

 1

Macros and VBA tools can be found on the Developer tab, which is hidden by default, so the

first step is to enable it. For more information, see Show the Developer tab.

Show the Developer tab

The Developer tab isn't displayed by default, but you can add it to the ribbon.

1. On the File tab, go to Options > Customize Ribbon.

2. Under Customize the Ribbon and under Main Tabs, select the Developer check box.

Save a macro to your Personal Macro Workbook

1. In any workbook, go to the Developer tab > Code group, and click Record Macro.

2. The Record Macro dialog box will show up. In the Store Macro in drop-down list, select Personal

Macro Workbook and click OK. Optionally, you can change the default name such as Macro1 to

a more meaningful one.

 2

3. On the Developer tab or the Status bar, click Stop Recording.

4. When you close the workbook, you'll be prompted to save both the workbook, and the Personal

Macro workbook.

The Personal.xlsb file is created and will be automatically opened in the background every time

you start Excel.

5. Open the VB Editor. For this, open your personal workbook and press ALT + F11 or click the

Visual Basic button on the Developer tab, in the Code group.

6. In the Project Explorer window, find the PERSONAL.XLSB object, expand it, and double-click on

Module1 to open its Code window.

7. In the Code window, delete the existing code creating a blank code window; copy/paste the VBA

code (see the code at the end of the instruction).

 3

8. Close the VB Editor.

9. Close Excel and save the changes you've made to the Personal Macro Workbook when

prompted.

How to run VBA macros in Excel

1. When you want to run the VBA code that you added as described in the section above: open

your downloaded Online Director Report and press Alt+F8 to open the "Macro" dialog.

2. Select the wanted macro from the "Macro Name" list and click the "Run" button.

 4

These VBA codes will help you to format your spreadsheet.

Function FindRowWithColumnName(ws As Worksheet, columnName As String) As Long
 Dim rng As Range

 ' Start searching from row 1 to row 20 (change if your headers might be further down)

 For i = 1 To 20

 Set rng = ws.Rows(i).Find(What:=columnName, _

 LookIn:=xlValues, _

 LookAt:=xlWhole, _

 SearchOrder:=xlByRows, _

 SearchDirection:=xlNext, _

 MatchCase:=False)

 If Not rng Is Nothing Then

 ' If column name is found, return the row number

 FindRowWithColumnName = i
 Exit Function

 End If
 Next i
 ' If column name is not found, return 0

 FindRowWithColumnName = 0

End Function

Sub NYCOnlineDirectorFormatting()

 ' Define the worksheet variable for the main data

 Dim wsData As Worksheet

 ' Define the worksheet variable for the filters and metadata

 Dim wsFilters As Worksheet

 Dim filterRows As Long

 ' Set the worksheet to the one where data from Method 2 is expected to be

 Set wsData = Sheets("Online Directory Businesses")

 ' Find the row with the specified column name

 filterRows = FindRowWithColumnName(wsData, "Account Number")

 ' Create a new sheet for filters or clear it if it already exists

 On Error Resume Next ' Ignore errors if the sheet doesn't exist

 Set wsFilters = Sheets("Summary-Parameters")

 If wsFilters Is Nothing Then

 ' If the sheet doesn't exist, create it

 Set wsFilters = Sheets.Add(After:=wsData)

 wsFilters.Name = "Summary-Parameters"

 Else

 ' If it exists, clear it

 wsFilters.Cells.Clear

 5

 End If
 On Error GoTo 0 ' Stop ignoring errors

 ' Move filters to the Summary-Parameters sheet

 wsData.Rows("1:" & filterRows - 1).Cut Destination:=wsFilters.Range("A1")

 ' Remove the filter rows and the empty separator row

 wsData.Rows("1:" & filterRows - 1).Delete Shift:=xlUp

 ' Ensure the header is the first row in wsData

 Dim headerRow As Long

 headerRow = 1

 ' Determine the last row of the data

 Dim LastRow As Long

 LastRow = wsData.Cells(wsData.Rows.Count, "A").End(xlUp).Row

 ' Define header range

 Dim headerRange As Range

 Set headerRange = wsData.Range("A" & headerRow & ":AV" & headerRow)

 ' Format the header range

 FormatRange headerRange

 ' Apply the AutoFilter to the header row only

 headerRange.AutoFilter

 ' Apply blue background and white font color only to the header row

 With headerRange

 .Interior.Color = RGB(0, 32, 96) ' Dark blue background color

 .Font.Color = RGB(255, 255, 255) ' White font color

 .Font.Bold = True ' Bold text

 End With

 ' Format the data range if there is any data below the header

 If LastRow > headerRow Then

 Dim dataRange As Range

 Set dataRange = wsData.Range("A" & headerRow + 1 & ":AV" & LastRow)

 FormatRange dataRange

 End If

 ' Adjust column widths based on the header text width

 AdjustColumnWidthsAndRowHeights wsData

 6

 ' Autofit columns for the "Summary-Parameters" sheet

 If Not wsFilters Is Nothing Then

 Call AdjustFilterSheet(wsFilters)

 End If

 ' Focus back to the "Online Directory Businesses" sheet

 wsData.Activate

 ' Inform the user that the operation is complete

 ' MsgBox "Filters have been moved to 'Summary-Parameters', and headers and data have

been formatted.", vbInformation
End Sub

Sub FormatRange(rng As Range)

 ' Apply font settings to the range

 With rng.Font
 .Name = "Calibri"

 .Size = 12

 End With

 ' Apply general settings to the range

 With rng
 .HorizontalAlignment = xlGeneral
 .VerticalAlignment = xlCenter
 .WrapText = True

 End With

 ' Apply border formatting to the range

 Dim border As Variant

 For Each border In Array(xlEdgeLeft, xlEdgeTop, xlEdgeBottom, xlEdgeRight, xlInsideVertical,
xlInsideHorizontal)

 With rng.Borders(border)

 .LineStyle = xlContinuous

 .Color = RGB(0, 0, 0)

 .Weight = xlThin
 End With

 Next border

End Sub

Sub AdjustColumnWidthsAndRowHeights(ws As Worksheet)

 Dim headerRange As Range

 Dim dataRange As Range

 Dim cell As Range

 Dim maxWidth As Double

 7

 Dim firstDataRow As Long

 Dim headerRowIndex As Long

 headerRowIndex = 1

 Set headerRow = ws.Rows(headerRowIndex)

 ' Assuming the headers are in row 1

 Set headerRange = ws.Range("A1").Resize(1, ws.Cells(1,
ws.Columns.Count).End(xlToLeft).Column)

 ' Loop through each cell in the header range and autofit the column

 For Each cell In headerRow.Cells
 cell.EntireColumn.AutoFit

 Next cell

 ' Autofit the header row height

 headerRow.AutoFit

 ' Assuming data starts at row 2; adjust if your data starts at a different row

 firstDataRow = 2

 ' Apply the width and height settings to the data range below the header

 Set dataRange = ws.Range(ws.Cells(firstDataRow, 1), ws.Cells(ws.Rows.Count,
headerRange.Columns.Count).End(xlUp))

 ' Set the row height for the data range

 dataRange.RowHeight = 90 ' Adjust the height as needed

 ' Set the column width for the data range

 For Each cell In dataRange.Columns

 cell.columnWidth = 25 ' Adjust the width as needed

 Next cell
End Sub

Sub AdjustFilterSheet(ws As Worksheet)

 ' Autofit the first two columns which contain the filters

 ws.Columns("A:B").AutoFit

 ' Apply left alignment and vertical centering to these columns

 With ws.Columns("A:B")

 .HorizontalAlignment = xlLeft
 .VerticalAlignment = xlCenter
 End With

 ' Format the third row in bold

 With ws.Rows("3:3")

 8

 .Font.Bold = True

End With

End Sub

