Disparities in Community Viral Load among HIV Infected Persons in NYC

Fabienne Laraque MD MPH1, Heather Mavronicolas PhD MPH1, McKaylee Robertson MPH2, Heidi Gortakowski MPH2, Arpi Terzian PhD MPH1
1 Bureau of HIV/AIDS Prevention and Control, New York City Department of Health and Mental Hygiene 2 CDC/CSTE Applied Epidemiology Fellow

BACKGROUND

• Viral load is a measure of the amount of virus in the plasma/blood that can indicate transmissibility.
• Community viral load (CVL) is the measure of total or average viral load in a given population. CVL is a novel public health approach and calculates yearly.
• The National HIV/AIDS Strategy highlights the importance of community-level approaches to alter conditions in which HIV is transmitted and to address factors that influence disparities among persons with HIV.
• Key interventions to reduce CVL in NYC:
 - Care Coordination and Support Services: reduce community-level indicators of HIV risk.
 - Early and widespread HIV treatment and linkage to care.
 - Health services and data infrastructure.
• Knowing where HIV is concentrated creates an opportunity to:
 - Reduce disparities,
 - Lower community collective risk,
 - Reduce morbidity and mortality.

METHODS

• To be included in the analysis HIV-infected persons reported to the NYC HIV Registry (eHARS) had to ≥13 years old by December 31, 2007, and alive at the end of 2008.
• The analyses was based on a comprehensive population-based surveillance system.
• Results were not limited to individuals’ address at diagnosis.
• The analyses included private or non-residential addresses.
• CVL may be a valuable biomarker to add to routine surveillance data.
• CVL may be useful to evaluate community-level interventions, especially those addressing disparities, or changing treatment paradigms like Test and Treat.
• However, the proportion of persons with undetectable VL in a particular community may be a more focused measure to assess the impact of community interventions and treatment effectiveness.

STRENGTHS:

• The analyses examined changes in viral status of HIV-infected residents of NYC.
• The analyses excluded individuals unaware of their HIV status.
• This analysis excludes individuals not receiving medical care.
• The statistical analyses did not include treatment history as a treatment variable or by neighborhood.
• The statistical analyses did not adjust for the frequency of individual viral load testing.
• Viral load is not an absolute proxy for care engagement.

LIMITATIONS:

• This analysis excludes individuals unaware of their HIV status or not receiving medical care.
• The statistical analyses did not include treatment history as a treatment variable or by neighborhood.
• The statistical analyses did not adjust for the frequency of individual viral load testing.
• Viral load is not an absolute proxy for care engagement.

CONCLUSION

1. Describe patterns of CVL in NYC, using laboratory data routinely reported through HIV surveillance.
2. Determine correlates of CVL by patient and community-level characteristics.

RESULTS

Table 1: Mean VL among persons with detectable viral load (copies/ml) by year 1, 2, 3, 4

<table>
<thead>
<tr>
<th>Year</th>
<th>Male</th>
<th>Female</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>42.94</td>
<td>4.00</td>
<td>Bronx</td>
</tr>
<tr>
<td>2008</td>
<td>55.88</td>
<td>5.00</td>
<td>Brooklyn</td>
</tr>
<tr>
<td>2009</td>
<td>63.00</td>
<td>6.00</td>
<td>Manhattan</td>
</tr>
</tbody>
</table>

Table 2: Mean CVL by viral load categories 1, 2, 3, 4

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Male</th>
<th>Female</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>29.50</td>
<td>24.00</td>
<td>Bronx</td>
</tr>
<tr>
<td>Black</td>
<td>31.50</td>
<td>25.00</td>
<td>Brooklyn</td>
</tr>
<tr>
<td>Hispanic</td>
<td>29.00</td>
<td>24.00</td>
<td>Manhattan</td>
</tr>
<tr>
<td>Other</td>
<td>29.00</td>
<td>24.00</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

REFERENCES:

PHISH/PHIVADS, Results of the NYC HIV Registry at the end of 2008.

OSTRACIZED

LIMITATIONS

• There are disparities in CVL that mirror known disparities of NYC’s HIV epidemics.
• There are clear geographic community disparities in CVL, and the proportion undetectable parallels differences in AIDS prevalence and death rates by neighborhood.
• CVL may be a valuable biomarker to add to routine analysis of HIV surveillance data.
• CVL may be useful to evaluate community-level interventions, especially those addressing disparities, or changing treatment paradigms like Test and Treat.
• However, the proportion of persons with undetectable VL in a particular community may be a more focused measure to assess the impact of community interventions and treatment effectiveness.

ACKNOWLEDGMENTS

NYC DOHMH HIV Epidemiology and Field Service Programs: Josephine Ferraro, MPH, Laura Tsiatis PhD, Colin Shepard, MD, and Sarah Bronowicki, PhD, MPH
NYC DOHMH Care and Treatment Programs: Youn Grant, PhD, MPH

DISCUSSION

• Table 1: Mean VL among persons with detectable viral load (copies/ml) by year 1, 2, 3, 4

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean</th>
<th>N</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>42.9</td>
<td>76,000</td>
<td>2.79</td>
</tr>
<tr>
<td>2008</td>
<td>55.8</td>
<td>76,000</td>
<td>2.79</td>
</tr>
<tr>
<td>2009</td>
<td>63.0</td>
<td>76,000</td>
<td>2.79</td>
</tr>
</tbody>
</table>

Figure 1: Proportion of persons with HIV/AIDS with suppressed VL each year, 2007 – 2009

<table>
<thead>
<tr>
<th>Year</th>
<th>No Suppressed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>25,720</td>
<td>76,000</td>
</tr>
<tr>
<td>2008</td>
<td>35,500</td>
<td>76,000</td>
</tr>
<tr>
<td>2009</td>
<td>43,500</td>
<td>76,000</td>
</tr>
</tbody>
</table>

Table 2: Mean CVL by viral load categories 1, 2, 3, 4

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Male</th>
<th>Female</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>29.50</td>
<td>24.00</td>
<td>Bronx</td>
</tr>
<tr>
<td>Black</td>
<td>31.50</td>
<td>25.00</td>
<td>Brooklyn</td>
</tr>
<tr>
<td>Hispanic</td>
<td>29.00</td>
<td>24.00</td>
<td>Manhattan</td>
</tr>
<tr>
<td>Other</td>
<td>29.00</td>
<td>24.00</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

NYC DOHMH HIV Epidemiology and Field Service Programs: Josephine Ferraro, MPH, Laura Tsiatis PhD, Colin Shepard, MD, and Sarah Bronowicki, PhD, MPH
NYC DOHMH Care and Treatment Programs: Youn Grant, PhD, MPH

DISCUSSION

• There are disparities in CVL that mirror known disparities of NYC’s HIV epidemics.
• There are clear geographic community disparities in CVL, and the proportion undetectable parallels differences in AIDS prevalence and death rates by neighborhood.
• CVL may be a valuable biomarker to add to routine analysis of HIV surveillance data.
• CVL may be useful to evaluate community-level interventions, especially those addressing disparities, or changing treatment paradigms like Test and Treat.
• However, the proportion of persons with undetectable VL in a particular community may be a more focused measure to assess the impact of community interventions and treatment effectiveness.

STRENGTHS:

• The analyses examined changes in viral status of HIV-infected residents of NYC.
• The analyses excluded individuals unaware of their HIV status.
• This analysis excluded individuals not receiving medical care.
• The statistical analyses did not include treatment history as a treatment variable or by neighborhood.
• The statistical analyses did not adjust for the frequency of individual viral load testing.
• Viral load is not an absolute proxy for care engagement.

LIMITATIONS

• This analysis excludes individuals unaware of their HIV status or not receiving medical care.
• The statistical analyses did not include treatment history as a treatment variable or by neighborhood.
• The statistical analyses did not adjust for the frequency of individual viral load testing.
• Viral load is not an absolute proxy for care engagement.

ACKNOWLEDGMENTS

NYC DOHMH HIV Epidemiology and Field Service Programs: Josephine Ferraro, MPH, Laura Tsiatis PhD, Colin Shepard, MD, and Sarah Bronowicki, PhD, MPH
NYC DOHMH Care and Treatment Programs: Youn Grant, PhD, MPH

DISCUSSION

• There are disparities in CVL that mirror known disparities of NYC’s HIV epidemics.
• There are clear geographic community disparities in CVL, and the proportion undetectable paralle...

LIMITATIONS

• This analysis excludes individuals unaware of their HIV status or not receiving medical care.
• The statistical analyses did not include treatment history as a treatment variable or by neighborhood.
• The statistical analyses did not adjust for the frequency of individual viral load testing.
• Viral load is not an absolute proxy for care engagement.

ACKNOWLEDGMENTS

NYC DOHMH HIV Epidemiology and Field Service Programs: Josephine Ferraro, MPH, Laura Tsiatis PhD, Colin Shepard, MD, and Sarah Bronowicki, PhD, MPH
NYC DOHMH Care and Treatment Programs: Youn Grant, PhD, MPH

DISCUSSION

• There are disparities in CVL that mirror known disparities of NYC’s HIV epidemics.
• There are clear geographic community disparities in CVL, and the proportion undetectable paralle...

LIMITATIONS

• This analysis excludes individuals unaware of their HIV status or not receiving medical care.
• The statistical analyses did not include treatment history as a treatment variable or by neighborhood.
• The statistical analyses did not adjust for the frequency of individual viral load testing.
• Viral load is not an absolute proxy for care engagement.

ACKNOWLEDGMENTS

NYC DOHMH HIV Epidemiology and Field Service Programs: Josephine Ferraro, MPH, Laura Tsiatis PhD, Colin Shepard, MD, and Sarah Bronowicki, PhD, MPH
NYC DOHMH Care and Treatment Programs: Youn Grant, PhD, MPH