7:00-7:05 PM – Welcome and introductions
Adam Ratner, New York University

7:05-7:30 PM – COVID-19 in New York City
Mary Foote, NYC Health Department

7:30-8:00 PM – Stewardship in the COVID-19 era
Priya Nori, MD, Montefiore Medical Center

8:00-8:30 PM – COVID-19 immunity and vaccine trials
Mark Mulligan, MD, New York University
UPDATE: COVID-19 IN NEW YORK CITY

Mary Foote, MD, MPH
Senior Health Security Specialist / Health Systems Planning and Strategies Lead (ICS)
NYC Department of Health and Mental Hygiene

July 13, 2020

Disclaimer: Our understanding of COVID-19 is evolving rapidly. This presentation is based on our knowledge as of July 13, 2020.
WHERE WE ARE NOW

• More than 13 million cases and 572,000 deaths due to COVID-19 confirmed worldwide.

• Many U.S. states implementing face covering requirements and other restrictions after seeing increased transmission.

• New York City (NYC) began Phase Three of reopening on July 6.

• Current NYC response strategy: continue suppression measures and monitor impact of reopening.
COVID-19 TRANSMISSION WORLDWIDE

>13 million cases
>572,000 deaths
7/13/20

New York Times. Coronavirus map: tracking the global outbreak
CHANGE IN NUMBER OF NEW CASES IN THE U.S. IN THE PAST TWO WEEKS

7/13/20

CUMULATIVE CASES AND DEATHS, U.S.
7/9/20

> 3.4 million cases
(≈26% of confirmed global cases)

> 137,000 deaths
(≈24% of reported global deaths)

COVID-19, NYC
7/12/20

Figures show number of daily COVID-19 cases, hospitalizations, and deaths

Cumulative counts:
• Cases: 215,924
• Hospitalizations: 55,451
• Confirmed deaths: 18,670
• Probable deaths: 4,613

NYC Health Department. COVID-19: data.
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
DAILY TESTING FOR COVID-19

NUMBER OF PEOPLE TESTED DAILY BY DATE

PERCENT OF PEOPLE WITH POSITIVE RESULTS BY DATE

• During suppression, it will be important to identify and exclude health care personnel (HCP) who have had worksite exposures to COVID-19.

• Prevention of health care exposures must take asymptomatic and presymptomatic transmission of COVID-19 into account.

• In this context, NYC issued Health Advisory #20 with recommendations for HCP on:
 • Personal protective equipment (PPE)
 • Identifying COVID-19 exposures in the workplace
 • Exclusion after a workplace exposure

• Aligned with updated Centers for Disease Control and Prevention (CDC) guidance:

NYC Health Department. Health Advisory #20.
• Everyone entering health care facilities should wear a face covering or mask.

• In addition to masks, the CDC now recommends that all HCPs use eye protection (goggles or a face shield) for all patient encounters.

• N95 respirator or higher should be worn for any procedure that can generate aerosols.
 • Given ongoing N95 shortages in NYC, prioritize respirators for aerosol-generating procedures (e.g., intubation, suctioning, high-flow oxygen, nebulizer) or locations where they often occur (e.g., ICU).

• For evaluation of patients with possible or confirmed COVID-19, clinicians are still advised to use gloves, gown, face mask (or N95 respirator), and eye protection.
• Asymptomatic HCP with a workplace exposure to a patient, visitor, or other HCP with confirmed COVID-19 should be excluded for 14 days.

• Exposure is defined as any of the following:
 • HCP did not wear a face mask/respirator and spent ≥ 15 minutes within 6 feet of a person with confirmed COVID-19.
 • HCP did not wear eye protection and spent ≥ 15 minutes within 6 feet of a person with confirmed COVID-19 who was not wearing a face covering/mask.
 • HCP did not wear all recommended PPE (gloves, gown, N95 respirator, and eye protection) during a procedure that can generate aerosols.

NYC Health Department. Health Advisory #20.
TEST, TRACE, AND TAKE CARE

- Make COVID-19 testing a part of routine care in all settings.
- Report cases diagnosed using a point-of-care (POC) diagnostic test.
 - Reporting Central or the Provider Access Line 866-692-3641.
- Tell patients to expect a call from Trace if they test positive.
 - Include accurate phone number in lab requisition forms.
- Patients with positive result should isolate for 10 days from start of symptoms or from date of positive result if asymptomatic.
• Contact tracers will interview cases to elicit close contacts and assess need for services (e.g., hotel, meds).
• Trace is required to maintain patient confidentiality.
• Cases and contacts will be monitored daily by phone, text.
• Trace program is not a public benefit under public charge test.
• See Letter to Providers: COVID-19 Test and Trace Corps.
NY STATE GUIDANCE: QUARANTINE AFTER OUT-OF-STATE TRAVEL

- Per NY State Executive Order 205 issued 6/24, restrictions began 6/25.
- Travelers required to quarantine 14 days after leaving states with a seven-day rolling average of:
 - Positive COVID-19 diagnostic test rate > 10/100,000 residents OR > 10%
- As of 7/13: AL, AR, AZ, CA, DE, FL, GA, ID, IA, KS, LA, MS, NV, NC, OK, SC, TN, TX, UT
- Does not apply to passing through a state for <24 hours during travel
- Action taken in conjunction with New Jersey and Connecticut
- Quarantine requirements:
 - Individual must not be in public
 - Self-quarantine from other family members
 - Additional detail available in New York State Guidance
- Travelers will receive phone reminders to quarantine
- Exemptions for first responders and essential workers

EXEMPTIONS:
ESSENTIAL WORKERS AND FIRST RESPONDERS

- Exemptions are specified for different duration of travel to NY State:
 - Short term — traveling to NYS for <12 hours
 - Medium term — traveling to NYS for <36 hours
 - Long term — traveling to NYS for >36 hours

- All advised to minimize contact with others, self-monitor for COVID-19 symptoms, wear face covering, observe hand and other hygiene practices.

- Long-term — also advised to
 - Seek diagnostic testing within 24 hours of arrival
 - Maintain social distancing, self-monitoring, expanded hygiene practices ≥ 14 days
 - Avoid extended periods in public or in congregate settings ≥ 7 days

- Additional industry-specific guidance may apply (consult employer).

EXEMPTIONS: HEALTH CARE PERSONNEL

- HCP may return to work within 14 days of travel to a state with significant community spread if furloughing would cause staff shortages that impact operations and HCP:
 - Are asymptomatic.
 - Received COVID-19 diagnostic testing within 24 hours of arrival in New York.
 - Self-monitor twice a day.
 - Receive temperature monitoring and symptom checks at the beginning of each shift, and at least every 12 hours during a shift.
 - Wear a face mask while working.
- HCP should be assigned to patients at low risk of severe complications.
- HCP should maintain self-quarantine when not at work.
- This guidance does not apply to nursing homes.

QUESTIONS?
Antimicrobial Stewardship in the COVID-19 Era

July 13, 2020

Priya Nori, MD
Montefiore/Einstein Antimicrobial Stewardship Program

MontefioreID
BronxASP

http://www.einstein.yu.edu/departments/medicine/divisions/infectious-diseases/antimicrobial-stewardship/
Disclosures & Disclaimers

- No financial disclosures
- *Institution-specific HAI rates during the pandemic (CAUTI, CLABSI, VAEs, etc.) will not be discussed*
 ✓ Local ecology, MDROs and *C. difficile* will be discussed
1. Stewardship & pandemic response
2. Antibiotic use metrics during COVID-19
 - Factors contributing to overuse
3. What is known about COVID-19 and bacterial/fungal co-infections
 - Limited published data
 - Montefiore-specific data
4. NYCDOH COVID-19 antibiogram
What do we expect re: antibiotic use and secondary infections?

Source: https://www1.nyc.gov/site/doh/covid/covid-19-data.page
Stewardship & Recent Pandemics/Outbreaks Affecting NYC

2009 H1N1
- NA inhibitor and vaccine allocation guidelines

2015 Ebola
- Travel screening, isolation protocols
- Rapid diagnosis and treatment of Falciparum malaria

2015 Legionnaire’s
- Diagnostic stewardship of urinary Ag
- Treatment guidelines
- DOH collaboration for molecular typing

2016 Zika
- Diagnostic stewardship of serologic testing and PCR

2019 Measles
- IVIG shortage mitigation and allocation guidelines
COVID-19: Making the Case for Stewardship March 2020

Antimicrobial Stewardship & COVID-19 Preparation/Response

- Collaboration w/ Epidemiology/Infection Prevention
 - Can assist w/ early case identification
 - Assist with communication
 - Opportunity to longitudinally link programs

- Diagnostic Stewardship
 - Coordinate w/ microbiology and Hospital Epidemiology for real-time interpretation of PCR test results

- Treatment
 - Assist in creating treatment guidelines
 - Anticipate & manage drug shortages
 - Assist in completing eIND and local IRB paperwork for emergency use agents (such as Remdesivir)
 - Monitor/enhance compliance w/ local treatment guidelines

Stevens MP, Patel PK, Nori P. ICHE. March 2020
What Happened to Outpatient Antibiotic Prescriptions during COVID-19?

- All-payer pharmacy claims data across 50 states, 2/16 to 4/25/20
- Sharpest declines in prescriptions for amoxicillin (-64%) and azithromycin (-63%)
- *Positive implications for AMR?*

Inpatient Antimicrobial Utilization (Definitions)

<table>
<thead>
<tr>
<th>Antimicrobial Days of Therapy (DOT)</th>
<th>Number of days in which a patient receives a specific antimicrobial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days Present</td>
<td>Number of days in which a patient spent any time in a specific unit or facility</td>
</tr>
<tr>
<td>AU rate</td>
<td>Antimicrobial Days/1000 Days Present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AU Days Predicted (based on statistical models of nationally aggregated AU data)</th>
<th>Risk-adjusted for hospital bed #, ICU bed #, med school affiliation, location bed size, location type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized Antimicrobial Administration Ratio</td>
<td>Observed to Predicted ratio
▶ SAAR > 1 : AU higher than predicted
▶ SAAR < 1 : AU lower than predicted</td>
</tr>
</tbody>
</table>

All AU slides courtesy of K. Cowman
ED CAP Coverage

Ceftriaxone

[Graph showing trends in Ceftriaxone usage over time, with different lines representing different EDs like DHAM ED, Weiler ED, and others.]

Montefiore

Albert Einstein College of Medicine

7/13/2020
“Atypical” Coverage
Piperacillin-tazobactam

Facility-wide Inpatient

<table>
<thead>
<tr>
<th></th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Patients initiated</td>
<td>1025</td>
<td>964</td>
<td>1072</td>
<td>1285</td>
<td>784</td>
</tr>
<tr>
<td>Average days of therapy per patient</td>
<td>3.78</td>
<td>3.84</td>
<td>3.58</td>
<td>3.82</td>
<td>3.89</td>
</tr>
</tbody>
</table>
Vancomycin

Facility-wide Inpatient

IV Vancomycin

<table>
<thead>
<tr>
<th></th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Patients initiated</td>
<td>1453</td>
<td>1317</td>
<td>1416</td>
<td>1413</td>
<td>929</td>
</tr>
<tr>
<td>Average days of therapy per patient</td>
<td>2.62</td>
<td>2.73</td>
<td>2.45</td>
<td>2.51</td>
<td>2.62</td>
</tr>
</tbody>
</table>
Ceftriaxone

Facility-wide Inpatient

<table>
<thead>
<tr>
<th># of Patients initiated</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1906</td>
<td>1598</td>
<td>2088</td>
<td>2167</td>
<td>1011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average days of therapy per patient</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.73</td>
<td>2.67</td>
<td>2.67</td>
<td>2.67</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Albert Einstein College of Medicine
HANYS AU Dashboard by NYS Region

Piperacillin-Tazobactam

Ceftriaxone
Patient and Provider Factors Contributing to Antibiotic Overuse

• Severe COVID-19 indistinguishable from traditional sepsis and septic shock
 > Unstable hemodynamics, elevated inflammatory markers, persistent fevers, impressive CXRs
• HCW strain, fatigue, fear of the unknown
 > Deployment of non-traditional staff/staffing ratios
• Rationing of PPE and time spent with patients
 ➢ We did not experience shortages of most broad-spectrum antimicrobials
How Did This Happen?

<table>
<thead>
<tr>
<th>Pre-Pandemic</th>
<th>Pandemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective audit & feedback</td>
<td>ASP staff diverted to other functions (testing, clinical trials, EAP, EUA, etc.)</td>
</tr>
<tr>
<td>Formulary restrictions</td>
<td>Relaxed/lifted</td>
</tr>
<tr>
<td>NHSN AU submission</td>
<td>On hold</td>
</tr>
<tr>
<td>AU risk adjustment – ICU vs. Ward</td>
<td>Totally in flux</td>
</tr>
<tr>
<td>Education</td>
<td>On hold, then by zoom</td>
</tr>
<tr>
<td>Clinical pathways</td>
<td>COVID-19 Abx guidelines created in May 2020 as pandemic was winding down</td>
</tr>
</tbody>
</table>

What is Known about Super-infections and COVID-19?

- Risk factors\(^1\): severe COVID-19, prolonged hospital exposure, critical illness, intubation, indwelling catheters, combination antibiotic therapy, corticosteroids, IL-6 inhibition\(^2\), DM
- <10% of total hospitalized population\(^3\)
- Potentially terminal events\(^4\)
- Pathogenic organisms reported are often hospital-acquired/multi-drug resistant like SARS-1, MERS\(^3\)
- IDSA EIN Survey, May 11-June 3, 2020:
 > 214 physicians responded that superinfections are rarely (42%) or occasionally (44%) observed; predominantly while on mechanical/assisted ventilation (76%)

2. Lucas M Kimmig et al. IL6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections. doi: https://doi.org/10.1101/2020.05.15.20103531
Letter to the Editor

Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing

Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect?
 MMC Experience

• Astute frontline ID clinicians observed clusters of co-infections in surge ICUs (including MDROs)

• **Objective**: to characterize patient factors and microbiology of bacterial and fungal co-infections at our medical center with a focus on clinical outcomes, antimicrobial use and resistance (AMR)

• Retrospective observational study of all COVID-19 patients admitted **March 1, 2020 - April 18, 2020** to MMC
 > Excluded contaminants
 > True infections only (all cases reviewed by ID specialist)
Demographics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Distinct Patients (N=152/4267; 3.6%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>% or IQR</td>
</tr>
<tr>
<td>Age, years, median (IQR)</td>
<td>62</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>63</td>
</tr>
<tr>
<td>Male</td>
<td>89</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>48</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>60</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>11</td>
</tr>
<tr>
<td>Asian</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
</tr>
<tr>
<td>Unknown</td>
<td>12</td>
</tr>
</tbody>
</table>
Outcomes of Co-Infections at MMC

<table>
<thead>
<tr>
<th>Culture Source</th>
<th>N</th>
<th>% or IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood only</td>
<td>61</td>
<td>40%</td>
</tr>
<tr>
<td>Respiratory only</td>
<td>70</td>
<td>46%</td>
</tr>
<tr>
<td>Both blood and respiratory</td>
<td>21</td>
<td>14%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comorbidities</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlson Score</td>
<td>2</td>
<td>1-4</td>
</tr>
<tr>
<td>Immunocompromised*</td>
<td>84</td>
<td>55%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVID-19 Medications</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologics**</td>
<td>26</td>
<td>17%</td>
</tr>
<tr>
<td>Acute steroid use</td>
<td>44</td>
<td>29%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay, days</td>
<td>13</td>
<td>6-21</td>
</tr>
<tr>
<td>Still admitted at time of analysis</td>
<td>42</td>
<td>28%</td>
</tr>
<tr>
<td>Discharged alive</td>
<td>24</td>
<td>16%</td>
</tr>
<tr>
<td>Deceased</td>
<td>86</td>
<td>57%</td>
</tr>
</tbody>
</table>

*Immunocompromised = diabetes, HIV, hepatitis C, active malignancy, organ transplant, rheumatologic disease, or chronic receipt of immunosuppressive medications.

**Anakinra, Sarulimab, Tocilizumab, Leronlimab, through randomized clinical trial or compassionate use
(+) Respiratory and Blood Cultures

<table>
<thead>
<tr>
<th></th>
<th>Respiratory N=91</th>
<th>Blood N= 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>N % or IQR</td>
<td>N % or IQR</td>
<td></td>
</tr>
<tr>
<td>Time between (+) culture and</td>
<td>6 2-8</td>
<td>7 3-14</td>
</tr>
<tr>
<td>SARS-CoV-2 PCR, days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with (+) culture</td>
<td>4 4%</td>
<td>17 22%</td>
</tr>
<tr>
<td>prior to (+) SARS-CoV-2 PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with positive</td>
<td>2 2%</td>
<td>22 26%</td>
</tr>
<tr>
<td>culture and SARS-CoV-2 PCR,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>same day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidrug-resistant</td>
<td>17 19%</td>
<td>7 9%</td>
</tr>
<tr>
<td>organism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number w/ CVC</td>
<td>-</td>
<td>44 54%</td>
</tr>
</tbody>
</table>
CONS bacteremias increased >2x in this timeframe

<table>
<thead>
<tr>
<th>Source</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>6</td>
<td>7%</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>7</td>
<td>9%</td>
</tr>
<tr>
<td>Catheter</td>
<td>19</td>
<td>23%</td>
</tr>
<tr>
<td>Respiratory</td>
<td>11</td>
<td>13%</td>
</tr>
<tr>
<td>Oral pharyngeal</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Skin</td>
<td>5</td>
<td>6%</td>
</tr>
<tr>
<td>Multiple sources</td>
<td>25</td>
<td>30%</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>6%</td>
</tr>
</tbody>
</table>
Clinical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Respiratory*</th>
<th>Blood*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Care Admission</td>
<td>85</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>93%</td>
<td>40%</td>
</tr>
<tr>
<td>Ward Admission Only</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>7%</td>
<td>48%</td>
</tr>
<tr>
<td>Intubated</td>
<td>86</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>95%</td>
<td>56%</td>
</tr>
<tr>
<td>Max Lab Values, median</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC, k/uL</td>
<td>20.6</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>15.9-29.7</td>
<td>10.9-24.7</td>
</tr>
<tr>
<td>CRP, mg/dL</td>
<td>31.2</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>20.9-41.8</td>
<td>0-37.3</td>
</tr>
<tr>
<td>PCT, ng/mL</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.4-10.9</td>
<td>0-9.9</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of stay, days</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>9-21</td>
<td>3-24</td>
</tr>
<tr>
<td>Still admitted</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>33%</td>
<td>28%</td>
</tr>
<tr>
<td>Discharged alive</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>9%</td>
<td>21%</td>
</tr>
<tr>
<td>Deceased</td>
<td>53</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>58%</td>
<td>51%</td>
</tr>
</tbody>
</table>

*percent or IQR
Microorganism Summary
blaNDM, class B Carbapenemase-Producing *E. cloacae*: Bad Bugs… Still No Drugs

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Patient 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Male</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Age (years)</td>
<td>68</td>
<td>57</td>
<td>63</td>
<td>63</td>
<td>54</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td>Black/African American</td>
<td>Hispanic/Latino</td>
<td>Black/African American</td>
<td>Hispanic/Latino</td>
<td>Hispanic/Latino</td>
</tr>
<tr>
<td>NDM risk factors</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Blood culture d0</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>blaNDM, class B carbapenemase gene confirmation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Outcome</td>
<td>Deceased day 34</td>
<td>Deceased day 24</td>
<td>Deceased day 6</td>
<td>Deceased day 39</td>
<td>Discharged to chronic vent facility day 44, then readmitted</td>
</tr>
</tbody>
</table>

Table Note:

- Blood culture d0: Day 0 blood culture results.
- NDM risk factors: Presence of non-NDM risk factors.
- Outcome: Days until resolution or death.
Microorganisms and Antibiotics

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Intubation & CVC</th>
<th>Preceding Abx</th>
<th>Targeted Abx</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans (peritoneal fluid and urine - catheter)</td>
<td>Y</td>
<td>Ceftriaxone Doxycycline Ampicillin Micafungin Fluconazole Piperacillin-tazobactam</td>
<td>Tigecycline*** Ceftazidime-Avibactam Aztreonam</td>
</tr>
<tr>
<td>C. albicans, E. faecalis, S. epi (blood)</td>
<td>Y</td>
<td>Azithromycin Ceftriaxone Vancomycin Piperacillin-tazobactam Gentamicin Fluconazole</td>
<td>Tigecycline***</td>
</tr>
<tr>
<td>C. albicans (blood)</td>
<td>Y</td>
<td>Ceftriaxone Azithromycin Vancomycin Cefepime Piperacillin-tazobactam</td>
<td>Tigecycline*** + Gentamicin</td>
</tr>
<tr>
<td>CR E. cloacae (respiratory)</td>
<td>Y</td>
<td>Vancomycin Piperacillin-tazobactam Cefepime Micafungin</td>
<td>Ceftazidime-Avibactam Aztreonam</td>
</tr>
<tr>
<td>CR E. cloacae (blood)</td>
<td>Y</td>
<td>Ceftriaxone Doxycycline Piperacillin-tazobactam Vancomycin Cefoxitin Linezolid</td>
<td>Tigecycline*** Gentamicin Aztreonam Ceftazidime-Avibactam</td>
</tr>
<tr>
<td>CR K. pneumoniae** (blood)</td>
<td>Y</td>
<td>CR E. cloacae (resp)</td>
<td>MSSA (resp)</td>
</tr>
<tr>
<td>E. aerogenes x 2* (blood)</td>
<td>Y</td>
<td>CR E. cloacae (blood)</td>
<td>C. koseri (resp)</td>
</tr>
<tr>
<td>CR E. cloacae (Resp)</td>
<td>Y</td>
<td>CR E. cloacae (blood)</td>
<td>CR E. cloacae, P. aeruginosa (resp)</td>
</tr>
<tr>
<td>S. capitis (blood)</td>
<td>Y</td>
<td>CR E. cloacae (resp)</td>
<td>CR E. cloacae (urine – catheter)</td>
</tr>
<tr>
<td>CR E. cloacae (Resp)</td>
<td>Y</td>
<td>CR E. cloacae (blood)</td>
<td>CR E. cloacae & VRE (urine – catheter)</td>
</tr>
<tr>
<td>CR E. cloacae & MRSA (resp)</td>
<td>Y</td>
<td>CR E. cloacae & MRSA, S. marcescens (resp)</td>
<td>E. cloacae (blood)</td>
</tr>
</tbody>
</table>

Notes
- **blaNDM as part of Polymicrobial Infection**
- **Targeted Abx**
 - Tigecycline***
 - Ceftazidime-Avibactam Aztreonam

Antibiotics
- Ceftriaxone
- Doxycycline
- Ampicillin
- Micafungin
- Fluconazole
- Piperacillin-tazobactam
- Azithromycin
- Ceftriaxone
- Vancomycin
- Piperacillin-tazobactam
- Gentamicin
- Fluconazole
- Ceftriaxone
- Azithromycin
- Vancomycin
- Cefepime
- Piperacillin-tazobactam
- Vancomycin
- Piperacillin-tazobactam
- Cefepime
- Micafungin
- Ceftazidime-Avibactam
- Aztreonam
- Tigecycline***
- Gentamicin
- Aztreonam
- Ceftazidime-Avibactam
Antibiogram: *S. aureus*

<table>
<thead>
<tr>
<th>Organism</th>
<th>Number of Isolates</th>
<th>Cefazolin</th>
<th>Clindamycin</th>
<th>Gentamicin</th>
<th>Tetracycline</th>
<th>Trimethoprim-Sulfamethoxazole</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1 to 4/23/2020</td>
<td>151</td>
<td>65</td>
<td>71</td>
<td>97</td>
<td>91</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-2019 pan-ICU</td>
<td>279</td>
<td>60</td>
<td>69</td>
<td>96</td>
<td>91</td>
<td>93</td>
<td>100</td>
</tr>
</tbody>
</table>
Antibiogram: Gram Negatives

<table>
<thead>
<tr>
<th>Year</th>
<th>Organism</th>
<th>#</th>
<th>Amikacin</th>
<th>Aztreonam</th>
<th>Cefepime</th>
<th>Ceftriaxone</th>
<th>Cipro</th>
<th>Gentamicin</th>
<th>Meropenem</th>
<th>Pip/Tazo</th>
<th>Tobramycin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2020 (March 1 to April 23)</td>
<td>P. aeruginosa</td>
<td>75</td>
<td>77</td>
<td>72</td>
<td>89</td>
<td>90</td>
<td>99</td>
<td>93</td>
<td>75</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. cloacae</td>
<td>18</td>
<td>100</td>
<td>36</td>
<td>71</td>
<td>38</td>
<td>82</td>
<td>86</td>
<td>82</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>53</td>
<td>100</td>
<td>69</td>
<td>77</td>
<td>69</td>
<td>66</td>
<td>82</td>
<td>100</td>
<td>63</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>K. pneumoniae</td>
<td>42</td>
<td>91</td>
<td>58</td>
<td>56</td>
<td>56</td>
<td>82</td>
<td>73</td>
<td>87</td>
<td>54</td>
<td>87</td>
</tr>
<tr>
<td>2018-2019 pan-ICU</td>
<td>P. aeruginosa</td>
<td>145</td>
<td>100</td>
<td>68</td>
<td>87</td>
<td>82</td>
<td>97</td>
<td>78</td>
<td>72</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. cloacae</td>
<td>86</td>
<td>100</td>
<td>91</td>
<td>80</td>
<td>58</td>
<td>85</td>
<td>86</td>
<td>93</td>
<td>59</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>311</td>
<td>99</td>
<td>76</td>
<td>76</td>
<td>75</td>
<td>59</td>
<td>88</td>
<td>99</td>
<td>73</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>K. pneumoniae</td>
<td>255</td>
<td>96</td>
<td>77</td>
<td>80</td>
<td>77</td>
<td>84</td>
<td>91</td>
<td>97</td>
<td>75</td>
<td>87</td>
</tr>
</tbody>
</table>
NYCDOH COVID-19 Antibiogram

• **Background**: collaboration between NYC health systems’ ASPs, microbiology labs, and DOH

• **Project goal**:
 > Describe antimicrobial susceptibility changes that have occurred due to COVID (pre, pandemic peak, post)
 > Develop a treatment tool for more rational antibiotic prescribing in NYC

• **Pathogen selection**: top 5-6 pathogens (GP, GN, yeast) from respiratory and blood cultures
 > Stratified by ED vs. inpatient, inclusive of multiple isolates per patient to capture AMR and polymicrobial infections
Decrease in CDI counts despite prolonged hospitalizations, widespread antibiotic and steroid exposures, patient/staff cohorting & shared equipment

- True decrease in CDI or decrease in testing?
- Diagnostic confusion with COVID-19 associated diarrhea

Heightened hand hygiene awareness balanced with stewardship and infection prevention pitfalls

Summary: COVID-19 Stewardship Contributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Example</th>
</tr>
</thead>
</table>
| Diagnostic stewardship | • Testing workflows
• Stewarding “expedited testing”
• Interpretive criteria for serology and Ct values in clinical context |
| Shortage mitigation | • Prior authorization for antimicrobials, corticosteroids, HCQ, etc. |
| Experimental treatment protocols (EUA or compassionate use) | • Remdesivir, IL-6 inhibitors, Plasma
| Screening for clinical trials | • Plasma, Remdesivir, IL-6 inhibitors, etc. |
| Clinical pathway development | • COVID-19 empiric antibiotic guidelines |
| Monitoring toxicities | • HCQ +/-azithromycin, excess antibiotics |
| Communication/messaging | • Drug shortages, infection clusters & co-infections, AMR |
• Role of stewardship in pandemic response is abundantly clear:
 > What we do best: raising the flag and alarming clusters and susceptibility patterns, communication & dissemination of information, sharing of ideas and data, harnessing pre-existing close relationships with other stewardship programs and the DOH
 > At what cost: pre-authorization, prospective audit & feedback of excesses, late creation of guidelines
Remaining Questions

- Are secondary infections terminal events?
 - Yes, must assess outcomes (mortality, LOS, need for chronic ventilatory support) in patients who did not have culture confirmed nosocomial infection but were equally ill.

- Does elevated procalcitonin predict secondary infection independent of its role as an inflammatory biomarker in COVID-19?
Acknowledgements

- **NYCDOHM & IDSNY** (Dr. Josh Nosanchuk)
- **Department of Pathology**: Wendy Szymczak, Phil Gialanella
- **Department of Pharmacy**: Mark Sinnet, Frank Sosnowski
- **IPC**: Jamie Figueredo, Ruchi Jain, Greg Weston, Inessa Gendлина, Marilou Corpuz, Meg Aldrich, Theresa Madaline
- **ID Division** lead by Liise-anne Pirofski
- **ID Fellows**
- **Department of Medicine**
- **Drs. Dana Mazo (Mount Sinai) and Matt Simon (NYP Cornell)**
References

- Lucas M Kimmig, David Wu, Matthew Gold, Natasha N Pettit, David Pitrak, Jeffrey Mueller, Aliya N Husain, Ece A Mutlu, View Gokhan M Mutlu. IL6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections. doi: https://doi.org/10.1101/2020.05.15.20103531
- Cornelius J Clancy, M Hong Nguyen, Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect?, Clinical Infectious Diseases. , ciaa524, https://doi.org/10.1093/cid/ciaa524
NYU Grossman School of Medicine
COVID-19 IMMUNITY AND VACCINE TRIALS

Mark J. Mulligan, MD, FIDSA
Director, NYU Langone Vaccine Center
IDSNY & NYCDHMH WEBINAR, July 13, 2020
Outline

- Conflicts of Interest
- Immunity
- Vaccine Trials
- Acknowledgements

Not: monoclonal antibodies, convalescent plasma
Potential Conflicts of Interest

• USG/HHS/NIH/NIAD RESEARCH GRANT FUNDING
 – VACCINE AND TREATMENT EVALUATION UNIT (VTEU)
 – ASTRAZENECA (OXFORD) COVID-19 VACCINE TRIAL
 – LILLY SARS-COV-2 MAB EFFICACY TRIAL, PROPHYLAXIS IN NURSING HOMES
 – REGENERON SARS-COV-2 MAB EFFICACY TRIAL, PROPHYLAXIS IN HOUSEHOLDS

• USG/HHS/BARDA FUNDING
 – COVID SPECIMENS FOR MEDICAL COUNTERMEASURES

• PFIZER RESEARCH FUNDING
 – PHASE 1-2 COVID-19 MRNA VACCINE TRIAL

• LILLY RESEARCH FUNDING
 – SARS-COV-2 MAB NEUTRALIZATION POTENCY VS LIVE SARS-COV-2
 – SARS-COV-2 MAB PHASE 1 SAFETY AND EFFICACY TRIAL

• SANOFI RESEARCH FUNDING
 – VERO CELL GROWN YELLOW FEVER VIRUS VACCINE CLINICAL TRIAL

• MEISSA VACCINES, INC SCIENTIFIC ADVISORY BOARD GUEST, SARS-COV-2 VACCINE
The Virus
NYU Grossman School of Medicine

Funk at al., *Front. Pharmacol.*, 19 June 2020

SARS-CoV-2

1. Virus enters oral + respiratory cells
2. Virus enters epithelium
3. Virus fuses with vesicle and its RNA is released
4. Virus assembly
5. Virus release
6. Virus ingested by antigen-presenting cell (APC)

Immune response

- Infected cells destroyed
- Antibodies produced
- Memory B cells and T cells created

- Anti-SARS-CoV-2 antibody
SARS-CoV-2 S1-specific antibody by isotype in ELISA

Immunity - Acute Ab response, 2 patients, first 3 weeks

NYU-VC-005

NYU-VC-006

Immunity – duration of binding Ab

13 Convalescent Patients – first six weeks

SARS-CoV-2 S1-specific antibody by isotype in ELISA

Immunity – duration of binding Ab

13 Convalescent Patients – next six weeks

SARS-CoV-2 S1-specific antibody by isotype in ELISA

Target of Ab

Spike Protein, S

Amanat et al., *Nat Med*, 2020
Immunity – development of long-lasting memory

Memory B cell Responses

- COVID-19 Covalescent
- COVID-19 Asymptomatic
- Healthy Controls
- Influenza Patients
Live virus neutralization assay

48 hr neutralization assay
SARS-Cov-2 mNeon green (Xie et al., Cell Host & Microbe, 2020)

<table>
<thead>
<tr>
<th>Dilution</th>
<th>1/20</th>
<th>1/40</th>
<th>1/80</th>
<th>1/160</th>
<th>1/320</th>
<th>1/640</th>
<th>1/1280</th>
<th>1/2560</th>
<th>1/5120</th>
<th>1/10240</th>
<th>1/20480</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLV-2-V1 DPO 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLV-2-V2 DPO 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLV-1 V1 Positive control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELISA Binding Ab vs S1

<table>
<thead>
<tr>
<th></th>
<th>NLV-</th>
<th>DPO</th>
<th>IgM</th>
<th>IgG</th>
<th>IgA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - V1</td>
<td>28</td>
<td>1817</td>
<td>12786</td>
<td>3209</td>
<td></td>
</tr>
<tr>
<td>2 - V2</td>
<td>53</td>
<td>723</td>
<td>13890</td>
<td>1762</td>
<td></td>
</tr>
</tbody>
</table>
Immunity - Duration

Long et al., *Nat Med*, 2020
Pre-existing immunity (from seasonal coronaviruses)

- T cell reactivity against SARS-CoV-2 was observed in unexposed people; however,
- the source and clinical relevance of the reactivity remains unknown.
 - Lymphocytes from 20–50% of unexposed donors display significant reactivity to SARS-CoV-2 antigen peptide pools
 - Non-spike > spike
 - CD4 > CD8
- It is speculated that this reflects T cell memory to circulating ‘common cold’ coronaviruses.
 - HCoV-OC43, HCoV-HKU1, HCoV-NL63 and HCoV-229E
- It will be important to define specificities of these T cells and assess their association with COVID-19 disease severity and vaccine responses.

Grifoni et al., Cell, 2020; Sette and Crotty, Nat Rev Imm, 2020; 3 preprints
SKETCHPAD

PHASE TWO

By Jason Adam Katzenstein
Platforms, Immunogens, moving fast

PLATFORMS

- Genetic – flexible, rapid, scalable
 - RNA – 1) 3/16/20 first vaccination → press release, 5/18/20 → *NEJM*, in press 7/10/20; 2) 5/4/20 → 7/1 preprint; Revision submitted
 - DNA – 4/3/20 → press release June

- Recombinant viral vector
 - Adenovirus – non-replicating
 - Chimpanzee Ad
 - Ad26
 - Ad5 – 3/16/20 first vaccination → *Lancet* 5/22/20; E1 and E3 deleted
 - VSV; RSV; replicating

- Subunit protein + Adjuvant

- Whole killed viral vaccine – chemically inactivated viral particles – Sinovac, *Science*, 5/5/20, 3 doses in macaques

IMMUNOGENS

- S, full-length spike (S1 + S2)
- RBD, receptor-binding domain of spike – NAB target
- other
Over 100 Vaccine Candidates in Development

A. Vaccine Platforms
- DNA
- RNA (+ LNP's)
- Protein-based (e.g. Spike)

B. Vaccine Candidates
- 14 Viral vector (replicating)
- 12 Other
- 10 DNA
- 20 RNA
- 16 Non-replicating
- 8 Inactivated
- 3 Live attenuated
- 44 Protein-based

Funk at al., *Front. Pharmacol.*, 19 June 2020
rAd-5 viral vector, Spike, single IM injection, 3 dose levels - 5×10^{10}, 1×10^{11}, 1.5×10^{11} viral particles

Appeared safe, dose-dependent vaccine reactions, generally well tolerated.
A.E.s: fever, fatigue, headache, and muscle pain.

Lancet 2020; 395: 1845–54
ICS Assay for Peptide-specific CD4+ or CD8+ T cells

- Limitations of this work
 - Interim report
 - No placebo group
 - Short follow up: day 28 - ? duration
 - Pre-existing immunity, dampens immune response
 - Likely need for a booster
 - Response magnitudes low?
 - Relative to convalescent patients?
 - Choice of rAd5: When used as a vector for vaccination against HIV in humans, common pre-existing immunity to the vector was one factor associated with increased HIV acquisition

Lancet 2020; 395: 1845–54
Modern – NIAID mRNA - S

- stabilized spike protein – pre-fusion
- a genetic platform called mRNA (messenger RNA)
- Lipid nanoparticle
- Although RNA-based vaccines are easy to develop, none has ever been licensed.
- Has shown promise in animal model
 - prevented viral replication in the lungs of mice challenged with SARS-CoV-2
- 3/16/20 first vaccination (L Jackson, KPWRHI, Seattle; VTEU, IDCRC)
- 2 IM injections, D1 and D29
 - 25, 100, or 250 mcg

- Phase 1: press release 5/18/20
 - With 2 doses of 25 or 100 mcg, all pts made binding Ab; 8/8 made NAB
 - Magnitudes similar to convalescent patients
 - At D43, two weeks post second dose
 - At 250mcg, 3 severe reactions (of 12 pts)
 - Post second dose

- Phase 2: fully enrolled, 300 younger and 300 older adults (press release 7/8/20)
 - two vaccinations of mRNA-1273 given 28 days apart. Each participant is receiving placebo, a 50 μg or a 100 μg dose at both vaccinations.

- Phase 3: start in July expected; manufacturing completed; 30,000 ppts, 100mcg, 1:1 randomization with placebo
AstraZeneca ChAdOx1

- Developed at Oxford University’s Jenner Institute and licensed to AstraZeneca
- Non-replicating chimpanzee adenovirus expressing the spike
- Preclinical: protected macaques against lung disease - Single dose – 6 vaccinated c/w 3 controls; nasal no change (preprint)
 - In pigs, NAB boosted with second dose

- Phase 1: UK

- Phase 2: UK
 - The Oxford team has already enrolled more than 1,000 people in its UK trial

- Phase 3: US CoVPN - start in August expected; protocol not finalized; 30,000 pts, 2 doses likely
- Brazil: phase 3
Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report

Mark J. Mulligan1*, Kirsten E. Lyke2*, Nicholas Kitchin3,a, Judith Absalon3,b, Alejandra Gurtman3,b, Stephen Lockhart3,a, Kathleen Neuzil2, Vanessa Raabe1, Ruth Bailey3,a, Kena A. Swanson3,b, Ping Li3,c, Kenneth Koury3,b, Warren Kalina3,b, David Cooper3,b, Camila Fontes-Garfias6, Pei-Yong Shi6, Özlem Türeci7, Kristin R. Tompkins3,b, Edward E. Walsh4, Robert French5, Ann R. Falsey4, Philip R. Dormitzer3,b, William C. Gruber3,b, Uğur Şahin7, and Kathrin U. Jansen3,b

- Nucleoside-modified mRNA
- Immunogen: RBD trimer
Systemic events and medication use within 7 days of vaccination

First dose
- 10, 30, 100 mcg

Second dose
- 10, 30 mcg
As there is no known antibody threshold of protection against SARS-CoV-2 infection or COVID-19 disease, human convalescent sera levels are a reasonable comparison.
Process, Organization

- **Operation Warp Speed**
 - A partnership led by US HHS to invest in and coordinate the development, manufacturing and distribution of COVID-19 diagnostics, therapeutics and vaccines.
 - Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) - public-private partnership

- **COVID Prevention Network (CoVPN)** – NIH press release 7/8/20, a functional unit of Operation Warp Speed
 - will use a harmonized vaccine protocol
 - NIAID networks clinical trials infrastructure
 - HVTN, HPTN, IDCRC, ACTG + many other trial sites (> 100 US and international)
 - Vaccines and MAB
Timeline

- July: NIAID+Moderna mRNA – S – phase 3, 30,000 participants (>500M)
 - 90-100 trial sites
- August: AstraZeneca (Oxford) ChAdOx1 – S - phase 3, 30,000 participants – (1.2B)
- Soon after:
 - Janssen (Johnson & Johnson) – Ad26 - S
 - NovaVax: subunit protein S + adjuvant – (1.6B)
 - Sanofi/GSK subunit protein S + adjuvant
- Pfizer (industry funded)
 - Phase 2/3 launch in July
- Community engagement, particularly with the communities most vulnerable to COVID-19 severe outcomes, will be critical to the success of this research endeavor.
- CoVPN website: https://www.coronaviruspreventionnetwork.org
 - clinical trial participant registry: customized data collection platform to securely identify potential trial participants
COVID-19 Vaccine - NYC area trial sites

https://www.coronaviruspreventionnetwork.org

• Moderna – mRNA in LNP – S - July
 – Weill Cornell Uptown, NYC
 – Weill Cornell Chelsea, NYC
 – Meridian Clinical Research, Bronx, NYC
 – other

• AstraZeneca – Oxford – ChAdOx1 – S - August
 – U Rochester (A Falsey, national study PI)
 – NY Blood Center, Valhalla
 – Bronx Prevention Research, NYC
 – Columbia (M Sobieszczyk, national study PI)
 – NYU Langone Vaccine Center
 • Up to 5 vaccination locations:
 • Tisch – midtown Manhattan, NYC
 • Bellevue Med Center - midtown Manhattan, NYC
 • NYU Langone Health – Brooklyn, NYC
 • NYU Winthrop - Mineola, Long Island
 • VA Medical Center, midtown Manhattan, NYC
 – other
Adherence

- Non-pharmaceutical interventions
 - Effective
- As a country we can do better against this virus.
- Individual responsibility, behavior
- Leadership responsibility, policy
- Principle, to stay healthy & protect others
 - Is it essential?

- Identifying a safe and effective COVID-19 vaccine is essential.
- In the meantime, stay NY strong, and…
Thank You Team!

I would like to sincerely thank the research team working on the COVID-19 Vaccine Studies Initiative at the NYU Langone Vaccine Center: Faculty, Staff, and Trainees.

I would like to thank the research participants in the COVID-19 Vaccine Studies Initiative.

Research Funding: NIAID, BARDA, Pfizer, Lilly, NYU Grossman School of Medicine

Vanessa Raabe
Angelica Kottkamp
Ramin Herati
Marie Samanovic-Golden
Lilin Lai
Rebecca Pellet Madan
Mary Olson
Elisabeth Cohen
Robert Ulrich
Bo Shopsin
Purvi Parikh
Lalitha Parameswaran
Ellie Carmody
Ben Eckhardt
…and others

Amber Cornelius
Laura Frye
Heekoung Youn
Jane Fran
Kanika Ballani
Natalie Veling
Juanita Erb
Mahnoor Ali
Lisa Zhao
Stephanie Rettig
Hibah Khan
Susan Lucaj
Harry Lambert
Kelly Hu
Jonathan Hyde
…and others

The work was supported in part by an NYU CTSA grant (UL1 TR001445) from the National Center for Advancing Translational Sciences, National Institutes of Health.
THANK YOU
Timeline

SARS-CoV-2
- Genome sequenced: 2019 (Dec) - 2020 (Jan)
- 1st vaccine batch (mRNA-1273): 2020 (Feb 7)
- Worldwide pandemic declared: 2020 (Mar 11)
- 1st clinical trial: 2020 (Mar 16)
- Vaccine in 12-18 months?: 2020 (May)

MERS
- Genome sequenced: 2012
- Outbreak (Saudi Arabia): 2014
- 1st clinical trial: 2016 (Feb)
- No vaccine - 6 years: 2020

SARS-CoV-1
- Outbreak: 2002 (Nov) - 2003 (early)
- Genome sequenced: 2003 (Apr)
- 1st clinical trial: 2005
- No vaccine - 17 years: 2020

Ebola
- Genome sequenced: 1976
- Canadian team publishes 1st vaccine: 1993
- Largest outbreak: West Africa: 2014
- 1st clinical trial: 2015
- Vaccine approved (Evebo (VSV vector)): 2019
- 15 years: 2019

Polio
- 1st Epidemic (USA): 1789
- Salk vaccine (inactivated virus): 1953-54
- Sabin vaccine (oral, live-attenuated): 1957-59
- 60 years: 1981

Funk at al., *Front. Pharmacol.*, 19 June 2020