Abstract

• Since 1991, all autopsies performed by the Office of Vital Statistics (OVS) of NYC DOHMH are tested for HIV by the Public Health Laboratory (PHL) of the NYC Department of Health and Mental Hygiene (DOHMH).
• The BHIV maintains a HIV/AIDS Surveillance Registry (HSR) that includes all cases of HIV/AIDS diagnosed and reported in NYC.
• The Office of Vital Statistics (OVS) of NYC DOHMH maintains a Vital Statistics Registry (VSR) that includes all deaths reported in NYC (including OCME autopsies).

Background

• Late diagnosis of HIV leads to increased mortality, worse treatment outcomes, and increased costs.
• There is little information on the most extreme example of late diagnosis: new HIV diagnosis at death.
• Since 1991, all autopsies performed by the Office of Chief Medical Examiner (OCME) in New York City (NYC) are tested for HIV by the Public Health Laboratory (PHL) of the NYC Department of Health and Mental Hygiene (DOHMH).
• All positive HIV test results are reported by PHL to OCME who reports them to the Bureau of HIV (BHIV), NYC DOHMH.
• The BHIV maintains a HIV/AIDS Surveillance Registry (HSR) that includes all cases of HIV/AIDS diagnosed and reported in NYC.
• The Office of Vital Statistics (OVS) of NYC DOHMH maintains a Vital Statistics Registry (VSR) that includes all deaths reported in NYC (including OCME autopsies).

Methods

• Objectives:
 • To determine the factors independently associated with new HIV diagnosis at OCME autopsy:
 • Primary outcome: New HIV diagnosis at OCME autopsy
• We merged data from HSR with data from VSR.
• We constructed a logistic regression model to identify factors independently associated with new HIV diagnosis at OCME autopsy among all HIV-positive autopsies.
• To reduce misclassification of new diagnosis at OCME autopsy among the out of NYC residents not known to the respective health departments.
• We confirmed the new diagnosis with the respective health departments.
• We constructed a logistic regression model to identify factors independently associated with new HIV diagnosis at OCME autopsy among all HIV-positive autopsies.
• Definition of new HIV diagnosis at OCME autopsy: A HIV diagnosis date on or after death among decedents who had an OCME autopsy.

Results

• Among all HIV-positive OCME autopsies, senior adults such as NYC, HIV testing should be considered regardless of age.
• These results support the continued expansion of testing to increase early diagnosis. The findings also suggest that, in high prevalence jurisdictions such as NYC, HIV testing should be considered regardless of age.

Conclusions

• Despite scale-up of HIV testing and increased HIV awareness, about 20 people in NYC each year are first found to have HIV infection at OCME autopsy.
• Similar to all HIV-positive OCME autopsies, the newly diagnosed at OCME autopsy were primarily male (72%) and non-white (90%).
• Among all HIV-positive OCME autopsies, senior adults are significantly more likely than those aged 13-64 to be first diagnosed at OCME autopsy.

Acknowledgements: BHIV, OVS, and OCME Staff

Contact: Chitra Ramaswamy cramaswa@health.nyc.gov 347-396-7637

Figure 1. HIV reporting and the field investigation within the NYC DOHMH.

Figure 2. Deaths, autopsies, and new HIV diagnoses in NYC, 2006-2010.

Figure 3. All new HIV diagnoses, New HIV diagnoses at OCME autopsy, and all HIV-positive OCME autopsies in NYC, 2006-2010.

Figure 4. Causes of death among those newly diagnosed with HIV at OCME autopsy in NYC, 2006-2010.

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.

<table>
<thead>
<tr>
<th>Total HIV OCME autopsies</th>
<th>HIV diagnosis before OCME autopsy</th>
<th>New HIV diagnosis at OCME autopsy</th>
<th>AOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1,681</td>
<td>115</td>
<td>1,566</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1,219</td>
<td>1,130</td>
<td>83</td>
</tr>
<tr>
<td>Female</td>
<td>462</td>
<td>430</td>
<td>32</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=40</td>
<td>1,077</td>
<td>98.0</td>
<td>247</td>
</tr>
<tr>
<td>>40</td>
<td>1,604</td>
<td>98.6</td>
<td>138</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All others</td>
<td>1,445</td>
<td>1,343</td>
<td>103</td>
</tr>
<tr>
<td>White</td>
<td>235</td>
<td>223</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.

Table 1. Multivariable model of new HIV diagnosis at OCME autopsy among all HIV-positive OCME autopsies in NYC, 2006-2010.