NYCECC HVAC 2 OVERVIEW:
2016 NYC Energy Conservation Code
Effective October 3, 2016

presented by
Bill de Blasio, Mayor
Melanie La Rocca, Commissioner

© 2019 City of New York. All rights reserved.
ACKNOWLEDGEMENTS

One City: Built to Last

We wish to acknowledge Mayor Bill de Blasio for his commitment to 80% reduction of Greenhouse Gas Emissions by 2050, over 2005 levels.

- A sweeping plan to retrofit public and private buildings to reduce the City’s contributions to climate change.
- This makes New York the largest city to commit to the 80% reduction by 2050.
- It charts a long-term path for investment in renewable sources of energy and a total transition from fossil fuels.
Permission is granted for the noncommercial use and reproduction of this presentation, without alteration, for educational purposes.

© 2019 City of New York. All rights reserved.
INTRODUCTION

Welcome to the New York City Department of Buildings Energy Code Training Modules!

This HVAC 2 Module addresses:

- Technical issues and strategies related to Complex Systems in 2016 NYCECC
- NYC DOB Energy Code Submission Requirements & Progress Inspection requirements
This module addresses HVAC criteria related to all commercial building types, including Group R Buildings: R-1 uses (any height); R-2 and R-3, when over 3 stories.

HVAC criteria related to low-rise residential buildings are covered under the NYC DOB Residential Training Module. This module is a continuation of HVAC-1: Mandatory Requirements & Simple HVAC Systems.
OVERVIEW: TRAINING MODULE ORGANIZATION

- This Module has been divided into a number of smaller sub-topics. These can be accessed either in-sequence or out-of-sequence through links in the main “Menu” slide.

- Each sub-topic begins with a brief overview of the issues to be reviewed, and many end with a set of summary questions or exercises.

- Many of the sub-topics are organized in a Q & A format. Code-related questions are posed at the top of a slide, with answers provided below, or in the following sequence of slides.
OVERVIEW: SLIDE NAVIGATION GUIDE

Look for the following icons:

The **NYC Buildings** logo takes you to the 2016 NYCECC Training Modules home page.

The **Menu** icon takes you to the main menu page within each module.

The **Attention** icon brings up Callouts with key points and additional information.

The **Links** icon takes you to related DOB web pages or other resources.

build safe | live safe
Look for the following icons:

The **Documentation** icon addresses DOB documentation issues and requirements.

The **Inspection** icon addresses DOB Progress Inspection issues and requirements.

The **Code Reference** icon refers to relevant Code sections.

The slides are enhanced with special icons that will help to focus on key points, or serve as links to external resources. The Attention icon brings up Callouts (like this one) with key points and additional information.
ADMINISTRATIVE OVERVIEW: MODULE MENU

AIR-SIDE SYSTEMS

<table>
<thead>
<tr>
<th>1. MULTI-ZONE SYSTEMS</th>
<th>System Requirements ● VAV System Types & Schematics</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. ECONOMIZERS</td>
<td>Types & Schematics ● Code Requirements ● Exceptions</td>
<td>20</td>
</tr>
<tr>
<td>3. CONTROLS</td>
<td>Thermostatic Controls ● Supply Air Reset Controls ● Static Pressure & Fan Controls</td>
<td>24</td>
</tr>
</tbody>
</table>
ADMINISTRATIVE OVERVIEW: MODULE MENU

(continued)

<table>
<thead>
<tr>
<th>WATER-SIDE SYSTEMS</th>
<th>Fundamentals ● Efficiency Metrics ● Types ● Control Requirements</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. CHILLERS</td>
<td>Applications ● Types ● Control Requirements ● Heat Recovery ● Economizer</td>
<td>40</td>
</tr>
<tr>
<td>5. HEAT REJECTION DEVICES</td>
<td>2-Pipe ● 3-Pipe ● Heat Pump Loop ● Primary Secondary Loops ● Part Load Controls</td>
<td>52</td>
</tr>
<tr>
<td>6. HYDRONIC SYSTEM CONTROLS</td>
<td>Efficiency Requirements ● Controls ● Insulation Requirements ● Swimming Pools</td>
<td>64</td>
</tr>
<tr>
<td>7. SERVICE HOT WATER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HVAC SYSTEM DOCUMENTATION & EXERCISES

<table>
<thead>
<tr>
<th>8. SUBMISSIONS & INSPECTIONS</th>
<th>Energy Analysis ● Supporting Documentation ● Progress Inspections</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. RESOURCES</td>
<td>Abbreviations Key ● References & Resources ● DOB Assistance</td>
</tr>
</tbody>
</table>

(continued)
1. MULTIPLE ZONE AIR-SIDE SYSTEMS: OVERVIEW

In this section you will learn about:

- Code requirements for air-side HVAC systems;

- Overview of Variable Air Volume (VAV) systems including general concepts, review of schematics for different configurations and key components; and

- Understand differences and requirements for Single Duct VAV, Dual Duct VAV, Single Fan Dual Duct & Mixing VAV systems.
1. MULTIPLE ZONE AIR-SIDE SYSTEMS

What are key Code requirements for HVAC systems serving multiple zones?

System Type Requirements:

- Air Side HVAC system serving multiple zones (or multi-zone systems) must be Variable Air Volume (VAV) type
 - Automatic start controls shall be provided for each HVAC system.
- Multiple zone air-side systems Constant Air Volume (CAV or CV) system is limited and restricted
- Allowed exceptions to VAV requirement for zones:
 - With peak supply air less than 300 cfm or less
 - Where volume of air is no greater than minimum ventilation
 - Where special humidity levels are required (e.g., data center, library, museum)
 - Systems where controls prevent reheating, recooling, mixing air that has been heated or cooled, or
 - Systems where 75% of reheat energy is from site recovered sources (e.g., solar, condenser water recovery)
1. MULTIPLE ZONE AIR-SIDE SYSTEMS

What are key Code requirements for HVAC systems serving multiple zones?

VAV Air Management Requirements:

■ Capability to control and reduce primary air supply to each zone
■ Primary air volume shall be reduced to the greater of the following before reheating, recooling, or mixing:
 ▪ Condition 1: 30% of max supply air to each zone
 (OR)
 ▪ Condition 2A or 2B: 300 CFM or less if max flow rate is less than 10% of total fan system supply air flow rate
 (OR)
 ▪ Condition 3: Minimum Ventilation rate per NYC Mech. Code
 (OR)
 ▪ Condition 4: Any higher rate that can be demonstrated to reduce overall system annual energy use by offsetting reheat/recool losses through a reduction in outdoor air intake for the system
 (OR)
 ▪ Condition 5: The airflow rate required to comply with applicable codes or accreditation standards

VFD Requirement for Fan Motors:

■ Multi-speed fan controls are required on each DX cooling system ≥ 65,000 BTU/h
■ Fan motors less than 1hp are required to be electronically commutated or minimum motor efficiency of 70%

Design maximum & allowed minimum air flow rates must be indicated in VAV box schedules
Minimum of 15% of VAV boxes must be verified during Progress Inspections. Maximum and Minimum flow rates must be confirmed through inspection or review of Testing, Adjusting, and Balancing (TAB) activities.
Fan schedules must indicate VFD
Minimum of 20% of VFDs must be verified during Progress Inspections for presence and operation.
1. MULTIPLE ZONE AIR-SIDE SYSTEMS

How is minimum Primary Air Volume calculated for a VAV zone?

Case In Point:

Q: 15,000 ft² office served by VAV fan system. Total design supply air is specified at 5000 cfm. What is the minimum primary air for this zone?

Calculations

- Condition 1: 30% of design supply-air to zone:
 - 5000 CFM x 30% = **1500 CFM**
- Condition 2a or 2b: 300 CFM or less if 10% of fan system’s design supply-air:
 - 5000 CFM x 10% = **300 CFM**
- Condition 3: Ventilation rate: NYC Mechanical Code
 - 15,000 ft² x 5 persons/1000 ft² x 5 CFM/person + 15,000 ft² x 0.06 cfm/ft² = **1275 CFM**
 - less than 1275 CFM per active DCV control, no lower than **2400 CFM**

A: Not required to be less than 1,275 cfm; however, with DCV control it could go as low as 2,400 cfm or lower depending on performance of the diffusers and VAV boxes.
1. MULTIPLE ZONE SYSTEMS: VARIABLE AIR VOLUME (VAV) DESCRIPTION

What components are commonly found in a typical Single Duct VAV System?

Heating/Cooling/Air Treatment Components:

- **Preheat Coil:**
 - Preheats outside air to prevent frosting of cooling coil and partial heating capacity

- **Cooling Coil:**
 - Provides cooling capacity (sensible + latent)
 - Can be Direct Expansion (DX) or connected to a chilled water system

- **Heating Coil:**
 - Provides partial heating capacity (reheat load)

- **Humidifier:**
 - Increases moisture content in the supply air

- **Economizer:**
 - Enables introduction of additional outside air to meet some or all of the cooling load when outside air conditions are suitable

- **Exhaust Air Energy Recovery:**
 - Preheats or pre-cools outside air by recovering energy from exhaust air
 - Based on system size

Code Impacts: Terminal VAV box volume control, economizer, energy recovery, supply temperature reset controls, damper controls, fan power limits.

Single Duct VAV System Schematic

1. MULTIPLE ZONE SYSTEMS:

VARIABLE AIR VOLUME (VAV) DESCRIPTION

What components are commonly found in a typical Single Duct VAV System?

- **Preheat Coil:**
 - Preheats outside air to prevent frosting of cooling coil and partial heating capacity

- **Cooling Coil:**
 - Provides cooling capacity (sensible + latent)
 - Can be Direct Expansion (DX) or connected to a chilled water system

- **Heating Coil:**
 - Provides partial heating capacity (reheat load)

- **Humidifier:**
 - Increases moisture content in the supply air

- **Economizer:**
 - Enables introduction of additional outside air to meet some or all of the cooling load when outside air conditions are suitable

- **Exhaust Air Energy Recovery:**
 - Preheats or pre-cools outside air by recovering energy from exhaust air
 - Based on system size

Single duct VAV System: C403.4.4.1; Economizers: C403.3; Energy Recovery: C403.2.7; Supply air temperature controls: C403.4.4; Damper Controls: C403.2.4.3
1. MULTIPLE ZONE SYSTEMS:
VARIABLE AIR VOLUME (VAV) DESCRIPTION

What components are commonly found in a typical Single Duct VAV System?

Fan Components:
- **Supply Fan:**
 - Provides supply air to zones
- **Return Fan:**
 - Returns space air to the air handler
- **Exhaust Fan:**
 - Removes air directly from space to outside
 - Relief fan may be provided for Economizer operation

Terminal Devices:
- Consist of supply air dampers to control volume
- May consist of reheat coils to control supply air temperature in heating mode
- May have a local recirculation fan (fan-powered box)

Thermostats:
- Controls operation in terminal units of supply air damper, reheat coils and baseboards

Single Duct VAV System Schematic

| Code Impacts: Fan power limits, terminal device air volume control, thermostat set points & set backs. |
What are requirements for Single-Duct and Dual-Duct Systems?

Single-Duct VAV systems, Terminal Devices:
- Systems have one duct usually providing cool air to terminal devices with dampers and sometimes reheat coils.
- Terminal devices must reduce the supply of primary supply air before reheating or re-cooling takes place.
 - Reduces unnecessary heating & cooling.

Dual-Duct & Mixing VAV Systems, Terminal Devices:
- Systems have one warm air duct and one cool air duct.
- Terminal devices must reduce the flow from one duct to a minimum before mixing air from the other duct.
 - Reduces unnecessary heating & cooling.

Progress inspection at terminal boxes for temperature and air volume control. Minimum of 15% of terminal equipment must be tested.
1. MULTIPLE ZONE SYSTEMS: DUAL-DUCT VAV SYSTEMS

What are the key Code requirements for a Dual-Duct System?

Requirements at Air Handler:
- Fan power limits, VFD, economizer, temperature reset controls, thermostat controls, DCV, damper controls
- Typical components at Air-Handler
 - Central preheat coil
 - Separate supply ducts for heating and cooling (heating/cooling coils in ducts)
 - Central supply & return fans

Code requirements for Mixing Boxes:
- Reduce cold & hot air before mixing
- Supply temperature control for cooling & heating
 - Intent: Reduce energy use due to unnecessary heating and cooling
2. ECONOMIZERS: OVERVIEW

In this section you will learn about:

- Code requirements for use of Air-Side Economizers;
- Types of Economizers and schematics; and
- Allowable exceptions for Economizer requirements.
2. ECONOMIZERS: PSYCHROMETRIC PROPERTIES OF AIR

What properties of air are important for influencing economizer operation?

Temperature:
- Increasing temperature means higher (sensible) energy in the air, and also raises the amount of water the air is capable of containing

Humidity:
- Humidity is a measure of the moisture content of air
- Increasing humidity means higher (latent) energy in the air, which puts a higher load on a cooling system for dehumidification purposes
- Can be determined by the wet-bulb temperature of the ambient air

Enthalpy:
- Measures total energy (sensible + latent) in the air (units are Btu/lb)
- Warmer, more moist air will always contain more energy than colder, drier air
- Cold, moist air can contain more energy than hot, dry air!
2. ECONOMIZERS: TYPES OF AIR-SIDE ECONOMIZERS

What is economizing and what are the different types of controls?

Air-side Economizer:
- Directly introducing filtered, but unconditioned outdoor air, with a lower enthalpy or temperature than the conditioned space, to fully or partially satisfy the cooling load

Economizer Control Methods:
Table C403.3.3.3 for Climate Zone 4A

- Fixed dry bulb
 - Outside air (OA) temperature exceeds 65°F
- Fixed enthalpy with fixed dry-bulb temperatures
 - Outdoor air enthalpy exceeds 28 Btu/lb of dry air or Outdoor air temperature exceeds 75°F
- Differential enthalpy with fixed dry-bulb temperature
 - Outdoor air enthalpy exceeds return air enthalpy or Outdoor air temperature exceeds 75°F
2. ECONOMIZERS: TYPES OF AIR-SIDE ECONOMIZERS

What is economizing and what are the different types of controls?

Air-side Economizer:
- Directly introducing filtered, but unconditioned outdoor air, with a lower enthalpy or temperature than the conditioned space, to fully or partially satisfy the cooling load

Economizer Control Methods:
Table C403.3.3.3 for Climate Zone 4A

- Fixed dry bulb
 - Outside air (OA) temperature exceeds 65°F
- Fixed enthalpy with fixed dry-bulb temperatures
 - Outdoor air enthalpy exceeds 28 Btu/lb of dry air or Outdoor air temperature exceeds 75°F
- Differential enthalpy with fixed dry-bulb temperature
 - Outdoor air enthalpy exceeds return air enthalpy or Outdoor air temperature exceeds 75°F

Economizers must be indicated on HVAC equipment schedules. Control type and sequence of operation must be provided in drawings.
3. CONTROLS (AIR-SIDE SYSTEMS): OVERVIEW

In this section you will learn about:

- Thermostatic control requirements;
- Supply air reset controls requirements; and
- Static pressure and fan control requirements.
3. CONTROLS: THERMOSTATIC CONTROLS

What are the Zone Level Thermostatic Requirements Applicable to VAV Systems?

Thermostat Location / Placement Requirement:
- Thermostats must be located within each zone AND must control space temperature

Control Dead-Band Requirement:
- Heating & cooling set-points must be sufficiently far apart so the unit does not over-respond when in one mode of operation and require a correction from the other
 - Code minimum is 5°F

Night/Unoccupied Setback Requirement:
- Lower heating and higher cooling set-points required during nights/unoccupied periods
- Outside air intake must be reduced, or stopped, during the unoccupied period

Thermostat Location / Placement Requirement:
- Thermostats must be located within each zone AND must control space temperature

Control Dead-Band Requirement:
- Heating & cooling set-points must be sufficiently far apart so the unit does not over-respond when in one mode of operation and require a correction from the other
 - Code minimum is 5°F

Night/Unoccupied Setback Requirement:
- Lower heating and higher cooling set-points required during nights/unoccupied periods
- Outside air intake must be reduced, or stopped, during the unoccupied period
3. CONTROLS: SUPPLY AIR TEMPERATURE

What are the rules governing the supply air temperature controls?

Supply Air Temperature Reset:

- Automatic controls required for *multiple zone* systems to reset supply air temperature.
 - In response to zone loads (and/or)
 - In response to outdoor air temperature (& humidity)
 - Intent: Reduces the heating and cooling energy during low-load conditions

- Minimum required reset: 25% of the difference between design supply air & space temperature

- Exceptions:
 - Systems that prevent (entirely) reheating, recooling, or mixing of heated and cooled supply air
 - Systems in which 75% of the energy for reheating is from site-recovered or site solar energy sources
 - Zones with peak supply air quantities of 300 CFM or less

Supply air temperature reset control must be indicated on drawings.

Sample of 20% of these controls must be verified during Progress Inspections.
3. CONTROLS: SUPPLY AIR TEMPERATURE

What are the rules governing the supply air temperature controls?

Supply Air Temperature Reset:

- Automatic controls required for *multiple zone* systems to reset supply air temperature.
 - In response to zone loads (and/or)
 - In response to outdoor air temperature (and humidity)
 - Intent: Reduces the heating and cooling energy during low-load conditions
- Minimum required reset: 25% of the difference between design supply air & space temperature
- Exceptions:
 - Systems that prevent (entirely) reheating, recooling, or mixing of heated and cooled supply air
 - Systems in which 75% of the energy for reheating is from site-recovered or site solar energy sources
 - Zones with peak supply air quantities of 300 CFM or less

Supply air temperature reset control must be indicated on drawings.
Sample of 20% of these controls must be verified during Progress Inspections.

For example, typical design temperatures are 55°F supply air and 75°F space temperatures.

Thus, 25% of the 20°F design temperature difference is 5°F, and the system would have to increase the supply air temperature based on load to 60°F during low load conditions.
3. CONTROLS: STATIC PRESSURE & FAN CONTROLS

What are the Details of Static Pressure and Fan Controls?

Static Pressure (SP) Reset:

- SP based reset control required where there is DDC control at VAV boxes
 - Intent: Reduces fan energy consumption when loads are satisfied in most zones

Fan Controls:

- Electrical or mechanical variable speed drives are required for DX cooling systems ≥ 65,000 BTU/h
 - Or fan control device results in 30% design power at 50% design flow when SP set-point is 33% of total design static pressure

DDC & SP Reset control must be indicated on drawings
Sample of 20% of SP Reset controls must be verified during Progress Inspections
4. CHILLERS: OVERVIEW

In this section you will learn about:

- What a Chiller is – as well as different Chiller technologies such as Vapor-Compression Chillers and Absorption Chillers;

- Condenser types; and

- Rating conditions / controls.
4. CHILLERS

What is a Chiller?

Review of Basic Refrigeration Cycle:

- Chillers extract heat and cool a liquid (Water, Brine, Glycol)
 - Can use a Vapor Compression or Absorption Cycle
- Condensers reject heat
 - Can be air-cooled or water-cooled

Vapor Compression Chiller Types:

- Positive Displacement
 - Reciprocating
 - Rotary (Screw & Scroll)
- Centrifugal
4. CHILLERS: EFFICIENCY METRICS

How are Chillers Rated for Efficiency?

EER (Energy Efficiency Ratio):
- Denotes full-load efficiency
- Typically used for air-cooled Chillers

KW/Ton:
- Full- and part-load efficiency metric
- Typically used for water-cooled Centrifugal and Positive Displacement Chillers

COP (Coefficient Of Performance):
- Full- and part-load efficiency metric
- Absorption Chillers

Meet One of Two Compliance Paths:
- **Compliance Path-A:**
 - Optimized for full-load operation – ideal for base-loaded Chillers
- **Compliance Path-B:**
 - Optimized for part-load operation – ideal for trim-loaded Chillers

Chiller efficiency at full-load and IPLV must be indicated on drawings and must correspond to design chilled water (CLWT) temperatures and condenser water temperature (CEWT) & flow rates per AHRI 550/590 standard or must follow NPLV calculation method.

100% of the Chillers must be verified during Progress Inspections. Name plate and manufacturer’s test data must be furnished in Supporting Documentation.

Chiller Efficiency Requirements:
Table C403.2.3(7) & NPLV: C403.2.3 & C403.2.3.1
4. CHILLERS: RATING CONDITIONS

How are Chillers Rated for Efficiency?

<table>
<thead>
<tr>
<th>Load</th>
<th>% Time</th>
<th>Condenser Water Temp.</th>
<th>IPLV Rating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1%</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>42%</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>45%</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>12%</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

AHRI 550/590:
- Standard utilized for rating Chillers

EER (Energy Efficiency Ratio):
- Single efficiency rating point at full load:
 - Chilled Water: 44°F @2.4 GPM / Flow Rate
 - Condensing Water: 85°F (Water-Cooled) @3 GPM / Ton Flow Rate
 - Air Cooled: 95°F Outdoor Air Temp

IPLV (Integrated Part-Load Value):
- Calculated from multiple efficiency rating points:
 - Efficiency metric for measuring part-load conditions
 - Weighted average calculation taken at the part-load scenarios

NPLV (Nonstandard Part-Load Value):
- For non AHRI 550/590 rating conditions
How are Chillers Rated for Efficiency?

TABLE C403.2.3(7)

<table>
<thead>
<tr>
<th>EQUIPMENT TYPE</th>
<th>SIZE CATEGORY</th>
<th>UNITS</th>
<th>BEFORE 1/1/2015</th>
<th>AS OF 1/1/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-cooled chillers</td>
<td>< 150 Tons</td>
<td>EER (Btu/W)</td>
<td>≥ 9,560 FL</td>
<td>≥ 10,100 FL</td>
</tr>
<tr>
<td></td>
<td>≥ 150 Tons</td>
<td>IPLV</td>
<td>≥ 12,500 FL</td>
<td>≥ 14,000 FL</td>
</tr>
<tr>
<td>Air-cooled, electrically operated</td>
<td>All capacities</td>
<td>EER (Btu/W)</td>
<td>Air-cooled chillers without condenser shall be rated with matching condensers and complying with air-cooled chiller efficiency requirements.</td>
<td></td>
</tr>
<tr>
<td>Water-cooled, electrically operated, positive displacement</td>
<td>< 75 Tons</td>
<td>kW\text{ton}</td>
<td>≤ 0.730 FL</td>
<td>≤ 0.600 FL</td>
</tr>
<tr>
<td></td>
<td>≥ 0.330 FL</td>
<td>IPLV</td>
<td>≤ 0.760 FL</td>
<td>≤ 0.600 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.775 FL</td>
<td>IPLV</td>
<td>≤ 0.770 FL</td>
<td>≤ 0.500 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.615 FL</td>
<td>IPLV</td>
<td>≤ 0.660 FL</td>
<td>≤ 0.500 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.680 SL</td>
<td>IPLV</td>
<td>≤ 0.710 FL</td>
<td>≤ 0.500 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.800 FL</td>
<td>IPLV</td>
<td>≤ 0.680 FL</td>
<td>≤ 0.450 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.600 FL</td>
<td>IPLV</td>
<td>≤ 0.600 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.620 FL</td>
<td>IPLV</td>
<td>≤ 0.520 FL</td>
<td>≤ 0.460 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.640 FL</td>
<td>IPLV</td>
<td>≤ 0.500 FL</td>
<td>≤ 0.410 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.620 FL</td>
<td>IPLV</td>
<td>≤ 0.500 FL</td>
<td>≤ 0.460 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.820 FL</td>
<td>IPLV</td>
<td>≤ 0.625 FL</td>
<td>≤ 0.300 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.800 FL</td>
<td>IPLV</td>
<td>≤ 0.625 FL</td>
<td>≤ 0.400 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.800 FL</td>
<td>IPLV</td>
<td>≤ 0.625 FL</td>
<td>≤ 0.300 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.540 FL</td>
<td>IPLV</td>
<td>≤ 0.300 FL</td>
<td>≤ 0.300 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.540 FL</td>
<td>IPLV</td>
<td>≤ 0.300 FL</td>
<td>≤ 0.300 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.450 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
<tr>
<td></td>
<td>≤ 0.560 FL</td>
<td>IPLV</td>
<td>≤ 0.560 FL</td>
<td>≤ 0.440 FL</td>
</tr>
</tbody>
</table>

Establish applicable equipment type and size, and select between Path A or Path B for compliance. Ensure the efficiency values are derived for standard rating conditions. Other rating conditions are allowed if they follow NPLV method.
4. CHILLERS: EFFICIENCY METRICS

Which Chiller Efficiency Metrics Apply for Non-Standard Operating Conditions?

\[
F_{L adj} = \frac{F_L}{K_{adj}} \\
P\text{LV}_{adj} = \frac{IPLV}{K_{adj}}
\]

(Equation 4.6)

(Equation 4.7)

where:

\[
K_{adj} = A \times B.
\]

\[
F_L = \text{Full-load kW\text{th}on value as specified in Table C403.2.3(7).}
\]

\[
F_{L adj} = \text{Maximum full-load kW\text{th}on rating, adjusted for nonstandard conditions.}
\]

\[
IPLV = \text{Value as specified in Table C403.2.3(7).}
\]

\[
P\text{LV}_{adj} = \text{Maximum NPLV rating, adjusted for non-standard conditions.}
\]

\[
A = 0.000000014592 \times (LIFT)^4 - 0.0000346496 \times (LIFT)^3 + 0.00314196 \times (LIFT)^2 - 0.147199 \times (LIFT) + 3.9302
\]

\[
B = 0.0015 \times L_{\text{Evap}} + 0.934
\]

\[
LIFT = L_{\text{Cond}} - L_{\text{Evap}}
\]

\[
L_{\text{Cond}} = \text{Full-load condenser leaving fluid temperature (°F)}.
\]

\[
L_{\text{Evap}} = \text{Full-load evaporator leaving temperature (°F)}.
\]

The \(F_{L adj}\) and \(P\text{LV}_{adj}\) values are only applicable for centrifugal chillers meeting all of the following full-load design ranges:

1. Minimum evaporator leaving temperature: 36°F
2. Maximum condensing leaving temperature: 115°F
3. 20°F ≤ \(LIFT\) ≤ 80°F

NPLV (Non-standard Part-Load Value):

- Single number part-load efficiency metric analogous to IPLV
- Different rating conditions (non-standard) than for IPLV
- Applicable only for centrifugal chillers within limits:
 - Minimum evaporator leaving temperature: 36°F
 - Maximum condensing leaving temperature: 115°F
- Calculation formula: Refer to Code Support Documents must include all values needed for this calculation.

Chiller Efficiency Requirements:
Table C403.2.3(7) & NPLV: C403.2.3.1
Positive Displacement Chillers:

- **Operating principle:** Refrigerant gas becomes trapped within a chamber whose volume decreases as it is mechanically compressed.

- **Reciprocating:**
 - Constructed similar to a car engine
 - Motor turns crankshaft
 - Pistons compress refrigerant gas
 - Typical capacity 2 - 60 tons

- **Rotary Screw:**
 - Helical Screws mesh and rotate together
 - Refrigerant gas compressed as volume between screws decreases
 - Typical capacity 70 - 200 tons (up to 500 tons)

- **Rotary Scroll:**
 - Two spiral scrolls 1 stationary, 1 orbiting
 - Refrigerant gas compressed as volume between scrolls decreases
 - Typical capacity 20 - 200 tons (up to 500 tons)
4. CHILLERS: VAPOR COMPRESSION CHILLERS

What are the Different Types of Compressors Used in Chillers?

- **Centrifugal:**
 - Similar to centrifugal pump in construction
 - Vaned impeller spins in volute casing
 - Refrigerant gas enters through the axis of the impeller
 - Gas exits the impeller radially at high velocity
 - Velocity is converted to pressure as the gas collides with the volute casing
 - Typical capacity: 100 - 3,500 tons
 - Practical limit > 200 tons due to cost
 - Field-fabricated units up to 10,000 tons
4. CHILLERS: ABSORPTION CHILLERS

How is an Absorption Chiller Different from a Vapor Compression Chiller?

- **Mechanical compressor is replaced by “thermal compressor”**
- **Lithium Bromide is the typical absorber chemical used in the process**

Thermal Input options:
- Indirect (steam or hot water)
- Direct (gas-fired)

Requires larger heat rejection (Cooling Tower)

Two general types:
- **1-stage (single effect)**
 - Less efficient (COP ≈ 0.6 - 0.7)
 - Can use lower temperature (grade) heat
 - Typical Capacity: 50 – 1700 tons (also 5-10T)
- **2-stage (double effect)**
 - Higher efficiency (COP ≈ 1.0 - 1.2)
 - Requires high temperature (grade) heat
 - Typical Capacity: 100 - 1700 tons (also 20-100T)

Absorption System - Schematic

Chiller Efficiency Requirements:
- Table [C403.2.3(7)]
- & NPLV: [C403.2.3.1]
Mechanical compressor is replaced by “thermal compressor”

Lithium Bromide is the typical absorber chemical used in the process

Thermal input options:
- Indirect (steam or hot water)
- Direct (gas-fired)

Requires larger heat rejection (Cooling Tower)

Two general types:
- 1-stage (single effect)
 - Less efficient (COP ≈ 0.6 - 0.7)
 - Can use lower temperature (grade) heat
 - Typical Capacity: 50 – 1700 tons (also 5–10T)
- 2-stage (double effect)
 - Higher efficiency (COP ≈ 1.0 - 1.2)
 - Requires high temperature (grade) heat
 - Typical Capacity: 100 - 1700 tons (also 20-100T)
4. CHILLERS: CONTROLS

What Methods are Used to Modulate Chiller Capacity?

For individual Chillers:
- Staging & sequencing multiple compressors
- Use of Variable Speed Drives & motors
- Hot Gas Bypass
 - Code only allows Hot Gas Bypass if equipment has multiple steps of unloading.

For Chiller plants:
- Staging of multiple Chillers
 - Consider efficiency curves for each Chiller to maximize plant efficiency for given load
- Base loaded Chillers
 - These chillers operate much of the time at or near full load to maximize full-load efficiency (recommended Path A method)
- Others
 - These chillers see varying loads
 - Maximize seasonal efficiency (recommended Path B method)
In this section you will learn about:

- Applications That Need Heat Rejection Devices;
- Types of Heat Rejection Devices;
 - Dry Cooler
 - Open Cooling Tower
 - Closed-Circuit Evaporative Cooler
- Control Requirements; and
 - Fan Speed
 - Applications in Heat Pump Loop
- Condenser Heat Recovery & Water-side Economizer.
5. HEAT REJECTION: DEVICES
How do Air Conditioning System Chillers Reject Heat?

Cooling devices (Vapor compression & Absorption) use Condensers to reject heat

Water-cooled Condenser:
- Need condenser water loop and cooling tower (or ground)
- Chiller ratings don’t include condenser water system energy (i.e., pumps and tower fans)

Air-cooled Condenser:
- Packaged or separate air-cooled condenser
- Chiller ratings must include condenser fan energy
NYCECC requires air-cooled chillers without condensers to be rated with matching condensers and must then comply with the air-cooled chiller efficiency requirements. The code, however, does include separate efficiency requirements for air-cooled condensing units.

ASHRAE 90.1 provides efficiency requirement for air-cooled chillers without condensers, and allows them to be rated as such. ASHRAE also includes efficiency requirements for remote air-cooled condensers.

5. HEAT REJECTION: DEVICES

How do Air Conditioning System Chillers Reject Heat?

Cooling devices (Vapor compression & Absorption) use Condensers to reject heat

Water-cooled Condenser:
- Need condenser water loop and cooling tower (or ground)
- Chiller ratings don’t include condenser water system energy (i.e., pumps and tower fans)

Air-cooled Condenser:
- Packaged or separate air-cooled condenser
- Chiller ratings must include condenser fan energy
5. HEAT REJECTION: DRY COOLER

What type of condenser is associated with an Air-Cooled Chiller?

Features:
- Air-cooled
- Capacity and efficiency driven by ambient dry-bulb temperature
- DX systems (Condenser or Condensing Unit)

Pros:
- Simple
- Low maintenance
- Inexpensive
- No freeze issues

Cons:
- Low efficiency

An air-cooled condenser is a type of dry cooler.
5. HEAT REJECTION: CLOSED-CIRCUIT COOLING TOWER

What type of condensers are associated with Water-Cooled Chillers?

Features:
- Condenser water not in direct contact with atmosphere
- Capacity and efficiency driven by ambient wet-bulb temperature

Pros:
- More efficient than Air-cooled
- Can operate in winter as a Dry Cooler
 - Requires glycol in condenser water loop
- Condenser water isolated from ambient
 - Contamination reduced

Cons:
- Requires make up water
- Higher maintenance than Dry Cooler
- Separate tower pump needs to be operated

Closed-circuit cooling tower is also known as an evaporative (or evap) cooler.
5. HEAT REJECTION: DIRECT- (OPEN-) CIRCUIT COOLING TOWER

What type of condensers are associated with Water-Cooled Chillers?

Features:
- Condenser water in direct contact with ambient air
- Capacity and efficiency driven by ambient wet-bulb temperature

Pros:
- More efficient than Dry Coolers
- Typically more efficient than Evap Coolers

Cons:
- Requires make-up water
- Condenser water must be filtered to control contamination
- Higher maintenance than Dry Cooler or Evaporative Cooler
5. HEAT REJECTION: PERFORMANCE

What applications of heat rejection devices are governed by Code?

Condensing Units efficiency:
- Air-cooled
- Water and evaporatively cooled

Heat rejection fan speed control
Hydronic (water loop) HP systems

Condenser Heat Recovery:
- Required for some facilities with water-cooling condensers

Water Economizer:
- Tower(s) create cooling water directly
- Exemption for air economizer if performance requirements are met

Fan speed control must be inspected & verified for proper operation as part of Progress Inspections

Tables C403.2.3(6) & C403.2.3(7);
Water Economizer: C403.3.4 Exception;
Condenser Heat Recovery: C403.4.5;
Heat Rejection Fans: C403.4.3.2
5. HEAT REJECTION: PERFORMANCE

How does heat rejection equipment control capacity?

Performance and Capacity are based on:
- Dry Coolers: dry-bulb temperature
- Evap or Open Towers: ambient wet-bulb temperature

Capacity is controlled by fan speed Fan Control Options:
- Cycling/Staging (On-Off)
- Two-Speed Fans
- Variable-Speed Fans
- Code requirements for fans greater than 7.5 HP
 - Capacity to operate at 2/3 speed or less
 - Controls shall automatically adjust fan speed based on ...
 - Towers: temperature of leaving fluid, or
 - Condensing Units: condensing temperature & pressure
 - Exception for fans which are included in the rated efficiency of Condensing Units and Chillers
5. HEAT REJECTION: HYDRONIC HEAT PUMPS

What cooling tower controls are required on Hydronic Heat-Pump Systems?

Hydronic Heat-Pump Systems:

- Water-loop temperature control deadband required.
- Heat loss through tower shall be controlled as follows:
 - Closed-circuit tower with direct connection to HP loop
 - An automatic valve shall bypass water flow around the tower, or
 - Low-leakage positive closure dampers shall prevent airflow through the tower
 - Open-circuit tower with direct connection to HP loop
 - An automatic valve shall bypass water flow around the tower
 - Open- or closed-circuit tower with a heat exchanger between HP loop and tower
 - Tower water-loop pump shall shut down
5. HEAT REJECTION: HYDRONIC HEAT PUMPS

What cooling tower controls are required on Hydronic Heat-Pump Systems?

Hydronic Heat-Pump Systems:

- Water-loop temperature control deadband required.
- Heat loss through tower shall be controlled as follows:
 - Closed-circuit tower with direct connection to HP loop
 - An automatic valve shall bypass water flow around the tower, or
 - Low-leakage positive closure dampers shall prevent airflow through the tower
 - Open-circuit tower with direct connection to HP loop
 - An automatic valve shall bypass water flow around the tower
 - Open- or closed-circuit tower with a heat exchanger between HP loop and tower
 - Tower water-loop pump shall shut down

Hydronic Heat Pumps are also referred to as Water-Loop Heat Pumps.

Tower water temperature control, bypass valve control, tower dampers, and tower pump controls need to be verified and operation tested.
Supplementing Service Water Heating:

- Required when heating or reheating service hot water when:
 - Facility operates 24/7
 - Cooling capacity of water-cooled systems exceeds 6,000,000 Btu/h 500 tons of heat rejection
 - Design service water heating load exceeds 1,000,000 Btu/h (e.g., Hospitals)

- Required capacity is the smaller of:
 - 60% of peak heat rejection load at design conditions
 - Preheating to 85°F for peak service hot water draw
5. HEAT REJECTION: WATER ECONOMIZER

What is a water (Water-Side) economizer?

Water Economizer:

- Uses condenser water directly to meet cooling loads
- Integrated vs. non-integrated
- Typically used when cooling during cold weather AND air economizer impractical
- Does not introduce air-side contaminants or excessively dry winter outside air, as air economizers may do

- Code Requirement:
 - No mandatory requirement
 - Alternative to air Economizer IF capable of meeting 100% of the expected system cooling load at outside air temperatures of 50°F (10°C) dry bulb/45°F (7°C) wet bulb and below

Water-side Economizer must be inspected & verified for proper operation as part of Progress Inspections.
6. HYDRONIC SYSTEMS & CONTROLS: OVERVIEW

In this section you will learn about:

■ Schematics, pros, cons and requirements for Two-pipe systems, Three-pipe systems, Hydronic Heat Pump loop, Primary / Secondary Loops;

■ Part-load control requirements including control valve types, pump speed controls and temperature based reset controls; and

■ Pump control requirements.
6. HYDRONIC SYSTEMS

What is a two-pipe hydronic system?

Two-pipe Changeover Systems:
- One coil is used for heating or cooling (supply pipe + return pipe) at terminal device
- Changeover required between chilled water and hot water
 - Less expensive than four pipe, but
 - Less flexible
 - All zones are provided **EITHER** heating **OR** cooling

- Code Requirements:
 - Deadband of 15°F between heating and cooling modes based on OA temperature
 - 4-hour delay before changing modes
 - **AND**
 - Difference between changeover temperatures must be no more than 30°F

Intent: To avoid heating previously chilled water or cooling previously heated water
6. HYDRONIC SYSTEMS

What is a two-pipe hydronic system?

These systems also may not provide the same level of comfort during the swing seasons when heating and cooling may be required in different parts of a building or at different times of the day.

Two-pipe Changeover Systems:
- One coil is used for heating or cooling (supply pipe + return pipe) at terminal device
- Changeover required between chilled water and hot water
 - Less expensive than four pipe, but
 - Less flexible
 - All zones are provided **EITHER** heating or **OR** cooling

- Code Requirements:
 - Deadband of 15°F between heating and cooling modes based on OA temperature
 - 4-hour delay before changing modes
 - **AND**
 - Difference between changeover temperatures must be no more than 30°F

 Intent: To avoid heating previously chilled water or cooling previously heated water
Three-pipe Systems:
- HW (Hot Water) & CHW (Chilled Water) supply available any time to each terminal
- Common (mixed) return

Pros:
- Less expensive than Four-pipe
- More flexible than Two-pipe

Cons:
- Simultaneous heating & cooling due to mixed return

SPECIFICALLY PROHIBITED BY CODE
6. HYDRONIC SYSTEMS

What is a water-source heat-pump loop?

Water Source Heat Pump Loop:

- Loop circulates water between each water-to-air Water-Source Heat Pump (WSHP) on the system.
- WSHPs extract heat (heating mode) or reject heat (cooling mode) to the loop.
- Water Heater and Heat Rejection Device maintain the loop within temperature limits.

Code Requirements:

- Two-position (open-closed) valves for each heat pump on a system with a circulating pump > 10HP.
- Deadband of 20°F between maximum and minimum loop temperature.
 - Exception for controls that “can determine the most efficient operating temperature based on real-time conditions of demand and capacity…”
6. HYDRONIC SYSTEMS

What is a water-source heat-pump loop?

Water Source Heat Pump Loop

- Loop circulates water between each water-to-air Water Source Heat Pump (WSHP) on the system.
- WSHPs extract heat (heating mode) or reject heat (cooling mode) to the loop.
- Water Heater and Heat Rejection Device maintain the loop within temperature limits.

Code Requirements:
- Two-position (open-closed) valves for each heat pump on a system with a circulating pump > 10HP.
- Deadband of 20°F between maximum and minimum loop temperature.
 - Exception for controls that “can determine the most efficient operating temperature based on real-time conditions of demand and capacity…”

Typical temperatures are 85°F maximum and 65°F minimum. A broader deadband means less energy consumed for heat rejection and water heating, but the WSHPs may operate less efficiently.

A lower maximum temperature means more efficient WSHPs in cooling mode, but more energy consumed by the heat rejection device.

A higher minimum temperature means more efficient WSHPs in heating mode, but more energy consumed by the water heater.

These valves are also referred to as “snap” valves, because they snap open when compressor is running and then snap closed when the compressor shuts off.
6. HYDRONIC SYSTEMS

What are heating and cooling plant requirements?

Chiller and Boiler Plants:
- Part-Load Control for plants ≥ 500,000 Btu/h design output capacity
 - Reset supply water temp. by 25% of design temp. difference based on return water OR outside air temperature.
 - Reduce pump flow by 50% automatically using:
 - Adjustable speed pumps
 - Multi-staged pumps that reduce total pump horsepower by at least 50%
- Multiple boilers, and chillers in parallel
 - Automatic controls that reduce plant flow when a chiller/boiler turns off

Boiler Plant Specific Requirements:
- Multiple-packaged boiler plants must have controls that automatically sequence the boiler operation; and
- Single boiler plants > 500,000 Btu/h design input capacity must have a multi-staged or modulating burner
6. HYDRONIC SYSTEMS

What are heating and cooling plant requirements?

While typical for boiler plants, this is not often done for chiller plants. For typical chiller systems this would represent about 2.5 to 3°F of reset.

Most boiler plant controls have reset based on OA from 180°F down to 150°F. This is typically much more than the code requirement even for systems with as much as a 40°F design temperature difference ... which is larger than most typical designs.

Lower HW (higher CHW) supply water temperatures reduce conduction losses through distribution pipes and can increase boiler (chiller) equipment plant operating efficiency, but can result in increased pump flow.

Chillers piped in series to achieve increased temperature difference are considered a single chiller.

Chiller and Boiler Plants:

- Part-Load Control for plants ≥ 500,000 Btu/h design output capacity
 - Reset supply water temp. by 25% of design temp. difference based on return water OR outside air temperature.
 - Reduce pump flow by 50% automatically using:
 - Adjustable speed pumps
 - Multi-staged pumps that reduce total pump horsepower by at least 50%

Multiple boilers, and chillers in parallel

- Automatic controls that reduce plant flow when a chiller/boiler turns off

Boiler Plant Specific Requirements:

- Multiple-packaged boiler plants must have controls that automatically sequence the boiler operation; and
- Single boiler plants > 500,000 Btu/h design input capacity must have a multi-staged or modulating burner
6. HYDRONIC SYSTEMS

How is flow controlled by pumps in a Hydronic Loop?

Pump Speed Controls:
- **Constant Speed Pump Motor**
 - Provide constant flow at constant input power
 - Multiple pumps in parallel can be staged on/off to achieve variable flow control
- **2-Speed Pumps**
 - Provide constant flow at each speed
 - Pump speed changes to achieve variable flow control - based on pressure ranges or flow measurements
- **Variable Speed Pumps**
 - Pump speed continuously modulates to maintain desired static pressure set point
- **Static Pressure**
 - Differential static pressure is set based on Testing, Adjusting & Balancing (TAB) to ensure flow at “remote” terminal devices
 - Static pressure set-point can be reduced based on zone valve position with a DDC systems, but this is not required by Code

Pump Laws/Formulas

- Pump Speed \propto Water Flow
- Water Pressure \propto (Water Flow)2
- Water Power \propto (Water Flow)3
- Pump Power \propto \[\frac{\text{Flow} \times \text{Pressure}}{\text{Pump Efficiency}} \]

Pump VFD
Pump Laws/Formulas

- Pump Speed \propto Water Flow
- Water Pressure \propto (Water Flow)2
- Water Power \propto (Water Flow)3
- Pump Power \propto \(\frac{\text{Flow} \times \text{Pressure}}{\text{Pump Efficiency}} \)

Pump VFD

Devices are remote in terms of pressure drop between pump and device. It is possible that devices that are physically closer to the pump have higher pressure drop (i.e., are more hydrostatically remote) than devices located farther from the pumps.

6. HYDRONIC SYSTEMS

How is flow controlled by pumps in a Hydronic Loop?

Pump Speed Controls:

- **Constant Speed Pump Motor**
 - Provide constant flow at constant input power
 - Multiple pumps in parallel can be staged on/off to achieve variable flow control

- **2-Speed Pumps**
 - Provide constant flow at each speed
 - Pump speed changes to achieve variable flow control - based on pressure ranges or flow measurements

- **Variable Speed Pumps**
 - Pump speed continuously modulates to maintain desired static pressure set point

- **Static Pressure**
 - Differential static pressure is set based on Testing, Adjusting & Balancing (TAB) to ensure flow at "remote" terminal devices
 - Static pressure set-point can be reduced based on zone valve position with a DDC systems, but this is not required by Code
Loop Flow Controls:

- **2-Way Valves at Terminal Units**
 - 2-way valves reduce flow to the terminal device, reducing coil capacity/output
 - System pressure increases with decreasing flow allowing system pumps to reduce flow/speed

- **3-Way Valves at Terminal Units**
 - 3-way valves reduce flow by bypassing unneeded design flow around terminal device
 - Overall system flow remains constant at design flow

- **2-Position Valves**
 - Valves open and close providing 100% of design flow as needed
 - System pressure increases as valves close, allowing system pumps to reduce flow/speed

VFD & pump control strategy, including isolation valves, terminal device valves, temperature reset sequences, pressure sensors, must be shown on drawings.

A minimum 20% sample of pump speed control devices must be inspected/tested.
6. HYDRONIC SYSTEM CONTROLS

How is flow controlled by pumps in a Hydronic Loop?

Loop Flow Controls:

- **2-Way Valves at Terminal Units**
 - 2-way valves reduce flow to the terminal device, *reducing* coil capacity/output
 - System pressure increases with decreasing flow allowing system pumps to reduce flow/speed

- **3-Way Valves at Terminal Units**
 - 3-way valves reduce flow by bypassing unneeded design flow around terminal device
 - Overall system flow remains constant at design flow

- **2-Position Valves**
 - Valves open and close providing 100% of design flow as needed
 - System pressure increases as valves close, allowing system pumps to reduce flow/speed

A Differential Pressure (DP) sensor is required to set and control the system pressure for flow control. As valves close pressure increases and pumps stage on/off or pump speed is reduced. Often a 3-way valve is placed at remote terminal devices to reduce system response time changing space demands ... hot/chilled water is maintained throughout the system.
7. SERVICE WATER HEATING: OVERVIEW

Slides 64 to 69

In this section you will learn about:

- Performance Requirements;
- Control Requirements;
 - Temperature
 - Heat Traps
 - Hot Water System Controls
- Pipe Insulation; and
- Swimming Pools.
7. SERVICE WATER HEATING: PERFORMANCE EFFICIENCY REQUIREMENTS

Determine performance requirement for Service Hot Water Heater

Refer to Table C404.2

- Multiple fuels, equipment types, equations & rating standards

Electric:
- Resistance Water Heaters
- Heat Pump Water Heaters

Natural Gas:
- Storage Water Heaters
- Instantaneous Water Heaters
- Boilers
- Condensing type water heaters are required of not less than 90% E_t when the input rating exceeds 1 MMBTU/h

Oil:
- Storage Water Heaters
- Instantaneous Water Heaters
- Boilers

Dual Fuel: Gas & Oil:
- Boilers

<table>
<thead>
<tr>
<th>Q</th>
<th>Input Rate</th>
<th>Btu/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>Standby Loss</td>
<td>Btu/h</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
<td>Gallons</td>
</tr>
<tr>
<td>EF</td>
<td>Energy Factor</td>
<td>%</td>
</tr>
<tr>
<td>Et</td>
<td>Efficiency (Thermal)</td>
<td>%</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient Of Performance</td>
<td>-</td>
</tr>
</tbody>
</table>
7. SERVICE WATER HEATING: PERFORMANCE EFFICIENCY REQUIREMENTS

Determine performance requirement for Service Hot Water Heater

Refer to Table C404.2
- Multiple fuels, equipment types, equations & rating standards

Electric:
- Resistance Water Heaters
- Heat Pump Water Heaters

Natural Gas:
- Storage Water Heaters
- Instantaneous Water Heaters
- Boilers
- Condensing type water heaters are required of not less than 90% \(E_t\) when the input rating exceeds 1 MMBTU/h

Oil:
- Storage Water Heaters
- Instantaneous Water Heaters
- Boilers

Dual Fuel: Gas & Oil:
- Boilers

<table>
<thead>
<tr>
<th>Q</th>
<th>Input Rate</th>
<th>Btu/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>Standby Loss</td>
<td>Btu/h</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td>Gallons</td>
</tr>
</tbody>
</table>

Standby Loss (SL) and Energy Factors (EF) are provided by the manufacturer. The NYC ECC (Table C404.2) and ASHRAE 90.1 (Table 7.8) include formulas to calculate the efficiency requirements. These formulas vary by type of equipment, but are based on the rated volume of the tank (V) in gallons, and in the case of gas and oil fired heaters are also based on the nameplate input rate input (Q) in Btu/h.

Note also that gas and oil fired equipment includes requirements for thermal efficiency AND standby loss.

For example:

Electric

\[
\text{Electric} \\
\leq 12\text{kW}: \quad EF = 0.97 - 0.00132 \times V
\]

Storage Water heater, Gas

\[
\text{Storage Water heater, Gas} \\
> 75,000\text{Btu/h}, < 4,000 \left(\text{Btu/h}\right)/\text{gal} \quad SL = \frac{Q}{800} + 110 \times V\sqrt{V}
\]
7. SERVICE WATER HEATING: CONTROLS

What are mandatory control requirements for Service Hot Water Systems?

Heat Traps:

- **Non-Circulating Systems**
 - Built in at equipment
 - OR
 - Built into supply & discharge piping loops around equipment

System Controls:

- **Circulating Systems**
 - Automatic or manual shut-off for circulating pump during periods when system not in use
7. SERVICE WATER HEATING: INSULATION & OTHER REQUIREMENTS

Which components need to be insulated in Service Hot Water Systems?

Efficient heated water supply Piping
- Option to choose between a maximum allowable pipe length or water volume in the pipe

Pipe Insulation:
- Pipe insulation thickness based on a fluid operating temperature and pipe size
- For piping to or from a storage heater or tank, the piping to a heat trap or the first 8 feet of piping should be insulated, whichever is less
- Exception: Tubular pipe insulation shall not be required on the following:
 1. The tubing from the connection at the termination of the fixture supply piping to a plumbing fixture or plumbing appliance
 2. Valves, pumps, strainers and threaded unions in piping that is 1 inch (25 mm) or less in nominal diameter
 3. Piping from user-controlled shower and bath mixing valves to the water outlets
 4. Cold-water piping of a demand recirculation water system
 5. Tubing from a hot water drinking-water heating unit to the water outlet
 6. Piping at locations where a vertical support of the piping is installed
 7. Piping surrounded by building insulation with a thermal resistance (R-value) of not less than R-3

Unfired Storage Tanks Insulation:
- R-12.5 or higher

Pipe Insulation: C404.4; Pool Covers: C404.9.3; Unfired Storage Tanks: Table C404.2; Efficient heated water supply piping: C404.5
7. SERVICE WATER HEATING: SWIMMING POOLS

What are requirements in commercial buildings for swimming pools?

Pool:

- **Heater Performance**
 - Gas- or oil-fired heaters: 82% E_t
 - Heat Pump heaters: 4.0 COP
 - Continuously burning pilots prohibited

- **Heater and Pump Controls**
 - Heater to have readily accessible on-off control independent of thermostat setting
 - Automatic time switches must be installed on heater and pumps
 - Exceptions:
 - Public health standards require 24-hour pump operation
 - Pumps required to operate for solar or site-recovered heat

Swimming Pool Cover:

- Outdoor heated pools and outdoor permanent spas shall be provided with a vapor-retardant cover or other approved vapor-retardant means
- Exception: Where more than 70 percent of the energy for heating is from site-recovered energy
8. SUBMISSIONS & INSPECTIONS

Slides 70 to 102
8. SUBMISSIONS & INSPECTIONS: OVERVIEW

In this section you will learn about:

- HVAC- and SHW-related requirements for NYCECC Submissions, including:
 - Energy Analysis, and
 - Supporting Documentation
- Applicable Progress Inspections associated with HVAC and SHW Systems.
8. SUBMISSIONS & INSPECTIONS: NYCECC & APPLICATIONS

What are the application requirements related to the NYCECC?

Per 1 RCNY §5000-01:

- A Professional Statement
- An Owner Statement
- An Energy Analysis
- Supporting Documentation, including the requirement for and description of Progress Inspections in drawings

This HVAC Module addresses only Energy Analysis, Supporting Documentation, and Progress Inspection issues. A full overview of the required submission documents, including Professional and Owner Statements, is included under the NYCECC Administrative Overview module in this series.
8. SUBMISSIONS & INSPECTIONS: ENERGY ANALYSIS

What types of Energy Analysis are allowed?

Per 1 RCNY §5000-01:

- Tabular Analysis
- COMcheck software
- Energy Modeling
- Alternative Formats
Option 1: Tabular Analysis

- The Tabular Analysis compares proposed values of each ECC-regulated item in the scope of work with the respective prescriptive values required by the Code
 - Applicable to New Buildings, Additions, or Alterations
 - Demonstrates Prescriptive Compliance
 - Can be used with either NYCECC or ASHRAE 90.1
8. SUBMISSIONS & INSPECTIONS: SAMPLE TABULAR ANALYSIS 1

Example of Tabular Analysis for Commercial Alterations/Renovations

<table>
<thead>
<tr>
<th>NYCECC Citation</th>
<th>Provision</th>
<th>Item Description</th>
<th>Proposed Design Value</th>
<th>Code Prescriptive Value</th>
<th>Supporting Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C403.2</td>
<td>Mandatory Provisions</td>
<td>Building Mechanical Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C403.2.1</td>
<td>Calculation of heating and cooling loads</td>
<td>Minimum and maximum temperatures for interior design load calculations</td>
<td>N/A</td>
<td>ASHRAE/ACCA 183 ASHRAE HVAC Systems and Equipment Handbook, chapter 3 Energy Code</td>
<td>Signed and Sealed statement from Engineer certifying compliance with energy code</td>
</tr>
<tr>
<td>C403.2.2</td>
<td>Equipment and system sizing</td>
<td>Heating and cooling equipment shall not exceed calculated loads</td>
<td>Heating and cooling equipment shall not exceed calculated loads</td>
<td>Signed and Sealed statement from Engineer certifying compliance with energy code</td>
<td></td>
</tr>
<tr>
<td>C403.2.3</td>
<td>HVAC Equipment Performance Requirements</td>
<td>HVAC Equipment Performance Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C403.2.3(1)</td>
<td>Unitary air conditioners, condensing units, electrically operated, minimum efficiency requirements</td>
<td>Split System 5 ton air cooled AC unit, AC-1</td>
<td>13.5 SEER</td>
<td>13.0 SEER</td>
<td>Split System AC units schedule, drawing M-300</td>
</tr>
<tr>
<td>Table C403.2.3(1)</td>
<td>Unitary air conditioners, condensing units, electrically operated, minimum efficiency requirements</td>
<td>Through the Wall AC unit, 1 ton, AC-2</td>
<td>12.5 SEER</td>
<td>12.0 SEER</td>
<td>Through the wall AC units schedule, drawing M-300</td>
</tr>
<tr>
<td>Table C403.2.3(2)</td>
<td>Unitary and applied heat pumps, electrically operated, minimum efficiency requirements</td>
<td>3 ton air cooled heat pump, single package, HP-1</td>
<td>14.2 SEER</td>
<td>14.0 SEER</td>
<td>AC units schedule, drawing M-300</td>
</tr>
<tr>
<td>Table C403.2.3(3)</td>
<td>Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps</td>
<td>PTAC (Cooling Mode) Replacement, 12,000 BTU, PTAC-1</td>
<td>10.6 EER</td>
<td>14.0-(0.300xCap/1000)EER = 10.4 EER</td>
<td>PTAC AC units schedule, drawing M-301</td>
</tr>
<tr>
<td>Table C403.2.3(4)</td>
<td>Warm air furnaces and combination warm air furnaces/air-conditioning units, warm air duct furnaces and unit heaters</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Table C403.2.3(5)</td>
<td>Boilers, Gas and Oil Fired</td>
<td>Oil fired, 250,000 Btu input, B-1</td>
<td>82% AFUE</td>
<td>80% AFUE</td>
<td>Boiler schedule, drawing M-301</td>
</tr>
<tr>
<td>Table C403.2.3(6)</td>
<td>Condensing Units, Electrically operated</td>
<td>N/A</td>
<td>N/A</td>
<td>Table C403.2.3(6)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Example of Tabular Analysis for Commercial Alterations/Renovations

<table>
<thead>
<tr>
<th>NYCECC Citation</th>
<th>Provision</th>
<th>Item Description</th>
<th>Proposed Design Value</th>
<th>Code Prescriptive Value</th>
<th>Supporting Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Mechanical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C403.2</td>
<td>Mandatory Provisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C403.2.1</td>
<td>Calculation of heating and cooling loads</td>
<td>Minimum and maximum temperatures for interior design load calculations</td>
<td>N/A</td>
<td>ASHRAE/ACCA 183 ASHRAE HVAC Systems and Equipment Handbook, Chapter 3 Energy Code</td>
<td>Signed and Sealed statement from Engineer certifying compliance with energy code</td>
</tr>
<tr>
<td>C403.2.2</td>
<td>Equipment and system sizing</td>
<td>Heating and cooling equipment shall not exceed calculated loads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C403.2.3</td>
<td>HVAC Equipment Performance Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C403.2.3(1)</td>
<td>Unitary air conditioners, condensing units, electrically operated, minimum efficiency requirements</td>
<td>Split System 5 ton air cooled AC unit, AC-1</td>
<td>13.5 SEER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C403.2.3(1)</td>
<td>Unitary air conditioners, condensing units, electrically operated, minimum efficiency requirements</td>
<td>Through the Wall AC unit, 1 ton, AC-2</td>
<td>12.5 SEER</td>
<td>12.0 SEER</td>
<td>Through the wall AC units schedule, drawing M-300</td>
</tr>
<tr>
<td>Table C403.2.3(2)</td>
<td>Unitary and applied heat pumps, electrically operated, minimum efficiency requirements</td>
<td>3 ton air cooled heat pump, single package, HP-1</td>
<td>14.2 SEER</td>
<td>14.0 SEER</td>
<td>AC units schedule, drawing M-300</td>
</tr>
<tr>
<td>Table C403.2.3(3)</td>
<td>Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps</td>
<td>PTAC (Cooling Mode) Replacement, 12,000 BTU, PTAC-1</td>
<td>10.6 EER</td>
<td>14.0-(0.300xCap/1000)EER = 10.4 EER</td>
<td>PTAC AC units schedule, drawing M-301</td>
</tr>
<tr>
<td>Table C403.2.3(4)</td>
<td>Warm air furnaces and combination warm air furnaces/air-conditioning units, warm air duct furnaces and unit heaters</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Table C403.2.3(5)</td>
<td>Boilers, Gas and Oil Fired</td>
<td>Oil fired, 250,000 Btu input, B-1</td>
<td>82% AFUE</td>
<td>80% AFUE</td>
<td>Boiler schedule, drawing M-301</td>
</tr>
<tr>
<td>Table C403.2.3(6)</td>
<td>Condensing Units, Electrically operated</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Table C403.2.3(6)</td>
</tr>
</tbody>
</table>

Applicants must include reference to the applicable Supporting Documentation for EACH item within the Tabular Analysis.
Example of Tabular Analysis for Commercial Alterations/Renovations

<table>
<thead>
<tr>
<th>NYCECC Citation</th>
<th>Provision</th>
<th>Item Description</th>
<th>Proposed Design Value</th>
<th>Code Prescriptive Value</th>
<th>Supporting Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C403.4.4.1</td>
<td>Single duct VAV system, terminal devices</td>
<td>N/A</td>
<td>N/A</td>
<td>Terminal devices shall be capable of reducing primary supply air before reheating or recooling takes place</td>
<td>N/A</td>
</tr>
<tr>
<td>C403.4.4.2</td>
<td>Dual duct and mixing VAV systems, terminal devices</td>
<td>N/A</td>
<td>N/A</td>
<td>Terminal devices shall be capable of reducing air from one duct to a minimum before mixing takes place</td>
<td>N/A</td>
</tr>
<tr>
<td>C403.4.4.3</td>
<td>Single fan dual duct and mixing VAV systems, economizers</td>
<td>N/A</td>
<td>N/A</td>
<td>Individual dual duct or mixing heating and cooling systems with a single fan and capacities greater than 90,000 Btu/h shall not be equipped with air economizers</td>
<td>N/A</td>
</tr>
<tr>
<td>C403.4.4.5</td>
<td>VAV System with Multiple Zone, supply-air temperature reset controls*</td>
<td>N/A</td>
<td>N/A</td>
<td>Control system shall automatically reset supply-air temperature in response to building load or O.A. temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>C403.4.5</td>
<td>Heat Recovery for Service Water Heating for systems*</td>
<td>N/A</td>
<td>N/A</td>
<td>Provide condenser water heat recovery, required for 24 hr/day operations, with water cooled systems over 6 million btu/h</td>
<td>N/A</td>
</tr>
<tr>
<td>C403.4.6, Table C403.4.6</td>
<td>Hot Gas Bypass Limitation</td>
<td>N/A</td>
<td>N/A</td>
<td>Hot gas bypass is allowed only on systems with multiple steps of unloading or continuous capacity modulation. Allowed Bypass capacity per table 503.4.7</td>
<td>N/A</td>
</tr>
</tbody>
</table>

C404 Service Water Heating

<table>
<thead>
<tr>
<th>NYCECC Citation</th>
<th>Provision</th>
<th>Item Description</th>
<th>Proposed Design Value</th>
<th>Code Prescriptive Value</th>
<th>Supporting Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C404.2</td>
<td>Equipment Performance Efficiency</td>
<td>Domestic Water Heater, DWH-1</td>
<td>80% Et, instantaneous Gas, 210,000 Btu/h</td>
<td>Shall meet efficiency requirements of table 504.2</td>
<td>See plumbing schedules, drawing P-300</td>
</tr>
<tr>
<td>C404.3</td>
<td>Heat Traps</td>
<td>N/A</td>
<td>N/A</td>
<td>Water heating equipment shall be provided with heat traps on the supply and discharge piping if not integrated with equipment</td>
<td>N/A</td>
</tr>
<tr>
<td>C404.4</td>
<td>Pipe Insulation</td>
<td>Pipe Insulation</td>
<td>Minimum pipe insulation thickness based on fluid operating temperature.</td>
<td>See plumbing specification drawings, P-500</td>
<td></td>
</tr>
</tbody>
</table>
8. SUBMISSIONS & INSPECTIONS: ENERGY ANALYSIS

How Should HVAC and SWH Systems be addressed in the Energy Analysis?

Option 2: COMcheck submissions

- COMcheck software, available for free from the US Department of Energy, can be used to prepare energy code compliance calculations
 - Lists all Mandatory and Prescriptive Compliance requirements related to HVAC and SHW systems
 - Only New York City NYCECC or ASHRAE-90.1 COMcheck forms are permitted (not IECC)
 - Downloads: https://www.energycodes.gov
8. SUBMISSIONS & INSPECTIONS: SAMPLE COMCHECK

(2016 NYCECC shown)

Reduced interior lighting power. Requirements are implicitly enforced within interior lighting allowance calculations.

<table>
<thead>
<tr>
<th>Mechanical Systems List</th>
<th>Quantity</th>
<th>System Type & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>RTU-1 (Single Zone):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heating: 1 each - Duct Furnace, Gas, Capacity = 400 kBtu/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 80.00% Eo, Required Efficiency = 80.00% Eo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooling: 1 each - Single Package DX Unit, Capacity = 382 kBtu/h, Air-Cooled Condenser, Air Economizer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 10.00 EER, Required Efficiency: 9.90 EER + 11.4 IEER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fan System: None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ACCU-1 (Single Zone):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VRF, Air Cooled Heat Pump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heating Mode: Capacity = 54 kBtu/h,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 8.70 HSPF, Required Efficiency = 7.70 HSPF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooling Mode: Capacity = 48 kBtu/h,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 15.80 SEER, Required Efficiency: 13.00 SEER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fan System: None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ACCU-2 (Single Zone):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VRF, Air Cooled Heat Pump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heating Mode: Capacity = 135 kBtu/h,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 3.54 COP, Required Efficiency = 3.30 COP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooling Mode: Capacity = 120 kBtu/h,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 11.90 EER, Required Efficiency: 11.00 EER + 14.6 IEER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fan System: None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ACCU-3 (Single Zone):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VRF, Air Cooled Heat Pump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heating Mode: Capacity = 378 kBtu/h,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 3.20 COP, Required Efficiency = 3.20 COP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooling Mode: Capacity = 338 kBtu/h,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Efficiency = 9.80 EER, Required Efficiency: 9.50 EER + 12.7 IEER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fan System: None</td>
</tr>
</tbody>
</table>

All HVAC systems and details should use the same identification and keying in the Energy Analysis and the Supporting Documentation (Drawings and Schedules) for clear cross-reference.
8. SUBMISSIONS & INSPECTIONS: ENERGY ANALYSIS

How Should HVAC and SWH Systems be addressed in the Energy Analysis?

Option 3: Energy Modeling

- Only ASHRAE 90.1 can be used to demonstrate compliance
 - Applicable to New Buildings, Additions, or Alterations

 - Requires computer energy modeling, using software programs approved by the Secretary of State of New York State and the NYC Commissioner of Buildings (e.g., DOE-2.1E, VisualDOE, Energy Plus, eQuest)

 - Compliance is demonstrated using the EN1 form
Input information on the HVAC input form should be reflected in the Supporting Documentation to the permit application.
Supporting Documentation should:

- Support the values submitted in the Energy Analysis;
- Verify mandatory requirements of the NYCECC are met; and
- Provide a listing and description of the applicable progress inspections required based on the scope of work of the project.

HVAC and SHW documentation should include:

- **ALL** plans, details, notes, and sequences of operation demonstrating that systems, equipment, components, and control sensors meet performance and operating requirements as developed in the Energy Analysis.
8. SUBMISSIONS & INSPECTIONS: SUPPORTING DOCUMENTATION

What type of Supporting Documentation Should be Provided?

Supporting Documentation for HVAC and SHW:

- **Floor plans showing:**
 - Terminal Units
 - Controls
 - Duct work and piping
 - HVAC equipment

- **Mechanical schedules showing:**
 - HVAC equipment (terminal units, pumps, fans, energy recovery)
 - Design operating temperatures
 - Performance values (flow rates, efficiencies, nhp)

- **Equipment details showing:**
 - Coils, terminal units, including:
 - Valves
 - Dampers
 - Sensors

- **Control diagrams showing:**
 - Sequences of operation with operating set-points
 - Control valves, dampers and sensors
The following Sample Supporting Documentation has been developed to illustrate compliance procedures related to the NYCECC only. Additional Information required by the DOB related to zoning and other code provisions is intentionally omitted.
Controls need to be shown and HVAC equipment clearly marked in the plans of the Supporting Documentation.
Schedules shall clearly indicate performance values, and provide sufficient information to confirm compliance with NYCECC requirements.

Mechanical Schedules

Sample Building: New Office Facility

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Model</th>
<th>CFM</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EER</td>
<td>Total Capacity BTU/H</td>
</tr>
<tr>
<td>PTAC-1</td>
<td>Model</td>
<td>350</td>
<td>9,550</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Notes:
1. Min. Delta P is the static pressure difference AC & VAV. See plans for quantities & appropriate VAV size.
2. Minimum closing for VAV-1 shall be 30%.
8. SUBMISSIONS & INSPECTIONS: SUPPORTING DOCUMENTATION

Sample Building: New Office Facility

Mechanical Details

Details need to show control and balancing features.
Details need to show control and balancing features.

Features with different names may perform the same function with respect to code compliance. For example, a “circuit setter” and “plug valve with locking flow plate” serve the purpose of both balancing valves.
Mechanical/Energy Code Compliance Notes

7. THE SYSTEM AND ZONE CONTROL SHALL BE A PROGRAMMABLE THERMOSTAT OR OTHER AUTOMATIC CONTROL MEETING THE FOLLOWING CRITERIA (FOR ALL SYSTEMS OVER 6,800 BTUH CAPACITY):
 a. capable of setting back temperature to 50°F during heating and setting up to 65°F during cooling
 b. capable of automatically setting back or shutting down systems during unoccupied hours using 7 different day schedules
 c. have an accessible 24-hour occupant override
 d. have a battery backup capable of maintaining programmed settings for at least 10 hours without power.
 e. thermostats controlling both heating and cooling shall be manual change over or shall be capable of maintaining a 6°F dead band (a range of temperature where no heating or cooling is provided).

8. ALL DUCTS SHALL BE INSTALLED TO CODE REQUIREMENTS MEETING A PRESSURE CLASS OF 2" AND LESS.

9. AIR DUCTS AND PLENUMS SHALL BE INSULATED TO THE FOLLOWING LEVELS:
 a. Supply and return air ducts for conditioned air located in unconditioned spaces (spaces neither heated nor cooled) shall be insulated with a minimum of R-6 insulation (spaces include attics, crawl spaces, unheated basements, and unheated garages).
 b. Supply and return air ducts and plenums shall be insulated to a minimum of R-8 insulation inside the building.
 c. When ducts are located within exterior components (e.g., floors or roofs), minimum R-8 insulation is required only between the duct and the building exterior. Duct insulation is not required on ducts located within equipment. Duct insulation is not required when the design temperature difference between the interior and exterior of the duct or plenum does not exceed 15°F.

10. MECHANICAL FASTENERS AND SEALS, FRAMING, OR GASKETS SHALL BE USED WHEN CONNECTING DUCTS TO FANS AND OTHER AIR DISTRIBUTION EQUIPMENT, INCLUDING MULTIPLE-ZONE TERMINAL UNITS.

Notes shall contain Code requirements not shown elsewhere in documents. Note number and drawings should be indexed/referenced to Code citation in the Energy Analysis.
Confirm that Code compliance path is consistent with the rest of the application, and be sure to check-off the applicable Certification Requirements in the COMcheck Summary. Include all pages of the report.
8. SUBMISSIONS & INSPECTIONS: SAMPLE PROGRESS INSPECTIONS

<table>
<thead>
<tr>
<th>Inspection/Test</th>
<th>Periodic (minimum)</th>
<th>Reference Standard (See ECC Chapter C6) or Other Criteria</th>
<th>ECC or Other Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIB Mechanical and Service Water Heating Inspections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIB1 Fireplaces: Provision of combustion air and tight-fitting fireplace doors shall be verified by visual inspection.</td>
<td>Prior to final construction inspection</td>
<td>Approved construction documents; ANSI Z21.60 (see also MC 904), ANSI Z21.50</td>
<td>C402.2.7; BC 2111; MC Chapters 7, 8, 9; FGC Chapter 6</td>
</tr>
<tr>
<td>IIB2 Shutoff dampers: Dampers for stair and elevator shaft vents and other outdoor air intakes and exhaust openings integral to the building envelope shall be visually inspected to verify that such dampers, except where permitted to be gravity dampers, comply with approved construction drawings. Manufacturer’s literature shall be reviewed to verify that the product has been tested and found to meet the standard.</td>
<td>As required during installation</td>
<td>Approved construction documents; AMCA 500D</td>
<td>C403.2.4.3; ASHRAE 90.1 – 6.4.3.4</td>
</tr>
<tr>
<td>IIB3 HVAC-R and service water heating equipment: Equipment sizing, efficiencies, pipe sizing and other performance factors of all major equipment units, as determined by the applicant of record, and no less than 15% of minor equipment units, shall be verified by visual inspection and, where necessary, review of manufacturer’s data. Pool heaters and covers shall be verified by visual inspection.</td>
<td>Prior to final plumbing and construction inspection</td>
<td>Approved construction documents; ASHRAE 183, ASHRAE HVAC Systems and Equipment Handbook</td>
<td>C403.2, C404.2, C404.5, C404.9, C406.2, ASHRAE 90.1 – 6.3, 6.4.1, 6.4.2, 6.4.5, 6.4.6, 6.5.11, 6.8, 7.4, 7.8</td>
</tr>
<tr>
<td>IIB4 HVAC-R and service hot water system controls: No less than 20% of each type of required controls and economizers shall be verified by visual inspection and tested for functionality and proper operation. Such controls shall include, but are not limited to: Thermostatic, Off-hour, Zones, Freeze protection/Snow- and ice-melt system, Ventilation System and Fan Controls, Energy recovery systems, Kitchen/lab exhaust systems, Fan systems serving single and multiple zones, Outdoor heating systems, HVAC control in hotel/motel guest rooms, Air/Water Economizers & controls, Hydronic systems, Heat rejection systems, Hot gas bypass limitation, Refrigeration systems, Door switches, Computer room systems, Service water heating systems, Pool heater and time switches.</td>
<td>After installation and prior to final electrical and construction inspection, except that for controls with seasonally dependent functionality, such testing shall be performed before sign-off for issuance of a Final Certificate of Occupancy</td>
<td>Approved construction documents, including control system narratives; ASHRAE Guideline 1: The HVAC Commissioning Process, where applicable</td>
<td>C403.2, C404.3, C403.4, C403.5, C404.6, C404.7, C404.9; ASHRAE 90.1 – 6.3, 6.4, 6.5, 6.6, 7.4.4, 7.4.5</td>
</tr>
<tr>
<td>IIB5 HVAC-R insulation and sealing: Installed duct and piping insulation shall be visually inspected to verify proper insulation placement and values. Joints, longitudinal and transverse seams and connections in ductwork shall be visually inspected for proper sealing.</td>
<td>After installation and prior to closing shafts, ceilings and walls</td>
<td>Approved construction documents; SMACNA Duct Construction Standards, Metal and Flexible</td>
<td>C403.2.9, C403.2.10, C404.4, MC 603.9; ASHRAE 90.1 – 6.3, 6.4.4, 6.8.2, 6.8.3, 7.4.3</td>
</tr>
</tbody>
</table>
8. SUBMISSIONS & INSPECTIONS: SAMPLE PROGRESS INSPECTIONS

<table>
<thead>
<tr>
<th>Inspection/Test</th>
<th>Periodic (minimum)</th>
<th>Reference Standard (See ECC Chapter C6) or Other Criteria</th>
<th>ECC or Other Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIB1 Mechanical and Service Water Heating Inspections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIB2 Fireplaces: Provision of combustion air and tight-fitting fireplace doors shall be verified by visual inspection.</td>
<td>Prior to final construction inspection</td>
<td>Approved construction documents; ANSI Z21.60 (see also MC 904), ANSI Z21.50</td>
<td>C402.2.7; BC 2111; MC Chapters 7, 8, 9; FGC Chapter 6</td>
</tr>
<tr>
<td>IIB2 Shutoff dampers: Dampers for stair and elevator shaft vents and other outdoor air intakes and exhaust openings integral to the building envelope shall be visually inspected to verify that such dampers, except where permitted to be gravity dampers, comply with approved construction drawings. Manufacturer’s literature shall be reviewed to verify that the product has been tested and found to meet the standard.</td>
<td>As required during installation</td>
<td>Approved construction documents; AMCA 500D</td>
<td>C403.2.4.3; ASHRAE 90.1 – 6.4.3.4</td>
</tr>
<tr>
<td>IIB3 HVAC-R and service water heating equipment: Equipment sizing, efficiencies, pipe sizing and other performance factors of all major equipment units, as determined by the applicant of record, and no less than 15% of minor equipment units, shall be verified by visual inspection and, where necessary, review of manufacturer’s data. Pool heaters and covers shall be verified by visual inspection.</td>
<td>Prior to final plumbing and construction inspection</td>
<td>Approved construction documents; ASHRAE 183, ASHRAE HVAC Systems and Equipment Handbook</td>
<td>C403.2, C404.2, C404.5, C404.9, C406.2, ASHRAE 90.1 – 6.3, 6.4.1, 6.4.2, 6.4.5, 6.4.6, 6.5.11, 6.8, 7.4, 7.8</td>
</tr>
<tr>
<td>IIB4 HVAC-R and service hot water system controls: No less than 20% of each type of required controls and economizers shall be verified by visual inspection and tested for functionality and proper operation. Such controls shall include, but are not limited to: Thermostatic, Off-hour, Zones, Freeze protection/Snow and ice-melt system, Ventilation System and Fan Control, Energy recovery systems, Door switches, Pool heater and time switches.</td>
<td>After installation and prior to final electrical and construction inspection, except that for controls with seasonally dependent functionality, such testing shall be performed before sign-off for issuance of a Final Certificate of Occupancy</td>
<td>Approved construction documents, including control system narratives; ASHRAE 183, ASHRAE HVAC Systems and Equipment Handbook</td>
<td>C403.2, C404.3, C404.5, C403.5, C404.6, C404.7, C404.9</td>
</tr>
<tr>
<td>IIB5 HVAC-R Insulation and sealing: Installed insulation placement and values. Joints shall be visually inspected for proper sealing.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Progress Inspections Table must be included in the Supporting Documentation drawings, noting all applicable inspections to be performed based on the scope of work, plus Reference Standards and NYCECC Citations. The design applicant must also include contract language requiring the contractor to identify time in the construction schedule for the progress inspections.

TR8: https://www1.nyc.gov/assets/buildings/pdf/tr8.pdf

8. Submissions & Inspections: Progress Inspections Review

What are the applicable progress inspections for HVAC & SHW?

<table>
<thead>
<tr>
<th>Inspection / Test (As indicated on the TR8)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fireplaces (IIB1)
Provisions of combustion air and tight-fitting fireplace doors shall be verified by visual inspection.</td>
<td>Prior to final construction inspection</td>
</tr>
<tr>
<td>Shutoff dampers (IIB2)
Dampers for stair and elevator shaft vents and other outdoor air intakes and exhaust openings integral to the building envelope shall be visually inspected to verify that such dampers, except where permitted to be gravity dampers, comply with approved construction drawings. Manufacturer’s literature shall be reviewed to verify that the product has been tested and found to meet the standard.</td>
<td>As required during installation</td>
</tr>
<tr>
<td>HVAC-R and service water heating equipment (IIB3)
Equipment sizing, efficiencies, pipe sizing and other performance factors of all major equipment units, as determined by the applicant of record, and no less than 15% of minor equipment units, shall be verified by visual inspection and, where necessary, review of manufacturer’s data. Pool heaters and covers shall be verified by visual inspection.</td>
<td>Prior to final plumbing and construction inspection</td>
</tr>
</tbody>
</table>

8. SUBMISSIONS & INSPECTIONS: PROGRESS INSPECTIONS REVIEW

What are the applicable progress inspections for HVAC & SHW?

<table>
<thead>
<tr>
<th>Inspection / Test (As indicated on the TR8)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC-R and service water heating system controls (IIB4)</td>
<td></td>
</tr>
<tr>
<td>No less than 20% of each type of required controls and economizers shall be verified by visual inspection and tested for functionality and proper operation. Such controls shall include, but are not limited to:**</td>
<td></td>
</tr>
<tr>
<td>- Thermostatic</td>
<td></td>
</tr>
<tr>
<td>- Off-hour</td>
<td></td>
</tr>
<tr>
<td>- Zones</td>
<td></td>
</tr>
<tr>
<td>- Freeze protection/Snow- and ice-melt system</td>
<td></td>
</tr>
<tr>
<td>- Ventilation System and Fan Controls</td>
<td></td>
</tr>
<tr>
<td>- Energy recovery systems</td>
<td></td>
</tr>
<tr>
<td>- Kitchen/lab exhaust systems</td>
<td></td>
</tr>
<tr>
<td>- Fan systems serving single and multiple zones</td>
<td></td>
</tr>
<tr>
<td>- Outdoor heating systems</td>
<td></td>
</tr>
<tr>
<td>- HVAC control in hotel/motel guest rooms</td>
<td></td>
</tr>
<tr>
<td>- Air/Water Economizers & controls</td>
<td></td>
</tr>
<tr>
<td>- Hydronic systems</td>
<td></td>
</tr>
<tr>
<td>- Heat rejection systems</td>
<td></td>
</tr>
<tr>
<td>- Hot gas bypass limitation</td>
<td></td>
</tr>
<tr>
<td>- Refrigeration systems</td>
<td></td>
</tr>
<tr>
<td>- Door switches</td>
<td></td>
</tr>
<tr>
<td>- Computer room systems</td>
<td></td>
</tr>
<tr>
<td>- Service water heating systems</td>
<td></td>
</tr>
<tr>
<td>- Pool heater and time switches</td>
<td></td>
</tr>
</tbody>
</table>

Controls with seasonally dependent functionality: Controls whose complete operation cannot be demonstrated due to prevailing weather conditions typical of the season during which progress inspections will be performed shall be permitted to be signed off for the purpose of a Temporary Certificate of Occupancy with only a visual inspection, provided, however, that the progress inspector shall perform a supplemental inspection where the controls are visually inspected and tested for functionality and proper operation during the next immediate season thereafter.

The owner shall provide full access to the progress inspector within two weeks of the progress inspector’s request for such access to perform the progress inspection.

For such supplemental inspections, the Department shall be notified by the approved progress inspection agency of any unresolved deficiencies in the installed work within 180 days of such supplemental inspection.

After installation and prior to final electrical and construction inspection, except that for controls with seasonally dependent functionality, such testing shall be performed before sign-off for issuance of a Final Certificate of Occupancy.
8. SUBMISSIONS & INSPECTIONS: PROGRESS INSPECTIONS REVIEW

What are the applicable progress inspections for HVAC & SHW?

<table>
<thead>
<tr>
<th>Inspection / Test (As indicated on the TR8)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC-R insulation and sealing (IIB5)</td>
<td>After installation and prior to closing shafts, ceilings and walls</td>
</tr>
<tr>
<td>Installed duct and piping insulation shall be visually inspected to verify proper insulation placement and values.</td>
<td></td>
</tr>
<tr>
<td>Joints, longitudinal and transverse seams and connections in ductwork shall be visually inspected for proper sealing.</td>
<td></td>
</tr>
<tr>
<td>Duct leakage testing (IIB6)</td>
<td>After installation and sealing and prior to closing shafts, ceilings and walls</td>
</tr>
<tr>
<td>For duct systems designed to operate at static pressures in excess of 3 inches w.g. (746 Pa), representative sections, as determined by the progress inspector, totaling at least 25% of the duct area, per ECC C403.2.9.1.3 or ASHRAE 90.1 6.4.4.2.2, shall be tested to verify that actual air leakage is below allowable amounts.</td>
<td></td>
</tr>
</tbody>
</table>
8. SUBMISSIONS & INSPECTIONS: TR8 REPORT

3. Energy Code Progress Inspection

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Initial & Date</th>
<th>Initial & Date</th>
<th>Initial & Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of exposed foundation insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation placement and R values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenestration u-factor and product rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenestration air leakage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenestration areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air sealing and insulation — visual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air sealing and insulation — testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading deck weather seals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestibules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireplaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shut-off dampers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For column X, indicate date when the actual final inspection was performed.

September 2016
The applicant (R.A. or P.E.) defines the required progress inspections by checking “Y” or “N” in the left-hand column under section 3 of the TR8 form.

Prior to Permit, the designated Progress Inspector must initial and date each inspection they will be responsible for, and sign/seal under section 5 of the TR8 form. If multiple Progress Inspectors are involved in a project, each one must submit a signed/sealed TR8 for their scope of inspection services.
8. SUBMISSIONS & INSPECTIONS: TR8 REPORT

6. Inspection Applicant’s Certification of Completion

☐ I have completed the items specified herein and certify the following (check one only):

☐ All work performed substantially conforms to approved construction documents and has been performed in accordance with applicable provisions of the New York City Energy Conservation Code and other designated rules and regulations.

☐ All work performed substantially conforms to approved construction documents and has been performed in accordance with applicable provisions of the New York City Energy Conservation Code and other designated rules and regulations, except as indicated in the attached report.

I am aware of the additional sanctions imposed on false filings by §28-211.1.2 of the Administrative Code.

☐ Withdrawal of Applicant: I am withdrawing responsibility for the items of progress inspections and/or tests indicated herein and herewith submit the results or status of the work performed to date.

Name (please print)

Signature Date

P.E./R.A. Seal (apply seal, then sign and date over seal)

September 2016
Upon completion of the applicable inspections, the Progress Inspector initials and dates each inspection performed (column 3C). Any inspections assigned to the Progress Inspector that are not performed are addressed through column 3D (withdraw responsibilities). Final signatures and seals are provided in section 6 of the TR8 form.
8. SUBMISSIONS & INSPECTIONS: TR8 REPORT

Progress Inspections – Back-up

Per NYC Administrative Code § 28-116.2.3:
- A record of all inspections shall be kept by the person performing the inspection
 - The commissioner can require inspection reports to be filed with the Department
 - Records of inspections shall be maintained for a period of six years after sign-off, or for such other period of time as the commissioner may require
 - Records of inspections shall be made available to the DOB upon request

EN2 Form:
- This DOB form is signed by the progress inspector, certifying that the values in either the last approved Energy Analysis or in the as-built Energy Analysis represent values in the constructed building
8. SUBMISSIONS & INSPECTIONS: PROGRESS INSPECTIONS EN2 FORM

EN2: As Built Energy Analysis

This form must be signed and submitted in person to the Certificate of Occupancy Division's Borough Office where energy analysis was reviewed.

1. Progress Inspector Information

- **Last Name**
- **First Name**
- **Middle Initial**
- **Business Name**
- **Business Telephone**
- **Business Address**
- **Business Fax**
- **City**
- **State**
- **Zip**
- **Mobile Telephone**
- **License Type**
- **License Number**

3. As Built Information

P.E./R.A. responsible for progress inspections, choose one below and sign/seed.

- [] The as-built conditions of the completed building conform to the originally approved energy analysis and do not require a revised energy analysis.

- [] The energy analysis has been revised according to **one** of the statements below:
 - [] Attached is a revised energy analysis, prepared, signed and sealed by the registered design professional who prepared the previously submitted and approved energy analysis. The as-built conditions of the completed building conform to this revised energy analysis.

- [] The last revised energy analysis was submitted and approved as a post approval amendment on _______ (date). The as-built conditions of the completed building conform to this revised energy analysis.
The Progress Inspectors and design applicants will need to coordinate to ensure that the as-built conditions and approved energy analysis are consistent. An as-built energy analysis update may be required.
9. RESOURCES

Slides 103 to 109
9. RESOURCES: OVERVIEW

In this section you will learn about:

- Resources and links;
- DOB assistance; and
- Image/Photo Credits & Copyrights
9. RESOURCES: ABBREVIATIONS KEY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV (or CV)</td>
<td>Constant Air Volume</td>
</tr>
<tr>
<td>CHW</td>
<td>Chilled Water</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of Performance</td>
</tr>
<tr>
<td>DB</td>
<td>Dry-Bulb (temperature)</td>
</tr>
<tr>
<td>DDC</td>
<td>Direct Digital Control</td>
</tr>
<tr>
<td>DOB</td>
<td>Department of Buildings</td>
</tr>
<tr>
<td>DX</td>
<td>Direct Expansion</td>
</tr>
<tr>
<td>EER</td>
<td>Energy Efficiency Ration</td>
</tr>
<tr>
<td>ERV</td>
<td>Energy Recovery Ventilator</td>
</tr>
<tr>
<td>HP</td>
<td>Horse Power (Nameplate)</td>
</tr>
<tr>
<td>HP</td>
<td>Heat-Pump</td>
</tr>
<tr>
<td>BHP</td>
<td>Brake Horse Power</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating Ventilation & Air Conditioning</td>
</tr>
<tr>
<td>HW</td>
<td>Hot Water</td>
</tr>
<tr>
<td>SHW</td>
<td>Service Hot Water</td>
</tr>
<tr>
<td>DHW</td>
<td>Domestic Hot Water</td>
</tr>
<tr>
<td>IPLV</td>
<td>Integrated Part-Load Value</td>
</tr>
<tr>
<td>NPLV</td>
<td>Non-Standard Part-Load Value</td>
</tr>
<tr>
<td>SP</td>
<td>Static Pressure</td>
</tr>
<tr>
<td>VAV</td>
<td>Variable Air Volume</td>
</tr>
<tr>
<td>VFD</td>
<td>Variable Frequency Drive</td>
</tr>
<tr>
<td>VSD</td>
<td>Variable Speed Drive</td>
</tr>
<tr>
<td>WB</td>
<td>Wet-Bulb (temperature)</td>
</tr>
<tr>
<td>WSHP</td>
<td>Water-Source Heat-Pump</td>
</tr>
</tbody>
</table>
9. RESOURCES: RESOURCES & LINKS

The resources below have been referenced in this module

<table>
<thead>
<tr>
<th>Resource</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 NYCECC</td>
<td>http://www1.nyc.gov/site/buildings/codes/2016-energy-conservation-code.page</td>
</tr>
<tr>
<td>Code Notes</td>
<td>http://www1.nyc.gov/site/buildings/codes/list-code-notes.page</td>
</tr>
<tr>
<td>NYCECC FAQ</td>
<td>http://www1.nyc.gov/site/buildings/codes/nycecc-faq.page</td>
</tr>
<tr>
<td>1 RCNY § 5000-01</td>
<td>http://www1.nyc.gov/assets/buildings/rules/1_RCNY_5000-01.pdf</td>
</tr>
<tr>
<td>Buildings Bulletins</td>
<td>http://www1.nyc.gov/site/buildings/codes/building-bulletins/page</td>
</tr>
<tr>
<td>EN1, EN2, and TR8 Forms</td>
<td>http://www1.nyc.gov/site/buildings/codes/energy-code-forms.page</td>
</tr>
</tbody>
</table>
9. RESOURCES: RESOURCES & LINKS

The resources below have been referenced in this module (continued)

<table>
<thead>
<tr>
<th>Resource</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>REScheck/COMcheck</td>
<td>https://www.energycodes.gov/</td>
</tr>
<tr>
<td>Blower Door Testing</td>
<td>https://www.energy.gov/energysaver/blower-door-tests</td>
</tr>
<tr>
<td>One City: Built to Last</td>
<td>https://www1.nyc.gov/site/builttolast/index.page</td>
</tr>
<tr>
<td>New York City Construction Codes</td>
<td>https://www1.nyc.gov/site/buildings/codes/nyc-code.page</td>
</tr>
<tr>
<td>Energy Code: Supporting Documents How To Guide</td>
<td>https://www1.nyc.gov/assets/buildings/pdf/h2g_all.pdf</td>
</tr>
</tbody>
</table>
9. RESOURCES: DOB ASSISTANCE

Questions on the NYCECC can be submitted to DOB at:

EnergyCode@buildings.nyc.gov
9. RESOURCES

IMAGE/POTO CREDITS & COPYRIGHTS

<table>
<thead>
<tr>
<th>Company or Individual</th>
<th>Slide Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYC Department of Buildings</td>
<td>103</td>
</tr>
<tr>
<td>US DOE Building Energy Codes University</td>
<td>70</td>
</tr>
</tbody>
</table>