Integrated Energy and Environmental Planning with MARKAL Model

Environmental Protection Agency – Region 2 Brookhaven National Laboratory State University of New York at Stony Brook

Overview of the Presentation

- Relationship of Energy with Cities
- MARKAL Methodology to Address Urban Energy and Environmental Issues
- A Demonstrative Case-study: New York City

Relationship of Energy with Cities

EPA cites Adaptation as Key Strategy for Climate Change Response Dr. Joel Scheraga Inside EPA February 9, 2007

Energy in Today's World

- Extending hope and opportunity depends on a stable supply of energy that keeps America's economy running and America's environment clean" – the President of United State's State of the Union address 2007 (this is a global issue)
- Warming of the climate system is unequivocal," the cause is "very likely" man-made, and "would continue for centuries." – the Fourth Assessment Report - WG1-IPCC, February 2007

Energy and Cities

- Globalizing cities consume 75% of world energy
- Providing energy security and sustainable environment are major concerns for policymakers
 - U.S. Conference of Mayors' National Summit On Energy and the Environment, May 2006
 - London: The Mayor's Energy Strategy, February 2004
 - New York: PLANYC 2030, December 2006
 - Large Cities Climate Summit C20: 2005, C40: 2007
- Energy & Environmental systems in agglomerated urban regions consist of *highly interconnected subsystems*
- Planning for these systems are comprised of two levels:
 - Analysis of the overall local or regional systems for *long-term* strategic planning
 - Analysis and optimization of subsystems

Energy-Water Nexus

Energy and water are inextricably linked

Water for Energy

Energy for Water

- About 54% of U.S. generating capacity comprised of one-through cooling (requires reliable, large volumes of water
- In 2000, 39% of U.S. water withdrawals were for thermoelectric power production³
 - 136 BGD-freshwater withdrawals
 - 59 BGD- seawater withdrawals
 - 3 BGD-water consumption (about 20% of nonagricultural water consumption)
- Globally, 7% of the total energy consumed is for water delivery
- Worldwide, 2-3% of energy is consumed for water conveyance and treatment to serve urban populations and industry¹.
- Water heating is typically the 2nd largest user of energy in the home (19% of home energy use) (according to Rocky Mountain Institute)

ASE (Alliance to Save Energy). (2002). Watergy: Taking Advantage of Untapped Energy and Water Efficiency Opportunities in Municipal Water Systems, report by K James, SL Campbell, CE Godlove, ASE, Washington, D.C. 2. EIA (U.S. Department of Energy-Energy Information Administration). (2005). Annual Energy Outlook 2005, report prepared by JJ Conti, PD Holtberg, JA Beamon, JM Kendell, AS Kydes, U.S. Department of Energy-EIA, Washington, D.C. 3. USGS Circular 1268 Estimated Use of Water in the United States in 2000 (2004)

MARKAL Methodology to Address Urban Energy and Environmental Issues

NYC MARKAL to reduce GHG's Electricity,Water and Solid Waste Nexus

MARKAL as an Energy & Environment Planning Tool

Well established state-of-the-art tool for energy systems analysis, developed at BNL in 1970s.

Total OECD = 22 Total Developing = 23 Total Other = 13

30 years of development

under the auspices of the International Energy Agency and the US Department of Energy

 Approximately 120 user institutions in *more than 50 countries*

Flexible and transparent

framework - allows use of different features depending on modeling needs

Methodology is well documented

MARKAL Framework Overview

MARKAL Modeling Framework

- MARKAL (MARKet ALlocation) is an integrated energy, environment and economic model, to examine market potential for energy technologies over a short-, medium- and long-term horizon under alternative policy scenarios within the entire energy system.
- Utilizes a *bottom-up* approach to represent and characterize *technology specific portfolios at subsystem level* – highlights synergies, offsets and feedback effects
- Facilitates Urban Planners in selecting *cost effective technology mix* over the entire system based on *life cycle accounting*
 - Involve all relevant interest groups in the planning process
 - Set-up a plan for continuous improvement and monitoring

Demonstrative MARKAL Reference Energy System

US National Energy Planning Applications of MARKAL

- Support for **3 US Department of Energy offices**
- Analyze the long-term market competitiveness of R&D portfolio
 - Office of Energy Efficiency & Renewable Energy
 - Office of Nuclear Energy
- Assess competitiveness of alternative and boutique fuels for the Office of Policy and International Affairs
- Options and tradeoffs of alternative hydrogen production infrastructure pathways with respect to demand, technology cost, regional mix, and feedstock prices
- Develop and demonstrate the utility of analysis at the Census Region level
- Provides platform to model DOE programs such as Global Nuclear Energy Partnership

Global and Local Applications of MARKAL

U.S. Environmental Protection Agency

- New York City energy efficiency and urban heat island mitigation project
- Assisting *Texas* institutions for building energy system models
- Taiwan national energy model and policy analysis
- Central American energy and environment cooperation
- Hong Kong MARKAL model and supporting policy analysis
- Development of *Kuwait* energy system and extensive refinery model
- Development of *Mongolian* MARKAL and training government officers on MARKAL modeling
- Enhancement of Korean MARKAL and training Korean government officers and energy professionals on MARKAL modeling

<u>Assisting the Government of India</u> on Eco-Cities project

A Demonstrative Casestudy: New York City

NYC MARKAL Model

- Multi-region structure to measure the impacts of Energy Star technologies and Urban Heat Island measures on the electricity demand at the sub-station level
- Network capability to model *central and distributed generation plants, transmission* & *distribution and sub-station peak load characteristics*
- Integrated framework for evaluating NYC systemwide effects in *electricity flow, peak load, criteria and GHG emissions*, due to changes in hot pockets/substations

MARKAL-EnergyPlus-MM5 Interactions

NYC MARKAL Modeling Framework

Builds on extensive plant level information from the Energy Information Administration and the Environmental Protection Agency

Time of the day peak-load was modeled on the basis of seasonal variability
BROOKHAVEN
NATIONAL LABORATORY

MARKAL Modeling System

EnergyPlus Building Energy Simulation

Builds on the most popular features and capabilities of BLAST and DOE-2

Calculates HVAC loads to maintain thermal control setpoints, based on the building's physical make-up, mechanical systems, environmental conditions, etc.

Web: www.eere.energy.gov/buildings/energyplus/

EnergyPlus/UHI: Building Mix

Maps Source: NYSERDA UHI Study

Building Inventory to Cooling Demand

COOLING DEMAND	Older 3	Older 10	Glass 3	Glass 10
Peak				
buildings	-	-	-	-
base (kW / sq meter)	0.019	0.066	0.028	0.095
deg & roof (kW / sq meter)	0.016	0.057	0.021	0.075
reduction	-16%	-13%	-23%	-21%
Daily				
buildings	-	-	-	-
base (kW / sq meter)	0.30	1.01	0.38	1.27
deg & roof (kW / sq meter)	0.24	0.83	0.25	0.88
reduction	-20%	-18%	-33%	-31%

Prototype buildings were selected from the building inventory of the area to measure benefits of various mitigation measures

EnergyPlus Load Schedule- time of day

Energy Star Technologies

Key Benefits to the City

Carbon

- xx% reduction in carbon from Municipal facilities/sources by 2010
- xx% reduction in carbon from the entire city by 2030

Energy

- Reduction in energy use per capita
- Reduction in energy use intensity
- Increased use of renewable resources
- Decreased reliance on imported fossil fuels
- Increased use of efficient appliances/ green technology/etc.
- Decrease in energy for transportation

Sustainability

- Increase in recycling of solid waste
- Efficient and reliable transportation

Society

- Provide a clean environment for all city residents
 - Keep energy costs as low as possible

Impacts of UHI Measures and Energy Star Technologies

Him Provention Heat Island effect

NATIONAL LABORATORY

NYC: Emission Reductions due to UHI Measures and Energy Star Technologies

Summary

- Urban system responses of alternative strategies are complex and need a systematic integrated analysis
- Adaptation to such a new concept can lead to cost-effective solutions to the long-term energy security and the environmental sustainability
- BNL's longstanding research and experience brings a paradigm shift in local energy and environmental planning
- Such a comprehensive framework will provide us with a robust tool to address an upcoming need to tackle pressing urban energy and nvironmental issues worldwide

