A hurricane has swept through New York City’s coastal neighborhood of “Prospect Shore.” Many residents are waiting in shelters to hear if they can return to their houses; but unfortunately, many of their homes have been destroyed. They will need somewhere else to go. City officials and their state and federal partners want to keep New Yorkers close to home so that they can be a part of the reconstruction. They implement a plan for interim housing. That usually means trailer parks, but this solution will not serve enough people in the available space. They will have to find a way to provide housing that is more dense—more like the neighborhoods they are serving. They will use multi-storied, pre-manufactured units. But where will they put them and how?
After the storm much of the waterfront has been washed away and many homes have been lost. Interim housing is carefully deployed, sitting lightly on the ground.

On the day before the hurricane, Prospect Shore is a thriving, historic waterfront neighborhood.
Keeping people close to home has allowed the neighborhood to come back, retaining its character while adapting and becoming more resilient to future storms.
Contents

What is urban interim housing?
Introduction 5

How will interim housing happen in the city?
Process 10

Where will interim housing go in the city?
Site Selection 20

What will interim housing look like in the city?
Design 36

What are the next steps?
Appendix 46
What is Urban Interim Housing?

Introduction

New Yorkers love their neighborhoods second only to their families. Our neighborhoods depend on durable infrastructure, great design, and most importantly a concentration and diversity of people. Before New York City can rebuild itself after a disaster, it will have to rebuild its neighborhoods.

In the wake of a disaster, waves of after-shocks strain cities. The worst among them is the out-migration of people wanting to rebuild their families, homes and jobs away from the destruction. If enough people leave, some estimate about 30% the city is unlikely to ever regain its pre-event vitality. We will need every New Yorker to be a part of the rebuilding process.

Housing is already in critical short supply in New York City, but after a large catastrophe the demand for safe affordable housing will far outweigh supply. We will need to find a way to fill this gap.

Housing is critical, but the solution will have to do more than just provide housing units. It will have to encompass replacement of the complex social and economic networks that make life in New York what it is. Our functioning neighborhoods provide a place to live, work, learn, play, raise children, make friends, and relax.

This document offers a case study example of the development of post disaster interim neighborhoods for New York City.

We use a fictitious but realistic neighborhood called “Prospect Shore” as the context for our hypothetical case study. We imagine a Category 3 Hurricane has destroyed much of the housing and infrastructure of Prospect Shore. We also imagine that the City has resolved to aid in the reconstruction of this neighborhood by providing a place for residents to live during the reconstruction.

Project Background

In 2007, with sponsorship from the Rockefeller Foundation, NYC Office of Emergency Management (OEM) hosted a design competition for deployable housing after a major hurricane. The design brief and all entries are posted at: (www.whatifync.net). This competition first introduced Prospect Shore and the hypothetical hurricane to hundreds of design teams from around the world.

Using the best competition entries as a basis for the Interim Housing Units (IHUs), OEM and partner agencies including the DDC issued a request for interest to the housing industry to identify a logistics supply chain to build, deliver and install a high volume of NYC IHUs immediately.

To leverage the full capacity of the entire manufactured housing industry, OEM and DDC created a performance specification that is a robust solution for big cities: a universal Interim Housing Performance Specification (IHPS)

The IHPS contains stringent requirements for safety, environmental quality, durability and universal design but is flexible enough that virtually any factory can quickly retool to supply them.

To reflect the best thinking on all aspects of the IHPS, many City and Federal agencies provided expertise, including NYC’s Dept. of Buildings (DOB), NYC’s Fire Dept. (FDNY), ConEd, Dept. of Environmental Protection (DEP), Dept. of Transportation (DOT), Dept. of Health & Mental Hygiene (DOHMH), HUD, FEMA, USACE and more.
Why interim housing?

After the immediate danger of a weather event like a Hurricane is over, some people may not be able to return home right away – their houses may be damaged, or even destroyed, and it may not be possible for them to stay with a relative or friend for an extended period of time, while their home is re-built. Interim housing is temporary, providing a place for people to get on with their lives, while the fabric of their communities is mended. That said, stays in interim housing may last a few weeks to a few years, and such housing will need to provide a high level of comfort and a variety of neighborhood services beyond what might be found in emergency shelters.

During and immediately after an emergency, the City has a plan to provide shelter for people who are evacuated. Those shelters will be located in public buildings and will not be suitable for staying for longer than a few days. Interim housing is for that period in between the immediate aftermath and the finished reconstruction of buildings. It can be from 5 days after the storm to as long as five years, depending on the rate of re-construction of a particular home. Under the FEMA Individuals and Households Program (IHP) Temporary Housing component, interim housing is provided during the intermediate period (generally up to 18 months or the maximum amount of financial assistance available by law) between emergency sheltering and the securing of a permanent housing solution.

Forms of Interim Housing

There are a variety of options for interim housing after a natural disaster. The top priority in New York, will be to identify vacant, undamaged properties, particularly rentals, where individuals can be housed. The following are interim housing options, in order of priority:

1. Utilize available rental vacancies
2. Utilize available non-rental residential
3. Rapidly repair residential properties with minimal damage
4. Adaptive use of non-residential buildings
5. Deploy interim housing units

Our case study focuses on this final option. In the event of a catastrophe such as a category 3 or 4 hurricane the housing demand will almost certainly exceed the available housing options within the city, and people will need to be housed in temporary structures. While some people may leave the city, stay with friends or family, or find some other option, our case plans for people staying close to home, at least in their own neighborhoods.

In the United States, temporary housing constructed after natural disasters has usually been done in areas with large open spaces – resulting in a suburban type of housing. Most homes are trailers or manufactured single-family homes sited individually or within a trailer-park-like context with each unit freestanding. Traditional federal assistance is focused on providing the individual housing and is geared toward homeowners.

As a dense city with little available land for development, only one existing commercial trailer site, and a high percentage of the population being renters rather than homeowners, the traditional approach to post-disaster modular housing would be difficult to deploy in New York City.
The Goal

Interim Housing should help to heal the city’s neighborhoods.

It should be safe, comfortable, and temporary.

The mechanism for insuring that interim does not become permanent housing should be through policy. Poor design should not be used as prod to convince people to find permanent housing elsewhere.
Interim Housing Development Process

PLANNING

- Disaster Event
- Project Identification
- Site Identification
- Site Access
- Preliminary Site Design

RESPONSE

- Land Use Approvals
- Environmental Approvals
- Approval to Use Site

RECOVERY

- Contractor Agreement
- Building & Construction Permits
- Certificate of Occupancy
- Move In
- Move Out
- Deactivation

User
- Home
- Shelter
- Public Participation

Government
- Planning
- Site Selection
- Land Use & Environmental Review
- Building Review & Permitting
- Inspections
- Operations
- Occupancy
- HOME!

Designer
- Schematic Design
- Design Development
- Construction Documents

Builder
- Unit Design
- Fabrication
- Construction
- Stockpile & Reuse Units

PHASE

0 Pre-Disaster Design & Permitting
1 Site Selection and Preliminary Design
2 Environmental, Land Use, and Public Review
3 Final Design and Permitting
4 Construction

2 - 3 weeks
2 - 4 weeks
3 - 6 weeks
4 - 8 weeks
Interim Housing Development

Key to Process Diagrams
The conventions shown below are used on the following pages in order to represent the various components, agency coordination, considerations, and approvals that will likely be required in the process of identifying a site, designing, permitting, and constructing interim housing in New York City.

Components and Coordination:

Considerations and Approvals:

ASSUMPTION: Blue call-out boxes represent assumptions made to give context to this case study.

APPROVAL: Red call-out boxes represent required approvals, permits, or waivers.

COORDINATION: Orange call-out boxes represent specific coordination activities that will likely be required for Interim Housing beyond normal procedures.

Lighter lines and outlines represent paths requiring more effort and approvals.

Darker arrows and outlines represent the path of least resistance.

Description of actions that will need to occur.

List of agencies that have been determined to have a necessary role in indicated step of the process. Expertise of additional agencies may be required at time of an event.
Interim Housing Development Phase 0: Pre-Disaster Design & Permitting

Components and Coordination

COORDINATION:
Establishment of a process for certification and on-going training of architects, urban designers, landscape architects and engineers for Interim Housing could be coordinated with DDC and DCP.

COORDINATION:
Establishment of a pre-disaster review and approvals process for components of the prefabricated units is needed and will require further coordination with DOB.

Entities Involved

<table>
<thead>
<tr>
<th>Post Disaster Interim Housing Plan</th>
<th>Fabricator Approval</th>
<th>Unit Specification & Design</th>
<th>Unit Review & Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM and regional, state and federal partners currently developing post disaster housing plan.</td>
<td>Fabricators of the modular Interim Housing units approved by a certified quality assurance agency and register with DOB’s Office of Technical Certification and Research.</td>
<td>Fabricators design units in accordance with NYC OEM Interim Housing Unit Performance Specification and according to NYC Building Code and other applicable regulations.</td>
<td>A task force at DOB reviews modular unit drawings and specifications for compliance with relevant sections of NYC Building Code and Multiple Dwelling Law. Only those components relating to the modular units themselves could be reviewed prior to a site design; this review would not result in a building permit. No such pre-approval process currently exists, but is currently being contemplated.</td>
</tr>
</tbody>
</table>

Activities

<table>
<thead>
<tr>
<th>Pre-Disaster Planning & Permitting</th>
<th>Site Selection and Preliminary Design</th>
<th>Environmental, Land Use, and Public Review</th>
<th>Final Design and Permitting</th>
<th>Construction</th>
</tr>
</thead>
</table>

0

1

2

3

4
Fabricators obtain approval and register with DOB

Revise Drawings
Any objections given during a DOB review must be satisfied prior to approval.

Units Ready
Units can be delivered and installed at site once site plans and final unit configurations are reviewed and approved and permits issued.

Submit Certification of Compliance
Fabricator would need to submit a “certification of compliance” to DOB on completion of unit manufacture.

Fabricate Units
Units could be manufactured pre-disaster and stored or stockpiled. Alternatively, a run of manufacture could be authorized at the time of the disaster.

APPROVAL: Certification by approved quality assurance agency means that fabricators have been evaluated and certified to self inspect components of the units they will be manufacturing.

APPROVAL: DOB would review and approve the Units. The team of special reviewers is hypothetical at this point.

Design Review

APPROVAL: DOB’s creation and approval for this pre-permitting process will be required as it does not currently exist. DOB will need to identify items to be reviewed that are specific to the units and those specific to the sites and the unit configurations.

APPROVAL: DOB would review and approve certifications.

APPROVAL: Approvals leading to a permit to fabricate the units could be granted by DOB (if a permit to fabricate is required). However, building and construction permits could not be granted at this time and are covered in Phase 3: Final Design and Permitting.

Considerations and Approvals

Interim Housing Development Phase 0: Pre-Disaster Design & Permitting

Are fabricators certified by an approved quality assurance agency?

Exclude

Yes

NO

Fabricators Reviewed by Approved Agency

Fabricators

Design Review Team of special reviewers at DOB would review and approve the Units. The team of special reviewers is hypothetical at this point.

Design Review

Yes

NO

Fabricators design units
Drawings and specifications should follow the OEM performance specification and meet DOB applicable requirements.

Design Review

APPROVAL: DOB will need to approve and register fabricators.
Interim Housing Development Phase 1: Site Selection & Preliminary Design

Components and Coordination

<table>
<thead>
<tr>
<th>Activities</th>
<th>Neighborhood Assessment / Site Selection</th>
<th>Urban Design Analysis</th>
<th>Site Survey</th>
<th>Preliminary Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entities Involved</td>
<td>Multi-agency mapping of post-storm conditions to identify potential sites. Factors relating to constructability and livability should be considered.</td>
<td>Analysis of site and context including: adjacencies, access/circulation</td>
<td>Engineering Site Survey Including: utilities/infrastructure, soil, topography, structures</td>
<td>Implement urban design strategies to produce initial site plan.</td>
</tr>
</tbody>
</table>

| Entities Involved | OEM, FEMA, USACE, city agencies, private sector | OEM, DCP, Designer, site owner | OEM, FEMA, USACE, Engineer, site owner | Designer, OEM, DCP, FEMA, USACE |

0	Pre-Disaster Planning & Policy
1	Site Selection and Preliminary Design
2	Environmental, Land Use, and Public Review
3	Final Design and Permitting
4	Construction

2 - 3 weeks
Interim Housing Development Phase 1: Site Selection & Preliminary Design

Considerations and Approvals

IE THE site is inappropriate for interim housing.

Investigate Further

Interim Housing is not immediately feasible, but may be possible through legal, political, or design solutions. These sites should not take priority over more easily developable sites.

Revisit Later

Interim Housing is not immediately feasible or desirable, but may become feasible as the recovery effort proceeds or desirable, if more appropriate sites are used and demand remains.

Excluding Permanently

The site is inappropriate for interim housing.

Is it free of public health hazards?

Is it big enough to support interim housing?

Will soil conditions and slope allow interim housing?

Will the owner let us use it?

Will zoning allow interim housing?

Is it on a road cleared of debris?

Is the site free of development plans?

Is it free of public health hazards?

Are there working utilities?

Is it near transit and other services?

Is it close to home for displaced people?

Environmental Land Use and Public Review

Preliminary Design

Design & Development Proposal including...

Site Survey

Urban Design Analysis

Field Verify Site (if have not already)

Approvals:
Right of access will need to be granted by the site’s owner.
The proposal will need to be reviewed for compliance with local (New York City) land use laws (zoning resolution) and the necessary approvals obtained:
- zoning analysis to determine if the proposed Interim Housing is zoning compliant; if not, land use actions will be required.
- determination if other non-zoning land use actions are required.
- If land use actions are required, determine whether or not to proceed.
- undertake necessary land use review or apply for waivers, rulings or overrides necessary to expedite the process.

For the this case study, it was assumed that Interim Housing would be considered standard multi-family residential for the purposes of review and permitting. Note that the zoning code does not define “interim” or “temporary” housing.

The project will need to be reviewed for compliance with applicable environmental and historic preservation laws:
- Determine if an environmental assessment is required (under CEQRA, SEQR, or NEPA)
- If required, prepare Environmental Assessment Statement based on applicable environmental law (CEQRA, SEQR, or NEPA)
- Determine findings and if an environmental impact statement (EIS) is required. If so, determine whether or not to proceed.

Land use and environmental review processes require a period of public comment or review. The length and type of public review may vary. A standard Uniform Land Use Review process takes at least seven months.

Public input on permanent redevelopment will be ongoing.

A lease, license, permit, or other agreement with the owner of the property will need to be obtained.
Interim Housing Development Phase 2: Environmental, Land Use, and Public Review Considerations and Approvals

ASSUMPTION: Interim housing will be provided by the City of New York.

ASSUMPTION: Interim housing would be considered standard multi-family residential for the purposes of zoning and building code review.

ASSUMPTION: Environmental assessment may be required by FEMA, the state, or the city even if land use review is not.

APPROVAL: The lead agency would need to determine that environmental assessment is not required because either the action qualifies as a categorical exclusion or environmental review is not triggered.

Environmental Assessment
- Environmental Assessment under NEPA (most likely), SEQRA, or CEQRA may be required.
- A statement of negative findings in the form of a Finding of No Significant Impact (FONSI) or Negative Declaration.

Environmental Impact Statement (EIS)
- An EIS can significantly lengthen the review process for a project due to mandatory public review periods and present many legal and procedural hurdles.
- Public review is a mandatory component of the EIS process. Approval would be needed from relevant agencies to expedite the process.

Non-ULURP Review
- Other forms of land use review have different requirements than ULURP. While frequently shorter periods than ULURP, most have mandatory public review periods.

Uniform Land Use Review (ULURP)
- ULURP actions trigger city environmental quality review (CEQR), which begins with an environmental assessment.

Uniform Land Use Review (ULURP)
- Uniform Land Use Review (ULURP) has mandatory public review periods which together amount to 215 days (over 7 months).

APPROVAL:
- Land use approval will need to be granted by the city in order to proceed. Additional approvals would be needed to expedite the process.
- Environmental findings will need to be resolved in order to proceed.
- The lead agency must resolve that environmental assessment is not required because either the action qualifies as a categorical exclusion or environmental review is not triggered.

Final Design & Permitting

SITE

PRELIMINARY DESIGN

Is it zoning compliant (as of right)?
- YES
- NO

Are other land use actions required?
- YES
- NO

Is an environmental assessment required?
- YES
- NO

Does it require ULURP?
- NO
- YES

Environmental Assessment
- ULURP actions trigger city environmental quality review (CEQR), which begins with an environmental assessment.

Environmental Impact Statement (EIS)
- An EIS can significantly lengthen the review process for a project due to mandatory public review periods and present many legal and procedural hurdles.

Environmental Impact Statement (EIS)
- Public review is a mandatory component of the EIS process. Approval would be needed from relevant agencies to expedite the process.

APPROVAL:
- Land use approval will need to be granted by the city in order to proceed. Additional approvals would be needed to expedite the process.
- Environmental findings will need to be resolved in order to proceed.
- The lead agency must resolve that the project creates no significant adverse impact on the environment.

Negative Findings
- A statement of negative findings in the form of a Finding of No Significant Impact (FONSI) or Negative Declaration.

APPROVAL:
- The lead agency must resolve that the project creates no significant adverse impact on the environment.

Assumptions:
- Interim housing would be provided by the City of New York.
- Environmental assessment may be required by FEMA, the state, or the city even if land use review is not.
- Environmental assessment may be required by FEMA, the state, or the city even if land use review is not.

Approvals:
- Land use approval will need to be granted by the city in order to proceed. Additional approvals would be needed to expedite the process.
- Environmental findings will need to be resolved in order to proceed.
- The lead agency must resolve that the project creates no significant adverse impact on the environment.

Final Design & Permitting

SITE

PRELIMINARY DESIGN

Is it zoning compliant (as of right)?
- YES
- NO

Are other land use actions required?
- YES
- NO

Is an environmental assessment required?
- YES
- NO

Does it require ULURP?
- NO
- YES

Environmental Assessment
- Environmental Assessment under NEPA (most likely), SEQRA, or CEQRA may be required.
- A statement of negative findings in the form of a Finding of No Significant Impact (FONSI) or Negative Declaration.

Environmental Impact Statement (EIS)
- An EIS can significantly lengthen the review process for a project due to mandatory public review periods and present many legal and procedural hurdles.

Environmental Impact Statement (EIS)
- Public review is a mandatory component of the EIS process. Approval would be needed from relevant agencies to expedite the process.

APPROVAL:
- Land use approval will need to be granted by the city in order to proceed. Additional approvals would be needed to expedite the process.
- Environmental findings will need to be resolved in order to proceed.
- The lead agency must resolve that the project creates no significant adverse impact on the environment.

Negative Findings
- A statement of negative findings in the form of a Finding of No Significant Impact (FONSI) or Negative Declaration.

APPROVAL:
- The lead agency must resolve that the project creates no significant adverse impact on the environment.

Assumptions:
- Interim housing would be provided by the City of New York.
- Environmental assessment may be required by FEMA, the state, or the city even if land use review is not.
- Environmental assessment may be required by FEMA, the state, or the city even if land use review is not.

Approvals:
- Land use approval will need to be granted by the city in order to proceed. Additional approvals would be needed to expedite the process.
- Environmental findings will need to be resolved in order to proceed.
- The lead agency must resolve that the project creates no significant adverse impact on the environment.
Interim Housing Development Phase 3: Final Design and Permitting

Components and Coordination

<table>
<thead>
<tr>
<th>Activities</th>
<th>Entities Involved</th>
<th>Final Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawings and specifications meeting NYC DOB standards will need to be prepared, including, but not limited to:</td>
<td>Designer, Engineers, DCP</td>
<td></td>
</tr>
<tr>
<td>- Architecture, Builders Pavement, Landscape, Structural, MEP, HVAC, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forms including PW1 and applicable addenda will need to be prepared.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The DOB should be consulted for the full list of requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The city requires drawings to be signed by New York State Licensed architects and engineers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drawings and specifications must be reviewed for compliance with:

- Zoning (Zoning Code) - should have been vetted already in land use review
- Egress (Building Code)
- Multiple Dwelling Law
- Housing Maintenance Code

This review should be completed by the DOB, or a taskforce approved by the DOB. Drawings may need to be revised based on review. DOB may be able to pre-approve components of the design relating only to the modular units. A review group for such pre-approvals would need to be established at DOB and the review undertaken prior to a disaster event.

Utility connections and capacities required for the project would need to be verified with the relevant utility providers.

In New York City, contractors have a safety registration with DOB. Depending on lead agency, there may be requirements for a public bid process.

In addition to a Building Permit, permits will be required for many construction activities including, but not limited to:

- Erosion control
- Use of a crane
- Access or street closures
- Debris / construction trash removal

Entities

- Designers, Engineers, DCP
- FDNY, HPD, DEP, DSNY
- DEP, ConEd, Keyspan, HPD, DSNY
- OEM, FEMA, USACE, DDC
- DOB, DEP, DEC, DOT, Contractor

Activities

- Pre-Disaster Planning & Policy
- Site Selection and Preliminary Design
- Environmental, Land Use, and Public Review
- Final Design and Permitting
- Construction

Timeline

- 3 - 6 weeks
Interim Housing Development Phase 3: Final Design and Permitting
Considerations and Approvals
Site Preparation

- Site preparation including (as required by the site and the design):
 - demolition, clearing, and grubbing or site as required.
 - grading if required
 - foundations

Unit Delivery & Installation

- Units delivered to site from manufacturer, stacked, and installed.

Utility Connections

- Connect to all utilities not provided on-site.

Inspections

- Inspections required for:
 - plumbing
 - foundations
 - structures
 - materials
 - mechanicals
 - fire

Entities Involved

- Contractor, DOT, FDNY, DEP, DDC
- Contractor, Fabricator, DOT, DDC
- Contractor, ConEd, DEP, Fabricator, DDC
- DOB, FDNY, HPD, DEP, DSNY, Fabricator

Activities

- Deliver Units to Site
- Begin Construction
- Certificates of Occupancy or Temporary Certificates of Occupancy
- Move In

Timeline

- 0: Pre-Disaster Planning & Policy
- 1: Site Selection and Preliminary Design
- 2: Environmental, Land Use, and Public Review
- 3: Final Design and Permitting
- 4: Construction

4 - 8 weeks
Interim Housing Development Phase 4: Construction
Considerations and Approvals

- **Prepare Site**: As is necessary: demolition, clearing & grubbing, grading, foundations
- **Deliver Units to Site**: Pre-manufactured units delivered to the prepared site.
- **Install Units**: Units installed on site.
- **Connect Utilities**: Utilities connected to units.
- **Fix Problems**: Adjustments will need to be made to meet requirements.
- **Obtain Certification of Occupancy**: Approval by DOB and other inspectors will be required for certification of occupancy.
- **Inspections**: Inspections by DOB and others as required by the building code.
- **Residents Move In**: Yes or No

Flow Diagram

1. **Final Design**
2. **Building Permit**
3. **Construction Permits**
4. **Prepare Site**
5. **Deliver Units to Site**
6. **Install Units**
7. **Connect Utilities**
8. **Obtain Certification of Occupancy**
9. **Inspectons**
10. **Residents Move In**
After about four days of mapping and field verification, we build consensus for the selection of this site in the north of Prospect Shore.

Site Selection

A week after the storm, many residents of Prospect Shore and other impacted parts of the City are doubling up, staying in congregate shelters, or staying out of town. The housing stock here has been badly damaged. Existing housing resources are clearly insufficient to accommodate the displaced population. The Interim Housing plan is implemented. The process begins with site selection.

We begin by mapping what we know about Prospect Shore. We use satellite imagery, property and street maps, topography, and data on ownership, zoning, transit, and amenities.

We also map real time data sets gathered in the field by emergency operatives. This data includes utility recovery, damage assessment, debris removal, sheltering, other staging and logistics operations. We’ll also be checking in with larger city and regional efforts for long term planning and large-scale environmental remediation.

With this compiled data in hand we begin to narrow our field of options. We first consider what sites are physically feasible. From that initial set we begin to prioritize which sites are best suited for Interim Housing at the moment. Site selection will be an ongoing and iterative process. A site that is a best option on Day 7 maybe not be the best option on Day 100.

There are many regulatory and constructability issues that weigh the selection of an appropriate site. This case study follows a path of least resistance.
Constructability Considerations

Is it accessible by roads cleared of debris?

Key considerations:

- Site assessment and survey teams need to be able to get to the site.
- Trucks, cranes and other equipment necessary to deliver and construct the units need to be able to reach the site.

Immediately after the storm, Prospect Shore is blanketed with a thick layer of debris from buildings, vehicles, trees and everything else swept up in the storm surge. Search and rescue teams arrive first. They are followed by other operations including debris clearance, damage assessment, utility restoration, emergency medical care, and food and water distribution. We incorporate information from these groups with our site selection process.

We focus first on those areas that would become accessible within the first week after the storm. Such areas include sites adjacent to cleared roads, on this side of the police perimeter erected around damaged areas within which search and rescue operations continue.

There are many variables involved in the debris clearance and immediate life safety operations, so we concentrate on the sites we can identify as clear at the moment of mapping.

ASSUMPTION:
Interim housing selection will be iterative. Those sites most readily accessible and available will be considered first; as time goes on, and recovery efforts proceed, more areas are likely to become available.

COORDINATION:
Search & Rescue Operations

COORDINATION:
Food & Supply Distribution

COORDINATION:
Debris Management / Road Clearance
Constructability Considerations

Is it available?

Key considerations:

- Is the site unoccupied by buildings under repair or being rebuilt?
- Are there plans to permanently rebuild or redevelop the site within two years, or the anticipated span of interim housing?
- Is the site currently being used for other recovery efforts?

Interim Housing happens simultaneously with permanent reconstruction, and sometimes in close proximity. The use of land for interim housing is weighed against other post-disaster needs and long-term recovery plans. Some sites may be unavailable in the short-term because they are occupied by immediate recovery uses. Other sites are part of long-term recovery and reconstruction efforts and interim housing should not interfere with these plans.

We immediately exclude intact and under repair buildings as potential sites. While we retain sites with destroyed buildings and buildings slated for demolition (cleared sites) in our list of potential sites, we recognize that these would require more investigation, as long-term recovery and construction would take first priority.

Site Development Conditions:

- No Existing Structure
 - Vacant
 - Easier

- Destroyed
 - Clear
 - Damaged

- Partially Destroyed
 - Demolish & Clear
 - Potential More Difficult

- Intact
 - Repair
 - Footprint not available
Livability Considerations

Is the site safe?

Key Considerations

- Is it outside of floodways and coastal high hazard areas?
- Is it outside the 100-year flood zone?
- Is it free of designated brownfields?
- Is the site free of evident contamination hazardous to basic human health?

Many people of Prospect Shore have just undergone a traumatic event that has displaced them from their homes. Their interim housing should not expose them to further harm, whether it is flooding from another storm, or other natural or human-caused risk factors.

In identifying sites we consider key environmental risk factors that would likely result in unsafe living conditions for interim housing residents including clear contamination issues and flood hazard issues.

COORDINATION:
Damage assessment teams will be documenting areas with severe contamination and other risk factors; such areas should be excluded as potential sites.

ASSUMPTION:
Pre-existing wetland and FEMA FIRM maps should be consulted as FEMA does not traditionally fund interim housing within a floodway, coastal high hazard area, floodplain, or wetland.

COORDINATION:
Consideration should be given to coastal housing if the lowest habitable floor is raised above the 100-year flood elevation.
Constructability Considerations

Is it big enough?

Key Considerations:

- Can the site accommodate the minimum footprint, with the necessary set-backs from roads and intact or under repair buildings?

Prospect Shore is densely developed and finding sites that are large enough to support interim housing is a challenge. We assume look first for sites larger than a half acre. Sites this large meet our basic requirements for providing density with appropriate set backs.

We look first in the areas that are accessible at the moment. We leave consideration of land that is now being cleared of storm debris and destroyed buildings to a later date when more is known about those conditions. This narrows the field of options very quickly.

ASSUMPTION:
Larger sites are preferable to smaller sites for multi-family housing.
Constructability Considerations

Will soil conditions and slope allow interim housing?

Key considerations:

- Will the soils support structures?
- Is it sloped less than 12%?

The best sites for interim housing need minimal site preparation. Steep slopes and unstable soils require complicated foundations and sometimes lots of ramping and for accessibility.

We generate a slope map of Prospect from existing topographical information. We compile soil profiles which show the soil density and bearing capacity from individual owners.

We also determine the frost line, which helps to determine how deep any temporary foundation will need to be placed.

Slope Constraints:

- < 2%: Ok, but grading may be needed to ensure drainage.
- 2 - 5%: Best, drains and easy to meet ADA requirements.
- 5 - 8%: Good, some adjustments may need to be made for accessibility.
- > 12%: Bad, too steep to easily construct interim housing and access.
Constructability Considerations

Will the owner let us use it?

Key considerations:

• Can you determine the owner?
• Can you contact the owner?
• Is the owner willing to have the site used for Interim housing?

We cannot begin design without the permission of the site’s owner. It may be difficult to locate landowners; some of them are likely displaced by the storm. For this reason, we take a strong preference for publicly owned property.

Once a site is identified and owner located, survey and assessment teams request access in order to investigate it. If access is granted and the site is deemed appropriate, permission to use the site is requested.

ASSUMPTION: Interim housing sites will not be purchased.

ASSUMPTION: Public ownership is preferred in order to expedite the lease process, but many public sites, especially parks and parking lots, will be occupied in the short-term by other recovery operations.
Constructability Considerations

Will zoning allow interim housing?

Key Considerations:

- Is interim housing compliant with the site’s zoning?

To determine compliance with zoning we need to have preliminary site plan which includes the height, bulk, and number of units. There are many other zoning requirements that must be considered including floor area ratios, open space ratios, residential density, and parking ratios. The Department of City Planning is consulted on questions relating to zoning.

Prospect Shore has several areas with zoning that allow 3 and 4-story multifamily residential with commercial uses on the ground floor. In this case study, we focus on an area zoned medium density residential (R6a with a commercial overlay).

Because interim housing is temporary, any negative long-term impacts of the project on the permanent character of the neighborhood should be minimal. On the contrary, we try to design interim housing in such a way to protect and heal the character of the neighborhood.

<table>
<thead>
<tr>
<th>Residential Districts:</th>
<th>May Be Compliant</th>
<th>Not Compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6, R7, R8, R9, R10</td>
<td>May be possible to construct multifamily interim housing without violating the zoning resolution.</td>
<td>Multi-family interim housing as described in this case study would not be compliant with existing zoning.</td>
</tr>
<tr>
<td>R1, R2, R3, R4, R5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial Districts:		
C1, C2, C4, C5, C6		
C3, C7, C8		

| Manufacturing Districts: | | |
| M1, M2, M3 | | |

| Special Districts: | | |
| Varies | (If a site is within a special district, the specific requirements of that district must be studied) | |

| Other: | | |
| Mapped Parks, Mapped Streets | | |
Livability Considerations

Is it close to home?

Key Considerations

- Is the site in a neighborhood where residents have been displaced?

The people in Prospect Shore want to stay close to home. They want to be with their friends and family, continue with their jobs, school, church and book clubs. Most of all, they want to take part in the reconstruction effort. That’s why we are looking for an interim housing site in Prospect Shore.

We have honed in on a location that looks like it might work. We map out how close it is to the population that we believe is displaced. It seems that if we try to stay close to the higher density area, we can place housing closer to home for more people.
Livability Considerations

Is it near transit and other neighborhood services?

Key Considerations:

- Is the site within a comfortable walk of working public transit?
- Is the site within a reasonable walk or transit ride of critical neighborhood services including a hospital or clinic; schools and childcare; and a grocery, market or food distribution center?

Prospect Shore has great transit access and the people depend on it. Also, many people who do have cars have had them badly damaged in the storms.

Siting housing near working transit connections is critical in order to keep residents well connected to work, services, family, and other needs.

We also try to keep residents near services they need to rebuild. We map out the proximity of the likely site to critical services such as health care, childcare, education, groceries, and other fundamental services.

ASSUMPTION: Successful interim neighborhoods will depend on more than just housing.
Livability Considerations

Are there working utilities?

Key Considerations

- Does the site have a connection to operating power, water, sewer and telecommunications?
- If not, when are these services likely to come back on line?

Using available utility connections is preferable when possible to ensure ease and rapidity of construction. It also will provide residents with a close to normal experience.

Although it is preferable to stay “on the grid” when possible; we investigate various conventional and alternative technology options for electricity, sewerage, water, and storm water that would create on-site provision of all or part of necessary utilities. This is documented in the appendix of the case study.

We intend the interim housing to site lightly on the ground. We try to make an effort to minimize the reliance of these units on existing utilities.

ASSUMPTION: Unfortunately, the Prospect Shore Sewage Treatment Plant was badly damaged in the storm.
Field Verify Sites

The “windshield” survey

We gathered most of this information remotely from GIS and other records, so we thought it best to check it out first hand at this point.

We asked some members of a damage assessment team to verify this site in the field. Their observation confirms our information.

COORDINATION:
There will be many ongoing recovery and reconstruction efforts after the storm, other field teams may be able perform preliminary site assessments in conjunction with other activities.
Site Typology

What are the most likely?

In the process of selecting a site, we discover that there are a variety of “types” of sites that may be available. Every site has its particular characteristics that offer constraints and opportunities for the development of Interim Housing.

We looked at ten different sites in Prospect Shore which represent ten different sites that are likely to be found in New York City.

We choose the site that has the least amount of physical, political and regulatory hurdles.

However, it is not a given that there will always be a clear “path of least resistance” in choosing a site.

The following page gives an overview of some of the particular challenges in each of the sites we examined.
PAVED LOTS: Lots that are vacant prior to the event including parking lots or undeveloped sites.

Key regulatory hurdles:
- Zoning
- Environmental review

CLEARED LAND: Land that was developed prior to the storm but has been cleared due to storm damage.

Key regulatory hurdles:
- Acquisition/Owner consent
- Insurance requirements
- Zoning
- Environmental review

CAMPUS IN-FILL: Land surrounding existing buildings such as public housing and campus dorms.

Key regulatory hurdles:
- Owners' by-laws (e.g. NYCHA Section 18)
- Zoning
- Environmental review

PIER ZONE: Water-borne housing in the area between the edge of the water and the pier line.

Key regulatory hurdles:
- NYS DEC
- USACE
- USCG
- PANYNJ
- Environmental review

ADAPTIVE RE-USE: Large buildings that can easily accommodate re-use as housing.

Key regulatory hurdles:
- Owner consent
- Zoning
- Codes (Multiple Dwelling Law)
- Environmental review

SUPER BLOCK:
Land spanning temporarily closed streets

Key regulatory hurdles:
- FDNY
- Zoning
- DOT (revocable consent)
- Utility easements

INFRASTRUCTURE SPACE: Residual space around major infrastructure such as under highways.

Key regulatory hurdles:
- Zoning
- Environmental Review
- Dept. of Health (Air Quality)
- NYS DOT

ADJACENT TO PARKS: Widened sidewalks and areas adjacent to the perimeter of park space.

Key regulatory hurdles:
- Zoning
- Dept. of Parks
- NYS DOT

PARKS: Open space within public parks and on playing fields.

Key regulatory hurdles:
- Zoning
- Environmental Review
- Recreational
- Dept. of Parks

STREETS: drive-lanes, parking, medians, and sidewalks

Key regulatory hurdles:
- FDNY
- Zoning
- DOT (revocable consent)
- Utility easements
What will Interim Housing look like?

Design process

Survey: Urban Design Analysis

What is the character of the neighborhood?

Good urban design starts with the street and sidewalk, the predominant public space in the city. We begin the site analysis by mapping the streets and sidewalks. We move on to map the boundaries of the site, its adjacencies, and other significant locations in the immediate area. Some of the areas the urban design analysis focuses on include:

- Pedestrian pathways
- Street activity, business restoration and provision of basic household goods.
- Building heights, street walls, setbacks and general massing
- Open space
- Street trees and other landscape or streetscape features
- Other significant locations including laundry, grocery, schools, police station, fire stations, libraries, etc.
- Distance to mass transit
- Distance to important locations for relief and recovery efforts including PODs (points of distribution for food and medicine)
Survey: detailed description of site

What are we working with?

Appropriately accredited engineers will conduct a survey of the site. They will follow a standard procedure and try to complete a full survey as rapidly as possible.

- Metes and bounds
- Topography
- Utilities location and condition (above and below ground)
- Drainage
- Soil samples and geotechnical report to determine bearing capacity
- Coverage (soil, mixed flora, pavement, debris, infill, etc.),
- Trees and other planting
- Depth of water table and frost line
- Shade coverage and shadows (for future solar units)
- Noticeable air or noise pollution
Interim Housing Prototype
From the OEM/ DDC Interim Housing Units specification

- Multi-storey (up to 4 levels)
- 2 means of egress per unit
- Rapidly deployable and transportable
- Max. distance between unit and exit: 150'
- Can be up to aprox. 200 dwellings per acre
- Unit sizes:
 - 10'x30'
 - 12'x30'
 - 10'x40'
 - 12'x40'
- Max. distance between unit and exit: 150'
Spatial parameters

ADJACENCIES:
- 15’ from curb
- 5’ for tree pit area;
- 10’ for cleared sidewalk

ADJACENCIES:
Min. 15’ from open space

ADJACENCIES:
Min. 15’ from curb

Water tanks

MAXIMIZE STREET FRONTAGE

HEIGHT:
- Units on street can stack to 4 floors
- Min. 30’ from adjacent buildings

** HEIGHT:**
- Units not fronting street can stack to 3 floors

SERVICES

COMMUNITY AMENITIES

3-STORY UNITS

4-STORY UNITS
“Barracks-Style” Arrangement

- Units Offset from Street
- No Clear Zone for Retail
- No Clear Defensible Space
- Inefficient Cores Serving Only One Wing
- No Clear Hierarchy of Open Space
- Break in Streetwall

120 residents/
28 dwelling units

Total No. of Modules: 72
Total No. of Stairs: 2

- 3 Bedroom units: 12
- 1 Bedroom units: 9
- 3 Bedroom handicap units: 4
- 1 Bedroom handicap units: 3
"Neighborhood-Sensitive" Arrangement

- Offset service space for parking and loading
- Shared open space
- Efficient cores serve 2 wings
- Repair continuity of streetwall
- Clearly defined entry and sequence of public space
- Corners for retail

170 residents/
35 dwelling units

- Total No. of Modules: 115
- Total No. of Stairs: 4
- 3 Bedroom units: 21
- 1 Bedroom units: 10
- 3 Bedroom handicap units: 4
View from the street

- Eyes on the street
- Uninterrupted rhythm of street trees
- Service entrance
- Informal seating area
- Information wall
- Fresh food available
- Clear main entrance
- Terrace / outside seating
- Porch area in ground level residential units
- Uninterrupted rhythm of street trees
A Strolli Plan is a diagram showing the built environment at street level from the point of view of the pedestrian. A gradient of white (most public) to black (most private) represents where the pedestrian can most easily access.

Uninterrupted rhythm of street trees

Continuity of variety in the pedestrian experience

A complete neighborhood starts with the sidewalk

Varied texture of building articulation at ground level

* A Strolli Plan is a diagram showing the built environment at street level from the point of view of the pedestrian. A gradient of white (most public) to black (most private) represents where the pedestrian can most easily access.
Strolli plan*
Corner scale

*Most important in the Strolli Plan is the indication of elements in the street (street trees, tree pits, plantings and street furniture) to quantify the sustainable elements which increase walkability.
Zoning Compliance

Building height = 56'-0"

Sideyard = 30'

Front wall setback = 0'

Total FAR = 1.96

Total floor area = 69,300

Parking space for 5 vehicles

Lot area = 35,183 sq. ft.

Lot coverage = 55%

Total dwelling units = 35

Parking space for 105 bicycles

Requirements	Permitted in R6A	Proposed
Max. FAR | 3.0 | 1.96
Max. Floor Area | 105,300 sq. ft. | 69,300 sq. ft.
Max. Building Height | 70 ft | 56 ft
Max. Lot Coverage (corner lot) | 80% | 55%
Min. Required Side Yard | 30 ft. | 30 ft.
Max. front wall setback for narrow street* | 15 ft. | 0 ft.
Permitted number of dwelling units | 155 | 35
Parking Ratio**(50%)** | 18 | 5***
Bike Parking (1 per 2 units) | 18 | 105

* cannot be less than any other building within 150 ft.
** cannot be between building and the street
*** car share offered in lieu of parking requirement
Section view

- Bicycle storage: 1 bicycle per person
- Drylines
- Bioswale
- Infrastructure units at ground level
- Bioswale
- Community garden
- 10’ cleared sidewalk
- 5’ tree pit area
- Screw piles foundation (reusable)
What are the next steps?

Appendix

1. OVERVIEW OF PERMITS AND APPROVALS 2-5
2. SITE SELECTION DATA CATEGORIES 6-9
3. PERMITTING AND APPROVALS AGENCIES 10
4. INFRASTRUCTURE OVERVIEW 11-12
 - Disaster Housing is GREEN!
 - Damage Assessment and Strategies
5. MODULE ORGANIZATION 13-14
 - Module Units
 - Clustering Around Units
6. SYSTEMS GUIDELINES 15-17
 - Energy
 - HVAC and Water Heating
 - Water Use
 - Sewage
7. INFRASTRUCTURE MENU 18-20
8. SITE DESIGN TECHNIQUES 21-25
 - Foundation Investigation
 - Roof Investigation
 - Designing for Slopes
 - Site Steps/ Ramps
 - Circulation and Drainage
Overview of Permits and Approvals

The table on this and the following pages present an overview of the various review processes, approvals, and permits that may be required to construct Interim Housing in compliance with New York City rules and regulations. This list should be viewed as a work in progress and will be reviewed and updated as the Interim Housing process is developed.

<table>
<thead>
<tr>
<th>Type</th>
<th>Permit / Approval / Review / Action</th>
<th>Related Documents</th>
<th>Agencies Involved</th>
<th>City process time frame (if available)</th>
<th>Notes / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental approvals</td>
<td>Determination</td>
<td></td>
<td>OEC, DEP, SHPO, Landmarks, additional depending on applicable environmental law: NEPA (federal), SEQRA (state), CEQR (city). Lead agency for project</td>
<td>22 - 46* Under CEQR: Type I actions and undefined actions are subject to environmental review and an EAS is required; Type II actions are categorical exclusions and do not require environmental review. Consult the CEQR technical manual for list and descriptions of Type I and II actions. City Environmental Review should be coordinated with the OEC; Federal and State review should be coordinated with the applicable agencies. Environmental review will include consideration of historic properties and landmarks as well. *median time for City Environmental Quality Review process for projects in FY09 & FY08. Note that if an Environmental Assessment Statement or an Environmental Impact Statement is required, mandatory time frames exist. For complex projects the CEQR process can take YEARS ... but in FY08&09, 71% of Environmental Review Applications were completed within 6 months. source: Mayor’s Office of operations performance report on DCP.</td>
<td></td>
</tr>
<tr>
<td>(required)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental approvals</td>
<td>Environmental Assessment (EA) (may or may not be required; this would need to be determined by the lead agency)</td>
<td>Environmental Assessment Statement or Report (EAS or EAR)</td>
<td>Lead agency with ... Depends on applicable law (NEPA, SEQRA, CEQR) NEPA: EPA, FEMA or USACE; City would likely request review of document by DEP SEQRA: DEC, Agency in charge of project; City would likely request review of document by DEP CEQR: OEC, DEP, Agency in charge of project All: SHPO, Landmarks</td>
<td>47</td>
<td>City environmental review is mandated for actions directly undertaken by the city or for which a city provides financial assistance. City environmental review is not mandated for as of right construction. FEMA may require an EA under NEPA for actions they undertake or fund. Action</td>
</tr>
<tr>
<td>Type</td>
<td>Permit / Approval / Review / Action</td>
<td>Related Documents</td>
<td>Agencies Involved</td>
<td>City process time frame (if available)</td>
<td>Notes / Comments</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required min. time (days)</td>
<td>Median time (days)</td>
</tr>
<tr>
<td></td>
<td>Environmental approvals- (may be required)</td>
<td>Statement of Findings</td>
<td>Negative NEPA: Finding of No Significant Impact (FONSI) CEQR: Negative Declaration</td>
<td>30</td>
<td>No EIS required. CEQR requires the lead agency give public notice of a negative declaration and provide a 30-day public comment period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Negative with conditions: NEPA: FONSI with Mitigation CEQR: Conditional Negative Declaration</td>
<td>30</td>
<td>No EIS required as long as conditions are met. CEQR requires the lead agency give public notice of a conditional negative declaration and provide a 30-day public comment period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Positive</td>
<td>ibid</td>
<td>Environmental Impact Statement is required</td>
</tr>
<tr>
<td></td>
<td>Environmental Impact Statement (EIS) (only required if there are positive findings from the EA)</td>
<td>Scope of Work</td>
<td>ibid</td>
<td>40</td>
<td>Minimum 30 days, maximum 45 between statement of findings and public scoping meeting. 10 days after meeting to receive comments. Maximum 30 days after public scoping meeting to publish scope of work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draft Environmental Impact Statement (DEIS)</td>
<td>ibid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Public Review Period</td>
<td>ibid</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Final Environmental Impact Statement (FEIS)</td>
<td>ibid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Findings</td>
<td>ibid</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Land Use Approvals (required)</td>
<td>Zoning compliance review</td>
<td>ZD1 Zoning Diagram and Form^</td>
<td>DOB, DCP</td>
<td>33 - 48^</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*This is the building permit form (see building permit section). Review for compliance with zoning code typically happens as part of the building permit process, but we would want to initiate process as soon as possible once a site has been identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use Approvals (only required if not compliant or certain other cases, see DCP)</td>
<td>Application and Pre-Certification</td>
<td>DCP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Community Board Review</td>
<td>Community board</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borough President Review</td>
<td>Borough President (and sometimes borough board)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>City Planning Commission Review</td>
<td>City Planning Commission</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>City Council review</td>
<td>City Council</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mayor review</td>
<td>Mayor’s Office</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>City Council review</td>
<td>City Council</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Permit / Approval / Review / Action</td>
<td>Related Documents</td>
<td>Agencies Involved</td>
<td>City process time frame (if available)</td>
<td>Notes / Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Building, Construction, and Inspections</td>
<td></td>
<td></td>
<td></td>
<td>Required min. time (days) Mean time (days)</td>
<td>Notes / Comments</td>
</tr>
<tr>
<td>Building & Construction Permit Approvals</td>
<td>Pre-file application for Building Permit</td>
<td>complete drawing set</td>
<td>DOB</td>
<td>110 (city-wide average or median)</td>
<td>An overview of the entire building permit application process can be found on the DOB website: A New York State licensed Professional Engineer (PE) or Registered Architect (RA) must submit construction plans to obtain a permit. Refer to the DOB for list of required drawings and specifications. Forms and instructions are available on the DOB website: http://www.nyc.gov/html/do.html/ dob/html/forms/forms_permits.shtml#pw1</td>
</tr>
<tr>
<td></td>
<td>PW1 Plan / Work Approval Application Form</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PD1 Plot Diagram Form</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZD1 Zoning Diagram Form</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional PW1 Addendums</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pay Fee</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application Entered into BIS</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOB Reviews application</td>
<td></td>
<td>DOB</td>
<td></td>
<td>Drawings and specifications are reviewed for compliance with: Zoning (Zoning Resolution), Egress and LL58/87 (disability), Egress (Building Code), Multiple Dwelling Law, Housing Maintenance Code. Required items needed for construction work are determined by the plan examiner at this time.</td>
</tr>
<tr>
<td></td>
<td>Additional Signoffs and Permits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOB Approves Application</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Permits</td>
<td>Multiple, refer to DOB for required items based on project</td>
<td>DOB, DEP, FDNY, and others depending on project</td>
<td></td>
<td>Permits relating to site preparation / demolition and construction of the building that have been identified during the DOB review will need to be filed. Specific permits required will be identified during the review process, but a list of potential permits and approvals can be found in the DOB’s “Required Items Reference Guide.”</td>
</tr>
<tr>
<td></td>
<td>Additional Permits</td>
<td>Multiple, refer to DOB for required items based on project</td>
<td>DOB and others</td>
<td></td>
<td>In addition to construction-specific permits, other permits may be required. In general, such permits fall into the following categories: Boiler, Electrical, Elevator, Limited Alteration Applications, Place of Assembly, Plumbing. Specific permits required will be identified during the review process, but a list of potential permits and approvals can be found in the DOB’s “Required Items Reference Guide.”</td>
</tr>
<tr>
<td></td>
<td>File & Obtain Building Permit</td>
<td>Approved documents from review</td>
<td>DOB</td>
<td></td>
<td>Requires contractor information, thus a contractor must be retained prior to this submission. Form can be found at: http://www.nyc.gov/html/do.html/forms/forms_permits.shtml#pw1</td>
</tr>
<tr>
<td></td>
<td>PW-2 Permit Application Form</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PW-3 Cost Affidavit Form</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fee Payment</td>
<td></td>
<td>DOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Permit / Approval / Review / Action</td>
<td>Related Documents)</td>
<td>Agencies Involved</td>
<td>City process time frame (if available)</td>
<td>Notes / Comments</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Inspections</td>
<td>inspections</td>
<td>OP-98 Notice results form</td>
<td>DQB, Special Inspectors, FDNY, DEP, ConEd, DOHMH, HPD, additional agencies may be involved depending on project details and location</td>
<td>Required min. time (days) Median time (days)</td>
<td>This form is used for self-certification of plumbing, sprinkler and standpipe inspection(s) and/or test(s) of work filed on either the Schedule B (PW-1B) form or the Alteration Repair Application (ARA-1) form and covers many required inspections.</td>
</tr>
<tr>
<td></td>
<td>additional inspections</td>
<td>additional Inspections</td>
<td></td>
<td></td>
<td>There may be other inspection items required. Again, a list of potential inspection items can be found in the The PC1 Required Items Checklist provides and a list and description of these items can be found in the DOB’s "Required Items Reference Guide."</td>
</tr>
<tr>
<td>Certification of Occupancy</td>
<td>application for certificate of occupancy</td>
<td>PW6 Certificate of Occupancy Application</td>
<td>DQB</td>
<td></td>
<td>The PW 6 form is filed in order to initiate inspections required prior to issuance of a Certificate of Occupancy. The applicant (Professional Engineer, Registered Architect or Superintendent of Construction) shall complete the Statement of Compliance in accordance with section 27-221 of the Building Code of the City of New York. Filed before inspections in.</td>
</tr>
<tr>
<td>Certificate of Occupancy</td>
<td>PW7 Certificate of Occupancy / Letter of Completion Folder Review Request</td>
<td>DQB</td>
<td>A final Certificate of Occupancy will be issued when the completed work complies with the submitted plans and applicable laws, all paperwork is completed, all necessary approvals have been obtained from other appropriate City agencies, all fees owed to the Department are paid, and all relevant violations are resolved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Certificate of Occupancy</td>
<td>PW7 Certificate of Occupancy / Letter of Completion Folder Review Request</td>
<td>DQB</td>
<td>A TCO has an expiration date, usually 90 days after its date of issuance. This means that while the Buildings Department has determined that the house or apartment building is safe to occupy, the approval is only temporary and is subject to expiration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Site Selection Data

Site selection will be aided by being able to rapidly gather and map both pre and post storm information about the city and its neighborhoods as well as the storm’s impact. The table below lists data categories that will likely be critical to identifying and evaluating potential sites for post-disaster interim housing. The corresponding City Environmental Quality Review (CEQR) technical category is also listed, which will aid in coordinating information if environmental assessment is required.

<table>
<thead>
<tr>
<th>Site Selection & Assessment Categories</th>
<th>Related Environmental Assessment - CEQR Technical Analysis - category</th>
<th>Data Required</th>
<th>Probable Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data that will need to be gathered or updated post-disaster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial / satellite Imaging</td>
<td>none</td>
<td>Post storm aerial or satellite images</td>
<td>USACE, google</td>
</tr>
<tr>
<td>Post Disaster Damage Assessment & Recovery Activities</td>
<td>none</td>
<td>Building damage assessment - structures remaining, structures destroyed, and status of repair or clearance</td>
<td>OEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Debris clearance - areas covered and areas cleared</td>
<td>OEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheltering - location of shelters, and number and info of individuals and families being housed</td>
<td>OEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution and logistics center locations</td>
<td>OEM</td>
</tr>
<tr>
<td>Transportation & Access</td>
<td>Transportation (13)</td>
<td>Cleared Roads - primary routes, secondary roads & streets</td>
<td>OEM, USACE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roads and Streets - ROW and carriageway widths</td>
<td>DOT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traffic capacities - check with CEQR</td>
<td>DOT, MTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Transit - working subway stations, operating & predicted to be operational bus routes</td>
<td>MTA</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>Evacuation routes</td>
<td>OEM</td>
</tr>
<tr>
<td>Site Selection & Assessment Categories</td>
<td>Related Environmental Assessment - CEQR Technical Analysis - category</td>
<td>Data Required</td>
<td>Probable Data Source</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Utilities (power, water, sewerage, stormwater, and telecom)</td>
<td>Water and Sewer Infrastructure (10)</td>
<td>Sewerage System - working lines, working treatment locations, and capacity by treatment plant or coverage area</td>
<td>DSNY, OEM, USACE</td>
</tr>
<tr>
<td></td>
<td>Water Supply - working lines and potability</td>
<td>DEP, ?, OEM, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Supply - alternative water sources</td>
<td>OEM, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water - working fire hydrants</td>
<td>DSNY, OEM, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storm sewer systems - drainage, capacity, and level of function</td>
<td>DSNY, OEM, USACE</td>
<td></td>
</tr>
<tr>
<td>Energy (12)</td>
<td>Electricity - working lines and capacity by section</td>
<td>ConEd, OEM, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electricity - sites with or with potential for alternative energy generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Telecom - working hardlines</td>
<td>Verizon, ?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecom - cellular / wifi coverage</td>
<td>Cellular Providers</td>
<td></td>
</tr>
<tr>
<td>Community Facilities & Services</td>
<td>Community Facilities & Services (3)</td>
<td>Healthcare - working hospitals and clinics</td>
<td>DHMH, universities, private sector</td>
</tr>
<tr>
<td></td>
<td>Education - open and predicted to reopen public schools</td>
<td>DOE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Childcare - open and predicted to reopen child care centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Libraries - open and predicted to reopen libraries</td>
<td>NYCPL</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Food - working groceries, farmers markets, and food distribution sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Culture - community centers and churches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open space (4)</td>
<td>Open space & recreation - open public parks and recreational facilities</td>
<td>DPR</td>
</tr>
<tr>
<td>Security & Emergency Services</td>
<td>Community Facilities & Services (3)</td>
<td>Emergency services - working fire stations</td>
<td>FDNY</td>
</tr>
<tr>
<td></td>
<td>Security - working police stations</td>
<td>PDNY</td>
<td></td>
</tr>
<tr>
<td>Environmental Quality</td>
<td>Hazardous Materials (9)</td>
<td>Visible contamination / hazardous materials on-site</td>
<td>DEP, OEM, USACE</td>
</tr>
<tr>
<td>Site Selection & Assessment Categories</td>
<td>Related Environmental Assessment - CEQR Technical Analysis - category</td>
<td>Data Required</td>
<td>Probable Data Source</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Existing, Pre-Disaster Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical FEMA Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing, Pre-Disaster Data</td>
<td>FEMA flood zones</td>
<td>FEMA (pre storm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floodways</td>
<td>FEMA (pre storm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal high hazard areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Resources (8)</td>
<td>Wetlands</td>
<td>FEMA (pre storm)</td>
<td></td>
</tr>
<tr>
<td>Physical Conditions</td>
<td>Topography / Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td>Ownership (public: city, state, regional, or federal agency; Private)</td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ownership - owner contacts, including if in New York post-storm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use, Zoning & Public Policy</td>
<td>Location of relief & recovery effort land uses, including: debris storage locations, point of distribution centers</td>
<td>OEM, FEMA, USACE</td>
<td></td>
</tr>
<tr>
<td>Land Use, Zoning & Public Policy (1)</td>
<td>Current land use (post storm)</td>
<td>OEM, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-storm landuse</td>
<td>OEM, USACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoning</td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NYC Waterfront</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Context</td>
<td>Pre-storm location of displaced persons - housing destroyed or evacuated and unable to return due to the storm</td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic conditions (2)</td>
<td>Inhabited / working residential, commercial, or industrial activities</td>
<td>OEM, USACE, DCP, DOB</td>
<td></td>
</tr>
<tr>
<td>Neighborhood character (18)</td>
<td>Surrounding building types & heights, land use, demographics</td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td>Historic, Cultural, Design, Visual, and Natural Resources</td>
<td>Shadows (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic and Cultural Resources (6)</td>
<td>Historically or culturally significant NYC properties - New York City Landmarks, Interior or Scenic Landmarks, New York State and National Register or Historic Places</td>
<td>Landmarks, SHPO</td>
<td></td>
</tr>
<tr>
<td>Urban Design and Visual Resources (7)</td>
<td></td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td>Natural Resources (8)</td>
<td>Natural resources - check with CEQR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Selection & Assessment Categories</td>
<td>Related Environmental Assessment - CEQR Technical Analysis - category</td>
<td>Data Required</td>
<td>Probable Data Source</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Environmental Quality</td>
<td>Hazardous Materials (9)</td>
<td>Designated brownfields</td>
<td>DEP, OEC</td>
</tr>
<tr>
<td></td>
<td>Prior land uses involving use of hazardous materials - i.e. cleaners, heavy industrial, etc</td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sites with institutional controls - i.e. Restrictive declarations</td>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence of underground storage tanks</td>
<td>DEP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental justice communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Quality (14)</td>
<td>check with CEQR</td>
<td>DEP</td>
</tr>
<tr>
<td></td>
<td>Greenhouse Gas Emissions (15)</td>
<td>check with CEQR</td>
<td>DEP</td>
</tr>
<tr>
<td></td>
<td>Noise (16)</td>
<td>check with CEQR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Health (17)</td>
<td>check with CEQR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Impacts (19)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Agencies and Acronyms

<table>
<thead>
<tr>
<th>Government Level</th>
<th>Agency</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>City / Local</td>
<td>Office of Emergency Management</td>
<td>OEM</td>
</tr>
<tr>
<td></td>
<td>NYC Department of City Planning</td>
<td>DCP</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Buildings</td>
<td>DOB</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Design and Construction</td>
<td>DDC</td>
</tr>
<tr>
<td></td>
<td>Fire Department of NYC</td>
<td>FDNY</td>
</tr>
<tr>
<td></td>
<td>Police Department of NYC</td>
<td>NYPD</td>
</tr>
<tr>
<td></td>
<td>NYC Housing Authority</td>
<td>NYCHA</td>
</tr>
<tr>
<td></td>
<td>NYC Housing Preservation and Development</td>
<td>HPD</td>
</tr>
<tr>
<td></td>
<td>NYC Mayors Office of Environmental Coordination</td>
<td>OEC</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Environmental Protection</td>
<td>DEP</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Transportation</td>
<td>DOT</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Sanitation</td>
<td>DSNY</td>
</tr>
<tr>
<td></td>
<td>NYC Landmarks Preservation Commission</td>
<td>LPC</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Parks and Recreation</td>
<td>DPR</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Health and Mental Hygiene</td>
<td>DOHMH</td>
</tr>
<tr>
<td></td>
<td>NYC Department of Education</td>
<td>DOE</td>
</tr>
<tr>
<td></td>
<td>NYC Board of Standards and Appeals</td>
<td>BSA</td>
</tr>
<tr>
<td></td>
<td>NYC Economic Development Corporation</td>
<td>EDC</td>
</tr>
<tr>
<td>Regional / Metro</td>
<td>Port Authority of New York and New Jersey (PANYNJ)</td>
<td>PANNYNJ</td>
</tr>
<tr>
<td></td>
<td>Metropolitan Transportation Authority (MTA)</td>
<td>MTA</td>
</tr>
<tr>
<td>State</td>
<td>New York State Emergency Management Office</td>
<td>SEMO</td>
</tr>
<tr>
<td></td>
<td>New York State Department of Environmental Conservation</td>
<td>DEC</td>
</tr>
<tr>
<td></td>
<td>New York State Department of Transportation</td>
<td>NYS DOT</td>
</tr>
<tr>
<td></td>
<td>State Historic Preservation Office</td>
<td>SHPO</td>
</tr>
<tr>
<td>Federal</td>
<td>Federal Emergency Management Agency (FEMA)</td>
<td>FEMA</td>
</tr>
<tr>
<td></td>
<td>United States Army Corps of Engineers (USACE)</td>
<td>USACE</td>
</tr>
<tr>
<td></td>
<td>Department of Environmental Protection</td>
<td>EPA</td>
</tr>
<tr>
<td></td>
<td>Department of Housing and Urban Development</td>
<td>HUD</td>
</tr>
<tr>
<td></td>
<td>White House Council on Environmental Quality (CEQ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Weather Service</td>
<td>NWS</td>
</tr>
<tr>
<td></td>
<td>Coast Guard</td>
<td>USCG</td>
</tr>
<tr>
<td></td>
<td>National Guard</td>
<td>USNG</td>
</tr>
</tbody>
</table>
Infrastructure Overview
Disaster Housing is GREEN!

A disaster event, although devastating to a community, will provide opportunities for implementing more efficient and sustainable technologies than are usually attempted during typical planning and reconstruction.

Renovating and rebuilding necessary services and infrastructure with these technologies can substantially change the direct and indirect impacts we have on our natural systems. Interim Housing Units should not only be equipped to function during a post disaster situation where infrastructure is limited or not available, but should be designed to ‘sit lightly’ for the entire life of their use.

<table>
<thead>
<tr>
<th>Interim Housing Unit</th>
<th>Average NYC Apartment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrooms</td>
<td>2</td>
</tr>
<tr>
<td>Number of Inhabitants</td>
<td>4</td>
</tr>
<tr>
<td>Square Footage</td>
<td>720 ft²</td>
</tr>
<tr>
<td>Square Footage</td>
<td>1,500 ft²</td>
</tr>
<tr>
<td>Energy Consumption</td>
<td></td>
</tr>
<tr>
<td>10 kW/day</td>
<td>10 kW/day</td>
</tr>
<tr>
<td>-9 kW</td>
<td></td>
</tr>
<tr>
<td>1 kW/ day</td>
<td></td>
</tr>
<tr>
<td>Water Demand</td>
<td>180 gal/day</td>
</tr>
<tr>
<td>-22% washing machines</td>
<td></td>
</tr>
<tr>
<td>-18% conventional toilets</td>
<td></td>
</tr>
<tr>
<td>-2.7% baths</td>
<td></td>
</tr>
<tr>
<td>-1.5 dishwashers</td>
<td></td>
</tr>
<tr>
<td>102 gal/day</td>
<td></td>
</tr>
<tr>
<td>Garbage Removal</td>
<td>64.4 lbs/week</td>
</tr>
<tr>
<td>-39% organics</td>
<td></td>
</tr>
<tr>
<td>-36% recyclable</td>
<td></td>
</tr>
<tr>
<td>16 lbs/week</td>
<td></td>
</tr>
<tr>
<td>Human Waste Removal</td>
<td></td>
</tr>
<tr>
<td>22.4 gal/week</td>
<td>22.4 gal/week</td>
</tr>
<tr>
<td>-69% composted</td>
<td>+ 226.8 gal/week</td>
</tr>
<tr>
<td>7 gal/week</td>
<td>249.2 gal/week</td>
</tr>
<tr>
<td>of non-toxic filtered liquid</td>
<td></td>
</tr>
<tr>
<td>of flush water</td>
<td></td>
</tr>
<tr>
<td>of sludge</td>
<td></td>
</tr>
</tbody>
</table>
Infrastructure Overview

Damage Assessment & Strategies

<table>
<thead>
<tr>
<th>ELECTRICITY</th>
<th>WATER</th>
<th>SEWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% function of all pre-existing utilities</td>
<td>No need for power generating systems.</td>
<td>100% function of all pre-existing utilities</td>
</tr>
<tr>
<td>100% Stable with sudden but infrequent blackouts</td>
<td>Grid connection available. On-site generators where necessary.</td>
<td>Sewer available for connection.</td>
</tr>
<tr>
<td>>80% Frequent, short-term blackouts—entire community is affected</td>
<td>Grid connection available. On-site generators where necessary.</td>
<td>100% Sewer functioning to full capacity—excepting certain low-lying flood zone neighborhoods</td>
</tr>
<tr>
<td>>50% Cannot reach demand; begin dividing electric supply by alternating hourly schedule to all communities</td>
<td>Solar introduced to help relieve energy demands from grid. Generators brought on site for back-up.</td>
<td>>80% Operating but with proposal to flush conservatively. Occasional street sewage overflows, but quick to repair</td>
</tr>
<tr>
<td>>40% Not all neighborhoods are reached with available electric supply; some receive short intervals of service only</td>
<td>Solar providing basic energy needs to nearly all locations. Generators start taking heavier loads (pumping water, etc.)</td>
<td>>50% Sudden and increasing frequency sewer overflows.</td>
</tr>
<tr>
<td>>20% 0% function of pre-existing utilities</td>
<td>Very infrequent access to city water; dry spells up to 1.5 weeks long may be experienced</td>
<td>>40% Sewage operating at over capacity due to disrepair. Some streets experiencing regularly occurring street sewage overflows.</td>
</tr>
<tr>
<td>0% 0% function of pre-existing utilities</td>
<td>0% function of pre-existing utilities</td>
<td>>20% 0% function of pre-existing utilities</td>
</tr>
</tbody>
</table>

- **Water Catchment Systems**: Installed at all locations. Beginning the process of on-site filtration and purification.
- **Increased Truck Deliveries**: Planned to meet the demand for additional water supplies.
- **Composting Units**: Installed on all sites. Liquid by-product lines connected to sewer where available.
- **Composting Toilets**: With scheduled liquid by-product removal.

- **Sewer System**: Operating but with proposal to flush conservatively. Occasional street sewage overflows, but quick to repair.
- **Sewage Overflows**: Sudden and increasing frequency.
Module Organization

Service Units

To support living needs in an efficient manner, service units can be strategically located under unit clusters to serve the most residents possible.

Message boards placed on facades of the service units can improve wayfinding and orientation for residents.

Keeping the infrastructure components like fuel storage, generators, composters, water tanks, and other storage and services together in a specifically zoned area can provide efficiency in delivery, maintenance, and fume and noise mitigation.
Module Organization
Clustering Around Units

An efficient cluster of modules will have the maximum number of people served by one service unit.

As seen in the Module Density table (below), a 3 module cluster is much more efficient than a 4 module cluster as necessary site areas and energy consumption per person decreases.

In order to maximize the density of people on site, it is preferable to house larger families. Although, with a given number of family sizes the site most likely will have to accommodate for larger and smaller families.

<table>
<thead>
<tr>
<th>Module Density</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Service Modules, SM</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Necessary Site Area^2 (ft^2)</td>
<td>1,670</td>
<td>2,175</td>
<td>2,680</td>
<td>3,845</td>
<td>4,350</td>
<td>4,850</td>
<td>5,355</td>
<td>5,860</td>
<td>5,355</td>
<td>5,860</td>
<td>6,365</td>
</tr>
<tr>
<td>People (max.)</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>16</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Energy Consumption (kW/day)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Water Demand^2 (gal/day)</td>
<td>68</td>
<td>136</td>
<td>136</td>
<td>204</td>
<td>272</td>
<td>272</td>
<td>340</td>
<td>408</td>
<td>272</td>
<td>340</td>
<td>408</td>
</tr>
<tr>
<td>Produced Garbage (lbs/day)</td>
<td>9</td>
<td>18</td>
<td>18</td>
<td>28</td>
<td>37</td>
<td>37</td>
<td>46</td>
<td>55</td>
<td>37</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>Produced Human Waste (gal/day)</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Produced Grey Water (gal/day)</td>
<td>62</td>
<td>125</td>
<td>125</td>
<td>187</td>
<td>249</td>
<td>249</td>
<td>312</td>
<td>374</td>
<td>249</td>
<td>312</td>
<td>374</td>
</tr>
<tr>
<td>Available Solar Energy^2 (kW)</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>23</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>38</td>
<td>34</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>Available Rain Collection (gal/year)</td>
<td>31,380</td>
<td>43,935</td>
<td>56,490</td>
<td>75,320</td>
<td>87,870</td>
<td>100,425</td>
<td>112,980</td>
<td>125,530</td>
<td>112,980</td>
<td>125,530</td>
<td>138,085</td>
</tr>
</tbody>
</table>

A three module configuration for a larger family shares one Service Models.

While a four module configuration for two smaller families each have their own Service Modules that consequently requires more energy and a larger site.

A ten module configuration, suitable for two larger families and two smaller families.
Systems Guidelines

Energy recommendations

- Connect to grid as soon as possible
- Reduce consumption
 - Cap supply per unit
 - Limit high load appliances
 (i.e. Limit accessible wattage per unit)
 - Provide on-site cooling center, laundry service, cable TV center
- Use low demand, energy efficient technologies
 - Lighting (LED, CFL, etc.)
 - HVAC
 - Water heating
 - Appliances with energy star rating
- Implement community education on energy conservation
 - Shut off and unplug
 - “How to” decrease daily use
- Deploy targeted renewable energy supply systems
- Provide generators/fuel tanks as last resort
- Define maximum electrical demand
 - Per unit
 - Per site
- Define maximum
 - Fuel demand, storage and delivery protocol (gal/day)
- Consider location on site, structural shelter, and noise/exhaust mitigation
- Install cogeneration capabilities

HVAC & Water Heating Guidelines

- Define BTU and hot water demand
 - Per unit
 - Per site
- Choose appropriate system
 - Modular
 - Centralized

maximize daylighting

unit ventilation

insulated/thick walls, roof, door, windows

generator and fuel storage

battery

meter

light colored roofs and surfaces

ventilation stack

pv panels

passive cooling and heat retention

ventilation stack

pv panels

light colored roofs and surfaces
Systems Guidelines

Water Use Recommendations

- Connect to grid as soon as possible
- Reduce consumption
- Cap supply per unit
 - Provide on-site laundry center
 - Regulate water availability
 - Design strategies
 - Use low demand water efficient technologies
 - Use foam flush composting toilets or low flow toilets
 - Restricted flow water nozzles
 - Use appliances with energy star rating
- Implement community education on energy conservation
 - Water conservation
 - Dish washing
 - Showering
 - Teeth brushing and hand washing
 - Toilet flushing
 - Appropriate cleaning techniques
- Define maximum demand per unit and site (gal/day)
- Size and install water tanks
- Construct catchment system

If supply fulfills demand:
- Install on site water purification system (i.e. Ozonation)
- Distribute water to units
- Cease water delivery

If supply cannot reach demand:
- Store rain catchment for laundry use only
- Proceed to water delivery protocol
- Provide water delivery to site
- Implement tank refill delivery protocol (gal/week)
Systems Guidelines

Sewerage Recommendations

If sewage connection available:
• Conduct sewer connection feasibility study
• Install above ground sewer lines
 - Gravity flow
 - Sub pumps/energy necessary
• Excavate for connection to existing sewer line
• Water availability (water demand for flushing toilets)

If sewage connection not available:
• Conduct sewage retention basin feasibility study
 - Above ground basin location and spatial parameters
 - Necessary pumping/energy
 - Daily-hourly waste extraction protocol
• Conduct compost feasibility study
 - Location and spatial parameter in unit configuration
 - Minimum temp. Requirements
 - Monthly maintenance
 - Community education on new technology
 - Biannual liquid extraction protocol
Infrastructure Menu

The following table represents a matrix of available energy systems for the Interim Housing Unit. Different configurations of systems can be paired together to achieve the most integrated and efficient scheme.

<table>
<thead>
<tr>
<th>Description</th>
<th>Generator</th>
<th>Microturbine Generator</th>
<th>PV Electric</th>
<th>Residential Wind Turbine</th>
<th>Hydrogen Fuel Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Type</td>
<td>gasoline, diesel, biodiesel, nat. gas</td>
<td>gasoline, diesel, biodiesel, nat. gas</td>
<td>none</td>
<td>none</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>Time</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Poor</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td>lead time for installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Medium</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>to implement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to operate</td>
<td>Poor</td>
<td>Poor</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Availability</td>
<td>Excellent</td>
<td>Medium</td>
<td>Medium</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Safety Concerns</td>
<td>Medium (fuel spills possible)</td>
<td>Medium (fuel spills possible)</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>Poor</td>
<td>Poor</td>
<td>Excellent</td>
<td>Medium</td>
<td>Excellent</td>
</tr>
<tr>
<td>Fumes</td>
<td>Poor</td>
<td>Poor</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Operating Maintenance</td>
<td>Poor</td>
<td>Medium (less moving parts than std. generator)</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Capacity Available</td>
<td>up to 2000 kW</td>
<td>up to 2000 kW</td>
<td>0.01 kW / ft²</td>
<td>1.5 - 3 kW ea.</td>
<td>up to 150 kW</td>
</tr>
<tr>
<td>Description</td>
<td>Heat</td>
<td>Ventilation</td>
<td>Air Condition (AC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centralized</td>
<td>Electric Boilers</td>
<td>Central Air</td>
<td>Centralized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decentralized (living unit)</td>
<td>Electric Baseboards</td>
<td>Passive Cooling</td>
<td>Decentralized (living unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini Split System</td>
<td>Mini Split System</td>
<td>Room Air Conditioner</td>
<td>Mini Split System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Description**:
 - Electric Boilers: Creates heat through electric energy supply
 - Electric Baseboards: Creates heat through electric energy supply
 - Mini Split System: Heats through exterior heat pump
 - Central Air: Air condensing unit cools and distributes air
 - Passive Cooling: Using architecture to inhibit air flow through building
 - Room Air Conditioner: Air condensing unit cools and distributes air
 - Mini Split System: Cools through exterior heat pump

- **Time to Install**:
 - Medium
 - Excellent
 - Excellent
 - Medium (inherent in unit design)
 - Excellent
 - Excellent

- **Cost to Implement**:
 - Excellent (standard technology)
 - Excellent
 - Excellent
 - Excellent
 - Excellent
 - Excellent

- **Cost to Operate**:
 - Excellent
 - Medium (constant energy demand)
 - Medium
 - Medium
 - Excellent
 - Excellent

- **Availability**:
 - Medium
 - Excellent
 - Excellent
 - Excellent
 - Excellent
 - Excellent

- **Noise**:
 - Medium
 - Excellent
 - Medium
 - Medium
 - Excellent
 - Medium

- **Estimated Life Time**:
 - 10-20 years
 - 20 years
 - 10 years
 - 15-20 years
 - life of building
 - 10 years
 - 10 years

It is assumed that ventilation will be properly designed for in all kitchens and bathrooms by the manufacturer.
<table>
<thead>
<tr>
<th>Description</th>
<th>Combined Heat & Power (CHP)</th>
<th>Geothermal</th>
<th>Domestic Hot Water (DHW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cogeneration</td>
<td>Geothermal</td>
<td>Centralized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decentralized (living unit)</td>
</tr>
<tr>
<td>Description</td>
<td>Harnesses captured heat losses from an engine generator</td>
<td>Harvests thermal energy underneath earth's surface</td>
<td>Electric supply maintains a constant water temp. in storage tank</td>
</tr>
<tr>
<td>Collects solar energy in the form of thermal or heat energy</td>
<td>Electric element heats water as needed</td>
<td>Extracts heat from surrounding air to heat water in storage tank</td>
<td></td>
</tr>
<tr>
<td>Time lead time for installation</td>
<td>Medium</td>
<td>Poor (excavation necessary)</td>
<td>Excellent</td>
</tr>
<tr>
<td>to implement</td>
<td>Medium</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td>to operate</td>
<td>Excellent</td>
<td>Excellent (naturally available source)</td>
<td>Excellent</td>
</tr>
<tr>
<td>Availability</td>
<td>Medium</td>
<td>Medium</td>
<td>Excellent</td>
</tr>
<tr>
<td>Noise</td>
<td>Medium</td>
<td>Excellent</td>
<td>Medium</td>
</tr>
<tr>
<td>Estimated Life Time</td>
<td>20-30 years</td>
<td>25 years</td>
<td>10-20 years</td>
</tr>
<tr>
<td></td>
<td>(interior components)</td>
<td>50 years</td>
<td>15-20 years</td>
</tr>
<tr>
<td></td>
<td>(exterior components)</td>
<td>15 years</td>
<td>20 years</td>
</tr>
</tbody>
</table>

NOTE: Choosing between centralized and decentralized systems is extremely dependent on the demand. For most cases, decentralized systems operate more efficiently with low demands and centralized systems with high demands.
Site Design Techniques

Foundation Investigation

Screw piles (Helical)
- Fast installation
- All weather installation
- Removable
- Reusable

Precast concrete plank on grade
- No soil penetration
- May require grading
- May be insufficient for load

Slab on grade with base isolator
- No soil penetration
- Seismic protection
- Can negotiate variable grades
Site Design Techniques

Pre-Fab Units

- Configured for roof component
- Provide joints for fastening pv panels

Roof Investigation

- pv panels
- light-colored roof (potentially fabric)
- double pitch better in heavy wind
- truss and metal roof
Site Design Techniques

Designing for Slopes

- **slope 1-2%**
 - Imperceptible from the ground. Maintain at least 2% slope over site for good drainage.

- **slope 2-5%**
 - Some grading or adjustment via foundations needed.
 - Consider catching surface flow with swales, trenches, or drains.

- **slope 5-8%**
 - Requires Grading (and probable excavation/ exposure of soil).
 - Negotiate slope with terraces, ramps, and steps.

- **slope >12%**
 - Extensive Grading necessary (and probable excavation/ exposure of soil).
 - Negotiate slope with terraces, ramps, and steps.
Refer to the ADA Accessibility Guidelines for Buildings and Facilities for complete ramp requirements.

Any part of an accessible route with a slope greater than 1:20 shall be considered a ramp. The least possible slope shall be used for any ramp. The maximum slope of a ramp shall be 1:12.

The maximum rise for any run shall be 30 in (760 mm).

The minimum clear width of a ramp shall be 36 in (915 mm).
Site Design Techniques
Circulation and Drainage

- Groundwater recharge filtration strip
- Stormwater detention
- Connected tree pits (preferred)
- Above-ground tree planters