

Coney Island Creek Combined Sewer Overflow Long Term Control Plan

Public Meeting #2 Review of Alternatives

New York Aquarium Education Hall April 20, 2016

Welcome & Introductions

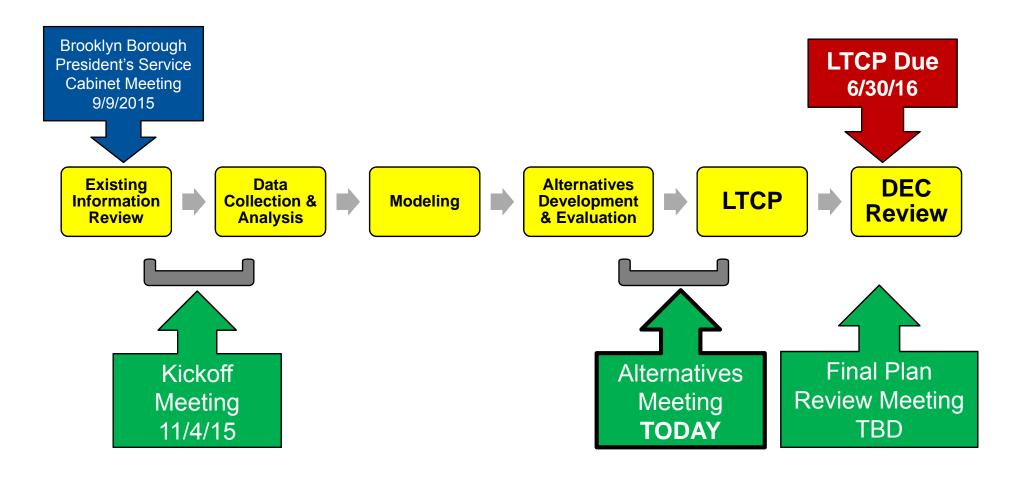
Mikelle Adgate Director, Stormwater Management Outreach BPA - DEP

NYC Long Term Control Plans (LTCPs)

➤What is an LTCP?

 The goal of each LTCP is to identify appropriate CSO controls necessary to achieve waterbody specific water quality standards, consistent with the Federal CSO Policy and water quality goals of the CWA.

>The LTCP process:


- Build off existing infrastructure investments (i.e. Waterbody/Watershed Plans)
- Assess current waterbody and watershed characteristics
- Identify and analyze Grey-Green* infrastructure balance for different watersheds to meet applicable water quality standards
- Includes a public engagement process

Definitions:

Grey = traditional practices such as pipes and sewers

Green = sustainable pollution reducing practices that also provide other ecosystem services

LTCP Process and Public Involvement

ONGOING PUBLIC/STAKEHOLDER INPUT

Environment Protection

5

Coney Island Creek Current Access and Uses

>Waterfront Public Access

- Coney Island Creek Park
- 2 Calvert Vaux Park
- 3 Kaiser Park
- 4 Home Depot public park and walkway with seating

Boat Access

5 Private boat dock at Marlen Gas Station (Neptune Ave & W 20th St)

WESTCHESTER

Public Comments

Keith Mahoney, P.E. BWT-DEP

Public Comments Received

Evaluate alternatives that make the creek safe for fishing and swimming

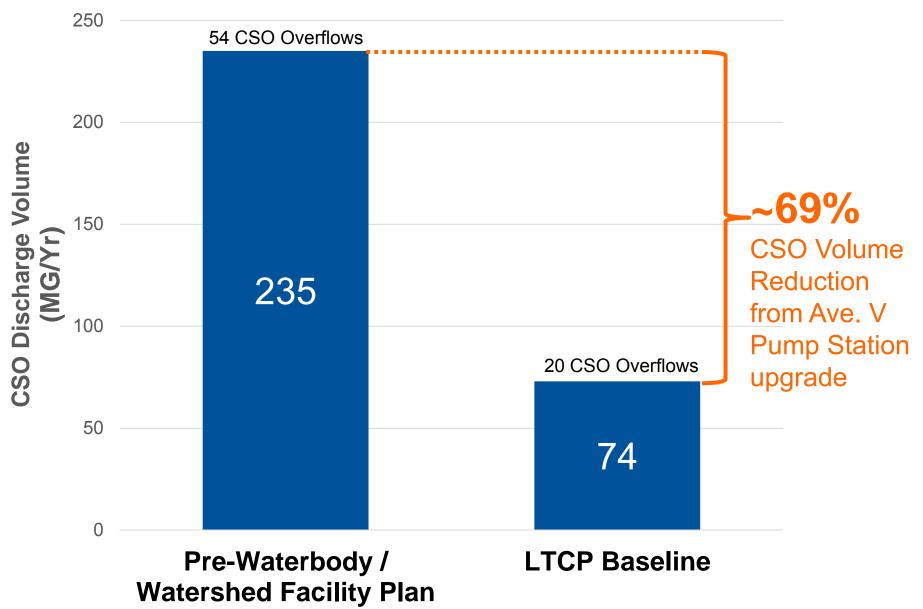
Concerns about legacy industrial contamination in the creek

Elimination of illicit discharges

Assessment of Green Infrastructure in the vicinity of the creek


Recent Investments: Ave. V Pumping Station

- Upgraded Pump Station from 30 MGD to 80 MGD and constructed new 42" dry weather and 48" wet weather force mains to convey wet weather flows away from Coney Island Creek
- The project was placed into service on October 17, 2014 with a total construction cost of \$196 Million

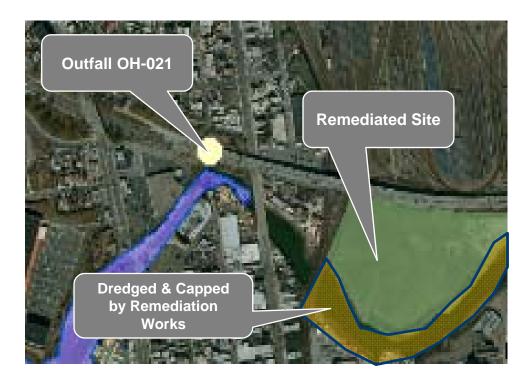


rotection

Modeled CSO Volumes at Outfall OH-021

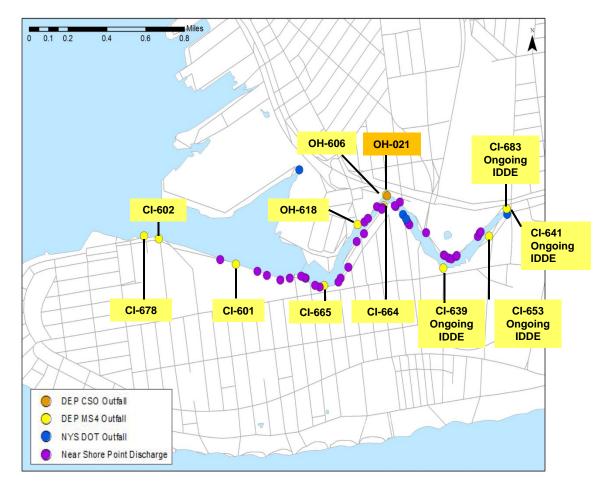
Ongoing Sewer Construction

- Major ongoing sewer construction associated with DCP up-zoning to support Mayor's initiative for affordable housing
- Cost of this program is estimated at about \$100M
- > Anticipated Construction:
 - Start by mid 2017
 - Complete by end of 2019



2 Legacy Industrial Contamination

NYSDEC ROD: Former Brooklyn Borough Gas Works site at the head end of Coney Island Creek and Environmental Dredging


- Contamination started in 1908
- Release of MGP by-products (e.g. coal tar) has contaminated soil, groundwater and creek
- Excavate/Cap landside contaminated areas
- Restore 50' of Creek bank
- Long-term monitoring is being conducted

- Upstream reach of the creek capped by prior remediation work (2006)
- > Approximately 60,000 cu. Yd. of contaminated sediment were mechanically dredged
- Following dredging, excavated areas within the creek bed were backfilled and capped to a minimum depth of 3 feet.

Illicit Discharge Detection & Elimination (IDDE)

- Ongoing program to track-down and abate illicit connections to storm sewers.
- Significant reductions in illicit discharges into this waterbody since IDDE inception but there still appear to be some illicit connections.
- Recent IDDE Activities (as reported to DEC on 1/15/16):
 - 3 Near Shore Point Source outfalls reclassified to DEP MS4 outfalls
 - 2 DEP MS4 outfalls bulk-headed
 - 8 establishments improperly connected to storm sewer draining to CSO outfall OH-021, 7 are now in compliance, last, a private residence is under legal review

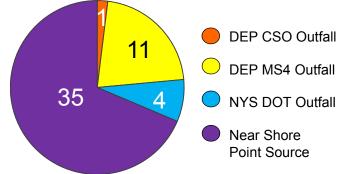
Green Infrastructure

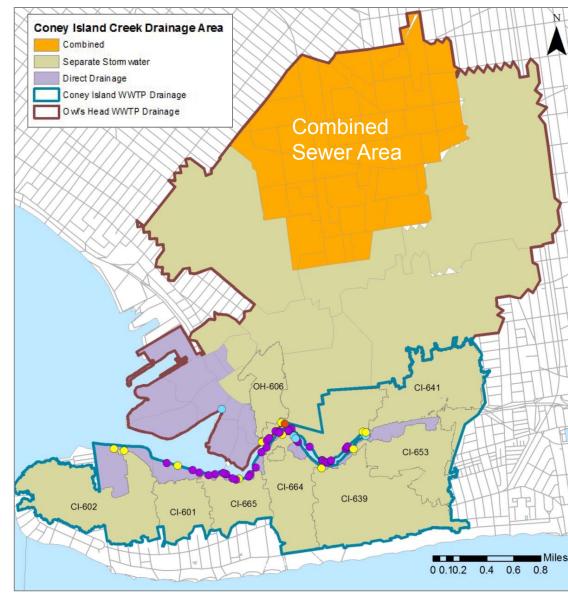
- NYC continues to evaluate and implement GI projects beyond those proposed in the LTCPs:
 - Bioswales being installed as part of the NY Rising Project
 - New MS4 right of way design will be piloted as part of the NY Rising Project
 - Ongoing coordination with NYCHA for additional GI projects

Bioswale

Sampling and Modeling

Coney Island Creek Drainage Area


Annual Wet-Weather Discharge Volume


(LTCP baseline values based on Calibrated Model for entire drainage area)

- 75 MG CSO (5%)
- 1,405 MG Direct Drainage and Stormwater (95%)

	Drainage Area
Total Acres	3,470
% Served by Combined Sewers	24%

> Number of Outfalls:

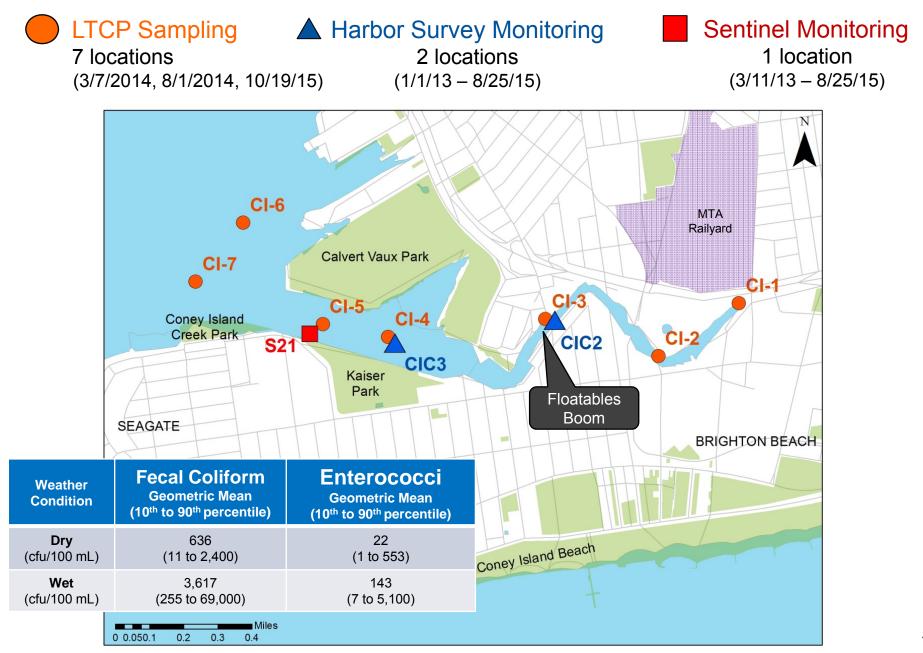
Water Quality Standards & LTCP Goals

CLASSI Boating/Fishing

The **best usage** of Class I water is **secondary contact** recreation and fishing. These waters shall be suitable for fish, shellfish and wildlife propagation and survival. In addition, the water quality shall be suitable for primary contact recreation, although other factors may limit the use for this purpose.

Parameter	Criteria*	Reference
Fecal Coliform*	Monthly Geometric Mean ≤ 200 col/100 mL	 New rulemaking promulgated by DEC on November 14th, 2015
Total Coliform*	Monthly Median ≤ 2,400 col/100 mL 80% ≤ 5,000 col/100 mL	 New rulemaking promulgated by DEC on November 14th, 2015
Dissolved Oxygen	≥ 4.0 mg/L (acute, never less than)	DEC water quality parameter

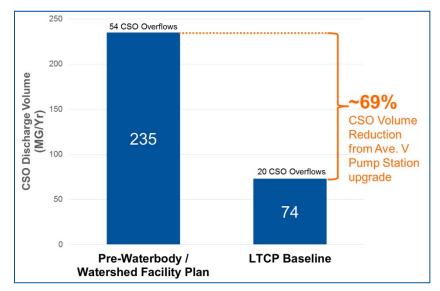
* EPA has also proposed a potential future RWQC for enterococcus: 30 day Rolling GM ≤ 30 col/100 mL.


➢ CSO LTCP Goals and Targets:

- Attainment with primary contact pathogen standards during recreational season (May Oct)
- Time to Recovery of less than 24 hours during the recreational season (Fecal ≤ 1,000 col/100 mL)

LTCP Landside Sampling Protection Stormwater Sampling Location **CSO** Sampling Location 4 locations 1 location (4/20/15, 6/1/15, 6/16/15, 6/21/15) (6/15/15, 6/27/15, 7/15/15, 7/30/15) N Miles 0.4 0 0.1 0.2 0.6 0.8 SW1 **Fecal Coliform** Enterococci SW2 Location **Geometric Mean Geometric Mean** (10th to 90th percentile) (10th to 90th percentile) and CSO 153.601 140.817 SW4 A REAL PROPERTY. (cfu/100 mL) (33,700 to 832,000) (36,600 to 524,000) SW3 COCC SW 27,070 27.617 **Reg AV 1 Sampling** (cfu/100 mL) (5,080 to 196,000) (7,400 to 84,600) (Ave V PS) GRAVESEND CHINE COLUMN MTA Railyard OH-021 Calvert Vaux Park Coney Island Creek Park Kaiser Park MS4 Outfall Stormwater Sampling Location SEAGATE **CSO** Sampling Location CSO Outfall Triple Barrel Outfall - Combined Sewer - Stormwater Sewer

Receiving Water Sampling



LTCP Baseline Assumptions

- Uses LTCP calibrated landside and water quality models
- Assumes committed grey and green infrastructure complete
- Accounts for population projections to CY2040
- Uses JFK Rainfall Records:
 - 2008 for screening analysis
 - 2002-2011 for detailed analysis
- Assumes all illicit discharges are abated

		% Attainment for Primary Contact Fecal				
	Station	Annual		Recreational Season		
		Baseline	100 % CSO Control	Baseline	100 % CSO Control	
	CI-01	58	58	100	100	
Outfall OH-021•	CI-02	58	58	100	100	
	CI-03 (CIC2)	75	75	100	100	
	CI-04 (CIC3)	83	83	100	100	
	CI-05	83	83	100	100	
	CI-06	100	100	100	100	
	CI-07	100	100	100	100	

* Projected attainment with potential future EPA RWQC GM criterion during recreational season is 53% at CI-01 to 100% at CI-07

Baseline (as used in LTCP Models)

Assumes no dry weather sources

> Avenue V PS in operation and GI implemented in 1% of combined service area

Time to Recover: Projected Recovery Times

	Station	Time to Recover (hours) to Fecal Target of 1000 cfu/100mL under Aug 14-15, 2008 storm conditions			
			Baseline		100 %CSO Control
	CI-01		24		23
Outfall OH-021	CI-02		23		23
	CI-03 (CIC2)		20		20
	CI-04 (CIC3)		11		9
	CI-05		9		8
	CI-06		0		0
	CI-07		0		0

Baseline (as used in LTCP Models)

> Assumes no dry weather sources

> Avenue V PS in operation and GI implemented in 1% of combined service area

Minimal to no attainment improvement between Baseline and 100% CSO Control Conditions

Parameter	Criteria*	Attainment Achieved?
Fecal Coliform	Monthly Geometric Mean ≤ 200 col/100 mL	100% attainment ONLY during Recreational Season
Dissolved Oxygen	≥ 4.0 mg/L (acute, never less than)	YES (90 – 100% attainment)
Time to Recover	≤ 24 hours to target Fecal Coliform of 1000 cfu/100 mL	YES (0 – 24 hrs)

*Not projected to fully attain potential future EPA RWQC during recreational season.

Alternatives Evaluation

CSO Mitigation Considered in LTCP

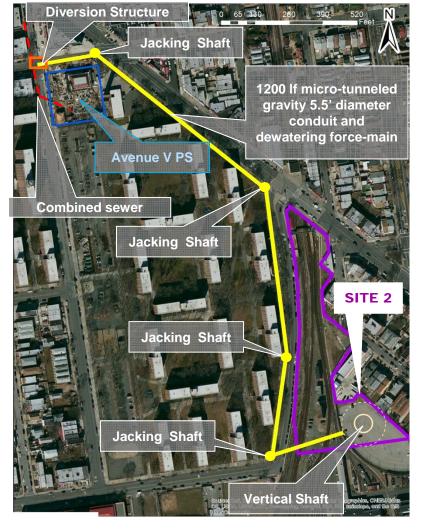
INCREASING COMPLEXITY

	Source Control	Additional Gree	n Infrastructure	High Level Sewer Separation		
	System OptimizationFixed WeirParallel Interceptor / Sewer		Bending Weirs Control Gates	Pump Station Optimization		
INCR	CSO Relocation	Flow Tipping to Other Watersheds	Pumping Station Modification	Flow Tipp Conduit/Tunnel		
INCREASING	Water Quality / Ecological Enhancement	Floatables Control	Environmental Dredging	Mechanical Aeration	Flushing Tunnel	
COST	Treatment <i>Satellite:</i>	Outfall Disinfection	Retention Treat	ment Basin (RTB)	High Rate Clarification (HRC)	
	Centralized:		WWIP	Expansion		
	Storage	In-System	Shaft	Tank	Tunnel	
	•	eted post Waterbo shed Facility Plan	5	reliminary evaluatior r these CSO mitigat		

CSO Mitigation to be Considered in LTCP

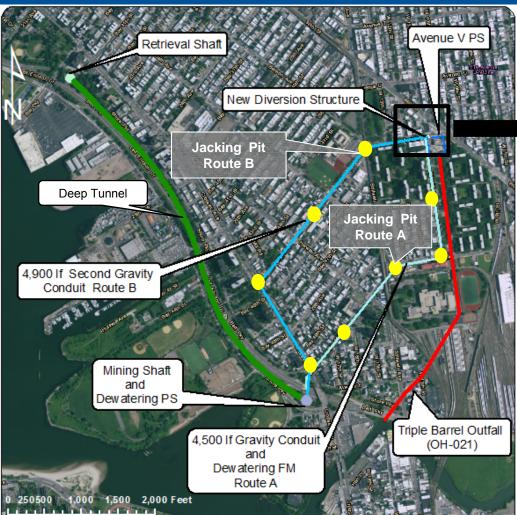
- EPA policy requires LTCP to evaluate 25, 50, 75, and 100% CSO reduction alternatives
- Alternatives proposed to be further evaluated to meet CSO Policy requirements are:
 - 1. Shaft Storage
 - 2. Tunnel Storage
- Costs/implementation issues associated with these alternatives are expected to be excessive in relation to benefit in terms of water quality standards attainment.
- The most cost-effective alternative for this waterbody has already been implemented (Avenue V Pump Station Upgrade)

1. Vertical Shaft for CSO Retention



Pros:

- Provides up to 50% CSO capture (higher captures limited by siting constraints)
- Does not impact PS operation during construction


Cons:

- Requires new upstream diversion structure
- Gravity conveyance micro-tunneling issues
- Temporary and permanent loss of parking
- O&M challenges with deep shaft storage (access, pumping, grit deposition, etc.)

Conveyance conduit alignment: E along Avenue V; then SE along 86th St; then S along W 8th St.; E under rail tracks.


2. Tunnel for CSO Retention

%Capture (Volume)	Capital Cost
75% (6.9 MG)	\$144 Million
100% (13.4 MG)	\$205 Million

New Diversion Structure

Protection

- Two conveyance conduits required with separate routes
- Shared site for mining shaft and dewatering PS

Pros:

- Provides up to 100% CSO capture
- Does not impact PS operation during construction

Cons:

- Requires new upstream diversion structure
- Extensive conveyance routing micro-tunneling issues
- Tunnel shafts within Belt Parkway ROW between roadway and access ramps
- O&M challenges with deep tunnel storage (access, pumping, grit deposition, etc.)

Summary of Alternatives

A	Iternative #	% Capture (Volume)	Remaining CSO Discharge (MG/Y)	Capital Cost	Annual O&M Cost	Total NPV Cost
1	Vertical Shaft for CSO Retention	25% (1.6 MG) 50% (4.1 MG)	56 37	\$80 M \$101 M	\$0.6 M \$0.6 M	\$89 M \$111 M
2	Tunnel for CSO Retention	75% (6.9 MG) 100% (13.4 MG)	19 0	\$144 M \$205 M	\$0.7 M \$0.8 M	\$154 M \$217 M

Q&A Session

30 Minute Breakout Session

	Торіс	Speaker
1 Aff	ordability	Angela Licata
2 Wa	ater Quality, Classification, Uses	Keith Mahoney and Lily Lee
3 CS	SO Control	Jim Mueller
4 Gre	een Infrastructure	Mikelle Adgate

Next Steps

➤ LTCP Submittal to NYSDEC by June 30, 2016

- Public Comments will be accepted for Coney Island Creek through May 20, 2016
 - There will be subsequent comment periods following the final plan review meeting.
- Comments can also be submitted to:
 - New York City DEP at: ltcp@dep.nyc.gov

Additional Information & Resources

- Visit the informational tables tonight for handouts and poster boards with detailed information
- ➢ Go to <u>www.nyc.gov/dep/ltcp</u> to access:
 - LTCP Public Participation Plan
 - Presentation, handouts and poster boards from this meeting
 - Links to Waterbody/Watershed Facility Plans
 - CSO Order including LTCP Goal Statement
 - NYC's Green Infrastructure Plan
 - Green Infrastructure Pilots 2011 and 2012 Monitoring Results
 - NYC Waterbody Advisory Program
 - Upcoming meeting announcements
 - Other LTCP updates