Designing New York: Prefabrication in the Public Realm
Contents

Introduction 4

Working Definitions 5

Case Studies

1 New York City

Cultural
NYC Parks Beach Restoration Modules Modular 7
The Cubes Modular 10

Educational
Lady Liberty Charter School Prefab 14
Impact Farm Flatpack 22

Residential
NYC Emergency Housing Prototype Modular 24
B2 Modular 29

2 Global

Cultural
The Cube Prefab 36
Tomiihiro Art Museum Prefab 44
Venessla Library and Culture House Flatpack 51
Power Parasol Lot 59 Flatpack 60
L'Aquila Auditorium Flatpack 67
Timmerhuis Modular 75
Kiosk m poli Modular 80

Educational
Paglucia Harvard Life Lab Prefab 84
International Sustainable Development Studies Institute Prefab 86

Residential
Living Unit Ljubljiana Prefab 95
LivingBoard Prefab 103
Temporary Housing for Kumamoto Earthquake Prefab 107
Mjostarnet Tower Flatpack 112
Hemeroscopium House Prefab 118

3 Pandemic Response (COVID-19)

CURA Prefab 132
Temporary Shelter for COVID-19 Crisis Flatpack 137

Resources & Acknowledgements 140
Introduction

As part of the NYC Public Design Commission’s Designing New York series, Designing New York: Prefabrication in the Public Realm examines how prefabrication practices can be applied to small-scale urban infrastructure projects to have a large public-realm impact.

As with other densely populated and expanding urban metropolises, New York City is exploring unconventional methods of designing and constructing to meet growing needs for public infrastructure while also addressing pressures to reduce costs. As a result, prefabricated, modular, and flatpack methods of construction are being explored as alternatives to traditional construction methods across the city. Through a research partnership between the NYC Public Design Commission (PDC) and Columbia University’s Graduate School of Architecture, Planning, and Preservation (GSAPP), this document presents case studies of current best-practices for prefabrication, and analyzes both technical and logistical nuances of these systems in order to further understand their viability in New York City.

A departure from other discourse on prefabrication that often focuses primarily on cost and time-savings, or on mid- to high-rise housing and hotel typologies, this publication looks to small-scale urban infrastructure and dwelling prototypes that are woven into the public realm. Through this shift towards public-realm focus, the intent is to frame conversations for adaptability and economical design excellence within prefabrication practices both citywide and globally. The long-term goal of this project is to give public agencies, designers, developers, and the community at-large, tools to incorporate and advocate for quality comprehensive approaches to prefabrication across a diverse set of programs and typologies.

This research was originally initiated as a seminar at Columbia University GSAPP entitled Prefab, Modular, and Flatpack. The seminar examined the history of exemplary prefabrication processes and projects to-date, and focused specifically on recent developments that have evolved in the last ten years, building upon the 2008 MoMA exhibition and publication Home Delivery: Fabricating the Modern Dwelling, curated by Barry Bergdoll and Peter Christensen.

The seminar concluded with a roundtable discussion at the Center for Architecture in July 2019, where a panel of interdisciplinary and cross-sector professionals discussed student findings and further probed issues related to design and procurement, engineering and construction management, and site selection and transport logistics unique to New York City.

Following the seminar and roundtable discussion, research materials and findings were further developed by GSAPP students, and a number of key projects were selected as case studies for inclusion in this document. Amidst the global COVID-19 pandemic, additional public health and pandemic relief projects have also been added.

The goal is that this body of research can be a living document and continue to grow with the ever-evolving conversations surrounding prefabrication practices.
Prefabricated (Prefab)

Prefabrication, or the abbreviation prefab, is a “general term for the manufacturing of entire buildings or parts of buildings off-site prior to their assembly on-site. Prefabricated buildings include both portable buildings and various types of permanent building systems.” (Smith and Quale 2017, p. 267) The terms prefabrication and prefab are generally used as umbrella terms that include both modular and flatpack systems of construction, and can also be used to describe buildings constructed using hybrid schemes, where portions of the structure are prefabricated while others are constructed with traditional on-site work and assembly. “The building may be delivered in flatpack form with panels lifted up and bolted together, or produced in full volumetric modules that have walls, roofs, and floors.” (Curl and Wilson 2016) The line between a prefabricated and non-prefabricated building is often blurred, as many buildings have some component parts that are prefabricated offsite, such as masonry units, windows, and framing.

There are several benefits of prefabrication including, but not limited to, flexibility in design, reduction in costs through streamlining of component manufacturing, reduced site construction time, safer working conditions in a factory-controlled environment, fewer weather-related construction disruptions, and lower volume of construction waste.

The challenges associated with prefabrication can often include a limited variety and repetitive nature of prefabricated elements, coordination of front-loaded design and engineering decisions to streamline construction process, and transportation and staging logistics.

Modular

Modular construction is a subset of prefabrication, specifically a type of prefabrication where “volumetric building modules form the structure of the building as well as the enclosed useable space.” (Smith and Quale 2017, p. 262) A modular system is characterized by its functional partitioning into discrete three-dimensional standardized modules that can be independently created, assembled, and banked together to create a larger whole.

The umbrella benefits and challenges associated with prefabrication also apply to modular construction. In addition, modular construction faces larger challenges related to transportation logistics, as the size and weight of modules are often regulated by local freight laws and physical limitation of transportation routes, and so moving modules from a factory to the project site requires additional coordination.

Flatpack

Flatpack construction is also a subset of prefabrication, specifically a type of prefabrication where “prefabricated elements or systems are transported to the site as two-dimensional elements, rather than three-dimensional volumetric forms.” (Smith and Quale 2017, p. 256) Flatpack can be used where modular prefabrication is not feasible, or in hybrid approaches, such as the use of flatpack facades on a traditionally or modular constructed building.

Flatpack is considered much more efficient than modular construction since prefabricated flatpack panels can be stacked horizontally on a trailer bed and transported to site more easily than vertically stacked panels or volumetric modules. Flatpack trucking can reduce the bulkiness and cost of shipments significantly, while still providing many of the benefits of prefabricated construction. This method can be very useful in the construction of buildings that do not work neatly as modules.

The working definitions above have been expanded and adapted from Offsite Architecture: Constructing the Future and The Oxford Dictionary of Architecture by GSAPP students during the Prefab, Modular, and Flatpack A4859 Spring 2019 seminar.

1 New York City
Case Studies

Cultural
NYC Parks Beach Restoration Modules
The Cubes

Educational
Lady Liberty Charter School
Impact Farm

Residential
NYC Emergency Housing Prototype
B2
Built and deployed within five months, Garrison Architects designed 37 flood-proof structures that were placed in 15 sites across New York City to replace beach infrastructure damaged by Superstorm Sandy in 2012. In order to minimize disturbance to neighbors, limit site work, and meet a tight schedule, the structures were constructed and assembled in-factory as modules, and then were placed on-site and finished. Through interagency coordination and efficiencies of modular construction, the structures were open and functioning in time for the 2013 summer season.

The modules are flexible and adaptable to different uses and site conditions. Using a common chassis design, the modules were modified for use as comfort stations, lifeguard stations, offices, and public bathrooms. Designed for resiliency, the modules sit on top of concrete legs that raise them above the five hundred-year flood-level, and are accessible by a series of ramps and stairs.
NYC Parks Beach Restoration Modules

Modular
New York City

Above: Module Components Below: Section Drawing

1 W-M Bends
2 Structural ribs
3 Transfer Beams
4 Diagonal Truss Members
5 Skylight structure
6 Concrete pilings
7 Bridge Frame

1 Boardwalk Access
2 Beach Access
3 Grade Access
4 Advisory Board Flood Elevation (ABFE)
NYC Parks Beach Restoration Modules

New York City

Modules at Rockaway Beach, Queens.
When complete, the Cubes at Socrates Sculpture Park will provide a permanent home for the park’s administration and education space, including offices and classrooms. Originally installed as a studio in the courtyard of the Breuer Building when it was the Whitney Museum of American Art, the central structure, a prefabricated cube constructed of shipping containers, was donated to the Socrates Sculpture Park for adaptive reuse when the Whitney relocated downtown.

The use of shipping containers not only reduces construction time significantly, but also invokes the park’s founding principles, emphasizing reclamation, adaptation, and the neighborhood’s industrial roots. The shipping containers have integral structural strength provided by the corrugated steel siding, and the chevron windows add cross-bracing stability while also providing natural light and transparency. The structure at Socrates Sculpture Park will be the result of building upon the existing Whitney studio cube. Two more shipping container cubes will be added to the original cube, plus an open-air “ghosted” cube which will support a shade canopy for outdoor workshops.

<table>
<thead>
<tr>
<th>Architect</th>
<th>LO-TEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Completed</td>
<td>In progress</td>
</tr>
<tr>
<td>On-site Assembly Time</td>
<td>10 days</td>
</tr>
<tr>
<td>Site Typology</td>
<td>Infill</td>
</tr>
<tr>
<td>Program</td>
<td>Education, administration</td>
</tr>
<tr>
<td>Stories</td>
<td>2</td>
</tr>
<tr>
<td>Gross Square Footage</td>
<td>2,640 SF</td>
</tr>
<tr>
<td>Structural Materials</td>
<td>Steel (shipping containers)</td>
</tr>
<tr>
<td>Facade Materials</td>
<td>Corrugated steel, glass</td>
</tr>
<tr>
<td>Additional Information</td>
<td>lot-ek.com</td>
</tr>
</tbody>
</table>

When complete, the Cubes at Socrates Sculpture Park will provide a permanent home for the park’s administration and education space, including offices and classrooms. Originally installed as a studio in the courtyard of the Breuer Building when it was the Whitney Museum of American Art, the central structure, a prefabricated cube constructed of shipping containers, was donated to the Socrates Sculpture Park for adaptive reuse when the Whitney relocated downtown.

The use of shipping containers not only reduces construction time significantly, but also invokes the park’s founding principles, emphasizing reclamation, adaptation, and the neighborhood’s industrial roots. The shipping containers have integral structural strength provided by the corrugated steel siding, and the chevron windows add cross-bracing stability while also providing natural light and transparency. The structure at Socrates Sculpture Park will be the result of building upon the existing Whitney studio cube. Two more shipping container cubes will be added to the original cube, plus an open-air “ghosted” cube which will support a shade canopy for outdoor workshops.

Please note that this project is in development and all project data is estimated. Research by Kuan He, GSAPP. Project description by Rahul Gupta, GSAPP.
Construction Sequence

1. The Whitney Studio module.
2. The Whitney Studio module plus two additional modules.
3. The modules plus an open-air enclosure surrounding a 480 SF deck.
4. A solar-paneled roof will also be added to the structure.
The Cubes

Modular

New York City

Above: Module composition of The Cubes.
Below: Original Whitney Studio module in situ at the Breuer Building.
The Cubes

Modular
New York City
From 2012 to 2019, the Lady Liberty Charter School served over five hundred students in grades K-8. Using both prefabricated and modular methods of construction, a 17,400 SF addition was added to the existing 26,000 SF facility in 2014, creating additional classroom space and a courtyard for recess and recreation.

Given limited funds and a tight construction timeline, modular and prefabricated construction methods were chosen for the build. After excavation, precast concrete retaining walls with insulation and stud walls already attached were placed, rather than poured, on-site to expedite the build of the basement story. Above ground construction was executed using modular prefabricated timber and steel volumes, adding valuable classroom space to the existing facility. The modules were constructed in Pennsylvania and transported via truck to the site. Erection of the modules took ten days on-site, and all the flatpacked cladding and finish work was completed roughly three and a half months later.
Lady Liberty Charter School

Prefab
New York City

Site Plan and Staging

Drawing by Jacob Karasik, GSAPP
Construction Sequence

1. Site excavation.

2. Prefabricated concrete walls were placed.

3. Concrete slab was poured.

4. Modules were assembled on top of the foundation.

Legend:
- Yellow: Site Development
- Red: Staging / Assembly
- Blue: Assembled Components
Lady Liberty Charter School

Above: Assembly Axonometric Below: Ground Floor Plan

Drawings courtesy of © GLUCK+
Lady Liberty Charter School

Prefab
New York City

Images courtesy of © GLUCK+
Impact Farm is designed to create an economically sustainable business model that ensures resource-efficient local food production, green jobs, and increased local economic activity. The facility can grow greens, vegetables, herbs, and fruiting plants within its frame. All of the construction components for Impact Farm, along with an instruction booklet, are stored and shipped in a flatpack container. When unpacked, the container includes an assembly kit of pre-made materials that become a two-story vertical, soil-free, hydroponic farm that covers 538 SF.

Construction takes about ten days and the structure can easily be disassembled and moved to various locations. The whole structure and building system is designed to be self-sufficient by harvesting sun and wind and collecting rainwater for internal use. The Impact Farm in Harlem was constructed in the fall of 2018, and since then over 1100 lbs of greens have been harvested from it and distributed to local residents.
Impact Farm (Harlem Grown)
Flatpack
New York City

Above: Module Axonometric
Below: The original Impact Farm prototype, installed in Copenhagen, Denmark.
The Emergency Housing Prototype is intended to serve displaced city residents in the event of a natural or man-made disaster while also adhering to strict building requirements regarding safety, sustainability, durability, and universal accessibility. In the months after Superstorm Sandy, a prototype was erected in a parking lot at Cadman Plaza in northern Downtown Brooklyn.

Designed for flexibility and fast deployment, these prefabricated structures can be delivered to site and craned into place within 15 hours, and can also be deployed in various configurations depending on specific urban or site conditions. The flexibility of the unit also allows for its deployment in various settings including vacant lots, private yards, or public spaces. The units can be configured as one- or three-bedroom apartments as needed, and each unit comes equipped with a living area, bathroom, kitchen, and storage space. Additionally, the units are built with recyclable materials including cork floors, double insulated shells, and windows with integrated shading to lower solar heat gain.
NYC Emergency Housing Prototype

Modular
New York City

Above: Axonometric of Modular Components Below: Typical Floor Plan
NYC Emergency Housing Prototype

New York City

Images courtesy of © Andrew Rugge
NYC Emergency Housing Prototype

New York City

Emergency Housing prototype installed at Camden Plaza, Brooklyn.
Located adjacent to the Barclays Center, the B2 at 461 Dean Street was constructed with 930 modular units comprising 363 apartments, 182 of which are market-rate and 181 of which are affordable. The modules were manufactured by FullStack Modular, a company located in the Brooklyn Navy Yard about two miles from the project site. The proximity of the manufacturer to the project site aided in staging and logistics.

The modules have welded steel frames that were outfitted with wiring and plumbing before arriving on-site. Inspections were done within the modular factory so that the modules could be closed before transport to the building site. Interior partitions of light gauge steel were also preassembled and installed within the frame. The modules were placed on-site by cranes; and the modules fit together like puzzle pieces. Though the modules assembled quickly once on-site, a challenge of the project was the limited on-site storage for the modules awaiting assembly. Due to limited site space and oversized trucking loads, the modules could only get delivered at certain times of day, slowing the otherwise swift assembly. Modules were staged, awaiting transport, at FullStack Modular in the Brooklyn Navy Yard.

Please note that this project data has been gathered through student research and not verified by the team. Research and project description by Ricky Lo, GSAPP.
Site Plan and Staging
Staging Area
Capsys Corp
24.1 mi.
Nehemiah Housing
Boise, ID
844 mi.
Berwick, PA
141 mi.
New York, NY

Site Plan
Transportation Route
Location
Modular
Ricky Lo
Drawing by Ricky Lo, GSAPP

B2
Modular
New York City

FullStack Modular, Brooklyn Navy Yard
Barclays Center, 461 Dean Street

Transportation
Transportation Route (2 miles)
Construction Sequence

1. Modules prefabricated and assembled in the factory.
2. Concrete foundation and slab were site poured, the podium structure was installed onto the slab, and modules were then delivered via truck and placed on top.
3. Modules were then realigned to ensure structural integrity after staging several modules.
4. Once structural integrity was ensured, the rest of the modules were lifted in place.

Legend

- Site Development
- Staging / Assembly

Drawing by Ricky Lo, GSAPP
Global Case Studies

Cultural
- **The Cube** Prefab 36
- **Tomihiro Art Museum** Prefab 44
- **Venessla Library and Culture House** Flatpack 51
- **Power Parasol Lot 59** Flatpack 60
- **L’Aquila Auditorium** Flatpack 67
- **Timmerhuis** Modular 75
- **Kiosk m poli** Modular 80

Educational
- **Paglucia Harvard Life Lab** Prefab 84
- **International Sustainable Development Studies Institute** Prefab 86

Residential
- **Living Unit Ljubljana** Prefab 95
- **LivingBoard** Prefab 103
- **Temporary Housing for Kumamoto Earthquake** Prefab 107
- **Mjostarnet Tower** Flatpack 112
- **Hemeroscopium House** Prefab 118
The Cube – dining with a view – is a pavilion designed to house a travelling restaurant commissioned by Electrolux. Conceived to be placed in unexpected and dramatic locations, the pavilion traveled through major European Cities between 2011 and 2012, offering lunch and dinner for up to 18 guests at a time.

Conceived as a module that can be assembled and disassembled with relative ease, The CUBE was also designed to adapt to a variety of climatic conditions, even the most extreme, while also expressing refined aesthetics and high-quality materials. The pavilion’s lightness is accentuated by its exterior white aluminum façade which was laser cut to create a perforated and textured surface.
Construction Sequence

1. Steel foundation and floor panel were site placed.
2. The steel window frame was attached to the floor slab.
3. The laser cut facade was attached to the steel frame.
4. The roof was stacked on top of the frame.
Reuse and Transport

Transportation methods for The Cube

Laser-cut facade unfolding

Rooftop Installation

Drawings courtesy of © Park Associati
The Cube

Images courtesy of © Park Associati
Located in a mountain village north of Tokyo, the Tomihiro Art Museum is dedicated to the work of local poet and illustrator, Tomihiro Hoshino.

The museum is composed of 33 prefabricated cylinders of varying sizes, set within a 52m square, giving rise to a series of tightly packed circular rooms that form the main areas where the programs of the museum are housed. The scale of the circular modules determine the functional environment of the space within and the interior quality of the spaces, which range from light to dark, and intimate to expansive.

The prefabrication of the cylindrical elements allows the structure to perform highly efficiently in distributing structural loads around the building, and also reduced the construction and assembly time of the project drastically.
Site Plan

Drawing by Mengxuan Liu, GSAPP
Construction Sequence

1. Concrete foundation and pad were site poured.
2. Concrete rooms were constructed.
3. Modular steel plates were layed out.
4. Lightweight steel plates were installed.
5. Fan shaped pieces were installed.
6. Facade was completed.
Floor Plan
Axonometric of Cylindrical Module
Axonometric of Modular Components

Fan-shaped steel plate

Arc steel plate, thickness is 90mm

Arc steel frame, thickness is 50mm

R = 6600mm

R = 3600mm

R = 200mm

Drawing by Mengxuan Liu, GSAPP
The library in Vennesla comprises a library, a café, meeting places, and administrative areas, and links an existing community house and learning center together. Supporting the idea of an inviting public space, all main public functions have been gathered into one generous space allowing the structure to be combined with furniture and multiple spatial interfaces to be visible in the interior and from the exterior.

Helen & Hard developed a rib concept to create useable hybrid structures that combine a timber construction with integrated services. The whole library consists of 27 ribs made of prefabricated glue-laminated timber elements and CNC-cut plywood boards, with each rib consisting of a glue-laminated timber beam and column, acoustic absorbents which contain the air conditioning ducts, bent glass panes that serve as lighting covers and signs, and integrated reading niches and shelves.
Construction Sequence

1. Staging area established.

2. Site before construction, including adjacent buildings.

3. Basement was excavated and foundation was poured on site.

4. Concrete cellar was built and wooden members were brought to the staging area.

5. Ribs were assembled in addition to the mechanical systems and add-on furniture.

6. Roofing, cladding and finishing work was carried out.

Legend

- Site Development
- Staging / Assembly
- Assembled Components

Drawing by Leonardo Tamargo, GSAPP
Ground Floor Plan
Vennesla Library and Culture House

Cross Section 1

Cross Section 2

Long Section

Drawings courtesy of © Helen & Hard
Forbo/Epok, Color NCS S2050 - B

Topcoat 9mm painted and lacquered plywood, hidden fasteners

Sitting bench with cushion 400x600 mm from Gudbrandsdalen Ull, Type Modal

Recessed textile seat cushion from Gudbrandsdalen Ull, Type Modal

Recessed straight-edged 120x8 mm oak trim

Topcoat 9mm painted and lacquered plywood, hidden fasteners

Reading Cave

Place for book line and rolling chairs

Reading Cave

Upholstered bench

Glass railing

Above: Rib Cross Section Below: Rib Axonometric
Power Parasol Lot 59

Arizona State University, Tempe, Phoenix, AZ, USA

<table>
<thead>
<tr>
<th>Architect</th>
<th>De Bartolo Architects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developer</td>
<td>Strategic Solar Energy</td>
</tr>
<tr>
<td>Fabricator</td>
<td>Ironco</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td>Rudow + Berry</td>
</tr>
<tr>
<td>General Contractor</td>
<td>Hudson/ Downey</td>
</tr>
<tr>
<td>Landscape Architect</td>
<td>JJR Floor</td>
</tr>
<tr>
<td>Year Completed</td>
<td>2011</td>
</tr>
<tr>
<td>Factory Assembly Time</td>
<td>6 months</td>
</tr>
<tr>
<td>On-site Assembly Time</td>
<td>7 months</td>
</tr>
<tr>
<td>Site Typology</td>
<td>Asphalt surface lot</td>
</tr>
<tr>
<td>Program</td>
<td>Utility/ Infrastructure</td>
</tr>
<tr>
<td>Stories</td>
<td>1</td>
</tr>
<tr>
<td>Gross Square Footage</td>
<td>217,800 GSF</td>
</tr>
<tr>
<td>Structural Materials</td>
<td>Galvanized steel</td>
</tr>
<tr>
<td>Facade Materials</td>
<td>Dipped galvanized steel</td>
</tr>
<tr>
<td>Hard Cost ($)</td>
<td>$40/SF</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$10 Million</td>
</tr>
<tr>
<td>Additional Information</td>
<td>debartoloarchitects.com</td>
</tr>
</tbody>
</table>

Part civic shade structure, part energy generator, and part billboard, Power Parasol Lot 59 is a galvanized steel structure of beams and columns, set either on concrete piers or directly buried. The infrastructure is topped by 7,600 photovoltaic panels that covers an existing parking lot for 800 vehicles at Arizona State University in Tempe, Arizona.

The design module was derived from the existing parking stall dimension and the proposed spacing of the solar modules. All of the steel members were locally shop-fabricated and dipped in galvanized dipping vats prior to their arrival on-site, where they were erected and bolted in place. The entire structure is bolted together for efficiency, movability and speed. The patented design for the structure is unique in that it is completely maintained from below and hovers nearly 30 feet above the ground.

Construction Timeline

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td></td>
</tr>
</tbody>
</table>

Image courtesy of © De Bartolo Architects

Project data and description provided by De Bartolo Architects. Research by Korn Suprakorn, GSAPP.
1. Steel columns set the whole layout of the parking lot for 800 vehicles.

2. The steel columns were topped with galvanized steel I-beams which created a rectangular grid to support the solar panels above.

3. The structure was topped with 7,600 photovoltaic panels bringing together shading and power generation under one roof.

4. Power Parasol Lot 59 is located in the campus area of Arizona State University, right next to the Sun Devil Football Stadium.
Above: Structural columns for the system serve dual purpose as billboards. Below: Axonometric of system components.
The Auditorium in L’Aquila was built as an interim solution to replace the Castello Spagnolo concert hall, which was gravely damaged in a 2009 earthquake. It is an ensemble of three volumes – a trio of cubes set at seemingly random angles, housing the 238-seat concert hall, the foyer, and dressing rooms.

The building was designed entirely as timber construction, including the wood members which were pre-cut and delivered to site via truck as flatpack elements to be assembled in-situ. Wood was chosen for its acoustic properties, but also because it is flexible, more resistant to earthquakes, less invasive, and can be easily prefabricated and quickly assembled.
Factory and Site Sequence

Meeting between stakeholders.
Laminating the wood.
Foundation prototype.
Foundation poured on site.
Construction of timber frame.
Completed interior.

Drawing by Jihae Park, GSAPP.
Images courtesy of © Renzo Piano Building Workshop
1. Concrete foundation was site poured.

2. Timber frame was placed on foundation.

3. Timber frame was cladded and finished.
Timmerhuis is a mixed-use building that serves the City of Rotterdam, accommodating municipal services, offices, and residential units. Its form is a compilation of small cubic modules, each measuring 7.2 meters wide, 7.2 meters deep and 3.6 meters high, creating a pixelated appearance, and breaking down the overall scale of the massing.

The project uses a prefabricated modular steel structural system, allowing for greater flexibility and versatility in construction, and giving it the ability to adapt to several programs ranging from office spaces, exhibition spaces, housing, and open public space on the ground floor. On the ground floor for instance, the structure allows for generous open space, with modules overhanging rather than encroaching on the street, thus encouraging an active engagement with the city. Further up, the overhang of the modules are used to house a garden for the apartments.

<table>
<thead>
<tr>
<th>Construction Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 6 8 10 12 14 16 18 20 22 24 Months</td>
</tr>
<tr>
<td>On-site Assembly</td>
</tr>
</tbody>
</table>

Please note that this project data has been gathered through student research and not verified by the team. Research and project description by Felipe Rocha, GSAPP.
Construction Sequence

1. Concrete foundation and pad were site poured.

2. Cranes were put in place on site.

3. Structural cores were constructed to attach subsequent phases.

4. Modules were craned into place around the structural cores.
5. The remaining modules were craned into place.

6. Building was cladded and cranes were removed.

Site Plan and Staging

Drawing by Felipe Rocha, GSAPP
Commissioned by the City of Madrid, the Kiosk m Poli is designed to be a single, streamlined, block design used for temporary street markets and handicraft fairs. The small square footage and simple design enables the kiosk to be transported as one piece and craned into place without the need for assembly or disassembly.

The rotating façade doubles as an advertising board in addition to providing an opening where vendors can serve customers. Available in a variety of finishes, the minimal design of the kiosk allows for it to be placed in practically any part of the city like public squares, gardens, or vacant parking lots, without the need for foundations or any prior preparations on site.

Brut Deluxe/ Ben Busche City of Madrid
Primur SL 2006
3 months 1-4 hours
Flexible, public realm
Kiosk, public infrastructure
1
66 SF
Steel Corten steel
26,700 € per unit 73€ million for 275 units
brudeluxe.com

Construction Timeline

1 2 3 4 5 6 Months

Factory Assembly On-site Assembly

Project data provided by Brut Deluxe. Research and project description by Rahul Gupta, GSAPP.
The Pagliuca Harvard Life Lab is part of Harvard University’s Innovation Labs ecosystem, providing access to a fully equipped wet lab environment. Collaboration and flexibility were the two main drivers in the design and planning of the spaces at the lab. The program of the building is split, with office and collaboration spaces located on the first floor, and wet-lab space located on the second floor.

The 34 prefabricated modules were constructed in a state-of-the-art factory controlled environment in Pennsylvania, transported to the construction site via truck, and installed on a traditional site-poured concrete foundation.

The modules have steel framing with composite concrete decking, which was designed and sized based on shipping limitations on height, width, and weight. The prefabricated modules arrived on-site with substantially complete mechanical, electrical, and plumbing (MEP) systems, millwork, doors, fixtures, exterior cladding, and windows.

<table>
<thead>
<tr>
<th>Architect</th>
<th>Shepley Bulfinch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricators</td>
<td>NRB, Triumph Modular</td>
</tr>
<tr>
<td>Year Completed</td>
<td>2016</td>
</tr>
<tr>
<td>Factory Assembly Time</td>
<td>2 months</td>
</tr>
<tr>
<td>On-site Assembly Time</td>
<td>5 months</td>
</tr>
<tr>
<td>Site Typology</td>
<td>Infill</td>
</tr>
<tr>
<td>Program</td>
<td>Wet laboratory</td>
</tr>
<tr>
<td>Stories</td>
<td>2</td>
</tr>
<tr>
<td>Gross Square Footage</td>
<td>15,000 SF</td>
</tr>
<tr>
<td>Structural Materials</td>
<td>Steel frame, concrete</td>
</tr>
<tr>
<td>Facade Materials</td>
<td>Concrete, aluminum</td>
</tr>
<tr>
<td>Additional Information</td>
<td>shepleybulfinch.com</td>
</tr>
</tbody>
</table>

Please note that this project data has been gathered through student research and not verified by the team. Research and project description by Rahul Gupta, GSAPP.
The ISDSI Campus building in Thailand was built using up-cycled steel shipping containers to reduce the carbon footprint of the building. The main structure is built out of 17 ‘high-cube’ shipping containers, which are 9.5’ high, one foot taller than a standard shipping container. The extra height of these containers makes the interior space feel much larger, open, and welcoming.

Shipping containers were chosen for the project since they can act as both the primary structure and volumetric component, which maximized efficiency and sustainability. In addition, the containers were built around large, open-air common areas, allowing breeze to constantly flow through the structure, providing passive ventilation in the tropical climate to reduce dependency on air-conditioning systems.
Ground Floor Plan

Drawing courtesy of © Nattawit Jongprasert
Construction Sequence

1. The first layer of shipping containers was placed. No on-site construction of foundations were needed.

2. The second layer of shipping containers was stacked on top of the first layer.

- Initial Shipping Container
- On-site Finishing Work
- Final Output

Legend
- Staging / Containers
- Assembled Components

ISDSI Campus

Drawing by Kuan He, GSAPP
The top layer of containers was placed, forming the main office on the third floor.

Stairs, platforms, and roofs were added to the containers.

Drawing by Kuan He, GSAPP
Living Unit Ljubljana is a wooden shell designed to be adaptable to different locations, climate conditions, and terrains. It can be used as holiday cabin, tourism or micro-dwelling shelter. A prototype was installed on the grounds of the Ljubljana Castle in 2017, but has since been removed.

The basic unit’s small size (4.50m X 2.50m X 2.70m) allows for easy and different transportation possibilities. The basic unit offers accommodation (with kitchen, bathroom, bed and seats) and joins horizontally or vertically.

The structure is made by prefabricated timber frames which are reinforced by plywood boards on both sides. The cabin can be fixed on the ground by steel anchors or removable concrete cubes. The interior finish is changeable as well.

Project data and description provided by OFIS Architects. Research by Oscar DeLeon, GSAPP.
Site Plan
Living Unit Ljubljana

Construction Sequence

1. Ground was prepared for the foundation.
2. Solid concrete footings were placed.
3. Modules were delivered on site.
4. Modules were installed and finishing was applied.

Legend
- Site Development
- Staging / Assembly
- Assembled Components

Drawing by Oscar DeLeon, GSAPP
Living Unit Ljubljana

OFIS Architects
Ljubljana Castle, Slovenia

Additional Partners
The project by OFIS architects & Permiz, C+C, C28 and AKT Engineers (London)

is a wooden shell adaptable on different locations, climate conditions, and terrains. It can be used as holiday cabin, tourism or micro-dwelling shelter. The basic unit's small size (4.50m X 2.50m X 2.70m) allows for easy and different transport possibilities. The basic unit offers accommodation (with kitchen, bathroom, bed and seats) and joins horizontally or vertically.

The structure is made by timber frames which are reinforced by plywood boards on both sides. The cabin can be fixed on the ground by steel anchors or removable concrete cubes. The interior finish is changeable.

Year Completed
2017

Offsite Buildout Time*
4 Months

Onsite Buildout Time*
2 Days

Site Typology
Applicable to various site types.

Project Type
Tourism/Micro-Dwelling

Stories
3 (1-3 optional)

GSF
30m (10m-40m optional)

Structural Materials
Timber

Facade Materials
Wood (Aluminum, Concrete Panels)

Drawings courtesy of © OFIS Architects
Living Unit Ljubljana

OFIS Architects
Ljubljana Castle, Slovenia

Additional Partners
The project by OFIS architects & Permiz, C+C, C28 and AKT

is a wooden shell adaptable on different locations, climate
conditions, and terrains. It can be used as holiday cabin,
tourism or micro-dwelling shelter. The basic unit's small size
(4.50m X 2.50m X 2.70m) allows for easy and different
transport possibilities. The basic unit offers accommodation
(with kitchen, bathroom, bed and seats) and joins
horizontally or vertically.

The structure is made by timber frames which are reinforced
by plywood boards on both sides. The cabin can be fixed on
the ground by steel anchors or removable concrete cubes.
The interior finish is changeable.

Year Completed
Offsite Buildout Time*
Onsite Buildout Time*
Site Typology
Project Type
Stories
GSF
Structural Materials
Facade Materials

AKT Engineers (London)
2017
4 Months
2 Days
Applicable to various site types.
Tourism/Micro-Dwelling
3 (1-3 optional)
30m (10m-40m optional)
Timber
Wood (Aluminum, Concrete Panels)

Living Unit Ljubljana
Modular
Oscar DeLeon
Oscar DeLeon

Section

Drawing courtesy of © OFIS Architects
Living Unit Ljubljana

The project by OFIS architects & Permiz, C+C, C28 and AKT is a wooden shell adaptable on different locations, climate conditions, and terrains. It can be used as holiday cabin, tourism or micro-dwelling shelter. The basic unit's small size (4.50m X 2.50m X 2.70m) allows for easy and different transport possibilities. The basic unit offers accommodation (with kitchen, bathroom, bed and seats) and joins horizontally or vertically.

The structure is made by timber frames which are reinforced by plywood boards on both sides. The cabin can be fixed on the ground by steel anchors or removable concrete cubes. The interior finish is changeable.

Year Completed
Offsite Buildout Time
Onsite Buildout Time
Site Typology
Project Type
Stories
GSF
Structural Materials
Facade Materials
AKT Engineers (London)
2017
4 Months
2 Days
Applicable to various site types.
Tourism/Micro-Dwelling
3 (1-3 optional)
30m (10m-40m optional)
Timber
Wood (Aluminum, Concrete Panels)

Living Unit Ljubljana Modular
Oscar DeLeon
Image courtesy of © Janez Martincic

Living Unit Ljubljana Prefab
Global
Livingboard is a flexible “core” system intended to support the development of housing initiatives in any rural area of the world. The first pilot project is currently under development in India. The Livingboard core must be positioned horizontally, constituting the floor of a 12-square meter room (3x4m). It can provide, depending on the geography and infrastructure of the region in question, water storage and distribution, water treatment through filtration, waste management, heating, batteries to accumulate PV-generated electricity and Wi-Fi connectivity.

From a structural point of view, the board provides seismic isolation by separating the building’s superstructure from the substructure. Made of low-cost materials that can be flat-packed, Livingboard revolves around the idea that housing should not be a static unit that is packaged and handed over to people, but rather should be conceived of as an ongoing project wherein the residents are co-creators.
Axonometric of Components
Axonometric of Infrastructural Components
Located in Mifune Town in Kumamoto Prefecture, this project is a housing complex made of three temporary wooden buildings surrounding a central community space, and was designed for ten families who were affected by a massive earthquake in the area in 2016. The project was a collaboration between Shigeru Ban Architects, Voluntary Architects' Network, Keio University SFC Shigeru Ban Lab, and Kumamoto University.

The structure of the temporary house was built from wood and plywood panels. The panels were prefabricated at a factory and then brought to the site, thus shortening the construction period on site, and providing faster relief for the families in distress.
Construction Sequence

1. Concrete foundation was poured on site.

2. The studs and I-beams were placed in preparation for the wood floor.

3. Wooden floor girders were placed on the studs to span the distance.

4. Wooden floor was constructed.

Legend:
- Site Development
- Staging / Assembly
- Assembled Components

Drawing by Pooja Annamaneni, GSAPP
5. Prefabricated walls were placed on the floor.

6. Wooden beams were placed on the walls to support the roof structure.

7. Wooden roof trusses were placed on the beams.

8. Roof was finished with a corrugated metal lining.

Legend
- Site Development
- Staging / Assembly
- Assembled Components
Temporary Housing for Kumamoto Earthquake

Rendered Aerial Plan

Image courtesy of © Shigeru Ban Architects
Opened in March 2019, this 85.4m high building is to-date the world’s tallest timber building. The mixed-use building has 18 stories that include apartments, a hotel, offices, a restaurant, a rooftop terrace, and common areas. Timber structures, including cross-laminated timber (CLT) and glue-laminated timber (GLT), were prefabricated in a nearby factory and installed by a Norwegian firm Moelven Limitre.

All the wood used for construction came from local sources to support the local forestry and wood processing industry, and also to reduce the carbon footprint of transportation. CLT and GLT were selected as they are strong enough to support large loads and also much more sustainable than conventional construction materials. In both CLT and GLT, the timber acts a carbon sink, permanently locking carbon absorbed from the atmosphere into the structure. To combat the excessive swaying typical of lightweight timber structures, the building has piles running 50m deep and concrete floor slabs on the top seven floors to increase the weight of the structure.
Program Breakdown

- Mjørstårnet Tower
- Flatpack
- Alek Tomich
- Programming
- 81 Meters Tall
- Public Poolhouse
- Apartments
- Hotel Rooms
- Roof Terrace
- Office Space
- Lobby and Restaurant

Drawing by Alek Tomich, GSAPP
Hemeroscopium House
Calle Cabo Candelaria, 9B, 28290 Las Rozas de Madrid, Madrid, Spain

Architect | Ensamble Studio
Developer | Hemeroscopium
Construction Company | Materia Inorgánica
Year Completed | 2008
Factory Assembly Time | 4 months
On-site Assembly Time | 1 week
Site Typology | Infill
Program | Housing
Stories | 3
Gross Square Footage | 4,300 SF
Structural Materials | Precast concrete, steel
Facade Materials | Concrete, glass
Additional Information | ensamble.info

Hemeroscopium House reinterprets the concept of weight and domesticity. Built in just seven days, the project consists of prefabricated elements cast from seven types of typical infrastructure ranging from C-channel concrete segments of an irrigation canal, to pre-stressed concrete I-beams. Together the elements create an architectural space of alternating heaviness and lightness, balance and instability. The structure encloses the living space and is positioned on the site in a helical sequence that culminates into a single counterweight — a twenty ton block of granite. While the scale and material of the structure marks an imposing presence, the building has a sense of lightness and transparency. Thus, through decontextualizing such large-scale, concrete infrastructure, the project reimagines private and domestic space. A total prefabrication of the different elements and a coordinated rhythm of assembly was key to build the structure in just seven days.

Construction Timeline

Project data and description provided by Ensamble Studio. Research by Cynthia Wang, GSAPP.
Site Plan

Drawing by Cynthia Wang, GSAPP
Transportation

Drawing by Cynthia Wang, GSAPP
Hemeroscopium House

Construction Sequence

1. Ground was prepared and the structure for the footing was positioned in the soil.

2. Foundation slab was constructed in soil.

3. Seven pre-fabricated structural components (5 prestressed concrete beams and 2 steel trusses) were assembled in a helical sequence.

4. Finishing work was done once the structure was in place.
Prefabricated Components

Hemeroscopium House

Prefab Global

Drawing by Cynthia Wang, GSAPP
Ground Floor Plan
Second Floor Plan
Hemeroscopium House

East Elevation

North Elevation

Drawings courtesy of © Ensamble Studio
Pandemic Response (COVID-19)
Case Studies

CURA
Temporary Shelter for COVID-19 Crisis

Prefab 132
Flatpack 137
CURA (Connected Units for Respiratory Ailments) is a quick-to-deploy emergency facility designed to reduce the pressure from COVID-19 on existing healthcare facilities.

Each unit consists of a twenty foot shipping container, repurposed with bio-containment equipment. The inherent flexibility and adaptability means that each pod can work autonomously and be shipped to any location in the world, adapting to the needs of the local healthcare infrastructure.

An extractor creates indoor negative pressure, complying with the standards of Airborne Infection Isolation Rooms (AIIRs). Windows on either side of the containers provide enhanced monitoring capabilities for doctors and family members without having to step into the isolated ward. The first deployment of CURA is located at a Turin field hospital located within the city’s Officine Grandi Riparazioni (OGR), a late 19th century industrial complex.
Typically, all-night internet cafes provide shelter for people in the region, offering couches, computers, and showering facilities for people to stay overnight at an affordable price. However, as Japan saw a surge in COVID-19 cases, authorities closed down these cafes, leaving many people homeless.

To aid the “net cafe refugees”, Shigeru Ban Architects and his team at Voluntary Architects’ Network (VAN) installed these emergency shelters in a martial arts center in Yokohama, Japan, which was converted into a space for these refugees following the closure of an online café in the region due to COVID-19. The design features Shigeru Ban’s paper partition system – the same used to help those affected by the Japanese floods in 2018. The system is made using cardboard tubes with fabric sides to provide fast-to-deploy shelter that abide by distancing requirements and also offer a sense of physical privacy.
Temporary Shelter for COVID-19 Crisis

Images courtesy of © AFP
Resources & Acknowledgements

Public Design Commission of the City of New York

The Public Design Commission reviews permanent works of architecture, landscape architecture, and art proposed on or over City-owned property. As established by the New York City Charter in 1898, the Commission comprises 11 members, and includes an architect, landscape architect, painter, and sculptor as well as representatives of the Brooklyn Museum, Metropolitan Museum of Art, New York Public Library, and the Mayor. The Commission is an advocate for excellence and innovation in the public realm, ensuring the viability and quality of public programs and services throughout the city for years to come.

Columbia University Graduate School of Architecture, Planning, and Preservation

Among the world’s leading research universities, Columbia University in the City of New York continuously seeks to advance knowledge and learning at the highest level. Columbia’s Graduate School of Architecture, Planning and Preservation (Columbia GSAPP) develops new forms of pedagogy, research, and practice to engage the crucial issues of our time across all scales of the built environment. The School drives innovation and change through the leadership of its faculty and academic programs—spanning architecture, historic preservation, planning, real estate development, and urban design—as well as the expansion of interdisciplinary research initiatives and timely events.

Architecture A4859 SP2019 Seminar
Prefab, Modular & Flatpack

Instructor: Laurie Hawkinson
Guest Instructor: Rebecca Macklis
Teaching Assistant: Andrea Tonc

Thank you to the students, lecturers, and critics who participated in this research and information exchange during the Spring 2019 seminar at Columbia University.

Students
Pooja Annamaneni, Oscar Deleon, Jacob Gulinson, Rahul Gupta, Kuan He, Fiona Ho, Jacob Karasik, Mengxuan Liu, Ruxiao Liu, Ricky Lo, Leonardo Tamargo Niebla, Jihae Park, Felipe Rocha, Jake Rosenwald, Korn Supsakorn, Alek Tomich, Cynthia Wang

Guest Lecturers & Critics

Jon Cohen
Senior Policy Advisor
Deputy Mayor for Housing and Economic Development

David Farnsworth
Principal and Americas Tall Buildings Business Leader, ARUP

Cristián Fernández
Principal, Cristián Fernández Arquitectos

James Garrison
Principal, Garrison Architects

Douglas Gauthier
Principal, GAuthier Architects

Mimi Hoang
Principal, nArchitects

Dominic Leong
Principal, Leong Leong Architects

Wolf Manglesdorf
Partner, BuroHappold Engineering

Ada Tolla
Co-founding Principal, LO-TEK

Becky Yurek
Senior Design Liason
Department of Design and Construction

Publication Team

Laurie Hawkinson
Partner at Smith-Miller + Hawkinson Architects (SMH+); Professor of Architecture at Columbia University’s GSAPP; Commissioner, NYC Public Design Commission

Rebecca Macklis
Senior Urban Design Manager, NYC Public Design Commission

Andrea Tonc
Associate, Smith-Miller + Hawkinson Architects

Rahul Gupta
M.Arch Candidate ’21, Columbia University GSAPP
Designing New York: Prefabrication in the Public Realm Roundtable

Thank you to the participants of the roundtable discussion held at the Center for Architecture, New York City, July 23, 2019.

Thank you to the American Institute of Architects NY Technology Committee for their time and efforts in assisting to facilitate this event and research.

Jon Cohen
Senior Policy Advisor to the Deputy Mayor for Housing and Economic Development

Michaela Metcalfe, AIA, CCM, LEED AP
Director of Design and Construction Excellence
Department of Design and Construction

Anthony Romeo, AIA
Program Director of the Queens Public Library Program Unit, former Project Executive/Director of Modular Home Design, Department of Design and Construction

Susan Rosenstadt-Bresler
Deputy Chief of Architecture & Engineering
Department of Parks and Recreation

James Garrison, AIA
Principal, Garrison Architects

Thomas Gluck
Principal, GLUCK+

Eric Bunge, FAIA
Principal, nArchitects

Giuseppe Lignano, Intl.Assoc. AIA
Co-founding Principal, LO-TEK

David Farnsworth, PE
Principal and Americas Tall Buildings Business Leader, ARUP

Wolf Manglesdorf
Partner, BuroHappold Engineering

Thank you to the firms and design teams who have generously provided their work and insight to this project.

Brut Deluxe
Carlo Ratti Associati
Debartolo Architects
Ensamble Studio
Garrison Architects
GLUCK+
Helen & Hard
Human Habitat
LOT-EK
OFIS Architects
OMA
Park Associati
Renzo Piano Building Workshop
Shepley Bulfinch Architects
Shigeru Ban Architects
SHP Architects
Voll Arkitektur

Thank you to Columbia University's Graduate School of Architecture, Planning, and Preservation (GSAPP) for their generous support of this research and document.

Bill de Blasio
Mayor

Vicki Been
Deputy Mayor for Housing and Economic Development

Public Design Commission of the City of New York

Signe Nielsen, President
Landscape Architect

Phillip E. Aarons, Vice President
Lay Member

Laurie Hawkinson
Architect

Manuel Miranda
Lay Member

Richard Moore
Brooklyn Museum

Susan Morgenthau
The New York Public Library

Ethel Sheffer
Mayor’s Representative

Dr. Merry H. Tisch
The Metropolitan Museum of Art

Shin-pei Tsay, Secretary
Lay Member

Mary Valverde
Sculptor

Hank Willis Thomas
Painter

Justin Garrett Moore, Executive Director
Keri Butler, Deputy Executive Director
Grace Han, Director of Capital Projects
Rebecca Macklis, Senior Urban Design Manager
Jenna Miller, Urban Design & Policy Manager
Juliana Monjeau, Archivist & Senior Records Manager
Carolina Llano, Project Manager
Mary Beth Betts, Tour Manager
Gail Cornwell, Gary Deane, Gail Green, Deirdre LaPorte, and Patricia Orfanos, Docents