Flushing Creek
Combined Sewer Overflow
Long Term Control Plan

Public Meeting #2
Al Oerter Recreational Center
October 23, 2014
Welcome & Introductions

Shane Ojar
DEP
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Welcome and Introductions</td>
</tr>
<tr>
<td>2. Long Term Control Plan (LTCP) Process</td>
</tr>
<tr>
<td>3. Waterbody/Watershed Characteristics</td>
</tr>
<tr>
<td>4. Water Quality – Current Improvement Projects</td>
</tr>
<tr>
<td>5. Draft Alternatives for LTCP</td>
</tr>
<tr>
<td>6. Next Steps</td>
</tr>
<tr>
<td>7. Discussion and Q&A Session</td>
</tr>
</tbody>
</table>
Meeting Objectives

1. Provide background and understanding of the Long Term Control Plan process for Flushing Creek

2. Provide summary of existing water quality improvement projects

3. Gather public input on draft alternatives
Public Involvement and LTCP Process

- Existing Information Review
- Data Collection & Analysis
- Modeling
- Alternatives Development & Evaluation
- LTCP
- DEC Review

LTCP due 12/31/2014

- Kickoff Meeting (June 11, 2014)
- Alternatives Meeting (October 23, 2014)
- Final Plan Review Meeting

ONGOING PUBLIC/STAKEHOLDER INPUT
Overview of
Combined Sewer Overflow
Long Term Control Plan Process

Shane Ojar
DEP
What is a Combined Sewer Overflow?

NYC’s sewer system is approximately 60% combined, which means it is used to convey both sanitary and storm flows.

- Heavy rain and snow storms can lead to higher than normal flows in combined sewers.
- As it was designed to work, when the sewer system is at full capacity, a diluted mixture of rain water and sewage, also known as combined sewage, are released into local waterways. This is called a combined sewer overflow (CSO).
- CSOs become a concern when they occur too frequently or in large amounts. When they do, they can affect water quality and recreational uses in local waterways.
What are Long Term Control Plans (LTCPs)?

- Required by state pollution control permits in accordance with the Clean Water Act (CWA) and Federal CSO Control Policy; an agreement between the State and City of New York establishes the time frame for submittal of 11 LTCPs.

- Assesses feasibility of attaining current water quality standards and fishable/swimmable standards.

- Comprehensive evaluation of alternatives to reduce CSOs and improve water quality in NYC’s waterbodies.
What is the LTCP Process?

1. Builds off of improvements in Waterbody/Watershed Facility Plans (WWFP);

2. Assess current waterbody and watershed characteristics;

3. Identifies and analyze grey-green* infrastructure balance for different watersheds to meet applicable WQS; and

4. Select a preferred alternative based on a robust, targeted public process.

*Green: sustainable pollution reducing practices that also provide other ecosystem services.
*Grey: traditional practices such as pipes and sewers.
Waterbody & Watershed Characteristics

Keith Beckmann, P.E.
DEP
Current Water Quality Standards

- Best Use Designations
- Saline Surface Water Quality Standards

Flushing Creek– Class I
- DO \geq 4.0 mg/L (acute, never less than)
- Fecal Coliform \leq 2,000 col /100 mL
- Total Coliform \leq 10,000 col /100 mL

New York State
Saline Surface Water Quality Standards

<table>
<thead>
<tr>
<th>Class</th>
<th>Bacteria (when disinfection is practiced)</th>
<th>Dissolved Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Coliform</td>
<td>Fecal Coliform</td>
</tr>
<tr>
<td>SA</td>
<td>Median \leq 70 MPN/100 ml</td>
<td>---</td>
</tr>
<tr>
<td>SB</td>
<td>Monthly median \leq 2,400/100 ml 80% \leq 5,000/100 ml Monthly geometric mean \leq 200/100 ml</td>
<td>Monthly geometric mean \leq 200/100 ml</td>
</tr>
<tr>
<td>SC</td>
<td>Monthly median \leq 2,400/100 ml 80% \leq 5,000/100 ml Monthly geometric mean \leq 200/100 ml</td>
<td>Monthly geometric mean \leq 200/100 ml</td>
</tr>
<tr>
<td>I</td>
<td>Monthly geometric mean \leq 10,000/100 ml Monthly geometric mean \leq 2,000/100 ml</td>
<td>Monthly geometric mean \leq 200/100 ml</td>
</tr>
<tr>
<td>SD</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

DO_i = DO concentration in mg/l between 3.0 – 4.8 mg/l
New York State DEC classifies the best use of the creek as being suitable for secondary contact recreation and fishing.

Current Water Uses:
- No designated access for swimming

All recreational uses identified by the public during Flushing Creek LTCP public meeting on June 11, 2014 are in Flushing Bay and Meadow Lake.
Drainage Area Characteristics

<table>
<thead>
<tr>
<th>Drainage Area</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Sewered</td>
<td>6,323</td>
</tr>
<tr>
<td>Separate/Direct Drainage</td>
<td>4,693</td>
</tr>
<tr>
<td>Total watershed area</td>
<td>11,016</td>
</tr>
</tbody>
</table>

- Within Tallman Island WWTP drainage area
- DEP wet weather outfalls include:
 - △ 3 CSO Outfalls
 - ○ 5 Permitted Stormwater Outfalls

CSO Outfalls Overflow Volumes
Million Gallons per Year (MGY)

- TI-010: 713 MGY
- TI-011: 399 MGY
- TI-022: 83.5 MGY
LTCP Receiving Water Sampling
- November 2013 - May 2014
- 18 dry weather and 60 wet weather samples per station
- Fecal coliform and enterococci

Geomean (Average) of LTCP Sampling Data

<table>
<thead>
<tr>
<th>River Station</th>
<th>Enterococci (col/100ml)</th>
<th>Fecal Coliform (col/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Wet</td>
</tr>
<tr>
<td>OW1</td>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td>OW2</td>
<td>20</td>
<td>99</td>
</tr>
<tr>
<td>OW3</td>
<td>61</td>
<td>863</td>
</tr>
<tr>
<td>OW4</td>
<td>23</td>
<td>494</td>
</tr>
<tr>
<td>OW5</td>
<td>20</td>
<td>497</td>
</tr>
<tr>
<td>OW6</td>
<td>14</td>
<td>221</td>
</tr>
</tbody>
</table>

Additional DEP Water Sampling Programs:
- **Harbor Survey Monitoring**

- **Sentinel Monitoring**
Model runs are based on ten years of data (2002 – 2011) for pathogens; one year of data used for DO ("typical year rainfall - 2008")

2040 population projections

Model is calibrated with Harbor Survey data plus LTCP synoptic sampling data
Modeling Runs – Scenario Analysis

- Gap Analysis for Water Quality Standard Attainment
 - Calculate Bacteria and DO for Baseline conditions
 - Include WWFP grey infrastructure
 - Green Infrastructure (GI) as per NYC GI Plan

- Bacteria Source Component Analysis
 - CSO, stormwater, direct drainage, upstream rivers

- Matching CSO Scenarios to CSO Engineering Control Alternatives

 25% Source Control
 50% System Optimization
 75% Treatment
 100% Storage
Current Improvement Projects

- Flushing Creek CSO Retention Facility
- Increased Flow Conveyance to Tallman Island WWTP
- Area-wide GI Projects
- Planned On-site GI Projects
- Potential Area-wide GI Contracts
Current Improvement Projects

Upgrades to Increase Flow
Conveyance to Tallman
Island WWTP
Cost = $41 million

Area-wide GI Projects
- TI-011
- TI-022
Design Cost = $3.5 million

Potential Area-wide GI Contracts

Flushing Creek CSO Retention Facility
Cost = $349 million

Planned On-site GI Projects:
- 185Q, Edward Bleeker Jr. High
- Flushing Town Hall & JSH

CSO Outfalls
Status of Current Improvement Projects

Grey Infrastructure Projects
- Flushing Creek CSO Retention Facility – Cost $349 million
 - Tank operational since May 2007
 - 43 MG Storage (28 MG tank storage plus 15 MG sewers storage); 40 MGD pump station
- Upgrades to Increase Flow Conveyance to Tallman Island WWTP – Cost $41 million
 - New Whitestone Interceptor to come online Winter 2014

Green Infrastructure Projects
- Area-wide GI Contracts – Cost $3.5 million
 - TI11 and TI22 with NYC Department of Design and Construction
 - Design underway
- JHS 185Q, Edward Bleecker Jr. High
 - Rain garden and synthetic turf field for “Schoolyards to Playgrounds” project with Trust for Public Land/School Construction Authority/Dept. of Education
- Flushing Town Hall
 - Rain garden and swales with the Department of Cultural Affairs
Modeling Pre-WWFP & LTCP Baseline

<table>
<thead>
<tr>
<th>Pre-WWFP</th>
<th>LTCP Baseline Projected</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE (2,531 MGY)</td>
<td>AFTER (1,200 MGY)</td>
</tr>
<tr>
<td>TI-010</td>
<td>TI-010</td>
</tr>
<tr>
<td>TI-011</td>
<td>TI-011</td>
</tr>
<tr>
<td>TI-022</td>
<td>TI-022</td>
</tr>
</tbody>
</table>

- Before: 1,951 MGY
- After: 83.5 MGY

53% Reduction in Grey + GI Projects

LTCP projections using 2008 Typical Rainfall Year, including 8% GI
<table>
<thead>
<tr>
<th>Target</th>
<th>Criteria</th>
<th>Dissolved Oxygen (DO) Criteria</th>
<th>Fecal Coliform Criteria</th>
<th>Enterococci Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Water Quality Criteria</td>
<td>Class I</td>
<td>• ≥ 4.0 mg/L</td>
<td>• Monthly Geometric Mean ≤ 2,000 col/100 ml</td>
<td>• Not Applicable</td>
</tr>
</tbody>
</table>
| **Potential Future Standard: Primary Contact** | Class SC with RWQC (EPA Recommended Recreational Water Quality Criteria) | • 4.8 mg/L Average | • Monthly Geometric Mean ≤ 200 col/100 ml | • Rolling 30-Day Geometric Mean 30 col/100 ml
| | | • ≥ 3.0 mg/L | | • STV (90th percentile value) 110 col/100 ml
| | | | | • Recreational Season
| | | | | • Potential 2015 Modification (RWQC) |
Alternatives Evaluation

Keith Beckmann, P.E.
DEP
Flushing Creek CSO Mitigation Toolbox

Source Control
- Additional Green Infrastructure
- Sewer Separation

Ecological Enhancement
- Tidal Wetland Restoration
- Floatables Control

System Optimization
- Fixed Weir
- Inflatable Dams
- Bending Weirs
- Control Gates
- Pump Station Expansion

CSO Relocation
- Interceptor Flow Regulation

Water Quality
- Aeration

Treatment
- Outfall Disinfection
- CSO Basin Disinfection
- High Rate Clarification (HRC)

Storage
- In-System
- Shaft
- Tank
- Tunnel

Note: A joint Wetlands Restoration & Dredging project with the US Army Corp of Engineers (ACOE) is being coordinated outside of the LTCP framework.
Reasons Alternatives Eliminated

- **Insufficient Opportunity Available**
 - Additional GI
 - Sewer Separation
 - Floatables Control

- **Limited Hydraulic Capacity**
 - Fixed Weirs

- **Reliability Concerns**
 - Inflatable Dams

- **Minimal CSO Impact Mitigation**
 - Interceptor Flow Regulation
 - Aeration

- **Effectiveness Comparison**
 - Storage Shafts, Tanks, Tunnels
Option 1 – CSO Basin Disinfection (TI-010)

Concept:
- Disinfect CSO at Existing Tank’s Screens
- Operate in recreational season (May – October)
- Install disinfection equipment at existing chemical storage location
- Treat flows discharged through outfall TI-010

Benefits:
- 31% bacteria load reduction from baseline
- Maximizes use of existing infrastructure

Water Quality Implications:
- Reduces bacteria loads from CSOs during recreational season

Challenges:
- Coordination with on-site Parks Dept. operations
- Operation and maintenance of disinfection facilities
- Potential residual chlorine issues

Capital and O&M Costs: $4.7 million
Option 2 - Outfall Disinfection at Chamber 3 (TI-010)

Concept

- Move dosing point from screens to upstream of Diversion Chamber 3
- Operate in recreational season (May – October)
- Increases amount of flow disinfected prior to discharge

Add Chlorine

346 MG

367 MG
Option 2 - Outfall Disinfection at Chamber 3 (TI-010)

Benefits:

- Tank discharge and bypass flow disinfected
- Approximately 40% Recreational Season Bacteria load reduction in Flushing Creek from baseline
- Disinfection equipment can be installed at existing site

Challenges:

- Design to achieve desired contact time
- Dosing point construction site across College Point Boulevard
- May require control structure at end of outfall
- Potential residual chlorine issues

Capital and O&M Cost:

- $5.8 Million
Option 3 - Outfall Disinfection at Chamber 5 (TI-010)

- Move dosing upstream of Diversion Chamber 5
- Operate tank as offline storage under lower flows by raising the effluent weir slightly
- Disinfect majority of flows that bypass tank up to design flow rate
Benefits:

- Disinfection of tank bypass flows
- 53% Recreational Season bacterial load reduction in Flushing Creek from baseline
- Does not chlorinate pump back volume, reducing chlorine use
- Disinfection Equipment Can Be Installed at Existing Site

Challenges:

- Design disinfection system for 15 minutes of contact time
- May require control structure at end of outfall
- Possible floatables & residual chlorine issues

Capital and O&M Cost (NPV):

- $6 Million Capital
Disinfection in TI-011 Outfall

Concept:
- CSO disinfection within existing TI-011 outfall
- Operate in recreational season (May – Oct.)
- New disinfection building on existing DEP site

Benefits:
- 30% bacteria load reduction from baseline
- Maximizes use of existing infrastructure
- Utilizes gravity, no effluent pumping
- No construction of retention tank

Water Quality Implications:
- Reduces bacteria load from CSO during recreational season

Challenges:
- Operation and maintenance of disinfection facilities
- Potential residual chlorine issues

Capital and O&M Cost: $9.2 million
Wetland Restoration Opportunities
Restoration – Benefits and Challenges

- Restore the natural state and functioning of the system to support **biodiversity** and **aesthetic improvements**.

- Expand **habitat** for diverse species (e.g. fish, aquatic insects, other wildlife).

- Enhance **water quality** and increased **dissolved oxygen** levels.

- Restoration activities may range from a **removal of fill** that inhibits natural hydrologic function, to **wetland planting** and upstream **constructed wetland**.

- **Access**, **property ownership** issues and establishment of proper **elevation**.

- Projects should conduct **monitoring** of conditions after construction, to evaluate effectiveness. This may take considerable time therefore monitoring efforts should be conducted for **several years** after a project has completed.
Wetland Restoration

➤ Protecting and improving water quality
 ▪ Wetlands are part of the solution in keeping with the spirit of the Clean Water Act (CWA)
 ▪ Provide critical functions:
 o Water storage
 o Water filtration
 o Reduction of Biological Oxygen Demand (BOD) for increased Dissolved Oxygen

➤ Providing habitat
 ▪ Biological productivity
 o Wetlands are one the most biologically productive natural ecosystems known, comparable to tropical rain forests in their productivity species diversity
 o 85% of waterfowl and migratory birds use wetlands

➤ Aesthetic value
 ▪ Open space
 ▪ Education
 ▪ Research
Potential Wetland Restoration Opportunities

- Approximately 2 to 4 acres of additional wetland restoration are possible outside of USACE/DEP restoration/dredging coordination effort.
- Approximate cost of restoration is $850K per acre.
Other Projects Considered in Addition to LTCP

Dredging and Environmental Restoration with US Army Corp of Engineers (USACE)

Concept:
- DEP is working with USACE on dredging and wetland restoration

Benefits:
- May improve waterbody aesthetics

Water Quality Implications:
- Reduce odor and aesthetic issues

Challenges:
- Not a CSO reduction strategy
- Does not remove bacteria
- Coordination with ACOE
- Permitting

Capital Cost: $35 Million
Shortlisted Alternatives Costs

<table>
<thead>
<tr>
<th>LTCP Alternative</th>
<th>Recreational Season Bacteria Reduction</th>
<th>DO Improvement</th>
<th>High Level Cost (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1 Tank Disinfection</td>
<td>31%</td>
<td>No</td>
<td>$5</td>
</tr>
<tr>
<td>Option 2 Outfall Disinfection at Diversion Chamber 3</td>
<td>40%</td>
<td>No</td>
<td>$6</td>
</tr>
<tr>
<td>Option 3 Outfall Disinfection at Diversion Chamber 5</td>
<td>53%</td>
<td>No</td>
<td>$6</td>
</tr>
<tr>
<td>TI-011 Outfall Disinfection</td>
<td>30%</td>
<td>No</td>
<td>$9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outside LTCP w/ACOE</th>
<th>Recreational Season Bacteria Reduction</th>
<th>DO Improvement</th>
<th>High Level Cost (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Restoration/Dredging</td>
<td>NA</td>
<td>Yes</td>
<td>$35</td>
</tr>
</tbody>
</table>
Flushing Creek Summary of Considerations

- Flushing Creek’s water quality is affected by CSOs.
- Both pathogens and dissolved oxygen must be considered.
- CSO reduction alternatives vary in size, effectiveness and cost.
- CSO reduction alternatives may be bundled together for further effectiveness.
- Ratepayers may be directly impacted by the cost of planned CSO reduction alternatives.
- Submitted LTCP will propose a preferred alternative.
Next Steps

Shane Ojar
DEP
Next Steps

➢ To have public comments on alternatives incorporated into the LTCP, please send comments by November 17, 2014

➢ Comments can be submitted to:
 ▪ New York City DEP at: ltcp@dep.nyc.gov

➢ Flushing Creek LTCP Public Meeting #3
 ▪ Objective & Topics: Present and review proposed Draft LTCP
Additional Information & Resources

- Visit the informational tables tonight for handouts and poster boards with detailed information.

- Go to www.nyc.gov/dep/ltcp to access:
 - LTCP Public Participation Plan
 - Presentation, handouts and poster boards from this meeting
 - Links to Waterbody/Watershed Facility Plans
 - CSO Order including LTCP Goal Statement
 - NYC’s Green Infrastructure Plan
 - Green Infrastructure Pilots 2011 and 2012 Monitoring Results
 - Real-time waterbody advisories
 - Upcoming meeting announcements
 - Other LTCP updates
Discussion and Q&A Session