New Opportunities in Predictive and Pro-active Traffic Safety Evaluation and Management in the Era of Smart Cities

Dr. Kaan Ozbay | Professor and Director of C2SMART University Transportation Center
Collaborator: Di Yang, Research Assistant, C2SMART

Department of Civil and Urban Engineering
Tandon School of Engineering
New York University, U.S.A.

Vision Zero Town + Gown Research on the Road
06/10/2021
Safety Facts

▪ Each year, there are about **1.35 million road traffic deaths and 50 million injured worldwide**.

▪ **Road crashes are expected to rise to the 7th leading cause of death by the year 2030.**

Police-Reported Crash Data

Use Cases

- Crash Risk Factor Analysis
- High-Risk Location Identification
- Treatment Development
- Before-after Evaluation

Limitations

- Long Data Collection Time
- Under-Reporting Issue
- A Reactive Approach

A large number of crashes need to occur before analysis can be conducted.

c2smart.engineering.nyu.edu
Surrogate Safety Measures

- Surrogate Safety Measures (SSMs):
 - Used to identify traffic conflicts or “near-misses”.
 - Extracted from vehicle trajectories.

- Traffic safety risk can thus be reflected by the identified traffic conflicts.

- A more proactive approach.

Traditionally, the collection of vehicle trajectories is relatively difficult or time consuming.
Emerging Technologies

- In the era of smart cities, the collection of vehicle trajectories becomes easier due to various emerging technologies.
New York City is one of three **Connected Vehicle (CV) pilot deployment** sites selected by USDOT to demonstrate the benefits of this new Connected Vehicle technology.

The CV technology is a new tool to help NYC reach its **Vision Zero** goals to eliminate traffic related deaths and reduce crash related injuries and damage to both the vehicles and infrastructure.

- **3000+ vehicles**
- **450+ Roadside Units**
- **14 Mobility and Safety Applications** (include one that supports people with visual disabilities)

NYC Connected Vehicle pilot deployment Website: https://cvp.nyc
USDOT Other Connected Vehicle Pilot Deployment

- **Wyoming Connected Vehicle Pilot**
 - Objective: improving safety and travel reliability on I-80 in Wyoming
 - Scope:
 - 400 instrumented vehicles
 - 75 roadside units

- **Tampa Connected Vehicle Pilot**
 - Objective: transform the experience of drivers, transit riders and pedestrians in downtown Tampa by preventing crashes, enhancing traffic flow, improving transit trip times and reducing emissions of greenhouse gases.
 - Scope:
 - Over 1000 privately owned vehicles
 - 10 buses
 - 8 streetcars
 - 46 roadside units
Video-Based Safety Evaluation (Work funded by AIG)

- **Goals:** Advance data-driven traffic analytics to enhance Global Resilience

- **Objectives:**
 - Propose a novel approach for examining traffic safety performance at intersections
 - Quantify traffic conflicts using developed “surrogate” safety measures
 - Develop automatic data acquisition, analysis and modeling approaches based on computer vision techniques

Fig. 1: Original video recording
Fig. 2: Extract feature points using Kanade-Lucas-Tomasi (KLT) Feature Tracker
Fig. 3: Group feature points using Dirchlet process mixture algorithm
Fig. 4: Convert coordinates to relative distances
Video-Based Safety Evaluation

Estimated Surrogate Events based on Automatic Tracking Results

Conflicts: TTC < 4.0 seconds
Proactive Safety Evaluation & Monitoring

Traffic risk can be quantified.

Suitable for proactive safety monitoring.

- Detect potential safety-related anomalies that may cause high traffic risk.
- Provide intervention.
Characteristics of Surrogate Events

Surrogate Events

- **Frequent**
 - Large amount of conflict data can be collected in a relatively short period of time (e.g., hours or days)

- **Detailed temporal and spatial information**
 - e.g., accurate at the second and the lane level

Crashes

- **Rare events**
 - Often take months or years to accumulate.

- **Rough location and time information**
 - e.g., at the intersection level

How to represent safety risk? What method should we use to capture these characteristics?

Often aggregated yearly or monthly for statistical modeling.
Functional Data Analysis

- A typical example
 - X axis: 12 months from January to December
 - Y axis: mean temperature
 - Each curve: one weather station in Canada
- Formally, FDA is
 - A branch of statistics that analyzes data providing information about curves, surfaces or anything else varying over a continuum.
 - The physical continuum over which these functions are defined is often time.

Figure 1.6 from Ramsay and Silverman (2005).
Functional Data Analysis for Proactive Safety Monitoring

- Analogously, for signalized intersections with pre-timed signal mode.
 - Model time series of traffic risk to detect green intervals with safety-related anomalies.

<table>
<thead>
<tr>
<th>Safety Risk</th>
<th>Start of the green interval</th>
<th>End of the green interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Interval 1</td>
<td>Safety-related anomalies occur</td>
<td>Safety-related anomalies occur</td>
</tr>
<tr>
<td>Green Interval 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Interval 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Interval 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety Risk:
- Number of surrogate events / number of vehicles (unit: second)

Safety-related anomalies:
- **Type 1**: vehicles commit dangerous or illegal lane changing behaviors.
- **Type 2**: vehicles slow down or stop unexpectedly or abruptly.
- **Type 3**: vehicles blocked by other vehicles in the crossing directions.
Key Steps in Functional Data Analysis

- **Two key steps of using FDA for proactive safety monitoring:**
 - **Step 1:** Data representation – Functional data smoothing
 - Convert from discrete observations to continuous functions for further mathematical analysis.
 - **Step 2:** Extract functional outlier detection measures from the estimated functional curves for outlier detection.
Data Collection

- **Location: Flatbush Avenue & Tillary Street**
 - Study movement: the northbound throughput (NBT) direction.
- **Time: Morning peak period (6 AM to 8 AM)**
Data Collection

- Extraction of vehicle trajectories
 - Anonymous vehicle trajectories were extracted from the recorded UAV videos by a company called Data From Sky.
 - Longitude & latitude, speed, acceleration, and vehicle type

<table>
<thead>
<tr>
<th>Time</th>
<th>Vehicle ID</th>
<th>Vehicle Type</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Speed</th>
<th>Acceleration (longitudinal)</th>
<th>Acceleration (lateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>Car</td>
<td>40.695942</td>
<td>-73.984531</td>
<td>12.5543</td>
<td>-0.0181</td>
<td>0.0647</td>
</tr>
<tr>
<td>0.2</td>
<td>1</td>
<td>Car</td>
<td>40.695941</td>
<td>-73.984527</td>
<td>12.5437</td>
<td>-0.0427</td>
<td>0.0831</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>Car</td>
<td>40.695941</td>
<td>-73.984523</td>
<td>12.5241</td>
<td>-0.0675</td>
<td>0.0998</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>Car</td>
<td>40.695941</td>
<td>-73.984519</td>
<td>12.4954</td>
<td>-0.0961</td>
<td>0.1202</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>Car</td>
<td>40.695941</td>
<td>-73.984515</td>
<td>12.5055</td>
<td>-0.0578</td>
<td>0.0889</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>Car</td>
<td>40.695941</td>
<td>-73.98451</td>
<td>12.4794</td>
<td>-0.085</td>
<td>0.1084</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>Car</td>
<td>40.69594</td>
<td>-73.984506</td>
<td>12.4443</td>
<td>-0.1091</td>
<td>0.1134</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>Car</td>
<td>40.69594</td>
<td>-73.984502</td>
<td>12.4024</td>
<td>-0.1223</td>
<td>0.1166</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>Car</td>
<td>40.69594</td>
<td>-73.984498</td>
<td>12.3571</td>
<td>-0.1298</td>
<td>0.1112</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Car</td>
<td>40.69594</td>
<td>-73.984494</td>
<td>12.3109</td>
<td>-0.1268</td>
<td>0.1004</td>
</tr>
</tbody>
</table>
Results: Smoothing Functional Curves

- **Findings:**
 - Distinct separation between outliers and non-outliers.
 - Peaks at the beginning of the green interval.
 - Caused by early acceleration of vehicles in queue before the acceleration of the vehicles in front.
 - This pattern cannot be revealed if traffic risk is aggregated into summary statistics of any kind.
Results: Receiver Operating Characteristics (ROC) & Precision-Recall (PR) curves

Findings

- Overall, ROC curves of all the functional outlier detection measures are above the random classifier line.
- PR curves show similar patterns.

9 functional outlier detection measures are compared.
Results: Area Under the Curve (AUC)

- **Findings:**
 - Best outlier detection measures is consistent for both ROC and PR AUC values.
 - Consistent between ROC-AUC and PR-AUC
 - Good separation between normal and abnormal cases are achieved.

<table>
<thead>
<tr>
<th></th>
<th>FMD</th>
<th>MD</th>
<th>RP</th>
<th>RPD</th>
<th>RT</th>
<th>FSD</th>
<th>KFSD ✓</th>
<th>Bivariate Score Depth</th>
<th>Bivariate Score Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC-ROC</td>
<td>0.70</td>
<td>0.82</td>
<td>0.79</td>
<td>0.82</td>
<td>0.77</td>
<td>0.77</td>
<td>0.85 ✓</td>
<td>0.65</td>
<td>0.72</td>
</tr>
<tr>
<td>AUC-PR</td>
<td>0.45</td>
<td>0.79</td>
<td>0.76</td>
<td>0.71</td>
<td>0.57</td>
<td>0.77</td>
<td>0.80 ✓</td>
<td>0.42</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Practical Implementation

Step 1: Collect real time data feed

Step 2: Generate new risk function

Step 3: Calculate outlier detection measure

Step 4: Identify anomalies based on a preset threshold.

Reservoir of historically identified normal risk functions
Our Paper

 - DOI: https://doi.org/10.1016/j.trc.2021.103130
What About Crash Data?

- Only surrogate events are used above to quantify traffic safety risk.
- However, both crash data and surrogate events can provide information regarding traffic safety conditions.
 - Most of the studies in the literature used only one of these.
 - However, this may lead to inaccurate safety estimates, which accordingly may lead to incorrect decision making and waste of sources.
- It is important to combine both of these together in a robust way.
Integration of Crashes and Safety Risk for Safety Analysis

- Integrating both crash data and safety risk may result in more comprehensively evaluation of traffic safety.

- Methods we proposed:
 - Surrogate Events
 - Crash Data
 - Joint modeling approaches in statistics
 - Modeling more than one outcome variable simultaneously to understand the relationships among variables.
 - Multivariate Spatial Models
 - Copula Approach
 - Structural Equation Modeling
 - Dependency Structure Analysis
 - New Safety Measure by Integration
 - Crash Count Prediction
 - High-Risk Location Identification
Our Research

The Future of Proactive Safety Management

- Other potential approaches for integrating surrogate events and crashes
- Other potential use cases of functional approach in transportation safety
 - Facilitate proactive safety management for signalized intersections
 - Calibration of microsimulation models for safety evaluation
 - Signal timing optimization accounting for safety
 - Ramp-metering control strategy development accounting for safety
Contacts

c2smart.engineering.nyu.edu
c2smart@nyu.edu

Dr. Kaan Ozbay
kaan.ozbay@nyu.edu

C2SMART Center
New York University
Tandon School of Engineering
6 MetroTech Center, Brooklyn, NY 11201