.36
Total	30.96%		$1,168.89$

Capture Rates

Paper	38.47%
MGP	66.27%
Total	50.11%

NOTES

1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation Management Division for January, February and March 2005.

Table K-19
Capture Rate, Weekly Tonnages and Percentages, Citywide, Spring $2005{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$55,724.27$
Paper	$7,026.61$
MGP	$4,818.43$
Total Waste	$67,569.31$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	21.48%	of waste	$14,513.45$
Designated MGP	12.10%	of waste	$8,172.72$
Total	33.57%		$22,686.17$

Capture Rates

Paper	48.41%
MGP	58.96%
Total	52.21%

[^34]Table K-20
Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Spring $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$5,761.92$
Paper	$1,516.23$
MGP	646.58
Total Waste	$7,924.72$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	38.26%	of waste	$3,032.24$
Designated MGP	12.17%	of waste	964.68
Total	50.44%		$3,996.92$

Capture Rates

Paper	50.00%
MGP	67.03%
Total	54.11%

[^35]Table K-21
Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Spring $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$3,993.01$
Paper	455.61
MGP	299.18
Total Waste	$4,747.80$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	21.85%	of waste	$1,037.24$
Designated MGP	11.25%	of waste	533.91
Total	33.09%		$1,571.15$

Capture Rates

Paper	43.93%
MGP	56.04%
Total	48.04%

[^36]Table K-22
Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Spring $2005{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$10,230.96$
Paper	455.39
MGP	571.57
Total Waste	$11,257.92$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	16.60%	of waste	$1,869.10$
Designated MGP	13.11%	of waste	$1,476.26$
Total	29.72%		$3,345.36$

Capture Rates

Paper	24.36%
MGP	38.72%
Total	30.70%

[^37]Table K-23
Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Spring $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$2,155.21$
Paper	624.16
MGP	270.55
Total Waste	$3,049.91$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	30.48%	of waste	929.51
Designated MGP	12.69%	of waste	387.01
Total	43.17%		$1,316.51$

Capture Rates

Paper	67.15%
MGP	69.91%
Total	67.96%

[^38]Table K-24
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Spring $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$9,442.75$
Paper	$1,415.28$
MGP	992.67
Total Waste	$11,850.70$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	20.35%	of waste	$2,411.04$
Designated MGP	12.42%	of waste	$1,471.79$
Total	32.76%		$3,882.83$

Capture Rates

Paper	58.70%
MGP	67.45%
Total	62.02%

[^39]Table K-25
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Spring $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$8,251.19$
Paper	505.28
MGP	523.24
Total Waste	$9,279.71$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	18.83%	of waste	$1,747.68$
Designated MGP	12.99%	of waste	$1,205.62$
Total	31.83%		$2,953.29$

Capture Rates

Paper	28.91%
MGP	43.40%
Total	34.83%

[^40]Table K-26

Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Spring $2005{ }^{(1)}$
Average Weekly Tonnage Collected
Refuse
Paper
MGP
Total Waste
$11,810.04$
$1,768.66$
$1,126.22$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	18.89%	of waste	$2,777.67$
Designated MGP	10.47%	of waste	$1,539.43$
Total	29.36%		$4,317.10$

Capture Rates

Paper	63.67%
MGP	73.16%
Total	67.06%

[^41]Table K-27
Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Spring $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$4,079.20$
Paper	286.01
MGP	388.42
Total Waste	$4,753.63$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	14.91%	of waste	708.97
Designated MGP	12.50%	of waste	594.02
Total	27.41%		$1,302.99$

Capture Rates

Paper	40.34%
MGP	65.39%
Total	51.76%

[^42]Table K-28
Capture Rate, Weekly Tonnages and Percentages, Citywide, Summer $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$53,784.01$
Paper	$6,570.22$
MGP	$4,753.94$
Total Waste	$65,108.16$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	22.46%	of waste	$14,625.03$
Designated MGP	13.43%	of waste	$8,746.16$
Total	35.90%		$23,371.19$

Capture Rates

Paper	44.92%
MGP	54.35%
Total	48.45%

[^43]Table K-29
Capture Rate, Weekly Tonnages and Percentages, High Density/High Income Strata, Summer $2005{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$5,386.95$
Paper	$1,355.19$
MGP	615.20
Total Waste	$7,357.34$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	37.59%	of waste	$2,765.40$
Designated MGP	13.86%	of waste	$1,019.43$
Total	51.44%		$3,784.83$

Capture Rates

Paper	49.01%
MGP	60.35%
Total	52.06%

[^44]Table K-30
Capture Rate, Weekly Tonnages and Percentages, High Density/Medium Income Strata, Summer $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$4,023.30$
Paper	449.67
MGP	296.87
Total Waste	$4,769.84$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	24.51%	of waste	$1,169.31$
Designated MGP	11.79%	of waste	562.49
Total	36.31%		$1,731.80$

Capture Rates

Paper	38.46%
MGP	52.78%
Total	43.11%

[^45]Table K-31
Capture Rate, Weekly Tonnages and Percentages, High Density/Low Income Strata, Summer $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$10,233.08$
Paper	417.55
MGP	592.21
Total Waste	$11,242.84$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	17.85%	of waste	$2,007.13$
Designated MGP	13.41%	of waste	$1,507.51$
Total	31.26%		$3,514.63$

Capture Rates

Paper	20.80%
MGP	39.28%
Total	28.73%

[^46]Table K-32
Capture Rate, Weekly Tonnages and Percentages, Medium Density/High Income Strata, Summer $2005{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$2,039.65$
Paper	597.97
MGP	252.26
Total Waste	$2,889.89$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	32.38%	of waste	935.68
Designated MGP	13.54%	of waste	391.21
Total	45.92%		$1,326.90$

Capture Rates

Paper	63.91%
MGP	64.48%
Total	64.08%

[^47]Table K-33
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Medium Income Strata, Summer $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$9,235.34$
Paper	$1,348.55$
MGP	998.92
Total Waste	$11,582.81$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	20.66%	of waste	$2,393.38$
Designated MGP	13.65%	of waste	$1,581.45$
Total	34.32%		$3,974.84$

Capture Rates

Paper	56.35%
MGP	63.16%
Total	59.06%

[^48]Table K-34
Capture Rate, Weekly Tonnages and Percentages, Medium Density/Low Income Strata, Summer $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$7,784.10$
Paper	451.65
MGP	525.99
Total Waste	$8,761.75$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	17.81%	of waste	$1,560.16$
Designated MGP	14.93%	of waste	$1,308.52$
Total	32.74%		$2,868.68$

Capture Rates

Paper	28.95%
MGP	40.20%
Total	34.08%

[^49]Table K-35
Capture Rate, Weekly Tonnages and Percentages, Low Density/High Income Strata, Summer $2005{ }^{(1)}$
Average Weekly Tonnage Collected

Refuse	$10,871.87$
Paper	$1,667.72$
MGP	$1,092.37$
Total Waste	$13,631.97$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	22.19%	of waste	$3,024.87$
Designated MGP	12.19%	of waste	$1,661.59$
Total	34.38%		$4,686.46$

Capture Rates

Paper	55.13%
MGP	65.74%
Total	58.90%

[^50]Table K-36
Capture Rate, Weekly Tonnages and Percentages, Low Density/Medium Income Strata, Summer $2005{ }^{(1)}$

Average Weekly Tonnage Collected	
Refuse	$4,209.71$
Paper	281.90
MGP	380.10
Total Waste	$4,871.72$

Estimated Weekly Tonnage of Materials Designated for Recycling in			
Total Waste Stream			
Designated Paper	15.79%	of waste	769.08
Designated MGP	14.66%	of waste	713.96
Total	30.44%		$1,483.05$

Capture Rates

Paper	36.65%
MGP	53.24%
Total	44.64%

[^51][This page intentionally left blank.]

NYC Waste Characterization Study
Final Report, Volume 4
Appendix L: Waste Without Bulk, Weekly Tonnages

Table L-1
Waste Weekly Tonnages, Excluding Bulk, by Strata, Fall 2004

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	$\begin{gathered} \text { Recycling } \\ \text { Subindicator } \\ \hline \end{gathered}$	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,395.18	R Paper	809.70	321.03	673.63	254.85	600.79	437.85	982.21	220.63
Paper	OCC	Plain OCC/Kraft Paper	1,789.13	R Paper	271.09	122.43	207.04	60.31	405.18	262.62	338.86	95.83
Paper	Mixed Paper	High Grade Paper	518.14	R Paper	79.71	41.05	61.85	38.45	127.53	68.67	67.14	23.88
Paper	Mixed Paper	Mixed Low Grade Paper	5,938.34	R Paper	1,172.66	421.56	813.43	368.02	954.62	624.31	1,116.88	328.75
Paper	Mixed Paper	Phone Books/Paperbacks	465.46	R Paper	128.56	43.55	68.46	19.30	48.85	71.85	51.49	24.78
Paper	Mixed Paper	Paper Bags	342.78	R Paper	80.45	21.43	59.13	17.65	59.16	38.31	46.15	13.81
Paper	Bev Cartons	Polycoated Paper Containers	295.36	R Bev Cartons	39.41	23.18	61.59	14.45	58.24	43.28	39.84	15.12
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	4,100.33	NR_Paper	552.58	284.38	835.22	137.15	726.83	512.55	753.49	289.38
Paper	Compostable Paper	Single Use Paper Plates, Cups	275.65	NR_Paper	41.42	20.04	29.79	11.23	39.80	21.79	78.45	26.90
Paper	Other Paper	Other Nonrecyclable Paper	360.56	NR_Paper	35.26	29.81	65.81	20.69	64.68	45.52	73.78	23.05
Paper Total			18,480.93		3,210.84	1,328.46	2,875.97	942.09	3,085.68	2,126.75	3,548.29	1,062.13
Plastic	PET Bottles	PET Bottles	614.96	R Plastics	72.88	39.98	129.45	19.39	104.75	101.53	106.30	43.51
Plastic	HDPE Bottles	HDPE Bottles: Natural	285.95	R Plastics	14.30	18.82	66.44	5.18	48.91	41.47	75.53	18.09
Plastic	HDPE Bottles	HDPE Bottles: Colored	290.50	R Plastics	27.38	21.70	61.60	8.58	54.64	40.44	55.95	21.52
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	5.19	PR_Plastics	0.20	0.31	0.35	0.10	1.17	1.04	1.78	0.17
Plastic	Injection Molded Tubs	\#1\#2 Tubs/Trays/Other Containers: \#2 HDPE	32.75	PR_Plastics	7.55	5.38	2.70	0.95	4.23	5.99	3.63	1.79
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	7.33	PR_Plastics	0.58	0.82	1.05	0.20	1.17	1.65	1.58	0.30
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.12	PR_Plastics	0.11	0.17	0.59	0.04	0.59	0.80	0.32	0.60
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botles: \#5 PP	9.87	PR_Plastics	0.85	0.53	2.19	0.22	1.85	1.59	1.71	1.05
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	32.82	PR_Plastics	3.32	4.49	5.78	1.09	7.82	3.60	4.69	1.97
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	1.44	PR_Plastics	0.02	0.00	0.52	0.01	0.41	0.22	0.25	0.05
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.76	PR_Plastics	0.03	0.18	0.02	0.02	0.03	0.52	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	101.46	PR_Plastics	15.93	6.74	22.74	4.85	16.06	8.48	20.10	5.63
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	19.38	PR_Plastics	2.25	1.20	2.66	1.10	2.72	1.58	4.61	3.04
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	5.79	PR_Plastics	0.25	0.42	1.63	0.86	0.35	1.90	0.33	0.18
Plastic	Other Plastic Products	Other PVC	10.18	NR_Plastics	0.41	0.26	1.79	0.03	2.03	1.46	4.06	0.09
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	145.89	PR_Plastics	28.31	10.96	27.75	6.30	21.29	16.22	24.88	8.41
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	322.30	PR_Platics	27.16	20.20	76.39	10.62	60.70	63.59	46.26	22.17
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	400.11	PR_Plastics	66.44	39.79	62.44	17.82	72.07	43.05	65.62	27.74
Plastic	Film	Plastic Bags	1,427.83	PR_Plastics	146.80	132.27	349.58	43.68	275.02	208.94	199.06	86.61
Plastic	Film	Other Film	2,903.10	PR_Plastics	354.64	239.93	609.72	99.04	553.78	430.45	444.57	178.86
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	273.35	NR_Plastics	26.00	15.57	46.08	7.01	40.69	45.42	69.38	23.27
Plastic	Other Plastic Products	Other Plastics Materials	978.44	NR_Plastics	64.81	58.23	175.50	27.36	194.77	169.49	217.00	76.43
Plastic Total			7,872.54		860.25	617.96	1,646.94	254.44	1,465.06	1,189.42	1,347.63	521.49
Glass	Container Glass	Clear Container Glass	861.51	R Glass	89.40	47.64	178.01	30.73	133.71	174.57	150.32	64.45
Glass	Container Glass	Green Container Glass	299.85	R Glass	78.25	19.69	37.46	26.97	44.43	32.11	39.07	11.86
Glass	Container Glass	Brown Container Glass	228.93	R Glass	17.54	14.97	63.66	14.29	33.97	39.67	32.39	15.82
Glass	Mixed Cullet	Mixed Cullet	947.05	R Glass	161.75	58.47	154.89	53.70	184.32	134.91	140.92	46.21
Glass	Container Glass	Other Container Glass	18.45	R Glass	1.34	0.76	1.46	1.05	4.86	3.61	4.33	0.79
Glass	Other Glass	Other Glass	83.66	PR_Glass	4.97	5.08	18.09	2.36	13.17	10.69	19.85	10.20
Glass Total			2,439.45		353.25	146.61	453.56	129.11	414.47	395.57	386.89	149.33
Metal	Aluminum	Aluminum Cans	103.54	R Metal	11.12	8.65	25.30	4.52	14.40	17.70	17.28	5.44
Metal	Aluminum	Aluminum Foil/Containers	295.45	R Metal	30.45	17.61	59.14	11.80	54.52	48.72	51.07	23.34
Metal	Aluminum	Other Aluminum	35.57	R Metal	1.87	2.56	2.90	2.23	1.41	13.97	9.81	1.01
Metal	Non-Ferrous	Other Non-Ferrous	72.25	R Metal	7.29	7.23	20.77	2.65	10.29	4.16	13.67	6.71
Metal	Ferrous	Tin Food Cans	734.71	R Metal	46.90	51.64	210.30	21.76	126.40	129.02	110.87	53.71
Metal	Ferrous	Empty Aerosol Cans	88.94	R Metal	9.02	5.52	21.62	2.29	15.57	12.89	15.63	7.29
Metal	Ferrous	Other Ferrous	963.54	R Metal	96.65	70.21	132.57	31.49	160.66	195.19	193.35	84.19
Metal	Other Metal	Mixed Metals	369.44	R Metal	22.86	19.85	64.88	11.77	33.37	110.53	86.83	25.07
Metal Total			2,663.44		226.15	183.26	537.48	88.50	416.62	532.17	498.51	206.76

Table L-1
Waste Weekly Tonnages, Excluding Bulk, by Strata, Fall 2004 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	2,522.01	NR_Other	82.35	104.31	161.05	58.63	437.56	409.73	925.18	320.93
Organics	Yard	Prunings	523.02	NR_Other	16.63	24.79	1.78	25.08	97.33	20.79	255.32	62.38
Organics	Wood	Stumps/Limbs	61.86	NR_Other	0.00	5.28	0.00	1.02	11.34	0.00	39.44	2.07
Organics	Food	Food	10,874.92	NR_Other	762.98	802.29	2,746.95	369.78	2,179.67	1,855.84	1,582.47	744.51
Organics	Wood	Wood Furniture/Furniture Pieces	440.03	NR_Other	34.38	14.57	68.14	12.54	71.52	108.90	83.12	51.93
Organics	Wood	Non-C\&D Untreated Wood	21.52	NR_Other	0.99	1.03	6.97	1.66	4.83	1.76	2.19	2.45
Organics	Textiles	Non-Clothing Textiles	753.97	NR_Other	53.83	49.15	161.75	21.25	148.59	106.15	169.69	47.39
Organics	Textiles	Clothing Textiles	1,495.52	NR_Other	84.16	127.19	433.27	24.72	226.25	282.64	237.39	119.37
Organics	Textiles	Carpet/Upholstery	383.19	NR_Other	47.35	20.34	41.61	13.93	57.42	44.44	94.08	59.85
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,948.50	NR_Other	140.63	128.29	478.46	77.60	343.67	352.21	286.34	172.35
Organics	Misc. Organic	Animal By-Products	604.30	NR_Other	61.51	49.78	79.46	63.48	126.34	65.90	86.94	61.61
Organics	Misc. Organic	Rubber Products	149.67	NR_Other	16.94	9.43	20.88	4.37	23.03	23.83	42.96	6.70
Organics	Textiles	Shoes	327.17	NR_Other	16.46	21.23	66.51	10.78	54.76	78.26	49.79	36.04
Organics	Textiles	Other Leather Products	68.55	NR_Other	1.93	7.56	16.20	0.89	26.28	7.80	7.56	1.19
Organics	Misc. Organic	Fines	1,713.79	NR_Other	162.54	120.59	403.05	55.59	282.90	303.59	270.53	136.00
Organics	Textiles	Upholstered or Other Organic-Type Furniture	93.22	NR_Other	4.27	9.68	8.34	5.34	0.01	56.15	12.39	0.00
Organics	Misc. Organic	Miscellaneous Organics	296.47	NR_Other	17.39	18.53	76.47	22.72	37.35	33.01	68.27	23.84
Organics Total			22,277.71		1,504.33	1,514.03	4,770.90	769.39	4,128.84	3,751.00	4,213.67	1,848.62
Appliance/Electronic	Ferrous	Appliances: Ferrous	254.09	R Metal	18.49	17.18	69.36	16.62	40.41	57.93	28.27	10.51
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	25.33	R Metal	3.85	1.36	4.25	0.52	0.91	4.36	6.78	3.28
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	146.76	NR_Other	12.40	15.42	33.63	3.83	18.52	24.07	31.79	8.48
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	3.75	NR_Other	0.03	0.25	2.51	0.08	0.42	0.28	0.15	0.30
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	120.27	NR_Other	5.61	4.41	30.49	2.29	27.93	18.68	21.66	11.36
Appliance/Electronic	Electroni/AV/Computer	Computer Monitors	7.68	NR_Other	0.00	0.00	0.54	2.80	3.86	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	50.34	NR_Other	0.00	0.00	0.00	0.00	25.04	0.00	12.27	12.26
Appliance/Electronic	Electroni/AV/Computer	Other Computer Equipment	114.34	NR_Other	15.59	14.06	10.69	2.96	28.25	20.87	11.71	9.67
Appliance/Electronic Total			722.56		55.98	52.68	151.46	29.10	145.35	126.19	112.62	55.86
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	164.32	NR_Other	4.63	19.72	11.92	5.57	10.00	12.68	79.78	16.61
C \& D Debris	Wood	Treated/Contaminated Wood	829.65	NR_Other	27.84	54.60	119.20	34.61	154.93	180.67	182.61	81.69
C \& D Debris	Inorganic C\&D	Gypsum Scrap	697.53	NR_Other	31.97	59.44	62.52	6.83	161.95	203.37	86.08	97.90
C \& D Debris	Inorganic C\&D	Rock/Concrete/Bricks	339.44	NR_Other	13.85	20.76	79.12	6.25	62.94	106.62	42.80	17.53
C\&D Debris	Inorganic C\&D	Other Construction Debris	845.60	NR_Other	73.08	38.81	114.94	22.20	195.54	169.01	196.96	32.50
C \& D Debris Total			2,876.53		151.37	193.34	387.69	75.46	585.37	672.34	588.23	246.23
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	77.48	NR_Other	6.92	2.14	9.42	1.93	10.26	20.65	17.01	9.76
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	235.39	NR_Other	4.47	17.74	34.22	12.43	33.50	51.34	66.31	16.31
Miscellaneous Inorganics Total			312.87		11.39	19.89	43.63	14.36	43.76	72.00	83.32	26.07
HHW	HHW	Oil Filters	0.50	NR_Other	0.00	0.00	0.00	0.00	0.45	0.00	0.00	0.04
HHW	HHW	Antifreeze	0.09	NR_Other	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.66	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.36
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	60.48	NR_Other	3.76	0.89	4.03	2.28	9.69	7.06	22.09	9.74
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	9.40	NR_Other	3.09	0.41	0.28	0.03	3.25	0.00	1.05	0.84
HHW	HHW	Pesticides/Herbicides/Rodenticides	2.75	NR_Other	0.05	0.28	0.00	0.07	0.88	0.48	0.65	0.31
HHW	HHW	Dry-Cell Batteries	42.81	NR_Other	2.08	4.83	10.16	1.76	6.62	9.92	6.61	1.63
HHW	HHW	Fluorescent Tubes	0.34	NR_Other	0.12	0.00	0.00	0.00	0.20	0.00	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.05	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	1.39	NR_Other	0.62	0.20	0.56	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Home Medical Products	20.36	NR_Other	1.73	1.23	6.50	1.61	3.90	2.92	2.00	0.73
HHW	HHW	Other Potentially Harmful Wastes	17.36	NR_Other	0.49	1.69	3.12	0.40	1.10	4.23	5.02	1.59
$\frac{\text { HHW Total }}{\text { Grand Total }}$			156.20$57,802.24$		11.93	9.54	24.65	6.16	26.09	24.71	37.71	15.33
					6,385.50	4,065.77	10,892.30	2,308.62	10,311.24	8,890.15	10,816.85	4,131.82

Table L-1
Waste Weekly Tonnages, Excluding Bulk, by Strata, Fall 2004 (continued)

Recycling Designation	Citywide Waste Weekly Tonnage	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Designated Paper	13,449.04	2,542.17	971.05	1,883.55	758.57	2,196.13	1,503.61	2,602.72	707.68
Designated Beverage Cartons	295.36	39.41	23.18	61.59	14.45	58.24	43.28	39.84	15.12
Designated Plastic	1,191.41	114.57	80.51	257.48	33.14	208.30	183.44	237.79	83.13
Designated Metal	2,942.86	248.50	201.80	611.09	105.64	457.94	594.46	533.55	220.55
Designated Glass	2,355.78	348.28	141.53	435.47	126.75	401.30	384.88	367.04	139.13
Designated MGP Subtotal	6,785.42	750.75	447.02	1,365.64	279.98	1,125.78	1,206.06	1,178.22	457.92
Potentially Designated Plastic	5,419.16	654.46	463.40	1,166.09	186.90	1,019.27	789.61	819.40	338.56
Potentially Designated Glass	83.66	4.97	5.08	18.09	2.36	13.17	10.69	19.85	10.20
Potentially Designated Materials Subtotal	5,502.82	659.43	468.47	1,184.18	189.26	1,032.44	800.30	839.25	348.76
Nondesignated Paper	4,736.53	629.27	334.23	930.82	169.07	831.31	579.86	905.72	339.33
Nondesignated Plastic	1,261.98	91.22	74.06	223.37	34.40	237.49	216.37	290.45	99.80
Other Nondesignated	26,066.46	1,712.66	1,770.93	5,304.74	877.32	4,888.09	4,583.96	5,000.49	2,178.33
Nondesignated Materials Subtotal	32,064.97	2,433.15	2,179.22	6,458.93	1,080.80	5,956.89	5,380.18	6,196.66	2,617.46
Designated for Recycling Total	20,234.45	3,292.92	1,418.07	3,249.19	1,038.55	3,321.91	2,709.67	3,780.94	1,165.60
Potentially or Not Designated for Recycling Total	37,567.79	3,092.58	2,647.70	7,643.11	1,270.06	6,989.33	6,180.48	7,035.91	2,966.22

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from September 2004 through November 2004 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate eneration can be found in Section 2.2.6 in Volume 2.

Table L-2
Waste Weekly Tonnages, Excluding Bulk, by Strata, Winter 2005

Material Group	Material Subgroup	Material Category: Subcategory	$\begin{gathered} \text { Citywide } \\ \text { Waste } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,324.89	R Paper	667.72	358.25	528.50	210.57	855.98	416.84	1,001.35	201.86
Paper	OCC	Plain OCC/Kraft Paper	1,342.93	R Paper	117.94	89.03	243.51	50.30	258.54	226.19	288.93	75.65
Paper	Mixed Paper	High Grade Paper	553.66	R Paper	119.36	44.67	126.00	26.48	54.70	55.31	86.48	21.69
Paper	Mixed Paper	Mixed Low Grade Paper	6,301.15	R Paper	1,183.64	475.55	833.84	289.85	1,077.95	700.49	1,248.16	320.76
Paper	Mixed Paper	Phone Books/Paperbacks	584.42	R Paper	101.36	76.24	46.40	80.00	76.59	95.74	66.38	15.14
Paper	Mixed Paper	Paper Bags	347.35	R Paper	69.49	21.69	66.94	15.53	62.57	39.06	44.55	17.75
Paper	Bev Cartons	Polycoated Paper Containers	295.19	R Bev Cartons	33.04	22.68	53.13	14.76	52.11	41.30	61.20	15.33
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,060.66	NR_Paper	328.41	213.98	549.08	120.93	592.36	408.93	630.16	211.82
Paper	Compostable Paper	Single Use Paper Plates, Cups	231.03	NR_Paper	32.70	11.07	24.16	9.94	33.09	16.52	80.85	18.70
Paper	Other Paper	Other Nonrecyclable Paper	338.33	NR_Paper	30.60	22.11	69.89	13.16	44.49	45.93	91.12	21.83
Paper Total			17,379.62		2,684.26	1,335.28	2,541.45	831.52	3,108.39	2,046.31	3,599.17	920.52
Plastic	PET Botles	PET Botles	740.39	R Plastics	73.37	48.69	165.15	21.80	133.06	116.75	139.06	46.08
Plastic	HDPE Bottles	HDPE Botlles: Natural	268.14	R Plastics	18.72	22.97	64.36	5.00	63.34	42.18	40.25	15.85
Plastic	HDPE Bottles	HDPE Bottles: Colored	284.17	R Plastics	26.94	21.28	52.95	9.83	61.11	38.21	58.43	16.40
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	4.10	PR_Plastics	0.16	0.05	0.63	0.07	0.75	0.87	1.58	0.09
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	30.88	PR_Plastics	1.57	3.06	7.84	1.04	7.18	4.97	4.50	1.30
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	9.09	PR_Plastics	2.97	0.40	1.26	0.23	0.54	1.10	1.59	0.45
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.13	PR_Plastics	0.25	0.26	0.94	0.04	0.59	0.83	0.17	0.12
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#5 PP	12.83	PR_Plastics	0.77	0.83	2.59	0.29	2.45	1.64	2.87	1.58
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	41.20	PR_Plastics	5.92	3.23	6.73	1.00	6.40	5.71	8.23	3.62
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.47	PR_Plastics	0.00	0.11	0.17	0.00	0.07	0.09	0.04	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	1.26	PR_Plastics	0.00	0.71	0.22	0.03	0.15	0.08	0.12	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	94.82	PR_Plastics	11.68	8.32	17.01	4.74	17.77	9.25	19.36	5.74
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	14.99	PR_Plastics	2.62	2.22	0.97	1.16	2.64	1.24	2.77	0.86
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	6.55	PR_Plastics	0.03	0.76	3.47	0.02	0.10	1.20	0.21	1.03
Plastic	Other Plastic Products	Other PVC	3.18	NR_Plastics	0.00	0.00	0.00	0.11	0.50	0.07	2.09	0.47
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	132.07	PR_Plastics	21.66	9.67	21.77	7.39	21.24	15.89	23.60	7.93
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	302.22	PR_Plastics	19.29	24.79	67.38	10.21	57.87	51.70	54.20	21.00
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	386.03	PR_Plastics	64.30	26.14	60.84	17.00	76.53	35.41	76.94	20.90
Plastic	Film	Plastic Bags	1,580.46	PR_Plastics	147.07	147.84	343.69	46.25	309.18	256.39	250.31	90.70
Plastic	Film	Other Film	2,672.16	PR_Plastics	323.11	222.76	592.34	85.49	498.32	429.08	355.51	162.45
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cutlery, Etc.	282.26	NR_Plastics	22.18	23.12	42.70	8.49	39.89	47.16	79.03	21.87
Plastic	Other Plastic Products	Other Plastics Materials	962.00	NR_Plastics	64.44	56.20	222.42	23.30	161.05	169.07	219.22	60.89
Plastic Total			7,832.40		807.07	623.43	1,675.41	243.48	1,460.73	1,228.92	1,340.06	479.33
Glass	Container Glass	Clear Container Glass	926.57	R Glass	68.00	60.62	199.96	38.35	155.99	165.95	179.92	66.27
Glass	Container Glass	Green Container Glass	347.65	R Glass	89.64	23.85	42.92	34.78	49.98	28.50	42.39	14.49
Glass	Container Glass	Brown Container Glass	220.29	R Glass	19.69	11.45	52.25	11.84	51.76	33.65	29.87	10.36
Glass	Mixed Cullet	Mixed Cullet	975.08	R Glass	161.54	69.40	161.71	44.09	222.27	111.74	136.66	49.32
Glass	Container Glass	Other Container Glass	10.60	R Glass	1.19	0.44	0.55	0.53	1.28	3.57	2.08	0.96
Glass	Other Glass	Other Glass	84.92	PR_Glass	5.47	5.99	12.32	4.86	19.71	15.63	16.32	5.25
Glass Total			2,565.11		345.52	171.74	469.72	134.44	500.98	359.04	407.23	146.64
Metal	Aluminum	Aluminum Cans	126.58	R Metal	16.19	9.17	23.73	2.80	20.45	15.77	29.98	8.03
Metal	Aluminum	Aluminum Foil/Containers	285.79	R Metal	26.22	19.66	57.83	11.03	49.72	45.59	60.64	16.18
Metal	Aluminum	Other Aluminum	10.74	R Metal	0.59	0.09	0.71	0.50	4.63	0.33	2.09	1.89
Metal	Non-Ferrous	Other Non-Ferrous	64.67	R Metal	4.70	7.03	12.35	0.52	9.59	9.37	16.93	5.15
Metal	Ferrous	Tin Food Cans	741.04	R Metal	44.23	56.12	184.92	22.87	150.17	123.04	122.44	49.46
Metal	Ferrous	Empty Aerosol Cans	84.70	R Metal	9.48	3.71	11.70	3.14	22.21	11.94	16.85	5.51
Metal	Ferrous	Other Ferrous	801.41	R Metal	75.65	55.16	160.42	29.27	134.85	133.76	151.99	63.52
Metal	Other Metal	Mixed Metals	433.85	R Metal	77.05	25.99	112.30	9.69	54.98	68.42	49.12	30.23
Metal Total			2,548.79		254.09	176.95	563.95	79.83	446.58	408.22	450.06	179.98

Table L-2
Waste Weekly Tonnages, Excluding Bulk, by Strata, Winter 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Density/ Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	500.37	NR_Other	10.13	25.87	26.88	24.83	47.45	57.84	258.63	54.93
Organics	Yard	Prunings	215.78	NR_Other	47.16	8.35	15.00	12.47	8.47	10.85	74.70	29.13
Organics	Wood	Stumps/Limbs	10.93	NR_Other	0.09	0.12	2.52	0.03	0.05	0.00	6.67	1.72
Organics	Food	Food	11,044.17	NR_Other	713.53	823.03	2,550.76	311.49	2,411.62	1,863.43	1,791.45	752.96
Organics	Wood	Wood Furniture/Furniture Pieces	503.04	NR_Other	32.40	31.00	112.89	12.00	71.01	128.81	85.89	38.46
Organics	Wood	Non-C\&D Untreated Wood	108.08	NR_Other	5.09	4.92	55.78	3.09	20.40	5.54	8.64	7.04
Organics	Textiles	Non-Clothing Textiles	721.53	NR_Other	68.32	58.62	128.93	25.96	143.29	128.26	101.27	70.35
Organics	Textiles	Clothing Textiles	1,234.79	NR_Other	57.52	90.91	355.48	19.61	240.34	207.57	203.05	90.64
Organics	Textiles	Carpet/Upholstery	247.14	NR_Other	11.22	6.14	38.67	7.16	57.66	27.67	73.72	28.99
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,879.84	NR_Other	129.62	124.90	416.61	62.31	371.46	307.38	342.67	148.47
Organics	Misc. Organic	Animal By-Products	721.77	NR_Other	90.10	26.38	57.82	50.56	146.05	66.27	202.60	69.03
Organics	Misc. Organic	Rubber Products	109.51	NR_Other	6.48	6.72	27.98	4.96	21.93	22.55	15.51	4.98
Organics	Textiles	Shoes	356.66	NR_Other	14.67	31.25	87.82	8.01	79.79	63.31	64.33	16.05
Organics	Textiles	Other Leather Products	37.92	NR_Other	0.73	2.76	15.84	1.20	0.98	10.69	5.90	1.04
Organics	Misc. Organic	Fines	1,938.02	NR_Other	151.03	147.58	455.69	73.27	334.47	340.54	305.66	148.11
Organics	Textiles	Upholstered or Other Organic-Type Furniture	44.72	NR_Other	7.71	4.59	15.37	3.06	1.96	3.09	2.51	5.25
Organics	Misc. Organic	Miscellaneous Organics	346.21	NR_Other	30.36	25.16	34.99	19.70	65.72	61.68	83.26	24.97
Organics Total			20,020.50		1,376.16	1,418.29	4,399.04	639.73	4,022.63	3,305.48	3,626.48	1,492.13
Appliance/Electronic	Ferrous	Appliances: Ferrous	145.76	R Metal	1.27	9.04	49.99	4.46	11.46	52.34	15.88	6.81
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	9.00	R Metal	0.41	1.85	0.73	0.19	1.38	4.37	0.00	0.35
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	98.63	NR_Other	14.80	4.36	10.80	2.44	27.66	13.55	20.04	4.04
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	2.03	NR_Other	0.28	0.12	0.68	0.00	0.00	0.02	0.86	0.06
Appliance/Electronic	Electroni//AV/Computer	Audio/visual Equipment: Other	85.78	NR_Other	8.21	4.35	26.27	2.06	12.41	6.87	24.10	1.91
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	35.03	NR_Other	5.34	0.04	0.00	0.00	29.60	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Televisions	4.79	NR_Other	0.00	0.00	0.00	3.72	0.00	0.27	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	48.83	NR_Other	4.53	8.05	10.43	2.68	4.66	6.34	7.03	4.99
Appliance/Electronic			429.86		34.83	27.82	98.91	15.57	87.18	83.76	67.92	18.16
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	104.58	NR_Other	10.48	8.94	9.45	4.98	18.82	24.25	10.74	16.97
$C \& D$ Debris	Wood	Treated/Contaminated Wood	719.16	NR_Other	45.84	74.96	148.22	20.57	90.92	159.90	103.41	86.94
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	538.77	NR_Other	37.87	23.46	145.68	10.56	88.52	128.29	90.97	23.60
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	206.99	NR_Other	3.13	5.93	62.74	3.91	94.41	26.61	11.67	6.02
C \& D Debris	Inorganic C\&D	Other Construction Debris	574.31	NR_Other	40.12	53.49	57.86	20.41	107.99	132.54	92.30	76.28
C \& D Debris Total			2,143.82		137.44	166.78	423.94	60.42	400.65	471.59	309.10	209.80
Miscellaneous Inorgan	Misc. Inorganic	Miscellaneous Inorganics	100.23	NR_Other	17.95	3.36	13.61	0.83	14.47	12.93	26.13	9.42
Miscellaneous Inorgan	Misc. Inorganic	Ceramics	261.70	NR_Other	11.13	8.80	68.65	4.23	67.94	33.38	56.48	17.45
Miscellaneous Inorg	s Total		361.93		29.08	12.16	82.25	5.05	82.41	46.31	82.61	26.86
HHW	HHW	Oil Filters	0.15	NR_Other	0.04	0.00	0.00	0.00	0.00	0.05	0.01	0.06
HHW	HHW	Antifreeze	1.89	NR_Other	0.00	0.17	0.00	0.00	0.00	0.00	1.76	0.00
HHw	HHw	Wet-Cell Batteries	0.02	NR_Other	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasolin//Kerosene/Motor Oil/Diesel Fuel	0.92	NR_Other	0.00	0.00	0.00	0.00	0.35	0.17	0.03	0.40
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	22.76	NR_Other	3.77	3.24	3.31	0.74	8.35	1.18	1.68	0.12
HHW	HHW	Oil-Based Paint/Solvent-Based Adhesives/Glues	19.13	NR_Other	1.98	1.61	1.24	0.00	13.45	0.26	0.79	0.01
HHW	HHW	Pesticides/Herbicides/Rodenticides	6.82	NR_Other	0.20	0.82	2.71	0.07	2.06	0.05	1.05	0.07
HHW	HHW	Dry-Cell Batteries	46.09	NR_Other	2.86	4.39	10.03	2.02	12.18	7.80	4.50	2.94
HHW	HHW	Fluorescent Tubes	0.58	NR_Other	0.00	0.00	0.00	0.00	0.00	0.01	0.58	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHw	HHw	Compressed Gas Cylinders, Fire Exinguishers	2.06	NR_Other	0.00	0.95	0.00	0.00	0.00	0.00	1.15	0.00
HHW	HHW	Home Medical Products	15.90	NR_Other	0.90	2.05	5.19	0.40	1.88	0.99	4.14	0.59
HHW	HHW	Other Potentially Harmfu Wastes	16.61	NR_Other	0.28	0.12	6.07	1.58	1.38	0.65	5.87	0.79
HHW Total			132.93		10.04	13.34	28.56	4.81	39.64	11.15	21.56	4.97
Grand Total			53,414.95		5,678.49	3,945.80	10,283.23	2,014.87	10,149.20	7,960.77	9,904.19	3,478.40
NYC WCS Vol 4 App L Waste Without Bulk, Weekly Tonnages												App L-5

Table L-2
Waste Weekly Tonnages, Excluding Bulk, by Strata, Winter 2005 (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from January 2005 through March 2005 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate eneration can be found in Section 2.2.6 in Volume 2

Table L-3
Waste Weekly Tonnages, Excluding Bulk, by Strata, Spring 2005

Material Group	Material Subgroup	Material Category: Subcategory	Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,573.15	R Paper	943.90	354.23	582.00	329.98	644.69	586.81	840.31	218.47
Paper	OCC	Plain OCC/Kraft Paper	1,172.26	R Paper	189.25	71.07	240.26	68.39	207.29	201.28	144.35	54.17
Paper	Mixed Paper	High Grade Paper	544.53	R Paper	102.98	22.37	64.99	59.61	133.81	50.65	79.44	23.06
Paper	Mixed Paper	Mixed Low Grade Paper	5,940.01	R Paper	1,008.23	415.86	831.68	408.39	960.92	780.67	1,125.57	343.19
Paper	Mixed Paper	Phone Books/Paperbacks	441.03	R Paper	61.38	30.19	48.79	21.97	79.52	77.89	89.06	28.50
Paper	Mixed Paper	Paper Bags	344.99	R Paper	75.19	23.19	61.91	21.49	51.54	45.30	44.19	19.27
Paper	Bev Cartons	Polycoated Paper Containers	315.08	R Bev Cartons	36.15	35.65	61.45	20.00	49.42	56.61	43.18	15.20
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	3,253.82	NR_Paper	365.82	254.41	516.31	180.90	586.52	440.31	640.45	257.04
Paper	Compostable Paper	Single Use Paper Plates, Cups	222.15	NR_Paper	27.22	12.15	23.82	15.72	37.22	17.79	58.95	25.50
Paper	Other Paper	Other Nonrecyclable Paper	318.05	NR_Paper	27.49	21.39	69.30	23.57	69.51	39.71	51.20	17.81
Paper Total			17,125.08		2,837.62	1,240.52	2,500.53	1,150.01	2,820.44	2,297.03	3,116.70	1,002.21
Plastic	PET Bottles	PET Bottles	700.86	R Plastics	76.48	44.65	144.64	29.07	115.03	131.95	112.93	51.66
Plastic	HDPE Botles	HDPE Botlles: Natural	262.10	R Plastics	16.99	21.34	67.78	7.37	57.48	42.06	35.83	16.83
Plastic	HDPE Bottles	HDPE Bottles: Colored	292.97	R Plastics	25.19	19.24	61.98	11.33	45.10	56.39	56.18	20.07
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	2.18	PR_Plastics	0.32	0.35	0.64	0.14	0.46	0.03	0.13	0.11
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#2 HDPE	40.75	PR_Plastics	3.04	7.19	11.40	1.54	6.95	7.48	2.90	1.13
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	7.41	PR_Plastics	0.46	1.07	1.72	0.22	1.53	1.11	1.19	0.15
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	2.98	PR_Plastics	0.23	0.19	0.54	0.17	0.41	0.97	0.34	0.22
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Botlles: \#5 PP	10.45	PR_Plastics	0.56	0.65	2.18	0.37	1.39	1.75	2.83	0.75
Plastic	\#3-\#7 Botlles	\#3 Through \#7 Bottles: \#7 Other	45.08	PR_Plastics	3.78	3.15	10.79	2.23	7.33	7.71	7.94	2.63
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.72	PR_Plastics	0.00	0.10	0.17	0.36	0.00	0.02	0.00	0.12
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	8.76	PR_Plastics	6.96	0.00	0.00	0.00	0.00	0.25	0.59	0.09
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	93.50	PR_Plastics	12.61	8.56	17.29	6.51	14.40	10.15	14.90	9.01
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	32.10	PR_Plastics	5.34	1.90	7.03	3.10	4.39	3.82	4.54	2.04
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	13.05	PR_Plastics	0.33	1.25	5.50	0.47	1.26	0.84	1.05	2.85
Plastic	Other Plastic Products	Other PVC	0.54	NR_Plastics	0.00	0.00	0.00	0.40	0.00	0.00	0.00	0.18
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	152.04	PR_Plastics	24.91	11.31	38.76	8.26	21.94	15.66	23.12	7.87
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	310.71	PR_Plastics	24.86	23.05	69.95	10.42	55.82	50.82	58.34	19.47
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	457.77	PR_Plastics	72.14	33.69	72.63	32.09	80.18	49.51	81.90	31.43
Plastic	Film	Plastic Bags	1,949.11	PR_Plastics	190.16	163.22	462.33	79.10	381.29	326.17	252.77	115.10
Plastic	Film	Other Film	2,894.01	PR_Plastics	293.54	241.74	671.33	117.38	517.55	501.33	402.46	178.26
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	298.83	NR_Plastics	24.79	20.96	43.45	13.27	50.04	57.38	60.82	29.27
Plastic	Other Plastic Products	Other Plastics Materials	1,010.84	NR_Plastics	68.95	91.39	186.13	43.99	184.31	153.86	196.80	90.15
Plastic Total			8,586.75		851.63	695.03	1,876.24	367.81	1,546.87	1,419.25	1,317.58	579.41
Glass	Container Glass	Clear Container Glass	906.87	R Glass	59.15	49.40	164.38	43.39	145.04	215.30	173.65	69.35
Glass	Container Glass	Green Container Glass	323.83	R Glass	85.14	19.07	36.70	36.29	40.46	32.50	49.44	18.02
Glass	Container Glass	Brown Container Glass	187.84	R Glass	18.05	7.60	52.51	13.05	25.43	33.17	27.09	14.63
Glass	Mixed Cullet	Mixed Cullet	1,077.13	R Glass	190.49	67.54	157.19	81.21	243.14	146.76	117.67	68.05
Glass	Container Glass	Other Container Glass	27.35	R Glass	2.37	1.84	4.11	1.11	4.15	6.83	5.19	2.02
Glass	Other Glass	Other Glass	134.16	PR_Glass	7.81	6.44	19.03	3.42	32.13	30.33	28.05	7.47
Glass Total			2,657.19		363.01	151.90	433.92	178.46	490.36	464.89	401.09	179.54
Metal	Aluminum	Aluminum Cans	106.49	R Metal	10.32	8.47	24.88	4.26	16.52	20.21	15.59	7.63
Metal	Aluminum	Aluminum Foil/Containers	350.04	R Metal	33.63	25.04	64.69	15.52	63.06	58.58	63.06	27.87
Metal	Aluminum	Other Aluminum	33.40	R Metal	0.89	2.51	5.51	1.60	4.10	4.14	10.61	3.99
Metal	Non-Ferrous	Other Non-Ferrous	73.94	R Metal	4.92	4.01	12.64	2.90	7.87	11.85	20.08	9.81
Metal	Ferrous	Tin Food Cans	767.55	R Metal	44.61	52.55	203.00	26.49	134.98	159.68	111.32	50.91
Metal	Ferrous	Empty Aerosol Cans	89.86	R Metal	8.62	7.14	14.65	3.09	18.91	14.43	15.95	7.06
Metal	Ferrous	Other Ferrous	898.64	R Metal	85.58	60.38	196.44	40.18	147.66	100.93	194.86	71.64
Metal	Other Metal	Mixed Metals	386.58	R Metal	51.12	24.38	77.57	13.42	82.92	42.93	54.51	39.05
Metal Total			2,706.48		239.69	184.48	599.38	107.45	476.01	412.74	485.97	217.96

Table L-3
Waste Weekly Tonnages, Excluding Bulk, by Strata, Spring 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Densityl High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Density/ High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	2,969.12	NR_Other	132.10	125.80	53.34	81.28	247.15	128.24	1,630.39	441.95
Organics	Yard	Prunings	355.53	NR_Other	30.02	2.82	9.08	9.77	32.55	20.14	188.78	46.23
Organics	Wood	Stumps/Limbs	99.27	NR_Other	2.19	5.39	3.68	12.76	20.85	2.17	38.34	11.64
Organics	Food	Food	10,857.98	NR_Other	733.37	882.21	2,505.38	420.47	2,096.88	1,971.67	1,618.07	782.43
Organics	Wood	Wood Furniture/Furniture Pieces	285.59	NR_Other	24.02	14.80	55.55	11.36	27.66	74.04	68.57	12.53
Organics	Wood	Non-C\&D Untreated Wood	105.52	NR_Other	2.71	2.77	12.79	8.66	56.35	5.36	12.41	3.78
Organics	Textiles	Non-Clothing Textiles	636.25	NR_Other	51.09	52.31	133.68	27.88	120.51	131.11	84.33	44.96
Organics	Textiles	Clothing Textiles	1,634.45	NR_Other	89.64	128.90	397.84	46.87	319.22	342.00	215.04	127.88
Organics	Textiles	Carpet/Upholstery	509.73	NR_Other	28.10	8.19	67.23	10.21	103.97	44.14	212.27	21.30
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,871.93	NR_Other	152.25	126.71	432.88	69.94	316.40	323.81	307.50	164.26
Organics	Misc. Organic	Animal By-Products	636.69	NR_Other	65.15	37.08	66.06	84.34	89.93	131.48	124.34	43.25
Organics	Misc. Organic	Rubber Products	184.81	NR_Other	11.46	10.91	57.36	4.41	28.89	13.85	49.14	8.69
Organics	Textiles	Shoes	368.99	NR_Other	19.70	32.87	105.99	11.81	80.35	70.94	38.21	17.59
Organics	Textiles	Other Leather Products	74.42	NR_Other	3.39	2.08	10.21	1.06	12.33	12.68	29.66	1.71
Organics	Misc. Organic	Fines	2,779.47	NR_Other	237.67	192.07	639.16	115.41	442.22	513.15	458.89	215.02
Organics	Textiles	Upholstered or Other Organic-Type Furniture	84.82	NR_Other	3.11	2.43	17.19	0.26	14.88	4.85	28.76	12.31
Organics	Misc. Organic	Miscellaneous Organics	443.75	NR_Other	35.88	15.72	47.28	42.38	38.27	54.35	143.77	62.95
Organics Total			23,898.31		1,621.83	1,643.05	4,614.69	958.85	4,048.41	3,843.99	5,248.49	2,018.47
Appliance/Electronic	Ferrous	Appliances: Ferrous	190.19	R Metal	9.33	7.30	27.21	5.57	31.02	30.23	50.28	29.41
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	25.64	R Metal	0.19	0.74	1.83	1.38	16.78	1.84	2.18	0.43
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	135.97	NR_Other	7.44	8.95	25.03	7.55	17.68	32.69	28.34	10.44
Appliance/Electronic	Electronic/AV/Computer	Audio) Visual Equipment: Cell Phones	1.72	NR_Other	0.21	0.30	0.09	0.07	0.00	0.25	0.38	0.42
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	113.55	NR_Other	5.41	7.46	9.31	0.75	23.81	28.82	31.80	5.66
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	7.07	NR_Other	2.61	0.85	0.00	0.00	0.00	0.00	0.00	3.44
Appliance/Electronic	Electronic/AV/Computer	Televisions	0.34	NR_Other	0.00	0.34	0.00	0.00	0.00	0.00	0.00	0.00
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	39.51	NR_Other	5.69	10.01	3.99	3.26	5.83	2.39	7.30	0.25
Appliance/Electronic Total			513.99		30.86	35.94	67.46	18.58	95.13	96.22	120.28	50.06
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	291.81	NR_Other	38.63	13.21	35.59	14.32	25.56	20.40	97.83	39.64
C \& D Debris	Wood	Treated/Contaminated Wood	785.58	NR_Other	62.86	33.72	139.29	18.48	117.07	94.59	238.03	73.60
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	577.88	NR_Other	26.78	33.08	103.28	9.69	156.16	48.63	156.55	36.68
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	635.17	NR_Other	12.89	10.21	97.85	17.46	58.03	138.57	223.38	79.28
C \& D Debris	Inorganic C\&D	Other Construction Debris	890.26	NR_Other	52.26	39.87	192.29	65.17	167.12	58.59	268.80	38.67
C \& D Debris Total			3,180.69		193.42	130.09	568.30	125.12	523.93	360.78	984.58	267.88
Miscellaneous Inorgani	Misc. Inorganic	Miscellaneous Inorganics	190.61	NR_Other	18.05	10.06	8.61	14.32	25.58	17.18	69.40	22.66
Miscellaneous Inorgani	Misc. Inorganic	Ceramics	240.83	NR_Other	25.68	18.13	28.53	12.36	31.27	45.55	62.04	15.81
Miscellaneous Inorganics Total			431.43		43.73	28.19	37.14	26.68	56.85	62.73	131.44	38.48
HHW	HHW	Oil Filters	2.14	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	1.72	0.28
HHW	HHW	Antifreeze	0.12	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13
HHW	HHW	Wet-Cell Batteries	0.09	NR_Other	0.00	0.00	0.06	0.00	0.00	0.00	0.02	0.00
HHW	HHW	Gasoline/Kerosene/Motor Oil/Diesel Fuel	0.13	NR_Other	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.08
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	19.30	NR_Other	4.91	0.02	0.16	0.37	11.01	1.27	0.26	0.53
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	10.46	NR_Other	0.00	0.00	0.00	0.04	1.20	9.44	0.00	0.67
HHW	HHW	Pesticides/Herbicides/Rodenticides	0.91	NR_Other	0.00	0.03	0.04	0.00	0.00	0.30	0.52	0.00
HHW	HHW	Dry-Cell Batteries	33.50	NR_Other	1.46	1.87	7.91	1.31	5.25	8.54	5.80	2.14
HHW	HHW	Fluorescent Tubes	0.22	NR_Other	0.00	0.00	0.00	0.00	0.19	0.04	0.00	0.00
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	3.50	NR_Other	0.09	0.50	1.40	0.00	0.00	0.00	1.47	0.00
HHW	HHW	Home Medical Products	33.60	NR_Other	0.76	0.53	24.95	0.72	1.52	5.07	1.25	1.14
HHW	HHW	Other Potentially Harmful Wastes	25.99	NR_Other	2.26	1.28	3.20	0.34	8.97	2.98	6.19	0.25
HHW Total			129.96		9.48	4.22	37.73	2.78	28.19	27.64	17.24	5.22
Grand Total			59,229.88		6,191.27	4,113.43	10,735.39	2,935.73	10,086.20	8,985.26	11,823.37	4,359.23

Table L-3
Waste Weekly Tonnages, Excluding Bulk, by Strata, Spring 2005 (continued)

| SUBTOTALS BY RECYCLING DESIGNATION | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from April 2005 through June 2005 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2

Table L-4
Waste Weekly Tonnages, Excluding Bulk, by Strata, Summer 2005

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Densityl Medium Income Weekly Tonnage	Medium Density/ Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Paper	ONP	Newspaper	4,115.24	R Paper	836.24	370.08	542.50	236.54	640.44	365.49	808.85	228.69
Paper	OCC	Plain OCC/Kraft Paper	1,108.22	R Paper	119.90	76.35	236.54	52.97	192.01	177.67	183.80	71.04
Paper	Mixed Paper	High Grade Paper	496.92	R Paper	95.88	50.76	62.05	30.97	47.82	79.81	90.46	31.58
Paper	Mixed Paper	Mixed Low Grade Paper	6,128.33	R Paper	1,021.93	455.00	982.36	361.35	844.45	725.37	1,298.48	356.30
Paper	Mixed Paper	Phone Books/Paperbacks	680.52	R Paper	48.35	44.46	94.06	24.49	240.96	48.69	128.89	41.56
Paper	Mixed Paper	Paper Bags	430.85	R Paper	76.63	29.64	81.21	21.58	70.70	57.84	65.21	24.72
Paper	Bev Cartons	Polycoated Paper Containers	276.49	R Bev Cartons	35.18	21.93	47.98	13.05	53.01	48.08	40.88	15.20
Paper	Compostable Paper	Compostable/Soiled Paper/Waxed OCC/Kraft	2,938.64	NR_Paper	306.11	211.16	466.20	114.52	599.27	349.91	634.14	237.34
Paper	Compostable Paper	Single Use Paper Plates, Cups	299.96	NR_Paper	23.51	17.59	38.18	13.04	34.37	28.08	102.75	40.00
Paper	Other Paper	Other Nonrecyclable Paper	607.83	NR_Paper	78.63	38.13	127.67	22.18	115.29	72.42	103.02	50.65
Paper Total			17,083.01		2,642.36	1,315.11	2,678.75	890.70	2,838.33	1,953.34	3,456.48	1,097.07
Plastic	PET Bottles	PET Bottles	828.96	R Plastics	81.05	59.66	165.38	26.13	143.06	148.92	149.61	57.86
Plastic	HDPE Bottles	HDPE Botlles: Natural	277.76	R Plastics	25.97	21.28	70.42	5.02	63.23	40.21	37.93	16.22
Plastic	HDPE Bottles	HDPE Bottles: Colored	279.79	R Plastics	29.20	20.13	68.54	8.51	43.40	34.17	57.23	20.14
Plastic	Injection Molded Tubs	\#1-\#2 Tubs/Trays/Other Containers: \#1 PET	1.04	PR_Plastics	0.28	0.13	0.09	0.01	0.17	0.16	0.12	0.05
Plastic	Injection Molded Tubs	\#1-2 Tubs/Trays/Other Containers: \#2 HDPE	23.85	PR_Plastics	4.06	2.96	3.47	0.56	2.07	5.31	3.30	2.12
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#3 PVC	7.71	PR_Plastics	1.02	0.24	1.50	0.28	1.08	1.45	1.58	0.57
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#4 LDPE	3.72	PR_Plastics	0.05	0.18	1.10	0.06	0.44	0.97	0.81	0.20
Plastic	\#3.\#7 Bottles	\#3 Through \#7 Bottles: \#5 PP	12.68	PR_Plastics	0.90	0.61	3.75	0.46	2.24	1.93	1.95	1.05
Plastic	\#3-\#7 Bottles	\#3 Through \#7 Bottles: \#7 Other	48.95	PR_Plastics	2.71	2.53	7.11	0.86	4.95	6.22	20.83	3.26
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#3 PVC	0.73	PR_Plastics	0.04	0.02	0.11	0.11	0.30	0.03	0.06	0.04
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#4 LDPE	0.12	PR_Plastics	0.02	0.04	0.00	0.05	0.01	0.00	0.00	0.00
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#5 PP	117.77	PR_Plastics	18.17	8.26	21.52	6.36	18.81	17.39	16.05	10.98
Plastic	Injection Molded Tubs	\#3 Through \#7 Tubs: \#7 Other	26.55	PR_Plastics	4.62	2.83	5.26	1.14	2.74	3.51	4.41	1.96
Plastic	Other Rigid Containers/Packaging	Soda Crates and Bottle Carriers	9.12	PR_Plastics	0.55	0.86	3.61	0.12	0.67	3.10	0.49	0.08
Plastic	Other Plastic Products	Other PVC	7.68	NR_Plastics	0.00	1.54	0.31	0.01	0.23	2.81	1.35	1.59
Plastic	Other Rigid Containers/Packaging	Rigid Polystyrene Containers and Packaging	149.09	PR_Plastics	30.07	9.81	21.64	7.65	24.17	17.14	25.95	10.35
Plastic	Other Rigid Containers/Packaging	Expanded Polystyrene Containers and Packaging	339.64	PR_Plastics	22.70	27.46	72.25	11.21	64.53	58.95	57.65	27.61
Plastic	Other Rigid Containers/Packaging	Other Rigid Containers/Packaging	539.31	PR_Plastics	75.04	40.92	94.98	24.12	87.14	63.25	107.02	43.54
Plastic	Film	Plastic Bags	1,529.85	PR_Plastics	145.32	130.41	377.91	49.37	308.72	222.41	206.09	102.80
Plastic	Film	Other Film	2,822.15	PR_Plastics	301.91	225.13	637.81	92.41	486.78	409.04	466.16	218.52
Plastic	Other Plastic Products	Single Use Plastic Plates, Cups, Cuttery, Etc.	371.51	NR_Plastics	31.88	29.00	60.32	11.00	48.37	63.33	87.72	40.64
Plastic	Other Plastic Products	Other Plastics Materials	953.08	NR_Plastics	93.87	95.35	196.70	31.73	152.82	127.28	168.50	91.57
Plastic Total			8,351.06		869.41	679.37	1,813.77	277.17	1,455.92	1,227.60	1,414.81	651.16
Glass	Container Glass	Clear Container Glass	1,049.42	R Glass	93.47	61.28	240.65	37.46	164.10	192.21	192.02	76.52
Glass	Container Glass	Green Container Glass	336.35	R Glass	77.95	21.40	51.23	23.20	46.17	43.54	48.97	17.99
Glass	Container Glass	Brown Container Glass	269.00	R Glass	26.94	12.68	57.19	12.11	58.41	47.98	37.57	17.00
Glass	Mixed Cullet	Mixed Cullet	1,221.66	R Glass	179.43	78.51	242.26	63.60	236.97	148.21	174.13	94.47
Glass	Container Glass	Other Container Glass	13.71	R Glass	1.60	0.84	1.41	0.87	2.98	3.15	2.01	0.68
Glass	Other Glass	Other Glass	160.63	PR_Glass	18.88	15.75	30.06	3.89	25.99	23.93	23.20	20.02
Glass Total			3,050.78		398.27	190.45	622.79	141.12	534.63	459.02	477.89	226.66
Metal	Aluminum	Aluminum Cans	163.71	R Metal	14.22	10.79	45.97	3.72	24.64	23.96	31.65	10.88
Metal	Aluminum	Aluminum Foil/Containers	348.49	R Metal	33.87	21.57	63.26	13.16	62.44	55.95	71.07	26.90
Metal	Aluminum	Other Aluminum	39.51	R Metal	2.10	2.57	2.95	0.96	8.59	2.99	7.10	12.66
Metal	Non-Ferrous	Other Non-Ferrous	84.40	R Metal	10.86	8.40	17.34	4.41	9.27	9.67	16.48	8.02
Metal	Ferrous	Tin Food Cans	630.41	R Metal	45.54	44.53	175.07	17.71	123.39	93.67	97.13	42.12
Metal	Ferrous	Empty Aerosol Cans	111.53	R Metal	9.56	4.77	26.52	3.36	21.58	15.03	24.01	7.19
Metal	Ferrous	Other Ferrous	665.44	R Metal	71.16	42.94	96.70	35.54	100.62	93.58	134.47	89.20
Metal	Other Metal	Mixed Metals	357.81	R Metal	13.99	18.93	93.73	18.48	62.26	53.09	64.99	37.89
Metal Total			2,401.30		201.29	154.49	521.55	97.34	412.79	347.93	446.88	234.86

Table L-4
Waste Weekly Tonnages, Excluding Bulk, by Strata, Summer 2005 (continued)

Material Group	Material Subgroup	Material Category: Subcategory	Citywide Waste Weekly Tonnage	Recycling Subindicator	High Densityl High Income Weekly Tonnage	High Densityl Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Densityl Medium Income Weekly Tonnage
Organics	Yard	Leaves and Grass	1,793.46	NR_Other	25.26	109.69	81.93	41.54	196.22	139.92	887.86	282.44
Organics	Yard	Prunings	399.40	NR_Other	15.59	8.62	7.79	25.18	30.64	73.01	185.62	43.96
Organics	Wood	Stumps/Limbs	30.33	NR_Other	0.19	3.15	3.86	0.16	0.00	17.69	2.12	4.32
Organics	Food	Food	9,298.53	NR_Other	564.46	699.59	2,357.80	286.02	1,791.57	1,367.91	1,653.39	682.24
Organics	Wood	Wood Furniture/Furniture Pieces	445.09	NR_Other	61.76	37.53	72.93	9.18	74.12	72.47	90.54	23.74
Organics	Wood	Non-C\&D Untreated Wood	55.37	NR_Other	2.65	5.42	14.30	2.26	9.84	6.18	13.03	1.96
Organics	Textiles	Non-Clothing Textiles	1,055.19	NR_Other	83.55	68.26	278.75	25.00	202.72	134.76	174.91	101.57
Organics	Textiles	Clothing Textiles	1,541.60	NR_Other	91.04	126.00	481.99	28.97	231.42	240.27	262.82	112.03
Organics	Textiles	Carpet/Upholstery	356.68	NR_Other	45.99	22.69	106.13	14.43	44.72	64.27	27.61	38.41
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Products	1,897.09	NR_Other	162.99	122.22	421.82	66.21	377.70	270.31	333.69	152.57
Organics	Misc. Organic	Animal By-Products	601.39	NR_Other	69.60	43.39	71.27	62.23	131.67	46.74	102.40	64.42
Organics	Misc. Organic	Rubber Products	131.92	NR_Other	9.80	8.86	22.84	5.12	27.49	30.58	20.37	7.16
Organics	Textiles	Shoes	373.90	NR_Other	34.83	21.72	100.30	8.93	57.98	71.85	48.38	36.86
Organics	Textiles	Other Leather Products	37.70	NR_Other	1.49	5.61	5.53	0.58	13.80	5.46	2.13	3.21
Organics	Misc. Organic	Fines	2,166.65	NR_Other	178.12	143.42	436.51	69.92	368.21	430.99	364.45	192.15
Organics	Textiles	Upholstered or Other Organic-Type Furniture	34.58	NR_Other	0.20	4.42	4.83	0.00	1.91	12.31	8.79	2.63
Organics	Misc. Organic	Miscellaneous Organics	601.33	NR_Other	74.03	24.17	59.68	18.49	73.59	165.00	123.15	61.27
Organics Total			20,820.23		1,421.55	1,454.73	4,528.26	664.21	3,633.61	3,149.72	4,301.25	1,810.93
Appliance/Electronic	Ferrous	Appliances: Ferrous	118.46	R Metal	6.54	13.91	18.50	8.33	31.11	6.39	8.40	26.41
Appliance/Electronic	Non-Ferrous	Appliances: Non-Ferrous	21.84	R Metal	1.04	3.38	1.62	2.45	1.37	3.03	7.21	1.27
Appliance/Electronic	Household Appliance - Plastic	Appliances: Plastic	139.73	NR_Other	13.06	9.57	30.13	4.20	24.19	20.21	31.39	7.02
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Cell Phones	3.83	NR_Other	0.29	0.40	1.83	0.03	0.42	0.31	0.38	0.32
Appliance/Electronic	Electronic/AV/Computer	Audio/Visual Equipment: Other	169.06	NR_Other	12.43	13.95	28.13	3.63	30.24	36.35	29.73	15.59
Appliance/Electronic	Electronic/AV/Computer	Computer Monitors	37.24	NR_Other	1.63	0.00	0.00	18.94	0.00	6.09	0.00	9.44
Appliance/Electronic	Electronic/AV/Computer	Televisions	43.55	NR_Other	0.00	0.00	0.00	0.00	0.00	31.30	0.00	14.47
Appliance/Electronic	Electronic/AV/Computer	Other Computer Equipment	62.62	NR_Other	5.27	3.18	8.64	7.39	17.01	5.61	8.78	5.88
Appliance/Electronic Total			596.32		40.26	44.39	88.86	44.97	104.34	109.30	85.90	80.40
C \& D Debris	Wood	Untreated Dimension Lumber, Pallets, Crates	153.67	NR_Other	1.94	2.57	33.40	4.35	20.95	23.12	47.93	21.38
$C \& D$ Debris	Wood	Treated/Contaminated Wood	685.08	NR_Other	42.98	34.42	62.40	16.63	96.09	110.69	208.98	110.90
$C \& D$ Debris	Inorganic C\&D	Gypsum Scrap	338.26	NR_Other	4.53	31.72	32.93	6.18	52.83	54.37	84.41	74.67
$C \& D$ Debris	Inorganic C\&D	Rock/Concrete/Bricks	351.62	NR_Other	9.11	3.92	120.31	17.34	104.56	49.16	29.78	25.74
C \& D Debris	Inorganic C\&D	Other Construction Debris	875.90	NR_Other	42.24	60.67	110.52	29.74	110.57	135.25	262.42	124.52
C \& D Debris Total			2,404.53		100.79	133.30	359.57	74.25	385.02	372.59	633.52	357.21
Miscellaneous Inorganic	Misc. Inorganic	Miscellaneous Inorganics	82.33	NR_Other	8.04	9.55	9.41	4.13	13.89	12.40	15.70	8.66
Miscellaneous Inorganic	Misc. Inorganic	Ceramics	248.15	NR_Other	12.76	13.73	34.91	17.88	33.70	19.67	82.97	30.31
Miscellaneous Inorganics Total			330.49		20.81	23.28	44.32	22.01	47.59	32.07	98.66	38.97
HHW	HHW	Oil Filters	6.84	NR_Other	0.37	0.00	6.93	0.00	0.00	0.00	0.00	0.30
HHW	HHW	Antifreeze	0.18	NR_Other	0.00	0.00	0.00	0.16	0.00	0.00	0.00	0.00
HHW	HHW	Wet-Cell Batteries	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Gasolin/Kerosene/Motor Oil/Diesel Fuel	2.17	NR_Other	0.23	0.27	0.00	0.01	0.04	0.00	1.51	0.00
HHW	HHW	Latex Paints/Water-Based Adhesives/Glues	19.26	NR_Other	0.66	1.28	1.47	0.52	6.85	1.01	1.68	5.98
HHW	HHW	Oil-Based Paints/Solvent-Based Adhesives/Glues	17.24	NR_Other	0.50	0.46	3.69	2.19	0.59	0.23	5.13	4.65
HHW	HHW	Pesticides/Herbicides/Rodenticides	2.78	NR_Other	0.55	0.15	0.62	0.02	0.72	0.09	0.55	0.05
HHW	HHW	Dry-Cell Batteries	42.06	NR_Other	4.96	4.18	7.43	1.50	6.36	8.82	6.78	2.00
HHW	HHW	Fluorescent Tubes	0.43	NR_Other	0.00	0.12	0.23	0.03	0.00	0.00	0.05	0.02
HHW	HHW	Mercury-Laden Wastes	0.00	NR_Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HHW	HHW	Compressed Gas Cylinders, Fire Extinguishers	8.16	NR_Other	0.06	0.04	8.19	0.15	0.40	0.00	0.10	0.08
HHW	HHW	Home Medical Products	43.28	NR_Other	10.14	2.17	9.37	0.53	10.85	5.71	2.66	1.58
HHW	HHW	Other Potentially Harmful Wastes	10.28	NR_Other	0.77	0.11	2.01	0.20	2.39	2.05	1.08	1.86
$\frac{\text { HHW Total }}{\text { Grand Total }}$			152.67$55,190.38$		18.23	8.78	39.93	5.33	28.21	17.90	19.54	16.53
					5,712.98	4,003.89	10,697.80	2,217.09	9,440.42	7,669.47	10,934.94	4,513.79

Table L-4 Waste Weekly Tonnages, Excluding Bulk, by Strata, Summer 2005 (continued)

Recycling Designation	$\begin{gathered} \hline \text { Citywide } \\ \text { Waste } \\ \text { Weekly Tonnage } \\ \hline \end{gathered}$	High Densityl High Income Weekly Tonnage	High Density/ Medium Income Weekly Tonnage	High Densityl Low Income Weekly Tonnage	Medium Density/ High Income Weekly Tonnage	Medium Density/ Medium Income Weekly Tonnage	Medium Densityl Low Income Weekly Tonange	Low Densityl High Income Weekly Tonnage	Low Density/ Medium Income Weekly Tonnage
Designated Paper	12,960.09	2,198.92	1,026.29	1,998.72	727.91	2,036.38	1,454.86	2,575.69	753.89
Designated Beverage Cartons	276.49	35.18	21.93	47.98	13.05	53.01	48.08	40.88	15.20
Designated Plastic	1,386.51	136.21	101.07	304.34	39.66	249.70	223.30	24.77	94.22
Designated Metal	2,541.60	208.87	171.78	541.67	108.11	445.28	357.36	462.50	262.54
Designated Glass	2,890.15	379.39	174.70	592.73	137.23	508.63	435.09	454.70	206.65
Designated MGP Subtotal	7,094.75	759.64	469.48	1,486.72	298.06	1,256.61	1,063.83	1,202.85	578.61
Potentially Designated Plastic	5,632.28	607.45	452.40	1,252.10	194.77	1,004.80	810.87	912.46	423.13
Potentially Designated Glass	160.63	18.88	15.75	30.06	3.89	25.99	23.93	23.20	20.02
Potentially Designated Materials Subtotal	5,792.90	626.33	468.15	1,282.16	198.66	1,030.80	834.80	935.66	443.15
Nondesignated Paper	3,846.43	408.26	266.89	632.05	149.73	748.94	450.40	839.92	327.99
Nondesignated Plastic	1,332.27	125.75	125.90	257.33	42.74	201.42	193.42	257.58	133.80
Other Nondesignated	24,163.94	1,594.07	1,647.19	5,040.82	800.00	4,166.27	3,672.15	5,123.25	2,276.35
Nondesignated Materials Subtotal	29,342.64	2,128.07	2,039.97	5,930.19	992.46	5,116.63	4,315.98	6,220.75	2,738.14
Designated for Recycling Total	20,054.84	2,958.57	1,495.77	3,485.44	1,025.97	3,293.00	2,518.69	3,778.53	1,332.50
Potentially or Not Designated for Recycling Total	35,135.54	2,754.41	2,508.13	7,212.36	1,191.12	6,147.42	5,150.78	7,156.41	3,181.29

(1) Tonnage values calculated using DSNY average weekly curbside waste tonnages over the period from July 2005 through September 2005 less the percentage of bulk items as determined in the study. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2.6 in Volume 2.

NYC Waste Characterization Study
Final Report, Volume 4
Appendix M: Statistical Validity of Multiple Sampling Units from a Single Truck

Volume 4, Appendix M Statistical Validity of Multiple Sampling Units from a Single Truck

During the NYC WCS, it was necessary, in some instances, to acquire multiple sampling units from a single truck. The statistical validity of taking multiple sampling units of waste from a single truck rests on the definition of a sampling unit for refuse and recycling used in planning the PWCS and WCS. For these studies, a sampling unit of refuse was defined as 200 to 250 pounds of refuse and a sampling unit for recycling was defined as 100 to 150 pounds of MGP or Paper (Volume 1, Section 2.1.2). Each season's sampling units were randomly selected from a list of DSNY collection routes.

The Residential Study examined the City's waste in eight housing density/income strata. In order to achieve the required level of statistical precision for the WCS, the number of sampling units targeted for acquisition was established. For each stratum during each season, a target was established for the number of sampling units: 50 for Refuse, 10 for Paper, and 40 for MGP.

For each stratum, a list of routes that collected only from that stratum (called "pure routes") was compiled (Volume 2, Section 2.1.3.2). These pure routes were used to randomly select the sampling units that were to be sorted during each season. The number of times that each pure route was collected during the sorting period was provided by DSNY. Each day during the sorting period that collection on a pure route took place was called a "Route Occurrence". The DSNY collects refuse two or three times a week and collects recycling once a week. Therefore, there might be six or nine refuse Route Occurrences for each pure route during a three-week sampling period but only three recycling Route Occurrences for each pure route during the same period.

The number of pure routes available for each stratum during each season varied and, in some cases, the number of pure routes available was limited (Volume 1, Table 1-6). For example, there were three (3) MGP collection routes for the Medium Density/High Income stratum during the fall sorting period. This means that during the three-week fall sorting period, the Medium Density/High Income stratum had nine Route Occurrences.

With only nine MGP Route Occurrences for the Medium Density/High Income stratum and 40 MGP sampling units to be acquired, it was inevitable that a random selection of sampling units would select a Route Occurrence more than once, meaning that more than one sampling unit would have to be acquired from the same Route Occurrence. However, given the definition of a sampling unit, it is clear that each Route Occurrence held multiple sampling units. A typical Route Occurrence (full refuse truck with a seventon capacity) would hold about 56 sampling units of 250 pounds. each ($7 \times 2000=$ $14,000 / 250 \mathrm{lbs}=56)$. The goal of the PWCS/WCS sampling plan was to give each sampling unit of waste an equal opportunity to be selected and sorted. Given the definition of a sampling unit, taking more than one sampling unit from a truck was statistically valid.

NYC Waste Characterization Study
Final Report, Volume 4
Appendix N: Bulk Metal in the MGP Stream

Volume 4, Appendix N
 Bulk Metal in the MGP Stream

MGP Sample Acquisition

The protocol for the acquisition of Metal, Glass, and Plastic ("MGP") was modified during the PWCS to more accurately reflect the amount of bulk metal items present in the MGP stream. This appendix discusses the sampling methodology initially used during the MGP sort, the modified sample acquisition approach, and the reasoning behind the change in sampling methodology.

Development of Initial MGP Sampling Protocol

On May 7, 2004, a field visit was made to the Hugo Neu processing facility located in Long Island City. The purpose of the site visit was to observe the MGP collected by DSNY collection vehicles and determine the best approach to acquiring 100 pound to 125 pound samples from the collected MGP loads.

Based on the on-site review, it was determined that a front-end loader ("FEL") equipped with a $1 / 2$-cubic yard bucket with a grab-arm would be suitable for taking a sample from the tipped MGP loads. The random selection of a portion of the tipped load in which to "grab" the sample would be made by the Sample Manager prior to the dumping of the load. The FEL operator would then grab a bucket-load from that section of the load. The bucket would be lowered so that the Sample Manager could pull material from the bucket into a 96 -gallon toter.
After each toter had been weighed, it would be marked with the date, sample number, a sample code, and the truck number. Once the MGP sample's weight had been confirmed, the remainder of the tipped load would be managed as it normally would in the course of facility operations. In addition, the Sample Manager would complete a Sample Management Form for each sample. An example of a Sample Management Form is shown in Volume 2, Section 4 of the Report.
After all the MGP samples were weighed and labeled, they would be loaded on a rental truck and transported to the Greenpoint Marine Transfer Station ("MTS") where they would be unloaded and positioned for sorting.
This methodology has been successfully used by R. W. Beck Project Team staff in prior studies for other local and state government and private sector clients for the purposes of sampling commingled recycling containers. Based on the review of the MGP loads on the day of the site visit, it was believed that this methodology would also prove suitable for MGP sampling at the Hugo Neu processing facility.

Modification of MGP Sampling Protocol

Sampling of the MGP at the Hugo Neu facility began on Monday, June 7, 2004 and was completed on Saturday, June 12, 2004. Sampling was initiated using the protocol developed in conjunction with the May site visit.
MGP sampling proceeded as planned over the initial three days of the MGP sort. During these three days, a number of over-sized metal bulky items were observed in the MGP loads delivered
to the Hugo Neu facility by the DSNY collection vehicles. However, relatively few of the items were located in the random section of the loads selected for sampling. In cases where an item was too large to fit inside the 96 -gallon toter, (e.g., a bed frame or metal cabinet), the item was weighed separately on-site, the weight recorded on the MGP Sampling Form, and the item returned to the tipped load for normal processing.

As the MGP sort progressed, the number and size of metal bulk items present in the incoming loads of MGP called into question the sampling protocol. Many of these items were too large to handle using the FEL. Due to the physical dimensions of many of these bulk metal items (including durable products such as ranges, water heaters, air conditioner units, bed frames, refrigerators, bicycles, etc.), the Sampling Team was concerned that such items were not being appropriately sampled from the MGP stream. In many instances, bulk items in the area from which the MGP sample was taken did not get captured by the FEL due to their large dimension. On one occasion, for example, the area from which the MGP sample was to be taken consisted of a twisted pile of metal bed frames and bicycles which the loader was unable to grab. The sampling protocol used during the early part of the week required that a bulk item be included in a sample if the bulk item was scooped up by the FEL. If the bulk item either remained in the bucket of the loader or fell out of the bucket as it pulled away from the load from which the MGP sample was being taken, it was not included in the sample.

To ensure that over-size bulk materials were appropriately included in the sampling process, it was decided to make two modifications to the MGP sampling protocol. First, due to the significant size of many of these large bulky metal items, the FEL was replaced with a much larger front end loader, with a 5 cubic-yard bucket. Second, a procedural change was made in the MGP sampling protocol to allow the Sample Manager to include any bulk items in the sample, if the Sample Manager believed the items would have been selected for sampling except for the fact that the item's dimensions precluded it from being grabbed by the FEL for sampling.
As before, bulk items included in the sample were weighed by the Sample Manager and the weight recorded directly on the Sample Management Form. The bulk items were then discarded at the facility for processing, and were not transported to the MTS for further sorting. After preweighing the bulky item(s) and subtracting the weight of the bulk item(s) from the 100 to 125 pound target sample size, the Sample Manager sampled from the remainder of the grab sample until the total weight fell within the targeted range. By pre-weighing the bulk items during the sample acquisition process, the remaining quantity of material requiring physical sorting at the MTS was reduced for some samples. The Project Team believes this methodology most accurately captures representative samples that include both bulk and non-bulk items in the MGP stream.

These methodological changes were implemented beginning on the morning of Thursday, June 10, 2004. As a consequence, the results of the MGP sampling reflected in the PWCS Report probably under-estimated the amount of bulk metal items in the MGP samples taken during the week-long study period, primarily as a result of potentially under-reporting bulk metal items early in the week. However, for purposes of remaining conservative (i.e., underreporting metal content), the full-week results have been reported. The revised methodology was used during the WCS for MGP sampling.

A listing of the bulky metal items separated from the MGP loads, along with the weight of each item, the date the item was sampled, the borough of origin, a description of each item, and the material category into which the items was recorded is provided in Table $\mathrm{N}-1$.

Table N-1
Bulk Items in MGP Sort

Date Sampled	Borough	Bulk Item	Category	Total Bulk Weight (Lbs)
6/7/2004	Manhattan	Metal Range Hood	Other Ferrous	10
6/7/2004	Queens	Metal cart, plastic wheels	Other Ferrous	9
6/8/2004	Queens	Microwave Oven	Small Appliances	16
6/9/2004	Brooklyn	Metal Folding Chair	Other Ferrous	10
6/9/2004	Brooklyn	Electric Fan (15")	Small Appliances	8
6/10/2004	Brooklyn	Metal Bed Frame	Other Ferrous	21
6/10/2004	Brooklyn	Bicycle Wheels	Rubber	8
6/10/2004	Brooklyn	Metal Cabinet	Other Ferrous	23
6/10/2004	Brooklyn	Metal + Plastic Chair	Other Ferrous	16
6/10/2004	Brooklyn	Microwave	Small Appliances	26
6/10/2004	Brooklyn	Metal Office Chair	Other Ferrous	20
6/10/2004	Brooklyn	Metal Bar	Mixed Metal	8
6/10/2004	Brooklyn	Metal Pipes	Other Ferrous	22
6/10/2004	Brooklyn	Metal Frame	Other Ferrous	12
6/10/2004	Brooklyn	Metal Frame	Other Ferrous	44
6/10/2004	Queens	Heater	Small Appliances	14
6/10/2004	Queens	Stove	Small Appliances	96
6/10/2004	Queens	Metal Bars	Mixed Metal	15
6/10/2004	Queens	Metal Frame	Mixed Metal	9
6/10/2004	Queens	Air Conditioner	Small Appliances	25
6/11/2004	Bronx	Metal Chair Piece	Other Ferrous	9
6/11/2004	Bronx	Metal Bed Frame	Other Ferrous	18
6/11/2004	Bronx	Metal Chair	Other Ferrous	6
6/11/2004	Bronx	Metal Cabinet	Other Ferrous	22
6/11/2004	Bronx	Metal Baby Stroller	Other Ferrous	12
6/11/2004	Bronx	Metal Cabinet	Other Ferrous	5
6/11/2004	Bronx	Metal Baby Stroller	Other Ferrous	10
6/11/2004	Bronx	Metal Stove Top	Other Ferrous	12
6/11/2004	Bronx	Metal Bed Frame	Other Ferrous	10
6/11/2004	Bronx	Metal Pipe	Other Ferrous	6
6/11/2004	Manhattan	Metal Bed Frame	Other Ferrous	19
6/11/2004	Manhattan	Air Conditioner	Small Appliances	35
6/11/2004	Manhattan	Plastic Vacuum Cleaner	Small Appliances	10

Table N-1
Bulk Items in MGP Sort

Date Sampled	Borough		
$6 / 11 / 2004$	Manhattan	Bulk Item	Total Bulk Weight (Lbs)
$6 / 11 / 2004$	Manhattan	Metal Curtain Rod Frames	Category

Total may not add due to rounding

Results of Methodological Changes

As a result of the methodological change in MGP Sampling, the Project Team expected to obtain greater percentages of metals, from both appliances and other bulk items that had been inappropriately excluded by the original sampling protocol. A comparison of the material groups for the first and second half of the MGP sort, as shown in Table N-2, confirm this.

Table N-2
Comparison of Material Group Results for First Half and Second Half of MGP Sort

	First Half				Second Half	
Material	Average	Lower Boundary	Upper Boundary	Average	Lower Boundary	Upper Boundary
Paper	5.10%	4.35%	5.91%	4.30%	3.50%	5.19%
Plastic	21.90%	20.04%	23.81%	19.79%	18.02%	21.61%
Glass	39.93%	35.46%	44.48%	27.86%	24.24%	31.63%
Metal	25.47%	22.67%	28.27%	38.63%	34.21%	43.05%
Organic	3.91%	2.79%	5.20%	2.26%	1.70%	2.89%
App. \& Elec.	2.13%	1.35%	2.91%	6.30%	4.14%	8.46%
Const. Debris	0.27%	0.15%	0.41%	0.28%	0.15%	0.45%
Misc.	1.22%	0.75%	1.80%	0.43%	0.27%	0.64%
HHW	0.08%	0.04%	0.12%	0.16%	0.09%	0.26%
Total	$\mathbf{1 0 0 . 0 0 \%}$			$\mathbf{1 0 0 . 0 0 \%}$		

Total may not add due to rounding
The results shown in Table N-2 show that Appliances \& Electrical Material rose from two percent to six percent, and Metal Material rose from 25 percent to 39 percent. Glass Material was the primary group that was significantly reduced as a consequence of changing the bulk metal sampling protocol, falling from 40 percent to 28 percent.
The results for individual materials show that within the Appliance \& Electrical Group, Small Appliances changed from 0.88 percent to 4.56 percent. Within the Metal Group, Other Ferrous increased from 14.08 percent to 29.01 percent. In the Glass Group, Mixed Cullet decreased from 27 percent to 16 percent.

Given the nature of the protocol modifications, these are precisely the material categories and groups which would be expected to reflect significant changes. Table N-3 contains results for material sub-categories of the three groups highlighted in Table N-2.

Table N-3
Comparison of Material Category Results for First Half and Second Half of MGP Sort

		First Half		Second Half		
Material		Lower	Upper		Lower	Upper
	Average	Boundary	Boundary	Average	Boundary	Boundary
Aluminum Cans: Deposit	0.36%	0.29%	0.44%	0.42%	0.31%	0.54%
Aluminum Cans: Non-Deposit	0.41%	0.29%	0.55%	0.33%	0.25%	0.41%
Aluminum Foil/Tins	1.17%	0.87%	1.51%	0.71%	0.56%	0.87%
Empty Aerosol Cans	0.69%	0.53%	0.86%	0.55%	0.42%	0.69%
Mixed Metals	0.81%	0.44%	1.27%	0.93%	0.50%	1.49%
Other Aluminum	0.14%	0.08%	0.22%	0.24%	0.13%	0.39%
Other Ferrous	14.08%	11.98%	16.18%	29.01%	25.13%	32.89%
Other Non-Ferrous	0.23%	0.12%	0.36%	0.31%	0.17%	0.50%
Tin Food Cans	7.59%	6.78%	8.43%	6.13%	5.36%	6.94%
Total Metal	25.47%	$\mathbf{2 2 . 6 7 \%}$	$\mathbf{2 8 . 2 7 \%}$	38.63%	34.21%	43.05%
Brown Glass: Deposit	1.16%	0.80%	1.59%	0.97%	0.66%	1.35%
Brown Glass: Non-Deposit	0.44%	0.28%	0.64%	0.14%	0.08%	0.23%
Clear Glass: Deposit	1.07%	0.73%	1.48%	0.87%	0.59%	1.20%
Clear Glass: Non-Deposit	6.11%	5.02%	7.30%	5.78%	4.74%	6.91%
Green Glass: Deposit	1.05%	0.72%	1.45%	0.99%	0.66%	1.38%
Green Glass: Non-Deposit	2.65%	1.82%	3.63%	2.34%	1.47%	3.40%
Mixed Cullet	26.74%	22.77%	30.91%	16.29%	13.11%	19.73%
Other Glass	0.70%	0.43%	1.04%	0.49%	0.31%	0.71%
Total Glass	39.93%	35.46%	$\mathbf{4 4 . 4 8 \%}$	$\mathbf{2 7 . 8 6 \%}$	$\mathbf{2 4 . 2 4 \%}$	31.63%
Audio/Visual Equipment: Cell						
Phones	0.01%	0.00%	0.01%	0.00%	0.00%	0.00%
Audio/Visual Equipment: Other	0.25%	0.13%	0.40%	1.12%	0.58%	1.84%
Computer Monitors	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Other Computer Equip.	1.00%	0.58%	1.52%	0.61%	0.32%	1.00%
Small Appliances	0.88%	0.51%	1.25%	4.56%	2.85%	6.28%
Televisions	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Total App. \& Elec.	$\mathbf{2 . 1 3 \%}$	$\mathbf{1 . 3 5 \%}$	$\mathbf{2 . 9 1 \%}$	$\mathbf{6 . 3 0 \%}$	$\mathbf{4 . 1 4 \%}$	8.46%

Total may not add due to rounding

Conclusions

The results of the PWCS indicated that the original protocol for acquiring MGP samples was inappropriate in terms of accounting for bulk items. The FEL was too small to handle the oversized items found in the recyclables stream. However, overall protocol and QA/QC procedures highlighted this issue relatively early in the sampling period. DSNY and the Project Team took quick and appropriate actions to modify the sampling protocol to accurately reflect the character of the MGP stream.

The statistical analysis of the samples obtained both before and after the change in MGP sampling protocol supports the conclusions regarding the potential under-reporting of bulk metal items. The use of larger FELs in conjunction with an improved protocol with respect to oversize items helped to ensure that such items were appropriately included in the results of the WCS.

The statistical analysis contained in the PWCS results may reflect an under-reporting of the metals contained in the MGP stream, since the results are based on the entire week's sampling. But given the nature of a preliminary study and the a priori skepticism that would meet relatively high metal percentages in the MGP stream, we believe it is better to err on the side of under-reporting metals.

NYC Waste Characterization Study
Final Report, Volume 4
Appendix O: New York City Literature Review Bibliography
[This page intentionally left blank.]

Volume 4, Appendix 0 New York City Literature Review Bibliography

Abitibi Consolidated Recycling Division. Uncoated Quality Sampling Standards Manual. April 2002.

American Society for Testing and Materials (ASTM). ASTM Standards - D5231-92, Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. September 1992.

American Society for Testing and Materials (ASTM). ASTM Standards -D4687-95, Standard Guide for General Planning of Waste Sampling. May 1995.

American Society for Testing and Materials (ASTM). ASTM Standards - D5956-96, Standard Guide for Sampling Strategies for Heterogeneous Wastes. December 1996.

Ando, Amy and Anne Y. Gosselin. "Multi-Family Recycling: Motivating Factors." Economic Inquiry 43 (2) (April 2005): 426-438.

Brady, Patricia D, Paul F. Hudak, and Kenneth L. Dickson. "Surveying the Commercial Municipal Solid Wastestream in Denton, Texas." MSW Management. September/October 2000.

Britton, Paul W. (U.S. EPA) "Sample Weights in Solid Waste Composition Studies." Improving Manual Waste Separation Studies. March 1, 1971.

California Integrated Waste Management Board. Adjustment Method Factors. February 2004.

California Integrated Waste Management Board. California Solid Waste Characterization Study (CIWMB Publication Number: 340-00-009), December 1999.

California Integrated Waste Management Board. CIWMB Uniform Waste Disposal Characterization Method.

California Integrated Waste Management Board. General Guidelines for Sampling When Performing a Quantitative Field Analysis for a Solid Waste Generation Study, November 1990.

Volume 4, Appendix O New York City Literature Review Bibliography (continued)

California Integrated Waste Management Board. Innovations Case Study: Serving Diverse Populations with Recycling.
California Integrated Waste Management Board. Planning Guidelines and Procedures for Preparing and Revising Countywide and Regional Agency Integrated Waste Management Plans. Title 14, Chapter 9, Article 6.1.

California Integrated Waste Management Board. Planning Guidelines and Procedures for Preparing and Revising Countywide and Regional Agency Integrated Waste Management Plans. Title 14, Chapter 9, Article 6.1-Definitions.

California Integrated Waste Management Board. Solid Waste Generation, Disposal and Diversion Measurement Guide for State Agencies and Large State Facilities. March 2000.

California Integrated Waste Management Board. The Study of Minority Communities and the Waste Stream, October 2002.

California Integrated Waste Management Board and Institute for Local Self Reliance. Recycling in Multi-Family Dwellings - A Model for Local Government Waste Reduction.

Cambridge Reports/Research International. MA DEP Recycling Participation Study East Boston Pilot. Cambridge, MA. September 1997.

Camp Dresser \& McKee. Municipal Waste Composition Analysis, City of Philadelphia. July 2000.

Camp Dresser \& McKee. U.S. Army Fort Belvoir Solid Waste Characterization Study. July 1993.

Cascadia Consulting Group, Inc. King County Monitoring Program - 2002-2003 Waste Characterization Study and Customer Surveys. April, 2004.

Cascadia Consulting Group, Inc. Los Angeles County Dept. of Public Works Residential Sector Program Effectiveness Study Final Report: Findings and Recommendations. October, 2001.

Cascadia Consulting Group, Inc. Residential Waste Stream Composition Study Final Report, City of Seattle. August 2003.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

Cascadia Consulting Group, Inc. Wisconsin Statewide Waste Composition Study, May 2003.

Cascadia Consulting Group, Inc. and California Integrated Waste Management Board. Physical \& Visual Solid Waste Sorting Procedures. Updated January 2004.

Cascadia Consulting Group, Inc. and Sky Valley Associates. 2000 Commercial and SelfHaul Waste Streams Composition Study, City of Seattle, October 2002.

Cascadia Consulting Group, Inc. and Sky Valley Associates. City of Seattle Litter Composition Study - Final Report (2000-01), November 2001.

Cascadia Consulting Group, Inc., Sky Valley Associates and Harding ESE. Waste Composition Study So. Hilo Landfill, Hawaii. August 2001.

Cascadia Consulting Group, Inc., Sky Valley Associates and Cunningham Environmental Consulting. King County - Scope for Waste Monitoring Project. 1998.

Cascadia Consulting Group, Inc., Sky Valley Associates, and R.W. Beck, Inc. Characterization of Waste from Single-Family Residences (City of Phoenix). November 2003.

Cascadia Consulting Group, Inc., Sky Valley Associates, and Seattle Public Utilities. 2000/01 Residential Recycling Composition Study. October 2002.

Cascadia Consulting Group, Inc., Sky Valley Associates, Inc., and Sheri-Eiker-Wiles Associates. City of San Diego Environmental Services Department Waste Composition Study 1999-2000 Final Report. November 2000.

Cascadia Consulting Group, Inc., Environmental Science Associates, Sky Valley Associates, Inc., Sheri Eiker-Wiles Associates, TerraState Consulting Group and City of L.A. Department of Public Works. City of Los Angeles Waste Characterization and Quantification Study Year 2000. July 2002.

City of Cambridge. Community-Based Recycling Education Outreach Participation Project. August 2003.

City of Portland. City of Portland Public Sector Waste Sort. May 6, 2004.

Volume 4, Appendix O New York City Literature Review Bibliography (continued)

City of San Jose. Public Area Recycling Program - Pilot Study Results and Recommendations. June 1999.

City of San Jose. Waste Characterization Results (Data only) 1999.
City of Toronto Policy and Planning Group. Etobicoke Residential Curbside Participation and Composition Study, Spring 2003.

City of Toronto. Waste Composition Study 2000/2001 - A Study of Waste Generated and Diverted by Single Family and Multi Family Residents in Toronto, 2001.

Collier, Peter. "Applying Social Psychology to Recycling in Multi-Family Apartment Buildings." Presented at the 64th Meeting of the Pacific Sociological Association, Portland, Oregon, April 1993.

Davio, Rebecca. "Curbside Collection Participation, Influences \& Motivation." Resource Recycling. August 1, 2001.

DeYoung, Raymond, Sally Boerschig, Sarah Carney, Anne Dillenbeck, Mark Elster, Susan Horst, Brad Kleiner, and Bruce Thomson. "Recycling in Multi-Family Dwellings: Increasing Participation and Decreasing Contamination." Population and Environment 16 (3) (January 1995):253-267.

Doherty, John and Steven Lawitts. "For Many Residents, Recycling is Just a Part-Time Diversion." Resource Recycling. November 1998.

ESA. Waste Characterization Study: Prepared for the City and County of San Francisco. 2005.

Ecology and Environment, Inc. Designing, Planning and Implementing a Municipal Waste Char. Study - Case Study NYC's Glass, Plastic and Metals Recyclables Characterization Study. (Presentation) Lancaster, NY. October 2002.

Ferrand and Scheinberg Associates and MA DEM, Bureau of Solid Waste Disposal. Waste Composition Studies - Literature Review and Protocol October 1985.

Foote, Knowlton C. "Successful Apartment Recycling." Resource Recycling. April 1999.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

Foote, Knowlton and Scott Foster. "Moving On Up." Waste Age. May 12002.
Gamba, Raymond J. and Stuart Oskamp. "Factors Influencing Community Residents' Participation in Commingled Curbside Recycling Programs." Environment and Behavior. September 1994.

Gay, Alan E., Thomas G. Beam, and Brian W. Mar. "Cost-Effective Solid Waste Chatacterization Methodology." Journal of Environmental Engineering, 119 (4), August 1993: pp. 631-654.

Green Solutions. Waste Composition Analysis for the State of Washington, June 2003.
HDR Technologies. Report on Staten Island District 3 Waste Composition Analysis. New York, NY. June 1997.

Hilton, Don, Gregor Rigo and A. John Chandler. "Composition and Size Distribution of a Blue Box Separated Waste Stream." SWANA's Waste to Energy Symposium.
Minneapolis, MN. January 1992.
Hornik, Jacob, Joseph Cherian, Michelle Madansky, and Chem Narayana. "Determinants of Recycling Behavior: A Synthesis of Research Results." The Journal of SocioEconomics 24 (1) (1995): 105-127.

Jones, Tom and John Culbertson. "Back to the Future of Waste Composition," Resource Recycling. March 2002.

Katzev, Richard, Gerald Blake, and Barry Messer. "Determinants of Participation in Multi-Family Recycling Programs." Journal of Applied Psychology 23 (1993): 375.

Klee, Albert J. "New Approaches to Estimation of Solid-Waste Quantity and Composition." Journal of Environmental Engineering 119 (2) (March/April 1993): 248261.

Klee, Albert J. Protocol: A Computerized Solid Waste Quantity and Composition Estimation System - Version 1.01. EPA's Risk Engineering Lab, Cincinnati, OH. May 1979.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

Klee, Albert J. and Dennis Carruth. "Sample Weights in Solid Waste Composition Studies." Journal of the Sanitary Engineering Division, August 1970: pp.945-955.

Klee, Albert J. and SCS Engineers. Municipal Solid Waste Survey Protocol. Cincinnati, OH. 1991.

Krause, Timothy. "The Many Faces of Multi-Family Recycling." Resource Recycling. October 2000.

Lea, W. Reid and Roman Kowalewski. "Accurate Estimation of Municipal Solid Waste Composition and Waste Generation Rates Using the Shift-Share Technique." The Journal of the Air and Waste Management Association. June 1995.

Lease, Kelly. "Apartment Recycling Reaches New Heights." Resource Recycling. October 1999.

Liu, David H.F., Bela G. Liptak, Paul A. Bouis. Environmental Engineers' Handbook -Second Edition, 10.4 - Waste Characterization Methods. New York, 1997.

MA DEP Bureau of Waste Prevention. Recycling: Why People Participate; Why They Don't - A Barrier/Motivation Inventory. November 2002.

MA DEP Bureau of Waste Prevention. Multifamily Recycling: Barriers and Opportunities - A Barrier/Motivation Inventory. November 2002.

MA DEP Bureau of Waste Prevention. Setting up a Multi-Family or Apartment Building Recycling Program: a 7-Step Guide. October 2002.

MA DEP and Research International. Recycling Participation Study. June 2002.
Margai, Florence Lansana. "Analyzing Changes in Waste Reduction Behavior in a LowIncome Urban Community Following a Public Outreach Campaign." Environment and Behavior. November 1997.

Midwest Assistance Plan (MAP). The Missouri Solid Waste Composition Study, 1999.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

Morris, Jeffrey (Sound Resource Management Group). Income and Wealth Effects on Waste Generation. Green Roots Recycling Network. January 2002.

Morris, Jeffrey (Sound Resource Management Group). Single-Family Residential Solid Waste Collection Practices in King County. December 2003.

New York City Department of Sanitation (NY DOS). Backyard Composting in New York City: A Comprehensive Program Evaluation. New York, NY June 1999.

New York City Department of Sanitation (NY DOS). Mixed Waste Processing in NYC: A Pilot Test Evaluation. New York, NY. October 1999.

New York City Department of Sanitation (NY DOS). NYC Recycles: More Than a Decade of Outreach Activities by the NYC Department of Sanitation. New York, NY. Fall 1999.

Newenhouse, S.C. and J.T. Schmit. "Qualitative Methods Add Value to Waste
Characterization Studies." Waste Management and Research, 18 (2000):105-114.
Ohio Department of Natural Resources. RFP for Statewide Waste Composition Study. 2003.

Ohio DNR and Engineering Solutions and Design, Inc. State of Ohio Waste
Characterization Study - Commercial Loads Analysis. Overland Park, KS April 212004.
Ohio DNR and Engineering Solutions and Design, Inc. State of Ohio Waste
Characterization Study - Report and Appendices. Overland Park, KS April 212004.
Ontario Waste Diversion Organization. Residential Curbside Waste Audit Guide. Ontario Canada. June 2002.

Ontario Waste Diversion Organization. Waste Sort Spreadsheets, June 2002, Ontario, Canada.

Volume 4, Appendix O New York City Literature Review Bibliography (continued)

Pinellas County Utilities, Kessler Consulting, and Franklin Associates. WasteCalc: An Advanced Waste Calculation Model. Prepared for and funded by FL DEP (Innovative Grant Program Report). May 2002.

Pitzler, Dan, Shawn Willetts and Paula Magdich. Garbage is Seasonal: Is Your Waste Composition Study? Presented at SWANA Pacific Northwest Regional Symposium. Vancouver, BC April 132000.

Ploechl, Clemens, George Dobson, and Uwe Buell. "A Class of its Own - Standardization of Solid Waste Analyses in the EU." Waste Management World, March-April 2003.

Public Policy Research for the City of Portland Office of Sustainable Development. Comparing Recyclers and Non-recyclers in N/NE Portland: Implications for Increasing Participation in the Curbside Program. May 2002.
R. M. Towill Corp., Cascadia Consulting Group, Inc., Sky Valley Associates, and Solid Waste Associates. Oahu Municipal Refuse Disposal Alternatives Study - Waste Composition Study, 1999.
R. W. Beck, Inc. Alameda County, California Waste Composition Study. December 2001.
R. W. Beck, Inc. Charlotte County, Florida Waste Composition Study. July 2001.
R. W. Beck, Inc. Citrus County, Florida Waste Characterization Study. July 2001.
R. W. Beck, Inc. Iowa Solid Waste Characterization Study. October 1998.
R. W. Beck, Inc. Okaloosa County, Florida Waste Characterization Study. July 2001.
R. W. Beck, Inc. Pennsylvania Statewide Waste Composition Study. April 2003.
R.W. Beck, Inc. Sarasota County, Florida Waste Characterization Study. July 2001.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

R. W. Beck, Inc. Wake County Waste Characterization Study. April 1999.
R. W. Beck, Inc. Waste Characterization Study for Bluestem (Iowa) Solid Waste Agency. March 2000.
R. W. Beck, Inc. and GRG. Minnesota Statewide MSW Composition Study. March 2000.
R. W. Beck, Inc. and PBS\&J. Montgomery County Waste Generation Study. June 1999.

The Regional Municipality of Halton. "Waste Watch" Program - Waste Characterization Study Final Report. Ontario Canada. March 302001.

The Regional Municipality of Peel. Residential Curbside Collection Program Set-Out Study. Ontario Canada. March 302001.

Reinhart, Debra R., PhD and Pamela McCauley Bell. Methodology for Conducting Composition Study for Discarded Waste (Report \#96). UCF Florida Center for Solid and Hazardous Waste Management, January 1996.

SCS Engineers and Koheim and Ketcham. Revised Technical Approach Waste Composition Study for the City of New York. New York, NY. May 181989.

Savage, John S. and Stacey T. Demers. "Composition Studies: Get to Know Your Waste." Waste Age. January 11996.

Schenkman, Lynn. "Recycling at Apartments May Be in the Bag by '08." Waste Age. June 12003.

Science Application International Corporation (SAIC). Characterization of NYC's Solid Waste Stream. Newport, RI. Spring 2000.

Sfeir, Hala and Debra Reinhart and Pamela McCauley Bell. "An Analysis of MSW Composition Bias Sources." Journal of Air and Waste Management Association 49 (September 1999): 1096-1102.

Skumatz, Lisa A., PhD. "Reaching for Recycling in Multi-Family Housing." Resource Recycling. October 1999.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

Skumatz Economic Research Associates. Movin' On Up - Strategies for Increasing Multifamily Recycling. September 1999.

Sky Valley Associates and Oregon Department of Environmental Quality. Oregon Solid Waste Characterization and Composition (2002), April 2004.

Sound Resource Management. "It's Not the Seattle Stomp Anymore!" Part 1. The Monthly UnEconomist Newsletter. September 1999.

Sound Resource Management. "It's Not the Seattle Stomp Anymore!" Part 2. The Monthly UnEconomist Newsletter. October 1999.

Sound Resource Management. Summary Analysis of Set-out Weights for Garbage, Recycling \& Yard Debris in the City of Vancouver, Spring, Summer \& Fall Seasons 2000. June 2001.

Southern Waste Strategy Authority (Australia). Southern Waste Strategy Authority Waste Composition Studies. 2002.

Terashima, Yutaka, Shinro Urabe, and Katsuhiko Yoshikawa. "Optimum Sampling of Municipal Solid Wastes." Conservation and Recycling 7(2-4) (1984): 295-308.

Themelis, Nickolas J. and Claire E. Todd. "Recycling in a Megacity."
Journal of the Air and Waste Management Association. 54 (April 2004): 389-395.
Tool to Enhance the Precision and Compatibility of Solid Waste Analysis Data. Framework Programme of the European Commission. 2004.
U.S. Congress, Office of Technology Assessment. Facing America's Trash: What Next for Municipal Solid Waste? October 1989.
U.S. Environmental Protection Agency. Complex Recycling Issues: Strategies for Record-Setting Waste Reduction in Multi-Family Dwellings (EPA-530-F-99-02). October 1999.
U.S. Environmental Protection Agency. "Demographics and Materials Generation and Recovery Levels." Chapter 2, Waste Prevention, Recycling, and Composting Options: Lessons from 30 U.S. Communities. February 1994.

Volume 4, Appendix 0 New York City Literature Review Bibliography (continued)

U.S. Environmental Protection Agency. Multifamily Recycling: A Golden Opportunity for Solid Waste Reduction. April 1999. U.S. Environmental Protection Agency. Multifamily Recycling: Factors Contributing to Success. November 2001.
U.S. Environmental Protection Agency. Measuring Recycling: A Guide for State and Local Governments, September 1997.
U.S. Environmental Protection Agency. Multi-family Recycling: A National Study. November 2001.
U.S. Environmental Protection Agency. Municipal Solid Waste in the United States: 2001 Facts and Figures. October 2003.
U.S. Environmental Protection Agency. Municipal Solid Waste in the United States: 2000 Facts and Figures. June 2002.

Vermont Waste Management Division, Agency of Natural Resources. Vermont Solid Waste Composition Final Report. June 2002.

Vining, Joanne and Angela Ebreo. "What Makes a Recycler? A Comparison of Recyclers and Nonrecyclers." Environment and Behavior 22 (1) (January 1990).

Waste-Tech Waste Energies Technology, Inc. The New York City Backyard Composting Study Post-Implementation Report. November 101998.

Werner, Carol M. and Eeva Maekela. "Motivations and Behaviors that Support Recycling." Journal of Environmental Psychology 18 (4) (December 1998): 373-386.

Wisconsin Department of Natural Resources. Waste Reduction and Recycling: A Guide for Owners of Apartments and Other Multi-Family Dwellings. Madison, WI. 2002.
[This page intentionally left blank.]

[^0]: 1 Terms and abbreviations defined in the glossary are printed in bold the first time they appear in each Volume.

[^1]: 1 Material groups refer to the largest aggregation of material used to estimate waste composition (e.g., Paper, Plastics, Glass, etc.). Material categories refer to the aggregation of material used to estimate waste composition below the material groups (e.g., Newspaper, High Grade Paper, Mixed Low Grade Paper, etc.).

[^2]: ${ }^{2}$ The "Characterization of Municipal Solid Waste for the City of Los Angeles" also included generator sampling for multifamily residences.

[^3]: 3 "Characterization of Municipal Solid Waste for the City of Los Angeles"; Prepared by Cascadia Consulting Group Inc. for the City of Los Angeles Bureau of Sanitation; December 2001; Page 1.

[^4]: 4 "Municipal Waste Composition Analysis", City of Philadelphia Department of Streets, Sanitation Division, 2000, page 1-1.

[^5]: 5 "Characterization of Waste from Single-Family Residences"; City of Phoenix Department of Public Works, 2003; page 1.

[^6]: ${ }^{6}$ "Waste Composition Study 1999-2000"; City of San Diego Environmental Services Department; 2000, page 1.

[^7]: 7 "Waste Characterization Study"; City and County of San Francisco Department of the Environment; 2005, page iii.
 8 "Waste Characterization Study"; City and County of San Francisco Department of the Environment; 2005, page 1.

[^8]: 9 "2002 Residential Waste Stream Composition Study"; Seattle Public Utilities; 2003; page 1.
 10 "2005 Residential Recycling Composition Study", Seattle Public Utilities, June 2006, page 1.

[^9]: ${ }^{11}$ These totals and percentages do not include the Low Density/Low Income Strata which was excluded from the NYC WCS, as discussed in Volume 1, Section 2.

[^10]: "Statewide Waste Composition Study"; 2002; Pennsylvania Department of Environmental Protection; (page 1-1). "Statewide Waste Composition Study"; 2002; Pennsylvania Department of Environmental Protection; (page 1$2)$.

[^11]: 14 "Georgia Statewide Waste Characterization Study"; Georgia Department of Community Affairs, 2005, page 1-2.

[^12]: (1) Actual data was not available; assumes an average sample weight of 250 lbs
 (2) NYC WCS samples do not include MUS samples because the MUS was not designed to estimate residential waste composition

[^13]: 1 Terms and abbreviations defined in the glossary are printed in bold the first time they appear in each Volume.

[^14]: 1 Population is used here in the statistical sense to mean all measurements of interest. In this case, the population is the residential refuse set out for collection in New York City.

[^15]: 2 The Statistical Results of the PWCS and WCS can be found in Volume 1, Section 8, Tables 1-163 through 1-190.

[^16]: 3 The low density/low income census tracts were in fact probably an artifact of mapping (i.e., large empty tracts of land surrounded by a few medium or high density areas of housing).

[^17]: 4 The city was divided into nine house density/income strata. Only eight of the nine strata were analyzed in this study due to the limited number of areas, households, and population in the Low Density/Low Income strata.

[^18]: 5 Three exceptions exist. The difference between the estimated number of households and the number of households reported by DSNY was greater than 5 percent in the following Districts: (1) Brooklyn District 12, a difference of 5.98 percent; (2) Brooklyn District 6, a difference of 16.84 percent; and Manhattan District 1, a difference of 7.86 percent. Repeated attempts could not reconcile these differences in an accurate way. The estimate used, despite the fact that they exceeded the 5 percent criterion, were 56,287 households for Brooklyn District 12; 47,301 households for Brooklyn District 6; and 19,444 households for Manhattan District 1.

[^19]: Total Categories: 21

[^20]: Terms and abbreviations defined in the glossary are printed in bold the first time they appear in each Volume.

[^21]: [1] The following terms are used in the Definitions:
 Designated Recycling ("DR") = Items designated for recycling under New York City's current recycling program
 Recycling = Items set out for recycling collection on the building's recycling collection day
 Refuse = Items set out for refuse collection on the building's refuse collection day
 Waste ("W") = The sum of Recycling and Refuse
 Contamination ("C") = Items not designated for recycling that are mistakenly set out for recycling
 [2] The following values are used in the Example:
 DR in Recycling $=18 \mathrm{lbs}$
 DR in Refuse $=3 \mathrm{lbs}$
 Recycling $=20 \mathrm{lbs}$
 Refuse $=50 \mathrm{lbs}$
 Waste $=70 \mathrm{lbs}$
 Contamination $=2 \mathrm{lbs}$

[^22]: 2 Building addresses were used to locate buildings for collection and surveying only.

[^23]: 3 For a discussion of the methodology used in selecting samples from tipped loads, see Volume 2, Section 4.1 of the Final Report.

[^24]: Selected Facilities and Program Sites - (c) NYC Department of City Planning. A reserved.
 Free Download!
 Data providing the location, type and capacity of public and private community far

[^25]: 1 Readers interested in learning more about multiple regression in general are encouraged to consult a first level college statistics textbook, such as Basic Statistics Using Excel and MegaStat, J.B. Orris (McGraw Hill Irwin), or Introductory Statistics, Wornacott and Wornacott (Wiley).

[^26]: [1] SP = Spring Sorting Period; SU = Summer Sorting Period.
 [2] Primary Source: MapPLUTO database. Other sources: NYC Dept. of Housing Preservation and NYC
 Dept. of Finance.
 [3] Estimated based on one week's worth of collected samples. Does not represent an annual estimate.

[^27]: [1] SP = Spring Sorting Period; SU = Summer Sorting Period.
 [2] Primary Source: MapPLUTO database. Other sources: NYC Dept. of Housing Preservation and NYC Dept. of Finance.
 [3] Estimated based on one week's worth of collected samples. Does not represent an annual estimate.

[^28]: (1) Refuse, paper, and MGP tonnage values obtained from DSNY curbside refuse, MGP, and paper collection (without school collection) by week for FY 2004 (May 2004 through September 2005).

[^29]: 1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from September 2004 through November 2004. More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2 .
[^30]: 1) Tonnage values calculated using DSNY average weekly curbside recycling tonnages over the period from January 2005 through March 2005 . More detail on how and why tonnages from this period were used to estimate generation can be found in Section 2.2 .6 in Volume 2.
[^31]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

 Management Division for September, October and November 2004.

[^32]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

 Management Division for September, October and November 2004.

[^33]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operation

 Management Division for September, October and November 2004.

[^34]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^35]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^36]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^37]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for April, May and June 2005.

[^38]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^39]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^40]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^41]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^42]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations Management Division for April, May and June 2005.
[^43]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^44]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^45]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^46]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^47]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^48]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^49]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^50]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

[^51]: NOTES

 1. Section-level data on refuse and recycling provided by the Department of Sanitation's Operations

 Management Division for July, August and September 2005.

