DeKalb Avenue Traffic Calming and Bicycle Lane Project

Presentation to Brooklyn Community Boards 2 & 3

NYC Department of Transportation Office of Alternate Modes March 2008

Why are we here?

- Bicycle Fatality & Serious
 Injury Study Improve Safety
- Mayor's PlaNYC A Greener Transportation Network
- 1997 Bicycle Master Plan

NYC DOT Bicycle Program

- 200 Mile, 3 Year Bicycle Route Commitment
- Targeting Areas of High Demand & Key Connections
- Design Approach:
 - 1. Study Best Practices
 - 2. Develop Innovative Designs for Constrained NYC Environment
 - 3. "Complete Streets" Design Philosophy

Neighborhood-Wide Bicycle Network

Implementation Timeline

Tompkins & Throop Aves DeKalb Ave (west of Cumberland) Willoughby Ave Carlton Ave & Cumberland St Central & Evergreen Aves (Bushwick) Bedford Ave **DeKalb Ave (2.6 miles)** Franklin Ave 1997, 2003 2004 April 2007 May 2007 June 2007 October 2007 **May 2008** August 2008

Commuter Corridor

- Bus Commutes to Downtown Brooklyn & Subway
- DeKalb is a Key Bus Route
 - 9th busiest in Brooklyn, 23rd busiest in NYC
- B38 running at or near capacity
 - 2.6% increase in ridership from
 2005-2006 (compared to .6%
 increase in Brooklyn and citywide)

Bicycle Demand

12-hour* Bicycle Counts on DeKalb and Willoughby Avenues **Cross-street** Cross-street Cyclists** 2 Tompkins (97) Marcy Ave 250 (163)Clermont Ave Adelphi St 410 Tompkins (138)Marcy Ave 350 (132)Bedford Ave Skillman St 330 Washington (97) Hall St Ave 250 (263) Clermont Ave Adelphi St 660 Cyclists counted from 7am-7pm

** Values in parenthesis are actual winter counts, values below are offset to estimate summer volumes

Bicycle Commuting

Ideal Conditions for Cycling

- High Residential Density
- Lack of Subway Access
- Low Car Ownership
 - 7 of 10 households are car-free (Fort Greene, Clinton Hill and Bed-Stuy)*
- Pre-automobile Era Neighborhoods

Bicycle Transportation

- Flexible
 - No schedule or route
 - Ride to Subway or Work
- Fast
 - Avoid traffic
- Inexpensive
 - No fee for bicycle parking

Existing Conditions

- 2 Travel Lanes
- 2 Parking Lanes
- No Dedicated Cycling Space: Uncomfortable Cycling Environment
- Retail Frontages Allow All Day Parking: Double Parking for Loading

Design Approach for a Complete DeKalb

- 1. Creating Dedicated Cycling Space
- 2. Improving Intersection Safety
- 3. Traffic Calming for All Street Users
- 4. Providing Safe Access
- 5. Maintaining Multimodal Traffic Flow

Planned Design: Buffered Bicycle Lane

1. Creating Dedicated Cycling Space

2. Improving Intersection Safety

Turning Conflicts at Intersections are Problematic

- 9 of 10 NYC fatalities
- 8 of 10 NYC serious injuries

Existing Conditions

• No Guidance at Intersections

Planned Conditions

- Bicycle lanes increase driver's visibility and awareness of cyclists
- Intersection markings highlight potential conflict

3. Traffic Calming for All Street Users

Existing Conditions Excess road space in off-peak hours

- Speeding
- Reckless driving/unpredictable lane changes

Planned Conditions Design matches capacity to need

- Fewer opportunities to speed
 - Lead vehicle sets pace
- Constrained space calms traffic

4. Providing Safe Access

Existing Conditions

All Day Parking at Retail and Other Active Land Uses Leads to Double Parking

Issues created by double parking

- Blocks Traffic Including Planned Bike Lane
- Causes Unanticipated Lane Changes
- Poor Access to Businesses

Planned Conditions

• Time limited parking for loading and retail use as needed

5. Maintaining Multimodal Traffic Flow

Context Sensitive Design

• Different design approach for long blocks and short blocks

Existing Conditions: Volumes

Design Tailored to Maintain Commuter Traffic Flows

Planned Design

Long Blocks – Right Turns

Planned Design

Long Blocks – Left Turns

Planned Design

Short Blocks

Parking Impacts

Peak Hour Parking Restrictions (~130 spaces, M-F 7-10a & 4-7p) Full-time Parking Restrictions (~60 spaces)

Design Approach for a Complete DeKalb

Creating Dedicated Bicycle Lane with Buffer
 Cycling Space

Lane Markings Through

Matches Need

Intersection

Design Capacity

- 2. Improving Intersection Safety
- 3. Traffic Calming for All Street Users
- 4. Providing Safe Access ____> Time Limited Parking
- 5. Maintaining Multimodal Peak Period Moving Traffic Flow Lanes

Next Steps

-ING

Refine Plans Based on Community Input

BROOKLYN

ING GOODS

 Feedback on Curbside Access
 Identify Land Uses with Curbside Access Needs